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Abstract of the Dissertation

On the Arithmetic of low degree Weighted Complete Intersections

by

Cristian Minoccheri

Doctor of Philosophy

in

Mathematics

Stony Brook University

2018

A variety is rationally connected if two general points can be joined by a rational curve. A
higher version of this notion is rational simple connectedness, which requires suitable spaces
of rational curves through two points to be rationally connected themselves. We prove that
smooth, complex, weighted complete intersections of low enough degree are rationally simply
connected. This result has strong arithmetic implications for weighted complete intersections
defined over the function field of a smooth, complex curve. Namely, it implies that these
varieties satisfy weak approximation at all places, that R-equivalence of rational points is
trivial, and that the Chow group of zero cycles of degree zero is zero.
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Chapter 1

Introduction

For a variety defined over a field F , a basic question is whether it has points defined

over F , and, if so, what properties do these points satisfy. One such property that has been

extensively studied with different techniques over various fields is the weak approximation

principle: for any finite set of places of F and points of X over these places, is there an

F -rational point of X which approximates these points arbitrarily closely? If F is the

function field K = C(B) of a smooth complex curve B, this property has a nice geometric

interpretation: for a (regular) model π ∶ X → B of X, and for any choice of jets over finitely

many points of B, is there a section of π with these prescribed jets?

Rationally connected varieties – varieties whose any two points can be connected by

a rational curve – are natural candidates for the weak approximation principle, since by

[GHS03] any geometrically rationally connected variety over K admits a K-rational point. In

[HT06], Hassett and Tschinkel proved that, in fact, if X is geometrically rationally connected

over the function field K of a curve, the weak approximation principle holds at places of

good reduction (i.e., at points of B that admit smooth fibers in some model). It is then

natural to wonder whether weak approximation holds at places of bad reduction too, and

indeed there is an open conjecture ([HT06, Conjecture 2]) that reads as follows:

Conjecture 1.0.1. A smooth geometrically rationally connected variety X over K satisfies
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weak approximation at all places.

This conjecture has proven hard to tackle, even though by now many cases are known

(see [Has10] for a survey of the progress in this direction). One way to attack it is to

prove that X is rationally simply connected. This notion is analogous to that of simple

connectedness in topology (we will provide a precise definition in chapter 2) and in a nutshell,

it pertains the study of rational connectedness of suitable spaces of stable maps to X of

genus 0. By a Theorem of Hassett ([Has10, Theorem 4.7]), if X is geometrically rationally

simply connected, then X satisfies weak approximation at all places. This notion has further

arithmetic consequences, due to work of Pirutka ([Pir12]): if X is geometrically rationally

simply connected, there is only one class of Manin’s R-equivalence, and the degree map

deg ∶ CH0(X) → Z on zero cycles is bijective.

Despite its many implications, the main problem with the notion of rational simple

connectedness is that it is quite hard to check for concrete examples. For X to be rationally

simply connected, one usually needs the tangent bundle of X to satisfy strong positivity

properties. In particular, we say that X is 2-Fano if c1(X) and ch2(X) are both positive.

In [dJS06], de Jong and Starr proved that 2-Fano complete intersections in projective space

are rationally simply connected. While 2-Fano varieties have only been classified for index

at least n−2, it seems inevitable for the class of complete intersections in weighted projective

spaces to come up. They are therefore a natural case to study, and in this thesis we indeed

prove that most 2-Fano weighted complete intersections are rationally simply connected.

Let PF (13, e3, ..., en) denote the weighted projective space over a field F with weights

1,1,1, e3, ..., en (where e3, ..., en are any natural numbers). Our main result is the following:

Theorem 1.0.2. Let Xd1,...,dc ⊂ PC(13, e3, ..., en) be a smooth, 2-Fano, weighted complete

intersection of dimension at least 3 which is not isomorphic to a linear space. Assume

further that d1 + ... + dc ≤ e3 + ... + en. Then Xd1,...,dc is rationally simply connected.

As already mentioned, by [Has10, Theorem 4.7] and [Pir12, Theorem 1.5], we have the

2



following main application to varieties defined over the function field K of a smooth complex

curve:

Corollary 1.0.3. Let Xd1,...,dc ⊂ PK(13, e3, ..., en) be a smooth, 2-Fano, weighted complete

intersection of dimension at least 3 which is not isomorphic to a linear space. Assume

further that d1 + ... + dc ≤ e3 + ... + en. Then:

1) Xd1,...,dc satisfies weak approximation at all places;

2) X(K)/R = 1 (i.e., there is only one class of R-equivalence); and

3) deg ∶ CH0(Xd1,...,dc) → Z is bijective.

Theorem 1.0.2 proves rational simple connectedness for most 2-Fano weighted complete

intersections, and in infinitely many new cases. The condition requiring the first three

weights to be 1 shouldn’t be restrictive: in all the explicit examples we have, for a weighted,

2-Fano complete intersection to be smooth, at least 3 weights have to be 1 (in fact, often

many more than 3). One could expect the result to still hold if we replaced the bound

d1 + ...+dc ≤ e3 + ...+ en with the sharp Fano bound d1 + ...+dc ≤ e3 + ...+ en +2. On the other

hand, our method requires the weighted complete intersection to have a positive dimensional

family of lines through a general point; therefore the condition on the index is necessary.

The easiest case in which the Theorem applies is that of cyclic degree r covers of Pn−1

branched along a hypersurface of degree r ⋅ e. Namely, consider the case e3 = ... = en−1 = 1,

e ∶= en ≥ 1, r ≥ 1, Xre ⊂ PK(1, ...,1, e) smooth weighted hypersurface of degree re. Then Xre

satisfies the properties of Corollary 1.0.3 if n ≥ max{4, re − e + 3, r2e2 − e2}. In the case of

double covers, i.e. r = 2, and for e ≥ 2, the condition becomes n ≥ 3e2.

In [dJS06], a general strategy to prove rational simple connectedness is designed (in fact,

the authors actually prove a stronger version of rational simple connectedness than the one

we need in this thesis for the arithmetic implications we mentioned above). We will follow

such general framework. On the other hand, weighted projective spaces are both very close

and very far from usual projective space in several respects; therefore, while many steps of
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the proof will adapt with little effort, several key steps will require substantially different

proofs. The thesis is organized as follows.

In chapter 2, we collect basic facts about weighted projective spaces, spaces of stable

maps, and rational simple connectedness that we will need in the following chapters. We

also prove in the weighted case the analogue of a technique that allows to extend a smooth

complete intersection to a smooth complete intersection of higher dimension, of which the

former is a linear section.

In chapter 3, we prove that the generic geometric fiber of ev1 ∶ M0,1(X,1) → X is

connected. The proof of this in [dJS06] relies on the very basic fact that there is only one

line through two points; but this fails in the weighted case. Our proof consists in describing

the fiber of the evaluation map as a closed subscheme of an appropriate weighted projective

space, whose coordinates parametrize suitable morphisms from P1 into the original weighted

projective space (this is sometimes called the space of quasi-maps). We then make use of

a connectedness result that is a generalized, iterated version of the classical connectedness

Lemma of Enriques-Severi-Zariski.

In chapter 4, we prove that the generic geometric fiber of ev2 ∶ M0,2(X,2) → X ×X is

connected. Again, the method in [dJS06] does not immediately apply for essentially the

same reason as above. We first find an ample divisor class λ on the fiber, and relate it to

other natural classes. Then we show the result for higher dimensional weighted complete

intersections by means of a weighted version (due to Bădescu) of the Fulton-Hansen Con-

nectedness Theorem. Finally, we show how the original fibers are obtained as sections of

the higher dimensional ones by divisors with class λ. In the process, we also show that the

general fiber of ev2 is uniruled by rational curves with λ-degree 1.

In chapter 5, we prove existence of some special ruled surfaces in X called 1-twisting

surfaces. This will be a by-product of uniruledness of a general fiber of ev2 proven in chapter

4. From this, one can deduce rational simple connectedness from the case of conics, as in

[dJS06].

4



Chapter 2

Preliminaries

We collect here some general definitions and results that are going to be used later. Let

us first start with some precise definitions of the properties we are going to study.

2.1 Arithmetic notions

Weak approximation over function fields. Let B be a smooth, connected curve

over an algebraically closed field (say, C). Let K be the function field of B, and S ⊂ B a

proper, closed subscheme. Let X be a smooth K−scheme, and X a (regular) model for X,

i.e., a proper morphism π ∶ X → B with regular total space X and with generic fiber X.

Then X satisfies weak approximation with respect to B and S if for one model X and every

B−morphism σ ∶ S → X , σ can be extended to a B−morphism defined on an open subset

U ⊂ B that contains S. X satisfies weak approximation with respect to B (or, equivalently,

over K) if for every proper, closed subscheme S ⊂ B, X satisfies weak approximation with

respect to B and S.

Kollár, Miyaoka and Mori showed in [KMM92] that if X is rationally connected and a

model admits a section, then this section enjoys good approximation properties. Years later,

Graber, Harris and Starr proved in [GHS03] the existence of such sections. Finally, Hassett
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and Tschinkel proved in [HT06] that weak approximation holds at places of good reduction

(i.e. at points b ∈ B for which there is a model having a smooth fiber over b). They also

conjectured that every rationally connected variety over a function field K as above satisfies

weak approximation. After that, several authors managed to prove weak approximation in

many cases by studying explicitly singular fibers. On the other hand, by [Has10, Theorem

4.7], if X is geometrically rationally simply connected, it satisfies weak approximation at all

places, regardless of the singularities that a model can have.

R-equivalence. Given a projective variety X over a field K, we say that two K−points

x, y ∈ X(K) are directly R-equivalent if there is a morphism P1
K → X such that x and y

belong to the image of P1
K(K). One obtains an equivalence relation (due to Manin) called

R-equivalence, whose set of classes is denoted X(K)/R. In [Pir12], Pirutka proves that if

X is a rationally simply connected variety over the function field K of a smooth complex

curve, then X(K)/R = 1. Moreover, she proves that with the same setup, the Chow group

of zero cycles of degree zero is zero.

2.2 Weighted projective spaces and complete intersec-

tions

We now review some useful properties of weighted projective spaces and weighted com-

plete intersections. We refer the reader to [Dol82] and [Mor75] for proofs and further discus-

sions.

Let F be a field of characteristic 0. The weighted projective space PF ∶= PF (e0, ..., en) of

dimension n and positive weights e0, ..., en can be defined in three equivalent ways:

1) as ProjF [x0, ..., xn], where F [x0, ..., xn] is the polynomial ring with variables xi of

degree ei for i = 0, ..., n;
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2) as a quotient of the affine space An+1
F ∖ {0} under the action

F × ×An+1
F ∖ {0} → An+1

F ∖ {0},

(λ, (x0, ..., xn)) ↦ (λe0x0, ..., λ
enxn);

3) if µm denotes the group of m−th roots of unity and µ ∶= µe0 × ...×µen , as a quotient of

the projective space PnF under the action

µ × PnF → PnF ,

((ξ0, ..., ξn), (x0, ..., xn)) ↦ (ξ0x0, ..., ξnxn).

It is customary to write iterated weights as powers of the weight; for example, P(13,2,32)

will be used to denote P(1,1,1,2,3,3).

In this thesis, F will be either the field of complex numbers (in which case the subscript

in PF will be omitted), or the function field K of a smooth, connected, complex curve. We

can always assume that any n weights are coprime. Weighted projective spaces behave in

many ways like usual projective space, and in many other ways differently, as we will see.

The weighted projective space P is an irreducible, normal, projective variety, with cyclic

quotient singularities (unless all weights are equal to 1). Let Vk be the closed subset of P

defined by the ideal < xi ∣ k ∤ ei >. Then the singular locus Sing(P) of P equals ∪k>1Vk, and

P○ ∶= P ∖ Sing(P) is called weak projective space.

The weighted projective space P has natural coherentOP−modulesOP(a) for every integer

a, associated via the Proj construction to the modules F [x0, ...xn](a). In general, the sheaves

OP(a) are neither invertible, nor ample, and they don’t behave well under tensor product.

However, if we define OP○(a) as OP(a)∣P○ , the sheaves OP○(a) are invertible, they behave well

with respect to tensoring, and they are ample when a is positive.
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Example 2.2.1. Consider the weighted projective space P = P(1,1,2) with coordinates x1, x2

of degree 1, and y of degree 2. Its singular locus consists of the point {[0 ∶ 0 ∶ 1]}. The sheaf

OP(1) is not locally free on P, but it becomes invertible once we remove the singular point.

However, OP(2) is a very ample invertible sheaf, which induces an embedding

P(1,1,2) ↪ P3
(s,t,u,v),

[x1 ∶ x2 ∶ y] ↦ [x2
1 ∶ x1x2 ∶ x2

2 ∶ y],

with image the quadric cone t2 − su = 0.

More generally, P(1,1, e) is a cone over a rational normal curve, and P(1n, e) is a cone

over a Veronese variety.

While working with differentials on P requires some extra care, everything works as we

expect once we restrict to the weak projective space. In particular, we have the following

generalization of Euler’s sequence:

0→ OP○ → ⊕ni=0OP○(ei) → TP○ → 0.

We will now discuss weighted complete intersections, whose definition is the standard

one. For f1, ..., fc homogeneous elements of ProjC[x0, ..., xn] of degrees d1, ..., dc, that form

a regular sequence, ProjC[x0, ..., xn]/(f1, ..., fc) is a complete intersection in P (also called

weighted complete intersection) of degrees d1, ..., dc (and codimension c). Denote such a

weighted complete intersection by Xd1,...,dc ⊂ P.

We will be interested exclusively in smooth weighted complete intersections. We say that

a weighted complete intersection Xd1,...,dc ⊂ P is smooth if it is a smooth variety (in the usual

sense) and it is contained in P○. This definition is standard (see [Mor75] for example), and
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it is necessary for smooth weighted complete intersections to share a few nice properties of

complete intersections in usual projective space. What could happen is that a variety X ⊂ P

is smooth despite having nonempty intersection with Sing(P). On the other hand, it can be

proved that if a weighted complete intersection X = Xd1,...,dc ⊂ P is a smooth variety (in the

usual sense) and codimX(X ∩ Sing(P)) ≥ 2, then X ⊂ P○.

If X ∶= Xd1,...,dc ⊂ P is a smooth weighted complete intersection, then the sheaf OX(1) ∶=

OP○(1)∣X is ample and invertible, and we have the following formula for the canonical sheaf:

ωX ≃ OX(
c

∑
j=1

dj −
n

∑
i=0

ei).

All degrees will be intended with respect to OX(1), unless otherwise specified.

Example 2.2.2. Consider the weighted hypersurface Xre = {yr − F (x0, ..., xn) = 0} ⊂ P(1n, e),

where F (x0, ..., xn) is homogeneous of degree re. The natural projection P(1n, e) → P(1n) =

Pn−1 restricted to Xre realizes this hypersurface as a cyclic r−sheeted cover of Pn−1, ramified

over the locus in Pn−1 where F (x0, ..., xn) = 0.

With respect to cohomology, the weighted case is also as good as possible. In fact, we

have the following result (see [Dim92, Appendix B, Theorem B.13] and [Dim92, Appendix

B, Theorem B.22]):

Theorem 2.2.3. The rational cohomology algebra H∗(P,Q) is a truncated polynomial alge-

bra Q[z]/(zn+1) generated by an element z of degree 2.

If X is a weighted complete intersection in P, then the morphism Hk(P,Q) →Hk(X,Q)

is an isomorphism for k < dim(X), and it is injective for k = dim(X).

The following computation can be carried on like in usual projective space. We recall

that a variety X is called 2-Fano if it is Fano and ch2(TX) is positive; therefore it is useful

to have an explicit formula for the Chern character.
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Lemma 2.2.4. Let X ∶= Xd1,..,dc ⊂ P(e0, ..., en)○ be a smooth weighted complete intersection.

Then

ch2(TX) = 1

2
(∑ e2

i −∑d2
j)c1(OX(1))2.

Proof. Euler’s generalized sequence

0→ OP○ → ⊕nj=0OP○(ej) → TP○ → 0

gives the relation

ch(TP○) =
n

∑
j=0

ec1(OP○(ej)) − 1.

The normal exact sequence

0→ TX → TP○ ∣X → ⊕ci=1OP○(di)∣X → 0

gives the relation

ch(TX) = ch(TP○ ∣X) −
c

∑
i=1

edic1(OX(1)),

which together with the previous one gives

ch(TX) =
n

∑
j=0

eejc1(OX(1)) − 1 −
c

∑
i=1

edic1(OX(1)).

Looking at the part in degree 2, we get:

ch2(TX) = 1

2
∑ e2

i c1(OX(1))2 − 1

2
∑d2

jc1(OX(1))2.

We prove now an extendability result which is a key ingredient in the method of [dJS06].

The proof is different from the original, so that we can apply it to the weighted case.

Proposition 2.2.5. Let X ∶= Z(F1, ..., Fc) ⊂ P ∶= P(e0, ..., en) be the common zero locus of
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polynomials F1, ..., Fc. Assume that X is smooth, and consider, for a fixed s > 0, the natural

inclusion P ⊂ Π ∶= P(e0, .., en,1s). Then there exists Y ∶= Z(G1, ...,Gc) ⊂ Π common zero

locus of polynomials G1, ...,Gc such that Y is smooth and Y ∩ P =X.

In particular, if X is a smooth weighted complete intersection, Y is also a smooth weighted

complete intersection.

Proof. Let R and S denote the polynomial rings C[x0, ..., xn] and C[x0, ..., xn, y1, ..., ys] re-

spectively, with deg(xi) = ei for every i = 0, ..., n, and deg(y1) = ... = deg(ys) = 1. Therefore

P = Proj(R) and Π = Proj(S).

Denote by Π○ the open complement of P in Π. Then Π○ is smooth: namely, for every

point p in Π○, there exists at least one coordinate yj of Π that is nonzero at p; therefore p is

a smooth point of Π○.

Next we construct the correct parameter space for c−uples on Π that extend X. Let N

be the kernel of the algebra homomorphism S → R that corresponds to the projection Π→ P

onto the first n + 1 coordinates. Note that, if Sk is the k−th graded part of S, then Fi ∈ Sei .

For every i = 0, .., n, denote by Vi the smallest subspace of Sei that contains N ∩ Sei and Fi.

The parameter space we seek is the affine space V ∶= V1 × ... × Vc whose points are ordered

c−uples (G1, ...,Gc).

Finally, we have to show that we can find a smooth c−uple (G1, ...,Gc) in V . Consider the

closed subscheme E of V ×Π○ parametrizing data ((G1, ...,Gc), p) with Gi(p) = 0 for every

i = 1, ..., c. Since yj is nonzero at p, yeij ∈ Vi is also nonzero at p. Therefore, the conditions

Gi(p) = 0 for i = 1, ..., c give c linearly independent conditions on V . Thus the projection

π2 ∶ E → Π○ is a vector bundle over Π○. This implies that E is smooth, since Π○ is smooth

and π2 is a smooth morphism.

By generic smoothness, the projection π1 ∶ E → V is smooth over a dense open subscheme
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of V . Thus, for (G1, ...,Gc) in V general and Y its common zero locus, the open subscheme

Y ○ ∶= Y ∩Π○ is smooth. Therefore, the only possible singular points of Y are points in the

intersection with the zero scheme Z(y1, ..., ys) corresponding to P. This intersection equals

X by construction, and X is smooth by hypothesis, which implies that Y is smooth at every

point of X. Therefore Y is smooth both at every point of Y ○ and at every point of X,

meaning that Y is everywhere smooth.

Finally, assume that X is a smooth weighted complete intersection. Then X is an ample

effective divisor of Y ∩{y2 = ... = ys = 0} (since it is cut by y1 = 0), and therefore Y ∩{y2 = ... =

ys = 0} is a weighted complete intersection by [Mor75, Corollary 3.8]. Iterating this process,

we have that Y is a weighted complete intersection.

For convenience, we collect here the conditions on weights of the projective space and

degrees of the complete intersection that will be used throughout the thesis:

Hypothesis 2.2.6 (Main hypothesis). Let F be a field, and let Xd1,...,dc ⊂ PF (e0, ..., en)

be a weighted complete intersection of degrees d1, ..., dc. We say that X satisfies the main

hypothesis if the following conditions are satisfied:

(1) X has dimension at least 3, i.e. c ≤ n − 3;

(2) e0 = e1 = e2 = 1;

(3) e3 + ... + en + 3 + c − n ≤ d1 + ... + dc;

(4) d1 + ... + dc ≤ e3 + ... + en; and

(5) d2
1 + ... + d2

c ≤ 3 + e2
3 + ... + e2

n.

These inequalities are not as restrictive as it may look at first sight.

We should remark that if e3 + ... + en + 3 + c − n > d1 + ... + dc, then X ≃ Pn−c by a

characterization of projective space of Cho, Miyaoka and Shepherd-Barron (see [CMSB02]).

Therefore (3) amounts to asking that Xd1,...,dc is not isomorphic to usual projective space,

a case which is not relevant. On the other hand, this condition implies that there are no
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curves of degree 1 through two general points of Xd1,...,dc .

Condition (2) puts a restriction on three of the weights. As already mentioned, this is

also probably not restrictive. From the classifications we have of smooth, 2-Fano weighted

complete intersections of high index or low dimension, at least three weights are equal to

1. In fact, smoothness alone for weighted complete intersections often requires many more

weights being equal to 1. (4) ensures that X is Fano – precisely, of index at least 3 – and

furthermore covered by lines (i.e., irreducible, rational curves of degree 1). Even though the

bound is stronger than the sharp Fano bound (i.e., d1 + ...+dc ≤ e3 + ...+ en + 2), all instances

of the technique we adopt require such condition on the index. On the other hand, once we

require X to be 2−Fano, this subtlety seems irrelevant from the known examples we have.

(5) gives exactly the 2-Fano bound.

In conclusion, it seems to us that this is almost the best possible hypothesis to adopt

the techniques in this thesis. In a more concise and less technical version, it amounts to the

following:

Hypothesis 2.2.7 (Main hypothesis – Equivalent formulation). We say that Xd1,...,dc ⊂

PF (13, e3, ..., en) satisfies the main hypothesis if it is a smooth, 2-Fano weighted complete

intersection of degrees d1, ..., dc, with index and dimension at least 3, that is not isomorphic

to a linear space.

2.3 Moduli of stable maps and Rational Simple Con-

nectedness

An important role in what follows will be played by the moduli space of rational stable

maps M0,m(X,β). We recall here its basic properties, and refer the reader to [FP97] and

[CK99] for further details.
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Definition 2.3.1. Let X be a smooth, projective, complex variety. Let β ∈ CH1(X) be the

class of a curve. An m−pointed, genus 0 stable map to X is the datum (C,p1, ..., pm, f) of:

1) a projective, connected, reduced, at worst nodal curve C of arithmetic genus 0;

2) m distinct smooth marked points p1, ..., pm on C;

3) a morphism f ∶ C → X satisfying the following stability condition: every contracted

component of C via f must contain at least 3 distinguished points (i.e., nodes or marked

points).

Theorem 2.3.2. Let X be a smooth, projective, complex variety. Let β ∈ CH1(X) be the

class of a curve. Then there exists a projective, coarse moduli scheme M0,m(X,β) over C

parametrizing isomorphism classes [(C,p1, ..., pm, f)] of m−pointed, genus 0 stable maps to

X such that f∗([C]) = β.

In general, M0,m(X,β) is neither smooth nor irreducible, and it might have irreducible

components of different dimensions. In any event, the following Theorem (see [CK99], 7.1.4)

describes the local structure of M0,m(X,β). Here, f∗Ω1
X → Ω1

C(∑
m
i=1 pi) is a complex in

degrees −1 and 0, and Extk for k = 1,2 denotes the hyperext groups.

Theorem 2.3.3. Let [(C,p1, ..., pm, f)] ∈ M0,m(X,β) be a stable map. Then M0,m(X,β) is

defined locally around [(C,p1, ..., pm, f)] by

dim Ext2(f∗Ω1
X → Ω1

C(
m

∑
i=1

pi),OC)

equations in a nonsingular scheme of dimension

dim Ext1(f∗Ω1
X → Ω1

C(
m

∑
i=1

pi),OC).

In particular, every irreducible component of M0,m(X,β) has dimension at least

dim Ext2(f∗Ω1
X → Ω1

C(
m

∑
i=1

pi),OC) − dim Ext1(f∗Ω1
X → Ω1

C(
m

∑
i=1

pi),OC) =
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= −KX ⋅ β + dim(X) +m − 3.

The smallest possible dimension −KX ⋅ β + dim(X) +m − 3 is often referred to as the

“expected dimension” of the moduli space. One also has evaluation morphisms

evpi ∶ M0,m(X,β) →X

for i = 1, ...,m, defined as

evpi([(C,p1, ..., pm, f)]) = f(pi).

Similarly, one has a total evaluation morphism

evm ∶ M0,m(X,β) →Xm, evm([(C,p1, ..., pm, f)]) = (f(p1), ..., f(pm)).

The fibers of these evaluation morphisms also have an “expected dimension”, which equals

the expected dimension of the domain minus the dimension of the target. To prove rational

simple connectedness, it will be crucial to understand the general fiber of some of these

evaluation morphisms. This task can be quite hard in general. However, we will only be

interested in “minimal” pointed curves, which have been studied in [dJS06] and satisfy much

nicer properties. This notion is related to the key concept of a free rational curve, meaning

a morphism f ∶ P1 → X to a smooth variety X such that f∗(TX) is generated by global

sections. The following Theorem collects some of these properties (see [dJS06], Lemmas 4.1,

5.1 and 5.3 for further reference):

Theorem 2.3.4. Let X be a smooth, projective variety, and OX(1) an ample invertible

sheaf. Let α be a curve class of OX(1)−degree 1.

1) Assume that ev1 ∶ M0,1(X,α) → X is dominant. Then a fiber Fp of ev1 over a

general point p is smooth, and every connected component has dimension equal to its expected

dimension −KX ⋅ α − 2.

2) Assume that ev2 ∶ M0,2(X,2α) → X ×X is dominant. Then a fiber Fp,q of ev2 over
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a general point (p, q) is smooth, and every connected component has dimension equal to its

expected dimension −KX ⋅ (2α) − dim(X) − 1.

Proof. Since the proof of (1) is an easier version of that of (2), we are only going to prove

the latter.

Since p and q are general points of X – in particular, they are distinct and there is no

line in X through them – a point [(C,p1, p2, f)] of Fp,q can only parametrize either a stable

map of degree 1 from P1 to a conic, or a stable map of degree 1 from a tree of two copies of

P1 with one marked point on each component to two lines meeting at one point. In either

case, since every component of C has degree 1 over its image, (C,p1, p2, f) is automorphism

free. Also, since in either case the image of every component of C passes through a general

point of X, every component of (C,p1, p2, f) is free.

By [FP97, Theorem 2], this implies thatM0,2(X,2α) is smooth of the expected dimension

at every point of Fp,q. Furthermore, if U ⊂ M0,2(X,2α) is the open subset parametrizing

unions of free curves, by Generic Smoothness we have that ev2∣U is smooth. On the other

hand, Fp,q is contained in the fiber of ev2∣U over (p, q); thus Fp,q is smooth.

As we mentioned, the properties of Corollary 1.0.3 will be implied by rational simple

connectedness of the weighted complete intersections we are considering. We recall here

the definition, which tries to mimic to notion of simple connectedness in topology. Since the

spaces of stable maps are (in general) poorly behaved, it is more convenient (and, fortunately,

sufficient) to work with suitable “good” irreducible components of these moduli spaces:

Definition 2.3.5. A variety X is (weakly) rationally simply connected if, for all l ≥ 2, there

is a canonically defined irreducible component Ml,2 of M0,2(X, lα), with the property that

ev2∣Ml,2
∶Ml,2 →X ×X is dominant, and the general fiber is rationally connected.

We will prove these properties in the case l = 2 directly. It would be hard (in general) to

check the definition for infinitely many degrees l. However, provided the existence of certain

special ruled surfaces, called 1-twisting surfaces, the proof for l > 2 follows by induction
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(see [dJS06, Proof of Theorem 1.7] or [DeL15, Proof of Theorem 7.3, Step 1]). In chapter

4, we prove that the general fiber of ev2 ∶ M0,2(X,2α) → X2 is rationally connected (the

base case of induction) and that it is uniruled, which allows us to construct these twisting

surfaces in chapter 5. In chapter 2, we prove that the general fiber of ev1 ∶ M0,1(X,α) → X

is irreducible; this is the requirement to define the “good” irreducible components, since we

can apply the following Lemma (see [dJS06, Lemma 3.5]):

Lemma 2.3.6. Let Mα,0 be an irreducible component of M0,0(X,α) whose general point

parametrizes a smooth, free curve. Denote by Mα,1 the unique irreducible component of

M0,1(X,α) dominating Mα,0.

Assume that the general fiber of the restriction ev∣Mα,1 ∶ Mα,1 → X is geometrically ir-

reducible. Then for every positive integer l there is a unique irreducible component Mlα,0

of M0,0(X, lα) whose general point parametrizes a smooth, free curve. Denote by Mlα,1 the

unique irreducible component ofM0,1(X, lα) dominating Mlα,0. Then the generic fiber of the

restriction ev∣Mlα,1
∶Mlα,1 →X is geometrically irreducible.

Lemma 2.3.6 allows us to define Mlα,2 as the unique irreducible component ofM0,2(X, lα)

dominating Mlα,0. These components will be the ones of Definition 2.3.5.

As a final remark, note that Theorem 1.0.2 deals with complex varieties (and, in fact, we

will work over C throughout the rest of this thesis), whereas our main application (Corollary

1.0.3) is about varieties defined over the function field K of a smooth complex curve B. With

respect to part (1) of Corollary 1.0.3, Hassett’s result shows that, given a multisection over

B passing through prescribed points, rational simple connectedness implies the existence of a

ruled surface overB that contains such multisection. One can then prove weak approximation

using the fact that it holds for ruled surfaces. With respect to parts (2) and (3) of Corollary

1.0.3, since K is an algebraically closed field of characteristic 0, by the Lefschetz principle

we have an embedding K ⊂ C. It can be proved that rational simple connectedness over any

algebraic closure of K implies a notion of rational simple connectedness over K defined in
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the same way as Definition 2.3.5 ([Pir12, Proposition 4.1]). Therefore, once we know that

XC is rationally simply connected, we also have that XK is rationally simply connected.

18



Chapter 3

The space of pointed lines

The main goal of this section is to prove that the evaluation map

ev1 ∶ M0,1(X,α) →X

is dominant and it has irreducible generic fiber. As we mentioned, we need this to be able to

apply Lemma 2.3.6, but we will also use this in section 4 to study the geometry of 2-pointed

stable maps of degree 2.

Dominance of ev1 follows from [Kol96, V, 4.11.2], or alternatively from the proof of

Theorem 3.0.3 below (in fact, within our degree range, the general fiber of ev1 has even

positive dimension). With respect to irreducibility, in [dJS06] it is proved by means of

a geometric argument, that however relies on the properties of lines in projective space.

Namely, since through 2 points there is a unique line, the authors were able to conclude that

if there were different components of the fiber, they would have to intersect, and in fact be

the same (since the fiber is smooth). However, in the weighted case we might have more

than one curve of degree 1 through 2 points; therefore proving irreducibility will require some

extra work.
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Since by Theorem 2.3.4 a general fiber of ev1 is smooth, to prove irreducibility it is enough

to prove connectedness. A fundamental ingredient will be the following connectedness result,

which can be thought of as a generalization of the Enriques-Severi-Zariski Lemma.

Proposition 3.0.1. Let X be a projective, normal, connected scheme over C of dimension

at least 2. Let b be an integer. Let (Li, si, Yi)i=1,...,b be a sequence of triples, where Li is an

ample line bundle on X, Y0 = X, si ∈ H0(Yi−1, Li∣Yi−1), and Yi ⊂ Yi−1 is the zero locus of si.

Then, if b is less than dim(X), each scheme Y1, ..., Yb is connected.

Proof. Observe that, for b = 1, the statement is the classical Lemma of Enriques-Severi-

Zariski. The argument below will prove the Proposition by reducing it to this case.

Note first that, since connectedness is not affected by the scheme structure, it suffices to

prove the result for Lni and sni , for some positive integer n. This allows us to assume that Li

is very ample, and that si is the restriction to Yi−1 of a global section on X of Li. Namely, by

applying Serre’s Vanishing to the n−th power of the ideal sheaf of Yi−1 (with n big enough),

we get that sni is the restriction to Yi−1 of a section ti of Lni .

Now if the schemes Yi were normal, we could simply apply iteratively the Lemma of

Enriques-Severi-Zariski, and we would be done. The trick is to reduce to the case of general

sections.

Let V denote the vector space H0(X,L1)⊕ ...⊕H0(X,Lb), so that P(V ) is the parameter

space for b−uples (t1, ..., tb) of global sections ti of Li up to common scaling. Denote by

Z ⊂ X × P(V ) the closed subscheme parameterizing pairs (p, (t1, ..., tb)) such that every ti

is zero at p. Every Li is very ample; thus, for every p ∈ X fixed, the conditions ti(p) = 0

for every i = 1, ..., b correspond to b linearly independent conditions on P(V ). Therefore the

projection π1 ∶ Z →X is a projective bundle. In particular, Z is a projective, connected and

normal scheme, and hence irreducible too.
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We need to show that every fiber of π2 ∶ Z → P(V ) is connected. Since Z is irreducible,

it suffices to prove that the generic fiber of π2 is connected. For (t1, ..., tb) general, the

schemes Yi are normal by a Bertini type Theorem ([Sei50, Theorem 7]): after embedding X

in a projective space via L1, a general hyperplane section is normal by [Sei50, Theorem 7];

therefore Y1 is normal. By iterating this process (embedding Y1 via L2 and so on) we have

that Y1, ..., Yb are all normal. Therefore the fiber over (t1, ..., tb) is connected since we can

apply the Lemma of Enriques-Severi-Zariski iteratively, starting from b = 1.

Let us now fix some notation, and the hypothesis required for the main result of this

chapter.

Notation. Let P ∶= P(13, e3, ..., en) be a weighted projective space, and let d1, ..., dc be

natural numbers such that d1 + ... + dc ≤ e3 + ... + en. Let Wj ∶= H0(P,OP(dj)) denote the

vector space of degree dj weighted polynomials, and let T ∶=W1⊕ ...⊕Wc be the affine space

that parametrizes weighted c−uples of polynomials of degrees d1, ..., dc. There is a dense

open subscheme U ⊂ T parametrizing c−uples (F1, ..., Fc) whose common zero locus Xd1,..dc

is smooth, contained in P○ and of codimension c. Namely, for Xd1,..dc to be contained in P○

corresponds to being disjoint from the closed subscheme Sing(P); if Xd1,..dc is contained in

P○, being smooth is equivalent to being quasismooth, which is an open condition; finally, for

Xd1,..dc to have smallest possible dimension (i.e., codimension c) it is also an open condition

by upper semicontinuity of fiber dimension.

The following Lemma allows us to restrict to general c−uples in U .

Lemma 3.0.2. If the general fiber of ev1 is connected for Xd1,..dc corresponding to a general

c−uple of U , then it is connected for Xd1,..dc corresponding to any c−uple of U .
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Proof. Consider the incidence correspondence

I1 ⊂ P × U

consisting of data (p, (F1, ..., Fc)) such that Fj(p) = 0 for j = 1, ..., c (note that I1 is auto-

matically contained in P○ × U). Since U is smooth and the fibers of the projection I1 → U

are the common zero loci of F1, ..., Fc for (F1, ..., Fc) ∈ U – hence smooth – we have that I1

is smooth.

Consider further the moduli space M0,1(P,1) of curves γ ∶ P1 → P of degree 1 with 1

marked point (up to automorphisms), and the incidence correspondence

I2 ⊂ I1 ×M0,1(P,1)

consisting of data ((p, (F1, ..., Fc)), [γ]) such that:

1) γ maps the marked point to p, and

2) γ∗(Fj) = 0 for every j = 1, ..., c (i.e., the curve is contained in the common zero locus

of F1, ..., Fc).

(Again, note that I2 is automatically contained in P○ × U ×M0,1(P○,1).)

By construction, the projection I2 → I1 is proper. By upper semicontinuity of the fiber

dimension, there is a dense open subscheme V1 ⊂ I1 such that the fibers of the projection

I2 → I1 over V1 are equidimensional, with dimension equal to their expected dimension

(which is the minimum possibile dimension). Denote by V2 ⊂ I2 the preimage of V1 under

the morphism I2 → I1. Then V2 → V1 is still proper and, by [Kol96, I.2.17], it is also

flat. Therefore, by [Gro67, Cor. 15.5.4], the number of connected components of the fibers

of V2 → V1 is lower semicontinuous. Since the general fiber of V2 → V1 is connected by

hypothesis, this implies that every fiber is connected.
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To conclude the proof of the Lemma, we only need to show that the morphism V1 → U is

surjective. Note that there is a dense open subschemeW1 ⊂ I1, contained in V1, such that the

fibers of the projection I2 → I1 over W1 are smooth. Now for every (F1, ..., Fc) ∈ U , and for

a general point p in its common zero locus Xd1,..dc , the fiber of I2 → I1 over (p, (F1, ..., Fc))

is smooth by Theorem 2.3.4. This means that the morphism W1 → U is surjective, and, a

fortiori, that the morphism V1 → U is surjective too.

We can now prove the main result of this section. The strategy is to consider a birational

model of the fiber of the evaluation map, given by a closed subscheme of an appropriate

weighted projective space, and then apply Proposition 3.0.1.

Theorem 3.0.3. Let Xd1,...,dc be the common zero locus of a general c−uple (F1, ..., Fc) ∈ U .

Then the general fiber of ev1 is connected.

Proof. Let us denote Xd1,..dc by X for convenience. Let q denote the point [1 ∶ 0 ∶ ... ∶ 0].

Since X is general, X intersects the complement of the common zero locus of x0, x1, x2.

Therefore, given a general point x of X, there exists a change of coordinates of P that sends

x to q.

Consider the parameter space Mor1(P1,P○; ● ↦ q) for morphisms of degree 1 from P1 to

P○ that map the marked point to q. For every u ∈ Mor1(P1,P○; ● ↦ q), we can assume –

after composing with an automorphism of P1 – that the marked point mapped to q is [1 ∶ 0]

and that the point [0 ∶ 1] is the unique point that maps to the hyperplane {x0 = 0}. Then

the morphism can be written as

u([s ∶ t]) = [s ∶ tu1(s, t) ∶ ... ∶ tun(s, t)],

and the only automorphisms of this stable map are of the form φ ∶ [s ∶ t] ↦ [c1s ∶ c2t] for

some c1, c2 ≠ 0, or equivalently φ([s ∶ t]) = [s ∶ ct] for some c ≠ 0.
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Every ur(s, t) is a homogeneous polynomial of degree er − 1 of the form

ur(s, t) = ur,1ser−1 + ... + ur,erter−1,

with coefficients {ur,k}, where r = 1, ..., n and k = 1, ..., er.

Composition with the automorphism φ([s ∶ t]) = [s ∶ ct] above corresponds to multiplying

every coefficient ur,k of ur(s, t) by ck. Therefore every stable map (rather than morphism) u

as above determines a unique point in a new weighted projective space,

M ∶= ProjC[{ur,k}],

where r ∈ {1, ..., n}, k ∈ {1, ..., er}, and deg(ur,k) = k.

Thus we can identify the fiber over q of the evaluation morphism ev1 ∶ M0,1(P○, α) → P○

with a dense open subscheme M○ of M.

For every weighted polynomial F on P that is homogeneous of degree d, the polynomial

(F ○ u)(s, t) = F (s, tu1(s, t), ..., tun(s, t))

is a polynomial of degree d in s and t of the form

bFd,0({ur,k})sd + ... + bF0,d({ur,k})td,

with coefficients bFd−l,l({ur,k}) that are polynomials of degree l in the variables {ur,k}. Note

in particular that bFd,0 is constant, and that F vanishes at the point q if and only if bFd,0 = 0.

We can now describe the fiber of the evaluation map as a subset of M○. Let X be defined

by polynomials F1, ..., Fc on P of degrees d1, ..., dc. Then the common zero locus of F1, ..., Fc
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is contained in P○ and it contains q. Thus we can describe the fiber of the evaluation map

as the intersection of M○ with the common zero locus M(F1, ..., Fc) on M of the polynomials

b
Fj
dj−l,l

defined above, for j = 1, ..., c and for l = 1, ..., di. We can consider these polynomials as

sections of ample lines bundles on M; then, by Proposition 3.0.1, M(F1, ..., Fc) is connected.

Since the fiber of the evaluation map is proper, the intersection of M(F1, ..., Fc) with M○

is proper. This implies that every irreducible component of M(F1, ..., Fc) is either entirely

contained in M○ or it is entirely contained in its closed complement. But since M(F1, ..., Fc)

is connected, M(F1, ..., Fc) is either entirely contained in M○ or it is entirely contained in its

closed complement, which forces M(F1, ..., Fc) to be contained in M○. Therefore the fiber of

the evaluation map equals M(F1, ..., Fc), which is connected.

Remark 3.0.4. It follows from the proof of Theorem 3.0.3 that ev1 is dominant and that

its fibers have positive expected dimension. Namely, dim(M) = e1 + ... + en − 1, and every

polynomial F of degree d imposes d conditions. Therefore the expected dimension of the fiber

is e1+ ...+en−1−(d1+ ...+dc), and this number is positive if and only if d1+ ...+dc ≤ e3+ ...+en

(which is our hypothesis).
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Chapter 4

The space of 2−pointed conics

Throughout this chapter, X will denote a smooth weighted complete intersection Xd1,...,dc

in PC(e0, ..., en) that satisfies the main hypothesis, and α is a curve class of degree 1. We

are going to study the general fiber of

ev2 ∶ M0,2(X,2α) →X2.

We will show that it is nonempty, irreducible, and uniruled by suitable rational curves.

Uniruledness will be used to produce 1-twisting surfaces in chapter 5.

We will first consider some useful divisor classes on the fiber, and relate them to an

ample divisor class λ. Once again, while in the standard projective case λ has some explicit

geometric interpretation, that doesn’t apply to the weighted case. For this reason, we will

define it in a more intrinsic way (which is analogous to the one in [dJS06] in the case of usual

projective space).

The setup is the following. Let Mp1,p2 ∶= ev−1
2 (p1, p2) be the fiber of ev2 over a point

(p1, p2) ∈X ×X, such that p1 and p2 are distinct and not contained in a line in X. Note that

in particular – by inequality (3) in the main hypothesis – for (p1, p2) general there is no line
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contained in X through p1 and p2. Then we have morphisms:

C X ⊂ P○ ⊂ P

Mp1,p2

g

π

where C is the universal family over Mp1,p2 , with sections s1, s2 ∶Mp1,p2 → C corresponding

to the marked points. Let Si be the divisor associated to the zero locus of si for i = 1,2.

The line bundles OC (S1), OC (S2) and g∗OP○(1) give divisor classes c1(OC (S1)), c1(OC (S2))

and c1(g∗OP○(1)) in CH1(C ). In CH1(Mp1,p2), there is a divisor class ∆1,1 corresponding to

stable maps with reducible domain. Furthermore, since π is proper, there is a class obtained

by pushing forward c1(g∗(OP○(1)))2 ∈ CH2(C ) via π. We are now going to define one more

class λ ∈ CH1(Mp1,p2), and establish relations among these classes.

Definition-Lemma 4.0.1. Assume there is no line through p1 and p2. Then there is a

divisor class λ on Mp1,p2 that is ample and that satisfies the relation

π∗g
∗c1(OP○(1))2 = 2λ.

If furthermore p1 and p2 are general, we have relations

∆1,1 = 2λ,

and

c1(TMp1,p2
) = (∑ e2

i −∑d2
j + 2)λ.

Proof. Let us compare OC (S1 +S2) and g∗OP○(1). For a stable map [(C,p1, p2, f)] ∈Mp1,p2 ,

the domain C is either P1 or a union of two copies of P1 connected at a node. In the first

case, the restriction of g∗OP○(1) to (C,p1, p2, f) is an effective line bundle of degree 2; in the

second case, the restriction of g∗OP○(1) to (C,p1, p2, f) is an effective line bundle obtained

by glueing two effective line bundles of degree 1 on each copy of P1. For a stable map
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[(C,p, q, f)] ∈Mp1,p2 , the restriction of OC (S1+S2) to (C,p1, p2, f) has the same description.

Therefore OC (S1 + S2) and g∗OP○(1) are isomorphic on each irreducible component of each

fiber of π. Thus, by the Semicontinuity Theorem, they are isomorphic up to the pullback of

some line bundle L on Mp1,p2 :

OC (S1 + S2) ⊗ π∗L ≃ g∗OP○(1).

Note that s∗i π
∗L ≃ L since π○si is the identity, and that s∗i g

∗OP○(1) is trivial since g○si

is the constant map to the point pi. Furthermore, for any divisor D on C , we have that

s∗iOC (D) ≃ π∗(OC (D)∣Si) ≃ π∗OC (Si ⋅D).

Therefore, applying s∗i to each side of OC (S1 + S2) ⊗ π∗L ≃ g∗OP○(1), we have:

s∗iOC (Si) ≃ L ∨,

for i = 1,2, or equivalently

OC (π∗(Si ⋅ Si)) ≃ L ∨.

We define λ ∶= c1(L ). Abusing the notation, Si will be also used to denote c1(OC (Si))

for i = 1,2. Using again the relation OC (S1 + S2) ⊗ π∗L ≃ g∗OP○(1), we have that

c1(g∗OP○(1))2 = (S1 + S2 + π∗λ)2 = (S1)2 + (S2)2 + 2S1 ⋅ π∗λ + 2S2 ⋅ π∗λ.

Since, by the projection formula, π∗(Si ⋅ π∗λ) = π∗(Si) ⋅ λ, and since π∗(Si) ⋅ λ = λ (because

π∣Si is an isomorphism), we then have:

c1(π∗g∗OP○(1))2 = π∗(S1)2 + π∗(S2)2 + 2π∗(S1) ⋅ λ + 2π∗(S2) ⋅ λ = −λ − λ + 2λ + 2λ = 2λ.
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By [dJS17, Lemma 5.8], we have

∆1,1 = −π∗(S1)2 − π∗(S2)2 = λ + λ = 2λ.

The following formula for the canonical class of the fiber is a special case of [dJS17, Theorem

1.1] (see [dJS06, Lemma 6.5]):

c1(TMp1,p2
) = π∗g∗(ch2(TX) + c1(OP○(1))2).

Therefore, combining it with Lemma 2.2.4, we get

c1(TMp1,p2
) = (1

2
(∑ e2

i −∑d2
j) + 1) ⋅ 2λ = (∑ e2

i −∑d2
j + 2)λ.

To prove that λ is ample, we can proceed as follows. Since OX(1) is ample, OX(b)

is very ample for some positive integer b. Let us fix such b. Then OX(b) determines an

embedding of X into some projective space PN . By functoriality of Kontsevich spaces, we

get an embeddingM0,2(X,2α) ↪M0,2(PN ,2α). OnM0,2(PN ,2α) there is a divisor class H,

corresponding to stable maps whose image intersects a fixed codimension 2 linear subspace

of PN . If we write down the morphisms associated to the universal family overM0,2(PN ,2α):

U PN

M0,2(PN ,2α)

G

Π

we have that H = Π∗G∗(c1(OPN (1)))2.

It is known that the restriction of H to M0,2(X,2α) is ample away from the locus of

multiple covers of lines. Since there is no line contained in X through p1 and p2, the

restriction of H to Mp1,p2 ⊂ M0,2(X,2α) is ample. Furthermore, the restriction of H to

Mp1,p2 has divisor class π∗g∗c1(OX(b))2, which is equal to 2b2λ. Therefore λ is ample.
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Now we can use λ as an aid to study the geometry of fibers of ev2. Before that, we need

to relate λ to the tangency divisor TW,p1 , which we now define.

Recall the setup of Proposition 2.2.5: let Y ⊂ P(e0, .., en,1s) be a smooth weighted com-

plete intersection that extends the smooth weighted complete intersection X ⊂ P(e0, ..., en),

meaning that X = Y ∩ {y1 = ... = ys = 0}, where y1, ..., ys are the extra coordinates of weight

1. Let MY be the fiber of ev2 ∶ M0,2(Y,2α) → Y 2 over a general point (p1, p2) ∈ X2. Let

W ⊂ P(e0, .., en,1s) be the zero locus of one such coordinate yi for some fixed i = 1, ..., s.

Then W passes through p1, and W ∩Y is a smooth codimension 1 closed subscheme of Y , so

that Tp1(Y ∩W ) ⊂ Tp1Y is a codimension 1 linear subspace. We define TW,p1 as the Cartier

divisor in MY corresponding to stable maps {[f ∶ C → Y ; t1, t2 ∈ C] ∣ f(t1) = p1, f(t2) =

p2, im(dft1) ⊂ Tp1(W ∩ Y )}. Note that

s∗1(Ωπ)∣[f ∶C→Y ;t1,t2∈C] ≃Hom(Tt1C,C),

and there is a global section dgs1 of s∗1(Ωπ) defined over a point [f ∶ C → Y ; t1, t2 ∈ C,f(t1) =

p1, f(t2) = p2] by the morphism

Tt1C
dft1ÐÐ→ Tp1Y →

Tp1Y

Tp1(W ∩ Y ) ≃ C.

Therefore the divisor TW,p1 can be thought of as the divisor of zeroes of dgs1 . Since s1 is

a section, its image S1 is contained in the smooth locus C sm of C . Therefore, the relative

cotangent sequence associated to S1 ↪ C sm →Mp1,p2 is the short exact sequence:

0→ OC (−S1)∣S1 → Ωπ ∣S1 → ΩS1/MY
→ 0.

Note that OC (−S1)∣S1 ≃ s∗1(OC (−S1)) and Ωπ ∣S1 ≃ s∗1Ωπ. Since S1 →MY is an isomorphism,

ΩS1/MY
= 0. Therefore we have that the divisor class of TW,p1 is c1(s∗1Ωπ) = −π∗(S1 ⋅ S1).
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Now note that since (p1, p2) is a general point of X2, there is no line in X that contains

p1 and p2. This also implies that there is no line in Y passing through p1 and p2; namely

since each coordinate yi vanishes at p1 and p2, if there was such a line it would be contained

in the common zero locus {y1 = ... = ys = 0}, and therefore in X. The fact that there is

no line in Y that contains p1 and p2 is enough to define the divisor class λ on MY as in

Definition-Lemma 4.0.1, which by construction equals −π∗(S1 ⋅S1), and to prove it is ample.

Therefore, tying the ends up together, the class of TW,p1 equals λ, and it is ample.

We can now prove that a general fiber of ev2 is non-empty and irreducible.

Proposition 4.0.2. The general fiber of ev2 ∶ M0,2(X,2α) → X2 is non-empty and irre-

ducible.

Proof. By Proposition 2.2.5, we can extend X to some Y ⊂ P(e0, .., en,1, ...,1) such that X is

contained in Y , X equals Y ∩D1∩ ...∩Dr, Dk Cartier divisor of degree 1 for every k = 1, ..., r.

By adding enough variables, i.e., by taking r big enough, we can choose Y that satisfies the

inequality

dim(Y ) ≤ −KY ⋅ 2α − 2.

In fact, dim(Y ) = dim(X) + r and −KY ⋅ 2α − 2 = −KX ⋅ 2α − 2 + 2r. Similarly, we can also

assume that

2 ⋅ (−KY ⋅ α − 2) > n + r = dim(P(e0, .., en,1, ...,1)).

We will make use of the first inequality right away, and of the second one later on.

Let us consider the fiber Mp1,p2(Y ) of ev2(Y ) ∶ M0,2(Y,2α) → Y 2 over a general point

(p1, p2) ∈ Y 2. We first show that it is non-empty. For i = 1,2, evpi ∶ M0,pi(Y,α) → Y

is dominant, and the general fiber is connected of dimension −KY ⋅ α − 2. The curves

parametrized by a general fiber of evpi sweep out a closed subscheme Πi of Y of dimension

(−KY ⋅α−2)+1 = −KY ⋅α−1. For i = 1,2, dim(Πi) = −KY ⋅α−1, so that dim(Π1)+dim(Π2) =
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2(−KY ⋅ α − 1) ≥ dim(Y ). Therefore, by Theorem 2.2.3, Π1 ∩Π2 is nonempty, which means

that there are two curves C1 and C2 of class α containing p1 and p2 respectively, that inter-

sect at a point. Thus C1∪C2 has class 2α and contains p1 and p2, which implies that ev2(Y )

is dominant, and therefore surjective.

The inequality dim(Y ) ≤ −KY ⋅ 2α − 2 also allows us to use Bend and Break ([Kol96,

Corollary 5.6.2]): every component of Mp1,p2(Y ) contains a reducible curve, and thus every

component of Mp1,p2(Y ) intersects the boundary divisor ∆1,1(Y ) ⊂ M0,2(Y,2). Thus to

prove connectedness, it’s enough to show that ∆1,1(Y )∩Mp1,p2(Y ) is connected. To do this,

we interpret ∆1,1(Y ) ∩Mp1,p2(Y ) as the preimage of a diagonal and use Bădescu’s theorem

([Băd96]).

Consider the evaluation map e2 ∶ M0,2(Y,α) → Y × Y . In what follows, we denote the

diagonal in Y × Y as ∆Y . Define Mp1,● ∶= e−1
2 ({p1} × Y ), M●,p2 ∶= e2

−1(Y × {p2}). Mp1,●

is projective, smooth and connected. This follows from the fact that a general fiber of

ev1 ∶ M0,1(Y,α) → Y is smooth and connected, and uses the following commutative diagram:

M0,2(Y,α) Y × Y

M0,1(Y,α) Y

e2

π1

ev1

(Here the map on the lefthand side forgets the second marked point.)

Similarly, M●,p2 is projective, smooth and connected.

We have maps Mp1,● → Y and M●,p2 → Y , given by evaluation at the unspecified marked

point ●. Their product defines a morphism

e1,2 ∶Mp1,● ×M●,p2 → Y × Y.
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Since through any two distinct points there are at most finitely many lines, e1,2 is finite over

its image. We also have e−1
1,2(∆Y ) = ∆1,1(Y ) ∩Mp1,p2(Y ).

Since Mp1,● and M●,p2 are irreducible, Mp1,●×M●,p2 is irreducible of dimension dim(Mp1,●)+

dim(M●,p2) = 2(−KX ⋅α − 2). Therefore Mp1,● ×M●,p2 is (dim(Mp1,● ×M●,p2) − 1)−connected,

and by the second inequality at the beginning of the argument,

dim(Mp1,● ×M●,p2) > dim(P(e0, .., en,1, ...,1)).

Therefore Bădescu’s theorem ([Băd96]) implies that e−1
1,2(∆Y ) = ∆1,1(Y ) ∩Mp1,p2(Y ) is con-

nected, which finally gives that Mp1,p2(Y ) is connected.

Now, by Theorem 2.3.4, a general fiber of ev2(Y ) is smooth (of expected dimension).

Therefore a general fiber of ev2(Y ) is irreducible.

To conclude, consider the fiber Mp1,p2(X) of ev2(X) ∶ M0,2(X,2α) → X2 over a general

point (p1, p2) ∈X ×X. Let Mp1,p2(Y ) denote the fiber over (p1, p2) of ev2(Y ). We are going

to show that Mp1,p2(Y ) is connected and normal.

Notice that Mp1,p2(X) is cut out in Mp1,p2(Y ) by the ample divisors TY ∩Dk,p1 , for k =

1, ..., r. Therefore dim(Mp1,p2(Y )) ≤ dim(Mp1,p2(X)) + r. In particular, since Mp1,p2(Y ) is

non-empty, Mp1,p2(X) is also non-empty.

Since (p1, p2) ∈X ×X is general, we also have that

dim(Mp1,p2(X)) + r = −KX ⋅ 2α − 1 + r = −KY ⋅ 2α − 1 ≤

≤ dim(M0,2(Y,2α)) − 2dim(Y ) ≤ dim(Mp1,p2(Y )).

Therefore the dimension of Mp1,p2(Y ) equals its expected dimension.

Since (p1, p2) ∈ X ×X is general, by Theorem 2.3.4 we have that Mp1,p2(X) is smooth.
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Since Mp1,p2(X) is cut by ample divisors in Mp1,p2(Y ), it follows that Mp1,p2(Y ) is regular

in codimension 1.

Now consider an integral (say, rational) curve T in Y ×Y connecting (p1, p2) to a general

point (q1, q2) ∈ Y ×Y . We proved above that the dimension of the fiber of ev2(Y ) over (p1, p2)

equals its lower bound. Therefore there is an open dense subset T ○ ⊂ T containing (p1, p2)

such that the dimension of the fibers of evT ∶ ev2(Y )−1(T ○) → T ○ is the smallest possible. By

[Kol96, II, 1.7.3], evT is a flat, local complete intersection morphism. Since we showed in the

first part of the proof that a general fiber of evT is connected, all fibers of evT are connected

by the Principle of Connectedness ([Har77, III, Exercise 11.4]). In particular, Mp1,p2(Y ) is

connected. Since Mp1,p2(Y ) is a local complete intersection and regular in codimension 1, it

is also normal.

As already noticed above, Mp1,p2(X) is cut out in Mp1,p2(Y ) by the ample divisors

TY ∩D1,p1 , ..., TY ∩Dr,p1 . Thus, by Lemma 3.0.1, Mp1,p2(X) is connected. By Theorem 2.3.4, a

general fiber of ev2(X) is smooth. Therefore a general fiber of ev2(X) is irreducible.

We can finally prove uniruledness of a general fiber of ev2, which we will use to construct

1-twisting surfaces.

Proposition 4.0.3. Assume that ∑ni=0 e
2
i −∑cj=1 d

2
j ≥ 0. Then a general fiber of ev2 is uniruled

by rational curves of λ−degree 1.

Proof. First of all, we observe that if 2(∑ e2
i −∑d2

j)+dim(X)+2KX ⋅α+4 > 0, then a general

fiber MX of ev2 is uniruled by rational curves of λ−degree 1. Namely, since c1(TMX
) =

(∑ e2
i − ∑d2

j + 2)λ and λ is ample, MX is uniruled by curves of (−KMX
)−degree at most

dim(MX) + 1. Let γ be such a curve of minimal degree. If we had λ ⋅ γ ≥ 2, then 2(∑ e2
i −

∑d2
j)+dim(X)+ 2KX ⋅α+ 4 > 0 would imply that −KMX

⋅γ > dim(MX)+ 1, a contradiction.
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Assuming that the general fiber of ev2 is uniruled by rational curves of λ−degree 1,

and that D is such a curve, the dimension of the space of deformations of D containing a

general point is −KMX
⋅D − 2 = ∑ e2

i − ∑d2
j . The next step is to show that the inequality

−KMX
⋅D − 2 = ∑ e2

i −∑d2
j ≥ 0 is actually sufficient to guarantee that the general fiber of ev2

is uniruled by rational curves of λ−degree 1.

By Proposition 2.2.5, we can extend X to some Y ⊂ P(e0, .., en,1, ...,1) such that X ⊂ Y ,

X = Y ∩D1 ∩ ... ∩Dr, Dk Cartier divisor of degree 1 for every k = 1, ..., r. By adding enough

variables, we can choose Y that satisfies the inequality 2(∑ e2
i +r−∑d2

j)+dim(Y )+2KY ⋅α−4 >

0.

Let (p1, p2) ∈ X2 be a general point, and let MX ,MY be the fibers over (p1, p2) of

ev2(X) ∶ M0,2(X,2) →X2 and ev2(Y ) ∶ M0,2(Y,2) → Y 2 respectively.

By [Deb01, 2.10], the fiber of the Y ×Y −scheme Mor(P1×Y ×Y,M0,2(Y,2)) over a point

(q1, q2) ∈ Y ×Y is Mor(P1, ev2(Y )−1(q1, q2)). Therefore, by upper semicontinuity of the fiber

dimension, the dimension of the space of rational curves in ev2(Y )−1(q1, q2) of λ−degree 1

containing a general point is at least −KY ⋅D − 2 for any (q1, q2) ∈ Y × Y . In particular, the

dimension of the space of rational curves of λ−degree 1 in MY passing through a general

point is at least −KY ⋅D − 2.

Consider a general point [C] of MX given by a stable map with image C. Then C is

smooth and very free, which means that C ≃ P1 and that h1(C,TX ∣C(−2)) = 0. The normal

exact sequence of X in Y restricted to C is:

0→ TX ∣C → TY ∣C → OX(1)⊕c∣C → 0.

35



Since OX(1)∣C ≃ OC(2), after twisting the short exact sequence by OC(−2) we get

0→ TX ∣C(−2) → TY ∣C(−2) → O⊕c
C → 0.

Since h1(C,TX ∣C(−2)) = 0 and h1(C,OC) = 0, we have h1(C,TY ∣C(−2)) = 0, which means

that [C] is also very free as a point of MY . Therefore the space M (MY , [C]) of λ−degree 1

curves in MY passing through [C] has dimension at least −KY ⋅D − 2 = r −KX ⋅D − 2.

Let M (MY , [C])norm denote the normalization of M (MY , [C]). By [Keb02, Theorem

3.4], there is a “tangency” morphism τ ∶ M (MY , [C])norm → P(TMY ,[C]) which is finite. The

morphism τ associates to a λ−degree 1 curve in MY , smooth at [C], its tangent direction at

[C]. In the normalization M (MY , [C])norm, a point parametrizing a curve singular at [C]

is replaced by points parametrizing the normalization of such curve, and the tangency map

gives the various tangency lines. Since τ is finite, its image Im(τ) is a projective scheme

of dimension at least −KY ⋅D − 2 = r −KX ⋅D − 2. Since MX = MY ∩ TD1,p1 ∩ ... ∩ TDr,p1 ,

where TD1,p1 , ...,TDr,p1 are the tangency divisors defined earlier in the chapter, we have that

P(TMX ,[C]) ⊂ P(TMY ,[C]) is a linear subspace of codimension r. Since, by hypothesis, −KX ⋅

D − 2 ≥ 0, we get that Im(τ) and P(TMX ,[C]) have nonempty intersection. This means that

there exists a λ−degree 1 curve γ in MY through [C] with a tangent line at [C] that belongs

to TMX ,[C], and therefore to every tangent space TTDk,p1 ,[C] for k = 1, ..., r. Since TDk,p1 has

class λ for every k = 1, ..., r, the curve γ must lie entirely in TDk,p1 for every k = 1, ..., r, i.e.,

γ must lie in MX .
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Chapter 5

Twisting Surfaces and Rational Simple

Connectedness

We are now finally able to produce our twisting surface, following the strategy of [dJS06,

Lemma 6.8]. Recall the definition of a 1-twisting surface (in a version sufficient for our

purposes):

Definition 5.0.1. A 1-twisting surface in a scheme X is a surface Σ ≃ P1 × P1 with first

projection π ∶ Σ→ P1 and with a morphism h ∶ Σ→X such that:

1) the morphism (π,h) ∶ Σ→ P1 ×X is finite;

1) the vertical normal bundle N(π,h) ∶=Coker(d(π,h) ∶ TΣ → (π,h)∗TP1×X) is generated by

global sections; and

2) h1(Σ,N(π,h)(−1,−1)) = 0.

In the next Proposition we will construct a candidate Σ for our twisting surface, a can-

didate which we will be able to conclude it is actually 1-twisting by applying a modified

version of [dJS06, Lemma 7.8].

Proposition 5.0.2. Let X be a smooth weighted complete intersection satisfying the main

hypothesis. Then a general point of a general fiber of ev2 ∶ M0,2(X,2α) →X2 parametrizes a

divisor on a surface Σ ≃ P1×P1 with class (1,1). Furthermore, there is a morphism h ∶ Σ→X

such that the morphism (π,h) ∶ Σ→ P1 ×X is finite.
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Proof. Let D ⊂Mp1,p2 be a free rational λ−degree 1 curve that meets the boundary divisor

∆1,1 ⊂Mp1,p2 transversally at two points. Consider the diagram:

CD C X ⊂ P○ ⊂ P

D Mp1,p2

π∣D

g

π

where CD is the restriction of C over D. Then CD is a smooth rational surface, fibered via π

over D ≃ P1, with two sections R1 and R2. If S1 and S2 are the two sections of π ∶ C →Mp1,p2 ,

we have seen that π∗(S1)2 = π∗(S2)2 = −λ. Therefore R1 and R2 have self-intersection −1,

and thus can be contracted by Castelnuovo’s Theorem ([Har77], V, Theorem 5.7). Denote

by φ ∶ CD → Σ the contraction of R1 and R2.

The fibration π ∶ CD → D has exactly two reducible fibers over, say, m1 and m2. In

particular, π−1(mi) = Fi ∪Gi, Fi ≃ P1 ≃ Gi, for i = 1,2. Say also that F1, F2 intersect R1 but

not R2, and that G1,G2 intersect R2 but not R1. Since Fi and Gi, for fixed i, are irreducible

components of connected rational fibers, we have that F 2
i = G2

i = −1 for i = 1,2. In particular,

by Castelnuovo’s Theorem, we can contract F1 and G2. Let φ′ ∶ CD → Σ′ be such contraction.

Then Σ′ is a P1−bundle, and it is easy to check that (φ′(Ri))2 = 0 for i = 1,2. Thus, by

[Har77, V, Theorem 2.7a], we have that Σ′ ≃ P1 ×P1. We can conclude that Σ is a del Pezzo

surface with K2
Σ = K2

Σ′ = 8 and at least four (−1)−curves. By the classification of del Pezzo

surfaces (see for example [Kol96, III, 3.9]), it follows that Σ ≃ P1 × P1.

Now consider the two morphisms:

Σ

CD X

φ

g∣CD

Since the fibers of φ are contracted by g∣CD , the latter map factors through the former by

a rigidity result (see [Deb01, Lemma 1.15]). Therefore we obtain a morphism h ∶ Σ → X.
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Furthermore, the morphism (π,h) ∶ Σ→ P1 ×X is finite by construction since, for t ∈ P1 ≃D,

it reduces to the stable map gt ∶ Ct →X.

Since h is equal to g∣CD on a dense open subscheme of Σ, and CD is a family of free

curves, we have that h is unramified on a dense open subscheme of Σ. Therefore (see [Ser06,

Definition 3.4.5]) we have an injection dh ∶ TΣ → h∗TX , whose cokernel is denoted Nh. In

this setting, H0(Σ,Nh) describes first order deformations of h ∶ Σ → X keeping the target

fixed, and H1(Σ,Nh) describes obstructions to infinitesimal deformations.

Since Σ is abstractly isomorphic to P1 × P1, we can deduce that h ∶ Σ → X is 1−twisting

as in [dJS06, Lemma 7.8]. The only difference is that in [dJS06] the morphism h turns out to

be an embedding, and one can deduce properties for N(π,h) by studying the normal bundle

NΣ/X . In our case, the normal bundle has to be replaced by the normal sheaf Nh associated

to h, but the result still applies.

The existence of a 1-twisting surface was the last ingredient needed to deduce rational

simple connectedness from the general machinery developed in [dJS06]. We now sketch this

process for the reader’s convenience.

● Since the general fiber of ev1 ∶ M0,1(X,α) → X is connected by Theorem 3.0.3, by

Lemma 2.3.6 there are canonically defined irreducible components Mlα,0 of M0,0(X, lα) for

every l ≥ 1. A general point of Mlα,0 parametrizes a smooth, free curve of degree l; further-

more, Mlα,0 also parametrizes degree l covers of smooth, free curves, as well as reducible

curves whose components are smooth and free.

● For l,m ≥ 1, we define Mlα,m ⊂M0,m(X, lα) as the irreducible component whose image

in M0,0(X, lα) under the forgetful morphism is Mlα,0. For m = 2, these are the components
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that appear in Definition 2.3.5.

● Consider a surface Σ ≃ P1 × P1 with first projection π ∶ Σ ≃ P1 and with a morphism

h ∶ Σ→X. Then h ∶ Σ→X is said to have M -class (l1, l2) if the fibers of π are parametrized

by points of Ml1α,0, and the sections of π by a point of Ml2α,0.

● In Proposition 5.0.2, we constructed a 1-twisting surface with M -class (1,1). By [dJS06,

Section 7], there are 1-twisting surfaces with M -class (l1, l2) for every l1, l2 ≥ 1.

● Finally, to show rational simple connectedness we need to show that the general fiber

of ev2∣Mlα,2
∶Mlα,2 → X ×X is rationally connected for every l ≥ 2. For l = 2, we know that

the general fiber is irreducible from Proposition 4.0.2, and that it is Fano (hence rationally

connected) from Definition-Lemma 4.0.1. The result for l > 2 follows by induction, using

the existence of 1-twisting surfaces of M -class (1, l), in a rather sophisticated way (see

[dJS06, Proof of Theorem 1.7] or [DeL15, Proof of Theorem 7.3, Step 1]). We summarize

the argument in the remaining part of the chapter.

The core difficulty is in proving the following Claim, which requires the existence of a

1-twisting surface.

Claim: A general point of a general fiber of ev ∶Mlα,2 →X ×X is contained in a rational

curve intersecting the boundary ∆1,l−1 in a smooth point of the fiber.

Proof. Let h ∶ Σ→X be a 1-twisting surface of type (1, l−1). The map h induces a morphism

M0,2(Σ, F ′ + F ) → M0,2(X, l), where F is the fiber of the first projection π and F ′ is the

image of a section of π. Curves corresponding to divisors D ∈ ∣OΣ(F ′ + F )∣ with 2 distinct

smooth marked points are smooth points ofM0,2(X, l). One can deform F +F ′ to a smooth

divisor C in the linear system while keeping the marked points fixed. The two divisors F +F ′

and C span a pencil Λ ≃ P1, which induces a morphism P1 →Mlα,2 whose image is contained
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in the fiber of the evaluation map. One can deform the stable map fC corresponding to C

in Mlα,2 to a general stable map f ′ of the fiber. Since Σ is 1-twisting, Σ can be deformed

to a 1-twisting surface Σ′ that contains a deformation C ′ of C whose induced stable map is

f ′.

Using the Claim as a starting point, we can reduce the general statement to the following

one:

Reduction: If the general fiber of ev∆ ∶ Mα,2 ×X M(l−1)α,2 is rationally connected, then

the general fiber of ev2∣Mlα,2
∶Mlα,2 →X ×X is rationally connected.

The reduction is a consequence of the following more general Lemma (in our case, V is

the general fiber of ev∆ and W is the general fiber of ev2∣Mlα,2
):

Lemma: Let V ⊂ W be projective varieties such that V is connected and rationally

connected and it intersects the smooth locus W sm of W . Assume further that for a general

point w ∈W , there is an irreducible rational curve in W that intersects V in a point that is

a smooth point of W . Then W is also rationally connected.

Proof. Let ν ∶ W̃ → W be a resolution of singularities of W , and let Ṽ ⊂ W̃ be the proper

transform of V in W̃ . By [Kol96, Theorem 5.4], there exists a rational map (the MRC

fibration) φ ∶ W̃ ⇢ Q to the MRC quotient Q. This means that there is a dense open U ⊂ W̃

such that the restriction φU ∶ U → Q of φ is a proper morphism, a (non-empty) general fiber

of φU is rationally connected, and a (non-empty) very general fiber of φU is a rationally

connected component. By hypothesis, and since ν is an isomorphism on W sm, a general

point of W̃ is contained in a rational curve that intersects Ṽ . Since φ is the MRC fibration,

this implies that Ṽ intersects the generic fiber of φU , which means that Ṽ ∩U is non-empty

and that φU(Ṽ ∩ U) ⊂ Q is dense. Since V is connected and rationally connected, Ṽ is also

connected and rationally connected, and since φU(Ṽ ∩ U) ⊂ Q is dense, Q is connected and

rationally connected too. Therefore W̃ is rationally connected, and hence W is rationally

connected.
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Because of the reduction, we only need to show that the general fiber of ev∆ ∶ Mα,2 ×X

M(l−1)α,2 is rationally connected. The sketch of the argument is the following, and it uses the

induction hypothesis that the general fiber of ev ∶M(l−1)α,2 →X ×X is rationally connected.

For (x1, x2) ∈X×X general point, let F be the fiber over x1 of the morphism Mα,2 →X, which

can be written equivalently as Mα,2
ev2Ð→ X ×X pr1Ð→ X and as Mα,2

Φ1Ð→ Mα,1
ev1Ð→ X (where

Φ1 forgets the first marked point). By looking at the first factorization, we can deduce that

ev−1
∆ (x1, x2) is mapped onto F by the projection Mα,2 ×X M(l−1)α,2

π1Ð→ Mα,2. By looking at

the second factorization, it also follows that F is rationally connected. Since F is rationally

connected and the general fiber over F of π1 is rationally connected by induction (since it

equals the general fiber of ev2 ∶M(l−1)α,2 → X ×X), by [GHS03] we have that ev−1
∆ (x1, x2) is

also rationally connected.

42



Bibliography
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