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Abstract of the Dissertation

Stability of the Positive Mass Theorem for Axisymmetric Manifolds

by

Edward Thompson Bryden

Doctor of Philosophy

in

Mathematics

Stony Brook University

2018

In this dissertation, we investigate the stability of the Positive Mass The-

orem for three-dimensional axisymmetric manifolds. It is widely known that

asymptotically flat manifolds with nonnegative scalar curvature have nonneg-

ative ADM mass, and that the only Riemannian manifold with nonnegative

scalar curvature and zero ADM mass is Euclidean space. We will show that

axisymmetric manifolds with nonnegative scalar curvature which satisfy an

additional technical assumption and have small ADM mass are close to Eu-

clidean space in a Sobolev sense.

It was shown by Chruściel that for three dimensional axisymmetric man-

ifolds there exists a preferred coordinate system, and that the ADM mass

of the manifold can be calculated as integral over the manifold. We use
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the mass formula together with the additional technical assumption and the

nonnegativity of the scalar curvature to show that the Sobolev norms of the

different metric coefficients are controlled by the ADM mass of the manifold.

We use the Sobolev estimates we obtain in order to estimate geometric

quantities of the manifolds. In particular, we show that the volumes and

areas of axisymmetric regions approach their Euclidean values as the ADM

mass tends towards zero. We also estimate the distances between points by

their Euclidean distance and the ADM mass of the manifold.
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Chapter 1

Introduction

Based on the formulation of General Relativity, our physical intuition leads

us to expect a close relationship between the ADM mass of an asymptotically

flat Riemannian manifold and its geometry. Recall that the ADM mass of

an asymptotically flat Riemannian manifold is defined to be

m = lim
R→∞

1

16π

∫
SR

(gij,j − gjj,i)νi. (1.0.1)

In their celebrated Positive Mass Theorem [16], Schoen-Yau proved that if

an asymptotically flat manifold has nonnegative scalar curvature, then the

ADM mass is nonnegative. They also proved the following Rigidity Theorem

m = 0 =⇒ M is isometric to Euclidean space. (1.0.2)
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It is natural to ask whether stability also holds; if M has small ADM mass, is

M close to Euclidean space? Lee-Sormani [14] have shown that M need not

be smoothly, nor even C0, close to Euclidean space even in the spherically

symmetric setting; there could be increasingly deep thin gravity wells at the

center. They conjectured that M is close to Euclidean space in the Sormani-

Wenger intrinsic flat (SWIF) sense [12, 14]. Proving it will require a method

for picking appropriate subregions geometrically and a way to show that

these regions converge in the SWIF metric to a subset of Euclidean space.

In [14], Lee and Sormani study stability in the rotationally symmetric

setting. They show that tubular neighborhoods of fixed radius D about

coordinate spheres of fixed area A converge to the Euclidean tubular neigh-

borhood of radius D about a sphere of area A. Earlier, Lee had proven

convergence to Euclidean space outside a compact set in the conformally flat

setting [13]. Assuming strong conditions on sectional curvature, Corvino has

proven that an asymptotically flat manifold with nonnegative scalar curva-

ture and small ADM mass must be diffeomorphic to R3 [6]. Finster, Bray

and Kath have papers bounding the L2 norm of the curvature [2, 8]. Af-

ter the Lee-Sormani paper, LeFloch-Sormani [15] proved that metric tensors

converge in the H1
loc sense in the rotationally symmetric setting. Huang-Lee-

Sormani proved SWIF convergence in the graph setting and Sormani-Stavrov

proved it in the geometrostatic setting. Allen proved L2 convergence in re-

gions where the Inverse Mean Curvature Flow is smooth [1].

Here, we will study the question of stability in the presence of axisym-
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metry. The class of axisymmetric metrics is both flexible enough to model

a range of physically interesting phenomena and restricted enough that we

have powerful tools at hand that are not available in the most general set-

ting. Recall that the coordinate expression for an axisymmetric metric in

cylindrical coordinates is

g = e2α−2u(dρ2 + dz2) + ρ2e−2u(dφ+Bdρ+ Adz)2, (1.0.3)

where all the functions involved depend only on ρ and z. The killing field

associated with the axisymmetry of g is ∂
∂φ

. Since we will be studying large

families of asymptotically flat metrics, it is natural to require that the family

satisfy some type of uniform falloff condition.

Definition 1.0.1. LetM be a family of axisymmetric metrics. Suppose we

can parameterize M by the functions α, u, A, and B in cylindrical coordi-

nates (1.0.3). If there exists constants C and R0 such that if g is a metric in

M, then for all
√
ρ2 + z2 = r ≥ R0 we have

∣∣∂Iu∣∣ ≤ C

r1+|I| (1.0.4)

∣∣∂Iα∣∣ ≤ C

r1+|I| (1.0.5)

∣∣∂IA∣∣ ≤ C

r1+|I| (1.0.6)

∣∣∂IB∣∣ ≤ C

r1+|I| , (1.0.7)

3



then we shall call M uniformly asymptotically flat outside of radius R0

In [4], Chruściel shows that if (M, g) is an axisymmetric manifold which

is asymptotically flat, then there are cylindrical coordinates (ρ, z, φ) in which

g takes the form (1.0.3). Suppose that g has the standard asymptotically flat

falloff rate: ∣∣∂I(g − δR3)
∣∣ ≤ C

r1+|I| , (1.0.8)

where δR3 is the Euclidean metric. In general the asymptotic falloff of the

functions α, u, A, and B will not be as strong as the those given in Definition

1.0.1. However, we may make an additional assumption on the killing field of

g which will imply that the functions α, u, A, and B do have the same falloff

as in 1.0.1. This indicates that there are many families of metrics satisfying

the requirements of Definition 1.0.1.

In Chruściel’s construction of cylindrical coordinates, the coordinate func-

tions ρ and z are both solutions to a PDE determined by the metric g. Specif-

ically, if we let η denote the killing field generating the axisymmetry of g and

let q denote the metric on the orbit space induced by g, then both ρ and z

solve

∆qω = ∆gω −
1

2 |η|2g
< ∇ω,∇ |η|2g >g= 0. (1.0.9)

In fact, ρ and z are uniquely determined up to conformal maps in the plane.

In section two of [10], it is noted that if we insist on mapping the axis of sym-

metry to itself and preserving asymptotic flatness, then ρ is completely fixed.

In addition, we can see that z is unique up to translation. This uniqueness
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justifies our choice to parameterize families of axisymmetric metrics as we

did in Definition 1.0.1

A major obstacle to proving the stability of the Positive Mass Theorem,

perhaps the principal one, is that the ADM mass cannot control regions

within outermost minimizing surfaces. Classic examples depicting why the

Penrose Inequality depends on the area of an outermost minimizing surface

demonstrate this phenomenon. One way to overcome this difficulty, which

was applied in the work of Bray, Finster, Lee, Kath, Huang-Lee-Sormani,

and Allen [2, 8, 12, 1], is to impose conditions which constrain the location,

or prevent the existence, of an outermost minimal surface. We shall follow

this approach in making the following definition.

Definition 1.0.2. Let M be a family of axisymmetric metrics and let η

denote the killing field generating their axisymmetry. Suppose that for each

metric g ∈M we have the following inequality

|η|g
|∇ρ|g

(ρ0, z) ≥ ρ0. (1.0.10)

Then we shall callM a family of area enlarging metrics at ρ0. If the inequality

holds for each ρ0, then we shall simply call the family area enlarging.

Uniqueness of solutions to (1.0.9) implies that the above is a condition

imposed on the familyM and has significance beyond a coordinate condition.

However, it is useful to express the above in terms of cylindrical coordinates.
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In coordinates the condition reads

(α− 2u) (ρ0, z) ≥ 0. (1.0.11)

In the appendix we show that the Schwarzschild solution is area enlarging.

Suppose thatM satisfies condition (1.0.10) for all ρ0. Let δR3 denote the

background Euclidean metric given in the cylindrical coordinates (ρ, z, φ).

Then in Proposition 5.1.4 we show that

Areag(Σ) ≥ AreaδR3 (Σ) (1.0.12)

for axisymmetric surfaces Σ. Together with the Penrose Inequality, the above

area inequality works to constrain the location of outermost minimal surfaces.

In Corollary 5.1.5 we show that if Σ is an axisymmetric outermost minimal

surface which is also a sphere, then

Σ ⊂ ρ−1
(

[0, 2
√

2m)
)
, (1.0.13)

where m is the ADM mass of the metric under consideration.

As in prior work on stability, we must judiciously decide which regions

we will study. In view of the above discussion, the regions

Ω̃ρ1
ρ0

(σ) =
{
ρ0 + σ ≤ ρ ≤ ρ1, |z| ≤

ρ1

2

}
× [0, 2π), (1.0.14)
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for some fixed ρ0 and σ ≥ 0, are natural choices. If σ is identically zero, then

we shall write Ω̃ρ1
ρ0

. Since we mainly work in the orbit space, we shall often

only consider the image of Ω̃ρ1
ρ0

(σ) under the projection map, which is simply

the rectangle

Ωρ1
ρ0

(σ) =
{
ρ0 + σ ≤ ρ ≤ ρ1, |z| ≤

ρ1

2

}
. (1.0.15)

If σ is taken to be zero, then we shall write Ωρ1
ρ0

.

Instead of the area enlarging assumption (1.0.10), we will at first work

with another requirement.

Definition 1.0.3. Let M be a family of axisymmetric metrics. Suppose

that for each metric g ∈M we have the following inequality

∂

∂ρ

(
1

ρ

|η|g
|∇ρ|g

)
≤ 0 (1.0.16)

on the set {ρ = ρ0}. Then we shall call the family radially monotone at ρ0.

If M is radially monotone at each ρ0, then we will simply call M radially

monotone.

This too is a geometric condition on a family of axisymmetric metrics.

In Proposition A.1.7 we show that if g is an axisymmetric metric, ρ is the

solution to the equation (1.0.9), then g is radially monotone if and only if

the level sets of the function ρ form a sub-inverse-mean-curvature flow.

The radial monotonicity condition has a useful expression in cylindrical
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coordinates:

∂(α− 2u)

∂ρ
≤ 0. (1.0.17)

In this form, a similar inequality to the above can be found in section 3.2 of

[5].

One could wonder if there is any relationship between the area enlarging

condition and the radial monotonicity condition. Pointwise, there is no such

relationship. However, if radial monotonicity holds everywhere, then the area

enlarging condition must also hold everywhere, see Proposition A.1.8.

In the appendix, we will show that the Kerr-Newman and axisymmet-

ric geometrostatic metrics satisfy radial monotonicity and the area enlarging

condition, respectively. In fact, the Kerr-Newman metrics satisfy radially

monotonicity strictly, so that small perturbations of the Kerr-Newman met-

rics are also radially monotone. The same is true for small perturbations

of axisymmetric geometrostatic metrics with regards to the area enlarging

condition.

We now state the stability of the Positive Mass theorem in the W 1,p sense.

Theorem 1.0.4. Let M be a family of axisymmetric metrics with nonnega-

tive scalar curvature which is uniformly asymptotically flat outside of radius

R0. Suppose that M is radially monotone at ρ0 and that for each metric in

M, we have

A = B = 0. (1.0.18)

For every ρ1 > max{ρ0, R0}, ε > 0, σ > 0, and 1 ≤ p < 2 there exists a
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δ > 0 such that if the ADM mass of g ∈M is less than δ, then

||g − δR3||W 1,p(Ω̃
ρ1
ρ0

(σ)) < ε, (1.0.19)

and

||q − δR2||W 1,p(Ω
ρ1
ρ0

(σ)) < ε, (1.0.20)

where δR3 denotes the Euclidean metric in cylindrical coordinates, δR2 denotes

the Euclidean metric in the (ρ, z) plane, and q denotes the orbit metric of g

in the (ρ, z) plane. Ω̃ρ1
ρ0

(σ) denotes the cylinder given in (1.0.14) and Ωρ1
ρ0

(σ)

denotes its orbit space.

The assumption that the functions A and B vanish is very likely unneces-

sary, however it does simplify the analysis considerably. That the exponent

p is required to be less than two is natural to the problem at hand. Suppose

we were able to prove an analogous result for p > 2. Then, we would be able

to apply the Sobolev Embedding Theorem to conclude that the convergence

was actually C0 convergence. However, as mentioned before, see [14], there

are counter examples to C0 stability.

It is not yet known if W 1,p convergence implies SWIF convergence. How-

ever, in the course of proving W 1,p stability, we obtain similar estimates to

those Huang-Lee-Sormani use to prove the stability of the Positive Mass The-

orem in the SWIF metric for graphical manifolds [12]. LetM be a family of

three dimensional asymptotically flat graphical manifolds in R4 and let Cr0

denote the infinite cylinder with base a ball of radius r0 about the origin in
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R3 ⊂ R4. Huang-Lee-Sormani studied the regions Ωr0 ⊂M ∈M defined by

Ωr0 := M ∩ Cr0 , (1.0.21)

for some appropriately large r0. Additionally, they assume a uniform diam-

eter bound on the Ωr0 . They then show that as the ADM mass approaches

zero, the regions Ωr0 converge in the SWIF metric to a three dimensional

Euclidean ball in R4,

B(0, r0)× {0}. (1.0.22)

Their proof follows from three assertions. First, they showed that the volumes

of the Ωr0 converge to the volume of B(0, r0). Second, they showed that the

area of ∂Ωr0 approaches the area of ∂B(0, r0). Finally, they showed that

∂Ωr0 ∩ ∂Cr0 Lipschitz converges to ∂B(0, r0)× {0}.

We are able to establish volume convergence for the cylinders Ω̃ρ1
ρ0

(σ)

defined as in (1.0.14).

Theorem 1.0.5. Let M be a family of axisymmetric metrics with nonnega-

tive scalar curvature which is uniformly asymptotically flat outside of radius

R0. Suppose also that M is radially monotone at ρ0. For any constants

ε > 0, σ > 0, and ρ1 > max{ρ0, R0}, there exists a δ > 0 such that if g ∈M

and

m(g) < δ, (1.0.23)
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then

|Ω|+ ε ≥ volg(Ω) ≥ |Ω| − ε (1.0.24)

for any region Ω such that

Ω ⊂ Ω̃ρ1
ρ0

(σ). (1.0.25)

We are also able to establish control over areas inside our designated

regions.

Theorem 1.0.6. Let M be a family of axisymmetric metrics with nonnega-

tive scalar curvature which is uniformly asymptotically flat outside of radius

R0. Suppose also that M is radially monotone at ρ0. For any fixed axisym-

metric surface Σ, constant ε > 0, and constant ρ1 > max{ρ0, R0}, there

exists a δ > 0 such that if m(g) < δ, then

∣∣∣Σ ∩ Ω̃ρ1
ρ0

(σ)
∣∣∣+ ε ≥ Areag

(
Σ ∩ Ω̃ρ1

ρ0
(σ)
)
≥
∣∣∣Σ ∩ Ω̃ρ1

ρ0
(σ)
∣∣∣− ε. (1.0.26)

We obtain an estimate on distances between certain points in Ω̃ρ1
ρ0

(σ)

which can be used to give an upper bound on the diameter of Ω̃ρ1
ρ0

(σ).

Theorem 1.0.7. Let M be a family of axisymmetric metrics with nonnega-

tive scalar curvature which is uniformly asymptotically flat outside of radius

R0. Suppose M is also radially monotone at ρ0. Additionally, assume that

A = B = 0 in the coordinate representations of the metrics under consider-

ation. Suppose we are given ε > 0, σ > 0, and ρ1 > max{ρ0, R0}. There

exists a constant δ > 0 such that if m(g) ≤ δ and x and y are any points
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such that the Euclidean line segment connecting them lies in Ωρ1
ρ0

(σ) × {φ0}

for any φ0, then

dg(x, y) ≤ d(x, y) + ε (1.0.27)

For more general pairs of points x and y in Ω̃ρ1
ρ0

we have a pointwise

estimate on their distance to each other.

Theorem 1.0.8. Let M be a family of axisymmetric metrics with nonnega-

tive scalar curvature which is uniformly asymptotically flat outside of radius

R0. Suppose also that M is radially monotone at ρ0. Additionally, assume

that A = B = 0 in the coordinate representations of the metrics under con-

sideration. Suppose we are given ε > 0 and σ > 0 and points x and y such

that the Euclidean line segment connecting them lies in Ω̃ρ1
ρ0

(σ). There exists

a constant δ > 0 such that if m(g) ≤ δ, then

dg(x, y) ≤ d(x, y) + ε (1.0.28)

Finally, we are able to establish uniform convergence at large distances

from the origin.

Theorem 1.0.9. Let M be a family of axisymmetric metrics with nonnega-

tive scalar curvature which is uniformly asymptotically flat outside of radius

R0. Suppose that M is radially monotone and that for all g ∈M we have

A = B = 0. (1.0.29)
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Let R1 > R0 and let A(R0, R1) denote the coordinate spherical annulus cen-

tered at the origin. For any given 0 < β < 1 and ε > 0 there exists a δ > 0

such that if g ∈M and

m(g) < δ, (1.0.30)

then

||g − δR3||C0,β(A(R0,R1)) < ε. (1.0.31)

These theorems are proven in the final section of this paper after we prove

a series of Lemmas estimating various terms in the coordinate system. All of

the above theorems hold if we assume the area enlarging condition (1.0.10)

instead of radial monotonicity (1.0.16). The only change is that in addition

to assuming (1.0.10), we must assume that our family of manifolds satisfies

a stronger uniform asymptotic falloff than the one given in Definition 1.0.1.

Definition 1.0.10. Let M be an uniformly asymptotically flat family of

metrics. Suppose that in addition to the uniform asymptotic falloff 1.0.1, we

have some uniform τ > 0 such that

|α| ≤ C

r1+τ
. (1.0.32)

Then we shall call M strongly uniformly asymptotically flat.

In the future we would like to prove the Lee-Sormani stability Conjecture

that regions outside outermost minimizing surfaces converge in the SWIF

sense to regions in Euclidean space. Our volume, area, and distance controls

13



should be useful towards such a proof. Here we used an extra condition

(1.0.10) to constrain, a priori, the location of outer most minimal surfaces.

Another approach would be to actually locate outermost minimal surfaces

without any assumption. This was done easily in Lee-Sormani thanks to

spherical symmetry and was a huge challenge in the work of Sormani-Stavrov

[17]. Locating the outermost minimal surfaces in an axisymmetric manifold

is of independent interest and would be worthy of a paper on its own.
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Chapter 2

Background Information

The ADM mass is calculated by taking a limit of integrals over the boundaries

of increasingly large coordinate balls. It is thus unclear how the ADM mass

should control the geometry inside of these balls. In fact, arbitrary local

perturbations of a metric would not change its ADM mass. However, if we

restrict our attention to metrics with nonnegative scalar curvature, then we

are no longer entirely free in our choice of local perturbation. This restores

our hope that the ADM mass can control geometry.

In an attempt to relate ADM mass and the interior geometry, it is natural

to make use of the divergence theorem,

m(g) = lim
R→∞

1

16π

∫
∂BR

(gij,j−gjj,i)νi = lim
R→∞

1

16π

∫
BR

div(gij,j−gjj,i), (2.0.1)

to get an integral over the interior. For now, we are ignoring the question of
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which metric we should use to take the divergence. Intuitively, we think of

scalar curvature as a local energy density. As such, we would like to relate

the divergence term to the scalar curvature. Ideally, the non-negativity of the

scalar curvature should give control over the integral of the divergence term.

This approach can be successfully carried out in the case of axisymmetric

metrics. Furthermore, Witten used a more sophisticated version of this idea

to prove the positive mass theorem for manifolds with spinors [18].

In cylindrical coordinates for axisymmetric metrics we have the following

formula for the scalar curvature [3]:

Rg = 4e2(u−α)

[
∆R3(u− 1

2
α)− 1

2
|∇u|2δ +

1

2ρ

∂α

∂ρ
− ρ2e−2α

8

(
∂B

∂z
− ∂A

∂ρ

)2
]
.

(2.0.2)

Here we can see that the scalar curvature is indeed closely related to a diver-

gence, namely ∆R3(u − α
2
). This observation leads to a very useful formula

for the mass [3],

m(g) =
1

16π

∫
R3

[
e−2(u−α)

[
Rg +

ρ2e−4α+2u

2

(
∂B

∂z
− ∂A

∂ρ

)2
]

+ 2|∇u|2δ

]
ρdρdzdφ.

(2.0.3)

Since all other terms are explicitly nonnegative, if we assume that R ≥ 0,

then the ADM mass immediately gives control over the gradient of u. In an

asymptotically flat metric, u must be arbitrarily small on large coordinate

spheres. It is therefore reasonable to suppose that we can use the fundamental

theorem of calculus to control u everywhere in the manifold. In order to make
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this precise, we will use the following representation formula to express u in

terms of its gradient and its value on large coordinate spheres.

Suppose Ω is a compact region on which the divergence theorem holds

and let Γ be the fundamental solution for the Laplacian. Assume further

that u is a function which is differentiable on CL(Ω). Then we have

u(x) = −
∫
∂Ω

u(y) < ∇Γ(x, y), n > dy+

∫
Ω

< ∇u(y),∇Γ(x, y) > dy. (2.0.4)

In order to see this, we follow the calculations appearing as 2.15 in [11],

except we use the divergence theorem on the vector field Z defined by

Z = u(y)∇Γ(x, y). (2.0.5)

The ease with which we can obtain estimates for u is encouraging, however

there is one more hurdle. If we want to use mass to control the metric, then

we must be able to turn our estimates for u into estimates for eu. Luckily, we

may use the well known Moser-Trudinger inequality [11] to accomplish this.

In view of the coordinate expression for an axisymmetric metric (1.0.3),

we know that if we can control eα−2u as well as eu, then we have achieved

good control over the metric. Although it is less clear, it is possible to use the

mass formula (2.0.3) and the scalar curvature equation (2.0.2) to show that

the ADM mass controls the W 1,p norm of α − 2u. The process is similar to

what we do to estimate u. However, we use Green’s representation formula,

instead of (2.0.4), to express α − 2u as a boundary term plus an integral of

17



its derivatives. We recall Green’s representation formula now.

Let Ω be a compact region on which the divergence theorem holds and let

Γ be the fundamental solution of the Laplacian. Suppose that ω is a twice

differentiable function on CL(Ω). Then we have the following representation

of ω

ω(x) =

∫
∂Ω

[
ω(y)

∂Γ(x, y)

∂ν
− Γ(x, y)

∂ω(y)

∂ν

]
dy+

∫
Ω

Γ(x, y)∆ω(y)dy. (2.0.6)

This result appears in [11] as equation 2.16.

With W 1,p estimates for α−2u in hand, we might hope to use the Moser-

Trudinger inequality to get estimates for eα−2u. Unfortunately, the Moser-

Trudinger inequality doesn’t apply in this case. Luckily, because of axisym-

metry, we are essentially working in two dimensions. This gives us extra

control that does not exist in higher dimensions. In this setting we are able

to prove a result similar to the Moser-Trudinger inequality, which allows us

to turn W 1,p estimates for α− 2u into W 1,p estimates for eα−2u.

In using (2.0.4) and (2.0.6) to control the W 1,p norms of u and α − 2u,

we rely on estimates of the Riesz potential. Recall that the Riesz potential

of a function f over a region Ω, denoted (Vµf)(x), is defined as

(Vµf)(x) =

∫
Ω

|x− y|n(µ−1) f(y)dy, (2.0.7)

for µ ∈ (0, 1]. Let 0 ≤ δ = δ(p, q) = q−1 − p−1 < µ and let ωn denote the

volume of the unit n dimensional ball. The following inequality appears as

18



Lemma 7.12 in [11]:

||(Vµf)||p ≤
(

1− δ
µ− δ

)1−δ

ω1−µ
n |Ω|µ−δ ||f ||q . (2.0.8)
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Chapter 3

First Sobolev Estimates

In this chapter we will see in greater detail the steps needed to estimate the

W 1,p norm of eu using the mass formula (2.0.3). Our end goal is to produce

estimates over the regions Ωρ1
ρ0

(σ), see (1.0.15). In fact, we are always able

to take σ to be zero. To simplify notation, such rectangles will be denoted

by Ωρ1
ρ0

.

To start, the ADM mass only explicitly bounds the L2(R3) norm of ∇u.

The following Lemma demonstrates that this is enough to get W 1,2(Br0)

control over u for a ball of fixed radius r0 about the origin in R3.

Lemma 3.0.11. Let M be a family of axisymmetric metrics with nonnega-

tive scalar curvature which is uniformly asymptotically flat outside of radius

R0, and let Br0 be the ball of radius r0 about the origin. For any ε > 0 there
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exists a δ > 0 such that if g ∈M and

m(g) < δ, (3.0.1)

then

||u||W 1,2(Br0 ) < ε. (3.0.2)

Proof : We note once again that control over ||∇u||L2(Br0 ) is an immedi-

ate consequence of the mass formula and the nonnegative scalar curvature

assumption. In the calculations that follow we will denote the volume of a

three dimensional unit ball by ω3. First, we look at some very large coor-

dinate ball B(0, r1) with r1 > max{r0, R0}. If we let Γ be the fundamental

solution for the Laplacian, then using (2.0.4) we may express u as

u(x) = −
∫
∂B(0,r1)

u(y) < ∇Γ(x, y), n > dy +

∫
B(0,r1)

< ∇u(y),∇Γ(x, y) > dy

(3.0.3)

Taking the absolute value of both sides and using the triangle inequality

on the right hand side shows us that

|u(x)| ≤
∫
∂B(0,r1

|u(y)|
3ω3|x− y|2

dy +

∫
B(0,r1)

|∇u(y)|
3ω3|x− y|2

dy. (3.0.4)

We now integrate |u|2 over B(0, r0) and use the well known inequality

(a+ b)2 ≤ 2(a2 + b2) for a, b ∈ R (3.0.5)
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to obtain

∫
B(0,r0)

|u(x)|2dx ≤ 2

∫
B(0,r0)

(∫
∂B(0,r1)

|u(y)|
3ω3|x− y|2

dy

)2

+

(∫
B(0,r1)

|∇u(y)|
3ω3|x− y|2

dy

)2

dx.

(3.0.6)

To bound the second integral on the right hand side we make use of the

mass formula (2.0.3) and the Riesz potential estimate (2.0.8) with µ = 1
3

and

q = p = 2 to get

∫
B(0,r1)

(∫
B(0,r1)

|∇u(y)|
3ω3|x− y|2

dy

)2

dx ≤ 8πr2
1m. (3.0.7)

We estimate the first integral on the right using uniform asymptotic flatness

1.0.1 as follows:

∫
B(0,r0)

(∫
∂B(0,r1)

|u(y)|
3ω3|x− y|2

dy

)2

≤ 1

9ω2
3

∫
B(0,r0)

(∫
∂B(0,r1)

C

|x− y|2
1

r1

dy

)2

≤ ω3r
3
0C

2r4
1

(r1 − r0)4r2
1

. (3.0.8)

Substituting the above two inequalities into (3.0.6), we obtain

∫
B(0,r0)

|u(x)|2dx ≤ 2

[
C2ω3r

3
0r

4
1

(r1 − r0)4r2
1

+ 8πr2
1m

]
(3.0.9)

If we let r1 grow arbitrarily large, then the first term on the right will become

arbitrarily small. We may counter any growth in the second term on the right

by choosing the mass to be small enough.

The next step is to estimate eu. In order to do that we will apply the
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Moser-Trudinger inequality to u. Let us now recall the exact statement of

the Moser-Trudinger inequality. Let Ω ⊂ Rn and ω ∈ W 1,n
0 (Ω). Then there

exists constants c1 and c2 depending only on n, such that

∫
Ω

exp

((
|ω|

c1||∇ω||n

) n
n−1

)
≤ c2|Ω|. (3.0.10)

This inequality appears as theorem 7.15 in [11]. Lemma 3.0.11 gives W 1,2

control over u, so if we want to apply the Moser-Trudinger inequality, we will

have to work over two dimensional domains. Luckily, we have the following

almost trivial corollary to Lemma 3.0.11.

Corollary 3.0.12. LetM be a family of axisymmetric metrics with nonneg-

ative scalar curvature which is uniformly asymptotically flat outside of radius

R0. Let Ωρ1
ρ0

denote the region

{
ρ0 ≤ ρ ≤ ρ1, |z| ≤

ρ1

2

}
. (3.0.11)

For every ε > 0, ρ0 > 0 and ρ1 > ρ0 there exists a δ > 0 such that if the

ADM mass of g ∈M is less than δ, then

||u||W 1,2(Ω
ρ1
ρ0

) < ε. (3.0.12)

Proof : Consider the region Ω̃ρ1
ρ0

= Ωρ1
ρ0
× [0, 2π). Choose r0 large enough

that

Ω̃ρ1
ρ0
⊂ Br0 . (3.0.13)
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In Ωρ1
ρ0

we know that ρ0 ≤ ρ. Thus, we may observe that

∫
Ωρ

1
ρ0

u2+|∇u|2 dρdz ≤ 1

2πρ0

∫
Ω̃
ρ1
ρ0

[
u2 + |∇u|2

]
ρdρdzdφ ≤ 1

2πρ0

||u||2W 1,2(Br0 ) .

(3.0.14)

Now we may apply Lemma 3.0.11.

We’re now in a position to estimate the W 1,p norm of eu. For the Lp

norm of eu the proof is an almost direct application of the Moser Trudinger

inequality. To estimate the Lp norm of ∇eu = eu∇u, we use Hölder’s inequal-

ity to analyze each term separately For the eu term we will once again apply

the Moser Trudinger inequality. To estimate ∇u we will rely on Corollary

3.0.12.

Lemma 3.0.13. Let M be a flat family of metrics with nonnegative scalar

curvature which is uniformly asymptotically outside of radius R0. Let Ωρ1
ρ0

denote the region {(ρ, z)|ρ0 ≤ ρ ≤ ρ1, |z| ≤ ρ1

2
}. For every ρ1 > ρ0 > 0, ε > 0

and p < 2 there exists a δ > 0 such that if the ADM mass of g ∈ M is less

than δ, then ∣∣∣∣e|u| − 1
∣∣∣∣
W 1,p(Ω

ρ1
ρ0) < ε. (3.0.15)

Proof : Since g is smooth, u is bounded and has bounded derivatives in

Ωρ1
ρ0

, though we have not made any assumption on what these bounds might

be. Thus, e|u| is Lipschitz, and so

∫
Ω
ρ1
ρ0

|∇(e|u| − 1)|p =

∫
Ω
ρ1
ρ0

|∇e|u||p =

∫
Ω
ρ1
ρ0

ep|u| |∇u|p . (3.0.16)
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Now, we let r = 2
p

and apply Hölder’s inequality with r to get

∫
Ω
ρ1
ρ0

ep|u| |∇u|p ≤

(∫
Ω
ρ1
ρ0

er
′p|u|

) 1
r′
(∫

Ω
ρ1
ρ0

|∇u|2
) p

2

. (3.0.17)

Let D(0, r0) denote the two dimensional disk centered about the origin with

radius r0. Choose r0 so that Ωρ1
ρ0
⊂ D(0, r0). We may extend u to a function

ū in W 1,2
0 (D(0, r0)), see theorem 4.7 in [7]. We may choose the extension ū

such that

||ū||W 1,2
0 (D(0,r0)) ≤ K ||u||W 1,2(Ω

ρ1
ρ0

) , (3.0.18)

where the constant K is independent of the function u. A quick application

of the Cauchy-Schwarz inequality gives us the estimate

r′p |ū| ≤ 1

4
(r′pc1 ||∇ū||2)

2
+

(
|ū|

c1 ||∇ū||2

)2

, (3.0.19)

where c1 is the constant appearing in (3.0.10). We may now use the Moser-

Trudinger inequality (3.0.10) to see that

(∫
Ω
ρ1
ρ0

er
′p|u|

) 1
r′

≤
(∫

D(0,r0)

er
′p|ū|
) 1

r′

≤ exp

(
1

4
r′(pc1 ||∇ū||n)2

)
(c2 |D(0, r0)|)

1
r′ .

(3.0.20)

When written entirely in terms of u, the above inequality becomes

(∫
Ω
ρ1
ρ0

er
′p|u|

) 1
r′

≤ exp

[
r′

4

(
Kpc1 ||u||W 1,2(Ω

ρ1
ρ0

)

)2
]

(c2|D(0, r0)|)
1
r′ . (3.0.21)
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Combining this with Corollary (3.0.12) gives

∫
Ω
ρ1
ρ0

|∇e|u||p ≤ exp

[
r′

4

(
Kpc1 ||u||W 1,2(Ω

ρ1
ρ0

)

)2
]

(c2 |D(0, r0)|)
1
r′

(
4m

ρ0

) p
2

(3.0.22)

Now that we have successfully estimated∇(e|u|−1), we turn to estimating

e|u| − 1. We use the expansion of e|u| to get that

∫
Ω
ρ1
ρ0

∣∣e|u| − 1
∣∣p =

∫
Ω
ρ1
ρ0

(
∞∑
1

|u|k

k!

)p

(3.0.23)

Factoring out |u| and over estimating the rest shows that the right hand side

is bounded above by ∫
Ω
ρ1
ρ0

|u|p ep|u| (3.0.24)

Now, we let r = 2
p

and apply Hölder’s inequality to get

∫
Ω
ρ1
ρ0

|u|p ep|u| ≤

(∫
Ω
ρ1
ρ0

|u|2
) p

2
(∫

Ω
ρ1
ρ0

er
′p|u|

) 1
r′

(3.0.25)

Finally, we may once again apply Lemma 3.0.12 and (3.0.21) to obtain the

result.
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Chapter 4

Second Sobolev Estimates

We must now concentrate on estimating α − 2u and eα−2u. We will try to

imitate as closely as possible the steps which let us successfully estimate u

and eu. First, we obtain W 1,p estimates for α − 2u from the mass formula

(2.0.3). Unfortunately, even at this early stage, the process is notably harder

than it was for u.

In our attempt to estimate the W 1,2 norm of u we used a representation

formula to express u in terms of its values on a large sphere and its gradient

in a large ball. Then we used the asymptotic falloff and the mass formula

to control these quantities, respectively. This was a relatively simple process

because ||∇u|| is a term in the mass formula. However, the gradient of α−2u

does not appear directly in the mass formula. Rather, it is the Laplacian of

α − 2u which appears in the mass formula by way of the scalar curvature

equation. We will see the precise nature of this relationship in the following
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lemmas. For now, the important point is that instead of using (2.0.4) to ex-

press α−2u, we should use Green’s representation (2.0.6). It is widely known

that one may replace the fundamental solution Γ in (2.0.6) with a function

G(x, y), the Green’s function of the domain, which vanishes on the boundary

of the domain. This choice simplifies Green’s representation formula signif-

icantly. Unfortunately, the explicit formula for G(x, y) can be complicated

depending on the domain. Thus, although our representation formula has

been simplified, it is difficult to estimate G(x, y). Luckily, we are working

over very simple domains, namely the rectangles Ωρ1
ρ0

. Therefore, a compro-

mise is possible. We may simplify the representation formula for any one

side of the rectangle. Specifically, we may choose a ”Green’s” function which

vanishes, or whose normal derivative vanishes, on one side of the rectangle.

Since we have the least amount of a priori knowledge about the metric near

the axis of symmetry, we will choose to simplify our representation formula

on the side nearest the axis of symmetry.

For the rectangle Ωρ1
ρ0

, let x̄ denote the reflection of the point x about the

vertical line {ρ = ρ0}. We can define the following two functions

HN(x, y) =
1

2π
log(|x− y|) +

1

2π
log(|x̄− y|) (4.0.1)

and

HD(x, y) =
1

2π
log(|x− y|)− 1

2π
log(|x̄− y|). (4.0.2)

A quick check shows that we may replace Γ by either HN or HD in (2.0.6).
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Furthermore, a calculation shows that

∂HN(x, y)

∂ν
|∂Ω

ρ1
ρ0
∩{ρ=ρ0} = 0 (4.0.3)

and

HD(x, y)|∂Ω
ρ1
ρ0
∩{ρ=ρ0} = 0. (4.0.4)

Since we will be integrating against the functions HN and HD in what follows,

and since HN and HD are sums of functions of the form log (|x− y|), it will be

useful in what follows to have an Lp estimate for log (|x− y|) over bounded

regions.

Lemma 4.0.14. Let Ω be a bounded region in R2 and let

r0 = max{diam(Ω), 1}. (4.0.5)

Then for y ∈ cl (Ω) we have

∫
Ω

|log (|x− y|)|k dx ≤ πk!

2k
+ 2π(r0 − 1)r0 log(r0)k (4.0.6)

for positive integers k.
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Proof: We observe that

∫
Ω

|log(|x− y|)|k dx ≤
∫
B(y,r0)

|log(|x− y|)|k dx

=

∫ 1

0

(−1)k2πr log(r)kdr +

∫ r0

1

2πr log(r)kdr (4.0.7)

The second term on the right has the simple estimate

2π(r0 − 1)r0 log(r0)k. (4.0.8)

To estimate the first term, one must carry out the integration. By induction,

we have the following result.

∫ 1

0

(−1)k2πr log(r)kdr =
πk!

2k
. (4.0.9)

With all of this in mind, we begin the process of estimating the W 1,p

norm of α− 2u.

Proposition 4.0.15. Let M be a family of axisymmetric metrics with non-

negative scalar curvature which is uniformly asymptotically flat outside of

radius R0. Suppose in addition that M is radially monotone at ρ0. For ev-

ery ρ1 > ρ0, ε > 0 and p < 2 there exists a δ > 0 such that if the ADM mass

of g ∈M is less than δ, then

||α− 2u||W 1,p(Ω
ρ1
ρ0) < ε (4.0.10)
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Applying Green’s representation formula to α − 2u over the domain Ωρ1
ρ0

gives us

(α− 2u)(x) =

∫
∂Ω

ρ1
ρ0

[
(α− 2u)

∂HN(x, y)

∂ν
−HN(x, y)

∂(α− 2u)

∂ν

]
dy

+

∫
Ω
ρ1
ρ0

HN(x, y)∆(α− 2u)dy. (4.0.11)

The above representation breaks our problem into two pieces. First we must

estimate ∆(α − 2u) over Ωρ1
ρ0

and then we must estimate α − 2u on the

boundary of Ωρ1
ρ0

. The necessary estimates are the content of the following

two lemmas.

Lemma 4.0.16. Let M be a family of axisymmetric metrics with nonnega-

tive scalar curvature which is uniformly asymptotically flat outside of radius

R0. If g is a metric in M and

m(g) ≤ m, (4.0.12)

then

||∆(2u− α)||L1(Ω
ρ1
ρ0

) ≤
4m

ρ0

+
4
√
ρ1m

ρ0

(4.0.13)

for any ρ1 > ρ0 > 0.

Proof : We must relate ∆(α − 2u) to the mass formula. First, we recall
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that the scalar curvature equation is

Rg = 4e2(u−α)

[
∆R3(u− 1

2
α)− 1

2
|∇u|2δ +

1

2ρ

∂α

∂ρ
− ρ2e−2α

8

(
∂B

∂z
− ∂A

∂ρ

)2
]

(4.0.14)

where we have written ∆R3 to emphasize the fact that it is the three dimen-

sional Laplacian which appears, and not the two dimensional Laplacian ∆.

However, if we remember that all of the functions involved don’t depend on

φ, then we can see that

∆R3(u− α

2
) = ∆(u− α

2
) +

1

2ρ

∂(2u− α)

∂ρ
. (4.0.15)

By plugging the above into the scalar curvature equation, we get

Rg = 4e2(u−α)

[
∆(u− 1

2
α)− 1

2
|∇u|2δ +

1

ρ

∂u

∂ρ
− ρ2e−2α

8

(
∂B

∂z
− ∂A

∂ρ

)2
]
.

(4.0.16)

We now solve the scalar curvature equation for ∆(α − 2u) and integrate in

order to arrive at

∫
Ω
ρ1
ρ0

|∆(α− 2u)| dρdz ≤
∫

Ω
ρ1
ρ0

e2(α−u)

2
Rg+|∇u|2δ+

ρ2e−2α

4

(
∂B

∂z
− ∂A

∂ρ

)2

dρdz

+

∫
Ω
ρ1
ρ0

2

ρ

∣∣∣∣∂u∂ρ
∣∣∣∣ dρdz. (4.0.17)

Now, since we are integrating over a region in which ρ ≥ ρ0, we have from
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the mass formula (2.0.3) that

∫
Ω
ρ1
ρ0

e2(α−u)

2
Rg + |∇u|2δ +

ρ2e−2α

4

(
∂B

∂z
− ∂A

∂ρ

)2

dρdz ≤ 4m

ρ0

. (4.0.18)

To estimate the final term on the right hand side of (4.0.17) requires only

a little more work. Namely, if we apply Hölder’s inequality to

∫
Ω
ρ1
ρ0

2

ρ

∣∣∣∣∂u∂ρ
∣∣∣∣ dρdz (4.0.19)

and make the simple estimate
∣∣∣∂u∂ρ ∣∣∣ ≤ |∇u|δ, then we obtain

∫
Ω
ρ1
ρ0

2

ρ

∣∣∣∣∂u∂ρ
∣∣∣∣ dρdz ≤

(∫
Ω
ρ1
ρ0

4

ρ2

) 1
2
(∫

Ω
ρ1
ρ0

|∇u|2δ dρdz

) 1
2

. (4.0.20)

Using the mass formula once more, we see that

(∫
Ω
ρ1
ρ0

4

ρ2

) 1
2
(∫

Ω
ρ1
ρ0

|∇u|2δ dρdz

) 1
2

≤
4
√
ρ1m

ρ0

. (4.0.21)

Putting each of these estimates together gives the desired result.

We now want to estimate boundary terms on ∂Ωρ1
ρ0

. Due to the asymptotic

falloff conditions (1.0.1), it is relatively straight forward to estimate terms on

(∂Ωρ1
ρ0

)−{ρ = ρ0}. It is more difficult to estimate terms on (∂Ωρ1

ρ0
)∩{ρ = ρ0}.

Lemma 4.0.17. Let M be a family of axisymmetric metrics with nonnega-

tive scalar curvature which is uniformly asymptotically flat outside of radius
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R0. Assume that M is also radially monotone at ρ0. For ρ1 > max{ρ0, R0},

if g ∈M and

m(g) ≤ m, (4.0.22)

then

∫
(∂Ω

ρ1
ρ0

)∩{ρ=ρ0}

∣∣∣∣∂(α− 2u)

∂ν

∣∣∣∣ ≤ 4m

ρ0

+
4
√
ρ1m

ρ0

+
6πC

ρ1

, (4.0.23)

where the constant C is the one appearing in Definition 1.0.1.

Proof : It is an easy observation that

∂

∂ν
|∂Ω

ρ1
ρ0
∩{ρ=ρ0} = − ∂

∂ρ
. (4.0.24)

If we write the radial monotonicity condition entirely in terms of coordinate

functions, then we may see that for g ∈M

∂(α− 2u)

∂ρ
(ρ0, z) ≤ 0. (4.0.25)

Thus, we observe that

∫
∂Ω

ρ1
ρ0
∩{ρ=ρ0}

∣∣∣∣∂(α− 2u)

∂ν

∣∣∣∣ = −
∫ ρ1

2

− ρ1
2

∂(α− 2u)

∂ρ
(ρ, z)dz. (4.0.26)

A quick application of Stokes’ Theorem over the region

{ρ0 ≤ ρ, |z| ≤ ρ1

2
} (4.0.27)
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gives

∫ ρ1
2

− ρ1
2

∂(α− 2u)

∂ρ
= −

∫
{ρ0≤ρ,|z|≤ ρ12 }

∆(α− 2u)dρdz +

∫
{ρ≥ρ0,|z|= ρ1

2
}

∂(α− 2u)

∂z
.

(4.0.28)

We may estimate the second integral on the right by plugging in the asymp-

totic estimates (1.0.1). The result is the following inequality

∣∣∣∣∣
∫
{ρ≥ρ0,|z|= ρ1

2
}

∂(α− 2u)

∂z

∣∣∣∣∣ ≤
∫
{ρ≥ρ0,|z|= ρ1

2
}

3C

|(ρ, z)|2
dρ. (4.0.29)

We may see by a straightforward integration that

∣∣∣∣∣
∫
{ρ≥ρ0,|z|= ρ1

2
}

∂(α− 2u)

∂z

∣∣∣∣∣ ≤ 6πC

ρ1

. (4.0.30)

The last piece of the puzzle is the term

∣∣∣∣∣
∫
{ρ0≤ρ,|z|≤ ρ12 }

∆(α− 2u)dρdz

∣∣∣∣∣ ≤
∫
{ρ0≤ρ,|z|≤ ρ12 }

|∆(α− 2u)|dρdz. (4.0.31)

We now use the proof of Lemma 4.0.16 to bound this term. Putting every-

thing together, we get

∫
∂Ω

ρ1
ρ0
∩{ρ=ρ0}

∣∣∣∣∂(α− 2u)

∂ν

∣∣∣∣ ≤ 4m

ρ0

+
4
√
ρ1m

ρ0

+
6πC

ρ1

. (4.0.32)

We have the necessary estimates to obtain W 1,p control over α− 2u.

Proof of Proposition 4.0.15: Consider Ωρ̃1
ρ0

for some ρ̃1 ≥ R0. We also
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choose ρ̃1 to be much larger than ρ1. As before, we let

HN(x, y) =
1

2π
log(|x− y|) +

1

2π
log(|x̄− y|), (4.0.33)

where x̄ is the reflection of x about the line {ρ = ρ0}. Recall that Green’s

representation gives us the following formula for α− 2u:

(α− 2u)(x) =

∫
∂Ω

ρ̃1
ρ0

(α− 2u)(y)
∂HN

∂ν
(x, y)−HN(x, y)

∂(α− 2u)

∂ν
(y)dy

+

∫
Ω
ρ̃1
ρ0

HN(x, y)∆(α− 2u)(y)dy. (4.0.34)

We will imitate the estimates that we made for u in (3.0.12). Namely, we see

that ∫
Ω
ρ1
ρ0

|(α− 2u)(x)|p dx (4.0.35)

is bounded above by

C(p)

∫
Ω
ρ1
ρ0

(∫
∂Ω

ρ̃1
ρ0

∣∣∣∣HN
∂(α− 2u)

∂ν

∣∣∣∣+

∣∣∣∣(α− 2u)
∂HN

∂ν

∣∣∣∣ dy
)p

+

(∫
Ω
ρ̃1
ρ0

|HN∆(α− 2u)| dy

)p

dx, (4.0.36)

for some constant C(p) depending only on p. We estimate each of the three

terms above in turn. For the first two terms, we will break ∂Ωρ̃1
ρ0

into

∂Ωρ̃1
ρ0
− {ρ = ρ0} (4.0.37)
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and

(∂Ωρ̃1
ρ0

) ∩ {ρ = ρ0}. (4.0.38)

Let’s start with (4.0.37). For this piece of the boundary we can use the

uniform asymptotically flat condition to obtain the required estimates. First,

notice that for x in Ωρ1
ρ0

and y in (4.0.37) we have

|HN(x, y)| ≤
log
(
2diam

(
Ωρ̃1
ρ0

))
π

≤ log(2
√

2ρ̃1)

π
, (4.0.39)

since ρ̃1 is much larger than ρ0. From the asymptotic falloff given in Definition

1.0.1, we see that for y in (4.0.37)

∣∣∣∣∂(α− 2u)

∂ν
(y)

∣∣∣∣ ≤ 3C

ρ̃2
1

. (4.0.40)

Thus, we may see that

∫
Ω
ρ1
ρ0

(∫
∂Ω

ρ̃1
ρ0
−{ρ=ρ0}

∣∣∣∣HN(x, y)
∂(α− 2u)

∂ν
(y)

∣∣∣∣ dy
)p

dx ≤
∫

Ω
ρ1
ρ0

(
9 log(2

√
2ρ̃1)C

πρ̃1

)p

dx

≤ ρ2
1

(
3 log(2

√
2ρ̃1)C

ρ̃1

)p

. (4.0.41)

The other term has a similar estimate:

∫
Ω
ρ1
ρ0

(∫
∂Ω

ρ̃1
ρ0
−{ρ=ρ0}

∣∣∣∣(α− 2u)
∂HN

∂ν

∣∣∣∣ dy
)p

dx ≤ ρ2
1

(
6C

ρ̃1 − ρ1

)p
. (4.0.42)
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Using the two estimates above, we see that

∫
Ω
ρ1
ρ0

(∫
∂Ω

ρ̃1
ρ0
−{ρ=ρ0}

∣∣∣∣HN
∂(α− 2u)

∂ν

∣∣∣∣+

∣∣∣∣(α− 2u)
∂HN

∂ν

∣∣∣∣ dy
)p

≤ C(p)

(
ρ2

1

(
3 log(2

√
2ρ̃1)C

ρ̃1

)p

+ ρ2
1

(
6C

ρ̃1 − ρ1

)p)
. (4.0.43)

We can now move to the inner piece of the boundary, (4.0.38). We will

further divide ∂Ωρ̃1
ρ0
∩ {ρ = ρ0} into

∂Ωρ̃1
ρ0
∩ {ρ = ρ0, |z| ≤ ρ1} (4.0.44)

and

∂Ωρ̃1
ρ0
∩ {ρ = ρ0, |z| ≥ ρ1}. (4.0.45)

We now estimate

(∫
Ω
ρ1
ρ0

(∫
∂Ω

ρ̃1
ρ0
∩{ρ=ρ0,|z|≤ρ1}

|HN(x, y)
∂(α− 2u)

∂ν
|dy

)p

dx

) 1
p

. (4.0.46)

Here we apply Minkowski’s inequality for integrals [9] to bound the above by

∫
∂Ω

ρ̃1
ρ0
∩{ρ=ρ0,|z|≤ρ1}

(∫
Ω
ρ1
ρ0

|HN(x, y)
∂(α− 2u)

∂ν
|pdx

) 1
p

dy. (4.0.47)
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We may rewrite this expression as

∫
∂Ω

ρ̃1
ρ0
∩{ρ=ρ0,|z|≤ρ1}

∣∣∣∣∂(α− 2u)

∂ν

∣∣∣∣
(∫

Ω
ρ1
ρ0

|HN(x, y)|pdx

) 1
p

dy. (4.0.48)

In view of Lemma 4.0.17, we must estimate the LP norm of HN(x, y) as a

function of x over Ωρ1
ρ0

for each y in

∂Ωρ̃1
ρ0
∩ {ρ = ρ0, |z| ≤ ρ1}. (4.0.49)

We see that the points x and y are both contained in Ω2ρ1
ρ0

, Which has diam-

eter 2
√

2ρ1. Let

F (x) = x̄. (4.0.50)

Since F is an isometry, if we apply the change of variable formula to F and

note that y = ȳ for y in {ρ = ρ0}, then we may see that for any q, we have

∫
Ω

2ρ1
ρ0

|log (|x̄− y|)|q dx =

∫
F(Ω

2ρ1
ρ0 )
|log (|x− y|)|q dx. (4.0.51)

Thus, we may use (4.0.6) to see that

∫
Ω
ρ1
ρ0

|HN(x, y)| dx ≤
∫

Ω
2ρ1
ρ0

|HN(x, y)| ≤ 1

2
+ 16ρ2

1 log(2
√

2ρ1), (4.0.52)
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and

(∫
Ω
ρ1
ρ0

|HN(x, y)|2 dx

) 1
2

≤

(∫
Ω

2ρ1
ρ0

|HN(x, y)|2 dx

) 1
2

≤ 1

2π

√
2π + 64πρ2

1 log(2
√

2ρ1)2.

(4.0.53)

We do a simple interpolation between the above two estimates to get

(∫
Ω
ρ1
ρ0

|HN(x, y)|p dx

) 1
p

≤
(

1

2
+ 16ρ2

1 log(2
√

2ρ1)

) 2−p
p
(

1

2π

√
2π + 64πρ2

1 log(2
√

2ρ1)2

) 2p−2
p

,

(4.0.54)

We now combine the above with Lemma 4.0.17 to bound (4.0.48) by

[
1

2
+ 16ρ2

1 log(2
√

2ρ1)

] 2−p
p
[

1

2π

√
2π + 64πρ2

1 log(2
√

2ρ1)2

] 2p−2
p
(

4m

ρ0

+
4
√
ρ̃1m

ρ0

+
6πC

ρ̃1

)
(4.0.55)

The term

(∫
Ω
ρ1
ρ0

(∫
∂Ω

ρ̃1
ρ0
∩{ρ=ρ0,|z|≥ρ1}

|HN(x, y)
∂(α− 2u)

∂ν
|dy

)p

dx

) 1
p

(4.0.56)

is much easier to estimate. In fact, for x in Ωρ1
ρ0

and y in ∂Ωρ̃1
ρ0
∩{ρ = ρ0, |z| ≥

ρ1}, we have

|HN(x, y)| ≤ 1

π
max{

∣∣∣log(
ρ1

2
)
∣∣∣ , ∣∣∣log(2

√
2ρ̃1)

∣∣∣}. (4.0.57)
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Once again, combining the above with Lemma 4.0.17 bounds (4.0.56) by

(ρ1)
2
p

π
max{

∣∣∣log(
ρ1

2
)
∣∣∣ , ∣∣∣log(2

√
2ρ̃1)

∣∣∣}(4m

ρ0

+
4
√
ρ̃1m

ρ0

+
6πC

ρ̃1

)
. (4.0.58)

The final piece of the puzzle is the estimate of

∫
Ω
ρ1
ρ0

(∫
Ω
ρ̃1
ρ0

|HN(x, y)∆(α− 2u)(y)| dy

)p

dx. (4.0.59)

Here we may use Minkowski’s inequality for integrals once more to see that

the above is bounded by

∫
Ω
ρ̃1
ρ0

|∆(α− 2u)(y)|

(∫
Ω
ρ1
ρ0

|HN(x, y)|p dx

) 1
p

dy

p

. (4.0.60)

Thus, we may bound (4.0.59) by

∫
Ω
ρ̃1
ρ0

|∆(α− 2u)(y)|

(∫
Ω
ρ̃1
ρ0
∪F(Ω

ρ̃1
ρ0)
|HN(x, y)|p dx

) 1
p

dy

p

. (4.0.61)

Again, using the change of variable formula and (4.0.6), we bound (4.0.59)

by

([
1

2
+ 16ρ̃2

1 log(2
√

2ρ̃1))

] 2−p
p
[

1

2π

√
2π + 64πρ̃2

1 log(2
√

2ρ̃1)2

] 2p−2
p 4m+ 4

√
ρ̃1m

ρ0

)p

.

(4.0.62)
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Putting everything above together shows that

∫
Ω
ρ1
ρ0

|α− 2u|p ≤ C(p)2(4.0.43)+C(p)3 ((4.0.55)p + (4.0.58)p)+C(p)(4.0.62).

(4.0.63)

Thus, for any ε > 0 and ρ1 > ρ0 we can pick an appropriate ρ̃1 and ADM

mass m so that

||α− 2u||L1(Ω
ρ1
ρ0) <

ε

2
. (4.0.64)

We can get similar estimates for ∇(α − 2u) by differentiating the repre-

sentation formula:

∇(α−2u)(x) =

∫
∂Ω

ρ̃1
ρ0

(α−2u)∇x
∂HN

∂ν
−∇xHN(x, y)

∂(α− 2u)

∂ν
+

∫
Ω
ρ̃1
ρ0

(∇xHN)∆(α−2u).

(4.0.65)

We see that

∫
Ω
ρ1
ρ0

|∇(α− 2u)|p ≤ C(p)

∫
Ω
ρ1
ρ0

(∫
∂Ω

ρ̃1
ρ0

∣∣∣∣∂(α− 2u)

∂ν
∇xHN

∣∣∣∣+

∣∣∣∣(α− 2u)∇x
∂HN

∂ν

∣∣∣∣
)p

+

∫
Ω
ρ1
ρ0

(∫
Ω
ρ̃1
ρ0

|∇xHN | |∆(α− 2u)|

)p

. (4.0.66)

As before, we will break ∂Ωρ̃1
ρ0

into (4.0.37) and (4.0.38). We start with

(4.0.37). A quick calculation shows that

|∇xHN | ≤
1

2π

(
1

|x− y|
+

1

|x̄− y|

)
(4.0.67)
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and ∣∣∣∣∇x
∂HN

∂ν

∣∣∣∣ ≤ 3

2π

(
1

|x− y|2
+

1

|x̄− y|2

)
. (4.0.68)

Estimating the integral over (4.0.37) now proceeds as before.

As a first step in estimating the integral over (4.0.38), we note that

∇x
∂HN

∂ν

∣∣∣
{ρ=ρ0}

= 0. (4.0.69)

Next, we again break (4.0.38) into (4.0.44) and (4.0.45). For both pieces we

proceed much as we did before. On (4.0.44) it is crucial that p < 2, since it

is only then that the integral

∫
Ω
ρ1
ρ0

|∇xHN |p (4.0.70)

bounded for all y in (4.0.44). For (4.0.45), the necessary changes in the

argument are straightforward.

Finally, to estimate

∫
Ω
ρ1
ρ0

(∫
Ω
ρ̃1
ρ0

|(∇xHN)∆(α− 2u)|

)p

≤
∫

Ω
ρ̃1
ρ0

(∫
Ω
ρ̃1
ρ0

|(∇xHN)∆(α− 2u)|

)p

(4.0.71)

we may use the Riesz potential estimates (2.0.8) with the appropriate choice

of constants. Thus, for ρ̃1 chosen large enough and m chosen small enough,
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we may conclude that

||α− 2u||W 1,p(Ω
ρ1
ρ0) < ε. (4.0.72)

In the course of proving Proposition (4.0.15) we actually proved a little

more. For future convenience, we record this result as the following corollary.

Corollary 4.0.18. LetM be a family of axisymmetric metrics with nonneg-

ative scalar curvature which is uniformly asymptotically flat outside of radius

R0. Suppose also thatM is radially monotone at ρ0. For any ρ1 > ρ0, ε > 0,

and 1 ≤ p < 2 there exists a δ > 0 such that if g ∈M and

m(g) < δ, (4.0.73)

then ∫
Ω
ρ1
ρ0

|α− 2u|p ≤ ε

ρp0
(4.0.74)

and ∫
Ω
ρ1
ρ0

|∇(α− 2u)|p ≤ ε

ρp0
. (4.0.75)

Having successfully estimated the W 1,p norm of α−2u, we must now turn

to estimating the W 1,p norm of eα−2u. As was noted earlier, control over the

W 1,p norm of α − 2u for 1 ≤ p < 2 falls short of what we need to apply the

Moser-Trudinger inequality to α − 2u. It is thus not immediately clear how

to turn estimates for α − 2u into estimates for eα−2u. Luckily, the special
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nature of the fundamental solution to the Laplacian in two dimensions allows

us to prove a Moser-Trudinger like inequality which we can use on α− 2u.

Lemma 4.0.19. Let Ω be a bounded domain in the plane on which the diver-

gence theorem holds and let Γ be the fundamental solution for the Laplacian.

Suppose we have ψ ∈ C2(Ω) ∩ C1(Ω̄) and ∆ψ ∈ L1(Ω). Let Ωσ denote

= {x ∈ Ω : d(x, ∂Ω) ≥ σ} and let r0 = max{1, diam(Ω)}. Then we have the

estimate:

∫
Ωσ

e|ψ| ≤
(
|Ωσ|+

π ||∆ψ||1
4π − ||∆ψ||1

+ 2π(r0 − 1)r0[r
||∆ψ||

2π
0 − 1]

)
sup
x∈Ωσ

exp

(∫
∂Ω

∣∣∣∣ψ(y)
∂Γ

∂ν
(x, y)

∣∣∣∣+

∣∣∣∣Γ(x, y)
∂ψ

∂ν
(y)

∣∣∣∣ dy) (4.0.76)

Proof : From Green’s representation we have

ψ(x) =

∫
∂Ω

ψ(y)
∂Γ

∂ν
(x, y)− Γ(x, y)

∂ψ

∂ν
(y)dy +

∫
Ω

Γ(x, y)∆ψ(y)dy (4.0.77)

Using the representation formula to rewrite
∫

Ωσ
e|ψ|, we obtain

∫
Ωσ

e|ψ(x)|dx

≤
∫

Ωσ

exp

[∫
∂Ω

∣∣∣∣ψ(y)
∂Γ

∂ν
(x, y)− Γ(x, y)

∂ψ

∂ν
(y)

∣∣∣∣ dy] exp

[∫
Ω

|Γ(x, y)∆ψ(y)| dy
]
dx

(4.0.78)

We bound the first term on the right pointwise by its supremum over Ωσ.
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Then we may take it outside of the integrand.

∫
Ωσ

e|ψ(x)|dx ≤ sup
x∈Ωσ

exp

[∫
∂Ω

∣∣∣∣ψ(y)
∂Γ

∂ν
(x, y)

∣∣∣∣+

∣∣∣∣Γ(x, y)
∂ψ

∂ν
(y)

∣∣∣∣ dy]∫
Ωσ

exp

[∫
Ω

|Γ(x, y)∆ψ(y)| dy
]
dx (4.0.79)

We may now concentrate on estimating

∫
Ωσ

exp

[∫
Ω

|Γ(x, y)∆ψ(y)| dy
]

(4.0.80)

The strategy is to expand the above integral using the Taylor series for the

exponential function and then bound each term appearing in the expansion:

∫
Ωσ

(
e
∫
Ω|Γ(x,y)∆(α−2u)(y)|dy

)
dx =

∞∑
k=0

∫
Ωσ

(∫
Ω
|Γ(x, y)∆ψ(y)| dy

)k
k!

dx.

(4.0.81)

First, recall that the fundamental solution of the Laplacian in two dimensions

is given by

1

2π
log |x− y| (4.0.82)

Second, after observing that Ωσ ⊂ Ω, and pulling constants out, we get the

inequality

∫
Ωσ

∣∣∫
Ω

Γ(x− y)∆ψ(y)dy
∣∣k

k!
≤ 1

k!(2π)k

∫
Ω

(∫
Ω

|∆ψ(y)| |log(|x− y|)| dy
)k

dx

(4.0.83)
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We apply Jensen’s inequality to the integral on the right to obtain

1

(2π)kk!

∫
Ω

(∫
Ω

|log(|x− y|)| |∆ψ(y)| dy
)k

dx

≤ ||∆ψ||
k−1
1

(2π)kk!

∫
Ω

∫
Ω

|log(|x− y|)|k |∆ψ(y)| dydx (4.0.84)

We now use Tonelli’s theorem to switch the order of integration to get

∫
Ω

∫
Ω

|log(|x− y|)|k |∆ψ(y)| dydx =

∫
Ω

|∆ψ(y)|
∫

Ω

|log(|x− y|)|k dxdy

(4.0.85)

Putting (4.0.6), (4.0.85), and (4.0.84) together gives

1

k!

∫
Ω

∣∣∣∣∫
Ω

1

2π
log(|x− y|)∆ψ(y)dy

∣∣∣∣k dx ≤ ||∆ψ||k1(2π)kk!

(
πk!

2k
+ 2π(r0 − 1)r0 log(r0)k

)
(4.0.86)

After a quick application of the Monotone Convergence theorem to the sum-

mation over k from k = 1 to infinity of (4.0.83) we get

∫
Ωσ

e|
∫
Ω Γ(x,y)∆ψ(y)dy|dx ≤ |Ωσ|+

π ||∆ψ||1
4π − ||∆ψ||1

+(r0−1)r0

[
exp

(
log(r0) ||∆ψ||1

2π

)
− 1

]
.

(4.0.87)

We have the following corollary, which is the actual inequality we will

use.

Corollary 4.0.20. Suppose ψ ∈ C2
(
Ωρ1
ρ0

)
∩ C1

(
cl
(
Ωρ1
ρ0

))
and let r0 =

max{1, diam
(
Ωρ1
ρ0

)
}. Then ∫

(Ω
ρ1
ρ0)

σ

e|ψ| (4.0.88)
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is bounded above by

eC(σ,ρ1)||∆ψ||1

(∣∣∣(Ωρ1
ρ0

)
σ

∣∣∣+
π ||∆ψ||1

4π − ||∆ψ||1
+ r2

0[r
||∆ψ||

2π
0 − 1]

)
sup

x∈(Ω
ρ1
ρ0)

σ

exp

(∫
∂Ω

|ψ(y)
∂HN

∂ν
|+ |HN

∂ψ

∂ν
(y)|dy

)
, (4.0.89)

where C(σ, ρ1) = 1
2π

max{|log(σ)| ,
∣∣log(2

√
2ρ1)

∣∣}.
Proof: If we replace Γ by HN in (4.0.77), then the right hand side of

(4.0.79) becomes

sup
x∈(Ω

ρ1
ρ0)

σ

exp

[∫
∂Ω

ρ1
ρ0

∣∣∣∣ψ(y)
∂HN

∂ν

∣∣∣∣+

∣∣∣∣HN
∂ψ

∂ν
(y)

∣∣∣∣ dy +

∫
Ω
ρ1
ρ0

|Γ(x̄, y)∆ψ|

]
∫

(Ω
ρ1
ρ0)

σ

exp

[∫
Ω

|Γ(x, y)∆ψ(y)|dy
]
. (4.0.90)

We see that

sup
x∈(Ω

ρ1
ρ0)

σ

∫
Ω
ρ1
ρ0

|Γ(x̄, y)∆ψ| ≤ C(σ, ρ1) ||∆ψ||L1(Ω
ρ1
ρ0) . (4.0.91)

The corollary now follows from Lemma 4.0.19.

In order to apply Corollary 4.0.20 to α − 2u, we need an L1 bound on

∆(α − 2u) and an uniform bound on the boundary. In Lemma 4.0.16 we

established the necessary L1 bound. Now, we will demonstrate the needed

uniform control on the boundary. The following result is very similar to

Lemma 4.0.17, however, due to technical necessities, the statement and proof
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are slightly different.

Lemma 4.0.21. Let M be a family of axisymmetric metrics with nonnega-

tive scalar curvature which is uniformly asymptotically flat outside of radius

R0. Suppose also that M is radially monotone at ρ0. Let Ωρ1
ρ0

denote the

region

{(ρ, z)|ρ0 ≤ ρ ≤ ρ1, |z| ≤
ρ1

2
}, (4.0.92)

and (Ωρ1
ρ0

)σ denote {x ∈ Ωρ1
ρ0
|d(x, ∂Ωρ1

ρ0
) > σ}. Let ρ1 ≥ R0. If g ∈ M and

the ADM mass of g is less than m, then

sup
x∈(Ω

ρ1
ρ0

)σ

exp

(∫
∂Ω

ρ1
ρ0

∣∣∣∣HN(x, y)
∂(2u− α)

∂ν
(y)

∣∣∣∣+

∣∣∣∣(2u− α)(y)
∂HN

∂ν
(x, y)

∣∣∣∣ dy
)

≤ exp [C(m,σ, ρ1, ρ0)] (4.0.93)

where

C(m,σ, ρ1, ρ0) = max
{∣∣∣log 2

√
2ρ1

∣∣∣ , |log σ|
}(4m+ 4

√
ρ1m

πρ0

+
9C

ρ1

)
+

3C

σ
.

(4.0.94)

Proof : As we observed earlier, for three sides of the rectangle Ωρ1
ρ0

, the

necessary estimates to control the left hand side of (4.0.93) follow from the

uniformly asymptotically flat condition. Let’s make this more precise. First,

consider those pieces of the rectangle parallel to the ρ-axis. Here

∂

∂ν
= ± ∂

∂z
. (4.0.95)
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From the definitions, we know that

∣∣∣∣∂u∂z (y)

∣∣∣∣ ≤ C

|y|2
(4.0.96)

and ∣∣∣∣∂α∂z (y)

∣∣∣∣ ≤ C

|y|2
(4.0.97)

for

|y| ≥ R0. (4.0.98)

We may combine these two inequalities using the triangle inequality to con-

clude that ∣∣∣∣∂(α− 2u)

∂z
(y)

∣∣∣∣ ≤ 3C

|y|2
. (4.0.99)

Analogously, we have

|α− 2u| ≤ 3C

|y|
. (4.0.100)

In fact, the same is true on the final edge, so the above estimates are true on

all of ∂Ωρ1
ρ0
− {ρ = ρ0}.

Armed with these estimates, let’s take a look at the integral

∫
∂Ω

ρ1
ρ0
−{ρ=ρ0}

∣∣∣∣HN(x, y)
∂(α− 2u)

∂ν
(y)

∣∣∣∣+∣∣∣∣(α− 2u)(y)
∂HN

∂ν
(x, y)

∣∣∣∣ dy (4.0.101)

Since the point x is at a distance of at least σ away from the boundary, we

know that

∂HN

∂ν
≤ 1

σπ
(4.0.102)
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and

|HN(x, y)| ≤ 1

π
max

{
| log(2

√
2ρ1)|, | log(σ)|

}
(4.0.103)

To start, we can bound

∫
∂Ω

ρ1
ρ0
−{ρ=ρ0}

∣∣∣∣(α− 2u)(y)
∂HN

∂ν
(x, y)

∣∣∣∣ dy (4.0.104)

from above by ∫
∂Ω

ρ1
ρ0
−{ρ=ρ0}

3C

σπ |y|
dy ≤ 3C

σ
, (4.0.105)

since |y| ≥ ρ1 for y in ∂Ωρ1
ρ0
− {ρ = ρ0}. We now make a similar estimate for

∫
∂Ω

ρ1
ρ0
−{ρ=ρ0}

∣∣∣∣HN(x, y)
∂(α− 2u)

∂ν
(y)

∣∣∣∣ dy. (4.0.106)

As we did before, we may bound this quantity from above by

∫
∂Ω

ρ1
ρ0
−{ρ=ρ0}

3C

π |y|2
max{

∣∣∣log 2
√

2ρ1

∣∣∣ , |log σ|}dy ≤ 3C

ρ1

max
{∣∣∣log 2

√
2ρ1

∣∣∣ , |log σ|
}
.

(4.0.107)

We need to estimate

∫
(∂Ω

ρ1
ρ0

)∩{ρ=ρ0}

∣∣∣∣HN(x, y)
∂(α− 2u)

∂ν

∣∣∣∣ (4.0.108)
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for x ∈ (Ωρ1
ρ0

)σ. Using (4.0.103) and (4.0.17) we get

∫
(∂Ω

ρ1
ρ0

)∩{ρ=ρ0}

∣∣∣∣HN(x, y)
∂(α− 2u)

∂ν

∣∣∣∣ ≤ 1

π
max

{
| log(2

√
2ρ1)|, | log(σ)|

}
(

4m

ρ0

+
4
√
ρ1m

ρ0

+
6πC

ρ1

)
. (4.0.109)

Putting the estimates together gives

sup
x∈(Ω

ρ1
ρ0

)σ

exp

(∫
∂Ω

ρ1
ρ0

∣∣∣∣HN(x, y)
∂(α− 2u)

∂ν
(y)

∣∣∣∣+

∣∣∣∣(α− 2u)(y)
∂HN

∂ν
(x, y)

∣∣∣∣ dy
)

≤ C(m,σ, ρ1, ρ0). (4.0.110)

With all of the above estimates in hand, controlling the W 1,p norm of

eα−2u is relatively straightforward. The technical requirements of Corollary

4.0.20 force us to consider regions Ωρ1
ρ0

(σ) for positive σ, see (1.0.15).

Lemma 4.0.22. Let M be a family of axisymmetric metrics with nonnega-

tive scalar curvature which is uniformly asymptotically flat outside of radius

R0. Let Ωρ1
ρ0

denote the region {(ρ, z)|ρ0 ≤ ρ ≤ ρ1, |z| ≤ ρ1

2
}. Suppose thatM

is also radially monotone at ρ0. For every ρ1 > max{ρ0, R0}, ε > 0, σ > 0,

and 1 ≤ p < 2 there exists a δ > 0 such that if the ADM mass of g ∈ M is

less than δ, then ∣∣∣∣e|α−2u| − 1
∣∣∣∣
W 1,p(Ω

ρ1
ρ0

(σ)) < ε. (4.0.111)

Proof : By assumption, α− 2u is bounded and has bounded derivatives,

although we make no assumption on what these bounds might be. Thus, we
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have that e|α−2u| is Lipschitz As in Lemma 3.0.13, we get

∫
Ω
ρ1
ρ0

(σ)

∣∣∇e|α−2u| − 1
∣∣p ≤ ∫

Ω
ρ1
ρ0

(σ)

|∇(α− 2u)|p ep|α−2u|. (4.0.112)

Let r > 1 be such that rp < 2. Applying Hölder’s inequality to the above

gives (∫
Ω
ρ1
ρ0

(σ)

|∇(α− 2u)|rp
) 1

r
(∫

Ω
ρ1
ρ0

(σ)

er
′p|α−2u|

) 1
r′

, (4.0.113)

where r′ is the conjugate exponent to r. In order to control the left hand

side we appeal to Proposition 4.0.15. In order to bound the right hand side

we first note that

Ωρ1
ρ0

(σ) ⊂
(
Ωρ1+σ
ρ0

)
σ
. (4.0.114)

Thus ∫
Ω
ρ1
ρ0

(σ)

er
′p|α−2u| ≤

∫
(Ω

ρ1+σ
ρ0 )

σ

er
′p|α−2u|. (4.0.115)

We may apply Corollary 4.0.20 to the function r′p(α−2u) and modify Lemma

4.0.21 as necessary in order to see that

∫
(Ω

ρ1+σ
ρ0 )

σ

er
′p|α−2u| (4.0.116)

is uniformly bounded for all m small enough. Thus, combining the two

estimates above shows that

∣∣∣∣∇e|α−2u|∣∣∣∣
Lp(Ω

ρ1
ρ0

(σ)) <
ε

2
(4.0.117)
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for sufficiently small m. Similarly, for m small enough, we can show that

∣∣∣∣e|α−2u|∣∣∣∣
Lp(Ω

ρ1
ρ0

(σ)) <
ε

2
. (4.0.118)

54



Chapter 5

Results Obtained

5.1 Radial Monotone Case

In this section we will apply the lemmas to prove the theorems stated in

the introduction. Most of the above lemmas analyzed functions over the

rectangles Ωρ1
ρ0

. Now we move our focus to the cylindrical annuli

Ω̃ρ1
ρ0

(σ) = Ωρ1
ρ0

(σ)× [0, 2π), (5.1.1)

see (1.0.14). Except for the final theorem, this change of focus doesn’t involve

any new difficulties.

5.1.1 Proof of Theorem 1.0.4:

We first restate the theorem.
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Theorem 5.1.1. Let M be a family of axisymmetric metrics with nonnega-

tive scalar curvature which is uniformly asymptotically flat outside of radius

R0. Suppose that M is radially monotone at ρ0 and that for each metric in

M, we have

A = B = 0. (5.1.2)

For every ρ1 > max{ρ0, R0}, ε > 0, σ > 0, and 1 ≤ p < 2 there exists a

δ > 0 such that if the ADM mass of g ∈M is less than δ, then

||g − δR3||W 1,p(Ω̃
ρ1
ρ0

(σ)) < ε, (5.1.3)

and

||q − δR2 ||W 1,p(Ω
ρ1
ρ0

(σ)) < ε, (5.1.4)

where δR3 denotes the Euclidean metric in cylindrical coordinates, δR2 denotes

the Euclidean metric in the (ρ, z) plane, and q denotes the orbit metric of g

in the (ρ, z) plane. Ω̃ρ1
ρ0

(σ) denotes the cylinder given in (1.0.14) and Ωρ1
ρ0

(σ)

denotes its orbit space.

Proof : Since we have assumed that A = B = 0, in order to show that g

is W 1,p close to δR3 for small ADM mass, we need only show that

∣∣∣∣ρ2e−2u − ρ2
∣∣∣∣
W 1,p(Ω̃

ρ1
ρ0

(σ)) < ε (5.1.5)
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and ∣∣∣∣e2α−2u − 1
∣∣∣∣
W 1,p(Ω̃

ρ1
ρ0

(σ)) < ε (5.1.6)

if the ADM mass is sufficiently small. For (5.1.5) this follows quickly from

Lemma 3.0.13. Demonstrating (5.1.6) is only a little more difficult.

As before, we see that

∫
Ω̃
ρ1
ρ0

∣∣e2(α−u) − 1
∣∣ ≤ ∫

Ω̃
ρ1
ρ0

|2α− 2u|p e2p(α−u). (5.1.7)

After applying Hölder’s inequality to the above with some r > 1 such that

rp < 2 we obtain

(∫
Ω̃
ρ1
ρ0

|2(α− u)|rp
) 1

r
(∫

Ω̃
ρ1
ρ0

e2pr′(α−u)

) 1
r′

. (5.1.8)

In order to estimate the above, we first observe that

2(α− u) = 2u+ 2(α− 2u). (5.1.9)

We can now estimate the left hand term using the triangle inequality, Corol-

lary 3.0.12, and Proposition 4.0.15 for the exponent rp < 2. For the right

hand side we have

∫
Ω̃
ρ1
ρ0

e2pr′(α−u) =

∫
Ω̃
ρ1
ρ0

e2pr′ue2pr′(α−2u). (5.1.10)

After applying Hölder’s inequality, we may use Lemma 4.0.22 and Lemma
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3.0.13 applied to 2pr′u and 2pr′(α− 2u), respectively, to bound the Lp norm

of e2α−2u. In fact, in the same way, for any fixed q we can bound the Lq

norm of e2α−2u for all m small enough, depending on ρ1, ρ0, and q. For what

follows, we pick q large enough, depending on p. If we take the gradient of

e2α−2u we get

(e2α−2u)∇(2α− 2u) = e2α−2u(∇2u+ 2∇(α− 2u)). (5.1.11)

We again use Hölder’s inequality, Lemma 3.0.13, Proposition 4.0.15 and

Lemma 4.0.22 to control the Lp norm of ∇e2α−2u.

5.1.2 Proof of Theorem 1.0.5:

Let us first restate the theorem:

Theorem 5.1.2. Let M be a family of axisymmetric metrics with nonnega-

tive scalar curvature which is uniformly asymptotically flat outside of radius

R0. Suppose also that M is radially monotone at ρ0. For any constants

ε > 0, σ > 0, and ρ1 > max{ρ0, R0}, there exists a δ > 0 such that if g ∈M

and

m(g) < δ, (5.1.12)

then

|Ω|+ ε ≥ volg(Ω) ≥ |Ω| − ε (5.1.13)

58



for any region Ω such that

Ω ⊂ Ω̃ρ1
ρ0

(σ). (5.1.14)

Proof : A quick calculation shows that the volume form of g in cylindrical

coordinates is

ρe2α−3udρdzdφ. (5.1.15)

Thus, we have that

|volg(Ω)− |Ω|| =
∣∣∣∣∫

Ω

(
e2α−3u − 1

)
ρdρdzdφ

∣∣∣∣ ≤ ∫
Ω̃
ρ1
ρ0

∣∣e2α−3u − 1
∣∣ ρdρdzdφ.

(5.1.16)

As we have done before, we can see that

∫
Ω̃
ρ1
ρ0

∣∣e2α−3u − 1
∣∣ ρdρdzdφ ≤ ∫

Ω̃
ρ1
ρ0

|2α− 3u| e|2α−3u|ρdρdzdφ. (5.1.17)

We may now apply Hölder’s inequality to the above in order to see that

∫
Ω̃
ρ1
ρ0

|2α− 3u| e|2α−3u| ≤

(∫
Ω̃
ρ1
ρ0

|2α− 3u|p
) 1

p
(∫

Ω̃
ρ1
ρ0

ep
′|2α−3u|

) 1
p′

, (5.1.18)

where p and p′ are conjugate exponents and 1 ≤ p < 2. We may use the

triangle inequality to make the estimate

(∫
Ω̃
ρ1
ρ0

|2α− 3u|p
) 1

p

≤ ||u||W 1,p + 2 ||α− 2u||W 1,p . (5.1.19)

We may combine Corollary 3.0.12 and Proposition 4.0.15 to control the above.

59



For the exponential term, we use the estimate

ep
′|2α−3u| ≤ ep

′|u|e2p′|α−2u| (5.1.20)

and Hölder’s inequality once more to see that

∫
Ω̃
ρ1
ρ0

ep
′|2α−3u| ≤

(
e2p′|u|

) 1
2

(∫
Ω̃
ρ1
ρ0

e4p′|α−2u|

) 1
2

. (5.1.21)

We now wish to apply Lemma 3.0.13 and 4.0.22 to the above to see that

it is uniformly bounded for m small enough, depending on ρ1, ρ0 and p.

Combining the two estimates finishes the proof.

5.1.3 Proof of Theorem 1.0.6:

Let us first restate the theorem.

Theorem 5.1.3. Let M be a family of axisymmetric metrics with nonnega-

tive scalar curvature which is uniformly asymptotically flat outside of radius

R0. Suppose also that M is radially monotone at ρ0. For any fixed axisym-

metric surface Σ, constant ε > 0, and constant ρ1 > max{ρ0, R0}, there

exists a δ > 0 such that if m(g) < δ, then

∣∣∣Σ ∩ Ω̃ρ1
ρ0

(σ)
∣∣∣+ ε ≥ Areag

(
Σ ∩ Ω̃ρ1

ρ0
(σ)
)
≥
∣∣∣Σ ∩ Ω̃ρ1

ρ0
(σ)
∣∣∣− ε. (5.1.22)

Proof : Let s be a fixed curve in the (ρ, z) plane representing an axisym-

60



metric surface, which we will call Σ. A calculation shows that the area form

associated with Σ is

ρ ◦ s(t)e(α−2u)◦s |ṡ|δ dtdφ. (5.1.23)

Note that the Euclidean area form for Σ is

ρ ◦ s(t) |ṡ|δ dtdφ. (5.1.24)

From Lemma 4.0.22 we deduce that for any ε > 0

∣∣∣∣ρeα−2u − ρ
∣∣∣∣
W 1,1(Ω

ρ1
ρ0

(σ)) < ε, (5.1.25)

if the ADM mass is small enough. Now, the curve segment s ∩ Ωρ1
ρ0

(σ) is

part of the boundary of some region in Ωρ1
ρ0

(σ). Thus, we may use the trace

inequality [7] to conclude that

∣∣∣∣ρeα−2u − ρ
∣∣∣∣
L1(s∩Ω

ρ1
ρ0) < ε. (5.1.26)

This proves the theorem.

If the familyM is area enlarging everywhere, then we also have a stronger

lower bound on the area of axisymmetric surfaces than the one given above.

Proposition 5.1.4. Let g be an axisymmetric metric. Let (ρ, z, φ) be the

cylindrical coordinates for g, let δR3 be the flat metric in cylindrical coordi-

nates, and let Σ be a C1 axisymmetric surface. If g is area enlarging, then
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we have

Areag(Σ) ≥ AreaδR3 (Σ) (5.1.27)

Proof : Let Σ be a C1 axisymmetric surface. Let s(t) be the C1 curve in

the (ρ, z) plane which, when revolved around the ρ-axis, gives Σ. We get the

following map

(t, φ)→ (s(t), φ) (5.1.28)

from I× [0, 2π) to Σ. Let Ag denote the area form of the surface with respect

to the metric induced by g, and let AδR3 denote the area form induced by the

background Euclidean metric. Then using (5.1.23) and (5.1.24) we see that

Ag = eα−2uAδ3
R
. (5.1.29)

In coordinates, the area enlarging condition is equivalent to the nonnegativity

of α−2u. Thus, we know that eα−2u is greater than 1. The result now follows.

We may combine the well known Penrose Inequality with the above propo-

sition to constrain the location of outer most minimal surfaces.

Corollary 5.1.5. LetM be a family of uniformly asymptotically flat metrics.

Suppose M is either radially monotone or area enlarging. Let g be a metric

in M and Σ be the outermost minimal surface. If Σ is axisymmetric and

topologically a sphere, and

m(g) ≤ m, (5.1.30)
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then

Σ ⊂ ρ−1
(

[0, 2
√

2m)
)
. (5.1.31)

Proof : Let

ρ0 = max{ρ : (ρ, z) ∈ Σ}, (5.1.32)

let x0 be a point in Σ point at which ρ attains the maximum ρ0, and let

[x0] denote its orbit under the killing field. From the Penrose Inequality, we

know that

m ≥
√
Areag(Σ)

16π
. (5.1.33)

Since Σ is axisymmetric and topologically a sphere, it must be represented in

the (ρ, z) plane by a curve γ which intersects the axis of symmetry twice. In

particular, γ must emanate from the axis, then touch the point [x0] and then

make its way back to the axis. Let Dx0 denote the disk represented by a line

connecting the axis to the point [x0]. Since this disk has minimal Euclidean

area among axisymmetric surfaces with boundary [x0], we may conclude that

AreaδR3 (Σ) > 2AreaδR3 (Dx0) = 2πρ2
0. (5.1.34)

Thus, combining the Penrose inequality with the above and the area enlarging

inequality (5.1.27) gives

m >
ρ0

2
√

2
. (5.1.35)

If the metric g in the above has positive scalar curvature, then it is a
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well known result that the outermost minimal surface must be a sphere. The

author does not know if in an axisymmetric metric an outermost minimal

surface must also be axisymmetric, though it does seem plausible.

5.1.4 Proof of Theorems 1.0.7 and 1.0.8

Theorem 5.1.6. Let M be a family of axisymmetric metrics with nonnega-

tive scalar curvature which is uniformly asymptotically flat outside of radius

R0. Suppose M is also radially monotone at ρ0. Additionally, assume that

A = B = 0 in the coordinate representations of the metrics under consider-

ation. Suppose we are given ε > 0, σ > 0, and ρ1 > max{ρ0, R0}. There

exists a constant δ > 0 such that if m(g) ≤ δ and x and y are any points

such that the Euclidean line segment connecting them lies in Ωρ1
ρ0

(σ) × {φ0}

for any φ0, then

dg(x, y) ≤ d(x, y) + ε (5.1.36)

Proof : We use the extension theorem for Sobolev functions, appearing

as theorem 4.7 in [7]. Following the notation of [7], if we let U = Ωρ1
ρ0

(Σ),

V = 2Ωρ1
ρ0

(Σ), and p = 1, then we may see that there is a constant K,

depending on Ωρ1
ρ0

(σ), and extensions of the functions eα−2u−1, also denoted

eα−2u − 1, such that

∣∣∣∣eα−u − 1
∣∣∣∣
W 1,1(R2)

≤ K
∣∣∣∣eα−u − 1

∣∣∣∣
W 1,1(Ω

ρ1
ρ0

(σ)) . (5.1.37)

In order to obtain an upper estimate for dg(x, y), it suffices to estimate
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the length of one curve connecting the points x and y. Let γxy denote the

Euclidean line in Ωρ1
ρ0

(σ)×{φ0} connecting x to y parameterized by Euclidean

arc length In orbit space

γxy(t) =
(
γρxy(t), γ

z
xy(t)

)
. (5.1.38)

Every such curve lies on the boundary of a square of side length the diameter

of Ωρ1
ρ0

(σ). All such squares are rotations or translations of each other. Thus,

there exists a single constant C such that if Ω is a square with side length

the diameter of Ωρ1
ρ0

(σ), then the trace inequality holds with constant C:

||ω||L1(∂Ω) ≤ C ||ω||W 1,1(Ω) . (5.1.39)

Let lg(γ) be the length of γ as measured in the metric g. Then we have

lg(γ) =

∫ d(x,y)

0

e(α−u)◦γ(t)dt. (5.1.40)

We now use the trace inequality [7] to see that

|d(x, y)− lg(γ)| ≤
∫ d(x,y)

0

∣∣e(α−u)◦γ(t) − 1
∣∣ dt ≤ ∫

∂Ω

∣∣eα−u − 1
∣∣ ≤ C

∣∣∣∣eα−u − 1
∣∣∣∣
W 1,1(Ω)

,

(5.1.41)
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where γ lies on the boundary of Ω. Furthermore, we have

∣∣∣∣eα−u − 1
∣∣∣∣
W 1,1(Ω)

≤
∣∣∣∣eα−u − 1

∣∣∣∣
W 1,1(R2)

≤ K
∣∣∣∣eα−u − 1

∣∣∣∣
W 1,1(Ω

ρ1
ρ0

(σ)) .

(5.1.42)

We may now use Theorem 1.0.4 to conclude that

|d(x, y)− lg(γ)| < ε (5.1.43)

for small enough ADM mass.

Very similarly, we can prove a pointwise upper bound on dg(x, y) for more

general x and y in Ω̃ρ1
ρ0

.

Theorem 5.1.7. Let M be a family of axisymmetric metrics with nonnega-

tive scalar curvature which is uniformly asymptotically flat outside of radius

R0. Suppose also that M is radially monotone at ρ0. Additionally, assume

that A = B = 0 in the coordinate representations of the metrics under con-

sideration. Suppose we are given ρ1 > max{ρ0, R0, ε > 0 and σ > 0 and

points x and y such that the Euclidean line segment connecting them lies in

Ω̃ρ1
ρ0

(σ). There exists a constant δ > 0 such that if m(g) ≤ δ, then

dg(x, y) ≤ d(x, y) + ε (5.1.44)

Proof: As before, let γ be the Euclidean line connecting x to y. Then
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we have that

|lg(γxy)− 1| ≤
∫ d(x,y)

0

∣∣∣∣√e2(α−u)◦γ
(
(γ′ρ)

2 + (γ′z)
2
)

+ γ2
ρe
−2u◦γ(γ′φ)2 − 1

∣∣∣∣ dt.
(5.1.45)

Let

Z = eα−u
(
γ′ρ
∂

∂ρ
+ γ′z

∂

∂z

)
+ e−uγ′φ

∂

∂φ
. (5.1.46)

Using the reverse triangle inequality, we observe that

||Z| − 1| = ||Z| − |γ′|| ≤ |Z − γ′| , (5.1.47)

where we are working with the Euclidean metric in cylindrical coordinates.

Thus, we may estimate the above integral by

∫ d(x,y)

0

√
(e(α−u)◦γ − 1)

2 (
(γ′ρ)

2 + (γ′z)
2
)

+ (e−u◦γ − 1)2 γ2
ρ(γ
′
φ)2dt. (5.1.48)

Using the triangle inequality and the bounds

(γ̃′ρ)
2 + (γ̃′z)

2 ≤ 1, (5.1.49)

and ∣∣γργ′φ∣∣ ≤ 1, (5.1.50)
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we see that the above is bounded in turn by

∫ d(x,y)

0

∣∣e(α−u)◦γ − 1
∣∣ dt+

∫ d(x,y)

0

∣∣e−u◦γ − 1
∣∣ dt. (5.1.51)

Let γ̃ be the projection of γ to the (ρ, z) plane. γ̃ lies in the boundary of a

region Ω. Since u and α don’t depend on φ, we see that u ◦ γ = u ◦ γ̃ and

α ◦ γ = α ◦ γ̃. We can now use the trace theorem, and then apply Theorem

1.0.4 as we did before to show that for ADM mass small enough, we have

∫ d(x,y)

0

∣∣e(α−u)◦γ̃ − 1
∣∣ dt+

∫ d(x,y)

0

∣∣e−u◦γ̃ − 1
∣∣ dt < ε. (5.1.52)

5.1.5 Proof of Theorem 1.0.9

We restate the theorem.

Theorem 5.1.8. Let M be a family of axisymmetric metrics with nonnega-

tive scalar curvature which is uniformly asymptotically flat outside of radius

R0. Suppose that M is radially monotone and that for all g ∈M we have

A = B = 0. (5.1.53)

Let R1 > R0 and let A(R0, R1) denote the coordinate spherical annulus cen-

tered at the origin. For any given 0 < β < 1 and ε > 0 there exists a δ > 0

such that if g ∈M and

m(g) < δ, (5.1.54)
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then

||g − δR3||C0,β(A(R0,R1)) < ε. (5.1.55)

Proof: Since we have assumed that A = B = 0, the proof will be

established if we can show that

∣∣∣∣e2α−2u − 1
∣∣∣∣
C0,β(A(R0,R1))

< ε (5.1.56)

and ∣∣∣∣e−2u − 1
∣∣∣∣
C0,β(A(R0,R1))

< ε (5.1.57)

for small enough ADM mass. The above inequalities will follow if we can

show that

||α− u||C0,β(A(R0,R1)) < ε̃ (5.1.58)

and

||u||C0,β(A(R),R1) < ε̃ (5.1.59)

for small enough ADM mass, where ε̃ depends on ε above. Using the triangle

inequality, we see that it is sufficient to bound the C0,β norms of u and

α − 2u. These bounds are the content of Lemma 5.1.9 and Lemma 5.1.13

below, respectively.

Lemma 5.1.9. Suppose M is a collection of axisymmetric metrics which

is uniformly asymptotically flat outside a ball of radius R0. Let u be the

function appearing in the axisymmetric coordinate representation of g. Let
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R1 be greater than R0 and A(R0, R1) be the spherical annulus centered at the

origin. For ε > 0 and 0 < β0 < 1 there exists a δ > 0 such that if g ∈ M

and

m(g) < δ, (5.1.60)

then

||u||C0,β(A(R0,R1)) < ε. (5.1.61)

Proof : Since we are working in the asymptotically flat regime, we have

uniform upper bounds on the C1(A(R0, R1)) norms of the metric functions.

From Lemma 3.0.11 we may bound the W 1,2(A(R0, R1)) norm of u. We now

interpolate between these two estimates to bound the W 1,q norm of u for

arbitrarily large q. Specifically, we write

∫
A(R0,R1)

uq =

∫
A(R0,R1)

u2uq−2 ≤ ||u||q−2
∞

∫
A(R0,R1)

u2 (5.1.62)

We may do the same for the derivatives of u. In the end, we get the following

bounds

||u||q ≤ ||u||
2
q

2 ||u||
1− 2

q
∞ (5.1.63)

and

||∇u||q ≤ ||∇u||
2
q

2 ||∇u||
1− 2

q
∞ . (5.1.64)

By assumption ||u||∞ + ||∇u||∞ ≤ C. Furthermore, by Lemma 3.0.11, we

know ||u||W 1,2(A(R0,R1)) < ε̃ for sufficiently small m. Thus, we obtain the
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estimate

||u||W 1,q ≤ C1− 2
q ε̃

2
q . (5.1.65)

We may now choose q large enough and appeal to the Sobolev Embedding

Theorem to get C0,β0 bounds on u for β0 < 1.

Remark 5.1.10. It is important to note that we didn’t use the hypothesis

of radial monotonicity in the above. We only need radial monotonicity to

control α− 2u.

We will try to produce similar uniform estimates for α − 2u. However,

as before, the process is harder. Whereas for u we started off with W 1,p
loc (R3)

control, for α−2u we only have W 1,p
loc (R2

+) control. Even worse, the estimates

we were able to prove become weaker as we approach the axis {ρ = 0}, see

Corollary 4.0.18. In order to work our way around this conundrum, we must

use the extra factor of ρ present in integrating over BR in R3 to control the

bad behavior seen in Corollary 4.0.18.

Lemma 5.1.11. Let f be a measurable function on Ωρ1

0 . Suppose for each t

we have the estimate ∫
Ω
ρ1
t

|f | ≤ ε

tq
(5.1.66)

for some ε > 0 and q > 0. Suppose σ > q. Then, there exists a constant,

denoted C(σ, q), depending only on σ and q such that

∫
Ω
ρ1
0

ρσ |f | ≤ C(σ, q)ε. (5.1.67)
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Proof : Let tn = 2−nρ1 and let Ωtn,tn−1 be the following rectangle.

Ωtn,tn−1 = {tn < ρ ≤ tn−1, |z| ≤
ρ1

2
} (5.1.68)

From the Monotone Convergence Theorem we see that

∫
Ω
ρ1
ρ0

ρσ |f |p =

∫
Ω0,t0

ρσ |f |p =
∞∑
1

∫
Ωtn,tn−1

ρσ |f |p . (5.1.69)

We now make the estimate

∫
Ωtn,tn−1

ρσ |f |p ≤ tσn−1

ε

tqn
= 2σρσ−q1 (2σ−q)−nε. (5.1.70)

This gives a convergent series so long as σ > q. In total, we have the estimate

∫
Ω0,t0

ρσ |f |p ≤ C(σ, q)ε. (5.1.71)

We now make use of the above lemma to control the W 1,1 norm of α−2u

over the ball of radius R about the origin in R3.

Lemma 5.1.12. Let M be a family of axisymmetric metrics which is uni-

formly asymptotically flat outside of radius R0. Suppose that M is also a

radially monotone family of metrics. For any R and ε > 0 there exists a

δ > 0 such that if g ∈M and

m(g) < δ, (5.1.72)
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then

||α− 2u||W 1,1(BR) < ε. (5.1.73)

Proof : Let DR be the two dimensional half disk of radius R about the

origin. Then ∫
BR

|α− 2u| = 2π

∫
DR

ρ |α− 2u| (5.1.74)

and ∫
BR

|∇(α− 2u)| = 2π

∫
DR

ρ |∇(α− 2u)| . (5.1.75)

For some µ > 0, to be specified later, we rewrite the first quantity as

∫
DR

ρ−µρ1+µ |α− 2u| . (5.1.76)

Let 1 < q < 2 and q′ be conjugate exponents. We apply Hölder’s inequality

to the above to get

(∫
DR

ρ−µq
′
) 1

q′
(∫

DR

ρ(1+µ)q |α− 2u|q
) 1

q

. (5.1.77)

Choose µ small enough that

µq′ < 1. (5.1.78)

We may pick large enough that DR ⊂ Ωρ1

0 . From Corollary 4.0.18 and Lemma

5.1.11, we see that for some constant C(µ, q, R),

∫
DR

ρ |α− 2u|p ≤ C(µ, q, R)ε (5.1.79)
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if m is chosen small enough.The same argument can be made for

∫
DR

ρ |∇(α− 2u)| . (5.1.80)

We now make an estimate on the uniform norm of α − 2u similar to

Lemma 5.1.9.

Lemma 5.1.13. Suppose M is a collection of axisymmetric metrics which

is uniformly asymptotically flat outside a ball of radius R0. Let R1 be greater

than R0 and A(R0, R1) be the spherical annulus centered at the origin. For

ε > 0 and 0 < β < 1 there exists a δ > 0 such that if g ∈M and

m(g) < δ, (5.1.81)

then

||α− 2u||C0,β(A(R0,R1)) < ε. (5.1.82)

Proof: We imitate the proof of Lemma 5.1.9. As before, we write

∫
A(R0,R1)

|α− 2u|q ≤ ||α− 2u||q−1
∞

∫
A(R0,R1)

|α− 2u| . (5.1.83)

We also have

∫
A(R0,R1)

|∇(α− 2u)|q ≤ ||∇(α− 2u)||q−1
∞

∫
A(R0,R1)

|∇(α− 2u)| . (5.1.84)
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By the asymptotic flatness assumption, we know that

||α− 2u||∞ + ||(α− 2u)||∞ ≤ C (5.1.85)

For some C depending only on the uniform falloff in Definition 1.0.1. Thus,

for any exponent q we can use Lemma 5.1.12 to control the Sobolev norm

||α− 2u||W 1,q(A(R0,R1)) by the ADM mass. Using the Sobolev embedding the-

orem, we see that

||α− 2u||C0,β ≤ C ||α− 2u||
1
q

W 1,1(A(R0,R1)) , (5.1.86)

where β = 1 − 3
q
, the constant C depends only on the uniform falloff in

Definition 1.0.1, the region A(R0, R1), and q. Now we can use Lemma 5.1.12

to control the uniform norm α− 2u on A (R0, R1).

5.2 Area Enlarging Case

We now show that all the theorems stated hold when we assume our family of

uniformly asymptotically flat metrics is area enlarging and strongly uniformly

asymptotically flat, instead of radially monotone. The only steps required

are to prove a lemma analogous to 4.0.17 and a proposition analogous to

4.0.15. The main difference between the radially monotone case and the area

enlarging one is in the choice of function for Green’s representation formula.

Instead of working with HN(x, y), we will use HD(x, y) (4.0.2). We also focus
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on slightly different rectangles,

ΩL
ρ0ρ1

:= {(ρ, z) : ρ0 ≤ ρ ≤ ρ1, |z| ≤
L

2
}. (5.2.1)

We now prove the first key lemma for the area enlarging and strongly uni-

formly asymptotically flat case.

Lemma 5.2.1. LetM be a family of axisymmetric metrics which is strongly

uniformly asymptotically flat outside of radius R0. Suppose also that M is

area enlarging at ρ0. For any ρ1 > ρ0, L > 0, and ε > 0 there exists a δ > 0

such that if

m(g) < δ, (5.2.2)

then ∫
∂ΩLρ0ρ1∩{ρ=ρ0}

|α− 2u| < ε. (5.2.3)

Proof: Observe that if L̃ > L, then

∫
∂ΩL̃ρ0ρ1∩{ρ=ρ0}

|α− 2u| ≥
∫
∂ΩLρ0ρ1∩{ρ=ρ0}

|α− 2u| . (5.2.4)

In order to take advantage of asymptotically flat conditions given in Defini-

tion 1.0.1 it we will often consider L̃ sufficiently larger than max{L,R0}. We

will then use the above inequality to relate any estimates we obtain back to

our original situation. Similarly, we will look at ρ̃1 > max{ρ1, R0}.

If we write the area enlarging condition (1.0.10) in terms of the coordinate
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functions, then we see that

(α− 2u)(ρ0, z) ≥ 0. (5.2.5)

From this, it quickly follows that

∫
∂ΩL̃ρ0ρ̃1

∩{ρ=ρ0}
|α− 2u| =

∫
∂ΩL̃ρ0,ρ̃1

∩{ρ=ρ0}
α− 2u. (5.2.6)

In order to estimate the above, we once again take advantage of the

fundamental theorem of calculus to write

∫
∂ΩL̃ρ0ρ̃1

∩{ρ=ρ0}
(α−2u)dz =

∫ L̃
2

− L̃
2

∫ ρ̃1

ρ0

−∂(α− 2u)

∂ρ
dρdz+

∫ L̃
2

− L̃
2

(α−2u)(ρ̃1, z)dz.

(5.2.7)

We may switch the order of integration for the integral on the right to get

∫ ρ̃1

ρ0

∫ L̃
2

− L̃
2

−∂(α− 2u)

∂ρ
dzdρ. (5.2.8)

As before (4.0.24), from Stokes’ theorem we get

∫ L̃
2

− L̃
2

−∂(α− 2u)

∂ρ
(ρ, z)dz =

∫
{ρ≤s,|z|≤ L̃

2
}

∆(α−2u)(s, z)−
∫
{ρ≤s,|z|= L̃

2
}

∂(α− 2u)

∂ν
.

(5.2.9)

Taking the absolute value of the above and plugging it into (5.2.7) gives us
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the estimate

∫ L̃
2

− L̃
2

|α− 2u| ≤
∫ ρ̃1

ρ0

(

∫
{ρ≤s,|z|= L̃

2
}
|∆(α− 2u)|+

∫
{ρ≤s,|z|= L̃

2
}

∣∣∣∣∂(α− 2u)

∂z

∣∣∣∣ ds)dρ
+

∫ L̃
2

− L̃
2

|α− 2u| (ρ̃1, z)dz. (5.2.10)

We now proceed to estimate the right hand side term by term.

We start with the term

∫ ρ̃1

ρ0

∫
{ρ≤s,|z|= L̃

2
}

∣∣∣∣∂(α− 2u)

∂z

∣∣∣∣ dsdρ. (5.2.11)

Using the asymptotic flatness condition, we estimate

∫
{ρ≤s,|z|= L̃

2
}

∣∣∣∣∂(α− 2u)

∂z

∣∣∣∣ ds ≤ ∫
{ρ≤s,|z|= L̃

2
}

3C

|(s, z)|2
ds. (5.2.12)

Once more, a simple integration bounds the above by

6πC

L̃
. (5.2.13)

Thus, we see that

∫ ρ̃1

ρ0

∫
{ρ≤s,|z|= L̃

2
}

∣∣∣∣∂(α− 2u)

∂z

∣∣∣∣ dsdρ ≤ 6πCρ̃1

L̃
. (5.2.14)
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We may bound ∫ ρ̃1

ρ0

(∫
{ρ≤s,|z|= L̃

2
}
|∆(α− 2u)|

)
dρ (5.2.15)

by modifying Lemma 4.0.16 slightly to get

∫
{ρ≤s,|z|= L̃

2
}
|∆(α− 2u)| ≤ 4m+ 4

√
L̃m

ρ
(5.2.16)

and then integrating. We see that

∫ ρ̃1

ρ0

(∫
{ρ≤s,|z|= L̃

2
}
|∆(α− 2u)|

)
dρ ≤ (4m+ 4

√
L̃m) log(

ρ̃1

ρ0

). (5.2.17)

Finally, we must bound

∫ L̃
2

− L̃
2

|α− 2u| (ρ̃1, z)dz. (5.2.18)

Oddly enough, this turns out to be the most delicate estimate, and the point

where we need our extra assumption on the asymptotic falloff of the function

α. From Lemma 5.1.9, we know that the C0,β norm of u is controlled by m.

Recalling (5.1.61), we see that there is a constant ε̃(ρ̃1,m) such that

∫ L̃
2

− L̃
2

|u(ρ̃1, z)| dz ≤ L̃ε̃(m, ρ̃1). (5.2.19)

Again, looking at Lemma 5.1.9, we see that for fixed ρ̃1

lim
m→0

ε̃(ρ̃1,m) = 0. (5.2.20)
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From the extra assumption on the asymptotic falloff of α, we see that

∫ L̃
2

− L̃
2

|α(ρ̃1, z)| dz ≤
∫ L̃

2

− L̃
2

C

|(ρ̃1, z)|1+τ dz ≤ C(τ)(ρ̃1)−τ , (5.2.21)

where C(τ) is a constant depending only on τ . We may put all of this

together to see that

∫ L̃
2

− L̃
2

|α− 2u| dz ≤ (4m+4
√
L̃m) log(

ρ̃1

ρ0

)+
6πCρ̃1

L̃
+ L̃ε̃(ρ̃1,m)+C(τ)(ρ̃1)−τ .

(5.2.22)

By choosing ρ̃1 and L̃ to be as large as necessary and choosing m to be as

small as necessary, we see that the above quantity can be made as small as

we desire.

The following corollary to Lemma 5.2.1 is analogous to Corollary 4.0.21.

Corollary 5.2.2. Let M be a family of axisymmetric metrics with nonneg-

ative scalar curvature which is strongly uniformly asymptotically flat outside

of radius R0. Suppose also that M is area enlarging at ρ0. Let ΩL
ρ0ρ1

de-

note the region {(ρ, z)|ρ0 ≤ ρ ≤ ρ1, |z| ≤ L
2
}, and (ΩL

ρ0ρ1
)σ denote {x ∈

ΩL
ρ0ρ1
|d(x, ∂Ωρ1

ρ0
) > σ}. Then for m > 0, σ > 0, L > R0, and ρ1 > R) there

is a constant C(τ,m, σ, L, ρ1, ρ0) such that if g ∈ M and the ADM mass of
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g is less than m, then

sup
x∈(ΩLρ0ρ1 )σ

exp

(∫
∂ΩLρ0ρ1

|HD(x, y)
∂(α− 2u)

∂ν
(y)|+ |(α− 2u)(y)

∂HD

∂ν
(x, y)|dy

)

≤ exp [C(τ,m, σ, L, ρ1, ρ0)] (5.2.23)

where τ is the constant appearing in (1.0.32) and C(, τ,m, σ, L, ρ1, ρ0) is a

constant depending on τ , m, σ, L, ρ1, and ρ0.

Proof: Much of the proof remains the same as it was in the radially

monotone case. The only difference is that we need to estimate

∫
∂ΩLρ0ρ1∩{ρ=ρ0}

|α− 2u| , (5.2.24)

instead of ∫
∂ΩLρ0ρ1∩{ρ=ρ0}

∣∣∣∣∂(α− 2u)

∂ν

∣∣∣∣ . (5.2.25)

This we did in Lemma 5.2.1.

We now estimate the W 1,p norm of α − 2u. Using the function HD in-

stead of HN complicates our estimate of ||∇(α− 2u)||Lp(ΩLρ0ρ1). We resort to

shrinking our region a bit.

Lemma 5.2.3. LetM be a family of axisymmetric metrics with nonnegative

scalar curvature which is strongly uniformly asymptotically flat outside of

radius R0. Suppose also that M is area enlarging at ρ0. For any ρ1 > ρ0, L,

81



1 ≤ p < 2, σ > 0, and ε > 0 there is a δ > 0 such that if g ∈M and

m(g) < δ, (5.2.26)

then

||α− 2u||W 1,p((ΩLρ0ρ1)
σ
) < ε. (5.2.27)

Here (
ΩL
ρ0ρ1

)
σ

:= {x ∈ ΩL
ρ0ρ1

: d(x, ∂ΩL
ρ0ρ1

) ≥ σ}. (5.2.28)

Proof : We may estimate the Lp norm of α−2u much as we did in Lemma

(4.0.15). We once again consider L̃ > L and ρ̃1 > ρ0. As before,

∫
(ΩLρ0ρ1)

σ

|α− 2u|p ≤ C(p)

∫
(ΩLρ0ρ1)

σ

(∫
ΩL̃ρ0ρ̃1

∣∣∣∣(α− 2u)
∂HD

∂ν

∣∣∣∣+

∣∣∣∣HD
∂(α− 2u)

∂ν

∣∣∣∣
)p

+

(∫
ΩL̃ρ0ρ̃1

|HD∆(α− 2u)|

)p

dx. (5.2.29)

On ∂ΩL̃
ρ0ρ̃1
− {ρ = ρ0} we have the following bound on the boundary terms

24Cρ̃1

πL̃
∣∣∣L̃− L∣∣∣+ 3CL̃

πρ̃1 |ρ̃1 − ρ1|
+

24Cρ̃1 log

(
2
√
L̃2 + ρ̃2

1

)
πL̃2

+

3CL̃ log

(√
L̃2 + ρ̃2

1

)
πρ̃2

1

.

(5.2.30)

Using the proof of Lemma 5.2.1 for terms on ∂ΩL̃
ρ0ρ̃1
∩ {ρ = ρ0}, we have the
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estimate

1

πσ

(
(4m+ 4

√
L̃m) log(

ρ̃1

ρ0

) +
6πCρ̃1

L̃
+ L̃ε̃(ρ̃1,m) + C(τ)(ρ̃1)−τ

)
.

(5.2.31)

If we let ρ̃1 = L̃
2
3 , then we may see that we may pick L̃ large enough and m

small enough to ensure

||α− 2u||
Lp
(
(ΩLρ0ρq)σ

) < ε

2
. (5.2.32)

If we differentiate Green’s representation formula with HD we get

∇(α− 2u)(x) =

∫
∂ΩL̃ρ0ρ̃1

(α− 2u)∇x

(
∂HD

∂ν

)
−∇x (HD(x, y))

∂(α− 2u)

∂ν
dy

+

∫
ΩL̃ρ0ρ̃1

∇x (HD(x, y)) ∆(α− 2u)dy. (5.2.33)

On ∂ΩL̃
ρ0ρ̃1
∩ {ρ = ρ0} the above expression is particularly difficult to work

with. The issue is that we cannot integrate

∣∣∣∣∇x

(
∂HD

∂ν

)∣∣∣∣ ∼ 1

|x− y|2
(5.2.34)

for x near the boundary, and so we cannot complete the estimate of ||α− 2u||W 1,p

in the same way we proved 4.0.15.

As we have done before, we take the absolute value of both sides and
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raise the result to the power p and then integrate to see that

∫
(ΩL̃ρ0ρ̃1)

σ

|∇(α− 2u)|p (5.2.35)

is bounded above by

C(p)

∫
(ΩLρ0ρ1)

σ

(∫
∂ΩL̃ρ0ρ̃1

∣∣∣∣∂(α− 2u)

∂ν
∇xHD

∣∣∣∣+

∣∣∣∣(α− 2u)∇x
∂HD

∂ν

∣∣∣∣ dy
)p

+

(∫
ΩL̃ρ0ρ̃1

|∆(α− 2u)∇xHD| dy

)p

dx. (5.2.36)

We once again split the first term into the following two pieces:

∂ΩL̃
ρ0ρ̃1
− {ρ = ρ0} (5.2.37)

and

∂ΩL̃
ρ0ρ̃1
∩ {ρ = ρ0}. (5.2.38)

Both pieces are relatively easy to estimate. For the first piece the estimates

are similar to the above.

As was noted earlier, the gradient of ∇x
∂HD
∂ν

isn’t integrable over ΩL
ρ0ρ1

for y in ∂ΩL̃
ρ0ρ̃1
∩ {ρ = ρ0}. However, ∇x

∂HD
∂ν

is much better behaved away

from ∂ΩL
ρ0ρ1

. We now attempt to estimate

∫
(ΩLρ0ρ1)

σ

(∫
∂ΩL̃ρ0ρ̃1

∣∣∣∣(α− 2u)∇x
∂HD

∂ν

∣∣∣∣ dy
)p

dx. (5.2.39)
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As we did before, we split ∂ΩL̃
ρ0ρ̃1
∩ {ρ = ρ0} into

∂ΩL̃
ρ0ρ̃1
∩ {ρ = ρ0, |z| ≤ L} (5.2.40)

and

∂ΩL̃
ρ0ρ̃1
∩ {ρ = ρ0, |z| > L}. (5.2.41)

We start with the piece (5.2.40). We may use Minkowski’s integral inequality

[9] to see that

(∫
(ΩLρ0ρ1)

σ

(∫
∂ΩL̃ρ0ρ̃1

∩{ρ=ρ0,|z|≤L}

∣∣∣∣(α− 2u)∇∂HD

∂ν

∣∣∣∣ dy
)p

dx

) 1
p

(5.2.42)

is bounded above by

∫
∂ΩL̃ρ0ρ̃1

∩{ρ=ρ0,|z|≤L}
|α− 2u|

(∫
(ΩLρ0ρ1)

σ

∣∣∣∣∇∂HD

∂ν

∣∣∣∣p dx
) 1

p

dy. (5.2.43)

We now estimate ∫
(ΩLρ0ρ1)

σ

∣∣∣∣∇∂HD

∂ν

∣∣∣∣p dx (5.2.44)

for y in ∂ΩL̃
ρ0ρ̃1
∩ {ρ = ρ0, |z| ≤ L}. Both ∂ΩL̃

ρ0ρ̃1
∩ {ρ = ρ0, |z| ≤ L} and(

ΩL
ρ0ρ1

)
σ

are contained in Ω2L
ρ0ρ1

. Thus, if we let r0 be the diameter of Ω2L
ρ0ρ1

,
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then for all y ∈ ∂ΩL̃
ρ0ρ̃1
∩ {ρ = ρ0, |z| ≤ L} we have

∫
(ΩLρ0ρ1)

σ

∣∣∣∣∇x
∂HD

∂ν

∣∣∣∣p ≤ ∫
B(y,r0)\B(y,σ)

3p

πp |x− y|2p
dx

= 3pπ1−p2

∫ r0

σ

Cr−2p+1dr = C(p, L, ρ1, σ). (5.2.45)

Thus, we may see that

(∫
(ΩLρ0ρ1)

σ

(∫
∂ΩL̃ρ0ρ̃1

∩{ρ=ρ0,|z|≤L}

∣∣∣∣(α− 2u)∇∂HD

∂ν

∣∣∣∣ dy
)p

dx

) 1
p

≤ C(p, L, ρ1, σ)
1
p

∫
∂ΩL̃ρ0ρ̃1

∩{ρ=ρ0,|z|≤L}
|α− 2u| . (5.2.46)

Over (5.2.41) we have ∣∣∣∣∇HD

∂ν

∣∣∣∣ ≤ 12

πL2
. (5.2.47)

Thus, we have

(∫
(ΩLρ0ρ1)

σ

(∫
∂ΩL̃ρ0ρ̃1

∩{ρ=ρ0,|z|>L}

∣∣∣∣(α− 2u)∇∂HD

∂ν

∣∣∣∣ dy
)p

dx

) 1
p

≤
(

12ρ1

L

) 1
p
∫
∂ΩL̃ρ0ρ̃1

∩{ρ=ρ0,|z|>L}
|(α− 2u)| dy. (5.2.48)

For the last term in (5.2.36) we may use the Riesz potential estimate as we

have done before. Putting everything together gives us the result.

In fact, the steps required in the above proof give us a corollary analogous

to 4.0.18.
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Corollary 5.2.4. Let M be a family of axisymmetric metrics with nonneg-

ative scalar curvature which is strongly uniformly asymptotically flat outside

of radius R0. SupposeM is area enlarging as well. For any L, ρ1, 1 ≤ p < 2,

and ε > 0 there exist a δ > 0 such that if g ∈M and

m(g) < δ, (5.2.49)

then ∫
ΩLρ0,ρ1

|α− 2u|p < ε |log ρ0|p

ρp0
(5.2.50)

and ∫
ΩLρ0,ρ1

|∇(α− 2u)|p ≤ ε |log ρ0|p

ρp0
. (5.2.51)

Proof : The proofs of (5.2.50) and (5.2.51) are similar. We only prove

(5.2.51). Observe that

ΩL
2ρ0ρ1

⊂
(

ΩL+σ
ρ0(ρ1+σ)

)
σ
. (5.2.52)

In particular, we see from the estimates in the above theorem that

∫
ΩL2ρ0ρ1

|∇(α− 2u)|p ≤
∫
(

ΩL+σ
ρ0(ρ1+σ)

)
σ

|∇(α− 2u)|p (5.2.53)
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is bounded above by

C(p, L, ρ1, σ)

[
(4m+ 4

√
L̃m) log(

ρ̃1

ρ0

) +D(m, L̃, ρ̃1, τ)

]p
+ E(p, L̃, ρ̃1)

(
4m+ 4

√
L̃m

ρ0

)p

+ F (p, L̃, ρ̃1), (5.2.54)

where C(p, L, ρ1, σ) is a combination of the constants found in (5.2.46) and

(5.2.48), D(m, L̃, ρ̃1, τ) is the remainder of (5.2.22), E(p, L̃, ρ̃1) comes from

the Riesz potential estimate, and F (p, L̃, ρ̃1) is the bound on the remaining

boundary terms estimated in (5.2.36). A simple calculation shows that for

1 < p < 2

C(L, ρ1, σ) ≤ C(p)σ−p, (5.2.55)

since 2− 2p > −p. For p = 1, we have

C(L, ρ1, σ) ≤ C(L, ρ1) log(σ). (5.2.56)

If we plug the above into (5.2.54) with σ = ρ0, then we may see that choosing

L̃ and ρ̃1 large enough, and choosing mass to be small enough gives the result.

We may now prove a theorem analogous to Theorem 4.0.15.

Lemma 5.2.5. Let M be an uniformly asymptotically flat family of metrics

with nonnegative scalar curvature. Suppose that M be area enlarging. Let

ΩL
ρ0ρ1

denote the rectangle given by {(ρ, z)|ρ0 ≤ ρ ≤ ρ1, |z| ≤ L
2
} and let
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(ΩL
ρ0ρ1

)σ denote {x ∈ ΩL
ρ0ρ1
|d(x, ∂ΩL

ρ0ρ1
) > σ}. For any 1 ≤ p < 2, σ > 0,

ρ0 > 0, and ε > 0 there exists a δ > 0 such that if g is in our collection

of uniformly asymptotically flat metrics, the ADM mass of g is less than δ,

and, in the axisymmetric coordinate representation of g then

∣∣∣∣e|α−2u| − 1
∣∣∣∣
W 1,p((ΩLρ0ρ1 )σ)

< ε. (5.2.57)

Proof : The proof follows the same line as in the radially monotone case,

except we use Lemma 5.2.3 instead of Proposition 4.0.15. It can be shown

that Corollary 4.0.20 can be adapted to the function HD. Thus, we also use

Corollary 5.2.2 instead of Lemma 4.0.21.

Now that we have analogues of all the estimates we made in the radially

monotone case, the proofs of Theorem 1.0.4, Theorem 1.0.5, Theorem 1.0.6,

Theorem 1.0.7 and Theorem 1.0.9 follow almost exactly as they did in the

radially monotone case. The only theorem whose modification to the area-

enlarging case requires a little care is Theorem 1.0.9. Since Corollary 5.2.4

has a slightly different hypothesis than Corollary 4.0.18, we must show that

the conclusion of Lemma 5.1.11 holds with a slightly weaker hypothesis.

Lemma 5.2.6. Let f be a measurable function on ΩL
0ρ1

. Suppose for each t

we have the estimate ∫
Ω
ρ1
t

|f | ≤ ε |log(t)|q̃

tq
(5.2.58)

for some ε > 0, q > 0, and q̃. Suppose σ > q. Then, there exists a constant,
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denoted C(σ, q, q̃), depending only on σ, q, and q̃ such that

∫
Ω
ρ1
0

ρσ |f | ≤ C(σ, q, q̃)ε. (5.2.59)

Proof : As before, let tn = 2−nρ1 and let Ωtn,tn−1 be the following rect-

angle.

Ωtn,tn−1 = {tn ≤ ρ ≤ tn−1, |z| ≤
L

2
} (5.2.60)

From the Monotone Convergence Theorem we see that

∫
Ω0,t0

ρσ |f | =
∞∑
1

∫
Ωtn,tn−1

ρσ |f | . (5.2.61)

We now make the estimate

∫
Ωtn,tn−1

ρσ |f | ≤ tσn−1

ε |log(tn)|q̃

tqn
= 2qρσ−q1 (2σ−q)−n

∣∣log(2−nρ1)
∣∣q̃ ε. (5.2.62)

This gives a convergent series so long as σ > q, where we have used that

σ − q = λ > 0 and

lim
n→∞

ρ12−n
∣∣log(ρ12−n)

∣∣ 2q̃
λ = 0. (5.2.63)

In total, we have the estimate

∫
Ω0,t0

ρσ |f | ≤ C(σ, q, q̃)ε. (5.2.64)

Now we can show that Lemma 5.1.12 holds in the area-enlarging case and
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so Theorem 1.0.9 also holds in the area-enlarging case.
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Appendix A

Examples

A.1.1 Kerr-Newman

In this section, we show that the Kerr-Newman family of metrics satisfy both

the radial monotone condition and the area enlarging condition. This is done

by a direct calculation. We take the familiar Brill-Lindquist coordinates and

transform them into cylindrical coordinates. Unfortunately, the simple ex-

pression of the Kerr-Newman metric in Brill-Lindquist coordinates becomes

rather complicated when it is written in cylindrical coordinates. The pro-

cedure itself is uncomplicated, since there is an explicit map between these

two coordinates. The change of coordinates depends on the charge, angular

momentum, and mass of the Kerr-Newman metric. Once the map has been

constructed, we use the expression for the metric in Brill-Lindquist to write

down the expression for the metric in cylindrical coordinates.

We now describe in detail the coordinate change from Brill-Lindquist co-

92



ordinates to cylindrical coordinates and write down the exact formula for

the metric functions u and α. It is convenient to introduce a third co-

ordinate system between Brill-Lindquist and cylindrical. We shall use the

Prolate-Spheroidal coordinates. We will first consider the map from Prolate

Spheroidal coordinates to Brill-Lindquist coordinates, and then pull back

the metric. Let a denote the angular momentum parameter, let e denote

the charge parameter, and let m denote the mass parameter, then, in Brill-

Lindquist coordinates, the Kerr metric takes the form

g =
σ

γ
dr2 + σdθ2 +

sin2(θ)

σ
[(r2 + a2)2 − a2 sin2(θ)γ(r)]dφ2 (A.1.1)

for

γ(r) = r2 − 2mr + a2 + e2 (A.1.2)

and

σ(r, θ) = r2 + a2 cos2(θ). (A.1.3)

The map from prolate spheroidal coordinates (x, y, φ) to Brill-Lindquist

coordinates (r, θ, φ) is given by

r = x
√
m2 − (a2 + e2) +m (A.1.4)

θ = cos−1(y) (A.1.5)

93



For convenience, we will write

k =
√
m2 − (a2 + e2). (A.1.6)

The map from cylindrical coordinates to prolate spheroidal is, unfortunately,

less simple.

x =

√
ρ2 + (z + k)2 +

√
ρ2 + (z − k)2

2k
(A.1.7)

y =

√
ρ2 + (z + k)2 −

√
ρ2 + (z − k)2

2k
(A.1.8)

We now pull back the Kerr-Newman metric twice to obtain the formulas

for the functions u and α in cylindrical coordinates. The end results of this

process are the following formulas

u(ρ, z) = −1

2
log[

(1− y2)([(kx+m)2 + a2]2 − a2k2[1− y2][x2 − 1])

ρ2([kx+m]2 + a2y2)
]

(A.1.9)

α(ρ, z) =
1

2
log[

(kx+m)2 + a2y2

k2(x2 − y2)
] + u(ρ, z) (A.1.10)

When written entirely in terms of (ρ, z), these two equations are very cumber-

some. Luckily, for the purpose of verifying the radial monotonicity condition

and the area enlarging condition, writing everything in terms of (ρ, z) turns

out to be unnecessary.

A straight forward calculation shows that

∂

∂ρ
=

ρ

(ρ2 + (z + k)2)
1
2 (ρ2 + (z − k)2)

1
2

(
x
∂

∂x
− y ∂

∂y

)
. (A.1.11)
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Thus, we see that

∂(α− 2u)

∂ρ
= f(ρ, z)

(
x
∂

∂x
− y ∂

∂y

)
log

(
[(kx+m)2 + a2]

2 − a2k2[1− y2][x2 − 1]

k2(x2 − 1)(x2 − y2)

)
,

(A.1.12)

where f(ρ, z) is the nonnegative function appearing in front of the derivatives

in (A.1.11). Since f(ρ, z) is nonnegative, we may restrict our analysis to the

second term on the right. Taking the derivatives and collecting terms leaves

us with

4kx(kx+m) [(kx+m)2 + a2]− 2a2k2x2(1− y2)

[(kx+m)2 + a2]2 − a2k2(1− y2)(x2 − 1)
− 2x2 ((x2 − 1) + (x2 − y2))

(x2 − 1)(x2 − y2)
+

−
[

2a2k2(x2 − 1)y2

[(kx+m)2 + a2]2 − a2k2(1− y2)(x2 − 1)
+

2y2

x2 − y2

] .

(A.1.13)

The third term in brackets is nonnegative, so we must analyze the interplay

of the first two terms.

We expand

2x2 ((x2 − 1) + (x2 − y2))

(x2 − 1)(x2 − y2)
(A.1.14)

to

2x2

x2 − 1
+

2x2

x2 − y2
. (A.1.15)

From the range of values that x and y can take, we may deduce that the
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denominators of both fractions are smaller than x2. Thus, we have

2x2

x2 − 1
+

2x2

x2 − y2
> 4. (A.1.16)

We now observe that

[
(kx+m)2 + a2

]2−a2k2(1−y2)(x2−1) ≥ (kx+m)4+a2(kx+m)2. (A.1.17)

As a consequence, we have that

4kx(kx+m) [(kx+m)2 + a2]− 2a2k2x2(1− y2)

[(kx+m)2 + a2]2 − a2k2(1− y2)(x2 − 1)
≤ 4. (A.1.18)

Putting everything together shows that

∂(α− 2u)

∂ρ
< 0. (A.1.19)

It is interesting to explore some of the geometric meaning behind the

condition of radial monotonicity. In coordinates, radial monotonicity implies

that

∂(α− 2u)

∂ρ
≤ 0. (A.1.20)

Recall from the proof of Proposition 5.1.4 that the coordinate function α −

2u controls the area of axisymmetric surfaces. Thus, it is reasonable to

suppose that the radial monotonicity condition is an assumption on the mean

curvature of the level sets of the function ρ, which is the solution to (1.0.9).
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It turns out that this is the case, although in a slightly round about way.

Proposition A.1.7. Suppose that g is an asymptotically flat axisymmetric

metric and ρ is the solution to (1.0.9) for g. The metric g is radially mono-

tone if and only if the level sets of ρ form a family of surfaces evolving by a

sub-inverse-mean-curvature flow.

Proof : Let η denote the killing field generating the axisymmetry of

(M, g). We start by observing that we may lift any function ω on M/S1

to a function on M , which we also denote ω. When considered as a function

on M we have

g(∇ω, η) = 0, (A.1.21)

since we lifted ω by transporting it along the flow lines of η. Let q denote

the orbit metric of M/S1. Recall that

q(X, Y ) = g
(
X̄, Ȳ

)
−
g
(
X̄, η

)
g
(
Ȳ , η

)
|η|2g

, (A.1.22)

where X and Y are the images of X̄ and Ȳ under the projection map, re-

spectively. From the above, we may conclude that for any two functions ω

and h on M/S1 we have

q(∇ω,∇h) = g(∇ω,∇h). (A.1.23)

We have abused notation slightly in using ∇ to denote both the gradient in

(M/S1, q) and in (M, g).

97



It is a standard computation to see that the mean curvature of the level

sets of ρ is given by

H = divg

(
∇ρ
|∇ρ|g

)
. (A.1.24)

We expand out the right hand side to get

divg

(
∇ρ
|∇ρ|g

)
=

1

|∇ρ|g

(
∆gρ−

g (∇ρ,∇ |∇ρ|)
|∇ρ|

)
(A.1.25)

We now use the equation for ρ (1.0.9) to rewrite the above as

1

|∇ρ|

(
g(∇ρ,∇ |η|)

|η|
− g (∇ρ,∇ |∇ρ|)

|∇ρ|

)
=

1

|∇ρ|
g

(
∇ρ,∇ log

|η|
|∇ρ|

)
.

(A.1.26)

From axisymmetry, |∇ρ| and |η| are functions on M/S1. In particular

g

(
∇ρ,∇ log

|η|
|∇ρ|

)
= q

(
∇ρ,∇ log

|η|
|∇ρ|

)
. (A.1.27)

Recalling the radial monotonicity condition (1.0.16) and noting that log is a

monotone increasing function, we see that

q

(
∇ρ,∇ log

(
|η|

ρ |∇ρ|

))
≤ 0, (A.1.28)

since in the orbit space M/S1 we have

∂

∂ρ
=

∣∣∣∣ ∂∂ρ
∣∣∣∣2
q

∇ρ. (A.1.29)
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We may plug (A.1.26) and (A.1.24) into (A.1.28) to see that

0 ≥ q

(
∇ρ,∇ log

(
|η|
|∇ρ|

))
− q (∇ρ,∇ log ρ) = |∇ρ|H − |∇ρ| |∇ log ρ| .

(A.1.30)

Dividing both sides by |∇ρ| and rearranging terms gives

|∇ log ρ| ≥ H. (A.1.31)

The above equation is precisely the statement that the level sets of ρ give a

sub-inverse-mean-curvature flow.

It is relatively easy to see that if a metric is radially monotone everywhere,

then it must also be area enlarging everywhere. In particular, the following

proposition implies that Kerr-Newman metrics are area enlarging.

Proposition A.1.8. Let g be an asymptotically flat metric which is every-

where radially monotone. Then g is everywhere area enlarging.

Proof : Since g is assumed to be globally radially monotone, we have

∂(α− 2u)

∂ρ
≤ 0. (A.1.32)

As g is asymptotically flat, we know that

lim
ρ→∞

(α− 2u)(ρ, z) = 0 (A.1.33)
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for all z. Thus, using the fundamental theorem, we may see that

0 ≤ −
∫ ∞
ρ0

∂(α− 2u)

∂ρ
(ρ, z)dρ = (α− 2u)(ρ0, z). (A.1.34)

This is precisely the coordinate expression of the area enlarging condition.

We now find several examples of metrics which are area enlarging and

strongly asymptotically flat.

A.1.2 Axisymmetric Geometrostatic

Here we show that the axisymmetric geometrostatic metrics are area-enlarging

and strongly asymptotically flat. Recall that the general form of a geomet-

rostatic metric is

(M, g) =
(
R3\{xi}n1 , (χψ)2δR3

)
, (A.1.35)

where for positive numbers {ai}n1 and {bi}n1 we have

χ(x) = 1 +
n∑
i=1

ai
|x− xi|

(A.1.36)

and

ψ(x) = 1 +
n∑
i=1

bi
|x− xi|

. (A.1.37)

If the points {xi} lie on a common line, then the resulting metric will be

axisymmetric. The axis of symmetry will be the line on which the xi lie.
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After a rotation, we may suppose that the axis of symmetry is the z-axis.

We may now see that the usual Euclidean cylindrical coordinates are also

cylindrical coordinates for (M, g). In particular

g = (χψ)2(dρ2 + dz2 + ρ2dφ2). (A.1.38)

A quick calculation shows that the coordinate function α vanishes and

u = − log(χψ). (A.1.39)

Since both χ and ψ are strictly larger than one, we see that u is negative.

Since α = 0, it is clear that

α− 2u ≥ 0. (A.1.40)

This is precisely the coordinate expression of the area-enlarging condition.

That (M, g) is also strongly asymptotically flat follows trivially from the fact

that α = 0.

A.1.3 Conformal Metrics

Here we show that asymptotically flat axisymmetric metrics with nonnega-

tive scalar curvature which are conformal to Euclidean space and have an

axisymmetric, minimal, and connected boundary, or an empty one, satisfy

the area enlarging condition and the strongly asymptotically flat condition.

Suppose (M, g) is as above. Then there is some constant m1 [5] and
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function u such that

(M, g) =
(
R3\Bm1(0), e−2uδR3

)
. (A.1.41)

Written in cylindrical coordinates

g = e−2u(dρ2 + dz2) + ρ2e−2udφ2 (A.1.42)

Since ∂Bm1 is a minimal surface, from the formula for mean curvature we

see that [5]

∂u

∂ν
|∂Bm1

=
1

m1

. (A.1.43)

Since we have assumed that the scalar curvature is nonnegative, we may use

the scalar curvature formula (2.0.2) together with the Hopf lemma and the

maximum principle to conclude that

sup
Br0\Bm1

u = sup
∂Br0

u. (A.1.44)

Since we know from the fact that g is asymptotically flat that u vanishes at

infinity, we may conclude that

u ≤ 0, (A.1.45)

and consequently (M, g) satisfies the area enlarging condition (1.0.10). In
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fact, if we apply the strong maximum principle, we may see that

u < 0, (A.1.46)

unless we are dealing with flat space. Since α vanishes identically, we see

that (M, g) is also strongly asymptotically flat.
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