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Abstract of the Dissertation

The Vanishing of the First Chern Class for Simply Connected

Complex Surfaces Is a Quasiconformal Invariant

by

Harrison Pugh

Doctor of Philosophy

in

Mathematics

Stony Brook University

2018

We prove that the vanishing of the first chern class for simply connected complex sur-
faces is a quasiconformal invariant, modulo some discussion. That is, a complex surface
quasiconformally homeomorphic to a K3 surface is also a K3 surface. We prove this theorem
using Donaldson and Sullivan’s extension of Donaldson’s theory of smooth 4-manifolds to
the quasiconformal context, as well as Friedman and Morgan’s explicit calculations of the
Donaldson polynomial invariants for elliptic surfaces. It is a priori not possible to prove
this result using Seiberg-Witten theory, due to the latter’s deep reliance on the underlying
smooth structure.
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Chapter 1

1 The Vanishing of the First Chern Class for Simply

Connected Complex Surfaces Is a Quasiconformal

Invariant

1.1 Introduction

A manifold is quasiconformal if it is equipped with charts whose overlap maps have
bounded infinitesimal distortion. In dimensions ď 3, every topological manifold has a smooth
structure unique up to diffeomorphism, but in dimensions ě 4, the topological and smooth
categories diverge. The quasiconformal category fits in between the two: in dimension ě 5
(and indeed for dimensions ‰ 4,) Sullivan proved in [Sul79] that every topological manifold
has a quasiconformal structure unique up to quasiconformal homeomorphism. However, in
dimension 4, the topological and quasiconformal categories diverge: Donaldson and Sullivan
proved in [DS89] that there exist topological 4-manifolds which do not admit a quasicon-
formal structure, and that there exist quasiconformal structures on the same topological
4-manifold which are not quasiconformally homeomorphic.

This behavior of quasiconformal 4-manifolds mimics the behavior of smooth manifolds in
dimension 4. Indeed, the tools necessary to study smooth 4-manifolds are mostly available
for quasiconformal manifolds: a quasiconformal 4-manifold admits a bounded conformal
structure, a theory of connections and curvature, and a differential graded Banach algebra
of differential forms whose 0-forms are (just) beyond the Sobolev borderline; thus, Yang-
Mills theory is possible on quasiconformal 4-manifolds. In fact, the Donaldson polynomials
are quasiconformal invariants [DS89]. One might conjecture that just as in dimensions ď 3,
the quasiconformal and smooth categories agree in dimension 4. It is currently unknown
if every quasiconformal 4-manifold is smoothable, however every known quasiconformal 4-
manifold is already smooth. Moreover, it is unknown whether there can exist two non-
diffeomorphic smooth structures on the same quasiconformal 4-manifold. In this thesis, we
shall prove a partial converse to this last statement: any complex surface quasiconformally
homeomorphic to a K3 surface is a K3 surface. In particular, since the K3 surfaces are
diffeomorphic, any complex surface quasiconformally homeomorphic to a K3 surface X is
also diffeomorphic to X. Note there exists a smooth 4-manifold homeomorphic to a K3
surface which is not diffeomorphic to any complex surface [HK93], so our theorem does not
imply that the quasiconformal manifold underlying the K3 surfaces has a unique smooth
structure.
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1.2 Definitions and Background

1.2.1 Quasiconformal Structures

Let U Ă Rn be open and K ě 1. A function f : U Ñ φpUq Ă Rn is K-quasiconformal if

lim sup
rÑ0

supt|fpxq ´ fpyq| : |x´ y| “ ru

inft|fpxq ´ fpyq| : |x´ y| “ ru
ď K

for all x P U . We say that f is quasiconformal if there exists K ě 1 such that f is
K-quasiconformal. Note that like Lipschitz and Hölder conditions, the property of being
quasiconformal is only dependent on the underlying metric structure, so the definition is
equally valid for an abstract metric space.

If f is a diffeomorphism then f tW is quasiconformal for every open set W compactly
contained in U . Likewise, a bilipschitz homeomorphism is quasiconformal.

An n-dimensional topological manifold X is quasiconformal if there exists an atlas
tpUi, φiq : i P Iu whose overlap maps φi ˝ φ

´1
j : φjpUi X Ujq Ñ φipUi X Ujq Ă Rn are K-

quasiconformal homeomorphisms for some fixed K ě 1. A homeomorphism f : X Ñ Y
between quasiconformal manifolds is quasiconformal if it is K 1-quasiconformal on charts, for
some fixed K 1 ě 1.

It is not hard to show that a smooth manifold, compact or otherwise, has a compatible
quasiconformal structure, and the constant K can be chosen arbitrarily close to 1.

1.2.2 Invariants of Complex Surfaces

If X is a compact complex surface, let KX “ Λ2pΩ1,0Xq denote the canonical bundle
of X, the second exterior power of the holomorphic cotangent bundle. The bundle KX

is a holomorphic line bundle, and locally its sections are of the form fpz, wqdzdw. The
canonical class rKXs P H

2pX; Zq of X is defined to be the first chern class of KX . Using the
splitting principle, if T 1,0X „ L1 ‘ L2, Then KX “ Λ2pΩ1,0Xq „ L˚1 b L˚2 , and we see that
rKXs “ c1pL

˚
1q ` c1pL

˚
2q “ ´c1pL1q ´ c1pL2q “ ´c1pT

1,0Xq “ ´c1pXq.

For n ě 1, let PnpXq “ dimCpH
0pX,Kbn

X qq denote the n-th plurigenus of X, and let
pgpXq “ P1pXq denote the geometric genus of X. Let κpXq P t´8, 0, 1, 2u denote the
Kodaira dimension of X, which is defined to be ´8 if PnpXq “ 0 for all n ě 1, otherwise

κpXq “ mintα P Z : PnpXq{n
α is a bounded function of nu.
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Since complex surfaces carry a natural orientation, Poincaré duality yields a symmetric
bilinear form

qX : H2pX,Zq ˆH2pX,Zq Ñ Z,

the intersection form of X. We also have the betti numbers bi “ bipXq “ dimH ipX,Rq, the
euler characteristic χpXq “

ř

p´1qibi, as well as b`2 and b´2 , the dimensions of any maximal
positive and negative subspaces for the (real) intersection form. In particular, b2 “ b`2 ` b

´
2 .

The signature σpXq of X is defined to be the quantity b`2 ´ b
´
2 .

The geometric genus, intersection form, betti numbers, signature, and rKXs
2 (the self-

intersection number of the Poincaré dual of the canonical class) are all oriented homotopy
invariants, but the higher plurigenera (and hence Kodaira dimension) are only deformation
invariants. Moreover, under an orientation reversing homotopy equivalence, the intersection
form changes sign, so b`2 and b´2 trade places, and σ changes sign. If b1 is even (e.g. if X is
simply connected,) we also have the relation b`2 “ 2pg ` 1.

Finally, we need the (stable, restricted) Donaldson polynomial invariant, which assigns to
every simply connected compact complex surface X with b`2 ě 3, every integer c ě p3b`2 `5q{4
and every orientation β of H2

`pX; Rq a homomorphism γcpX, βq : Symdpcq
pH2pX; Zqq Ñ Z,

where dpcq “ 4c´ 3
2
pb`2 `1q. We can also think of γcpX, βq as an element of Symdpcq

pH2pX; Qqq
or as a homogenous polynomial of degree dpcq on H2pX; Qq. If f : Y Ñ X is a quasiconformal
homeomorphism, then γcpY, f

˚βq “ f˚γcpX, βq [DS89] (see also below.) Also, we have
γcpX,´βq “ ´γcpX, βq.

1.2.3 Quasiconformal Invariance of the Donaldson Polynomial Invariants

Here we collect a few key results from [DS89], and give some auxiliary statements sufficient
to prove the invariance of the Donaldson polynomials under quasiconformal homeomorphisms
between smooth 4-manifolds.

First, there exists for every quasiconformal 4-manifold X a sheaf of differential graded
Banach algebras

B̂0
loc Ñ B̂1

loc Ñ B̂2
loc Ñ B̂3

loc Ñ B̂4
loc,

consisting of differential forms, with the following good properties:

(a) The Banach spaces B̂i
loc are separable, reflexive, with separable dual for each i “

0, . . . , 4;

(b) If X is compact, there is a compact inclusion B̂0
loc ãÑ C0pXq;
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(c) The cohomology of the complex pB̂˚loc, dq is naturally isomorphic to the singular coho-
mology of X;

(d) A quasiconformal homeomorphism X Ñ Y between quasiconformal 4-manifolds in-
duces an isomorphism of sheaves B̂˚locpY q Ñ B̂˚locpXq.

If E is a B̂0
loc vector bundle over X, we also have a sheaf of differential graded Banach

algebras
B̂k

locpEq :“ B̂k
loc bB̂0

loc
ΓpEq

consisting of differential forms with values in E. Finally, we also have, given a bounded con-
formal structure µ on a compact quasiconformal 4-manifold X, the operator d` : B̂1pEq Ñ
L̂2pΩ`XpEqq consisting of exterior d followed by L2 orthogonal projection onto the self-dual
2-forms with values in E.

In particular, we have a space A of B̂ connections A on E, an affine space modeled on
the Banach space B̂1pgEq. The curvature FA of A lies in L̂2pgEq and can be decomposed into
its self dual and anti-self-dual components. There is also the B̂0 gauge group G, a Banach
Lie group with smooth action GˆAÑ A, and its orbit space B. Finally, there is the moduli
space M Ă B of equivalence classes of anti-self-dual connections.

The moduli space has the following local structure, given by [DS89] Proposition 4.16:
If A P A is an anti-self-dual connection, there exists a neighborhood of rAs in M given
by ψ´1p0q{ΓA, where ψ is a smooth, ΓA-equivariant, Fredholm map from a neighborhood
of 0 in a subspace TA Ă TAA transverse to Im dA to L̂2pΩ`pgEqq, with Fredholm index
ipgEq ´ dim Ker dA, where ipgEq “ p8c ´ 3qpb`2 ` 1q for a SUp2q bundle E and simply
connected X.

The compactification and orientation of M have likewise been set up in [DS89], via
Uhlenbeck’s theorems on the existence of local Coloumb gauges and removable singularities.

In the smooth case, one can appeal to Uhlenbeck’s generic metrics theorem to show that
for generic smooth metrics, the dimension of M is exactly ipgEq. If the underlying manifold
is only equipped with a quasiconformal structure, the set of smooth metrics may be empty,
so this theorem cannot be brought forward without modification. However, we are only
concerned with quasiconformal invariance of smooth manifolds, so we may assume this set
is non-empty. There are some additional considerations to deal with if the proof is to be
modified for our setting, chiefly the Sobolev space of forms Ω`pgXq employed is a Hilbert
space and the inner product is explicitly used. However, this may not actually be essential
to the proof.

Alternatively, the method suggested in [DS89], of perturbing the ASD equations for each
moduli space in a coherent manner compatible with convergence, might instead be used.
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As a third alternative, one might show that the moduli space M obtained above is isomor-
phic to the standard one obtained via the smooth theory, given the inclusion of an appropriate
Sobolev space of connections into B̂1pgEq. This, however, is somewhat unsatisfactory, as we
will need a more robust transversality statment later, namely [DS89] Proposition 7.6.

In any case, this is a gap which we shall assume for the remainder.

With transversality of the ASD equations in hand, one may proceed with the steps
in [DS89] §7.4 to produce the intersections

Mpgq X V1 X ¨ ¨ ¨ X Vd.

There is a small gap here as well, a final step necessary to prove the quasiconformal invariance
of the intersection number of

Mpgq X V1 X ¨ ¨ ¨ X Vd,

and that is a strengthened version of [DS89] Proposition 7.6, which is only proved in the case
of a zero-dimensional moduli space, but which we need to hold in general: Given a sequence
of bounded conformal structures rgpiqs Ñ rgs, then if the above intersection is transverse,
then there exists a B˚ neighborhood of each point rAs in M rgsXV1X¨ ¨ ¨XVd which contains
exactly one point of M rgpiqs X V1 X ¨ ¨ ¨ X Vd for i large enough.

1.2.4 K3 Surfaces

By a K3 surface, we shall mean a simply connected compact complex surface with trivial
canonical bundle (or equivalently vanishing canonical class1.) All K3 surfaces are diffeomor-
phic (in fact deformation equivalent, due to Kodaira) and any complex surface diffeomorphic
to a K3 surface is also a K3 surface (due to Friedman and Morgan.)

If X is a K3 surface, then κpXq “ 0, pgpXq “ 1, χpXq “ 24, b`2 pXq “ 3, b´2 pXq “ 19,
σpXq “ ´16 and the intersection form qX is given by

3

„

0 1
1 0



‘ 2p´E8q,

1Since we are assuming the surface is simply connected, there is no ambiguity about whether “trivial”
here means holomorphically trivial or only topologically trivial; in this case the two are one in the same.
Indeed, the exponential sequence 0 Ñ Z Ñ OX Ñ O˚X Ñ 0 of sheaves yields a connecting homomorphism
B : H1pX;O˚Xq Ñ H2pX; Zq on cohomology, which is injective if X is simply connected. The domain of B
parameterizes the holomorphic line bundles over X, whose first chern class is the image under B of the given
line bundle.
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where E8 is the even positive definite form given by the matrix
»

—

—

—

—

—

—

—

—

—

—

–

2 0 ´1 0 0 0 0 0
0 2 0 ´1 0 0 0 0
´1 0 2 ´1 0 0 0 0
0 ´1 ´1 2 ´1 0 0 0
0 0 0 ´1 2 ´1 0 0
0 0 0 0 ´1 2 ´1 0
0 0 0 0 0 ´1 2 ´1
0 0 0 0 0 0 ´1 2

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

Since the intersection form is even, K3 surfaces are spin. In particular, they are minimal
in the sense that there are no embedded 2-spheres of self-intersection ´1.

1.2.5 Elliptic Surfaces

An elliptic surface is a pair pX, πq consisting of a compact complex surface X and a
surjective holomorphic map π : X Ñ C where C is a smooth curve, such that for the regular
values c P C of π, the fiber π´1pCq is a smooth curve of genus 1. We say a complex surface
X has an elliptic structure if there exists such a map π, called an elliptic fibration, such that
the pair pX, πq is an elliptic surface. The inverse image of a critical value of π is called a
singular fiber. Such a singular fiber F is a multiple fiber if there exists an integer m ą 1 such
that π˚ppq “ mF as a divisor.

We will need several general facts about elliptic surfaces, namely:

Lemma 1 (Theorem 2.3 Chapter II [FM94]). A minimal elliptic surface pX, πq is simply
connected if and only if the base C is CP 1 and there are at most two multiple fibers whose
multiplicities are relatively prime.

Lemma 2 (Theorem 2.1 Chapter 1, Theorem 7.6 Chapter I). Let pX, πq and pY, π1q be
minimal simply connected elliptic surfaces and let pm1,m2q (resp. pm1

1,m
1
2q) denote the mul-

tiplicities of the multiple fibers of X (resp. Y ,) listed in ascending order and equal to 1 in
the cases of zero and one multiple fiber. The pairs pm1,m2q and pm1

1,m
1
2q are equal and

χpXq “ χpY q if and only if X and Y are deformation equivalent (and therefore diffeomor-
phic.)

Lemma 3. There exists a K3 surface that admits an elliptic structure. Moreover, there are
no multiple fibers.

Proof. Consider the quotient of the product of two elliptic curves C1 ˆ C2 by the Kummer
involution x ÞÑ ´x. The surface X that results from resolving the 16 singular points (which
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locally look like cones on RP 3) is a K3 surface and has an elliptic structure, since the
map πi : X Ñ Ci{ „» P1 induced by projection onto one of the factors Ci is an elliptic
fibration.

As part of the classification of compact complex surfaces, Kodaira showed:

Lemma 4. Every minimal complex surface of Kodaira dimension 1 has an elliptic structure.

Finally, if pX, πq is a minimal simply connected elliptic surface with multiple fibers of
relatively prime multiplicity m1 and m2, there exists by (2.9) Chapter II [FM94] a unique
primitive integral class κX P H2pX; Qq such that rf s “ m1m2κX , where rf s is the class
dual to a general fiber. We shall need a calculation of the Donaldson polynomial γc P
Sym˚

pH2pX; Qqq in terms of the intersection form qX P Sym2
pH2pX; Qqq and the class κX P

Sym1
pH2pX; Qqq » H2pX; Qq.

Theorem 5 (Theorem 2.1 Chapter VII [FM94]). Suppose pX, πq is a minimal simply con-
nected elliptic surface with b`2 pXq ě 3. Let c ě p3b`2 ` 5q{4 be an integer, let dpcq “
4c´ 3

2
pb`2 ` 1q and npcq “ 2c´ b`2 . If β is an orientation of H2

`pX; Rq, then

γcpX, βq “ ˘
n
ÿ

i“0

aiq
i
Xκ

d´2i
X ,

where

an “
d!

2nn!
pm1m2q

pg .

Moreover, the coefficients ai are unique2.

1.3 Main Theorem

We now state our main result:

Theorem 6. Suppose X is a K3 surface and Y is a complex surface quasiconformally home-
omorphic to X. Then Y is also a K3 surface.

Note that the above quasiconformal homeomorphism between X and Y may be orien-
tation reversing, and that as a corollary of the theorem, the surfaces X and Y are in fact
diffeomorphic. It is unknown whether the given quasiconformal homeomorphism can be
smoothed via a small isotopy into a diffeomorphism; all that we can say is that a diffeomor-
phism between the surfaces exists.

2This last statement is not explicitly included in Theorem 2.1 Chapter VII [FM94], but can be found as
a corollary of Lemma 2.6 Chapter VI [FM94].
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1.3.1 Proof of Main Theorem

Suppose X is a K3 surface and that Y is a compact complex surface homotopy equivalent
to X. Note that since X is spin and the intersection forms of X and Y are isomorphic, Y is
also spin, hence minimal. We first rule out the possibility that the Kodaira dimension of Y
is ´8 or 2:

Since b`2 pY q “ 2pgpY q ` 1, we know that if the homotopy equivalence preserves orienta-
tion, then pgpY q “ 1 and if the homotopy equivalence reverses orientation, then pgpY q “ 9.
In either case, κpY q ‰ ´8, since pg “ 0 for such surfaces.

Now suppose κpY q “ 2, i.e. that Y is a surface of general type. The Bogomolov-Miyaoka-
Yau inequality implies that surfaces of general type must obey the inequality

σpY q ď
χpY q

3
.

Since χpY q “ χpXq “ 24, we must have σpY q ď 8. If the homotopy equivalence reverses
orientation, then σpY q “ 16, a contradiction. Thus, Y has the same oriented homotopy type
as X, and so rKY s

2 “ rKXs
2 “ 0. However, minimal surfaces of general type must obey the

inequality rKY s
2 ě 1, a contradiction.

If κpY q “ 0 then Y is a K3 surface, since any simply connected surface of Kodaira
dimension 0 is a K3 surface by the Enriques-Kodaira classification.

Thus by Lemmas 3 and 4, to prove the main theorem it suffices to show the following:

Theorem 7. Suppose X is an elliptic K3 surface and that Y is an elliptic surface quasi-
conformally homeomorphic to X. Then Y is also a K3 surface.

Let f : Y Ñ X be a quasiconformal homeomorphism. We may assume f is orientation
preserving, since σpY q ď ´2

3
χpY q ď 0 (Lemma 2.4 Ch I [FM94]) and σpXq “ ´16. Since pg

is an oriented homotopy invariant, it follows that pgpY q “ pgpXq “ 1.

By Lemmas 2 and 3, it suffices to show that Y has no multiple fibers. Let c ě 4 and
n “ 2c´ 3. By Theorem 5 we have:

γcpY, f
˚βq “

n
ÿ

i“0

biq
i
Y κ

2n´2i
Y , (1)

where bn “
p2nq!
2nn!

pm1m2q and β is chosen so that the overall choice of sign is positive. On the
other hand,
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γcpY, f
˚βq “ f˚γcpX, βq “ ˘

n
ÿ

i“0

aiq
i
Y pf

˚κXq
2n´2i, (2)

where an “
p2nq!
2nn!

, noting that qY “ f˚qX . If κY “ ˘f
˚κX, then we may equate coefficients,

and in particular bn “ ˘an, hence m1m2 “ 1, hence m1 “ m2 “ 1 and we are done.

On the other hand, suppose κY ‰ ˘f˚κX . Since κY and f˚κX are primitive integral
classes, they are linearly independent as elements of H2pY ; Cq “ H2pY ; Cq˚.

In this case, we can write γcpY, f
˚βq in terms of qY only3. In other words, the coefficients

bi for i ă n are identically zero and bn “ ˘an as before and we are done. Indeed, this
follows from the following linear algebra lemma, by extending γc complex-multilinearly to
an element of Sym2n

pH2pY ; Cqq or equivalently a complex-valued polynomial on H2pY ; Cq,
and setting V “ H2pY ; Cq and q “ qY :

Lemma 8 (Lemma 2.5, Chapter VI [FM94]). If V is a complex vector space of dimension
3 ď dim V ă 8 and q is a non-degenerate quadratic form, and k, k1 P V ˚ are linearly
independent, then Crqs “ Crq, ks X Crq, k1s.

3This is in fact the case: the Donaldson polynomial for a K3 surface X is γc “
p2nq!
2nn! q

n
X for c ě 4 and

n “ 2c´ 3 [FM94].
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