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Abstract of the Dissertation

On the collapsing and convergence of Ricci flows and solitons

by

Shaosai Huang

Doctor of Philosophy

in

Mathematics

Stony Brook University

2018

Perelman’s no local collapsing theorem [78] says that at a finite time singu-
larity of a Ricci flow on a fixed closed manifold, there will be no collapsing with
bounded curvature, and therefore the blow-up limit at the singular time – a gradi-
ent shrinking soliton – is non-collapsing. However, this may not be the situation
when considering a family of Ricci flows with collapsing initial data, and this is the
direction in which the current thesis explores. We present two results, of different
flavors: one concerning the existence of a weak limit – a metric space whose metric
is determined by the Ricci flows; the other on the regularity of the limit space.

Our first result is in general dimensions. We prove a distance distortion estimate
for a family of Ricci flows whose initial data may collapse in a controlled way,
generalizing a similar estimate of Bamler-Zhang [61], which, as the best known
result to date, requires uniform non-collapsing initial data.

The second result is in dimension four. We prove an ε-regularity theorem for
complete non-compact gradient shrinking Ricci solitons, and establish a compact-
ness theorem in the generalized Cheeger-Gromov sense. This confirms a decade-
long conjecture of Cheeger-Tian [20].
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List of Notations

Throughout this paper the following notations are employed:

1. p0 ∈ M denotes the base point of M; also use p0
i ∈ Mi for a sequence {Mi}.

2. Rmg, Rcg and Rg denote the Riemannian curvature, the Ricci curvature, and
the scalar curvature of a given Riemannian metric g, respectively. For the
sake of simplicity, we will write Rm, Rc and R when there is no confusion.

3. For any E ⊂ M and r > 0, define

B(E, r) := {x ∈ M : ∃y ∈ E, d(x, y) < r} .

For any E ⊂ M and 0 < r1 < r2, define

A(E; r1, r2) := {x ∈ M : ∀y ∈ E, d(x, y) > r1, and ∃z ∈ E, d(x, z) < r2} .

Especially, B(x, r) is the geodesic ball of radius r around x ∈ M and A(x; r1, r2)
is the geodesic annulus around x ∈ M, with inner and outer radii specified by
r1 and r2 respectively.

4. Ψ(α, β | a, b, c) will denote some positive function depending on α, β, a, b, c
such that for any fixed a, b, c,

lim
α,β→0

Ψ(α, β | a, b, c) = 0.

Notice that the specific value of Ψ may change from line to line.

5. We will use bold-face letter to denote a vector in R4, e.g. the origin is denoted
by 0 and a vector is denoted by v.

2



Acknowledgements

I would like to thank my advisor Xiuxiong Chen, for bringing into my atten-
tion the following areas of mathematics: the theory of Cheeger-Colding on mani-
folds with Ricci curvature bounds, the Cheeger-Fukaya-Gromov theory of collaps-
ing manifolds with bounded curvature, and Perelman’s pseudo-locality theorem for
Ricci flows. I have gained much pleasure through studying these fields. I also thank
him for his constant support during my graduate study.

During the past six years since our first discussion on Cheegr-Colding’s theory,
Bing Wang has been of great help and support to me. Discussions with Bing have
always been exciting, inspiring, and — most importantly — fruitful. I thank him
for his generosity, insights and passion in mathematics.

I thank Mike Anderson for his support in my job hunting. As a poineering figure
in my field of study, his recoganition and support of my doctoral work have been a
great encouragement for me.

I thank Jeff Cheeger for his friendly and patient conversation with me when part
of this thesis was just finished last May. Even without this, I am grateful of him for
creating the mathematical world that I am so much into.
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Chapter 1

Introduction

1.1 Background
The study of Ricci flow starts from Richard Hamilton’s seminal paper [36] in 1982,
where he defines a Ricci flow on a closed Riemannian manifold (M, g) to be a family
of Riemannian metrics g(t) on M satisfying the tensorial equation:

∂tg(t) = −2Rcg(t) (1.1)

with initial data g(0) = g. Hamilton first showed the short time existence and then
applied this flow to the study of 3-manifolds equipped with an initial metric of
non-netative and non-vanishing Ricci curvature. He has shown that strikingly, the
normalized Ricci flow, evolves any such metric on a 3-manifold to the round sphere.

The approach of deforming geometric quantities using a non-linear heat flow is
not new — before the invention of Ricci flows, there have been a large amount of
literatures in the study of harmonic map heat flow, and of the mean curvature flow.
The Ricci flow, as an intrinsic heat flow, is more difficult to study, but it looked
promising through the work of Hamilton: if one could remove the assumption on
the initial curvature, evolution of the normalized Ricci flow would lead to a resolu-
tion of the long-standing Poincaré conjecture for 3-manifolds.

A program toward solving the 3-dimensional Poincaré conjecture was indeed
initiated by Richard Hamilton, but as pointed out in [37], a bottleneck is the pos-
sible collapsing with locally bounded curvature at finite time singularities of the
Ricci flow. About a decade later, Grisha Perelman made a breakthrough by ruling
out the above mentioned possibility in [78], and consequently succeeded in proving
Thurston’s geometrization conjecture, having the Poincaré conjecture as an essen-
tial piece.

Major tools, introduced in [78], that enable Perelman to prove his no local col-
lapsing theorem, are the F - andW-functionals, which have the Ricci flow as their
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gradient flow, and are thus monotone under the evolution of the Ricci flow. Perel-
man’s no local collapsing theorem enabled us to classify the finite time singularity
models of 3-dimensional Ricci flows, and perform surgeries to continue the Ricci
flow.

Besides the long-time existence issue, which is settled in many interesting cases,
e.g. Kähler Ricci flows starting from a nef metric, one would like to understand the
limiting behavior of immortal Ricci flows — remember, our ultimate goal is to
evolve the Riemannian metric along the Ricci flow to a canonical one.

The 3-dimensional picture is completed following Perelman’s work, see [77].
In contrast to the finite time singularities, collapsing may occur for the large-time
behavior. Therefore, it is necessary to investigate the collapsing phenomenon in the
setting of Ricci flows.

In general dimensions, the above mentioned goal is far from being reached; a
more realistic goal would be constructing and studying the limit of a sequence of
Ricci flows {(M, gi(t))}, with gi(t) := g(t + ti) (or gi(t) := t−1

i g(t + ti) depending on
the scenario) as ti → ∞.

This limit may not exist in the strongest sense, i.e. smooth convergence to a
smooth Ricci flow (compare [38]), but a weak limit as a metric space may exist for
some sequences ti → ∞.

This weak limit, once in existence, may also acquire a nicer structure, e.g. it
may be smooth away from a small set of singularities, since it is resulted from the
evolution of a Ricci flow.

In this thesis, we make efforts towards these directions, by proving a uniform
distance distortion estimate in any dimension, and then establishing an ε-regularity
theorem for gradient shrinking Ricci solitons in dimension 4.

We emphasize again that a key difference between the finite time singularities
and the infinite time singularity is, as t → ∞, the no local collapsing result fails to
hold in general. Therefore, a key feature of our results is that we have to deal with
the lack of a uniform volume ratio lower bound, which adds much more complexi-
ties into our study.

1.2 Distance distortion estimate
For a fixed Ricci flow, a fundamental question of Richard Hamilton (see Section 17
of [37]) is to obtain a uniform distance distortion estimate depending on a minimal
requirement of the space-time curvature bound. A natural and non-trivial condition
is to assume a uniform bound of the scalar curvature in space-time, as evidenced
by Kähler-Ricci flows on Fano manifolds. The distance distortion problem in this
case is completely settled by Chen-Wang in [22], and again in [24] as an important
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intermediate step towards their main result. The Käher condition was then dropped
by Bamler-Zhang in [61]. See also the previous works of Richard Hamilton [37],
Miles Simon [53] and Tian-Wang [54] for several important partial results. How-
ever, all these estimates, including the ones of Chen-Wang and Bamler-Zhang, rely
on the uniform lower bound of the initial µ-entropy, a crucial condition that we will
relax in this note.

As a second motivation, in studying the uniform behavior of all Ricci flows, one
may have to encounter a family of Ricci flows without a uniform lower bound for
the initial µ-entropy. A very common situation is when the family of initial data
have their diameter uniformly bounded, but volume degenerating to 0, causing the
initial µ-entropy to approach negative infinity. A natural question would then be
whether there is a limiting metric space whose metric evolves in a way determined
by the Ricci flows. Here we make efforts towards constructing such limiting metric
spaces by uniformlly estimating the distance distortion along the Ricci flows:

Theorem 1.2.1. Let (M, g(t)) be a complete Ricci flow solution on [0,T ] with initial
diameter D0 and initial volume V, and assume the following conditions:

1. (M, g(0)), as a closed Riemannian manifold, has its doubling constant uni-
formly bounded above by CD, and its L2-Poincaré constant by CP, and

2. the scalar curvature is uniformly bounded in space-time: supM×[0,T ] |Rg(t)| ≤

C0.

There exist two positive constants α = α(θ | CD,CP,C0,D0, n,T ) < 1 with

lim
θ→0

α(θ | CD,CP,C0,D0, n,T ) = 0,

and ν = ν(CD,CP,C0, n) < 1, such that whenever VD−n
0 ≤ νωn, for fixed t ∈ [0,T ]

and r ∈ (0,
√

t), if we set θ := min{1, r/D0}, then

∀x, y ∈ M with dg(t)(x, y) ≥ r, and ∀s ∈ (t − αr2,min{T, t + αr2}),

we have

α(θ)dg(t)(x, y) ≤ dg(s)(x, y) ≤ α(θ)−1dg(t)(x, y). (1.2)

Remark 1.2.2. The requirement that VD−n
0 < νωn indicates that the initial data

is volume collapsing with bounded diameter. Notice that with ωn being the vol-
ume of the n-dimensional Euclidean unit ball, νωn is a dimensional constant only
depending on CD,CP and C0.
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In the statement of the theorem, θ refers to the relative size of the scale on which
we consider distance distortion compared to the initial diameter, and α ≈ θ8ne−θ

−2
.

The bound α becomes worse as the scale on which we observe becomes smaller
compared to the initial diameter.

This is reasonable, as demonstrated in the case of collapsing initial data with
bounded curvature and diameter: there will be no uniform estimate of the dis-
tance distortion in the fiber directions. However, we notice that such estimate is
not needed for providing a rough metric structure on the collapsing limit, since
eventually it is the estimates in the base directions that we will need. Therefore,
regardless of how small the relative scale we are considering, a uniform estimate,
even though depending on such scale, is indeed what we need.

The previous distance distortion estimates are based on the estimates of the
volume ratio change along the Ricci flow: with uniformly bounded scalar curvature
and initial entropy, the volume ratio at a point can neither suddenly decrease (no
local collapsing theorem of Perelman [78]), nor suddenly increase (non-inflation
property due to Chen-Wang [67] and Qi S. Zhang [85]). Discretizing the geodesic
distance by the number of fix-sized geodesic balls that suitably cover the minimal
geodesic, these non-collapsing and non-inflation properties together provide the
desired control of the distance distortion. This type of “ball containment” argument
is succinctly discribed in the third section of Chen-Wang [25].

In order to obtain uniform estimates of the change of volume ratio along the
Ricci flow, in the Kähler case Chen-Wang [24] studied the Bergman kernel, while
in the Riemannian case, Bamler-Zhang [61] relies on Qi S. Zhang’s heat kernel
estimates in [85].

Our theorem is proven along the same paths that lead to such estimates. How-
ever, we need to start from scratch: underlying the estimates of the heat kernel, a
corner stone is the expression of the log-Sobolev constant in terms of the initial
µ-entropy (see [81] and [83]), which, in the current note, will be replaced by a
renormalized version involving the initial global volume ratio VD−n

0 .
Heuristically speaking, collapsing is a geometric phenomenon, while the be-

havior of the heat kernel (which reflects the volume ratio) is analytic in nature.
The monotonicity of Perelman’s functionals along the Ricci flow is another in-
stance where a geometric deformation bears an analytic meaning. A basic principle
in dealing with the analytic information associated with collapsing, especially the
Dirichlet energy and related objects, is making a correct renormalization. This was
first noticed by Kenji Fukaya [72] in the setting of collapsing with bounded cur-
vature and diameter, and then strengthened through a series of work by Cheeger-
Colding (see [64], [63], [65] and [66]) to the case with only Ricci curvature lower
bound.

Another motivation of proving this estimate is therefore to demonstrate the ne-
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cessity of the above renormalization principle in the setting of Ricci flows with col-
lapsing initial data: the initial collapsing is a geometric phenomenon, yet in order
to obtain the distance distortion estimate, we need to control the analytic quantities
— the heat kernel bounds — which could only be made possible through a correct
renormalization.

We now outline the series of estimates of the renormalized quantities that lead
to the uniform distance distortion estimate. We emphasize that these inequalities
are invariant under the parabolic rescaling of the Ricci flow, a crucial point for
them to work in a geometric setting. Also notice that the constants involved are
determined by CD,CP,C0,D0, n, but we only write explicitly their dependence on
T . Our starting point is a renormalized L2-Sobolev inequality (see [1] and [79]):

∀u ∈ H1(M, g(0)),
(∫

M
u

2n
n−2 dVg(0)

) n−2
n

≤ CS (VD−n
0 )−

2
n

∫
M
|∇u|2 + D2

0u2 dVg(0),

(1.3)

where D0 is the initial diameter and V :=
∫

M
1 dVg(0) is the initial volume.

Following classical arguments and the definition of theW-functional, this gives
a lower bound of the initial entropy (3.3): for any τ > 0,

µ(g(0), τ) ≥ log VD−n
0 − (C0D2

0 + D−2
0 )τ −

n
2

log(8nπeCS ).

Here we would like to raise the readers’ attention that it is not just the initial total
volume V , but the initial global volume ratio VD−n

0 , that controls the lower bound of
the entropy. This quantity not only technically makes the inequality scaling-correct,
but also conceptually reveals the meaning of collapsing initial data — volume col-
lapsing with bounded diameter.

Following Perelman’s classical argument [78], we could deduce the lower bound
of the renormalized volume ratio (see Proposition 3.2.2): there is a uniform C+

VR(T ) >
0, such that

∀t ∈ (0,T ], ∀r ∈ (0,
√

t], (VD−n
0 )−1|Bt(x, r)| ≥ C+

VR(T )rn.

Here we start seeing the effect of the correct renormalization: even if the volume
ratio fails to have a uniform lower bound, once renormalized by (VD−n

0 )−1, it is
indeed bounded below by C+

VR(T ).
Further exploring the definition and monotonicity of theW-functional, and fol-

lowing Qi S. Zhang’s application [85] of the method of Edward Davies [70], we
obtain the following rough upper bound of the renormalized heat kernel (see Propo-
sition 3.3.1): there is a uniform C+

H(T ) > 0 such that

∀t ∈ (0,T ], ∀s ∈ (0, t), ∀x, y ∈ M, VD−n
0 G(x, s; y, t) ≤ C+

H(T )(t − s)−
n
2 .
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For the definition of G(x, s; y, t) see Subsection 2.3. Here we see the duality between
the heat and the volume of a Riemannian manifold. Intuitively, the collapsing is an
intrinsic geometric procedure, and it should not cause the addition or loss of the
total heat. Therefore, if the global volume ratio behavies like VD−n

0 → 0, then the
heat density should in general behave like (VD−n

0 )−1 → ∞.
Up to this stage it is basically just the interplay between the Sobolev inequality

and theW-functional: purely analytic in nature. In order to estimate the distance
distortion, we still need a lower bound of the renormalized heat kernel. The origi-
nal argument of Chen-Wang [67] and Qi S. Zhang [85], however, will not give us
the desired bound: their argument, based on the estimate of the reduced length of
a space-constant curve at the base point of the heat kernel, is valid regardless of
scales; but in our setting there is a drastic difference between the very small scales,
which resemble the locally n-dimensional Euclidean property of the manifold, and
the large scales, on which the collapsing to a lower dimensional space is observed.

We will overcome this difficulty by obtaining a positive-time diameter bound in
terms of the initial diameter, and stick to our principle of keeping the heat-volume
duality. The following diameter bound is deduced following an argument of Peter
Topping in [80] (see Proposition 3.2.4): there exists a uniform constant Cdiam > 0
such that if the initial global volume ratio is sufficiently small, i.e. VD−n

0 < νωn for
some uniform ν ∈ (0, 1], then

∀t ∈ (0,T ], diam(M, g(t)) ≤ Cdiame2C0tD0.

This diameter bound is of great technical importance for us, since we will soon use
it to deduce an on-diagonal lower bound of the renormalized heat kernel. Concep-
tually, this bound tells that scales that are comparable to the initial diameter, remain
comparable to the diameter at a positive time, up to a uniform factor depending on
the time elapsed.

With the help of the diameter bound above, we have the following lower bound
of the renormalized heat kernel (see Lemma 3.3.2): there exists a uniform constant
C−H(T ) > 0 and a positive function Ψ(θ | T ) with limθ→0 Ψ(θ | T ) = 0, such that if
VD−n

0 ≤ νωn,

∀t ∈ (0,T ], ∀s ∈ (0, t), ∀x ∈ M, VD−n
0 G(x, s; x, t) ≥ C−HD(T )Ψ(θ(s)| T )(t − s)−

n
2 .

Here we see that the effect of scales enters into the picture via the factor Ψ(θ | T ):
for any t ∈ (0,T ] and any s ∈ (0, t), θ(s) :=

√
t − s/D0 is the ratio of the (parabolic)

scale under consideration compared to the initial diameter; when the scale that we
observe approaches 0, relative to the initial diameter, then the lower bound of the
renormalized heat kernel will also approach 0. (Rigorously speaking, we actually
have θ =

√
t − s/ diam(M, g(t)) in our mind, but the diameter bound above allows us
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to compare r directly with D0, making the definition more canonical.) This estimate
naturally leads to a Gaussian type lower bound of the renormalized heat kernel, as
well as the non-inflation property of the renormalized volume ratio.

The bounds of the renormalized heat kernel, together with the previous lower
bound of the renormalized volume ratio, are enough to prove the desired distance
distortion estimate, in view of the arguments in proving Theorem 1.1 of [61].

1.3 ε-Regularity for 4-D Ricci shrinkers
A four dimensional gradient shrinking Ricci soliton (a.k.a. 4-D Ricci shrinker) is a
four dimensional Riemannian manifold (M4, g) equipped with a potential function
f satisfying the defining equation (with a fixed scaling)

Rcg + ∇2 f =
1
2

g, (1.4)

where Rcg denotes the Ricci curvature of the Riemannian metric g.
We intend to study uniform behaviors of complete non-compact 4-d Ricci shrinkers

through their moduli spaces, whose compactification is of foundamental impor-
tance. Poineered by the work of Cao-Sesum [5], Xi Zhang [59], Brian Weber [56],
Chen-Wang [22] and Zhenlei Zhang [60] in this direction, the most satisfactory
compactness results to date, obtained by Robert Haslhofer and Reto Müller (né
Buzano) [39] [40], assume a uniform entropy lower bound. In fact, Bing Wang has
conjectured that a 4-d Ricci shrinker should have an a priori entropy lower bound,
depending solely on some topological restrictions. To verify this, however, we need
to study the degeneration of the metrics along sequences of 4-d Ricci shrinkers
without uniform entropy lower bound, and then use contradiction arguments to rule
out the potential occurrence of such a situation. (For the relation between entropy
lower bound and no local collapsing property, see [78] and [77].)

The obvious analogy between Ricci solitons and Einstein manifolds brings us
the foundational work of Cheeger-Tian [20], which, built on Anderson’s ε-regularity
with respect to collapsing [1], obtains a new ε-regularity theorem for any four di-
mensional Einstein manifolds. Cheeger-Tian conjectured (in Section 11 of [20])
that a similar result should hold for four dimensional Ricci solitons, moreover:

“Of particular interest is the case of shrinking Ricci solitons.”

Our first theorem confirms their conjecture for 4-D Ricci shrinkers:

Theorem 1.3.1 (ε-regularity for 4-D Ricci shrinkers). Let (M4, g, f ) be a complete
non-compact four dimensional shriking Ricci soliton and fix R > 0. Then there
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exists rR > 0, εR > 0 and CR > 0, such that for any r ∈ (0, rR) and B(p, r) ⊂ B(p0,R),
the weighted local L2-curvature control∫

B(p,r)
|Rmg|

2 e− f dVg ≤ εR

implies the local boundedness of curvature

sup
B(p, 1

4 r)
|Rmg| ≤ CR r−2.

Here p0 ∈ M is a minimum point of f , see Lemma 2.2.2 for more details.
In order to further motivate our theorem, we notice that Cheeger-Tian’s ε-regularity

theorem could be viewed as a non-trivial localization of the fact that for a closed
four dimensional Einstein manifold (M, g), its Euler characteristic can be computed
as

χ(M) =
1

8π2

∫
M
|Rmg|

2 dVg.

If ‖Rmg‖L2(M) is sufficiently small, then the integrity of χ(M) will force χ(M) = 0,
whence the flatness of (M, g).

Similarly, on a closed four dimensional Ricci soliton (M, g, f ), we have

χ(M) =
1

8π2

∫
M

(
|Rmg|

2 − |R̊cg|
2
)

dVg,

where R̊cg is the traceless Ricci tensor. Now if ‖Rmg‖L2(M) < π, as |R̊cg|
2 ≤ 2|Rmg|

2,
we must have −1 < χ(M) < 1, and thus χ(M) = 0. It follows that (M, g, f ) must
be a steady or an expanding Ricci soliton: otherwise, were (M, g, f ) a 4-D Ricci
shrinker, π1(M) must be finite by [57], leading to χ(M) ≥ 2 that contradicts the
vanishing of χ(M). But a closed steady or expanding four dimensional Ricci soliton
must be Einstein, so |R̊c| ≤ |∇2 f | ≡ 0 by (1.4), and ‖Rmg‖

2
L2(M) = 8π2χ(M) = 0,

which means that (M, g) must be flat.
So our ε-regularity theorem for 4-D Ricci shrinkers is a localization of the above

rigidity of closed four dimensional Ricci solitons, and particularly suits the study of
non-compact ones. Notice however, as pointed out in [39], that “most interesting
singularity models are non-compact, the cylinder being the most basic example”.

We also need to notice that the dependence of the constants in our ε-regularity
theorem is a new feature caused by the presence of the potential function: the al-
lowence of the existence of non-compact Ricci shrinkers — in fact, they strongly
resemble positive Einstein manifolds, which are compact, scaling rigid, and which,
may only admit families of metrics that are either collapsing everywhere, or else
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nowhere. Similar phenomenon occuring for geodesic balls of fixed size centered at
the base point in a non-compact 4-D Ricci shrinker, our ε-regularity theorem only
applies within a fixed distance from the base point. Moreover, in our future presen-
tations, we will fix such a distance and do not elaborate on writing down scaling
invariant formulae.

The proof of Theorem 1.3.1 is based on the recent advances in the study of
shrinking Ricci solitons, and the comparison geometry of Bakry-Émery Ricci cur-
vature lower bound (see, among others, [39] [40], [4], [21], [45], [47], [57] and [58],
etc.). Here we briefly outline the proof of Theorem 1.3.1, which follows the strategy
of Cheeger-Tian [20] in the Einstein case. We will indicate the necessary improve-
ments in order to deal with the lack of the Einstein’s equation.

Starting point

Our starting point is a 4-D Ricci shrinker version of Anderson’s ε-regularity with re-
spect to collapsing [1], see Proposition 2.4.6. For any r ≤ 1 and B(p, r) ⊂ B(p0,R),
let the renormalized energy of B(p, r) be defined as (see Definition 2.4.7)

I f
Rm(p, f ) :=

µ̄R(r)
µ f (B(p, r))

∫
B(p,r)
|Rm|2 dµ f ,

where dµ f := e− f dVg and we will denote µ f (U) =
∫

U
1 dµ f for any U ⊂ M. We no-

tice that it is continuously increasing in r. Anderson’s theorem asserts the existence
of positive constants εA(R) and CA(R), such that

I f
Rm(p, r) ≤ εA(R) =⇒ sup

B(p, r
2 )
|Rm| ≤ CA(R) r−2I f

Rm(p, r)
1
2 .

However, the input of our ε-regularity theorem seems to be quite far from fulfill-
ing the smallness of I f

|Rm|(p, r) required by this theorem: when collapsing happens,
the smallness of the energy

∫
B(p,r)
|Rm|2 dµ f may be caused by the smallness of

µ f (B(p, r)). This difficulty is overcome in two steps: firstly the key estimate guar-
antees a uniform bound of I f

|Rm|(p, 2r) from the smallness of
∫

B(p,r)
|Rm|2 dµ f , as

assumed in Theorem 1.3.1; then the fast decay proposition guarantees that after
a definite number, say jR times, of bisecting the given scale r, I f

|Rm|(p, 21− jRr) is
small enough so that Anderson’s theorem applies. Throughout the introduction we
will let B(U, s) denote the s-tubular neighborhood around any set U ⊂ M, and
A(U; s, r) = B(U, r)\B(U, s) for r > s > 0.

Key estimate

The key estimate (Proposition 4.4.5) follows from an interation argument, in each
step of which, the energy over a domain U is roughly bounded by the 3

4 -power of

9



the energy on some s-tubular neighborhood of U, with some carefully chosen small
s ∈ (0, r):

∫
U
|Rm|2 dµ f ≤ C(R) µ f (B(U, s))

s−4 +

 s−
4
3

µ f (B(U, s))

∫
B(U,s)

|Rm|2 dµ f

 3
4
 , (1.5)

see also the estimates (4.23) and (4.24). Now we briefly explain how to obtain this
estimate.

If U is collapsing with locally bounded curvature (see Definition 4.1.10), Cheeger-
Tian proved in Section 2 of [20] that a slightly larger neighborhood U′ of U acquires
a nilpotent structure, which implies the vanishing of the Euler characteristic of U′:

0 = χ(U′) =

∫
U′
Pχ +

∫
∂U′
TPχ. (1.6)

For 4-D Ricci shrinkers, 8π2Pχ =
(
|Rm|2 − |∇̊2 f |2

)
dVg since R̊cg = ∇̊2 f by the

defining equation (1.4); and TPχ is a three form on ∂U′ with coefficients deter-
mined by Rmg|∂U′ and II∂U′ , the second fundamental form of ∂U′, see (2.17). The
integral of |Rm|2−|∇̊2 f |2 over U′, using (1.6), is then pushed to the boundary integral∫
∂U′
TPχ.
The control of

∫
∂U′
TPχ relies on the equivariant good chopping theorem, (stated

and used in Theorem 3.1 of [20], also see Appendix A for a detailed proof,) which
enables us to choose U′ so that ∂U′ is saturated by the nilpotent structure, and es-
sentially bounds |II∂U′ | by |Rm|

1
2 . It follows that |TPχ| is then controlled by |Rm|

3
2 ,

which, via (1.6), improves the integration of |Rm|2 over U′ to integrating |Rm|
3
2 over

∂U′. Averaging on a tubular neighborhood of ∂U and using a maximal function ar-
gument, Cheeger-Tian then obtained:

∣∣∣∣∣∫
∂U′
TPχ

∣∣∣∣∣ ≤ C(R)µ f (A(U; 0, s))

s−4 +

 s−
4
3

µ f (A(U; 0, s))

∫
A(U; 1

4 s, 3
4 s)
|Rm|2 dVg

 3
4
 .

(1.7)

Invoking (1.6), we obtain a control of
∫

U
|Rm|2 − |∇̊2 f |2 dµ f by the right-hand side

of the above estimate, since dµ f is comparable to dVg in B(p0,R) in a uniform way.
In the Einstein case, since |∇2 f | ≡ 0, the above dominating term on the right-

hand side suffices to provide the desired control of
∫

U
|Rm|2 dµ f in (1.5). For 4-D

Ricci shrinkers, however, |∇̊2 f |2 does not vanish and the control of
∫

U
|∇2 f |2 dµ f

relies on the gradient estimate |∇ f | ≤ R/2 +
√

2 (see Lemma 2.2.3), as well as

10



Cheeger-Colding’s cut-off function (see Lemma 2.3.3):∫
U
|∇2 f |2 dµ f ≤ C(R) µ f (B(U, s)) s−2, (1.8)

see Lemma 4.4.4. When s > 0 is very small, the right-hand side of this estimate
is dominated by µ f (B(U, s)) s−4, so replacing µ f (A(U; 0, s)) by µ f (B(U, s)) in (1.7),
we could obtain the desired energy estimate (1.5) for the iteration argument.

Fast decay

The fast decay proposition (Proposition 4.4.7) asserts the existence of some gap
ηR ∈ (0, 1), such that if the energy

∫
B(p,r)
|Rm|2 dµ f and volume µ f (B(p, r)) of a ball

B(p, r) is sufficiently small, then

I f
Rm(p, r/2) ≤ (1 − ηR) I f

Rm(p, r).

This is proved by a contradiction argument. Suppose on the contrary, for posi-
tive η → 0, there are counterexamples B(p, r) ⊂ B(p0,R) of vanishing µ f -volume
µ f B(p, r)→ 0 and

I f
Rm(p, r/2) > (1 − η) I f

Rm(p, r),

we could use volume comparison to see that A(p; r/2, r) is an almost µ f -volume
annulus (4.40). By the theory of Cheeger-Colding (Lemma 2.3.4), this property im-
plies that a slightly smaller annular region in A(p; r/2, r) is an almost metric cone,
whose radial distance approximated by some smooth function ũ. The approxima-
tion is in the C0-sense, as well as the average H2-sense, see (4.41) – (4.43).

Moreover, the key estimate implies the almost vanishing (4.38) and regularity
(4.39) of the curvature on the annulus A(p; r/2, r), and all derivative controls of ũ,
see (4.44).

Let W = B(x, 3r/2) ∪ ũ−1(r/2, a) for some regular value a ∈ (3r/4, r) of ũ. On
the one hand,

∫
W
|Rm|2 dVg is positive but very small (as assumed by the ε-regularity

theorem), say

0 <

∫
W
|Rm|2 dVg <

1
4

;

on the other hand, ∂W = ũ−1(a) smoothly approximates the outer boundary of an
annulus A∞ in a flat cone. Intuitively, since the cone is flat, we know that the sec-
ond fundamental form of its outer boundary, II∂+A∞ , is positive, and its boundary
Gauss-Bonnet-Chern term |TPχ|∂A∞ | ≡ 1. Thus the smoothness of the approxima-
tion ũ−1(a) → ∂+A∞ together with the vanishing of curvature (4.38) will imply the

11



positivity of coefficients of TPχ|∂W = TPχ|ũ−1(a), and the collapsing implies the
smallness of its integral, say

0 <

∫
∂W
TPχ <

1
4
. (1.9)

In this way, for Einstein manifolds, we have obtained a smooth bounded domain W
whose Euler characteristic χ(W) satisfies

0 < χ(W) =
1

8π2

∫
W
|Rm|2 dVg +

∫
∂W
TPχ <

1
2
.

This is impossible.
More specifically, in the Einstein case, Cheeger-Tian appealed to the theory

of Cheeger-Colding-Tian (see Theorem 3.7 of [13]), which controls the average
error |IIũ−1(a) − II∂+A∞ | on the level set ũ−1(a), see (8.14) – (8.19) of [20]. This was
implemented by lifting to a local covering, which is non-collapsing, and where,
since (4.42) and (4.43) are estimates of the average, similar estimates (4.52) and
(4.53) hold.

In the case of 4-D Ricci shrinkers, the control of
∫

W
|Rm|2 dµ f does not impose a

control of
∫

W
Pχ directly, due to the presence of the term |∇̊2 f |2. However, we could

further assume I f
|Rm|(p, r/2) > εA(R), since otherwise there is no need of proving the

proposition. This assumption gives us a lower bound of
∫

W
|Rm|2 dµ f proportional

to µ f (B(p, r)) r−4. On the other hand, recall that we have the estimate (1.8) of |∇2 f |2,
with s = 4 and U = B(p, r). Thus whenever r is sufficiently small,

∫
W
|∇2 f |2 dµ f is

dominated by the energy
∫

W
|Rm|2 dµ f , so

0 <
1

8π2

∫
W
|Rm|2 − |∇̊2 f |2 dVg =

∫
W
Pχ.

This mainly accounts for the bound of scale rR in the statement of Theorem 1.3.1.
The small upper bound of

∫
W
Pχ follows easily from the assumption of the ε-

regularity theorem.
In controlling the boundary Gauss-Bonnet-Chern integral

∫
∂W
TPχ, we notice

that the theory of Cheeger-Colding-Tian [13] is not available for 4-D Ricci shrinkers.
(Though we expect a version of this theory to hold in the case of Bakry-Émery Ricci
curvature bounded below.) We turn to the regularity (4.44) of ũ: we could find a
fine enough net {x j} in a slightly smaller annulus contained in A(p; r/2, r), such that
at each point of the net we have

IIũ−1(ũ(x j))(x j) >
1
2

I3,

12



where I3 is the 3 × 3-identity matrix; by the regularity of ũ (4.44) and the closeness
of points in the net, we could then obtain a bound

∀a ∈ (0.7r, 0.8r), II∂ũ−1(a) >
1
4

I3.

This, together with the vanishing of the curvature (4.38), give the desired point-wise
positivity and upper bound of coefficients of TPχ|∂ũ−1(a), for any a ∈ (0.7r, 0.8r). In-
tegrating over ∂ũ−1(a) (for some a ∈ (0.7r, 0.8r)) and using the volume collapsing
of ∂ũ−1(a), we could obtain the desired bound (1.9), see (4.57) – (4.62), thus con-
cluding the proof of the fast decay proposition.

Our ε-regularity theorem sees a few applications in understanding the moduli
space of complete non-compact 4-D Ricci shrinkers. Our second theorem is in this
direction:

Theorem 1.3.2. Let (Mi, gi, fi), be a sequence of complete non-compact 4-D Ricci
shrinkers with Rgi ≤ S̄ and |χ(Mi)| ≤ Ē, then there exist positive numbers R̄ = R̄(S̄ )
and J̄ = J̄(Ē, S̄ ) together with the following data:

1. a subsequence, still denoted by (Mi, gi, fi),

2. marked points {p1
i , · · · , pJ

i } ⊂ B(p0
i , R̄) with J ≤ J̄, and

3. a length space (X, d∞) with marked points {x1
∞, · · · , x

J
∞},

such that (Mi, gi, p1
i , · · · , pJ

i ) → (X, d∞, x1
∞, · · · , x

J
∞) in the sense of strong multi-

pointed Gromov-Hausdorff convergence.

Here we notice that f has a global minimum point p0 (see [6] and [39]), which
will be our designated base point. For more details about the “strong multi-pointed
Gromov-Hausdorff convergence”, see Definition 2.5.3. Notice that once we are
given a global upper bound of scalar curvature, then as we will show later, χ(M) is
a finite number, so our consideration is well-posed. The condition on bounded Euler
characteristic is topological in nature, while the assumption on the scalar curvature,
although being natural in the Kähler setting, is technical and we hope to remove in
our future work.
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Chapter 2

Preliminaries

2.1 Ricci flow

2.1.1 Heat equation solutions coupled with the Ricci flow
In this subsection we collect some point-wise estimates of heat equation solutions
coupled with the Ricci flow. For any x, y ∈ M and 0 ≤ s < t < T , we will let
G(x, s; y, t) denote the heat kernel coupled with the Ricci flow based at (x, s), i.e.
fixing (x, s) ∈ M × [0,T ), we have

(∂t − ∆g(t))G(x, s;−,−) = 0, and lim
t↓s

G(x, s;−,−) = δ(x,s), (2.1)

where δ(x,s) is the space-time Dirac delta function at (x, s) ∈ M×[0,T ). On the other
hand, fixing (y, t) ∈ M × (0,T ) and setting (x, s) free, this same function satisfies

(∂s + ∆g(s) + Rg(s))G(−,−; y, t) = 0, and lim
s↑t

G(−,−; y, t) = δ(y,t), (2.2)

i.e. G(−,−; y, t) is the conjugate heat kernel coupled with the Ricci flow based at
(y, t).

Our heat kernel lower bound of Gaussian type will be base on the following key
gradient estimate due to Qi S. Zhang, see Theorem 3.3 in [82]:

Proposition 2.1.1 (Gradient estimate). Let (M, g(t)) be a Ricci flow on a complete
n-manifold M over time [0,T ) and let u ∈ C∞(M × [0,T )) be a positive solution to
the heat equation (∂t − ∆)u = 0, u(·, 0) = u0 coupled with the Ricci flow. Then there
is a constant B < ∞ depending only on n, such that if u ≤ a on M × [0,T ] for some
constant a > 0, then ∀(x, t) ∈ M × (0,T ],

|∇u|(x, t)
u(x, t)

≤

√
1
t

√
log

a
u(x, t)

. (2.3)
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Note that this inequality also reads∣∣∣∣∣∣∇
√

log
a
u

∣∣∣∣∣∣ (x, t) ≤
1
√

t

for any (x, t) ∈ M × (0,T ].
Now for any fixed (x, t0) ∈ M×[0,T ), let G(x, t0;−,−) be the coupled heat kernel

described above. Viewing u(y, s) = G(x, t0; y, s) as a coupled heat equation solution
on M × [ t0+t

2 , t], and integrating the above inequality along minimal geodesics, we
could get a Harnack inequality for heat equation solutions coupled with the Ricci
flow, also see inequality (3.44) of [82]:

Corollary 2.1.2. We have ∀(y, t), (y′, t) ∈ M × (t0,T ],

G(x, t0; y, t) ≤ H(n)
(

sup
M×[(t0+t)/2,t]

G(x, t0;−,−)
) 1

2

G(x, t0; y′, t)
1
2 eH′(n)dt(y,y′)2/(t−t0),

(2.4)

where H(n) and H′(n) are dimensional constants.

In order to estimate the distance distortion we also need a time derivative bound
of the coupled heat kernel. This is achieved by the following estimate, which is
Lemma 3.1(a) in [61]:

Proposition 2.1.3. Let (M, g(t)) be a Ricci flow on a closed n-manifold M over
time [0,T ] and let u ∈ C∞(M × [0,T ]) be a positive solution to the heat equation
(∂t − ∆)u = 0, u(·, 0) = u0 coupled with the Ricci flow. Then there is a constant
B < ∞ depending only on n, such that if u ≤ a on M × [0,T ] for some constant
a > 0, then ∀(x, t) ∈ M × (0,T ],(

|∆u| +
|∇u|2

u
− aR

)
(x, t) ≤

aB(n)
t

.

Again, setting u(y, t) = G(x, t0; y, t) for t > t0, and considering it as a coupled
heat equation solution on M × ( t0+t

2 , t), we immediately obtain

|∂tG(x, t0; y, t)| +
|∇yG(x, t0; y, t)|2

G(x, t0; y, t)

≤ sup
M×[(t0+t)/2,t]

G(x, t0;−,−)
(
Rg(t)(x, t0; y, t) +

B(n)
t − t0

)
.

(2.5)
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2.1.2 Perelman’sW-functional
As mentioned in the introduction, the monotonicity of Perelman’s W-functional
along the Ricci flow is an instance where a geometric deformation bears an analytic
meaning. This connection is the foundation of the current note. We now recall
Perelman’s W-functional [78]: for any t̄ ∈ (0,T ], any v2 ∈ C1(M, g(t̄)) and any
τ > 0,

W(g(t̄), v2, τ) :=
∫

M
τ
(
4|∇v|2 + Rg(t̄)v2

)
− v2 log v2 − n

(
1 +

1
2

log(4πτ)
)

v2dVg(t̄).

(2.6)

If we require
∫

M
v2 dVg(t̄) = 1, let τ solve τ′(t) = −1, and let u(t) solve the conjugate

heat equation along the Ricci flow: (∂t + ∆ − R)u = 0 with the prescribed final data
u(t̄) := v2, then we have the monotone increasing property of theW-functional:

d
dt
W(g(t), u(t), τ) ≥ 0.

The µ-entropy is defined as

µ(g(t), τ) := inf∫
M v2 dVg(t)=1

W(g(t), v2, τ),

and letting the data varying similarly as in the W-functional, we also obtain the
monotone increasing property of the µ-entropy.

A major difficulty blocking Hamilton’s program in solving the Poincaré con-
jecture via the Ricci flow approach lies in the understanding of the finite time sin-
gularities under the evolution of Ricci flows, the core problem of which being the
possible collapsing with bounded curvature at small scales. Perelman’s first ma-
jor contribution in this direction is therefore his celebrated “No local collapsing
theorem”, which rules out the possibility of volume degeneration under bounded
curvature, when approaching a singular time (finite!) slice. Perelman’s main tool is
the monotonicity of theW-functional, which proves even stronger statements than
just locally volume non-collapsing with respect to the full curvature bound — the
volme ratio is in fact bounded in terms of a scalar curvature upper bound!

Here we present Perelman’s no local collapsing theorem:

Theorem 2.1.4 (No local collapsing). Let (M, g(t)) be a Ricci flow solution on
[0,T ). Assume that the scalar curvature is uniformly bounded from above by C0

in space-time, then there is a constant CV(T ) depending only on µ(g(T ), 0) such
that for any time t ∈ [0,T ) and any scale r such that r2 ∈ (0, t],

|Bt(x, r)|
rn ≥ CV(T ). (2.7)
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2.2 Gradient shrinking Ricci soliton
Given a 4-D Ricci shrinker (M, g, f ), in this section we record those properties
needed later in the thesis. The results, except for the equations concerning the
Euler characteristic, are valid in general dimensions, but we present them in the
four dimensional setting for the sake of simplicity. A good overall reference on
topics covered here is Huai-Dong Cao’s Lecture notes [4].

2.2.1 Equations of the potential
We start with taking trace of the defining equation (1.4) to get

R + ∆ f = 2. (2.8)

We also notice the fundamental observation due to Hamilton [37] states that the
quantity R + |∇ f |2 − f is a constant on M, and in this paper we will make the
following normalization for the potential function:

R + |∇ f |2 = f . (2.9)

Subtracting (2.9) from (2.8), we will get an elliptic equation of f that does not
involve any curvature term:

∆ f − |∇ f |2 = 2 − f . (2.10)

This equation is of fundamental importance for our argument to obtain various es-
timates in later sections, since it gives a the Weitzenböck formula of f :

∆ f |∇ f |2 = 2|∇2 f |2 − |∇ f |2, (2.11)

where the drifted Laplacian ∆ f := ∆ − ∇ f · ∇, and we used the defining equa-
tion (1.4), the elliptic equation (2.10), together with the equality ∇|∇ f |2 · ∇ f =

2∇2 f (∇ f ,∇ f ),.

2.2.2 Equations of the curvature
On the other hand, the curvature satisfies the following elliptic equations (see [50]):

∆R − ∇ f · ∇R = R − 2|Rc|2, (2.12)
∆Rc − ∇ f · ∇Rc = Rc − 2Rm ∗ Rc, and (2.13)

∆Rm − ∇ f · ∇Rm = Rm + Rm ∗ Rm. (2.14)

By the maximum principle applied to (2.12), it was observed in [21]:

Lemma 2.2.1. R > 0 unless (M, g) is flat.

Also see [43] for a uniform lower bound only depending on the entropy.
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2.2.3 Equations of the Euler characteristic
Moreover, on the topological side, the 4-Dimensional Riemannian manifold (M, g)
has the localized Euler characteristic of any open subset U ⊂ M expressed as

χ(U) =

∫
U
Pχ +

∫
∂U
TPχ, (2.15)

provided that the integrals are defined. Here the Pfaffian 4-form Pχ is given by

Pχ =
1

8π2

(
|W|2 −

1
2

∣∣∣R̊c
∣∣∣2 +
R2

24

)
dVg =

1
8π2

(
|Rm|2 −

∣∣∣∇̊2 f
∣∣∣2) dVg, (2.16)

where W is the Weyl tensor of Rm, ∇̊2 f = ∇2 f − ∆ f
4 g is the traceless Hessian

of f , and we have used the defining equation (1.4) in the second equality. For
the boundary 3-form TPχ, if we denote the area form of ∂U by dσ, and let {ei}

(i = 1, 2, 3) be an orthonormal local frame tangent to ∂U diagonalizing its second
fundamental form II∂U , then we have

TPχ =
1

4π2
(2k1k2k3 − k1K23 − k2K13 − k3K12) dσ, (2.17)

where for i, j = 1, 2, 3, Ki j = Rm(ei, e j, e j, ei) is the sectional curvature along the
tangent plane spanned by ei and e j, and ki = II∂U(ei, ei) is the principal curvature of
∂U, see [39].

2.2.4 Potential and volume growth
The potential function f obeys a very nice growth control by distance function both
from below and above. This was first proved by Cao-Zhou [6]. Here, we shall need
the improved version by Haslhofer-Müller [39]:

Lemma 2.2.2 (Potential growth). Let (M, g, f ) be a 4-D Ricci shrinker such that the
normalization condition (2.9) is satisfied. Then there exists a point p0 ∈ M where f
attains its infimum and

∀x ∈ M,
1
4

(max{d(x) − 20, 0})2
≤ f (x) ≤

1
4

(
d(x) + 2

√
2
)2
, (2.18)

where d(x) := d(x, p0). Moreover, all minimum points of f is contained in the
geodesic ball B

(
p0, 10 + 2

√
2
)
.

From the normalization (2.9), the non-negativity of scalar curvature Lemma 2.2.1
and the above growth control of potential (2.18), we have the following gradient es-
timate:
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Lemma 2.2.3 (Gradient estimate for potential). Let (M, g, f ) be a 4-D Ricci shrinker
such that the normalization condition (2.9) is satisfied, then

|∇ f | ≤
d
2

+
√

2. (2.19)

Moreover, the following control of volume growth is discovered by [6] and [46]:

Lemma 2.2.4 (Volume growth). Let (M, g, f ) be a complete non-compact 4-D Ricci
shrinker, then there exists some constant CCMZ > 0, such that ∀r > 10,

Volg(B(p0, r)) ≤ CCMZr4.

Moreover, if u is any function on M satisfying |u| ≤ Aeαd2
for some α ∈ [0, 1

4 ) and
A > 0, then ∫

M
|u|e− f dVg < ∞.

Especially, the weighted volume of M is finite, i.e.
∫

M
e− f dVg < ∞.

2.3 Comparison geometry of Bakry-Émery Ricci cur-
vature

Compared to Einstein manifolds, one drawback of Ricci solitons comes from the
lack of a uniform Ricci curvature lower bound, whence the lack of volume ratio
monotonicity. However, Ricci solitons do satisfy the Bakry-Émery Ricci curvature
bounds. If we define Rc f := Rc + ∇2 f , then the defining equation (1.4) becomes

Rc f =
1
2

g, (2.20)

saying that the Bakry-Émery Ricci curvature of a 4-D Ricci shrinker is half the
metric tensor. This subsection explores the analogy of 4-D Ricci shrinkers and
manifolds with uniform Ricci lower bound, basic references being [45] and [57].

2.3.1 Weighted volume comparison
The measure compatible with the Bakry-Émery Ricci curvature is the weighted
measure dµg := e− f dVg, and according to [57], there stands a weighted volume
comparison theorem, the counterpart of the Bishop-Gromov volume comparison
for the Ricci lower bound case. For a 4-D Ricci shrinker (M, g, f ) viewed as a
metric measure space (M, g, dµ f ), we define its comparison metric measure space
as following:
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Definition 2.3.1 (Metric measure space form). For any R > 2
√

2 fixed, define the
metric measure space M4

R := (R4, gEuc, dµ̄R), the four dimensional Euclidean space
equipped with the weighted measure dµ̄R. Here we define dµ̄R(x) := eR|x|dx1 ∧ · · · ∧

dx4 for any x =
(
x1, x2, x3, x4

)T
∈ R4. Also let the weighted volume of radius r ball

centered at the origin of M4
R be defined as

µ̄R(r) :=
∫

B(0,r)
1 dµ̄R.

Moreover, define the area function µ̄′R(r) := 2π2eRrr3.

We immediately notice that

ω4r4 ≤ µR(r) ≤ eR2
ω4r4, (2.21)

where ω4 is the volume of the unit ball in the four dimensional Euclidean space.
The following monotonicity formula follows directly from [57].

Lemma 2.3.2 (Monotonicity of area and volume ratio). Let (M, g, f ) be a 4-D Ricci
shrinker and fix R > 2

√
2. For any p ∈ B(p0,R) and any unit tangent vector v at p,

letA(v, r) be the area form of the geodesic sphere at expp(rv), then

0 < s < r < d(p, ∂B(p0,R)) ⇒
A f (v, r)
µ̄′R(r)

≤
A f (v, s)
µ̄′R(s)

. (2.22)

Moreover, for any B(p, r1) ⊂ B(p, r2) ⊂ B(p0,R) and B(p, s1) ⊂ B(p, s2) ⊂
B(p0,R),

0 < s1 < r1 and 0 < s2 < r2 ⇒
µ f (A(p; r1, r2))
µ̄R(r2) − µ̄R(r1)

≤
µ f (A(p; s1, s2))
µ̄R(s2) − µ̄R(s1)

(2.23)

Proof. Recall that (2.19) implies

sup
B(p0,R)

|∇ f | ≤
R
2

+
√

2.

When R > 2
√

2, we have the radial derivative ∂r f ≥ −R on B(p0,R). Now we can
apply (4.8) of [57] directly to obtain (2.22). See also Theorem 3.1 and (4.3) of [57].

For (2.23), integrate (2.22) along geodesics gives the directional comparison∫ r2

r1
A f (v, t) dt∫ r2

r1
µ̄′R(t) dt

≤

∫ s2

s1
A f (v, t) dt∫ s2

s1
µ̄′R(t) dt

,

and integrating the above inequality in v ∈ S pM gives the desired inequality. �
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Notice that the doubling property of the weighted measure follows easily from
the above monotonicity: for any R > 2

√
2 fixed,

B(p, 2r) ⊂ B(p0,R) ⇒ µ f (B(p, 2r)) ≤ CD(R)µ f (B(p, r)), (2.24)

with the doubling constant CD(R) = 16eR2
.

2.3.2 Cheeger-Colding theory
The theory of Cheeger-Colding [10] [65] provides powerful tools in studying the
structure of manifolds with uniform lower Ricci bounds. In the context of lower
bounded Bakry-Émery Ricci curvature, a similar theory has been developed in [58],
where the study is focused on non-collapsing manifolds. Yet our major concern is
the collapsing phenomenon. Still, some of their lemmas see a few applications in
our situation.

A good cut-off function

The existence of a cut-off function with controlled gradient and Laplacian will play
a fundamental role in our local L2-Ricci curvature estimate. In [58], such a cut-off

function on a unit ball has been constructed following [10]. However, noticing that
the equation (2.20) is not scaling invariant, we need a more careful argument when
dealing with the general case, see also [26].

Lemma 2.3.3 (Existence of good cut-off function). For any R > 10, there is a
constant C(R) > 0 such that for any r ∈ (0, 1), and any compact K ⊂ B(p0,R − r),
there is a smooth cut-off function ϕ supported on B(K, r), with ϕ ≡ 1 on B(K, r

2 ),
ϕ ≡ 0 outside B(K, 3r

4 ), and r|∇ϕ| + r2|∆ fϕ| ≤ C(R).

Proof. Fix r ∈ (0, 0.1). When K = {x0} ⊂ B(p0,R − r), the construction of such a
cut-off function originates in the work of Cheeger-Colding [10], and a Bakry-Émery
version was constructed in [58]. For shrinking Ricci solitons, consider the rescaled
metric g̃ = 4r−2g, then Rcg̃ + ∇̃2 f = r2

8 g̃, or the Bakry-Émery Ricci curvature
satisfies Rc f

g̃ = r2

8 g̃ ≥ 0 as symmetric two tensors. Moreover, |∇̃ f | = r
2 |∇ f | ≤ R + 2

since r < 1. Then we can apply Lemma 1.5 of [58] to obtain a cut-off function ϕ
supported on B̃(x0, 2), ϕ ≡ 1 on B̃(x0,

5
4 ) and ϕ ≡ 0 outside B̃(x0,

7
4 ), moreover

|∇̃ϕ| + |∆̃ fϕ| ≤ C(R). (2.25)

Notice that the constant C(R) depends on the lower Bakry-Émery Ricci curvature
bound, which is 0, thus scaling invariant, and it also depends on an uniform upper
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bound of |∇̃ f | on B̃(p0, r−1R), which is uniformly bounded above by R+2, regardless
of the scaling by r as long as r < 1. In the original metric, (2.25) reads r|∇ϕ| +
r2|∆ fϕ| ≤ C(R).

Now suppose K ⊂ B(p0,R−r), let a maximal subset of points {xi} ⊂ B(K, r
2 ) with

d(xi, x j) > r
20 . Then the maximality implies that B(K, r

2 ) ⊂ ∪iB(xi,
r

10 ). Moreover, if
x ∈ ∩k

j=1B(xi j ,
1
5ri j), then by Lemma 2.3.2, relations

B(x, r/5) ⊂ B(xi j , 2r/5) ⊂ B(x, 3r/5), and B(xi j , r/40) ∩ B(xi j′ , r/40) = ∅,

bound the multiplicity of the covering {B(xi,
r

10 )} by some m(R).
Then we use the first step of the lemma on each B(xi,

r
5 ), to construct cutoff

functions ϕi supported on B(xi,
r
5 ) such that ϕi|B(xi,

r
10 ) ≡ 1, and r|∇ϕi| + r2|∆ fϕi| ≤

c(R). Let ϕ̄ =
∑

i ϕi, then 1 ≤ ϕ̄ ≤ m(R) on B(K, r
2 ), and vanishes outside B(K, 7r

10 ).
Let u : [0,∞)→ [0, 1] be a smooth function that vanishes near zero and constantly
equals one on [1,∞), then ϕ = u(ϕ̄) is the desired cutoff function. �

sectionAlmost volume cone A fundamental tool of Cheeger-Colding theory is a
controlled smoothing of the distance function using solutions to the Poisson equa-
tions with prescribed Dirichlet boundary conditions given by the distance function.
In the case of Bakry-Émery Ricci curvature uniformly bounded below, similar esti-
mates were obtained in [58]:

Lemma 2.3.4. For any η > 0 and ε > 0, let (M, g, f ) be a 4-Dimensional smooth
Riemannian manifold with Rc f ≥ 0 and |∇ f | ≤ ε A. Suppose that

µ f (∂B(p, s))
µ f (∂B(p, r))

≥ (1 − η)
µ̄′εA(r)
µ̄′εA(s)

,

and that u solves the following Poisson-Dirichlet problem

∆ f u = 4 on A(p; r, s), u|∂B(p,r) =
r2

2
and u|∂B(p,s) =

s2

2
.

Then for r < r1 < r2 < s2 < s1 < s, denoting d2
p(x) := d2(p, x) and ũ :=

√
2u, then

u and ũ satisfies the following estimates:

1. supA(p;r1,s1) |ũ − dp| ≤ Ψ(η, ε | A, r, s, r1, s1);

2.
>

A(p;r,s)
|∇ũ − ∇dp|

2 dµ f ≤ Ψ(η, ε | A, r, s); and

3.
>

A(p;r2,s2)
|∇2u − g|2 dµ f ≤ Ψ(η, ε | A, r, r1, r2, s, s1, s2).

Basically, this lemma states that when f is approximately a constant function,
the situation is reduced to the Ricci lower bound case and corresponding estimates
follow from the work of Cheeger-Colding [10].
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2.4 Functional inequalities

2.4.1 The segment and Poincaré inequalities on 4-D Ricci shrinkers
Another important consequence of the monotonicity (2.22) is the segment inequal-
ity, originally due to Cheeger-Colding [10] for manifolds with uniform Ricci lower
bound. We will provide a proof here as this is the first time the segment inequality
appears in the context of Bakry-Émery Ricci curvature bounded below.

Lemma 2.4.1 (Segment inequality). Let (M, g, f ) be a 4-D Ricci shrinker, and fix
R > 0. For any U ⊂ B(p0,R) and any non-negative u ∈ C0(U), there is a constant
CChCo(R) > 0 such that if a subset A of U sees almost all pairs of its points connected
by minimal geodesics contained in U, then∫

A×A
Fu(x, y) dµ f (x)dµ f (y) ≤ CChCo(R) µ f (A) diam U

∫
U

u dµ f , (2.26)

where

Fu(x, y) := inf
γxy

∫ d(x,y)

0
u(γxy(t)) dt,

the infimum being taken over all minimal geodesics γxy connecting x and y.

Proof. We may consider Fu(x, y) = F +
u (x, y) + F −u (x, y) where

F +
u (x, y) := inf

{γxy}

∫ d(x,y)

d(x,y)
2

u(γxy( f )) dt and F −u (x, y) := inf
{γxy}

∫ d(x,y)
2

0
u(γxy( f )) dt.

Since F +
u (x, y) = F −u (y, x), by Fubini’s theorem,∫

A×A
F +

u (x, y) dµ f (x)dµ f (y) =

∫
A×A
F −u (x, y) dµ f (x)dµ f (y),

and so we only need to do the estimate for F +
u . For any x ∈ A and any v ∈ S xM

fixed, define dx,v := min{t > 0 : expx(tv) ∈ ∂U}, also denote γv(t) = expx(tv). Then
∀t ∈ (0, dx,v), by the area ratio monotonicity (2.22),

F +
u (γv(t/2), γv(t)) dµ f (γv(t)) ≤

∫ t

t
2

u(γv(s)) ds
 A f (v, t)dt

≤ 8eR2

∫ t

t
2

u(γv(s))A f (v, s)ds
 dt.
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By the assumption on A ⊂ U, for almost every y ∈ A, there exists some v ∈ S xM
such that γv(d(x, y)) = y, we have∫

A
F +

u (x, y) dµ f (y) ≤
∫

S x M

∫ dx,v

0
F +

u (γv(t/2), γv(t))A f (v, t) dtdv

≤ 8eR2
diam U

∫
S x M

∫ dx,v

0
u(γv(s))A f (v, s) dsdv

≤ 16eR2
diam U

∫
U

u dµ f .

Finally, integrate the above inequality for x ∈ A, we get∫
A

∫
A
F +

u (x, y) dµ f (y)dµ f (x) ≤ 16eR2
µ f (A) diam U

∫
U

u dµ f .

�

Iterating the segment inequality, one easily obtains the local L2-Poincaré in-
equality, whose constants are determined by CChCo(R):

Lemma 2.4.2 (Poincaré inequality). Let (M, g, f ) be a 4-D Ricci shrinker and fix
R > 2

√
2. There exists a positive constant CP(R) > 0 such that for any B(p, r) ⊂

B(p0,R) and any u ∈ C1(B(p, r)),∫
B(p,r)

∣∣∣∣∣∣u −
?

B(p,r)
u dµ f

∣∣∣∣∣∣2 dµ f ≤ CP(R) r2
∫

B(p,r)
|∇u|2 dµ f . (2.27)

This Poincaré inequality could be viewed as a weighted Poincaré inequality.
See also [76] for a version of the Poincaré inequality on a complete non-compact
manifold with non-negative Ricci curvature and the heat kernel as a weight function.

2.4.2 Sobolev inequalities
In the situation where a uniform Ricci curvature lower bound is assumed, Michael
Anderson explicitly estimated the Sobolev constant in [1] (see also [73]): for a
fixed geodesic ball B(x, r), its Sobolev constant is comparable to (|B(x, r)|r−n)−

2
n .

The lesson is to consider explicitly the effect of a correct renormalization, when
applying the Sobolev inequality to the study of Ricci flows.

In another direction, using methods in stochastic analysis and the Moser iter-
ation technique, Laurent Saloff-Coste has shown an even more general Sobolev
inequality in [79], where the Sobolev constant only depends on the doubling con-
stant and the L2-Poincaré constant. This is the inequality that we will employ in
this note:
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Proposition 2.4.3 (Renormalized L2-Sobolev inequality). Let (Mn, g) be a Rie-
mannian manifold such that the doubling constant and the L2-Poincaré constant
are bounded from above by CD and CP respectively. Then there is a constant
CS = CS (n,CD,CP) such that for any B(x, r) ⊂ M and any u ∈ H1

0(B(x, r)), the
following renormalized Sobolev inequality holds:(∫

M
u

2n
n−2 dVg

) n−2
n

≤ CS (|B(x, r)|r−n)−
2
n

∫
M
|∇u|2 + r−2u2 dVg. (2.28)

Remark 2.4.4. This is of course just one version of the Sobolev inequality. We call
it renormalized just to emphasize the independence of the Sobolev constant from the
volume, since eventually the volume will be sent to zero.

We also notice that inequality (1.3) is just a (weaker) global version of this inequal-
ity.

If now we are on a 4-D Ricci shrinker, then the previous segment inequality and
volume comparison results provide uniform bounds on the Poincaré (2.27) and dou-
bling (2.24) constants of the mesure e− f dVg within a fixed geodesic ball B(p0,R).
We therefore obtain the following local Sobolev inequality, with whose constants
are determined by CD(R) and CP(R) (see [52]):

Lemma 2.4.5 (Sobolev inequality). Let (M, g, f ) be a 4-D Ricci shrinker and fix
R > 2

√
2. For any B(p, r) ⊂ B(p0,R) and u ∈ C1

c (B(p, r)),(∫
B(p,r)

u4 dµ f

) 1
2

≤
CS (R) r2

µ f (B(p, r))
1
2

∫
B(p,r)

(
|∇u|2 + r−2u2

)
dµ f . (2.29)

A natural consequence of the above Sobolev inequalities is an ε-regularity with
respect to collapsing due to Mike Anderson [1]. It is the starting point of Cheeger-
Tian’s ε-regularity theorem for four dimensional Einstein manifolds [20]. By the
bound on the Sobolev constant for dµ f , as obtained in Lemma 2.4.5, the proof of
this theorem is by now standard using Moser iteration, see [1] and [39] for the
original work.

Proposition 2.4.6 (Weighted ε-regularity with respect to collapsing). Let (M, g, f )
be a 4-D Ricci shrinker. There exist εA(R) > 0 and CA(R) > 0 such that if B(p, r) ⊂
B(p0,R), then

µ̄R(r)
µ f (B(p, r))

∫
B(p,r)
|Rm|2 dµ f ≤ εA(R) (2.30)
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implies that

sup
B(p, r

2 )
|Rm| ≤ CA(R) r−2

(
µ̄R(r)

µ f (B(p, r))

∫
B(p,r)
|Rm|2 dµ f

) 1
2

.

This proposition basically says that even if a geodesic ball has no uniform vol-
ume lower bound, and consequently no uniform estimate from the Sobolov inequal-
ity, when the local energy is sufficiently small — much smaller compared to the
volume — we still have uniform curvature control. Adapted to this phenomenon,
we define the “renormalized energy” as following:

Definition 2.4.7. Fix r ∈ (0, 1]. For any p ∈ B(p0,R), define the scale r renormal-
ized energy as

I f
Rm(p, r) :=

µ̄R+1(r)
µ f (B(p, r))

∫
B(p,r)
|Rm|2 dµ f .

So Proposition 2.4.6 says that for p ∈ B(p0,R),

I f
Rm(p, r) < εA(R)⇒ sup

B(p, r
2 )
|Rm| ≤ CA(R) r−2I f

Rm(p, r)
1
2 . (2.31)

Moreover, we immediately notice the following key properties of the renormalized
energy:

1. I f
Rm is invariant under rescaling, so is (2.31);

2. I f
Rm is continuous and monotonically non-decreasing in radius r.

2.5 Convergence and collapsing of Riemannian man-
ifolds

In this subsection, we start by introducing various convergence concepts of metric
spaces, whose canonical reference is [35], then discuss Fukaya’s structural results
about the collapsing limit under bounded curvature, see [72] and [29]. See also [31]
for a relevant result concerning the local structure of Riemannian manifolds.
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2.5.1 Weak convergence
Given a sequence of metric spaces (Xi, di) with diameter bounded above by R, we
say that (Xi, di) →GH (X∞,d∞) if when i → ∞, the Gromov-Hausdorff distance,
dGH((Xi, di), (X∞, d∞)) → 0. Recall that dGH((Xi, di), (X∞, d∞)) is defined as the
infimum of the Hausdorff distance between X and Y in X t Y , equipped with all
possible metrics. If (Xi, di) →GH (X∞,d∞), we could then find maps Gi : Xi → X∞
and Hi : X∞ → Xi such that for any ε > 0, there exists some iε so that ∀i > iε,
∀xi, x′i ∈ Xi and ∀x∞, x′∞ ∈ X∞,

1.
∣∣∣di(xi, x′i) − di(Hi ◦Gi(xi),Hi ◦Gi(x′i))

∣∣∣ < ε, and

2.
∣∣∣d∞(x∞, x′∞) − d∞(Gi ◦ Hi(x∞),Gi ◦ Hi(x′∞))

∣∣∣ < ε.

Gromov’s fundamental observation says that if {(Xi, di)} has uniformly bounded
Hausdorff dimension, diameter and volume doubling property, then there exists
some metric space (X∞, d∞) with the same diameter bound, such that a subse-
quence Gromov-Hausdorff converges to (X, d). Notice that if (Xi, di) ⊂ B(p0

i ,R) ⊂
(Mi, gi, fi) with di induced by gi|Xi , then by the uniform doubling property (2.24) for
µ fi:

Lemma 2.5.1. Suppose {(Xi, di) ⊂ B(p0
i ,R) ⊂ (Mi, gi, fi)} is a sequence of uniformly

bounded domains in 4-D Ricci shrinkers, possibly with marked points, then there
exists a metric space (X∞, d∞) with diamd∞ X∞ ≤ R, such that some subsequence,
still denoted by {(Xi, di)}, Gromov-Hausdorff converges to (X∞, d∞).

For a sequence of complete non-compact 4-D Ricci shrinkers, we may define the
multi-pointed Gromov-Hausdorff convergence to respect the specified base point,
i.e. a minimum of the potential function.

Definition 2.5.2. We say that a sequence of complete non-compact 4-D Ricci shrinkers
(Mi, gi, fi, p0

i ) with base points p0
i (a minimum of fi) and J marked points Mki :=

{p1
i , · · · , pJ

i }multi-pointed Gromov-Hausdorff converges to a metric space (X∞, d∞, x0
∞)

with J marked points Mk∞ = {x1
∞, · · · , x

J
∞}, if for any R > 0, B(p0

i ,R) →GH

B(x0
∞,R), and there are maps Gi : Mi → X∞ and Hi : X∞ → Mi such that

Gi(p j
i ) = x j

∞ and Hi(x j
∞) = p j

i ( j = 0, 1, · · · , J). Moreover, for any ε > 0, there
exists some iε(R) so that ∀i > iε(R),

1. ∀pi, p′i ∈ B(p0
i ,R)\Mki,

∣∣∣di(pi, p′i) − di(Hi ◦Gi(pi),Hi ◦Gi(p′i))
∣∣∣ < ε, and

2. ∀x∞, x′∞ ∈ B(x0
∞,R)\Mk∞,

∣∣∣d∞(x∞, x′∞) − d∞(Gi ◦ Hi(x∞),Gi ◦ Hi(x′∞))
∣∣∣ < ε.

For convenience we will also use the notation Xi →pGH X∞ and Mki →GH Mk∞ for
such type of convergence. Also notice, it is possible that p0

i ∈ Mki.
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2.5.2 Strong convergence
Gromov’s compactness result provides a weak limit in the category of metric spaces.
In order to extract information from a convergent sequence, we need to consider
stronger convergence. For a sequence of 4-D Ricci shrinkers {Mi, gi, fi}, suppose
{(Xi, di) ⊂ (Mi, gi, fi)} multi-pointed Gromov-Hausdorff converges to a limit space
(X∞, d∞), with marked points Mki →GH Mk∞. According to (a trivial generalization
of) the work of [64] and [26], X∞\Mk∞ = R(X∞) ∪ S(X∞), with dimH(R(X∞)) ≤ 4,
and dimH(S(X∞)) < dimH(R(X∞)). We define the strong convergence as following:

Definition 2.5.3 (Strong convergence). Let (Mi, gi, fi) be a sequence of 4-D Ricci
shrinkers, whose subsets (Xi, di) →pGH (X∞, d∞), with J marked points Mki →GH

Mk∞. We say that the convergence is strong if there is an exhaustion of X∞\Mk∞ by
compact subsets K j ( j = 1, 2, 3, · · · ), such that for each j, there is an i j > 0 and for
all i > i j,

1. if dimH (R(X∞)) = 4, then S(X∞) = ∅, X∞ is a smooth 4-manifold, and each
Hi|K j can be chosen as a diffeomorphism onto its image, with H∗i gi → g∞
smoothly as symmetric 2-tensor fields; or else,

2. if dimH (R(X∞)) < 4, then each G−1
i (K j) has uniformly bounded curvature C j,

and G−1
i (K j) →GH K j is collapsing with bounded curvature, in the sense of

Cheeger-Fukaya-Gromov [14].

We notice that the two cases in the above definition are alternatives. Case (1)
above is guaranteed to happen if a sequence has uniformly locally bounded curva-
ture and uniform volume ratio lower bound, through the work of [8]. See Theo-
rem 4.2.2 for a more detailed description of case (2).

2.5.3 Collapsing with bounded curvature
When collapsing with bounded curvature, i.e. case (2) in Definition 2.5.3, happens,
there is a rich structural theory about the Riemannian metric, mainly developed by
Cheeger, Fukaya and Gromov, see [34], [51], [17], [18], [27], [29] and [14]. The
following proposition gives a full account of Fukaya’s results in [72] and [29] that
are relevant to our argument in the following subsections:

Proposition 2.5.4 (Structure of collapsing limit). Let Xi ⊂ (Mn
i , gi) be bounded

domains in a sequence of n-dimensional Riemannian manifolds such that

|∇kRmgi | ≤ Ck (k = 0, 1, 2, 3, · · · ) on Xi.

Suppose Xi →GH X∞ for some metric space (X∞, d∞), with dimH X∞ = m < n, then
there is a regular-singular decomposition X∞ = R(X∞) ∪ S(X∞), such that
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1. (R(X∞), d∞) ≡ (R(X∞), g∞), a smooth m-dimensional Riemannian manifold,
such that

sup
R(X∞)

|Rmg∞ | ≤ C0;

2. S(X∞) is a closed subset of X∞ with dimH(S(X∞)) = m′ ≤ m − 1;

3. there is a stratification ∅ ⊂ S0 ⊂ S1 ⊂ · · · ⊂ Sm′ = S(X∞), each strata S j is
by itself a j-dimensional smooth Riemannian manifold;

4. there exists some ιX∞ > 0 such that injR(X∞) x = min{ιX∞ , d∞(x,S(X∞))}, for
any x ∈ R(X∞).

For all i sufficiently large, the Gromov-Hausdorff approximation Gi : Xi → X∞
can be chosen such that on Ui := G−1

i (R(X∞)),

Gi : Ui → R(X∞)

is an almost Riemannian submersion, and for each x ∈ R(X∞), G−1
i (x) is diffeomor-

phic to N, an infranil-manifold.
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Chapter 3

Distance distortion estimate

3.1 A uniform renormalized Sobolev inequality along
the Ricci flow

A uniform Sobolev inequality along Ricci flows will enable us to do analysis on
positive time slices. Notice that the lower bound of the µ-entropy reflects the upper
bound of the log-Sobolev constant, and the monotone increasing property of the
µ-entropy will further preserve, rather than destroying, the log-Sobolev constant. In
this section, we will see that the information of initial global volume ratio is encoded
in the initial µ-entropy via a log-Sobolev inequality, deduced following a classical
argument, but with the renormalized Sobolev inequality (1.3) as our starting point.
We will also deduce a uniform renormalized Sobolev inequality along the Ricci
flow, which clearly shows how the initial global volume ratio affects the Sobolev
constants on positive time slices. For previous results we refer the readers to the
works of Rugang Ye [81] and Qi S. Zhang [83], [?], [?].

3.1.1 Lower bound of initial entropy via the renormalized Sobolev
inequality

From (1.3), we see that if
∫

M
v2dVg(0) = 1, then(∫

M
v

2n
n−2 dVg(0)

) n−2
n

≤ 4CS V−
2
n

(
D2

0

∫
M
|∇v|2 dVg(0) + 1

)
.

Due to the uniform bound of the scalar curvature, we could further obtain(∫
M

v
2n

n−2 dVg(0)

) n−2
n

≤ 4CS V−
2
n

(
D2

0

∫
M

(
4|∇v|2 + Rg(0)v2

)
dVg(0) + C0D2

0 + 1
)
.
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Since the logarithm function is concave, and since v2dVg(0) defines a probability
measure on M, by Jensen’s inequality, we have

∀u ∈ L1(M, v2dVg(0)),
∫

M
(log |u|) v2dVg(0) ≤ log

∫
M
|u| v2dVg(0).

With u = vq−2 with q = 2n
n−2 (notice that q

q−2 = n
2 ), the above inequality gives∫

M
v2 log v2 dVg(0) =

∫
M

2
q − 2

(
log vq−2

)
v2dVg(0)

≤
2

q − 2
log

∫
M

vq dVg(0),

which is exactly n
2 log ‖v‖2Lq(M); furthermore,

n
2

log ‖v‖2Lq(M)

≤
n
2

log
(
D2

0

∫
M

(
4|∇v|2 + Rg(0)v2

)
dVg(0) + C0D2

0 + 1
)
− log V +

n
2

log 4CS .

Now applying the elementary inequality log u ≤ αu − 1 − logα for all α > 0 to the
first term in the right-hand side of this last inequality, we obtain∫

M
v2 log v2 dVg(0) ≤

n
2

log
(
D2

0

∫
M

(
4|∇v|2 + Rg(0)v2

)
dVg(0) + C0D2

0 + 1
)

− log V +
n
2

log 4CS

≤
αn
2

(
D2

0

∫
M

(
4|∇v|2 + Rg(0)v2

)
dVg(0) + C0D2

0 + 1
)

− log V +
n
2

(
log 4CS − 1 − logα

)
.

(3.1)

Recalling the definition of theW-functional (2.6), and taking α = 2τ
nD2

0
in (3.1),

we immediately see

W(g(0), v2, τ) ≥ log VD−n
0 − (C0D2

0 + D−2
0 )τ −

n
2

log(8nπeCS ). (3.2)

Here τ, as a multiple of α, could be any positive number. Since this is valid for any
function v on M with unit L2-norm, we have, for any τ ∈ [T, 2T ],

µ(g(0), τ) ≥ log VD−n
0 − (C0D2

0 + D−2
0 )τ −

n
2

log(8nπeCS ). (3.3)

Here we notice that both sides of the inequalities above are invariant under a parabolic
rescaling.
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Remark 3.1.1. It is well-know that collapsing initial data implies that there is no
uniform lower bound of theW-entropy, and here we give an explicit lower bound
in terms of the initial global volume ratio.

Now suppose we evolve v2 at some t̄-slice backward by the conjugate heat equa-
tion, i.e. we consider a function u such that

u(t̄) = v2; (∂t + ∆g(t) − Rg(t))u = 0; ∂tg = −2Rcg(t),

then W(g(t), u(t), τ(t)) is increasing in t where τ′ = −1. Therefore, for any v2

with unit L1(g(t̄))-norm, we have, by the monotone increasing property of theW-
functional, that

W(g(t̄), v2, τ(t̄)) ≥W(g(0), u(0), τ(t̄) + t̄)

≥ log VD−n
0 − (C0 + D−2

0 )(τ(t̄) + t̄) −
n
2

log(8nπeCS ),

or in the form of the log-Sobolev inequality,∫
M
τ(4|∇v|2 + Rg(t̄)v2) − v2 log v2 dVg(t̄) ≥ log V

(
τ

D2
0

) n
2

− (C0 + D−2
0 )(τ + t̄) −ClS ,

(3.4)

where ClS := n
2 log(2ne−1CS ) and τ is any positive number.

3.1.2 Uniform renormalized Sobolev inequality along the Ricci
flow

In this subsection, we establish a uniform renormalized Sobolev inequality along
the Ricci flow. We will follow the exposition of [84], which is based on the argu-
ment of Edward Davies [70] in the case of a fixed Riemannian manifold. The result
of this subsection will not be needed in our estimate of the distance distortion, yet
we still include it here because we will later use a similar argument to prove a rough
upper bound of the renormalized heat kernel in Section 5.1.

The first step would be using the uniform log-Sobolev inequality (3.4) to obtain
an upper bound of the heat kernel on a fixed future time slice (M, g(t̄)). Now let u
be any solution to the equation

(∂t − ∆g(t̄) + Rg(t̄))u = 0

on the fixed Riemannian manifold (M, g(t̄)). Consider for any fixed t > 0, the
exponent p(s) := t

t−s for s ∈ [0, t]. We immediately see that p′(s) = t(t − s)−2 > 0,
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moreover,

0 ≤
p(s) − 1

p′(s)
=

s(t − s)
t

≤
t
4
,

and
p′(s)
p2(s)

=
1
t
.

(3.5)

We also let

v(x, s) := u(x, s)
p(s)

2 ‖u
p(s)

2 ‖−1
L2(M,g(t̄)),

so that ‖v‖L2(M,g(t̄)) = 1. Routine computations give

p2(s)∂s log ‖u‖Lp(s)(M,g(t̄))

= p′(s)
∫

M
v2 log v2 dVg(t̄) − 4(p(s) − 1)

∫
M
|∇v|2 dVg(t̄) − p2(s)

∫
M
Rg(t̄)v2 dVg(t̄)

≤ p′(s)
(∫

M
v2 log v2dVg(t̄) −

(p(s) − 1)
p′(s)

∫
M

4|∇v|2 + Rg(t̄)v2 dVg(t̄) +
3t
4

C0

)
.

Thus if we plug τ =
p(s)−1
p′(s) into (3.4), then the above computation, together with

(3.5) give

∂s log ‖u‖Lp(s)(M,g(t̄))

≤
1
t

(
−

n
2

log
s(t − s)

t
− log VD−n

0 + (C0 + D−2
0 )

(
t̄ +

s(t − s)
t

)
+ ClS +

3t
4

C0

)
.

Notice that p(0) = 1 and p(t) = ∞, we integrate the above inequality (with respect
to s) from 0 to t to obtain for any t > 0,

log
‖u(−, t)‖L∞(M,g(t̄))

‖u(−, t)‖L1(M,g(t̄))
≤ −

n
2

log t − log VD−n
0 + (C0 − D−2

0 )t + C̃H(t̄), (3.6)

where C̃H(t̄) = 2(t̄ + 1)(C0 + D−2
0 ) + ClS + n. Now let Gt̄(x, t, y) be the heat kernel of

(M, g(t̄)) centered at x ∈ M, then

u(x, t) =

∫
M

Gt̄(x, t, y)u(y, 0) dVg(t̄)(y),

and ‖u(−, t)‖L1(M,g(t̄)) =

∫
M

u(y, t) dVg(t̄)(y),
(3.7)

we conclude that

(VD−n
0 )Gt̄(x, t, y) ≤ eC̃H(t̄)+(2C0+D−2

0 )tt−
n
2 . (3.8)
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Now consider G̃t̄(−, t,−) := e−(2C0+D−2
0 )tGt̄(−, t,−), then G̃t̄ is the fundamental

solution to the equation(
∂t − ∆t̄ + Rg(t̄) + (2C0 + D−2

0 )
)

u = 0,

and by(3.8) we have the control

∀t > 0, G̃t̄(−, t,−) ≤ C̃H(t̄)(VD−n
0 )−1t−

n
2 .

Notice that C̃H(t̄) = 2t̄(C0 +D−2
0 )+ClS +n is independent of time and space variables

on the fixed manifold (M, g(t̄)); also notice that it is invariant under the parabolic
rescaling.

Now we can conclude that the operator of integrating against the kernel G̃t̄ is a
contraction, and standard argument gives the L2-Sobolev inequality on (M, g(t̄)):

‖ f ‖2
L

2n
n−2 (M,g(t̄))

≤ CS ob(t̄)V−
2
n D2

0

(
‖∇ f ‖2L2(M,g(t̄)) + (2C0 + D−2

0 )‖ f ‖2L2(M,g(t̄))

)
, (3.9)

where CS ob(t̄) = (2(t̄ + 1)(C0 + D−2
0 ) + ClS + n)

2
n is uniformly bounded for bounded

t̄, independent of V and the flow.

3.2 Estimating the geometric quantities along the Ricci
flow

In this section we give a lower bound of the renormalized volume ratio on any
scale, and a scaling invariant upper bound of the diameter along the Ricci flow. The
estimates only depend on the initial doubling constant CD, the initial L2-Poincaré
constant CP, the initial diameter D0, the space-time scalar curvature bound C0, and
the time elapsed from the beginning.

Both estimates are based on the idea that theW-functional, when tested against
a suitable spacial cut-off function, bounds from below the volume ratio at the given
time slice, and then the monotone increasing property of theW-functional further
provides the desired renormalization by the initial total volume, as shown in (3.2).

More specifically, throughout this section, we fix a time slice t̄ ∈ (0,T ] and a
scale r such that r2 ∈ (0, t̄]. For any fixed x ∈ M, we could define a spacial cut-off

function as

h2(y) = e−A(4πr2)−
n
2η2

(
r−1dt̄(x, y)

)
,

with η being a smooth cut-off function supported on [0, 1), constantly equal to 1 on
[0, 1

2 ] and −2 ≤ η′ ≤ 0 on ( 1
2 , 1). Moreover, A is chosen so that

∫
M

h2 dVg(t̄) = 1, and
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we immediately see

|Bt̄(x, r
2 )|

(4πr2)
n
2
≤ eA =

∫
M

η2
(
r−1dt̄(x, y)

)
(4πr2)

n
2

dVg(t̄)(y) ≤
|Bt̄(x, r)|
(4πr2)

n
2
. (3.10)

Recall that theW-functional for (M, g(t̄, h2) is defined as

W(g(t̄), h2, r2) =

∫
M

4r2|∇h|2 + r2Rg(t̄)h2 − h2 log h2 dVg(t̄) −
n
2

log(4πr2) − n.

We now roughly estimate some terms of the right-hand side of this inequality:
Since |∇dt̄| ≤ 1, we have∫

M
4r2|∇h|2 dVg(t̄) ≤

∫
Bt̄(x,r)

16r2e−B |η′∇dt̄(x, y)|2

(4πr2)
n
2 r2

dVg(t̄)(y)

≤
64|Bt̄(x, r)|
eA(4πr2)

n
2

≤
64|Bt̄(x, r)|
|Bt̄(x, r

2 )|

(3.11)

where we have used (3.10); moreover, since h2 is supported in Bt̄(x, r), and since
the mapping σ 7→ −σ logσ is concave, we apply this to σ = h2 and use Jensen’s
inequality see ∫

M
−h2 log h2 dVg(t̄) −

n
2

log 4πr2 − n

≤ −

∫
Bt̄(x,r)

h2 dVg(t̄)

(
log
?

Bt̄(x,r)
h2 dVg(t̄)

)
−

n
2

log 4πr2 − n

= log
(
|Bt̄(x, r)|r−n) − n

2
log 4πe2.

(3.12)

3.2.1 Lower bound of the renormalized volume ratio
It is well known, as Perelman’s no local collapsing theorem tells, that the lower
bound of the initial µ-entropy and the upper bound of the scalar curvature together
give a lower bound of the volume ratio, see [78] and [77]. Following this classical
argument, but with the more explicit lower bound (3.3) of the initial µ-entropy, we
obtain a generalized lower bound of the renormalized volume ratio. We begin with
the following lemma:
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Lemma 3.2.1. For the fixed time slice t̄ and any positive r ≤
√

t̄, suppose the
doubling property

|Bt̄(x,
r
2

)| ≥ 3−n |Bt̄(x, r)| (3.13)

holds, then there is a constant CVR(T ) = CVR(T )(C0,CS ,D0,T ) such that

|Bt̄(x, r)|
rn ≥ CVR(T )VD−n

0 . (3.14)

Proof. We examine the upper bound ofW(g(t̄), h2, r2) with the help of (3.13).
Since supM×[0,2T ] |Rg(t)| ≤ C0, we have∫

M
r2Rg(t̄)h2 dVg(t̄) ≤ 2C0T ; (3.15)

moreover, from (3.11) and (3.13) we have∫
M

4r2|∇h|2 dVg(t̄) ≤ 3n+4.

These estimates, together with (3.12) give

W(g(t̄), h2, r2) ≤ log
|Bt̄(x, r)|

rn + 2C0T + 3n+5 −
n
2

log 4πe2. (3.16)

On the other hand, since ‖h‖L2(M,g(t̄)) = 1, we could evolve h2 by the conjugate
heat equation along the Ricci flow ∂tg(t) = −2Rcg(t), i.e. we solve (∂t + ∆−R)u = 0
with final value u(t̄) = h2.

By the monotone increasing property ofW(g(t), u(t), τ) in t (with τ′(t) = −1),
we may apply the initial lower bound (3.2) to see

W(g(t̄), h2, r2) ≥W(g(0), u(0), t̄ + r2)

≥ log VD−n
0 −

(C0D2
0 + 1)

D2
0

(t̄ + r2) −
n
2

log(8nπeCS D2
0),

therefore by (3.16), we have the following lower bound of the log volume ratio:

log
|Bt̄(x, r)|

rn ≥ log VD−n
0 −

2T (2C0D2
0 + 1)

D2
0

− 3n+5 −
n
2

log(2ne−1CS D2
0),

which is

|Bt̄(x, r)|
rn ≥ CVR(T )(C0,D0,T )VD−n

0 , (3.17)
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where CVR(T ) := (2ne−1CS )−
n
2 exp(2T (2C0 + D−2

0 ) − 3n+5), which ultimately also
depends on the L2-Poincaré constant CP and the doubling constant CD of the initial
metric, as encoded in CS . Again, CVR(T ) is invariant under the parabolic rescaling
of the Ricci flow. �

We now prove the local volume doubling property (3.13), which follows directly
from the original contradiction argument due to Perelman, if we notice that the
constant CVR(T ) is independent of t̄ and r2 as long as t̄ ≤ T and r2 ≤ t̄.

Now suppose (3.14) fails for some scale r ∈ (0,
√

t̄) at time t̄ ≤ T and a point
x ∈ M, then (3.13) must fail for this r, and it will also fail at scale r

2 : otherwise, the
above argument applied to the r

2 -ball around x ∈ M will produce

|Bt̄(x,
r
2

)| ≥ 2−nCVR(T )(C0,D0,T )Vrn

≥ 2−n|Bt̄(x, r)|,

where we have used the converse of (3.14), but contradicts the failure of (3.13).
Therefore, if the converse of (3.13) is observed at any point and scale, then it will
pass down to all smaller scales at that point, i.e. the converse of (3.13) implies for
any k ≥ 1,

|Bt̄(x, 2−kr)| ≤ 3−nk|Bt̄(x, r)|,

which is impossible for k sufficiently large, since (M, g(t̄)) is locally Euclidean.
Therefore, we have the following

Proposition 3.2.2 (Lower bound of renormalized volume ratio). Let (M, g(t)) be a
Ricci flow solution on [0,T ] with initial diameter D0 and initial volume V. Assume
that the scalar curvature is uniformly bounded by C0 in space-time, then there is
a constant CVR(T ) depending on the initial doubling constant CD, the initial L2-
Poincaré constant CP, the initial diameter D0, the scalar curvature bound C0 and
T , such that for any time t ∈ [0,T ] and any scale r such that r2 ∈ (0, t],

|Bt(x, r)|
rn ≥ C+

VR(T )VD−n
0 . (3.18)

Moreover, C+
VR(T ) is invariant under the parabolic rescaling of the Ricci flow.

3.2.2 Diameter upper bound
In the same vein, but with the straightforward estimate (3.15) replaced by a more
delicate maximal function argument, Peter Topping [80] proved a diameter upper
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bound in terms of the integral of the scalar curvature (see also [86]). When the
scalar curvature is uniformly bounded in space-time, we notice that Topping’s esti-
mates depend on the initial volume, a factor that we hope to avoid in our estimates.
However, once the quantities involved are correctly renormalized and the initial en-
tropy lower bound (3.2) is used, Topping’s argument still leads to a diameter upper
bound which is independent of the initial volume. In the current subsection we
discuss this in detail.

To begin with, we recall that the total volume changes as following:

V(t) := |M|g(t) = Ve−
∫ t

0

∫
M Rg(s)dVg(s)dt ≤ VeC0t. (3.19)

Moreover, as discussed above, we evolve the cut-off function h2 backward by the
conjugate heat equation along the Ricci flow. From (3.2), (3.10), (3.11) and (3.12)
we get

log VD−n
0 + C1(T )

≤
64|Bt̄(x, r)|
|Bt̄(x, r

2 )|
+

r2

|Bt̄(x, r
2 )|

∫
Bt̄(x,r)

|Rg(t̄)| dVg(t̄) + log
(
|Bt̄(x, r)|

rn

)
,

(3.20)

where C1(T ) := −2T (C0 + D−2
0 )− n

2 log(2ne−1CS ), a constant only depending on the
initial doubling and L2-Poincaré constants, the initial diameter and the space-time
scalar curvature bound; especially it is independent of the initial volume.

Now we define the maximal function of the scalar curvature following [80]:

MR(x, r, t̄) := sup
s∈(0,r]

|Bt̄(x, s)|
s

(?
Bt̄(x,s)

|Rg(t̄)| dVg(t̄)

) n−1
2

. (3.21)

We also define C2 = min
{
ωnDn

0
2V , eC1(T )−2n+1

}
, whereωn is the volume of n-dimensional

Euclidean unit ball. Notice that since we are dealing with the case as V → 0, the
constant C is in fact independent of V , and we put it here just for the convenient of
statement.

The key property of MR(x, r, t̄), as described in [80], is that “we cannot si-
multaneously have small curvature and small volume ratio”, but in our context we
should consider the renormalized volume ratio instead, and this is described in the
following proposition:

Lemma 3.2.3. Let (M, g(t)) be a Ricci flow solution on [0,T ] with initial diameter
D0 and initial volume V. Assume that the scalar curvature is uniformly bounded by
C0 in space-time, then for any t̄ ∈ (0,T ] and r > 0 such that r2 ≤ t̄, we have

|Bt̄(x, r)| ≤ C2VD−n
0 rn ⇒ MR(x, r, t̄) ≥ C2VD−n

0 ,

where the constant C2 is defined as above.
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Proof (following [80]). We first claim that if MR(x, r, t̄) ≤ C2VD−n
0 then for any

s ∈ (0, r],

|Bt̄(x, s)| ≤ C2VD−n
0 sn ⇒ |Bt̄(x,

s
2

)| ≤ 2−nC2VD−n
0 sn.

Suppose otherwise, then we could fix some s ∈ (0, r] that contradicts the claim,
i.e.

|Bt̄(x,
s
2

)| > (C2VD−n
0 )

2
n−1 2−ns

2n
n−1 |Bt̄(x, s)|

n−3
n−1 ,

so that we have ∫
Bt̄(x,s)

|Rg(t̄)| dVg(t̄) ≤ (MR(x, r, t̄))
2

n−1 s
2

n−1 |Bt̄(x, s)|
n−3
n−1

≤ (C2VD−n
0 )

2
n−1 s

2
n−1 |Bt̄(x, s)|

n−3
n−1

< 2ns−2|Bt̄(x,
s
2

)|.

By (3.20), we could further deduce

log VD−n
0 + C1(T ) ≤

64|Bt̄(x, s)|
|Bt̄(x, s

2 )|
+

s2

|Bt̄(x, s
2 )|

∫
Bt̄(x,s)

|Rg(t̄)| dVg(t̄) + log
(
|Bt̄(x, s)|

sn

)
≤

64|Bt̄(x, s)|
|Bt̄(x, s

2 )|
+ 2n + log VD−n

0 + log C2,

(3.22)

so that |Bt̄(x, s)| ≥ 2n|Bt̄(x, s
2 )| by the choice of C2, whence the claim.

Now by the claim, if there were any x ∈ M that has some scale s ∈ (0, r]
contradicting the statement of the proposition, i.e. |Bt̄(x, s)| ≤ C2VD−n

0 sn and simul-
taneously MR(x, s, t̄) ≤ C2VD−n

0 , then for any m ∈ N, we have, by the choice of C2,
that

|Bt̄(x, 2−ms)| ≤ 2−mnsnC2VD−n
0 ≤

ωn(2−ms)n

2
,

which is impossible for all m sufficiently large, since as a smooth Riemannian man-
ifold, (M, g(t̄)) is locally Euclidean of dimension n. �

Now we define ν := min{(ne−1CS )
n
2 , 1}. Notice that ν only depends on the

initial data: the initial doubling and L2-Poincaré constants. We prove the following
diameter bound:
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Proposition 3.2.4. Let (M, g(t)) be a Ricci flow solution on [0,T ] with initial di-
ameter D0 and initial volume V, and assume that the scalar curvature is uniformly
bounded by C0 in space-time.

Then there is a constant Cdiam > 0 such that if VD−n
0 < νωn, then

∀t ∈ [0,T ], diam(M, g(t)) ≤ Cdiame2C0tD0, (3.23)

where the constants only depend on CD,CP,C0,D0 and are invariant under the
parabolic rescaling of the Ricci flow.

Proof (following [80]). By the assumption on V , we have, by its definition, C2 =

eC1(T )−2n+1
. For fixed t̄ ∈ [0,T ], let γ be a minimal geodesic in M with |γ|g(t̄) =

diam(M, g(t̄)), and let {xi} be a maximal set of points on γ such that

1. Bt̄(xi,D0/10) are mutually disjoint; and

2. |Bt̄(xi,D0/10)| > 10nC2V for each i.

Let N := |{xi}|, then clearly N ≤ V(t̄)/(10nC2V) ≤ eC0 t̄/C2.
Now the set γ\∪N

i=1 Bt̄(xi,D0/5) has at most N+1 connected components, and let
σ be one of these components with largest length. We either have diam(M, g(t̄)) =

|γ|g(t̄) = |σ|g(t̄) if N = 0; or else, if N ≥ 1, we then have

diam(M, g(t̄)) ≤ (N + 1)|σ|g(t̄) + 2ND0/5
≤ 2N(|σ|g(t̄) + D0/5)

≤ 2C−1
2 eC0 t̄(|σ|g(t̄) + D0/5).

(3.24)

In any case, we will need to estimate |σ|g(t̄) in terms of the initial diameter D0:
For any x ∈ Im(σ), the maximality of {xi} guarantees that |Bt̄(x,D0/10)| ≤

10nC2V . Now by Lemma 3.2.3, we know that

∀x ∈ Im(σ), MR(x,D0/10, t̄) ≥ C2VD−n
0 .

Therefore we could find some s(x) ∈ (0,D0/10] such that

C2VD−n
0 ≤

|Bt̄(x, s)|
s

(?
Bt̄(x,s)

|Rg(t̄)| dVg(t̄)

) n−1
2

≤
1
s

∫
Bt̄(x,s)

|Rg(t̄)|
n−1

2 dVg(t̄).
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Now we could apply Lemma 5.2 of [80] to pick a set of points {y j} ⊂ Im(σ) such
that {Bt̄(y j, s(y j))} are mutually disjoint, and that |σ| ≤ 6

∑
j s(y j). We could now

estimate

|σ|g(t̄) ≤ 6
∑

j

Dn
0

C2V

∫
Bt̄(y j,s(y j))

|Rg(t̄)|
n−1

2 dVg(t̄)

≤
6Dn

0

C2V

∫
M
|Rg(t̄)|

n−1
2 dVg(t̄)

≤ 6C−1
2 eC0 t̄Dn

0C
n−1

2
0 .

(3.25)

Putting the estimates (3.24) and (3.25) together we obtain

diam(M, g(t̄)) ≤ Cdiame2C0 t̄D0,

where, recalling the definition of C2, we have Cdiam = 4n+4Dn−1
0 C

n−1
2

0 .
We notice that Cdiam is invariant under the parabolic rescaling of the Ricci flow,

and is independent of time. �

Remark 3.2.5. When the scalar curvature is uniformly bounded, the previous renor-
malized volume ratio lower bound, and the upper bound of the total volume, actu-
ally provide a diameter upper bound. This naive estimate, however, fails to provide
constants that are invariant under the parabolic rescaling of the Ricci flow.

3.2.3 A weak compactness result
We now state a proposition that corresponds to our second motivation of the paper:
to constuct, from a sequence of Ricci flows with collapsing initial data, Gromov-
Hausdorff limits of the positive time-slices. Compare also a result of Chen-Yuan [68,
Theorem 1] where lower bounds of the Ricci curvature and the unit ball volume,
uniform in space-time, are assumed.

Proposition 3.2.6 (Weak compactness for positive time slices). Let {(Mi, gi(t))} be
a sequence of Ricci flows defined for t ∈ [0,T ], such that they satisfy the same
assumptions as in Theorem 1.3.1.

Then for each t ∈ (0,T ), there is a subsequence of {(Mi, gi(t))}, a compact
metric space (Xt, dt), to which the subsequence converges in the Gromov-Hausdorff
topology.

Proof. This is a simple consequences of the estimates we proved previously in
this section. Recall that in [74, Chapter 5, A] a quantity N(ε,R, X) is defined for
each complete metric space X, to denote the maximal number of disjoint ε-balls
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that could be possibly fitted into an R-ball in the metric space X. As shown in
[74, Proposition 5.2], as long as N(ε,R, Xi) is uniformly bound for all ε ∈ (0,R),
R ∈ (0, diam Xi) and Xi, the sequence {Xi} is precompact in the pointed-Gromov-
Hausdorff topology.

In our situation, ∀t ∈ (0,T ), since we have a uniform diameter upper bound
(3.23), we only need to control N

(
ε,Cdiame2CRtD0, (Mi, gi(t))

)
. In fact, we could

easily see that ∀ε ∈ (0,Cdiame2CRtD0), the total volume upper bound (3.19) together
with the lower bound of renormalized volume ratio (3.18) gives: denoting Vi :=
Vol(Mi, gi(0)), we have

N
(
ε,Cdiame2CRtD0, (Mi, gi(t))

)
≤

VieCRt

C+
VR(T )ViD−n

0 ε
n =

eCRt

C+
VR

(D0

ε

)n

.

This bound is uniform on the sequence {(Mi, gi(t))} and therefore there is a metric
space (Xt, dt) to which the sequence subconverges in the Gromov-Hausdorff sense.

Clearly, diam(Xt, dt) ≤ Cdiame2CRt. �

Remark 3.2.7. Especially, we may assume limi→∞ ViD−n
0 = 0, and this justifies us

calling “collapsing initial data”.

3.3 Estimating the analytic quantities along the Ricci
flow

In this section we prvide a rough upper bound of the renormalized heat kernel, fol-
lowing Davies’ argument as discussed in Qi S. Zhang’s book and paper; we then
apply this rough upper bound, the Harnack inequality (2.4), and the diameter upper
bound (3.23) to obtain an on-diagonal lower bound lower bound of the renormal-
ized heat kernel, when the initial global volume ratio is sufficiently small. As con-
sequences, we also deduce a Gaussian type lower bound of the renormalized heat
kernel, as well as the non-inflation property for the renormalized volume ratio.

3.3.1 Rough upper bound of the renormalized heat kernel in
space time

The technique used to show the uniform Sobolev inquality in Subsection 3.2, i.e.
the method of Davies, could be further applied to obatin a rough upper bound of
the heat kernel coupled with the Ricci flow. This was first noticed by Qi S. Zhang
in [85] and we will follow the exposition there. Notice that recently, Meng Zhu
also extended Davies’ method to Ricci flows with a uniform Ricci curvature lower
bound in space-time, see [?].
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We fix (x0, t0) ∈ M×[0,T ), and consider the heat kernel based at (x0, t0), coupled
with the Ricci flow, as introduced in Subsection 2.3. More specifically, we denote
the heat kernel by

K(x, t) = G(x0, t0; x, t),

i.e. for any (x, t) ∈ M × (t0,T ], (∂t − ∆g(t))K(x, t) = 0, and limt↓t0 K(x, t) = δx0(x).
Now fix any t ∈ (t0,T ], let p(s) := (t− t0)/(t− s) for s ∈ (t0, t]. Besides p(t0) = 1

and lims↑t p(s) = ∞, we also notice the following relations:

0 ≤
p(s) − 1

p′(s)
=

(s − t0)(t − s)
t − t0

≤ t − t0,

0 <
1

p′(s)
=

(t − t0)2

t
≤ t,

and p′(s)p−2(s) =
1

t − t0
.

Defining for any (x, s) ∈ M × (t0, t],

v(x, s) := K(x, s)
p(s)

2 ‖K
p(s)

2 ‖−1
L2(M,g(s)),

we could compute as before to obtain

∂s log ‖K‖Lp(s)(M,g(s)) =
p′(s)
p2(s)

∫
M

v2 log v2 −
4(p(s) − 1)

p′(s)
|∇v|2 −

p(s)
p′(s)

Rg(s)v2 dVg(s)

≤
p′(s)
p2(s)

∫
M

v2 log v2 −
p(s) − 1

p′(s)

(
4|∇v|2 + Rg(s)v2

)
dVg(s) + C0.

We now plug τ =
p(s)−1
p′(s) and t̄ = s into the uniform log-Sobolev inequality (3.4)

(a bit abusing of notation), and obtain from the above calculations:

∂s log ‖K‖Lp(s)(M,g(s))

≤
p′(s)
p2(s)

(
−

n
2

log
p(s) − 1

p′(s)
− log VD−n

0 + (C0 + D−2
0 )

(
t̄ +

p(s) − 1
p′(s)

)
+ ClS

)
+ C0.

Integrating s from t0 to t, we see that

log
‖K(−, t)‖L∞(M,g(t))

‖K(−, t0)‖L1(M,g(t0))
≤ − log VD−n

0 (t − t0)
n
2 + 2t(C0 + D−2

0 ) + C0(t − t0) + ClS + n.

Since the K(−, s) acquires the Delta function property as s descends to t0, we clearly
have

‖K(−, t0)‖L1(M,g(t0)) = 1.
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Therefore, exponentiating both sides of the above estimate we obtain

VD−n
0 G(x0, t0; x, t) ≤ C+

H(T )(t − t0)−
n
2 ,

where C+
H(T ) = exp(2T (C0+D−2

0 )+C0T +ClS +n) is a universal constant independent
of t − t0, and is invariant under the parabolic rescaling of the Ricci flow. We collect
the result in the following

Proposition 3.3.1 (Rough upper bound of the renormalized heat kernel). Let (M, g(t))
be a Ricci flow solution on [0,T ] with initial diameter D0 and initial volume V, and
assume that the scalar curvature is uniformly bounded by C0 in space-time.

Then there is a constant C+
H(T ) = C+

H(CD,CP,C0,D0, n,T ) such that for any
(y, t) ∈ M × (0,T ], the conjugate heat kernel G(−,−; y, t) based at (y, t) obeys the
following estimate:

∀x ∈ M, ∀s ∈ (0, t), VD−n
0 G(x, s; y, t) ≤ C+

H(T )(t − s)−
n
2 . (3.26)

3.3.2 Gaussian type lower bound of the renormalized heat ker-
nel

In [67] and [85], the non-inflation property of volume ratio was proven based on an
on-diagonal heat kernel lower bound, which was obtained by estimating the reduced
length of a constant curve in space, and Perelman’s estimate. Such on-diagonal heat
kernel lower bound, together with the gradient estimate Theorem 2.1.1, then gives a
Gaussian lower bound of the heat kernel. This lower bound is essential in Bamler-
Zhang’s estimate of the distance distortion.

We notice that this lower bound, however, could be not applied in the case of
collapsing initial data, basically because of the lack of a correct renormalization. In
this subsection, our major task is then to obtain a Gaussian type lower bound of the
renormalized heat kernel. We will start similarly with an on-diagonal lower bound,
and then apply the gradient estimate to obtain the desired Gaussian lower bound of
the renormalized heat kernel.

First let us recall the volume upper bound:

V(t) := |M|g(t) = Ve−
∫ t

0

∫
M R(s)dVg(s)dt ≤ VeC0t. (3.27)

We also recall the bound of the total heat on the whole manifold: for any x, y ∈ M
and any 0 ≤ s < t ≤ T , recall that G(x, s; y, t) satisfies the heat equation in the
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variable (y, t), and it satisfies the conjugate heat equation in the variable (x, s); fixing
(x, s) and integrating y ∈ M we have ∀t′ < t ≤ T ,∣∣∣∣∣∂t

∫
M

G(x, t′; y, t) dVg(t)

∣∣∣∣∣ =

∣∣∣∣∣∫
M

∆yG(x, t′; y, t) − Rg(t)(y)G(x, t′; y, t) dVg(t)(y)
∣∣∣∣∣

≤ C0

∫
M

G(x, t′; y, t) dVg(t)(y),

therefore integrating in time we see

e−C0(t−s) ≤

∫
M

G(x, s; y, t) dVg(t)(y) ≤ eC0(t−s). (3.28)

As discussed in the introduction, the collapsing procedure is an intrinsic geo-
metric phenomenon, and it should not cause the addition or loss of the total heat.
Therefore, the heat-volume duality should be preserved. If the heat kernel at a fu-
ture time fails to have a pointwise lower bound of order (VD−n

0 )−1, then the duality
between the heat and volume will be contradicted, due to the rough bound of the
renormalized heat kernel, the Harnack inequality (2.4), and the volume and diame-
ter upper bounds of the whole manifold.

More specifically, the diameter upper bound in Proposition 3.2.4, the rough
pointwise upper bound of G(x, s;−,−) in Propostition 3.3.1, joint with the Harnack
inequality (2.4) give, for any (y, t) ∈ M × (s,T ],

G(x, s; y, t) ≤ H(n)
C+

H(T )G(x, s; x, t)

(VD−n
0 )(t − s)

n
2

 1
2

exp
(

H′(n)C2
diame4C0T D2

0

(t − s)

)
,

whenever the initial golbal volume ratio is bounded as VD−n
0 ≤ νωn.

Now we let θ :=
√

t − s/D0 denote the ratio of the parabolic scale to the initial
diameter. Integrating y ∈ M and involking the lower bound of total heat in (3.28),
we see

e−C0(t−s) ≤

∫
M

G(x, s; y, t) dVg(t)(y)

≤ H(n)VeC0t

(
C+

H(T )G(x, s; x, t)
Vθn

) 1
2

exp
(

H′(n)C2
diame4C0T

θ2

)
= H(n)eC0tθ−

n
2
(
C+

H(T )VG(x, s; x, t)
) 1

2 exp
(

H′(n)C2
diame4C0T

θ2

)
,

and thus

VG(x, s; x, t) ≥ H(n)−2e−C0(3t−s)(C+
H(T ))−1θn exp

(
−

2H′(n)C2
diame4C0T

θ2

)
.
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Multiplying D−n
0 on both sides of this inequality we get

VD−n
0 G(x, s; x, t) ≥ C−HD(T )Ψ(θ | T )(t − s)−

n
2 ,

where

C−HD(T ) := H(n)−2e−3C0TC+
H(T )−1, and Ψ(θ | T ) := θ2n exp

(
−2H′(n)C2

diame4C0Tθ−2
)
.

Especially, we notice that C−HD(T ) only depends on the initial diameter, the dou-
bling and L2-Poincaré constants, the space-time scalar curvatur upper bound, and
the time elapsed from the beginning. On the other hand, we notice that Ψ(θ | T )
depends, besides θ and T , only on the initial diameter and the space-time scalar
curvature bound, especially it is independent of the initial doulbing and L2-Poincaré
constants. We clearly see that

lim
θ→0

Ψ(θ | T ) = 0, (3.29)

indicating that the renormalization is only valid on scales comparable to the initial
diameter. Moreover, both constants C−HD(T ) and Ψ(θ | T ) are invariant under the
parabolic rescaling of the Ricci flow. Summarizing, we have the following

Lemma 3.3.2 (On-diagonal lower bound of the renormalized heat kernel). Let
(M, g(t)) be a Ricci flow solution on [0,T ] with initial diameter D0 and initial
volume V, and assume that the scalar curvature is uniformly bounded by C0 in
space-time.

Then there are positive constants

C−HD(T ) = C−HD(CD,CP,C0,D0, n,T ) and Ψ(θ | T ) = Ψ(θ | C0,D0, n,T )

such that for any (x, t) ∈ M × (0,T ], the conjugate heat kernel G(−,−; x, t) based at
(x, t) obeys the following estimate: for any s ∈ (0, t), setting θ :=

√
t − s/D0, then

VD−n
0 G(x, s; x, t) ≥ C−HD(T )Ψ(θ | T )(t − s)−

n
2 , (3.30)

whenever VD−n
0 ≤ νωn. Moreover, the constants C−HD(T ) and Ψ(θ | T ) are invariant

under the parabolic rescaling of the Ricci flow, and limθ→0 Ψ(θ | T ) = 0.

Recall that the positive constant ν is defined right above Proposition 3.2.4.
Once this on-diagonal estimate is obtained, we could easily apply the Harnack

inequality (2.4) again to obtain a Gaussian lower bound:
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Proposition 3.3.3 (Gaussian type lower bound of the renormalized heat kernel).
Let (M, g(t)) be a Ricci flow solution on [0,T ] with initial diameter D0 and initial
volume V, and assume that the scalar curvature is uniformly bounded by C0 in
space-time.

Then there are positive constants

C−H(T ) = C−H(CD,CP,C0,D0, n,T ) and Ψ(θ | T ) = Ψ(θ | C0,D0, n,T )

such that for any (y, t) ∈ M × (0,T ], the conjugate heat kernel G(−,−; y, t) based at
(y, t) obeys the following estimate: for any s ∈ (0, t), setting θ :=

√
t − s/D0, then

VD−n
0 G(x, s; y, t) ≥ C−H(T )Ψ(θ | T )2(t − s)−

n
2 exp

(
−2H′(n)

dt(x, y)2

t − s

)
, (3.31)

whenever VD−n
0 ≤ νωn. Moreover, the constants C−H(T ) and Ψ(θ | T ) are invariant

under the parabolic rescaling of the Ricci flow, and limθ→0 Ψ(θ | T ) = 0.

Here the constant is defined as C−H(T ) := (C−HD(T ))2(H(n)2C+
H(T ))−1.

As a direct geometric consequence, we could also deduce the non-inflation
property of the volume ratio:

Corollary 3.3.4 (Non-inflation of the renormalized volume ratio). Let (M, g(t)) be
a Ricci flow solution on [0,T ] with initial diameter D0 and initial volume V, and
assume that the scalar curvature is uniformly bounded by C0 in space-time.

Then there are positive constants

C−VR(T ) = C−VR(CD,CP,C0,D0, n,T ) and Ψ(θ | T ) = Ψ(θ | C0,D0, n,T )

such that for any (x, t) ∈ M × (0,T ] and any r ∈ (0,
√

t), setting θ = r/D0, then

(VD−n
0 )−1|Bt(x, r)| ≤

C−VR(T )
Ψ(θ | T )2 rn,

whenever VD−n
0 ≤ νωn. Moreover, the constants C−VR(T ) and Ψ(θ | T ) are invariant

under the parabolic rescaling of the Ricci flow, and limθ→0 Ψ(θ | T ) = 0.

Proof. Fix (x, t) ∈ M × (0,T ] and r ∈ (0,
√

t). Let G(x, t − r2;−,−) be the fun-
damental solution to the conjugate heat equation coupled with the Ricci flow on
M × (t − r2,T ], based at (x, t − r2), i.e. lims↓t−r2 G(x, t − r2;−, s) = δ(x,t−r2)(−). By
the Gaussian type lower bound (3.31) of the renormalized heat kernel, we have

∀y ∈ Bt(x, r), VD−n
0 G(x, t − r2; y, t) ≥ C−H(T )Ψ(θ | T )2e−2H′(n)r−n.
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On the other hand, by (3.28), we have an upper bound of the total heat. Therefore,
integrating over Bt(x, r) we have

eC0r2
≥

∫
Bt(x,r)

G(x, t − r2; y, t) dVg(t)(y)

≥ C−H(T )Ψ(θ | T )2e−2H′(n)|Bt(x, r)|(VD−n
0 rn)−1,

or equivalently,

(VD−n
0 )−1|Bt(x, r)| ≤ C−VR(T )Ψ(θ | T )−2rn,

with C−VR(T ) := e2H′(n)+C0T/C−H(T ). �

Remark 3.3.5. Again, we see that the bound becomes worse as r/D0 becomes
smaller. However, for any fixed positive scale, we have a uniform estimate.

3.4 Estimating the distance distortion
In this section we prove the main results of our note: the distance distortion es-
timate. Once the lower bound of the renormalized volume ratio (3.14) matches
with that of the renormalized heat kernel (3.30), the classical argument of counting
geodesic balls suitably covering a minimal geodesic carries over; see Section 5.3
of [24] and Section 3 of [61]. See also Section 3 of Chen-Wang [25] for a thorough
exposition. However, we reproduce a detailed proof here, following [61], for the
sake of completeness and readers’ convenience.

Before the commencement of the proof, we would like to emphasize the impor-
tance of the parabolic-scaling invariance of the constants in our previous estimates:
for fixed small scales, we will dialate them to unit size and work with the rescaled
quantities.

Proof of Theorem 1.3.1. Fix t1 ∈ (0,T ], and suppose that dt1(x0, y0) = r. Let θ = r/
D0. Then we rescale r to 1 parabolically and denote the rescaled time slice as t̄.
Also denote the rescaled metric as ḡ.

Let γ : [0, 1]→ M be a unit speed ḡ(t̄)-minimal geodesic that connects x0 to y0.
Let

K(x, t) := G(x0, t̄ −
1
2

; x, t)

be a heat kernel coupled with the Ricci flow, with initial data the Delta function at
(x0, t̄ − 1

2 ), recall immediately that we have the bound (3.28) of the total heat:

∀t ∈ [t̄ −
1
2
, t̄ +

1
2

],
∫

M
K(−, t) dVḡ(t) ≤ eC0r2

. (3.32)
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By the renormalized heat kernel upper bound (3.26), we have

∀t ∈ [t̄ −
1
4
, t̄ +

1
4

], (VD−n
0 )K(−, t) ≤ C+

H2n; (3.33)

on the other hand, by the Gaussian type lower bound (3.31), we have

∀s ∈ [0, 1], (VD−n
0 )K(γ(s), t̄) ≥ C−He−4H′(n)2

n
2 Ψ(θ | T )2. (3.34)

Time derivative bound (2.5) together with (3.33) imply that

∀(s, t) ∈ [0, 1] × [t̄ −
1
4
, t̄ +

1
4

], |∂t(VD−n
0 )K(γ(s), t)| ≤ C+

H2n(C0r2 + 4B(n));

therefore, setting

α0(θ) := min
{

1
8
,

C−He−4H′(n)Ψ(θ | T )2

2n+1C+
H(C0T + 4B(n))

}
and integrating the above time derivative bound we obtain from (3.34) that

∀(s, t) ∈ [0, 1] × [t̄ − α0(θ), t̄ + α0(θ)], (VD−n
0 )K(γ(s), t) ≥

1
2

C−He−4H′(n)2
n
2 Ψ(θ | T )2.

Now by the Harnack inequality (2.4), we could estimate

∀(s, t) ∈ [0, 1] × [t̄ − α0, t̄ + α0], inf
Bt(γ(s),1)

(VD−n
0 )K(−, t) ≥ C3(T )Ψ(θ | T )4,

(3.35)

where C3(T ) := C−H(T )e−16H′(n)/(4H(n)2C+
H(T )) is a constant only depending on the

initial diameter, the initial doubling and L2-Poincaré constants, and the space-time
scalar curvature bound. Moreover, C3(T ) is invariant under the parabolic rescaling
of the Ricci flow.

Now fix any t ∈ [t̄ − α0(θ), t̄ + α0(θ)], and cover Im(γ) ⊂ M by a minimal
number of unit ḡ(t)-geodesic balls {Bt(γ(si), 1)}, i = 1, · · · ,N. It is easily seen that
|γ|ḡ(t) ≤ 2N. Therefore, in order to obtain an upper bound of dt(x0, y0), it suffices to
control N from above.

By the minimality of the covering, we see that the collection {Bt(γ(si), 1/2)} are
pairwise disjoint. We could therefore combine the upper bound (3.32) of the total
heat, the renormalized lower bound (3.35) of the local heat, together with the lower
bound (3.18) of the renormalized volume ratio, to estimate:

eC0r2
≥

∫
M

K(x, t) dVḡ(t)

≥

N∑
i=1

∫
Bt(γ(si),ρ/2)

K(x, t) dVḡ(t)

≥ NC3(T )2−nΨ(θ | T )4.
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Therefore N ≤ 2neC0TC3(T )−1Ψ(θ | T )−4, a constant independent of specific Ricci
flow, especially its initial entropy. On the other hand, recalling that dt̄(x0, y0) = 1,
we get

∀t ∈ [t̄ − α1(θ), t̄ + α1(θ)], dt(x0, y0) ≤ α1(θ)−1dt̄(x0, y0), (3.36)

where

α1(θ) := min
{
α0(θ),

C3(T )Ψ(θ | T )4

2n+1eC0T

}
.

This proves one side of the desired distance distortion estimate. To see the
other side, we notice that the estimate (3.36) is independent of specific time slice t̄.
Therefore, letting α(θ) = 1

2α1(θ), and applying the previous argument at the t-slice
for any t ∈ [t̄ − α, t̄ + α], we see

∀s ∈ [t − α1(θ), t + α1(θ)], ds(x0, y0) ≤ α1(θ)−1dt(x0, y0).

Especially, since t̄ ∈ [t − α1, t + α1], plugging s = t̄ into the the above inequality we
get the desired estimate (1.2) with α(θ) in place of α1(θ). �

Here we emphasize again that α(θ) → 0 as θ → 0, reflecting the fact that when
we look at smaller scales compared to the initial diameter, the estimate will be less
effective.

We could also enhance the above distance distortion estimate in the following

Corollary 3.4.1. Let (M, g(t)) be a complete Ricci flow solution on [0,T ] with initial
diameter D0 and initial volume V, and assume the following conditions:

1. (M, g(0)), as a closed Riemannian manifold, has its doubling constant uni-
formly bounded above by CD, and its L2-Poincaré constant by CP, and

2. the scalar curvature is uniformly bounded in space-time: supM×[0,T ] |Rg(t)| ≤

C0.

There exist two positive constants α = α(θ | CD,CP,C0,D0, n,T ) < 1 with

lim
θ→0

α(θ | CD,CP,C0,D0, n,T ) = 0,

and ν = ν(CD,CP,C0, n) < 1, such that whenever VD−n
0 ≤ νωn, we have,

∀t ∈ [0,T ], ∀x, y ∈ M with dt(x, y) =: r ≤
√

t

and ∀s ∈ [r2,T ] with |s − t| ≤ α(θ) min{C−1
0 , t} + r2,

the following estimate:

ds(x, y)2 ≤ α(θ)−1(dt(x, y)2 + |s − t|).

The proof is identical to that of Corollary 1.2 of [61], and we will omit it here.
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Chapter 4

Regularity and convergence 4-D
Ricci shrinkers

4.1 Collapsing and local scales
The collapsing of Riemannian manifolds could mean different things in different
contexts. Our original concern (as stated in introduction) is about volume collaps-
ing, i.e. the manifold admitting a family of Riemannian metrics under which the
volume of fix-sized metric balls approaches zero. If we assume uniformly bounded
Riemannian curvature, then the volume collapsing is equivalent to collapsing with
uniformly bounded curvature, meaning that the injectivity radius of each point, un-
der the family of metrics, approaches zero. When collapsing with bounded curva-
ture happens, the structure theory of Cheeger-Fukaya-Gromov [14] will be of great
help in studying the underlying manifold.

4.1.1 Curvature scale
In general, however, no a priori uniform curvature bound could be assumed. One
then realizes that the above mentioned structural theory about collapsing with uni-
formly bounded curvature could be localized if the metrics in consideration are
regular. This is because the curvature scale, is locally 1-Lipschitz. See Section 3
for a detailed discussion about Cheeger-Tian’s localization adopted to the 4-D Ricci
shrinkers, and here we will focus on the basic properties of the curvature scale. See
also [9] for an exposition of the theory of locally bounded curvature and the curva-
ture scale.
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Definition 4.1.1 (Curvature scale). For any p ∈ M, define

rRm(p) := sup
{

r > 0 : B(p, s) has compact closure in B(p, r), and sup
B(p,s)
|Rm| ≤ s−2

}
.

Equivalently, rRm(p) is the maximal scale such that if one rescales the metric to
make it unit size, then the rescaled curvature will have its norm uniformly bounded
by 1 on the resulting unit ball around p ∈ M.

In fact, ∀x ∈ B(p, rRm(p)), we have B (x, rRm(p) − d(p, x)) ⊂ B(p, rRm(p)), so

sup
B(x,rRm(p)−d(p,x))

|Rm| ≤ rRm(p)−2 ≤ (rRm(p) − d(p, x))−2 , (4.1)

and thus d(x, p) < rRm(p) implies that rRm(x) ≥ rRm(p) − d(p, x). Reversing the
role of x and p, we have shown that the curvature scale is locally 1-Lipschitz as
mentioned above:

Lemma 4.1.2. Either rRm ≡ ∞ and Rm ≡ 0, or rRm is locally Lipschitz with

Lip rRm ≤ 1. (4.2)

In order to facilitate our local arguments, it is also convenient to truncate the
curvature scale:

Definition 4.1.3 (Truncated curvature scale). For any fixed 0 < r ≤ 1, we put

la := min{rRm, a}.

Clearly la is locally 1-Lipschitz.

4.1.2 Elliptic regularity at the curvature scale
Besides the fact that rRm is locally Lipschitz, another key ingredient in Cheeger-
Tian’s localization is that the higher regularities of Einstein metrics follow directly
from local curvature bounds. This essentially follows from elliptic regularity theory
and is independent of non-collapsing assumptions.

In the case of 4-D Ricci shrinkers, equations (2.8) and (2.14) form an elliptic
system, which could be bootstrapped to give higher regularities of both the metric
and the potential function, once a local curvature bound assumed. Also notice that
according to (2.18) and (2.19), we already have a local C1-bound of the potential
function f .
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Lemma 4.1.4. (Local elliptic regularity) Let p ∈ B(p0,R), then there exists Ck(R),Dk(R)
such that

sup
B(p, 1

2 la(p))
|∇kRm| ≤ Ck(R)la(p)−2−k, and sup

B(p, 1
2 la(p))

|∇k f | ≤ Dk(R)la(p)−1−k,

(4.3)

for k = 0, 1, 2, 3, · · · .

Proof. Fix p ∈ B(p0,R), then B(p, la(p)) ⊂ B(p0,R + 1). Since supB(p,la(p)) |Rm| ≤
la(p)−2, the conjugate radius rconj has a definite lower bound on B(p, la(p)):

inf
B(p,la(p))

rconj ≥ πla(p).

This means that the exponential map expp : B(0, la(p)) → B(p, ra(p)) is well-
defined and has no singularity. We can pull the manifold metric back to B(0, la(p)) ⊂
R4, denote g̃ := exp∗p g and f̃ := exp∗x f . Then the pull-back metric and potential
function still satisfy the defining equation (1.4)

Rcg̃ + ∇̃2 f̃ =
1
2

g̃,

understood as matrix equations on an open subset ofR4, with ∇̃2 the Hessian defined
by the metric g̃. Notice that the equations (2.8) and (2.14) now become the elliptic
system

∆̃ f̃ = 2 − Rg̃ and ∆̃Rmg̃ = ∇̃ f̃ ∗ Rmg̃ + Rmg̃ + Rmg̃ ∗ Rmg̃, (4.4)

defined on an open subset of R4, as equations of functions and of 4-tensors, re-
spectively. Here ∇̃ is the gradient under g̃ and ∆̃ := trg̃∇̃

2 is the Laplacian of g̃.
Moreover, since expp is an isometry, the local C1-bounds (2.18) and (2.19) of f
translates as ‖ f̃ ‖C1(B(0,la(p))) ≤ (R + 1)2.

On the other hand, as in [33] and [2], on B(0, la(p)) ⊂ R4 we can use har-
monic coordinates to deduce that |Rmg̃| ≤ la(p)−2 implies ‖g̃‖C1,α ≤ Cla(p)−1 on
B(0,Cla(p)/2).

Then we can bootstrap to get that ‖ f̃ ‖Ck,α ≤ Dk(R)la(p)−1−k and ‖Rmg̃‖Ck,α ≤

Ck(R)la(p)−2−k under harmonic coordinates. Since expp : (B(0, la(p)), g̃)→ (B(p, la(p)), g)
is an isometry, these estimates prove (4.3). �

Remark 4.1.5. As explained in [2], given the results of [7], the passage from a
lower bound on the harmonic radius to a corresponding compactness theorem is
immediate.
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It is straightforward to obtain the following elliptic regularity under rescaling:

Lemma 4.1.6 (Rescaling). Given λ ∈ (0, 1). The rescaling g 7→ g̃ := λ−2g gives the
equation Rcg̃ + ∇2 f = λ2

2 g̃. Moreover, rRmg̃ = λ−1rRmg and ∀p ∈ B(p0,R) we have:

sup
B̃(p, 1

2λ la(p))
|∇̃kRmg̃|g̃ ≤ Ck(R)

(
la(p)
λ

)−2−k

and sup
B̃(p, 1

2λ la(p))
|∇̃k f |g̃ ≤ Dk(R)

(
la(p)
λ

)−1−k

.

Moreover, for a general function solving the Poisson equation on a 4-D Ricci
shrinker, we can argue similarly and obtain the following interior estimates under
locally bounded curvature:

Lemma 4.1.7. Suppose u ∈ C2(B(p, la(p))) ⊂ B(p0,R) solves ∆ f u = c for some
constant c, then there are constants C′′k (R, c) for k = 1, 2, 3, · · · , such that

sup
B(p, 1

2 la(p))
|∇ku| ≤ C′′k (R, c) la(p)−k.

4.1.3 Energy scale
Associated to Anderson’s theorem (Proposition 2.4.6) is another local scale, called
the energy scale. This scale is particularly well-adapted to the analytical side of the
problem, and its interaction with the curvature scale, responsible for the geometric
side of the problem, consists of the technical core of Cheeger-Tian’s argument.

Definition 4.1.8. The energy scale ρ f (p) is defined by

ρ f (p) := min
{
sup

{
r ∈ (0,R) : I f

Rm(p, r) ≤ εA(R)
}
, 1

}
.

Moreover, we could assume εA(R) < 4CA(R)−2 in Anderson’s theorem (Proposi-
tion 2.4.6), so that I f

Rm(p, ρ f (p)) ≤ εA(R), and Proposition 2.4.6 tells that

ρ f (p) ≤ 2rRm(p), (4.5)

since

sup
B(p, 1

2ρ f (p))
|Rm| ≤ CA(R)εA(R)ρ f (p)−2 ≤

(
1
2
ρ f (p)

)−2

.
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4.1.4 Volume collapsing and collapsing with locally bounded cur-
vature

As mentioned above, we are concerned with the phenomenon of volume collapsing
defined as:

Definition 4.1.9 (δ-volume collapsing). U ⊂ B(p0,R) is δ-volume collapsing if
∀p ∈ U, µ f (B(p, 1)) ≤ δ.

However, volume collapsing does not give much information of the underlying
geometry. The concept associated to localizing the structural theory of Cheeger-
Fukaya-Gromov in [14] is (δ, a)-collapsing with locally bounded curvature:

Definition 4.1.10 ((δ, a)-collapsing with locally bounded curvature). U ⊂ B(p0,R)
is (δ, a)-collapsing with locally bounded curvature if ∀p ∈ U, µ f (B(p, la(p))) ≤
δ la(p)4.

Anderson’s ε-regularity with respect to collapsing bridges these two concepts:

Lemma 4.1.11. Suppose for some δ ∈ (0, 1), and ∀p ∈ U ⊂ B(p0,R) ⊂ M,

µ f (B(p, 1)) ≤
δ

16µ̄R(1)
and

∫
B(p,1)

|Rm|2 dµ f ≤
εA(R) δ
16µ̄R(1)

,

then U is (δ, a)-collapsed with locally bounded curvature, i.e. ∀p ∈ U

µ f (B(p, la(p))) ≤ δ la(p)4. (4.6)

Proof (following Cheeger-Tian). Without loss of generality we only need to con-
sider points with rRm ≤ 1. If ρ f (p) = 1, then

µ f (B(p, rRm(p))) ≤ µ f (B(p, 2rRm(p))) ≤
16µ f (B(p, 1))µ̄R(rRm(p))

µ̄R(1)
≤

δ µ̄R(rRm(p))
µ̄R(1)2

≤
δ rRm(p)4

µ̄R(1)
≤ δ rRm(p)4.

Otherwise, if ρ f (p) < 1, and by continuity of I f
Rm(p, r) in r, I f

Rm(p, ρ f (p)) = εA(R),
and we can estimate

µ f (B(p, rRm(p))) ≤
16µ f (B(p, ρ f (p)))µ̄R(rRm(p))

µ̄R(ρ f (p))

=
16µ̄R(rRm(p))

εA(R)

∫
B(p,ρ f (p))

|Rm|2 dµ f

≤
δ µ̄R(rRm(p))

µ̄R(1)
≤ δ rRm(p)4,

in the case rRm(p) < a, and a similar argument for rRm(p) ≥ a implies (4.6). �
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This lemma says that if we have sufficiently small energy, local volume collaps-
ing of a region does imply collapsing with locally bounded curvature.

4.2 Nilpotent structure and locally bounded curva-
ture

When collapsing with bounded curvature happens, Cheeger-Fukaya-Gromov [14]
gives a complete structural theory of the underlying manifold, one important conse-
quence being the vanishing of the Euler characteristics. When the metric is locally
regular, a similar structural theory could be obtained when collapsing with only
locally bounded curvature happens on a domain. This observation was essentially
discovered in [18], in the context of F-structures, and was made of full use in [20].
The vanishing of the Euler characteristic of the domain and (2.15) then help ob-
tain an improved energy bound (Proposition 4.4.1), which will be crucial for the
iteration argument for the key estimate (Proposition 4.4.5) later. In this section we
will follow the expositions of Sections 2 and 3 of Cheeger-Tian [20] to see why
their theory also works for 4-D Ricci shrinkers. The equivariant good chopping for
sets collapsing with locally bounded curvatre (Theorem 4.3.1), which is the main
theorem of Section 3 in [20], is proved in the next section.

In this subsection, we will discuss why the main theorems of Sections 2 and 3
of [20] also work for 4-D Ricci shrinkers.

We start with constructing a good covering, which sees a nice partition into
sub-collections that makes the gluing arguments in [14] and [19] possible:

Lemma 4.2.1 (Existence of a good covering). Fix a ≤ 1. There is a covering of E ⊂
M by geodesic balls with radius being a uniform multiple of the curvature scale,
such that it can be partitioned into at most N sub-collections S j ( j = 1, · · · ,N) of
mutually disjoint balls in the covering, with any ball in a sub-collection intersecting
at most one ball from another.

Proof. Let {pi} (i = 1, 2, 3, · · · ) be a maximal subset of E satisfying

d(pi, p j) ≥ ζ min{la(pi), la(p j)}, (4.7)

then for suitably chosen ζ ∈ (0, 1), {B(pi, 2ζla(pi)} is a locally finite covering with
uniformly bounded multiplicity. If B(pi, 2ζla(pi)) ∩ B(p j, 2ζla(p j)) , ∅, then

d(pi, p j) ≤ 4ζ max{la(pi), la(p j)}.

Assuming ζ < 1
4 , then as done in (4.1),

min{la(pi), la(p j)} ≤ max{la(pi), la(p j)} ≤ min{la(pi), la(p j)} + d(pi, p j),
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so we can estimate the distance

d(pi, p j) ≤
4ζ

1 − 2ζ
min{la(pi), la(p j)}, (4.8)

and thus

min{la(pi), la(p j)} ≤ max{la(pi), la(p j)} ≤
1 + 2ζ
1 − 2ζ

min{la(pi), la(p j)}. (4.9)

Now if B(pi0 , 2ζla(pi0))∩ B(pi j , 2ζla(pi j)) , ∅ for j = 1, · · · ,N(i0), then by (4.8)
and (4.9),

d(pi0 , pi j) ≤
4ζ

1 − 2ζ
la(pi0) and la(p j) ≥

1 − 2ζ
1 + 2ζ

la(pi0),

and thus we have the following containment relations: ∀ j = 1, · · · ,N(i0),

B
(
pi0 , ζla(pi0)

)
⊂ B

(
pi j ,

5ζ − 2ζ2

1 − 2ζ
la(pi0)

)
⊂ B

(
pi0 ,

9ζ − 2ζ2

1 − 2ζ
la(pi0)

)
, (4.10)

while for 1 ≤ j1 < j2 ≤ N(i0), (4.7) gives

B
(
p j1 ,

ζ(1 − 2ζ)
2(1 + 2ζ)

la(pi0)
)⋂

B
(
p j2 ,

ζ(1 − 2ζ)
2(1 + 2ζ)

la(pi0)
)

= ∅. (4.11)

Let ζ < 1
20 , and do the rescaling g 7→ la(pi0)

−2g =: g̃, then since a ≤ 1,

sup
B̃
(
pi0 ,

9ζ
1−2ζ

) |Rmg̃|g̃ ≤ 1.

Now apply (4.10), (4.11) and volume comparison on B̃(pi0 , 10ζ) we get

Volg̃

(
B̃

(
pi0 , ζ

))
≤

1
N(i0)

N(i0)∑
j=1

Volg̃

(
B̃

(
pi j ,

5ζ − 2ζ2

1 − 2ζ

))

≤
1

N(i0)
Λ−1

(
5ζ − 2ζ2

1 − 2ζ

)
Λ−1

(
ζ(1 − 2ζ)
2(1 + 2ζ)

)−1

Volg̃

(
B̃

(
p0,

9ζ − 2ζ2

1 − 2ζ

))
≤ Λ−1

(
5ζ − 2ζ2

1 − 2ζ

)
Λ−1

(
9ζ − 2ζ2

1 − 2ζ

)
Λ−1

(
ζ(1 − 2ζ)
2(1 + 2ζ)

)−1 Volg̃

(
B̃

(
pi0 , ζ

))
Λ−1(ζ) N(i0)

,

where Λ−1(r) is the volume of radius r ball in a space form of constant curvature
−1, and thus N(i0) ≤ N′, a dimensional constant once we fix ζ ∈ (0, 1

20 ).
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Now start with a maximal subset of {pi} with d(pi, p j) > 10ζ max{la(pi), la(p j)}
denoted by S 1; then choose S 2 as a maximal subset of {pi}\S 1, etc. In this way we
could obtain S 1, · · · , S N . Notice that for k = 1, 2, if there exist pik ∈ S i and p j ∈ S j

satisfying B(pik , 2ζla(pik)) ∩ B(p j, 2ζla(p j)) , ∅, then by (4.8) we have

10ζ max{la(pi1), la(pi2)} ≤ d(pi1 , pi2) ≤
8ζ

1 − 2ζ
max{la(pi1), la(pi2)},

impossible for ζ < 1
20 . Thus the ball centered at any element of S j can intersect

with at most one ball centered at some element of a different S i.
On the other hand, by the maximality of each S j ( j = 1, · · · ,N), if pi0 < S 1 ∪

· · · ∪ S N , then as observed in [15], there exist pi j ∈ S j for each j = 1, · · · ,N (note
that there may be more than one pi j from a single S j, but we just pick one of them),
such that

d(pi0 , pi j) < 10ζ max{la(pi0), la(pi j)} (compare (4.8))

implying as before, since ζ < 1
20 , that

max{la(pi0), la(pi j)} ≤
min{la(pi0), la(pi j)}

1 − 10ζ
and d(pi0 , pi j) ≤

10ζ
1 − 10ζ

la(pi0).

So we have the following containment relations

B(pi0 , ζla(pi0)) ⊂ B
(
pi j ,

11ζ − 10ζ2

1 − 10ζ
la(pi0)

)
⊂ B

(
pi0 ,

21ζ − 10ζ2

1 − 10ζ
la(pi0)

)
,

and by (4.7), the mutual disjointness of B
(
pi j ,

1
2ζ(1 − 10ζ)la(pi0)

)
for j = 1, · · · ,N.

Now we fix some ζ ∈ (0, 1
40 ), and do the same rescaling as before g 7→ la(pi0)

−2g.
The unit curvature bound on the rescaled unit ball around pi0 , the containment rela-
tions and mutual disjointness, together with the multiplicity estimate, give a dimen-
sional bound on N, as argued by volume comparison within B̃(pi0 , 1) above. �

The fact that the number of partitions of the covering is independent of specific
manifold, together with the elliptic regularity (4.3), ensure that the work of Cheeger-
Fukaya-Gromov [14] go through. Thus we have arrived at

Theorem 4.2.2 (Cheeger-Fukaya-Gromov [14], Cheeger-Tian [20]). For any ε > 0
and r ∈ (0, 1), there exists a δCFGT (ε) > 0 and α0, k > 0, such if U ⊂ M is (δ, a)-
collapsing with locally bounded curvature, for some δ < δCFGT , then there is an
approximating metric gε on some open subset W with U ⊂ W ⊂ B(U, a

2 ), together
with an a-standard N-structure on W, such that:
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1. gε is (α0 la, k)-round in the sense of (1.1.1)-(1.1.6) of [14];

2. the approximation satisfies

e−εgε l2
a ≤ g ≤ eεgε l2

a,

|∇g−∇gε | < ε l−1
a ,

and |∇kRmgε−∇
kRmg| < Ψ(ε | k) l−2−k

a ;

3. gε is invariant under the local nilpotent actions of the N-structure;

4. ∀x ∈ W, its orbit, N(x) is compact with diamgε N(x) ≤ ε la(x); and

5. W = ∪x∈WN(x), i.e. W is saturated.

We immediately have:

Corollary 4.2.3 (Vanishing Euler characteristics). If U ⊂ B(p0,R) is (δ, a)-collapsing
with locally bounded curvature, then χ(W) = 0.

Proof. By the existence of an a-standard N-structure of positive rank over W, we
have a topological fibration S1 ↪→ W → B where B is the collection of all orbits
of the S1 action, induced by the action associated to the N-structure. Thus χ(W) =

χ(S1)χ(B) = 0. �

The construction of the N-structure and approximating metric gε starts on geodesic
balls of scale la. Once we do the rescaling g 7→ la(p)−2g, we can carry out the con-
structions of Section 2 and 5 of [14] to obtain local fibrations. In order to glue
the local fibration and group actions, as done in Section 6 and 7 of [14], we need
Lemma 4.2.1 which tells, essentially, that one can carry out the gluing procedure by
adjusting within a single ball at a time. Finally, notice that once two balls intersect
non-trivially, then (4.9) is in effect, and rescaling one ball to unit curvature bound
will ensure the rescaled metric having curvature norm bounded by 2 on the union
of both balls, and Proposition A2.2 of [14] works for the gluing.

4.3 Collapsing and equivariant good chopping
The equivariant good chopping theorem when collapsing with locally bounded cur-
vature happens, as stated and used in [20], is a generalization of the original work
of Cheeger-Gromov [19] in two directions: in one direction, the global curvature
bound is relaxed to locally bounded curvature, as carried out by Cheeger-Tian in
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the proof of Theorem 3.1 of [20]; in the other, since the collapsing does not imply
the existence of an isometry group action — the action being only by a sheaf of
local isometries — more elaborations are needed to reduce the situation to the case
considered in [19]. In this appendix, with respect to the proof given in [20], we
provide additional details that were indicated but not written out explicitly.

Fix a ∈ (0, 1) throughout this appendix. For the sake of simplicity, we will
assume the given metric to be locally regular under curvature scale, i.e.

(R) there exist Ak > 0 for k = 0, 1, 2, · · · , such that

sup
B(p,la(p))

|Rmg| ≤ la(p)−2 =⇒ sup
B(p, 1

2 la(p))
|∇kRmg| ≤ Ak la(p)−2−k.

Theorem 4.3.1. Let (M, g) be an n-dimensional Riemannian manifold satisfying
property (R). There exist constants δGC > 0 and CGC(n) > 0 such that if E ⊂ M is
(δ, a)-collapsing with locally bounded curvature for some δ < δGC and a ∈ (0, 1),
then there is an open subset U ⊂ B(E, a

2 ) that contains E, saturated by some a-
standard N-structure, and has a smooth boundary ∂U with

|II∂U | ≤ CGCl−1
a .

Fukaya’s frame bundle argument [29] enables us to overcome this difficulty.
Basically, we first lift to the frame bundle, where the collapsing can only produce
mutually diffeomorphic nilpotent orbits with controlled second fundamental form.
Then we apply the equivariant good chopping theorem of Cheeger-Gromov [19]
to obtain a good neighborhood that is both invariant under the nilpotent structure
and the O(n)-actions. Taking the quotient of this neighborhood by O(n), we get the
desired neighborhood on the original manifold, because the O(n)-action commutes
with the local actions of the nilpotent structure.

We remark that the proof of this theorem utilizes Sections 3-7 of Cheeger-
Fukaya-Gromov’s structural theory about the geometry of collapsing with bounded
curvature developed in [14], and its generalization to the case of collapsing with
locally bounded curvature by Cheeger-Tian [20]: to begin with, we need the exis-
tence of a regular approximating metric on the frame bundle, invariant under the
nilpotent action resulted from the collapsing. See for a detailed description.

Regularity of the frame bundle

Consider the frame bundle FB(E, a), with each fiber diffeomorphic to O(n) and π :
FB(E, a) → B(E, a) the natural projection. We follow the conventions of Notation
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1.3 in [29]. Let ḡ denote the Riemannian metric on FB(E, a), as defined in 1.3
of [29]. Moreover, for any object o associated to B(E, a), we will let ō denote the
corresponding object associated to FB(E, a).

For any p ∈ E, do the rescaling ḡ 7→ la(p)−2ḡ =: ḡp, then by (R) we can control,
for p̄ ∈ π−1(p),

sup
FB( p̄, 1

2 )
|∇kRmḡp |ḡp ≤ B′k(n, A≤k, la(p)) ≤ Bk(n, A≤k),

where we use A≤k to denote A1, · · · , Ak. This because for a < 1 the rescaling will
stretch the fiber metric on O(n), making it less curved. This means, in the original
metric,

(R1) supFB(p, 1
2 la(p)) |∇

kRmḡ|ḡ ≤ Bk(n, A≤k) la(p)−2−k for k = 0, 1, 2, 3, · · · .

Now we use Lemma 4.2.1 to construct a good covering of B(E, a
2 ), by Bi :=

B(pi, 2ζla(pi)) contained in B(E, a). Clearly FB(E, a
2 ) ⊂ ∪iFBi.

Fibration and invariant metric of the frame bundle

We first assume δ < δCFGT . Arguing as before, we notice that if Bi ∩ B j , ∅, then
(4.9) ensures that the curvature of the frame bundle also satisfies for k = 0, 1, 2, · · · ,

sup
FBi∪FB j

|∇kRmḡ|ḡ ≤

(
1 − 2ζ
1 + 2ζ

)−2−k

Bk(n, A≤k) max{la(pi), la(p j)}−2−k.

Thus rescaling ḡ 7→ la(pi)−2ḡ =: ḡi j on Bi ∪ B j will ensure for k = 0, 1, 2, · · · ,

sup
FBi∪FB j

|∇kRmḡi j |ḡi j ≤ Bk(n, A≤k)
(
1 − 2ζ
1 + 2ζ

)−2−k

,

so that we can think as on FBi∪FB j there is a uniformly regular Riemannian metric
ḡi j.

By Lemma 4.2.1, we notice that in each step of carrying out the procedure
of Sections 3-7, especially applying Proposition A2.2 of [14], we only need to
deal with the case of smoothing within a single FBi. Thus the above regularity
of the metric restricted to intersecting balls is sufficient, and we can construct the
following data:

(F1) there is a global fibration f : FB(U, 2a/3)→ Y;

(F2) Y is a smooth Riemannian manifold of dimension m′ < dim FE;
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There is a simply connected nilpotent Lie group N̄ of dimension n − m, and a co-
compact lattice Λ, such that:

(N1) N̄ acts on ∪iFBi so that each orbit N(x̄) at some x̄ ∈ ∪iFBi is a compact
submanifold, and up to a finite covering,

N̄/Λ ≈ N(x̄) = f −1( f (x̄));

(N2) the action of N̄ commutes with the O(n)-action;

(N3) the action of N̄ on FB(E, a), after taking the O(n) quotient, descends to the
a-standard N-structure on B(E, a

2 ), as described in Theorem 4.2.2.

Moreover, for any positive ε which could be arbitrarily small, there is a smooth
metric ḡε on FB(E, a) and a constant α0 = α0(n, a) > 0 such that:

(G1) ḡε is a regular ε-approximation of la(pi)−2ḡ|FBi for each i, see Theorem 4.2.2;

(G2) ḡε is invariant under both the actions of N̄ and of O(n);

(G3) ∀x̄ ∈ FBi, diamḡε N(x̄) < εla(pi) for each i.

(G4) ∀x̄ ∈ FBi, the normal injectivity radius inj⊥ḡε x̄ ≥ 2
3α0la(pi);

(G5) ∀x̄ ∈ FBi, |IIN(x̄)| ≤ C(B≤2(n, A≤2)) la(pi)−1.

Without loss of generality, we may assume that Bk(n, A≤k) ≥ 1 and α0 ≤ 1.
Here we make a simple convention: ∀X ⊂ FB(E, a/2), let N(X) and O(X)

denote the orbits of X under the action of N̄ and O(n), respectively. Since both
actions are local isometries (G2), and they commute (N2), we have:

(G6) the operations N(−), O(−) and B(−, r) (with respect to ḡε) for r ∈ (0, a/2) on
subsets of FB(E, a/2) commute.

We need to further notice that for ε > 0 arbitrarily small, we can choose δ
small enough so that B(E, a) being (δ, a)-collapsing with locally bounded curvature
implies the existence of the approximating metric above, with the given ε. Notice
that as long as δ < δCFGT , the existence of α0 and the N̄-structure is guaranteed.
Here we fix ε = 10−10α0, and let δGC < δCFGT be one that works for the fixed
ε. In practice, once there exists some δ′ < δCFGT , then there exists a family of
Riemannian metrics that are (δ, a)-collapsing with locally bounded curvature with
δ→ 0 (see [18] and [30]), so eventually δ < δGC.
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Distance to orbits

Recall that we hope to smooth the boundary of E. This smoothing will be obtained
by taking certain level set of a smoothing of the distance function to N(FE). Here
for any O(n)-invariant Ū ⊂ ∪iFBi, we define the “distance to orbits of Ū” as fol-
lowing:

ρ̄Ū : ∪iFBi → [0,∞) x̄ 7→ dḡε
(
x̄,N(Ū)

)
.

Notice that by (N2), N(Ū) is invariant under the O(n)-action:

∀γ ∈ O(n), γN(Ū) = N(γŪ) = N(Ū).

Then ρ̄Ū immediately satisfies the following properties:

(D1) ρ̄Ū is invariant under the actions of N̄ and O(n) by (G2);

(D2) ∀x̄ ∈ ∪iFBi, ρ̄Ū(x̄) ≤ dḡε(x̄, Ū), and thus

ρ̄−1
Ū ([0, a/4]) ⊂ B(Ū, a/4).

The possible non-smoothness is caused by the behavior of ∂Ū, since the distance to
a single orbit is smooth within the normal injectivity radii, by (R1), (G1) and (G4):
defining d x̄0(x̄) := dḡε(x̄,N(x̄0)) for some fixed x̄0 ∈ ∪iFBi, then for k = 0, 1, 2, · · · ,
we have

(D3) supB(N(x̄0), α0
10 la(pi)) |∇

kd x̄0 | ≤ Ckla(pi)1−k;

(D4) d̄ x̄0 is both N̄-and O(n)-invariant;

(D5) ρ̄Ū = inf x̄0∈Ū d̄ x̄0 .

Local parametrization of the frame bundle

For each q̄ ∈ FBi ∩ FE, we start with setting H̄0 := B
(
N(q̄), α0

2 la(pi)
)

and H̄ :=
O(H̄0). Notice that by (G4), the normal injectivity radius, constant onN(q̄), satisfies
inj⊥q̄ ≥

2α0
3 la(pi). We can deduce that f (H̄0) is contractible and H̄0 deformation

retracts to N(q̄), therefore we can find, possibly after lifting to a finite covering,
a global orthonormal frame, consisting of left invariant vector fields ξ1, · · · , ξm′ ⊥

N(q̄), so that ∀γ ∈ N̄, the map

exp⊥γq̄ : B
(
0,
α0

2
la(pi)

)
→ H̄0, v = (v1, · · · , vm′)T 7→ expγq̄

 m′∑
s=1

vsξs(γq̄)


is injective and diffeomorphic onto its image, where B

(
0, α0

2 la(pi)
)
⊂ Rm′ .

According to (G2) and the definition, we immediately notice that
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(P1) ∀γ ∈ N̄ and ∀x̄ ∈ H̄0, Image(exp⊥γq̄) ⊥ N(x̄);

(P2) ∀γ ∈ N̄, (exp⊥q̄ )∗ḡε = (exp⊥γq̄)∗ḡε on B
(
0; α0

2 la(pi)
)
;

(P3) ∀γ ∈ N̄ and ∀x̄ ∈ H̄, ∃!vx̄ ∈ B
(
0, α0

2 la(pi)
)

such that ρ̄Ū(γx̄) = ρ̄Ū(exp⊥q̄ (vx̄)).

We can consider the pull-back metric hi := (exp⊥q̄ )∗ḡε on B
(
0, α0

2 la(pi)
)
, as a positive

definite 2-tensor field, so that:

(P4) according to (G1) and (G2), for any multi-index I with |I| = k = 0, 1, 2, · · · ,∣∣∣∣∣∣ ∂|I|∂vI hi

∣∣∣∣∣∣ ≤ Ckla(pi)−k;

(P5) B
(
0, α0

2 la(pi)
)

is geodesically convex under the metric dhi defined by hi;

(P6) ∀v ∈ B(0, α0
2 la(pi)), dhi(v, 0) = dq̄(exp⊥q̄ (v)).

Local smoothing and chopping

In order to smooth ρ̄Ū , we mollify it by a smooth cut-off function within the normal
injectivity radius of q̄, following [16]. Let 0 ≤ ϕi ≤ 1 be a smooth function such
that for some ζ′ > 0 to be determined later,

(S1) ϕi is supported on [0, ζ
′α0

100 la(pi)) and ϕi(t) ≡ 1 for t ∈ [0, ζ
′α0

200 la(pi)];

(S2) ϕ(k)
i (t) ≤ Ck(ζ′)la(pi)−k for k = 0, 1, 2, · · · and t ∈ [0, ζ

′α0
100 la(pi)).

Now we focus on an O(n)-invariant Ū ⊂ H̄0, and define on H̄0:

ρ̄]
Ū

(x̄) :=
1

µi(x̄)

∫
B(N( p̄), α0

2 la(pi))
ρ̄Ū(z̄)ϕi(d x̄(z̄)) dVḡε(z̄),

where
µi(x̄) :=

∫
B(N(q̄), α0

2 la(pi))
ϕi(d x̄(z̄)) dVḡε(z̄).

Notice that in the definition of ρ̄]
Ū

we have taken average by dividing µi(x̄), thus the
numerical value of ρ̄]

Ū
is not affected if we lift the original neighborhood to a finite

covering.
By the invariance of ρ̄Ū and that exp⊥x̄ being a diffeomorphism onto its image,

we can reduce ρ̄]
Ū

to a function ρ̃]
Ū

on B
(
0, α0

2 la(pi)
)
:

ρ̃]
Ū

(v) := ρ̄]
Ū

(exp⊥q̄ (v)).

The most important property of ρ̃]
Ū

is:
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(S3) |∇k
⊥ ρ̄

]

Ū
|(x̄) = |∇kρ̃]

Ū
|
(
(exp⊥q̄ )−1(x̄)

)
for k = 0, 1, 2, 3, · · · .

Then by Fubini’s theorem and the invariance of ρ̄Ū under the N̄-action,

ρ̃]
Ū

(v) =
1

µi(v)

∫
B(0, α0

2 la(pi))
ρ̄Ū(exp⊥q̄ (w))ϕi

(
dhi (v,w)

)
ψ(w) dVhi(w),

where

ψ(w) := Volḡε(N(expq̄)⊥(w)) and µi(v) :=
∫

B(0, α0
2 la(pi))

ϕi
(
dhi (v,w)

)
ψ(w) dVhi(w).

The smoothness of ρ̃]
Ū

(v) then follows from differentiating ϕi
(
dhi(v,w)

)
with respect

to v ∈ B
(
0, α0

2 la(pi)
)
, and the derivative bounds are guaranteed by (S2) and (P4):

(S4) supB(0, α0
2 la(pi)) |∇

kρ̃]
Ū
| ≤ Ckla(pi)1−k for k = 1, 2, 3, · · · .

Now we can apply Yomdin’s quantitative Morse Lemma (see [3] and [44] for
proofs) to the function ρ̃]

Ū
, to find, for small η > 0, some interval JŪ ⊂ [0, α0

4 la(pi)]
of length |JŪ | ≈ ΨY M(a, n, η)la(pi) > 0 such that

∀t ∈ JŪ , |∇ρ̃]
Ū
| > η on (ρ̃]

Ū
)−1(t).

Here we may assume the definite constant ΨY M(a, n, η) < 10−2.
By the definition of ρ̃]

Ū
and (S3), we then have

(Y1) ∀t ∈ JŪ , |∇ρ̄]
Ū
| ≥ |∇⊥ ρ̄

]

Ū
| > η on (ρ̄]

Ū
)−1(t).

Let W̄0
Ū

:= (ρ̄]
Ū

)−1([0, t]) for some t ∈ JŪ . We then have

(C1) W̄0
Ū

is invariant under the actions of N̄, by (A3.1) above, and O(n) acts as
local isometry on W̄0

Ū
;

(C2) Ū ∩ H̄0 ⊂ W̄0
Ū
⊂ B(Ū, α0

2 la(pi));

Define ΣŪ := exp⊥q̄
(
(ρ̃]

Ū
)−1([0, ti])

)
, then W̄0

Ū
= N(ΣŪ). We immediately have the

bound

(C3) |II∂ΣŪ
| ≤

|∇2ρ̃
]

Ū
|

|∇ρ̃
]

Ū
|
≤ C(η)la(pi)−1.

This, together with |IIN(x̄)| ≤ Cla(pi)−1, and the fact that ∀γ ∈ N̄, ΣŪ 7→ γΣŪ is an
isometry, give
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(C4) |II∂W̄0
Ū
| ≤ C(η)la(pi)−1.

We notice that the function ρ̄]
Ū

is locally O(n)-invariant, therefore it extends
smoothly from H̄0 to γH̄0 for any γ ∈ O(n). Thus we see that W̄Ū := O(W̄0)
has a smooth boundary on H̄ = O(H̄0), whence an O(n)-invariant neighborhood of
Ū ⊂ H̄. Moreover, since each γ ∈ O(n) acts as an isometry, we have

(C5) |II∂W̄Ū
| = |II∂W̄0

Ū
| ≤ C(η)la(pi)−1.

A refined good covering of the frame bundle

We start with fixing ζ = 10−2 (see Lemma 4.2.1) and

ζ′ := min{0.1, ζ/α0}.

Choose a maximal set of points {q j} ⊂ E, such that

dg(q j, q j′) ≥ ζ′α0 min{la(pi j), la(pi j′ )},

and obtain a covering of E by
{
B

(
q j, 2ζ′α0la(pi j)

)}
(with respect to the original

metric g on M). Here for each q j, pi j is chosen as any Bi containing q j. Then by
Lemma 4.2.1, we can find a finite number of sub-collections S ′j ( j = 1, · · · ,N),
such that E j,k := B(q j,k, 2ζ′α0la(pi j,k)) is disjoint from any E j,k′ , and intersects with
at most one E j′,k′′ for j′ , j.

Now the sets Ē j,k = π−1(E j,k) cover FE, and each Ē j,k is obviously O(n) invari-
ant. Fix q̄ j,k ∈ π

−1(q j,k) for each ( j, k). Since by (G1), ḡε is a regular ε approximation
of the original metric on FB(E, a), with ε < 10−5ζ′α0 as defined, we can redefine

Ē j,k := O
(
B

(
q̄ j,k, 2ζ′α0la(pi j,k)

))
⊂ FB(E, a),

so that the covering property and the partition into finitely many sub-collections are
still satisfied.

We further define D̄0
j,k := N(Ē j,k), then by (G6) and (G3), we have

D̄0
j,k = O

(
B

(
N(q̄ j,k), 2ζ′α0la(pi j,k)

))
⊂ B

(
Ē j,k,

(1 + ζ) α0

1010(1 − ζ)
la(pi j,k)

)
,

therefore {D̄0
j,k} still forms a covering, and could be divided into finitely many sub-

collections S ′1, · · · , S
′
N as obtained above.

The point of constructing this new covering is that the original covering is with
respect to the original metric g, and we need to refinish it so that each open set of
the new covering is saturated by the nilpotent and orthogonal group actions, yet the
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whole collection of open sets could still be divided into N disjoint sub-collections,
a necessity for our future step-by-step gluing to obtain the global chopping.

Now we define D̄m
j,k := B

(
N(q̄ j,k), rm

j,k

)
, with rm

j,k := (2+ 1
6m)ζ′α0la(pi j,k), for each

m ∈ {0, 1, 2, 3, 4, 5, 6}. We need this fattening of open sets in the covering since later
we will need to “glue” the local smoothings, see the forthcoming claim.

Global chopping

We now do the final step, the global chopping. The method we follow is briefly
given in [19], where the curvature is assumed to be uniformly bounded, here we
take the (changing) truncated curvature scale into consideration.

For the collections S ′1, · · · , S
′
N , we first do the above local chopping for each

FE ∩ D̄ j,k to obtain W̄ j,k with t1,k ≈ 2−1ΨY M(a, n, η)la(pi1,k), and define Ū1 := ∪kW̄1,k

as an open subset of ∪iFBi.
For the second step, we modify members of S ′2. Notice that if some D̄2,k inter-

sects some W̄1,k′ non-trivially, then we have the estimates of the truncated curvature
scales as before

(H1) min{la(pi1,k′ ), la(pi2,k)} ≤ max{la(pi1,k′ ), la(pi2,k)} ≤
1+ζ′

1−ζ′ min{la(pi1,k′ ), la(pi2,k)}.

Renormalizing g 7→ la(pi2,k)
−2g =: g2,k will ensure that

sup
W̄1,k′∪D̄5

2,k

|Rmḡ2,k |ḡ2,k ≤ C
1 + ζ′

1 − ζ′
,

with corresponding bounds on |∇kRmḡ2,k |ḡ2,k .
Now we can chop locally within D̄6

2,k (see [19]): first chop Z̄2,k := (W̄1,k′ ∪

D̄0
2,k) ∩ D̄3

2,k to obtain some Q̄0
2,k, then choose a smooth interpolation to glue the

newly chopped piece to the previously chopped ones. More specifically, we have
the following

Claim 4.3.2 (Gluing the local choppings). There is a smooth interpolation between
the boundaries ∂W̄1,k′ ∩ (D̄4

2,k\D̄
3
2,k) and ∂Q̄0

2,k ∩ (D̄2
2,k\D̄

1
2,k), so that we could obtain

some R̄0
2,k ⊂ D̄4

2,k, with the property

R̄0
2,k = W̄0

1,k′ on D̄4
2,k\D̄

3
2,k, and R̄0

2,k = Q̄0
2,k on D̄2

2,k.

Proof of claim. By the proof of the local smoothing, within D̄6
2,k, we have ρ̄]

Z̄2,k
as the

smoothed distance to N(Z̄2,k), and Q̄0
2,k = (ρ̄]

Z̄2,k
)−1([0, t2,k]) for some t2,k ∈ I2,k with
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t2,k ≈ 2−2ΨY M(a, n, η) la(pi2,k). In addition, we could set Z̄′2,k := W̄1,k′ ∩ (D̄5
2,k\D̄

0
2,k),

with the smoothing of the distance to the orbit of which being ρ̄]
Z̄′2,k

. Notice that

ρ̄Z̄2,k ≡ ρ̄Z̄′2,k
on D̄3

2,k\D̄
0
2,k,

therefore
ρ̄]

Z̄2,k
≡ ρ̄]

Z̄′2,k
on D̄2

2,k\D̄
1
2,k,

and thus

Q̄0
2,k ∩ (D̄2

2,k\D̄
1
2,k) = (ρ̄]

Z̄2,k
)−1([0, t2,k]) = (ρ̄]

Z̄′2,k
)−1([0, t2,k]).

On the other hand,
W̄1,k′ ∩ (D̄4

2,k\D̄
1
2,k) = (ρ̄]

Z̄′2,k
)−1(0),

and now the existence of a controlled interpolation required above is easily seen:
choose a smooth cut-off function λ2,k : [r1

2,k, r
4
2,k] → [0, t2,k] with controlled deriva-

tives, such that λ2,k|[r1
2,k ,r

2
2,k] = t2,k and λ2,k|[r3

2,k ,r
4
2,k] = 0, and the desired region R̄0

2,k is
defined as

R̄0
2,k :=

(
D̄2

2,k ∩ Q̄0
2,k

)
∪

(
ρ̄]

Z̄′2,k

(
λ2,k(dq̄2,k)

))−1
([r1

2,k, r
4
2,k]).

�

Clearly R̄0
2,k is N̄-invariant and has the expected smooth boundary whose second

fundamental form has control |II∂R̄0
2,k
| ≤ C la(pi2,k)

−1.
Let R̄2,k := O(R̄0

2,k), then the isometric action of O(n) and the invariance of
ρ̄]

Z̄2,k
, ρ̄]

Z̄′2,k
under such actions ensure that ∂R̄2,k is smooth with controlled second

fundamental form |II∂R̄2,k | ≤ C la(pi2,k)
−1. Do such adjustments for each D̄0

2,k ∈ S 2

and let Ū2 := Ū1 ∪ (∪kR̄2,k), we have finished the second step.
Iterate the above procedure for N steps. At the j-th step ( j ≥ 2), we modify

members of S̄ j with t j,k ≈ 2− jΨY M(a, n, η) la(pi j,k) for each k. By the Harnack in-
equality of (H1) for intersecting balls, we could produce a neighborhood Ū j of FE,
which is contained in FB(E, a

2 ), invariant under both N̄- and O(n)-actions, and has
a smooth, controlled boundary

|II∂Ū j | ≤ C l−1
a .

By (N3) and the invariance of ŪN under the O(n)-action, define U := ŪN/O(n),
then E ⊂ U ⊂ B(E, a

2 ), and U is saturated by the a-standard N-structure on B(E, a
2 ),

with a smooth and controlled boundary

|II∂U | ≤ CGC l−1
a .
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4.4 Proof of the ε-regularity theorem for 4-D Ricci
shrinkers

The foundation of the proof is Anderson’s ε-regularity with respect to collapsing,
which basically asserts that the smallness of the renormalized energy I f

Rm (see Def-
inition 2.4.7) at certain scale guarantees the uniform curvature bound at half of that
scale. However, the (more natural) input of our theorem is the smallness of the local
energy

E(p, r) :=
∫

B(p,r)
|Rm|2 dµ f < ε,

which, when collapsing happens, may well be caused by the smallness of µ f (B(p, r)),
and it is not obvious at all that small local energy implies the smallness of the renor-
malized energy. However, we will follow the strategy of Cheeger-Tian [20] to find
that for 4-D Ricci shrinkers, the above smallness of energy indeed implies the small-
ness of the renormalized energy, at a much smaller, but definite scale.

4.4.1 The key estimate for 4-d Ricci shrinkers
Combining the above propositions, Cheeger-Tian [20] obtain the following esti-
mates of the boundary Gauss-Bonnet-Chern term:

Proposition 4.4.1. Let (M, g, f ) be a 4-D Ricci shrinker and fix a ∈ (0, 1). There
exist positive constants δCT (R) ≤ δGC(R) and CCT (R) > 0 such that for any K ⊂
B(p0,R− a) with B(K, a) being (δ, a)-collapsing with locally bounded curvature for
some δ < δCT (R), then there exists an open subset Z, saturated with respect to the
associated N-structure of an approximating metric, such that

1. B(K, 1
4a) ⊂ Z ⊂ B(K, 3

4a),

2. |II∂Z | ≤ CCT (R)(a−1 + r−1
Rm), and

3.
∣∣∣∫
∂Z
TPχ

∣∣∣ ≤ CCT (R) a−1
∫

A(K, 1
4 a, 3

4 a)

(
a−3 + r−3

Rm

)
dVg.

The proof of this proposition only used, in addition to the previous propositions,
the volume comparison, and this is available within B(p0,R) by Lemma 2.3.2.

Recall that the curvature can be controlled by

|Rm|2 ≤ 8π2|Pχ| + |∇̊
2 f |2.

The main task is to obtain an average control of |Pχ|. This is done by an induction
process, which is based on Proposition 4.4.1 and the vanishing of the Euler char-
acteristics on subsets that are (δ, a)-collapsing with locally bounded curvature. In
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order to better extract information from Proposition 4.4.1, we start with a maximal
function argument.

For each u ∈ L1(M, g, dµ f ), we can define

M f
u (x, s) := sup

s′≤s

1
µ f (B(x, s′))

∫
B(x,s′)

u dµ f .

Recall the volume doubling property (2.24) and applying Lemma 4.1 of [20], we
get

Lemma 4.4.2. There is a constant C4.1(R, α) > 0, for each R, α > 0, such that for
any dµ f -measurable subset W ⊂ B(p0,R),(

1
ω

∫
W

M f
u (x, s)α dµ f

) 1
α

≤
C4.1(R, α)
µ f (W)

∫
B(W,6s)

|u| dµ f . (4.12)

From Proposition 4.4.1, we can estimate:

Lemma 4.4.3. Fix r ∈ (0, 1) and δ < min{δCFGT , δGC}. There exists a C4.2(R) > 0,
such that if some compact set K ⊂ B(p0,R−r) has its r-neighborhood B(K, r) being
(δ, r)-collapsing with locally bounded curvature, then we have some saturated open
set Z ⊂ B(K, 1

2r) with smooth boundary, containing B(K, 1
4r) such that∣∣∣∣∣∫

Z
Pχ

∣∣∣∣∣ ≤ C4.2(R)µ f (A(K; 0, r))r−1

r−3 +

 1
µ f (A(K; 0, r))

∫
A(K; 1

4 r, 3
4 r)
|Rm|2 dµ f

 3
4
 .

(4.13)

Proof. By the measure equivalence (2.21) and Proposition 4.4.1, we get∣∣∣∣∣∫
∂Z
TPχ

∣∣∣∣∣ ≤ CCT (R)r−1
∫

A(K; 1
3 r, 2

3 r)
(s−3 + r−3

Rm) dVg (4.14)

≤ CCT (R)e(2R+
√

2)2
r−1

∫
A(K; 1

3 r, 2
3 r)

(s−3 + r−3
Rm) dµ f . (4.15)

Now we notice that for s ∈ (0, 1],

ρ f (p)−1 ≤ c4.2.2(R) max
{
M f
|Rm|2

(p, s)
1
4 , s−1

}
.

This is because if ρ f (p) < s ≤ 1, then

µ̄R(ρ f (p))
µ f (B(p, ρ f (p)))

∫
B(p,ρ f (p))

|Rm|2 dµ f = εA(R),
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which gives

M f
|Rm|2

(p, s) ≥
1

µ f (B(p, ρ f (p)))

∫
B(p,ρ f (p))

|Rm|2 dµ f (4.16)

=
εA(R)

µ̄R(ρ f (p))
≥

e−(2R+
√

2)εA(R)
µ̄R(1)

ρ f (p)−4, (4.17)

and thus
ρ f (p)−1 ≤ c4.2.2(R)M f

|Rm|2
(p, s)

1
4 ,

where c4.2.2(R) := (e−(2R+
√

2)εA(R)/µ̄ f (1))−
1
4 .

Now for s ≤ r ≤ 1 we have

rRm(p)−3 ≤ 8ρ f (p)−3 ≤ c4.2.3(R)
(
s−3 +

(
M f
|Rm|2

(p, s)
) 3

4
)
, (4.18)

with c4.2.3(R) := 8 max{1, c4.2.2(R)3}.
Now we can choose s = r

512 and apply Lemma 4.4.2 to the function |Rm|2 with
α = 3

4 to obtain

∫
A(K; 1

3 r, 2
3 r)

(
M f
|Rm|2

(·, s)
) 3

4 dµ f ≤ µ f (A(K; 0, r))
 C4.1(R, 3

4 )
µ f (A(K; 0, r))

∫
A(K; 1

4 r, 3
4 r)
|Rm|2 dµ f

 3
4

.

(4.19)

Then the estimates (4.15), (4.18) and (4.19) together give

∣∣∣∣∣∫
∂Z
TPχ

∣∣∣∣∣ ≤ C4.2(R)µ f (A(K; 0, r))

r−4 +

 r−
4
3

µ f (A(K; 0, r))

∫
A(K; 1

4 r, 3
4 r)
|Rm|2 dµ f

 3
4
 .

(4.20)

Since there exists an r-standard N-structure on Z, χ(Z) = 0, and we can employ
the Gauss-Bonnet-Chern formula on Z to finish the proof, i.e.

∫
Z
Pχ = −

∫
∂Z
TPχ.
�

Recall that our purpose is to use (4.13) together with the special relation (2.16)
between Pχ and |Rm|2 in dimension four to estimate ‖Rm‖L2

loc
. In the Einstein

case R̊c ≡ 0 but for non-trivial 4-D Ricci shrinkers, R̊c = ∇̊2 f does not vanish
identically. However, we could employ the good cut-off function constructed in
Lemma 2.3.3 to obtain a local L2-control of the full Hessian of f by its energy. This
is the content of the following lemma:
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Lemma 4.4.4. Given K ⊂ B(p0,R − r), we have estimate (4.21) for the potential
function f .

Proof. By Lemma 2.3.3, we have a cut-off function ϕ such that 0 ≤ ϕ ≤ 1, suppϕ ⊂
B(K, r), ϕ ≡ 1 on B(K, r/4) and r|∇ϕ| + r2|∆ fϕ| ≤ C2.10(R), then we can use the
Weitzenböck formula (2.11) to compute∫

B(K, 1
2 r)

2|∇2 f |2 dµ f ≤

∫
B(K,r)

2ϕ|∇2 f |2 dµ f

=

∫
B(K,r)

ϕ
(
∆ f |∇ f |2 + |∇ f |2

)
dµ f

≤

∫
A(K;0,r)

|∆ fϕ||∇ f |2 dµ f +

∫
B(K,r)

|∇ f |2 dµ f

≤ c(R)
(
2R +

√
2
)2

r−2µ f (A(K; 0, r)) + (2R +
√

2)2µ f (B(K, r)),

and thus∫
B(K; 1

2 r)
2|∇2 f |2 dVg ≤ C4.3(R)

(
2R +

√
2
)2

e(2R+
√

2)2 (
r−2µ f (A(K; 0, r)) + µ f (B(K; r))

)
.

(4.21)

�

From now on, we fix δKE := 1
2 {δCFGT , δGC}. Now we can generalize the follow-

ing key estimate of [20] to 4-D Ricci shrinkers:

Proposition 4.4.5 (Key estimate). Fix r ∈ (0, 1) and R > 0. There exist constants
εKE(R) > 0 CKE(R) > 0, such that any B(E, r) ⊂ B(p0,R) which is δ-volume col-
lapsing for any δ < δKE sufficiently small, and with∫

B(E,r)
|Rm|2 dµ f ≤ εKE(R), (4.22)

has the estimate ∫
E
|Rm|2 dµ f ≤ CKE(R)µ f (B(E; r)) r−4.

Proof. The estimates (4.20) and (4.21) (with (2.16)) show that ∀K ⊂ B(p0,R − s)
that is (δ, s)-collapsing with locally bounded curvature (assume s ∈ (0, 1)),∫

B(K, 1
4 s)
|Rm|2 dµ f ≤ C4.2(R)µ f (A(K; 0, s))

s−4 +

 s−
4
3

µ f (A(K; 0, s))

∫
A(K; 1

4 s, 3
4 s)
|Rm|2 dµ f

 3
4


+ C4.3(R)µ f (B(K, s)).
(4.23)
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Here the point is that even in practice we have δ→ 0, but the threshold, δKE, for the
theory developed in Section 3 to be applied to obtain (4.20), is universal.

Define E1 := B(E, r); for i = 2, 3, 4, · · · , set Ei := A(E; 2−ir, r − 2−ir),

Di := {x ∈ Ei : rRm(x) ≤ 2−(i+1)r}, and Fi := Ei\Di.

Clearly B(Di, 2−(i+1)r) ⊂ Ei+1 and in fact we have:

Claim 4.4.6. B(Di, 2−(i+1)r) is (δKE, 2−(i+1)r)-collapsing with locally bounded cur-
vature.

Proof of claim. If x ∈ B(Di, 2−(i+1)r) has rRm(x) < 2−(i+1)r then this follows from
Lemma 4.1.11, if we assume εKE(R) ≤ εA(R)δKE

16µ̄R(1) .
Otherwise, if x ∈ B(Di, 2−(i+1)r) has rRm(x) ≥ 2−(i+1)r, then since Lip rRm ≤ 1

and supB(Di,2−(i+1)r) rRm ≤ 2−ir, we have ρ f (x) ≤ 2−(i−1)r, and

µ f (B(x, 2−(i+1)r)) ≤ µ f (B(x, 2−(i−1)r)) ≤
µ f (B(x, ρ f (x)))µ̄R(1)
µ̄R(ρ f (x))24(i−1)r−4

=
µ̄R(1) r4

εA(R)24(i−1)

∫
B(x,ρ f (x))

|Rm|2 dµ f ≤
µ̄R(1) r4

εA(R)24(i−1)

∫
B(x,r)
|Rm|2 dµ f

≤ δKE2−4(i+1)r4,

provided εKE(R) ≤ εA(R) δKE
256µ̄R(1) . �

Here we could clearly see how the energy threshold εKE(R) is determined by δKE.
Now we can apply (4.23) to K = Di, s = 2−(i+1)r to obtain

1
µ f (B(E, r))

∫
B(Di,2−(i+3)r)

|Rm|2 dµ f ≤ c(R)

24i

r4 +
2i

r

(
1

µ f (B(E, r))

∫
Ei+1

|Rm|2 dµ f

) 3
4
 ,

(4.24)

where we need to notice that

A(Di; r/2i+3, 3r/2i+3) ⊂ A(Di; 0, 2−(i+1)r) ⊂ B(Di, 2−(i+1)r) ⊂ Ei+1.

On Fi, we have |Rm| ≤ 4i+1r−2, so
∫

Fi
|Rm|2 dµ f ≤ c(R)24(i+1)r−4µ f (A(E; 0, r)).

Now we can estimate∫
Ei

|Rm|2 dµ f ≤

∫
Di

|Rm|2 dµ f +

∫
Fi

|Rm|2 dµ f

≤

∫
B(Di,2−(i+3)r)

|Rm|2 dµ f + c(R)24(i+1)r−4µ f (B(E, r))

≤ c(R)µ f (B(E, r))

24i

r4 +
2i

r

(
1

µ f (B(E, r))

∫
Ei+1

|Rm|2 dµ f

) 3
4
 .
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Similarly, (4.23) directly implies that∫
E1

|Rm|2 dµ f ≤ c(R)µ f (B(E, r))

16r−4 + 2r−1
(

1
µ f (B(E, r))

∫
E2

|Rm|2 dµ f

) 3
4
 .

Therefore, we could set ai := c(R)r−416i, bi := c(R)r−12i, and xi := 1
µ f (B(E,r))

∫
Ei
|Rm|2 dµ f

for i = 1, 2, 3, · · · , then ai, bi, xi satisfy the relations

xi ≤ ai + bix
3
4
i+1, and lim sup

i→∞
x( 3

4 )i

i = 1.

Notice that
∑∞

j=0

(
3
4

) j
= 4, we can apply Lemma 5.1 of [20] to obtain

1
µ f (B(E, r))

∫
E
|Rm|2 dµ f = x1 ≤ CKE(R)r−4.

�

As mentioned in the Introduction, (4.21) gives a bound that blows up in the
induction process. However, the blow up rate is of second order in the inductive
scale, which is absorbed by the controlling terms, i.e. the right-hand side of (4.23),
blowing up of fourth order in the same scale. This observation will also be crucial
for our arguments in the next ub-section.

4.4.2 The fast decay proposition.
As the key estimate tells, as long as the energy is sufficiently small at a given scale,
the renormalized energy at that scale is bounded. In order to find a uniform scale,
reducing to which the renormalized energy is small enough to apply Anderson’s
ε-regularity theorem, we need the following proposition:

Proposition 4.4.7. Let (M, g, f ) be a 4-D Ricci shrinker and fix R > 2
√

2. There
exists some rFD(R) > 0, εFD(R) > 0, δFD(R) > 0 and ηR > 0, such that for B(p, 2r) ⊂
B(p0,R) with r < rFD(R), if

µ f (B(p, r))
µ̄R(r)

< δFD(R), (4.25)

and ∫
B(p,2r)

|Rm|2 dµ f ≤ εFD(R), (4.26)
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then

µ̄R(r)
µ f (B(p, r))

∫
B(p,r)
|Rm|2 dµ f ≤ (1 − ηR)

µ̄R(2r)
µ f (B(p, 2r))

∫
B(p,2r)

|Rm|2 dµ f . (4.27)

Remark 4.4.8. Abusing notations, we will always denote a possible subsequence
by the original one.

In this subsection we will take several steps to prove this proposition. Essen-
tially, the proof reduces the problem, by blowing up the radius r, to a situation
similar to the Einstein case. But this principle works on two levels: on the level
of |∇ f |, its smallness after rescaling will directly give a comparison geometry pic-
ture similar to the Einstein case; however, on the level of |∇2 f |, we notice that∫

B(p,r)
|∇̊2 f |2 dµ f is scaling invariant, and we need to use the Weitzenböck formula

(2.11) to give it a local L2-control of order lower than that of
∫

B(p,r)
|Rm|2 dµ f . This

is in the same spirit as Lemma 4.4.4.
Moreover, our argument avoids appealing to the theory of Cheeger-Colding-

Tian, see Theorem 3.7 of [13]. This is unavailable in the context of shrinking Ricci
solitons since the Ricci curvature lower bound is not satisfied. However, we expect
there to be a version of Cheeger-Colding-Tian’s theory for manifolds with Bakry-
Émery Ricci curvature bounded below.

We wish to point out that our argument is under the framework of Cheeger-
Tian’s in [20], whose key observation is that the estimates (4.41) – (4.43) of the
approximating functions are in the average sense. Our new input is the elliptic reg-
ularity (4.44) of the approximating functions that produces smooth annuli where we
have global point-wise derivative control, see Sub-sub-section (4.3.10). We would
also like to thank Jeff Cheeger for pointing out the paper [42] for an alternative
treatment in a different context.

Control of Pfaffian form.

In fact, we can assume∫
B(p,r)
|Rm|2 dVg > εA(R)

µ f (B(p, r))
eR2ω4 r4

, (4.28)

because otherwise we could have directly applied Anderson’s ε-regularity theorem
to obtain the desired curvature bound, and there is no need to prove this proposition.
Now we use Lemma 2.3.3 to obtain a cut-off function ϕ supported on B(p, 2r),
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constantly equal to 1 on B(p, 1.6r), and having uniform control r|∇ϕ| + r2|∆ fϕ| ≤
C2.12(R). Then we could estimate as in Lemma 4.4.4:∫

B(p,1.6r)
|∇2 f |2 dVg ≤

eR2

2

∫
B(p,2r)

(|∆ fϕ| + 1)|∇ f |2 dµ f

≤ C(R)µ f (B(p, r)) r−2.

As long as r <
√

εA(R)e−R2

2C(R)ω4
, for any open set B(p, r) ⊂ U ⊂ B(p, 1.6r) with smooth

boundary, the expression of Pfaffian (2.16) gives

8π2
∫

U
Pχ ≥

∫
B(p,r)
|Rm|2 dVg −

∫
B(p,1.6r)

|∇̊2 f |2 dVg > 0.

Let εFD(R) ≤ π2e−R2
, then the above inequality, together with (4.26) , gives

0 <

∫
U
Pχ ≤

3eR2
εFD(R)

8π2 <
1
2

(4.29)

for any open subset U with smooth boundary such that B(p, r) ⊂ U ⊂ B(p, 1.6r).

Setting up a contradiction argument.

We prove the proposition by a contradiction argument. Were the proposition false,
then there exist 4-d Ricci shrinkers (Mi, gi, fi), sequences ri → 0, δi → 0 and ηi → 0
as i → ∞, such that for some B(pi, 4ri) ⊂ B(p0

i ,R) (p0
i denoting the base point of

Mi), ∫
B(pi,2ri)

|Rmgi |
2 dµ fi ≤ εFD(R), (4.30)

and
µ fi(B(pi, 2ri))

µ̄R(2ri)
< δi (4.31)

but (4.27) is violated for each i.
We will find, for each i large enough, some open subset Ui with smooth bound-

ary such that B(pi, ri) ⊂ Ui ⊂ B(pi, 2ri) and that

0 <
∫
∂Ui

TPχ <
1
2
. (4.32)

Since ri → 0, (4.29) holds for all i sufficiently large, so adding (4.29) and (4.32)
gives

0 < χ(Ui) < 1,

contradicting the integrality of χ(Ui).
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Rescaling.

Consider the rescaled sequence (Mi, r−2
i gi, fi). Denote g̃i := r−2

i gi, then the scaling
invariance of the energy and (4.26) implies that for each i,∫

B̃(pi,2)
|Rmg̃i |

2 dµ̃ fi ≤ εFD(R), (4.33)

where we add a tilde to an object to denote its rescaled correspondence. Moreover,
the scaling invariance of volume ratio and the converse of (4.27) implies that

µ̄riR(1)
µ̃ fi(B̃(pi, 1))

∫
B̃(pi,1)

|Rmg̃i |
2 dµ̃ fi > (1 − ηi)

µ̄riR(2)
µ̃ fi(B̃(pi, 2))

∫
B̃(pi,2)

|Rmg̃i |
2 dµ̃ fi .

(4.34)

These two inequalities will be the starting point of our future arguments. Moreover,
the rescaled metrics and potential functions satisfy

Rcg̃i + ∇̃2 fi =
r2

i

2
g̃i, (4.35)

which implies the non-negativity of the rescaled Bakry-Émery-Ricci curvature

Rc fi
g̃i

=
r2

i

2
g̃i ≥ 0, (4.36)

and the potential function has the gradient estimates

|∇̃ fi|g̃i ≤ riR. (4.37)

Finally, we denote the distance to the given point pi by dpi(x) := d(pi, x), then its
rescaled version is denoted by di := r−1

i dpi .

Regularity on annuli.

On the one hand, since
µ̄riR(1)µ̃ fi(B̃(pi, 2))

µ̄riR(2)µ̃ fi(B̃(pi, 1))
≤ 1

by (2.23), we have∫
Ã(pi;1,2)

|Rmg̃i |
2 dµ̃ fi ≤

ηi

1 − ηi

∫
B̃(pi,1)

|Rmg̃i |
2 dµ̃ fi .
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Let εFD(R) > 0 be sufficiently small (and fixed from now on), so that we can apply
the key estimate (notice the correct order of the scaling there) to obtain∫

B̃(pi,1)
|Rmg̃i |

2 dµ̃ fi ≤ c(R)µ̃ fi(B̃(pi, 2)),

and it follows that ∫
Ã(pi;1,2)

|Rmg̃i |
2 dµ̃ fi ≤

c(R)ηi

1 − ηi
µ̃ fi(B̃(pi, 2)).

Now for any x ∈ Ã(pi; 1.1, 1.9), B̃(x, 0.1) ⊂ Ã(pi; 1, 2) ⊂ B̃(x, 4) and∫
B̃(x,0.1)

|Rmg̃i |
2 dµ̃ fi ≤

c(R)ηi

1 − ηi
µ̃ fi(B̃(x, 4)) ≤

c(R)ηi

1 − ηi

µ̃ fi(B̃(x, 0.1))
µ̄riR(0.1)

µ̄riR(4),

so by the scaling invariance of the renormalized energy, we have

I fi
Rmg̃i

(x, 0.1) ≤
c(R)ηi

1 − ηi
.

For all i sufficiently large, Anderson’s ε-regularity theorem gives |Rmg̃i |
2
g̃i

(x) ≤
c(R)ηi, thus

sup
Ã(pi;1.1,1.9)

|Rmg̃i |
2
g̃i
≤ c(R)ηi → 0 as i→ ∞. (4.38)

Notice that the above curvature estimate enables us to apply Lemma 4.1.6 and ob-
tain uniform bounds for each k ≥ 0:

sup
Ã(pi;1.2,1.8)

|∇̃kRmg̃i |g̃i ≤ c(k,R), and sup
Ã(pi;1.2,1.8)

|∇̃k fi|g̃i ≤ c′(k,R). (4.39)

Almost volume annulus and smoothing distance function.

On the other hand, since∫
B̃(pi,1)

|Rmg̃i |
2 dµ̃ fi ≤

∫
B̃(pi,2)

|Rmg̃i |
2 dµ̃ fi ,

then (4.34) implies that

µ̄riR(1)
µ̃ fi(B̃(pi, 1))

≥ (1 − ηi)
µ̄riR(2)

µ̃ fi(B̃(pi, 2))
,
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i.e. Ã(pi; 1, 2) is an annulus in an almost fi-weighted volume cone for i sufficiently
large. By weighted volume comparison (2.23), for any r ∈ (1.05, 1, 95),

µ̃ fi(∂B̃(pi, r))
µ̄′riR

(r)
≥ (1 − Ψ(ηi| r))

µ̃ fi(B̃(pi, r))
µ̄riR(r)

, (4.40)

where Ψ(ηi| r) denotes some positive function that approaches 0 as ηi → 0.
Now we smooth the square of the distance function d2

i
2 . For each i, we will solve

the Dirichlet problem

∆
fi
g̃i

ui = 4 and ui|∂Ã(pi;1,2) =
d2

i

2
.

In view of (4.36), (4.37) and (4.40), we can estimate ui and ũi :=
√

2ui by
applying Lemma 2.3.4:

sup
Ã(pi;1.2,1.8)

|ũi − di| ≤ Ψ(ηi, ri | R); (4.41)?
Ã(pi;1.1,1.9)

|∇ũi − ∇di|
2 dµ̃ fi ≤ Ψ(ηi, ri | R); (4.42)?

Ã(pi;1.3,1.7)
|∇2ui − g̃i|

2 dµ̃ fi ≤ Ψ(ηi, ri | R). (4.43)

Moreover, the elliptic regularity Lemma 4.1.7, estimates (4.39) and the C0

bound (4.41) ensures that each ũi and ui are regular:

sup
Ã(pi;1.3,1.7)

|∇kũi| + |∇
kui| ≤ c′′(k; R). (4.44)

The collapsing limit

According to Proposition 2.5.4,Ã(pi; 1.2, 1.8) →GH (X, d∞) (after passing to a sub-
sequence), with X = R(X) ∪ S(X). Here R(X) is a lower dimensional Riemannian
manifold equipped with a smooth Riemannian metric g∞ with bounded curvature
(invoking (4.39)), such that d∞|R(X) is induced by g∞. S(X) is a stratified collec-
tion of subsets of X, each strata of S(X) by itself being a Riemannian manifold of
dimension even lower than that of R(X). There is a constant ιX > 0 such that

∀x∞ ∈ R(X), inj x∞ ≥ min {d∞(x∞,S(X)), d∞(x∞, ∂X), ιX} .
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Local average control of ui

We will study the behavior of ui at each point of Ã(pi; 1.3, 1.7) by taking limit. Fix
x∞ ∈ R(X) such that xi →GH x∞ for some sequence xi ∈ Ã(pi; 1.3, 1.7). Fix a scale
α = α(x∞) < min{0.001, 1

2d∞(x∞,S(X)), ιX}, we have, by volume comparison,

µ̃ fi(B̃(xi, α))

µ̃ fi(Ã(pi; 1.3, 1.7))
≥

µ̄riR(α)
µ̄riR(4)

. (4.45)

Now we can localize the estimates (4.42) and (4.43):?
B̃(xi,α)

|∇ũi − ∇di|
2 dµ̃ fi ≤ Ψ(ηi, ri | R, α); (4.46)?

B̃(xi,α)
|∇2ui − gi|

2 dµ̃ fi ≤ Ψ(ηi, ri | R, α). (4.47)

Limit local covering geometry

Let πi : B̃i → B̃(xi, α) be the universal covering of B̃(xi, α), with lifted base point
x̃i and deck transformation group Γi. Recall that the scale α = α(x∞) is chosen so
that B(x∞, α) is away from S(X) and simply connected. This means, by Fukaya’s
fibration theorem, that for all i sufficiently large, B̃(xi, α) is topologically a torus
bundle over B(x∞, α), whence topologically

B̃i ≈ R
4−dimH X × B(x∞, α). (4.48)

We equip B̃i with the pull-back metric hi := π∗i g̃i and potential function f̃i := π∗i fi.
Clearly (B(x̃i, α), hi) is non-collapsing, and on B(x̃i, α), estimates (4.38) and (4.39)
hold for Rmhi and f̃i. This ensures that {B(x̃i, α)} converges, after passing to a sub-
sequence, to B(x̃∞, α), a 4-Dimensional Riemannian manifold with limiting Rie-
mannian metric h∞. Moreover, by (4.38), possibly passing to a subsequence, hi

smoothly converges to the flat metric h∞ = gEuc on B(x̃, α). We will denote the
pull-back measure by νi := π∗i (dµ̃ fi), and by d̃i := π∗i di.

Recall that by (4.37), |∇ f̃i|hi = |∇ fi|g̃i ≤ riR → 0 as i → ∞, and that { f̃i}

has uniform derivative control (4.39), the drifted Laplace operators ∆
f̃i
hi

converge
smoothly to ∆ =

∑4
j=1 ∂ j∂ j, the standard Laplace operator for (R4, gEuc).

Moreover, each pull-back smooth function vi := π∗i ũi satisfies the elliptic equa-
tion

∆
f̃i
hi

v2
i = 8.
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The smooth convergence of the drifted Laplace operators ∆
f̃i
hi

further gives, for i
large enough, uniform elliptic estimates

sup
B(x̃∞,0.09)

|∇kv2
i |hi ≤ c′′(k,R). (4.49)

The uniform boundedness (4.41) and the regularity estimates (4.49) ensure that
vi → v∞ in C∞(B(x̃∞, 0.9α) (after possibly passing to a further subsequence), the
limiting equation being

∆v2
∞ = 8 on B(x̃∞, 0.9α). (4.50)

To summarize, when i → ∞ and after passing to subsequences, we have smooth
convergence on B(x̃∞, 0.9α), of the sequence of metrics hi → gEuc, of the sequence
of potential functions f̃i → c(R) (whence the smooth convergence of the elliptic
operators Li → ∆) and of the sequence of Poisson solutions vi → v∞.

Local point-wise control of ui

Now we will discuss the effect of the estimates (4.46) and (4.47) on the local cov-
erings. Let Bi 3 x̃i be a fundamental domain of B̃i, then for each sufficiently large i,
in view of (4.48), we have B(x̃i, α) ⊂ Ũi ⊂ B(x̃i, 2α) where

Ũi := ∪{γBi : γ ∈ Γi, γBi ∩ B(x̃, α) , ∅}. (4.51)

Notice that estimates (4.46) and (4.47) on the local covering, for each γ ∈ Γi, read∫
γBi

|∇vi − ∇d̃i|
2 dνi ≤ Ψ(ηi, ri | R, α)νi(γBi);∫

γBi

|∇vi − hi|
2 dνi ≤ Ψ(ηi, ri | R, α)νi(γBi).

Then by Bishop-Gromov volume comparison on B̃i, we have∫
B(x̃i,α)

|∇vi − ∇d̃i|
2 dνi ≤

∫
Ũi

|∇vi − ∇d̃i|
2 dνi

≤
∑

γBi∩B(x̃i,α),∅

∫
γBi

|∇vi − ∇d̃i|
2 dνi

≤ Ψ(ηi, ri | R, α)
∑

γBi∩B(x̃i,α),∅

νi(γBi)

≤ Ψ(ηi, ri | R, α)νi(B(x̃i, 2α));
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whence ?
B(x̃i,α)

|∇vi − ∇d̃i|
2 dνi ≤ Ψ(ηi, ri | R, α), (4.52)

and similarly, ?
B(x̃i,α)

|∇2v2
i − hi|

2 dνi ≤ Ψ(ηi, ri | R, α). (4.53)

When passing to the limit, these estimates, together with the regularity (4.49)
give

|∇v∞| ≡ 1 and ∇2v2
∞ ≡ 2 gEuc in B(x̃∞, 0.7α). (4.54)

Thinking of B(x̃∞, 0.7α) as a region in R4 with x̃∞ = 0, we see that v2
∞(x) = |x− x0|

2

for x ∈ B(0, 0.7α) and some x0 ∈ R
4. Moreover, v∞(0) = limi→∞ ũi(xi).

For any i > ix∞ , since the local covering is equipped with the pull-back metric,
the smoothness of the convergence (4.49) then gives

|∇ũi| ≥ 1 − 10−10 and |∇2ui − g̃i| ≤ 10−10 in B(xi, 0.6α). (4.55)

Now we consider the second fundamental form of ũ−1
i (ũi(xi)): since at xi,

lim
i→∞

∇2vi

|∇vi|
(x̃i) =

1
v∞(x̃∞)

(gEuc − ∇r ⊗ ∇r), (4.56)

where r is the Euclidean distance function to the origin, we have, especially, the
principal curvatures of ũ−1

i (ũi(xi)) at xi, satisfies∣∣∣∣∣κk
i (xi) −

1
ũi(xi)

∣∣∣∣∣ < 10−10 for all i > ix∞ . (4.57)

This further implies a control of the boundary Gauss-Bonnet-Chern term for ũ−1
i (ũi(xi))

at xi: since

TPχ(xi) =
1

4π2

2 ∏
k=1,2,3

κk
i (xi) −

∑
k=1,2,3

κk
i (xi)K k̂

g̃i
(xi)

 dσũ−1
i (ũi(xi)),

where k̂ is a pair of numbers in {1, 2, 3} not containing k, we have, by (4.38) and
(4.57), for all i > ix∞ ,∣∣∣∣∣TPχ(xi) −

1
2π2ũi(xi)3 dσũ−1

i (ũi(xi))

∣∣∣∣∣ < 10−10. (4.58)
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Global point-wise control of ui

Notice that (4.55) and (4.57) are actually point-wise controls, since the scale α
depends on specific x∞ = limGH xi ∈ R(X); especially, from the argument above
we could not obtain any control as we approach S(X). Luckily, ui has very nice
regularity (4.44), so that we can choose a uniform scale α0 > 0 sufficiently small
such that for any x′, x′′ ∈ Ã(pi; 1.3, 1.7), and κk

i (x) being the k-th principal vector of
ũ−1

i (ũi(x)),

d(x′, x′′) < 3α0 ⇒ ||∇ũi|(x′) − |∇ũi|(x′′)| +
∑

k=1,2,3

∣∣∣κk
i (x′) − κk

i (x′′)
∣∣∣ < 10−10.

(4.59)

Now let {x j
∞} ⊂ R(X) be a minimal α0-net of R(X), and {x j

i } ⊂ Ã(pi; 1.3, 1.7)
such that x j

i →GH x j
∞. Obviously j < J for some absolute constant J. For large

enough i, {B(x j
i , 2α0)} covers Ã(pi; 1.3, 1.7). Then (4.55), (4.57) and (4.58) work

for each x j
i , when i > i0 := max{ix j

∞
: j = 1, · · · , J} is large enough. We could

further estimate, by (4.38) and (4.59), that

inf
B̃(x j

i ,2α0)
|∇ũi| > 1 − 10−5 and sup

B̃(x j
i ,2α0)

∑
k=1,2,3

∣∣∣∣∣κk
i −

1
ũi

∣∣∣∣∣ < 10−5, (4.60)

whence the same estimate globally on Ã(pi; 1.3, 1.7), for all i > J sufficiently large.
Especially, since (1.4, 1.6) ⊂ Image(ũi) by (4.41), this implies that ũ−1

i (a) is
a smooth hyper-surface in Ã(pi; 1.3, 1.7), for all a ∈ (1.4, 1.6) and large enough
i. Furthermore, we can control the boundary Gauss-Bonnet-Chern form of ũ−1

i by
(4.38), (4.39), (4.44) and (4.60): for all i > i0 large enough and a ∈ (1.4, 1.6),∣∣∣∣∣TPχ − 1

2π2a3 dσũ−1
i (a)

∣∣∣∣∣ < 10−4, (4.61)

since |∇TPχ| ≤ C(R).
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Level sets of ui

From the co-area formula, (4.42) and the scaling invariance of (4.30), we can esti-
mate ∫ 1.6

1.4

µ̃ fi(ũ
−1
i (s))

2π2s3 ds ≤

∫ 1.6

1.4
µ̃ fi(ũ

−1
i (s)) ds∫ 1.6

1.4
2π2s3 ds

= C(R)

∫
ũ−1([1.4,1.6])

|∇ũi| dµ̃ fi

µ̄riR(1.6) − µ̄riR(1.4)

≤ C(R)
µ̃ fi(Ã(pi; 1.1, 1.9))(1 + Ψ(ηi, ri | R))

µ̄riR(1.6) − µ̄riR(1.4)

≤ C(R)
µ̃(B̃(pi, 2))
µ̄riR(2)

< C(R)δi.

Thus for all i > i0 sufficiently large, by (4.44) and (4.60), there is some ai ∈

(1.4, 1.6) such that

µ̃ fi(ũ
−1
i (ai))

2π2a3
i

<
1
6

e−R2−riR, (4.62)

whenever i is large enough (so that δi <
1
6e−2R2

C(R)−1).

The contradiction

We fix any i > i0 sufficiently large, and set Ui := B̃(pi, 1.4)∪ ũ−1
i (1.3, ai), and notice

the smoothness of ∂Ui = ũ−1
i (ai) by (4.60). Moreover, we have

0 <

∫
∂Ui

TPχ <
3Volg̃i(∂Ui)

4π2a3
i

, (4.63)

by (4.61), but then by (4.62)

3Volg̃i(∂Ui)
4π2a3

i

≤
3
2

eR2+riR
µ̃ fi(ũ

−1
i (ai))

2π2a3
i

≤
1
4
.

Further notice that
∫
∂Ui
TPχ is a topological constant, invariant under rescaling, so

the above two estimates confirm (4.32).

Remark 4.4.9. As kindly pointed out by Ruobing Zhang, (4.51) and the estimates
that follow do not require the specific topological structure, thus we don’t have
to work within the injectivity radii at regular points, but instead, estimates (4.52)
and (4.53) work for balls centered at any point. We wrote the estimates (4.52) and
(4.53) only at the scale of injectivity radii because (4.48) gives a more intuitive
explanation.
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4.4.3 Conclusion of the proof
With the help of the key estimate (Proposition 4.4.5) and the fast decay of renor-
malized energy (Proposition 4.4.7), we can now prove Theorem 1.3.1:

Proof of Theorem 1.3.1. Let rR := 1
10rFD(R) and let εR = min{εKE(R), εFD(R)}. Fix

some r < rR, and assume that B(p, r) ⊂ B(p0,R) has small energy
∫

B(p,r)
|Rm|2 dµ f <

εR. It then follows from Proposition 4.4.5 that I f
Rm(p, r) < CKE(R). If I f

Rm(p, r) <
εA(R) we can apply Anderson’s ε-regularity theorem directly, or if

µ f (B(p, r/2))
µ̄R(r/2)

≥ δKE(R),

we are reduced to the known non-collapsing case, see [39]. Otherwise, we can
apply Proposition 4.4.7 so that I f

Rm(p, r/2) < (1 − ηR)CKE(R). Performing the same
process at most kR := log1−ηR

εA(R)
2CKE(R) many times, we will have I f

Rm(p, 2−kRr) <
εA(R), whence

sup
B(p,2−kR−1r)

|Rm| ≤ CA(R)4kRr−2I f
Rm(p, 2−kRr)

1
2 . (4.64)

Now cover B(p, r/4) by balls of radius 2−kR−1r, we have

B (p, r/4) ⊂
⋃

q∈B(p,r/4)

B(q, 2−kR−1r) ⊂
⋃

q∈B(p,r/4)

B (q, r/2) ⊂ B(p, r),

applying the argument above for each q ∈ B(p, r/4), we obtain by (4.64),

sup
B(p, 1

4 r)
|Rm| ≤ CR r−2,

with CR := CA(R)
√
εA(R) 4kR+1. �

4.5 Strong convergence of 4-D Ricci shrinkers
In this section we will apply our ε-regularity theorem to obtain structural results
concerning the convergence and degeneration of the soliton metrics. We first have
a straightforward application of Theorem 1.3.1:

Proposition 4.5.1. Let {(Mi, gi, fi)} be a sequence of complete non-compact 4-D
Ricci shrinkers. Suppose ∫

B(p0
i ,R)
|Rmgi |

2 dµ fi ≤ C(R). (4.65)
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Then for each R > 0 fixed, it sub-converges to some length space (XR, d∞) in the
strong multi-pointed Gromov-Hausdorff sense (see Definition 2.5.3), with J ≤ J(R)
marked points.

Proof. Fix any R > 0. By the assumption (4.65), there are only finitely many points
p1

i , · · · , pJR
i ∈ B(p0

i ,R), around which there is a curvature concentration∫
B(p j

i ,ri)
|Rmgi |

2 dµ fi ≥ εR+1, (4.66)

with ri → 0 and jR ≤ C(R + 1)ε−1
R+1. On the other hand, for any q ∈ B(p0

i ,R) outside
∪

JR
j=1B(p1

i , 2ri), we have
|Rmgi |(q) ≤ CR+1r−2

i .

By Lemma 2.3.2 and Gromov’s compactness [35], there is a compact length
space (X, d∞) such that after passing to a subsequence, (B(p0

i ,R), gi) →GH (X, d∞).
Clearly diamd∞ X ≤ R. Moreover, by compactness of B(p0

i ,R), possibly passing
to a further subsequence, the set of points {p1

i , · · · , pJR
i } also Gromov-Hausdorff

converge to a set of marked points {x1
∞, · · · , x

JR
∞ } ⊂ X.

Now fix x ∈ X\{x1
∞, · · · , x

JR
∞ } and assume B(p0

i ,R) 3 pi →GH x. Fix

dx := min
1≤ j≤JR

d∞(x, x j
∞),

then for any i sufficiently large, dx > 10ri ( j = 1, · · · , JR), and we can conclude as
above

sup
B(pi,

1
4 dx)
|Rmgi | ≤ CR+1d−2

x ,

a uniform constant for the sequence {B(p0
i ,R)}. Thus the Gromov-Hausdorff con-

vergence to any x , x j
∞ ( j = 1, · · · , JR) is improved to strong convergence in

Definition 2.5.3. �

Presumably, as R → ∞, jR → ∞ and the selection of the subsequence of
{Mi, gi, fi} depends on R. This is a feature of Ricci solitons different from the Ein-
stein case. However, assuming weighted L2-bound of curvature is much more re-
alistic for non-compact 4-D Ricci shrinkers, compared to non-compact Ricci flat
manifolds. For instance, as we will see in the following proof of Theorem 1.3.2,
a global weighted L2-curvature bound by the Euler characteristics could be eas-
ily obtained if we further assume a uniform scalar curvature bound, see also [39]
and [47].

From (2.18) and (2.19), we notice that a uniform bound on the scalar curvature,
eliminates singularities of f outside a definite ball. It will then be convenient to use
(sub-)level sets of f instead of geodesic balls centered at p0. Therefore we use the
following notations:
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Definition 4.5.2. Let (M, g, f ) be a 4-D Ricci shrinker such that the normalization
condition (2.9) is satisfied, and fix R > 0, we define

D(R) := {x ∈ M : f (x) < R} and Σ(R) := {x ∈ M : f (x) = R} = ∂D(R).

Proof of Theorem 1.3.2. Fix R0 > 1 so that there is no critical value of f outside
D(R).
Curvature bound outside some D(RMW). We will start by examining the work of
Munteanu-Wang [47] carefully, and obtain a uniform curvature control outside a
fixed sized ball around the base point. (We cannot directly quote their results be-
cause their estimates involve the curvature of specific manifolds, but we need uni-
form estimates.) After a detailed study of the level sets Σ(R), Munteanu-Wang
observed, in Proposition 1.1 of [47], the following fundamental estimate for 4-D
Ricci shrinkers: there is an absolute constant c1.0 such that

c1.0|Rm| ≤
|∇Rc|
√

t
+
|Rc|2 + 1

f
+ |Rc|

outside D(R1.0). This estimate then enables them to obtain an elliptic inequality
about the positive function u := |Rc|2R−a for some a ∈ (0, 1) (see Lemma 1.2
of [47]): there exists some absolute constant c1.1 > 0 such that

∆ f u ≥
(
2a −

c1.1

1 − a
R

f

)
u2Ra−1 − c1.1u

3
2R

a
2 − c1.1u

outside D(R1.1). For any R > 2 max{R0,R1.0,R1.1}, as done in Proposition 1.3 of [47],
one can construct a cut off function ϕ supported on D(3R)\D(R/2) such that ϕ ≡ 1
on D(2R)\D(R) and |∇ϕ| + |∆ fϕ| ≤ c1.2 (c1.2 > 0 being some absolute constant,
especially independent of R). Now choose R1.2 > R and a ∈ (0, 1) such that

2a −
c1.2

1 − a
R

f
≥ 1

outside D(R), for any R > R1.2, then a becomes an absolute constant. We then
obtain inequality (1.14) of [47]:

ϕ2∆ f G ≥ S a−1G2 − c1.3G
3
2 − c1.3G + 2∇G · ∇ϕ2,

where G := uϕ2. Applying maximum principle to this inequality we see G ≤ c1.4,
i.e. |Rc| ≤ c1.4R

a ≤ c1.5 on D(2R)\D(R), for any R > R1.2. Munteanu-Wang then
applied the cut off function and maximum principle to the elliptic inequality (see
(1.17) and (1.18) of [47])

∆ f (|Rm| + |Rc|2) ≥ |Rm|2 − c1.6 ≥
1
2

(|Rm| + |Rc|2)2 − c1.7,
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whence

sup
M\D(RMW )

|Rm| + |Rc|2 ≤ CMW , (4.67)

for some absolute constants RMW > 1000 and CMW > 0, depending only on S̄ .
From this estimate, we notice (as pointed out in [47]), that under the assumption of
uniform scalar curvature bound, the main concern of controlled geometry is about
a bounded region D(RMW) around the base point.
Global weighted L2-curvature bound. By the non-degeneration of f outside D(R)
for any R > RMW , we see that D(R) is a smooth retraction of M, hence χ(M) =

χ(D(R)) as the Euler characteristic is a homotopy invariant. Recall that for Σ(R),
the boundary Gauss-Bonnet-Chern term can be estimated as∣∣∣TPχ∣∣∣ ≤ 1

4π2

2
∣∣∣det∇2 f

∣∣∣
|∇ f |3

+ 3
|∇2 f |
|∇ f |
|Rm|

 ,
since |∇ f | > 1 and |Rm| ≤ CMW outside D(RMW), we then have∫

D(R)
|Rm|2 dµ f ≤ Ē + c2.0

∫
Σ(R)

(|∇2 f |3 + |∇2 f |) dσΣ(R). (4.68)

The defining equation (1.4) then gives∫
Σ(R)
|∇2 f |3 + |∇2 f | dσΣ(R) ≤ c2.1

∫
Σ(R)
|Rc|3 + |Rc| dσΣ(R) ≤ c2.2Vol(Σ(R)).

On the other hand, (2.18) and Lemma 2.2.4 gives control

Vol(D(3RMW)) − Vol(D(2RMW)) ≤ c2.3R2
MW .

For some R2 ∈ [2RMW , 3RMW] such that Vol(Σ(R2)) = min2RMW≤R≤3RMW Vol(Σ(R)),
we can apply the coarea formula and (2.19) to estimate

Vol(Σ(R2)) ≤
1

RMW

∫
D(3RMW )\D(2RMW )

|∇ f | dV ≤ c2.4R
3
2
MW .

These inequalities together give:∫
M
|Rm|2 dµ f ≤

∫
D(R2)
|Rm|2 dV + C2

MW

∫
M\D(R2)

1 dµ f

≤ χ(D(R2)) + c2.2Vol(Σ(R2)) + c2.3

∞∑
k=1

e−2kRMW 8kR2
MW

≤ χ(M) + c2.5R
3
2
MW + c2.6

≤ C(Ē, S̄ ),
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since all the constants involved are solely determined by Ē and S̄ . Here we recall
that Ē > 0 and S̄ > 0 are the prescribed upper bounds of the Euler characteristics
(in absolute value) and the scalar curvature, respectively.

With this bound at one hand, we can apply Proposition 4.5.1 to {Di(2RMW) ⊂
Mi} and obtain a convergent subsequence, to some metric space (X∞(2RMW), d∞)
with marked points {x1

∞, · · · , x
J
∞} and J ≤ J(2RMW). On the other hand, we have

a uniform curvature bound outside Di(2RMW), whence a non-compact length space
(X∞, d∞) as the Gromov-Hausdorff limit. The convergence will preserve the finitely
many marked points, and away from these points, the Gromov-Hausdorff conver-
gence is improved, by the locally uniform curvature bound, to strong multi-pointed
Gromov-Hausdorff convergence in the sense of Definition 2.5.3. �
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