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Abstract of the Dissertation

Curve jets, submanifold families, and envelopes

by

James Mathews Jr

Doctor of Philosophy

in

Mathematics

Stony Brook University

2017

Synthetic or qualitative methods can provide insight into geometric structures not ap-
parent from the purely analytic point of view. For example, much of the geometry of a
classical surface in Euclidean space is coded in the differential topology of its family of
normal lines. This thesis extends the range of applicability of such methods by develop-
ing the basic theory of submanifold families in general, emphasizing higher-order contact
phenomena and making use of the modern theory of jets. A main technical contribution
is, in certain cases, the calculation of invariants of parameterized submanifold jets by the
reparameterization group, a construction of the quotient varieties, and compactifications
of these varieties.
As applications, in 2 dimensions we deduce:

1. a description of projective structures by (second order) tensorial data,

2. a characterization of the curve families realizable by geodesics for some connection,
and a description of the connections in this case, and

3. a linearizability criterion for curve families, including d-webs for d ≥ 4,

and in higher dimensions:

4. general formulas for envelopes of submanifold families, including line envelopes for
visual applications, and

5. a characterization of the extrinsic geometry of m-submanifolds in projective space
RPn, for certain m, including a generalization of the classical Wilczynski equations
for surfaces in RP3.
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1 Introduction

1.1 Motivation

The initial motivation for this work was to calculate envelopes of spatial line families for
an application to visual geometry. (This application is presented in section 5.8.3). How-
ever, the tools which were developed along the way turn out to have a general character,
leading to conceptually straightforward applications to plane projective geometry (intrin-
sic projective geometry), web geometry, and the aspects of the geometry of surfaces in
space invariant by projective transformations (extrinsic projective geometry), which were
not the original targets.
The language of jets of smooth submanifold families in an ambient space promises con-
venient formulations of results in differential geometry or geometric differential equations
from a synthetic or qualitative point of view. The main technical focus of this thesis is
the development of this language, following Ehresmann, Olver, Bryant-Chern-Gardner-
Griffiths-Goldschmidt, and Kolar-Michor-Slovak, with an emphasis on the usability of
the tools in concrete situations. Motivating and didactic situations worth keeping in
mind, even if they are not explicitly mentioned later on, include the following (with the
corresponding jet or contact phenomenon in parentheses):

1. Classical Euclidean surfaces (Principal curvatures). The normal line family of a
classical surface S in Euclidean space is organized in two ways into developable
surfaces (envelopable 1-parameter line families), along the principal curvature curves
of S. The distances along a normal line from a point of S to the two enveloped curves
are the inverses of the principal curvatures.

2. Ellipsoid geometry (Geodesic integrability). Jacobi showed in [Jac39] that each
geodesic γ of the standard ellipsoid E embedded in Euclidean space has the property
that all of its tangent lines are also tangent to a certain quadric Q confocal with E
and depending on γ. Formulated another way, the congruence (2-parameter family)
of lines simultaneously tangent to Q and to E envelops a pair of foliations, one on
Q and and one on E, and the leaves of the foliation on E are geodesics.

3. Textiles or webs (Linearizability). Many cloth patterns consist of a finite number d
of pairwise transverse foliations of the cloth surface by threads, known as a d-web.
Given sufficient freedom to deform the surface, any 2-web is linearizable, meaning
that it can be realized by straight threads. This would be convenient, for example,
for devising a technique or machine to actually produce a cloth in such a pattern.
For d > 2 it is no longer that case that any d-web is linearizable. A complete
description of the linearizable webs is given by [AGL04] (for d ≥ 4) and [GL05]
(for d = 3), confirming a conjecture of Blaschke on the nature of the differential
equations comprising this description. A simple alternative criterion, for d ≥ 4, is
given in this thesis in section 4.5.

4. Metric space geodesic balls (Orthogonality). In a smooth metric space, consider the
envelopes of the family of boundary surfaces of geodesic balls of size ε centered
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along a smooth curve or some other submanifold. For example, for a curve γ on a
Riemannian surface S, as ε approaches to 0 the first order envelope describes the
normal direction to γ, and hence the conformal structure of S.

5. Accretion processes (Topological state change). The growth of a tree trunk, a mol-
lusk shell, or a sedimentary geological layer can be modelled by a variation of a
surface over time. The growth rate may vary along the surface, depending on local
environmental conditions like the availability of nutrients or a pressure gradient.
Higher-order envelope behavior may be an obstruction to modelling the variation
by a smooth surface foliation, i.e. as the level surfaces of a smooth function. Such
behavior may indicate local topological features like knots or branches.

6. Pathways (Collision). One might attempt to use a curve foliation to model, for
example, the neural pathways in a brain [NZMT09], or the trajectories of particles
in a fluid, and encounter the same complication as in (5).

7. Light ray propagation (Caustics). Light ray systems emanating as the normal lines
to some illuminating surface will concentrate energy with unusually high density
along the focal envelope or caustic of this line family.

8. Wave propagation (Shockwaves). Huygens’ principle states roughly that a wavefront
W moves to a new wavefront equal to the first order envelope of the family of circular
virtual wavefronts emanating from each point of W . As shown in section 5.5, higher-
order wavefront envelopes are responsible for the phenomenon of shockwaves for a
point source travelling at the speed of wave propagation.

A basic principle is that, when present, contact or envelope phenomena, like singularities,
seem to intervene in geometric/analytic dualities. For example, in the duality between
geometric wavefront propagation and the solutions of the scalar wave equation.
A basic theme is naturally-occurring submanifold families in geometric spaces, especially
homogeneous geometries. For example, the lines and planes of projective geometry, or the
circles or spheres in conformal geometry. Often families can be found that determine the
geometry. Such families may in principle suffice to describe all notions that are native to
the geometry, like curvatures or other invariant tensors.

1.2 Overview

A review of jet notions and formalisms, drawn entirely from [Olv86], [BCG+91], and
[KMS93], is collected in Appendix A. Although the results appearing there are largely
taken for granted in this work, key facts and definitions will be recalled as appropriate.

Let M be a smooth manifold of dimension m. For n < m, Kr
nM denotes the fiber bundle

of r-jets of n-dimensional submanifolds of M . Because it will be a common special case, in
the case m = 2 we will write KrM := Kr

1M for the bundle of 1-jets of (unparameterized)
curves in the surface M , and Kr for the standard fiber of this bundle.
Kr
nM is defined as the quotient of the manifold of r-jets of parameterized n-submanifolds

by the group of r-jets of reparameterizations. In section 2 we exhibit functions invariant
2



by this action. These are constructed using the Lagrange inversion formula in the case of
curves.
In section 2 we focus on low dimension and jet-order, establishing the structure of an
algebraic variety on the fibers K2, K3, and K4. We conjecture that a suitable blowup
provides a smooth compactification Cn of Kn for each n, with

Cn = Kn ∪ Cn−1

This is proved in the case n = 2, with C1 := K1 ∼= P1.
The explicit description of the KnM for n = 2, 3, 4 affords an alternative to the standard
“graph” coordinates on these spaces, which require a submanifold to be expressed as a
graph in order for its jets to be computed.
Using a natural projective embedding for the fiber of K2M , we then exhibit a natural
extension vector bundle V 2M of rank 5,

0→ Sym3 T ∗M → V 2M → Λ2T ∗M → 0

and a fiberwise algebraic embedding K2M ⊂ P(V 2M)∗. Here natural refers to the cate-
gory of C2-smooth manifolds and C2-diffeomorphisms.
Smooth families of submanifolds are introduced in section 3, including a notion of generic-
ity and order. In section 4, the family of straight lines in the plane is used to show that pro-
jective structures on M are given by certain pointwise-algebraic sections K1M → K2M ,
or equivalently certain sections ψ of P(V 2M). To identify these particular sections, arbi-
trary sections ψ are identified with projective connections on M . We establish a criterion
for a curve family on M to be the geodesic family of some affine connection, identify all
such connections, and deduce from a classical theorem of Cartan a criterion for a curve
family to be locally linearizable. As a corollary, we obtain a linearizability criterion for
d-webs with d ≥ 4, alternative to the resolution [AGL04] of the Blaschke conjecture for
such webs.
A general notion of envelopes of smooth families of submanifolds is presented in section 5.
Local coordinate formulas are given and calculated in several examples. A new formula
for the focal surfaces of classical line congruences is given, with an application to visual
geometry.
For dimensions satisfying a certain criterion, the extrinsic geometry of submanifolds in
linear and projective spaces is captured neatly by the framework developed in section
3. This is explained in section 6. The failure of classical surfaces in RP3 to meet the
dimensional criterion is shown to be responsible for the appearance of the (conformal)
second fundamental form for such surfaces. By using this fundamental form and the
Tabachnikov-Ovsienko [TO04] formulation of the Wilczynski differential equations, which
characterize projective surface geometry in the hyperbolic case (with asymptotic direc-
tions), we extend these equations to the elliptic case (without asymptotic directions).

3



2 Jets of submanifolds

The bundle Kr
nM of r-order contact elements of dimension n, or r-jets of n-submanifolds,

for a smooth manifold M of dimension m, is defined as

Kr
nM := reg(T rnM)/Diff(Rn, 0) (n < m)

where

1. T rnM := Jr0 (Rn,M), the fiber bundle consisting of what the authors of [KMS93] call
(r, n)-velocities in M .

2. reg indicates the regular locus, the open subset lying over the elements in T 1
nM of

maximal rank n.

3. Diff(Rn, 0) is the group of diffeomorphisms of Rn based at 0.

The diffeomorphism group Diff(Rn, 0) action on T rnM descends to the finite-dimensional
quotient Lie group Gr

n of r-jets of diffeomorphisms, and Kr
nM comprises the base of a

principal Gr
n bundle with total space reg(T rnM) (see A.5).

Alternatively (see A.4), Kr
nM may be defined as the r-order prolongation M (r) of the

empty exterior differential system on M by n-submanifolds, whereby Kr
nM acquires a

canonical Pfaffian exterior differential system I(r).
Local coordinates, denoted X × U (r) ⊂ Kr

nM , can be constructed with respect to local
coordinates X×U ⊂M , with X ∼= Rn and U ∼= Rm−n. Namely, X×U (r) := Jr(X,U) (see
A.3). These “graph coordinates” X × U (r) have two disadvantages. First, such a chart
does not contain any whole fiber of Kr

nM →M . The second disadvantage, more serious,
is that the effect on X × U (r) of a change of coordinates from X × U to X ′ × U ′ is not
apparent (see Olver’s prolongation formula in [Olv86], however, for a suitable description
of the effect of an infinitesimal change of coordinates).
A primary purpose of this section is to make Kr

nM more accessible to calculation by
establishing coordinates adapted to any given coordinates on M for which the effect
of changes of coordinates on M is apparent; i.e. explicitly functorial coordinates. The
functor Kr

nM on m-manifolds is associated to the principal r-frame bundle of M by the Gr
m

manifold (reg(T rnRm)|0∈Rm)/Gr
n, so the main technical task is to calculate the invariants

of the Gr
n action on T rnRm|0∈Rm .

2.1 Terminology and general contact transformations

For those familiar with jet notions, the term “unparameterized jets” would seem to be
appropriate to describe the elements of the space Kr

nM as defined at the beginnning of this
section, section 2. After all, it is obtained from a space of ordinary jets of maps by dividing
out by the effect of parameterization. However, I discourage this terminology for the
following reason: The graph coordinates for Kr

nM show that Kr
nM can also be regarded

as a completion of a space of ordinary jets of maps which admits more symmetries. (Olver
[Olv86] makes this point explicitly).
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An analogy illustrates the point. Consider projective space in comparison to affine space.
The points of the projective space are indeed points up to scale in a (higher-dimensional)
affine/vector space. Yet we do not always want to regard the points of projective space
as “unscaled” vectors, obtained by dividing out by the effect of scaling. Rather, much of
the utility of projective space derives from the way that it completes an affine space to a
slightly larger space with more symmetries. 1

This point of view does not seem to be widely known. For example: Where geometric
differential equations are concerned, one considers a system of partial differential equations
as a submanifold of a bundle JE of jets of sections of a bundle E. It is common to consider
the symmetries of the system which are induced by:

1. “coordinate changes” (diffeomorphisms of the base, with respect to some trivializa-
tion of E)

2. “fiber transformations” (diffeomorphisms of the fiber of E, with respect to some
trivialization of E)

3. the more general “contact transformations” (arbitrary diffeomorphisms of JE re-
specting the multi-contact structure).

Yet by completing JE, as the space of jets of sections of the bundle E, to the larger space
J̃E of jets of arbitrary submanifolds of E of the same dimension as sections, one creates
the possibility of even more general symmetries for the differential system: the contact
transformations of J̃E. In principle such transformations could be used, for example, to
desingularize solutions of the differential system that are singular by virtue of failure of
transversality to the fibers of E.

2.2 Setup and notation

From now on, though not strictly necessary at all times, we will assume that our algebraic
varieties are defined over the field F = R or F = C. Hence our varieties also have
an analytic structure. We differentiate between the real and complex cases only when
necessary.
Now fix r, n, and m, set M := Fm, and abbreviate

G : = Gr
n

G′ : = Gr
m

J : = Jrn,m := Jr0 (Fn,Fm)0 = T rnFm|0∈Fm
K : = Kr

n,m := Kr
nFm|0∈Fm

Note that G is identified with an open subset of Jr0 (Fn,Fn)0, G′ is identified with an open
subset of Jr0 (Fm,Fm)0, and the reparameterization action of G × G′ on J is equivalently
given by composing the two jets compositions:

1Caution: Unlike projective completion of an affine space, the completion of the jet space described
here is not a compactification, except for jet-order 1, when this completion yields a Grassmannian.

5



Jr0 (Fn,Fn)0 × Jr0 (Fn,Fm)0 → Jr0 (Fn,Fm)0

Jr0 (Fn,Fm)0 × Jr0 (Fm,Fm)0 → Jr0 (Fn,Fm)0

These compositions can be described as follows. The standard coordinates for the affine
space Jr(Fa,Fb) are the coefficient functions with respect to the identification of each
r-jet j ∈ Jr(Fa,Fb) with the degree r polynomial function having r-jet j; the Taylor
coefficients. With respect to these coordinates, jet composition is given by polynomial
function composition, truncated to order r.
The G × G′ orbits in J are called singularity classes, because each singular point of
a smooth map between manifolds determines such a class. Yet the term “singularity”
here is slightly misleading, because each non-singular point of such a smooth map also
determines a G×G′ orbit in J . This orbit is generally held to be uninteresting, since the
normal form theorem for smooth mappings near a point of maximal tangent rank imply
that this orbit must always be equal to the orbit of the r-jet of a linear map Fn → Fm of
maximal rank. This “singularity class” is simply the regular locus. Though it is a single
orbit for G×G′, with respect to the G action alone it is more interesting: the G quotient
of this G×G′ orbit is the standard fiber K of Kr

nM . We will study mainly the G quotient.
I will call the G orbits in J shape classes. Although I will emphasize the shape classes of
regular jets, what follows will still have some bearing on questions about the shape classes
and singularity classes of singular jets.

Remark 2.1. Note that G acts by linear transformations of the vector space structure on
J induced by the vector space structure of Fn. However, G′ does not preserve the vector
space structure of Fn or J , and in this sense J is not “naturally” a vector space.

2.3 Reparametrization invariants

The first step toward the classification problem with respect to a group action should
always be the determination of invariant functions.
To dispell incorrect expectations, here I briefly remark on what we will not do to determine
such functions. It turns out that for r > 1, G is not a semi-simple Lie group. Conse-
quently the calculus of weights and plethysms will not work to find polynomial G-invariant
functions on J . Moreover, G is not even reductive. Consequently the basic existence the-
orem for algebraic quotient varieties is presumed not to apply; the Nagata theorem, which
would ensure that the algebra of polynomial invariants is finitely-generated, requires the
group G to be geometrically reductive.
One practical and simple method to determine invariant functions in a fairly high degree
of generality is known as invariantization (see e.g. Fels and Olver [FO99]). To describe
it in general, temporarily let G be any group and J any G-set. Choose a subset S ⊂ J ,
called a section, such that the G orbit of each s ∈ S meets S only at s. This property
ensures that there is a well-defined canonical retraction π : G · S → S, π(g · s) = s. The

6



invariantization of an arbitrary function f : S → R is the pullback π∗f :

π∗f : G · S → R
g · s 7→ f(s)

π∗f is G-invariant by construction. If one can select S so that G · S is essentially the
entire space J , the trick is to express π : G ·S → S as explicitly as possible, in order that
π∗f can be calculated from an explicit expression for f . Often such an expression shows
that π∗f extends over all of J , even when G · S is a proper subset of J .
Now we return to jets J and reparameterizations G. We will only be able to treat the
case of curve jets, so from now on n = 1. The sections S that we choose are the m subsets

S = Sp = {(a1(x), . . . , am(x)) ∈ J | ap(x) = x} 1 ≤ p ≤ m

Here an element of J is represented as a list of m polynomial functions ap(x) of degree r.
In this case G·S is the open dense subset of J consisting of elements whose associated 1-jet,
as a matrix of type F→ Fm, has a non-zero pth entry; equivalently, the r-jet j′ := ap(x) ∈
Jr(F,F) is invertible (regular). Thus G · S consists of the r-jets of parameterized curves
whose underlying curve is expressible as the graph of a function from the variable with
index p onto the remaining variables, while S consists of the r-jets of such parameterized
curves whose parameterization is already the graph parameterization. Given j ∈ J of the
form g · s ∈ G ·S, g and s are recovered by: g = j′, s = (j′)−1 · j. That is, π(j) = (j′)−1 · j
and π∗f(j) = f((j′)−1 · j).
An explicit formula for the r-jet inverse (j′)−1, and hence for π and π∗f , is provided by
the Lagrange inversion theorem ([AS64], [BR98], [Sok09])2. In fact, the full version of
the theorem provides an explicit formula for π∗f which does not require the intermediate
calculation of (j′)−1.

Theorem 2.2. (Lagrange inversion, Lagrange expansion, or the Bürmann formula; [AS64]
p14, [BR98], see also [Sok09]). Let h(x) =

∑i=∞
i=1 hix

i be a formal power series with
coefficients in an arbitrary field of characteristic 0, with 0 constant term and h1 6= 0.
Define series k(x) := (h(x)/x)−1 the multiplicative inverse.

h(x) has a compositional inverse h̃(x), a series satisfying h(h̃(x)) = x, and its coefficients
are given by

[xi]h̃(x) = 1
i
[xi−1](k(x))i

With the notation understood, this is abbreviated:

[xi]h̃(x) = 1
i
[xi−1](h(x)/x)−i

Moreover, the composition of an arbitrary series f(x) with h̃(x) is given by

[xi]f(h̃(x)) = 1
i
[xi−1]f ′(x)(h(x)/x)−i

2We remind the reader that we are considering only curve jets; for remarks concerning higher-
dimensional jets, see section 2.10
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Here [xi] is the ith coefficient extraction operator, applied to a power series in x.

The first r terms of the compositional inverse h̃(x) of h(x) depend only on the first r
terms of h(x). Thus the Theorem provides an explicit formula for r-jet inverses (j′)−1 ∈
Jr0 (F1,F1)0, as promised. Similarly, in the second part of the Theorem, the first r terms of

f(h̃(x)) depend only on the first r terms of h(x) and the first r terms of f . (To ascertain
this, note the effect of the differing powers [xi], [xi−1], and the opposing effect of the
differentation f ′(x) and of divison by x in h(x)/x.) So the Theorem’s explicit formula for
π∗f descends to r-jets, also as promised.

Remark 2.3. The notation of Theorem 2.2 is essentially that of [BR98]. The main

difference is that the compositional inverse of h(x) is here denoted h̃(x) rather than w(x).
However, a short calculation is required to relate the statement of Theorem 2.2 to the
statement appearing in [BR98]. There, the condition h(h̃(x)) = x is written (with notation
slightly changed):

h̃(x) = xk(h̃(x))

h̃(x) = x
h̃(x)

h(h̃(x))

h̃(x)h(h̃(x)) = xh̃(x)

h(h̃(x)) = x

Remark 2.4. Theorem 2.2 implies that each coefficient of h̃(x) is a rational function
belonging to the localization of the regular function ring at h1; i.e., h−1

1 and its powers
are the only denominator that appear.

Recall the sections S = Sp, one for each p with 1 ≤ p ≤ m. Let a(x) be the pth component
polynomial of Jr0 (F,Fm)0, and let b(x) be the qth component polynomial for some q 6= p.
Let π = πp be the projection G · Sp → Sp.

Definition 2.5. For each value of p, q, i, with 1 ≤ i ≤ r, 1 ≤ p ≤ m, 1 ≤ q ≤ m, q 6= p,
define a regular function

I = I ipq : = [xi]π∗b(x)

= [xi]b(ã(x)) : G · S → S

Proposition 2.6. I extends over J as a G-invariant rational function, also denoted I,
given by the formula

I = 1
i
[xi−1]b′(x)(a(x)/x)−i

Proof. G invariance of I (with domain G·S) is a tautological consequence of the definition.
The extension to all of J as a rational function is defined by the same formula. The
extension is invariant by G because each I − g∗I, g ∈ G, is a rational function vanishing
on a Zariski open subset of J , so I − g∗I = 0.
The formula is the second part of the Lagrange inversion theorem.
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2.4 Near-identity reparameterizations

Recall that we consider only jets of curves, so n = 1.
Let H ⊂ G be the kernel of the homomorphism G = Gr

1 → G1
1
∼= GL(1). It will be

convenient to constructG quotients in two steps: first the quotient byH, then the quotient
of the result by the factor group GL(1). Remark 2.4 implies that the denominators of
the G invariants I depend only on the 1-jet, so they are H invariant. Consequently the
numerator of each I is an H invariant polynomial function. Denote this polynomial by
N = N i

pq. In the cases we present, the collection of N determine the structure of an affine
variety on the quotient set K ′ := (reg J)/H for which the evaluation (reg J) → K ′ is an
algebraic map. This variety is invariant by a certain weighted-projective action of the
factor group G/H ∼= GL(1), and so the quotient K = Kr = Kr

n,m = Kr
1,m := (reg J)/G is

constructed and exhibited as a subvariety of a weighted projective space. (The weighted
projective spaces are themselves projective varieties, and so K is also indirectly exhibited
as an ordinary projective variety.)

2.5 2-jets of plane curves

In this section n = 1, m = 2, and r = 2, so J = J2
1,2, K = K2 = K2

1,2, G = G2
1, and

H = H2
1 .

A point of J has the form (a(x), b(x)) = ((a1, a2), (b1, b2)) = (a1x+ a2x
2, b1x+ b2x

2). The
recipe for calculating invariants I = I ipq outlined in the previous sections is carried out
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below.

a′(x) = a1 + 2a2x

b′(x) = b1 + 2b2x

a(x)/x = a1 + a2x

b(x)/x = b1 + b2x

(a(x)/x)−1 = (a1)−1 − (a1)−2a2x+ · · ·
(b(x)/x)−1 = (b1)−1 − (b1)−2b2x+ · · ·

I1
12 = 1

1
[1]b′(x)(a(x)/x)−1

= b1/a1

I1
21 = 1

1
[1]a′(x)(b(x)/x)−1

= a1/b1

(a(x)/x)−2 = (a1)−2 − 2(a1)−3a2x+ · · ·
(b(x)/x)−2 = (b1)−2 − 2(b1)−3b2x+ · · ·

I2
12 = 1

2
[x]b′(x)(a(x)/x)−2

= −(a1)−3b1a2 + (a1)−2b2

= (a1)−3(a1b2 − b1a2)

I2
21 = (b1)−3(b1a2 − a1b2)

= −(b1)−3(a1b2 − b1a2)

N1
12 = b1

N1
21 = a1

N2
12 = a1b2 − b1a2

N2
21 = −(a1b2 − b1a2)

(2.1)

To reduce the number of numerical indices, let us use N to indicate case (p, q) = (1, 2),
and M to indicate case (p, q) = (2, 1). That is,

N1 := N1
12 N2 := N2

12

M1 := N1
21 M2 := N2

21

Consider the regular algebraic map ϕ : reg J → A4 = {(N1,M1, N2,M2)} specified by
equations (2.1).

Proposition 2.7. ϕ is H invariant and separates H orbits. The image of ϕ is

{(N1,M1, N2,M2) | N2 +M2 = 0, (N1,M1) 6= 0}

Proof. ϕ is H invariant by construction. For separation, suppose that two points

((a1, a2), (b1, b2)), ((a′1, a
′
2), (b′1, b

′
2)) ∈ J

10



have the same ϕ image. Then a1 = a′1 and b1 = b′1. The equation a1b2−a2b1 = a1b
′
2−a′2b1,

rewritten as

a1(b2 − b′2)− (a2 − a′2)b1 = 0

implies that there exists a scalar λ such that

b2 − b′2 = λb1

a2 − a′2 = λa1

Consider the element h ∈ H specified by h−1 : x 7→ x− λx2.

h · ((a1, a2), (b1, b2)) = h · (a(x), b(x))

= (a(x− λx2, b(x− λx2))

= (a1x+ (a2 − λa1)x2, b1x+ (b2 − λb1)x2)

= (a1x+ (a2 − (a2 − a′2))x2, b1x+ (b2 − (b2 − b′2))x2)

= (a′1x+ a′2x
2, b′1x+ b′2x

2)

= ((a′1, a
′
2), (b′1, b

′
2))

Hence two points with the same ϕ image are in the same H orbit.
For the second statement, pick an element (N1,M1, N2,M2) such that N2 + M2 = 0 and
(N1,M1) 6= 0. Set a1 = M1, b1 = N1. There are two cases:
If N1 6= 0, we have ϕ((M1, (M2 +M1)/N1), (N1, 1)) = (N1,M1, N2,M2).
If M1 6= 0, we have ϕ((M1, 1), (N1, (N2 +N1)/M1)) = (N1,M1, N2,M2).

The action of the factor groupG/H ∼= GL(1) on A4 = {(N1,M1, N2,M2)} is the (1, 1, 3, 3)-
weighted scalar action:

g · (N1,M1, N2,M2) = (gN1, gM1, g
3N2, g

3M2) g ∈ GL(1)

The weights are the total degrees of the expressions in equations (2.1), with respect to
the choice of degrees deg ap = deg bp = p.
Thus K is a punctured weighted-projective hyperplane in P(1, 1, 3, 3), isomorphic to
P(1, 1, 3) − {[0, 0, 1]}. The puncture point is the unique point omitted by the condition
(N1,M1) 6= 0 in Proposition 2.7, [0, 0, 1,−1] in P(1, 1, 3, 3).

2.6 Compactification and degeneration of 2-jets

The weighted-projective plane P(1, 1, 3) is well-known to be isomorphic to the projective
cone on the twisted cubic curve in P3 ([Dol82]). Thus the identification K ⊂ P(1, 1, 3)
makes P(1, 1, 3) a compactification of K with one point at infinity, the cone vertex of
P(1, 1, 3). Note that the lines of the cone are the fibers of the projection K = K2 → K1 ∼=
P1, so that the twisted cubic appearing in this description is naturally parameterized by
K1 (the space of tangent directions to the plane at a basepoint).
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A slightly different compactification K̂ is the blowup of P(1, 1, 3) along the vertex, con-
taining K as the complement of the exceptional divisor.

K̂ = K̂2 = K2 ∪K1

= K2 ∪ K̂1

(Here K̂1 = K1 denotes the compactification of K1, which is already compact.)
This compactification should perhaps be preferred, because it is smooth. By virtue of
the compactification, the limit point of a degeneration (a 1-parameter family of 2-jets
converging to a point of the compactification locus) is associated with the limiting value
of the underlying 1-jets. Said another way, the natural map K2 → K1 can be regarded
as a retraction of K̂2 onto its compactification locus.

Figure 1: Some parabolas through a point, whose 2-jets at this point approach to a point
at infinity in K̂ −K. This point at infinity is labelled by the tangent direction indicated
by the dotted line (not a vertical line).

2.7 3-jets of plane curves

In this section n = 1, m = 2, and r = 3, so J = J3
1,2, K = K3

1,2, G = G3
1, and H = H3

1 .
The functions N1,M1, N2,M1 on J2

1,2 determined in section 2.5, invariant by H2
1 , remain

invariant by H since the H action on J2
1,2 is induced by that of H2

1 by the homomorphism
H → H2

1 . We continue the invariantization process begun in section 2.5:

(a(x)/x)−3 = (a1)−3 − 3(a1)−4a2x+ (a1)−5(6a2
2 − 3a1a3)x2 + . . .

(b(x)/x)−3 = (b1)−3 − 3(b1)−4b2x+ (b1)−5(6b2
2 − 3b1b3)x2 + . . .

I3
12 = 1

3
[x2]b′(x)(a(x)/x)−3

= (a1)−5(2a2
2b1 − a1a3b1 − 2a1a2b2 + a2

1b3)

I3
21 = 1

3
[x2]a′(x)(b(x)/x)−3

= (b1)−5(2b2
2a1 − b1b3a1 − 2b1b2a2 + b2

1a3)

Rewriting the H invariant numerators, set:

N3 = −2a2(a1b2 − a2b1) + a1(a1b3 − a3b1)

M3 = 2b2(a1b2 − a2b1)− b1(a1b3 − a3b1)
(2.2)
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Consider the regular algebraic map ϕ : (reg J) → A6 specified by equations (2.1) and
(2.2).

Proposition 2.8. ϕ is H invariant and separates H orbits. The image of ϕ is{
(N1,M1, N2,M2, N3,M3)

∣∣∣∣ N2 +M2 = 0
N1N3 +M1M3 − 2N2

2 = 0
, (N1,M1) 6= 0

}
Proof. Suppose that two points ((a1, ..), (.., b3)), ((a′1, ..), (.., b

′
3)) ∈ J have the same ϕ

image. By Proposition 2.7, we can find an element of h whose application upon the first
point agrees with the second point in the first 4 coordinates. That is, we can assume that

(a1, a2, b1, b2) = (a′1, a
′
2, b
′
1, b
′
2)

The remaining equations of the assumption now read

−2a2(a1b2 − a2b1) + a1(a1b3 − a3b1) = −2a2(a1b2 − a2b1) + a1(a1b
′
3 − a′3b1)

2b2(a1b2 − a2b1)− b1(a1b3 − a3b1) = 2b2(a1b2 − a2b1)− b1(a1b
′
3 − a′3b1)

a1(a1b3 − a3b1) = a1(a1b
′
3 − a′3b1)

−b1(a1b3 − a3b1) = −b1(a1b
′
3 − a′3b1)

Since (a1, b1) 6= 0, we can conclude that a1b3 − a3b1 = a1b
′
3 − a3b

′
1, i.e.

a1(b3 − b′3)− (a3 − a′3)b1 = 0

Just as in the proof of Proposition 2.7, find λ such that

b3 − b′3 = λb1

a3 − a′3 = λa1

Now the application of the element h ∈ H specified by h−1 : x 7→ x− λx3 upon the first
point equals to the second point. Hence two points with the same ϕ image belong to the
same H orbit.
For the second statement, pick an element (N1,M1, N2,M2, N3,M3) satisfying the two
stipulated equations and one inequality. Use Proposition 2.7 to find ((a1, a2), (b1, b2))
whose ϕ image has first 4 coordinates (N1,M1, N2,M2). For the rest of the proof regard
(a1, a2, b1, b2) as fixed.
Assume that a1 6= 0 (the case b1 6= 0 is the same, with the roles of a and b reversed).
Then set a3 = 1 and

b3 =
N3 + 2a2(a1b2 − a2b1) + a1b1

a2
1
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By construction, the value ϕ((a1, a2, a3), (b1, b2, b3)) has the correct coordinatesN1,M1,N2,M2,
and N3. Now the equation N1N3 +M1M3 − 2N2

2 = 0 implies that the final coordinate of
this value of ϕ is:

2b2(a1b2 − a2b1)− b1

(
a1
N3 + 2a2(a1b2 − a2b1) + a1b1

a2
1

− 1 · b1

)
= 2b2(a1b2 − a2b1)− b1

(
N3 + 2a2(a1b2 − a2b1) + a1b1 − b1a1

a1

)
=

(
−b1N3 + 2a1b2(a1b2 − a2b1)− 2b1a2(a1b2 − a2b1)

a1

)
=

(
−b1N3 + 2(a1b2 − a2b1)2

a1

)
=

(
−b1N3 + 2N2

2

a1

)
=
−N1N3 +N1N3 +M1M3

M1

= M3,

as desired. We conclude that ϕ is surjective onto the stipulated subset.

The action of the factor group G/H ∼= GL(1) on A6 = {(N1,M1, N2,M2, N3,M3)} is the
(1, 1, 3, 3, 5, 5)-weighted scalar action:

g · (N1,M1, N2,M2, N3,M3) = (gN1, gM1, g
3N2, g

3M2, g
5N3, g

5M3) g ∈ GL(1)

Thus K = (imageϕ)/GL(1) is exhibited as a subvariety of P(1, 1, 3, 3, 5, 5).

2.8 Compactification and degeneration of 3-jets

Denote P := P(1, 1, 3, 3, 5, 5), and let K̂3 denote the intersection of the weighted-projective
hyperplane N2 + M2 = 0 and the weighted-projective quadric N1N3 + M1M3 − 2N2

2 = 0

in P. K̂ is a quasi-smooth complete intersection, meaning that, before projectivization,
the equations describe a complete intersection smooth except at the origin. This is so
because the restriction of the quadratic form to the plane is non-degenerate.
The codimension 2 weighted-projective linear subvariety defined by N1 = M1 = 0 meets K̂
in the line L := {[0, 0, 0, 0, N3,M3]}. Thus K̂ is a compactification of K with K̂ = K ∪L.
3

For the following Proposition, use F = C.

Proposition 2.9. The intersection of the singular locus of P with K̂ is contained in L.

3Equivalently, with fewer equations but at the expense of broken symmetry, we could omit the coor-
dinate M2 on account of the equation N2 + M2 = 0 and regard K as a weighted-projective quadric in
P(1, 1, 3, 5, 5) minus the line {[0, 0, 0, N3,M3]}.
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Proof. According to ([Dol82] Proposition 1.3.3 page 6), in the weighted projective space
P(q1, . . . , qk) = {[a1, . . . , ak]} the canonical open set defined by aj 6= 0 is isomorphic with
the quotient of Ak−1 = {(a1, . . . , aj−1, aj+1, . . . , ak)} by the cyclic group Cqj := 〈e2πi/qj〉
action:

λ · (a1, . . . , aj−1, aj+1, . . . , ak) = (λq1a1, . . . , λ
qkak) λ ∈ Cqj

The part of the singular locus of P lying in the open set Ak−1/Cqj must be contained in
the image of the set of points (a1, . . . , aj−1, aj+1, . . . , ak) ∈ Ak−1 at which the Cqj action
has non-trivial stabilizer4. So we consider the equations

(λN1, λM1, λ
3M2, λ

5N3, λ
5M3) = (N1,M1,M2, N3,M3) λ ∈ C3

(λN1, λM1, λ
3N2, λ

5N3, λ
5M3) = (N1,M1, N2, N3,M3) λ ∈ C3

(λN1, λM1, λ
3N2, λ

3M2, λ
5M3) = (N1,M1, N2,M2,M3) λ ∈ C5

(λN1, λM1, λ
3N2, λ

3M2, λ
5N3) = (N1,M1, N2,M2, N3) λ ∈ C5

(2.3)

In each case, the equations λN1 = N1, λM1 = M1 are never solvable for non-trivial λ
unless (N1,M1) = (0, 0). Thus we consider only points with (N1,M1) = (0, 0). Moreover,
in each of the four equations, one equation is vacuous: λ3M3 = M3 in the first (since
λ3 = 1), λ3N3 = N3 in the second (λ3 = 1), etc. So we consider the simplified versions:

(λ5N3, λ
5M3) = (N3,M3) λ ∈ C3

(λ3N2, λ
3M2) = (N2,M2) λ ∈ C5

(Only two equations are displayed, because the first and second equations of 2.3 now have
the same form, and the third and fourth equations of 2.3 also now have the same form.)
The first equation has solutions for non-trivial λ along line L1 := {[0, 0, N2,M2, 0, 0]}.
The second equation has solutions for non-trivial λ along line L2 := {[0, 0, 0, 0, N3,M3]}.
L1 does not meet K̂; for a point of K̂, the vanishing of N1 and M1 already implies N2 = 0
and also M2 = 0.
On the other hand, L2 = L is contained in K̂. Hence the singular locus of P, contained
in L1 ∪ L2, must intersect K̂ inside L.

Remark 2.10. Since K̂ is quasi-smooth, its own singular locus must be contained in the
singular locus of P, and hence in L.

Recall that K ′ = (K ′)r is the affine variety whose weighted projectivization is K = Kr.

Proposition 2.11. The fiber of the canonical map K ′3 → K ′2 over a point P = (N o
1 ,M

o
1 , N

o
2 ,M

o
2 )

is a 1-dimensional affine linear subspace l(P ) ⊂ {(N1,M1, N2,M2, N3,M3)}.

Proof. Recall that P satisfies N o
2 +M o

2 = 0 and (N o
1 ,M

o
1 ) 6= 0. The fiber over P is{

(N o
1 ,M

o
1 , N

o
2 ,M

o
2 , N3,M3)

∣∣ N o
1N3 +M o

1M3 = N o2
2

}
This is the equation of an affine line in the plane {(N o

1 ,M
o
1 , N

o
2 ,M

o
2 , ∗, ∗)}.

4Caution: The quotient images of points with non-trivial stabilizers need not belong to the singular
locus in general; consider the example An/Sn

∼= An.
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The image of the affine line l(P ) (of Proposition 2.11) in (K ′)3 evidently maps to a rational

curve in K̂3 ⊂ P meeting the line L at the point [0, 0, 0, 0,−M1, N1] ∈ K̂3 ⊂ P. If one

can prove that the tangent cone of K̂3 along L precisely consists of the tangent vectors
of these rational curves where they meet L, then we would have

Bl(K̂3) = K3 ∪ K̂2

where Bl(K̂3) is a suitable blowup. Thus the evidence in jet-orders 2 and 3 supports the
conjecture that such blowups provide a compactification Cn of Kn for each n, for which

Cn = Kn ∪ Cn−1,

Cn = Kn ∪Kn−1 ∪ · · · ∪K2 ∪K1

We do not prove this conjecture.

2.9 4-jets of plane curves

The calculation of second and third order curve jet reparameterization invariants and their
syzygies, carried out in sections 2.5 and 2.7, is corroborated by a computer calculation
implemented using the Macaulay2 software system (see Appendix C for the source code).
Here we record the result of the corresponding fourth order calculation, as implemented
in Macaulay2:

N1 = b1

M1 = a1

N2 = a1b2 − b1a2

M2 = −(a1b2 − b1a2)

N3 = −2a2(a1b2 − a2b1) + a1(a1b3 − a3b1)

M3 = 2b2(a1b2 − a2b1)− b1(a1b3 − a3b1)

N4 = 5a2
2(a1b2 − a2b1) + a2

1(a1b4 − a4b1)− 5a1a3(a1b2 − a2b1)− 3a2
1(a2b3 − a3b2)

M4 = −5b2
2(a1b2 − a2b1)− b2

1(a1b4 − a4b1) + 5b1b3(a1b2 − a2b1) + 3b2
1(a2b3 − a3b2)

(2.4)

0 = N2 +M2

0 = N1N3 +M1M3 − 2N2
2

0 = N2
1N4 +M2

1M4 − 5N3
2 + 5M1N2M3

2.10 Higher-dimensional jets?

Here is a multivariate generalization of Lagrange’s result, which can be used to invert
higher-dimensional jets j′ ∈ Jr0 (Fn,Fn)0 in some cases:
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Theorem 2.12. (Good-Lagrange inversion [Goo65]) Let h(x) = (h1(x), . . . , hn(x)) be n
formal power series in the n variables x = (x1, .., xn) with coefficients in an arbitrary field
F. Assume that

1. hj(x) has 0 constant term.

2. hj(x) belongs to the ideal (xj), and the xj coefficient of hj(x) is non-zero (i.e. the
quotient qj(x), satisfying hj(x) = xjqj(x), is invertible).

Define series kj(x) := (qj(x))−1 = (hj(x)/xj)
−1, the multiplicative inverse.

h(x) has a compositional inverse h̃(x), a tuple of series satisfying h(h̃(x)) = x, and its
coefficients are given by

[xi]h̃j(x) = [xi]

(
xjk

i(x)

∣∣∣∣δa,b − xaqb(x)
∂kb(x)

∂xa

∣∣∣∣)
where i := (i1, . . . , in) is a monomial index, ki(x) := (k1(x))i1 · · · (kn(x))in, | • | denotes
matrix determinant, and δa,b is the identiy matrix.

Moreover, the composition of an arbitrary series f(x) with h̃(x) is given by

[xi]f(h̃(x)) = [xi]

(
f(x)ki(x)

∣∣∣∣δa,b − xaqb(x)
∂kb(x)

∂xa

∣∣∣∣)
Remark 2.13. It is a non-trivial exercise to show that in the special case n = 1, Theorem
2.12 reduces to Theorem 2.2. In particular it is not a typo that the same power [xi] appears
on both sides of the equation.

Unfortunately, except in case n = 1, the condition on h(x) imposed by the hypothesis of
Theorem 2.12 is closed in the sense that it forces the r-jet of h(x) to belong to a proper
Zariski closed subset of Jr0 (Fn,Fn)0; the condition that hj(x) belongs to the ideal (xj) is
the vanishing of all coefficients not involving xj. (This is an empty condition if n = 1).
In other words, the invariantization process which we used in the case of curve jets to
calculate reparameterization invariants, in the higher-dimensional case would culminate
in a function which is known to be well-defined and invariant only along a proper closed
subset. Thus the determination of reparameterization invariants of parametrized jets of
higher-dimensional submanifolds is left open, mainly for lack of an explicit inverse for
diffeomorphism jets.

2.11 Local coordinate calculations

Corollary 2.14. Let γ(t) = (x(t), y(t)) and γ̃(t) = (x̃(t), ỹ(t)) be two parameterized plane
curves defined near t = 0. Suppose x(0) = x̃(0) and y(0) = ỹ(0). Abbreviate x′ := x′(0),
y′ := y′(0), and so on.

1. γ and γ̃ make first order contact at t = 0 if and only if

[x′, y′] = [x̃′, ỹ′] ∈ P(1, 1) = P2
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2. γ and γ̃ make second order contact at t = 0 if and only if

[x′, y′, x′y′′ − y′x′′] = [x̃′, ỹ′, x̃′ỹ′′ − ỹ′x̃′′] ∈ P(1, 1, 3)

3. γ and γ̃ make third order contact at t = 0 if and only if

[x′,y′,x′y′′−y′x′′,−3x′′(x′y′′−x′′y′)+x′(x′y′′′−x′′′y′),3y′′(x′y′′−x′′y′)−y′(x′y′′′−x′′′y′)]

=[x̃′,ỹ′,x̃′ỹ′′−ỹ′x̃′′,−3x̃′′(x̃′ỹ′′−x̃′′ỹ′)+x̃′(x̃′ỹ′′′−x̃′′′ỹ′),3ỹ′′(x̃′ỹ′′−x̃′′ỹ′)−ỹ′(x̃′ỹ′′′−x̃′′′ỹ′)]

∈ P(1, 1, 3, 3, 5, 5)

Proof. This follows from Propositions 2.7 and 2.8.

Note that a similar but much longer formula for the order 4 case follows from equations
(2.4).
Corollary 2.14 can be regarded as providing trivializations of the bundles K1M = P(TM),
K2M , and K3M associated to coordinates on M , as though they were tensor bundles.

Remark 2.15. Corollary 2.14(2) is consistent with the fact that the curvature of a pa-
rameterized curve in the Euclidean plane is parameterization-independent and depends
only on the 2-jet of the curve itself:

κ(t) :=
x′(t)y′′(t)− y′(t)x′′(t)

(x′(t)2 + y′(t)2)3/2

This formula is homogeneous of degree 0 in the weighted projective coordinate functions
of P(1, 1, 3).

Example 2.16. (2-jets of a parabola)
Let x(t) = t and y(t) = t2 for t > 0, and consider the same curve parameterized by s = t2,
x̃(s) =

√
s and ỹ(s) = s.

x′(t) = 1 x′′(t) = 0 x̃′(s) = 1
2
s−

1
2 x̃′′(s) = −1

4
s−

3
2

y′(t) = 2t y′′(t) = 2 ỹ′(s) = 1 ỹ′′(s) = 0

The points in P(1, 1, 3) are [1, 2t, 2] and [1
2
s−

1
2 , 1, 1

4
s−

3
2 ]. By considering the second coor-

dinates, equality is equivalent to

[1, 2t, 2] = 2t · [1
2
s−

1
2 , 1, 1

4
s−

3
2 ] = 2s

1
2 · [1

2
s−

1
2 , 1, 1

4
s−

3
2 ]

= [1, 2s
1
2 , (2s

1
2 )3 1

4
s−

3
2 ] = [1, 2s

1
2 , 2]

Example 2.17. (3-jets of a parabola) The up-to-third order derivatives are

x′(t) = 1 x′′(t) = 0 x′′′(t) = 0 x̃′(s) = 1
2
s−

1
2 x̃′′(s) = −1

4
s−

3
2 x̃′′′(s) = 3

8
s−

5
2

y′(t) = 2t y′′(t) = 2 y′′′(t) = 0 ỹ′(s) = 1 ỹ′′(s) = 0 ỹ′′′(s) = 0
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The 2 remaining expressions of Corollary 2.14(3), associated with third order derivatives
and associated with the weight 5 projective coordinates (those expressions not already
calculated in Example 2.16), are respectively for curves γ and γ̃:

−3(0)(2) + (1)(0) = 0

−3

(
−1

4
s−

3
2

)(
1
4
s−

3
2

)
+

(
1
2
s−

1
2

)(
−3

8
s−

5
2

)
= 0 · s−3 = 0

3(2)(2)− (2t)(0) = 12

3 (0)

(
1
4
s−

3
2

)
− (1)

(
−3

8
s−

5
2

)
= 3

8
s−

5
2

Continuing Example 2.16, we must check that these values are related by the 5th power

of the scale factor 2t = 2s
1
2 :

(2s
1
2 )5 · 0 = 0

(2s
1
2 )5 · 3

8
s−

5
2 = 32 · 3

8
s0 = 12

Thus the formulas correctly predict that these two parameterized curves make third order
contact, at every point.

Example 2.18. (2-jets of a foliation) Consider a vector field V := u(x, y) ∂
∂x

+ v(x, y) ∂
∂y

.

Its integral curves (x(t), y(t)) satisfy

x′(t) = u(x(t), y(t)) =: u

y′(t) = v(x(t), y(t)) =: v

x′′(t) = uxu+ uyv

y′′(t) = vxu+ vyv

The formula for the 2-jet field of the family of integral curves is therefore

[u, v, u(vxu+ vyv)− v(uxu+ uyv)](1,1,3)

= [u, v, u2vx − v2uy + uv(vy − ux)](1,1,3)

This formula is indeed invariant with respect to reparameterizations of the integral curves:
Setting Ṽ := fV for some non-vanishing smooth function f = f(x, y),

x̃′ = ũ = fu

ỹ′ = ṽ = fv

[ũ,ṽ, ũ2ṽx − ṽ2ũy + ũṽ(ṽy − ũx)](1,1,3)

=[fu, fv, f 2u2(fvx + fxv)− f 2v2(fuy + fyu) + f 2uv(fvy + fyv − fux − fxu)](1,1,3)

=[fu, fv, f 3(u2vx − v2uy + uv(vy − ux)) + f 2u2fxv − f 2v2fyu+ f 2uv(fyv − fxu)](1,1,3)

=[fu, fv, f 3(u2vx − v2uy + uv(vy − ux))](1,1,3)

=[u, v, (u2vx − v2uy + uv(vy − ux))](1,1,3)
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2.12 Linearizing the Gr
2 bundle structure of T r

1M

The action of the jet group Gr
2 on Jr := Jr1,2 commutes with Gr

1, so it descends to
K = Kr := reg(Jr)/Gr

1. K is the standard fiber of the functor Kr
1(•) of r-jets of curves

in surfaces, so Kr
1M is identified with the bundle associated to the r-order frame bundle

of M by the Gr
2 space K.

The action of Gr
2 on K is non-linear. However, at least in the cases for which weighted

projective coordinates for Jr are known explicitly, this action can be explicitly linearized,
in the projective sense, by means of embeddings of the respective weighted projective
spaces appearing in Corollary 2.14 into ordinary projective spaces. We work out the
details only in the case r = 2.
Let’s switch to derivative notations for jets of a single-variable function x(t), i.e. the
previous polynomial coefficient notations (a1, a2, . . . ) ∼= a1t + a2t

2 + . . . will be replaced
with the equivalent derivative list

x′ = a1

x′′ = 2a2

x′′′ = 6a3

. . .

Let’s also use the Taylor series / partial derivative notation for elements of Gr
2. So for a

diffeomorphism h = (f(x, y), g(x, y)) relative to (0, 0) ∈ R2, the element hr ∈ Gr
2 that h

represents has coordinates the rth derivatives

(fx, fy, gx, gy, fxx, fxy, fyy, gxx, gxy, gyy, . . . )

where we have abbreviated fx := fx(0, 0), etc. Thus for example

h1 = (J(f, g))

h2 = (J(f, g), H(f), H(g))

where J(f, g) is the Jacobian matrix and H(f) and H(g) denote Hessian matrices.

Figure 2: (Left) A surface patch with coordinate axes shown.
(Center) The effect of a linear diffeomorphism of the surface patch (a polynomial trunca-
tion to the 1-jet h1) on the coordinate axes.
(Right) The effect of a “quadratic” diffeomorphism (a polynomial truncation to the 2-jet
h2, locally defined).
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Let T := J1 = {(x′, y′)} denote the standard fiber of the tangent bundle functor, as
a G1

2 space with matrix representation ρT (J(f, g)). Let D be the divisor in J2 :=
{(x′, y′, x′′, y′′)} given by x′y′′ − y′x′′.
In what follows, natural means functorial in the category of smooth manifolds and diffeo-
morphisms.

Proposition 2.19.

1. The 5-dimensional vector space U5 := 〈x′3, x′2y′, x′y′2, y′3, D〉, regarded as a set of
polynomial functions on J2, is G2

2 stable. The action of G2
2 on U5 is linear with

matrix representation

ρU5(h2) =

ρSym3 T ∗(h1)

fxgxx − gxfxx
2fxgxy + fygxx − 2gxfxy − gyfxx
2fygxy + fxgyy − 2gyfxy − gxfyy

fygyy − gyfyy
0 0 0 0 ρΛ2T ∗(h1)


2. The vector bundle functor associated to the linear G2

2 representation U5, denoted
V 2M , is a natural extension:

0→ Sym3 T ∗M → V 2M → Λ2T ∗M → 0

3. There is a natural embedding K2M ⊂ P(V 2M)∗.

Proof. (1) The action of G2
2 on the functions (x′, y′) descends to G1

2, where it is the usual
linear action of J(f, g). This accounts for the the first 4 columns of the displayed matrix
representation, the 4× 4 block ρSym3 T ∗(J(f, g)) and the row of 4 zeros below it.
For the remaining column, we must calculate the action on x′y′′ − y′x′′. Use the chain
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rule:

(x̃, ỹ) : = h · (x, y) = (f(x, y), g(x, y))

x̃′ =fxx
′ + fyy

′

ỹ′ =gxx
′ + gyy

′

x̃′′ =(fxxx
′ + fxyy

′)x′ + fxx
′′ + (fyxx

′ + fyyy
′)y′ + fyy

′′

ỹ′′ =(gxxx
′ + gxyy

′)x′ + gxx
′′ + (gyxx

′ + gyyy
′)y′ + gyy

′′

x̃′ỹ′′ − ỹ′x̃′′ =(fxx
′ + fyy

′)((gxxx
′ + gxyy

′)x′ + gxx
′′ + (gyxx

′ + gyyy
′)y′ + gyy

′′)

− (gxx
′ + gyy

′)((fxxx
′ + fxyy

′)x′ + fxx
′′ + (fyxx

′ + fyyy
′)y′ + fyy

′′)

=(fxgxx − gxfxx)x′3

+ (2fxgxy + fygxx − 2gxfxy − gyfxx)x′2y′

+ (2fygxy + fxgyy − 2gyfxy − gxfyy)x′y′2

+ (fygyy − gyfyy)y′3

+ (fxx
′ + fyy

′)(gxx
′′ + gyy

′′)− (gxx
′ + gyy

′)(fxx
′′ + fyy

′′)

=(fxgxx − gxfxx)x′3

+ (2fxgxy + fygxx − 2gxfxy − gyfxx)x′2y′

+ (2fygxy + fxgyy − 2gyfxy − gxfyy)x′y′2

+ (fygyy − gyfyy)y′3

+ (fxgy − fygx)(x′y′′ − y′x′′)

The last step is to observe that fxgy − fygx = det J(f, g) = ρΛ2T ∗(h1).
(2) This follows from (1) and the description of bundle functors and their natural trans-
formations in Corollary A.11.
(3) The G2

2 equivariant map θ : J2 → P(U5∗) given by

θ : [x′, y′, x′′, y′′]G2
1
7→ [x′3, x′2y′, x′y′2, y′3, x′y′′ − y′x′′]

factors as the composition of the embedding J2 ⊂ P(1, 1, 3) of Corollary 2.14(2) and the
map σ:

σ : P(1, 1, 3)→ P4

[a, b, c] 7→ [a3, a2b, ab2, b3, c]

σ is an embedding onto: the cone on the twisted cubic {[a3, a2b, ab2, b3, 0]} ⊂ P3 ⊂ P4

over the point [0, 0, 0, 0, 1] ∈ P4 ([Dol82]). Thus θ is an embedding. The corresponding
natural transformation K2M → P(V 2M)∗ of Corollary A.11 is an embedding.

We conclude that the 2-jets5 of curves on surfaces can be used exactly like tensors, in
the following sense. A given 2-jet at a given point is described with respect to local
coordinates by a list of 5 numbers, transforming with respect to changes of coordinates

5And 3-jets and 4-jets; See [Dol12] for projective embeddings of general weighted projective spaces.
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by a straightforward linear rule involving the coordinate transition functions. The rule
for 2-jets is the linear transformation specified by the matrix in 2.19(1), with (f, g) re-
interpreted as a change of coordinates. The main difference with tensors is that the rule
depends on higher-order derivatives of the transition functions.

2.13 The contact system of K2M

We calculate formulas for the contact system of K2M with respect to the coordinates we
have developed.
Recall that the graph coordinates for K2M adapted to the coordinates (x, y) for M are
denoted (x, u, ux, uxx), where u = y. The graph of some function u(x) is a particular
example of a parameterized curve, with parameter t = x. Its 2-jet is given by:

[1, ux, 1 · uxx − ux · 0](1,1,3) =[x′, y′, x′y′′ − y′x′′](1,1,3)

=[1,
y′

x′
,
y′′

x′2
− y′x′′

x′3
](1,1,3)

That is,

x = x u = y ux =
y′

x′
uxx =

y′′

x′2
− y′x′′

x′3

Proposition 2.20. With respect to local coordinates (x, y, x′, y′, x′′, y′′) for T 2
1M , the con-

tact system of K2M pulled back over reg T 2
1M , restricted to the open dense set {x′ 6= 0},

is differentially generated by the 1-forms

θ = x′dy − y′dx
θ1 = (x′dy′ − y′dx′)x′ − (x′y′′ − y′x′′)dx

Proof. Use Definition A.15:

θ := du− uxdx = dy − y′

x′
dx

≡ x′dy − y′dx

θ1 := dux − uxxdx = d

(
y′

x′

)
−
(
y′′

x′2
− y′x′′

x′3

)
dx

=
−1

x′2
y′dx′ +

1

x′
dy′ − y′′

x′2
dx+

y′x′′

x′3
dx

≡ −x′y′dx′ + x′2dy′ − x′y′′dx+ y′x′′dx

= (x′dy′ − y′dx′)x′ − (x′y′′ − y′x′′)dx

Remark 2.21. (Koszul 1-cycles). θ and θ1 can be interpreted as 1-cycles in the Koszul
complex (K, δ) associated to the sequence (x′, y′, x′′, y′′) of elements in the ring R =
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R[x′, y′, x′′, y′′]. To make this interpretation, the basis elements for the free R-module
of rank 4, appearing in the definition of K, must be named dx, dy, dx′, dy′ (rather than
dx′, dy′, dx′′, dy′′, as in the usual interpretation of K as polynomial differential forms):

· · · δ→ Λ2
R〈dx, dy, dx′, dy′〉

δ→ Λ1
R〈dx, dy, dx′, dy′〉

δ→ R

δ(θ) = x′y′ − y′x′ = 0

(θ = δ(dx dy))

δ(θ1) = (x′y′′ − y′x′′)x′ − (x′y′′ − y′x′′)x′ = 0

(θ1 = δ((−x′dy′ + y′dx′)dx))

Therefore a plausible conjecture would be that the contact system of Kr
nM pulled back

over reg T rnM is generated with respect to local coordinates

(x1, . . . , xm, x1
1, . . . , x

m
1 , . . . , x

1
r, . . . x

m
r )

by certain differential 1-form realizations of the 1-cycles of the Koszul complex associ-
ated to the sequence (x1

1, . . . , x
m
1 , . . . , x

1
r, . . . x

m
r ) of generators of the ring R of polynomial

functions on the fiber. To obtain these forms, one would label (as above) the basis of the
free R-module of rank rm by the 1-forms (dx1, . . . , dxm, dx1

1, . . . , dx
r
1, . . . ), rather than

(dx1
1, . . . , dx

m
1 , dx

1
2, . . . , dx

m
2 , . . . ). If this conjeture is true, explicit formulas for envelopes

of parameterized submanifold families (see section 5) could be obtained for all orders and
in all dimensions, even when explicit coordinates for Kr

nM (i.e. the Gr
n invariant functions

on T rnM) are not known.

3 Smooth submanifold families

3.1 Families and prolongation

Definition 3.1. The category F of smooth families is defined as follows. The objects of
F are diagrams F in M of shape B ← C → A such that

1. The induced map C → B × A is an embedding, and

2. The map C → B is a submersion.

The morphisms F ′ → F in F are commutative diagrams such that

1. A′ → A is an embedding, and

2. C ′ → C is an embedding when restricted to each fiber over B; i.e., an embedding
“over B”.
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A is called the ambient space, B the base, and C the total space of the family. The fiber
Cb is identified with its image submanifold of A, called the bth member. We will use the
notation s := dimC − dimB = dimCb.
By submersion we mean a surjective smooth map whose tangent map at all points has
rank equal to the dimension of the codomain. Although a submersion is not necessarily
a fiber bundle, locally in the domain a submersion is isomorphic to a product projection.

Definition 3.2.

1. A subfamily of a family F is a morphism F ′ → F in which all three maps A′ → A,
B′ → B, C ′ → C are embeddings.

2. A subfamily is called open if A′, B′, C ′ are open subsets of A,B,C respectively.

3. A neighborhood of F local in space is an open subfamily of the form: A′ ⊂ A is an
open subset, C ′ is the pre-image of A′ in C, and B′ is the image of C ′ in B.

4. A neighborhood of F local in the base is an open subfamily of the form: B′ ⊂ B is
an open subset, C ′ is the pre-image of B′ in C, and A′ = A.

5. A neighborhood of F local in the total space is an open subfamily of the form:.
C ′ ⊂ C is an open subset, B′ is its image in B, and A′ = A.

Figure 3: Some members of subfamilies which are neighborhoods of the circle family local
in A = R2, local in the base B, and local in the total space C.

Note that in (3), C ′ is open by continuity of the map C → A. In (3) and (5), B′ is
open since C → B is a submersion and submersions are open maps. Thus spatial, base,
and total space local neighborhoods are open subfamilies. The local neighborhoods of F
determined by open subsets A′ ⊂ A, B′ ⊂ B, and C ′ ⊂ C will be called respectively the
restriction to A′, B′, C ′.
A property of families or a relation between families is said to hold locally in space,
locally in the base, or locally in the total space, if it holds respectively for sufficiently
small neighborhoods local in space, the base, or the total space in the families under
consideration.

Definition 3.3. Let C → B be a submersion. FKr
pC :=

⋃
b∈BK

r
pCb is called the set of

fiber-contact elements of order r and dimension p in C.
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Note that FKr
pC has the structure of a manifold as a closed submanifold of Kr

pC, with
charts of the form Kr

pUc × Vb, where Uc is a neighborhood of a point c ∈ C and Vb is a
neighborhood of b, the image of c in B. Alternatively, FKr

pC is just the rth prolongation
manifold, with respect to p-submanifolds, of the Frobenius-integrable differential system
on C defined by the distribution tangent to the fibers of C → B. We will call this system
the fiber contact system.

Definition 3.4. For integers r, p > 0 the rth-order prolongation of a family by p-
dimensional submanifolds is the functor pr

(r)
p : F → F defined as follows. On objects,

pr(r)
p (B ← C → A)

=
(
B ← FKr

pC → Kr
pA
)

For a morphism F → F ′, we define the induced map pr
(r)
p (F ) → pr

(r)
p (F ′) by: the map

B → B′, the disjoint union of the induced maps Kr
pCb ⊂ Kr

pC
′
b′ over b ∈ B, and the

induced map Kr
pA→ Kr

pA
′.

Although the functoriality of the induced maps is obvious, their smoothness is not obvious
and is equivalent to the regularity of the functors Kr

p :Memb → FM (Definition A.8(3)).

When we introduce envelopes in section 5, we will study the functors pr
(r)
p is greater detail.

Here we focus on the special case that p = s := dimCb.

Definition 3.5. C(r) := FKr
sC will be called the rth prolongation of the family F =

(B ← C → A).

Note that there is a canonical isomorphism C ∼= C(r) for each r.

3.2 Genericity and order

Definition 3.6. A family F is called generic (or jet-generic, if a different term is desired)
if C(r) → Kr

sA is a submersion for all r such that dimC(r) = dimC ≥ dimKr
sA, and an

embedding for all r such that dimC ≤ dimKr
sA.

A family will be called order r if C ∼= C(r) → Kr
sA is a diffeomorphism.

Occasionally it will be useful to call a family locally generic if it satisfies Definition 3.6
except that the submersion is not necessarily surjective. In this case order r shall mean
that C(r) and Kr

sA have the same dimension and C(r) → Kr
sA is a local diffeomorphism

onto an open submanifold.

Proposition 3.7. Let F = (B ← C → A) be a generic family of submanifolds of A which
have dimension s and codimension q. F has order r if and only if

dimB = q

(
s+ r
r

)
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Proof. A smooth map is a diffeomorphism if and only if it is a submersion and an embed-
ding. Thus it suffices to check that the stated condition is equivalent to dimC = dimKr

sA:

dimB + s = dimA+ dim Hom(Rs,Rq) + dim Sym2 Rs∗ ⊗ Rq + · · ·+ dim Symr Rs∗ ⊗ Rq

dimB + s = s+ q + q

(
s
1

)
+ · · ·+ q

(
s+ r − 1

r

)
dimB = q

((
s− 1

0

)
+

(
(s− 1) + 1

1

)
+ · · ·+

(
(s− 1) + r

r

))
= q

(
s+ r
r

)

Figure 4: The number of base parameters needed for a generic family of s-dimensional
submanifolds of ambient manifold A to have order r.

r
dimA s 1 2 3 4 5 6 7 8 9 · · ·

2 1 2 3 4 5 6 7 8 9 10 · · ·
3 1 4 6 8 10 12 14 16 18 20 · · ·

2 3 6 10 15 21 28 36 45 55 · · ·
4 1 6 9 12 15 18 21 24 27 30 · · ·

2 6 12 20 30 42 56 72 90 110 · · ·
3 4 10 20 35 56 84 120 165 220 · · ·

5 1 8 12 16 20 24 28 32 36 40 · · ·
2 9 18 30 45 63 84 108 135 165 · · ·
3 8 20 40 70 112 168 240 330 440 · · ·
4 5 15 35 70 126 210 330 495 715 · · ·

...

In the plane: All curve families meet this numerical criterion. Lines form an order 1
family. The union of the families of circles and lines forms an order 2 family. Smooth
conics form a locally generic family of order 4. More generally, degree d plane curves form
a locally generic family of order (d+1)(d+2)

2
− 2 = (d2 + 3d− 2)/2.

Families in ambient spaces of dimension greater than 2 meeting the numerical criterion
include:

1. Planes of fixed dimension in any linear space. Order 1.

2. Circles (and lines) in R3. 6 parameters, order 2.

3. Plane conics in R3. 8 parameters, order 3.

4. Spheres of fixed radius in R3. 3 parameters, order 1.

5. Ellipsoids in R3 with principal axes fixed up to parallel translation. 6 parameters,
order 2.

6. Ellipsoids in R3 with fixed center. 6 parameters, order 2.
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3.3 Locally-defined families

There are many examples of “families” of submanifolds of a manifold M which meet the
conditions of Definition 3.1 only locally in M . For example, a foliation. Therefore it will
be convenient to have a global generalization, which we accomplish in the standard way:

Definition 3.8. (Locally-defined families)

1. Two submanifold families in open subsets U1, U2 ⊂ M shall be called compatible if
their restrictions to U1 ∩ U2 are isomorphic relative to the identity of U1 ∩ U2.

2. An atlas of local families in manifold M is a collection of submanifold families in
the members of an open cover of M which are mutually (pairwise) compatible.

3. Two atlases of local families are called compatible if their union is an atlas.

4. A locally-defined family of submanifolds of M is an equivalence class of atlases of
local families of submanifolds in M .

Because the notions of section 3 (genericity, order, and prolongation) have a local char-
acter, they generalize easily to locally-defined families, with mild modifications. So it
will often be convenient to drop the explicit qualification “locally-defined”. We can add
to the list of families meeting the numerical criterion of Proposition 3.7 the following
locally-defined order 1 example: Geodesics for any connection on the tangent bundle of a
manifold.

3.4 (r + 1)-graphs and osculation families

Definition 3.9. An (r+1)-graph for s-submanifolds of A is the image of a smooth section
h : Kr

sA→ Kr+1
s A, called its map or structure map.

The contact system of an (r + 1)-graph image(h) is the restriction of the contact system
I(r+1) of Kr+1

s A to image(h).

Note that h is a diffeomorphism onto its image, so h identifies its (r+1) graph with Kr
sA.

The contact system is then the pull back h∗I(r+1).

Definition 3.10. An (r + 1)-graph family is a smooth family in A whose members are
the images in A of the projectable integral manifolds of the contact system of some (r+1)-
graph.

Note that the integral manifolds of an (r+1)-graph do not necessarily form an (r+1)-graph
family, as defined here, since they may not form a smooth family.
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Figure 5: An (r + 1)-graph and order r family. The dotted curve downstairs is the r-jet
lift of an arbitrary curve. Its h image is not holonomic.

Proposition 3.11. A family of order r is an (r + 1)-graph family for a unique (r + 1)-
graph. The contact system of the (r + 1)-graph is Frobenius-integrable.

Proof. Suppose F = (B ← C → A) has order r, so C(r) → Kr
sA is a diffeomorphism.

Then

h : Kr
sA→ C(r) ∼= C ∼= C(r+1) → Kr+1

s A

is a smooth section. According to Proposition A.14, h is identified with a rank s distri-
bution D in the tangent bundle of Kr

sA, and h∗I(r+1) = D⊥. D in Kr
pA
∼= C contains

the s-dimensional tangent planes of the fibers of C → B, and hence is equal to this
plane field because the dimensions agree. Since D is involutive, the contact system of the
(r + 1)-graph of h is Frobenius-integrable.

Definition 3.12. A smooth family F of s-dimensional submanifolds in A is called an rth

order osculation family if for every point x of an s-dimensional submanifold N ⊂ A, there
is a unique member Cb of F making contact with N at x of order r. In this case Cb is
called the osculating F -member or osculant at x.

Definition 3.13. An rth order osculation family is called regular if the parameter b of
the osculant Cb depends smoothly on x ∈ N .

Note that regularity implies that the map N → C ⊂ A × B, x 7→ (x, b), is smooth for
each N , where b is the parameter of the osculant Cb to N at x.

Proposition 3.14. A family F has order r if and only if it is a regular rth order osculation
family.

Proof. Pick a point k ∈ Kr
sA over x ∈ A, and let N ⊂ A be a submanifold through x

representing k. Since N has an osculating F -member Cb at x, we have jrxCb = k. So
C(r) → Kr

sA is surjective. Since Cb is the unique F -member making r-order contact,
C(r) → Kr

sA is also injective. Regularity implies that the inverse is also smooth, so
C(r) → Kr

sA is a diffeomorphism.
For the converse, let N ⊂ A be any s-submanifold through x ∈ A. Since C(r) → Kr

s (A) is
a diffeomorphism, there is a unique member Cb passing through the preimage of jrxN .
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This construction provides many examples of subfamilies of order r families. Namely,
any submanifold of the same dimension as the fibers of the family yields its family of
osculants. For example, the 4th order osculating conics to a plane curve.
The construction also provides a test for membership:

Proposition 3.15. Suppose that N ⊂ A makes (r + 1)-order contact with all of its F -
osculants, where F is a regular order r osculation family. Then N is equal to a member
of F .

Proof. By the assumption, the (r + 1)-jet lift jr+1N lies on image(h), where h is the
structure map of the (r+ 1)-graph of F . jr+1N is an integral of the contact system there.
But since F has order r, the Frobenius condition of Proposition 3.11 implies that the only
such integrals are the jet-lifts of members of F .

We caution that even though an order r family F is essentially the same as a holonomic
foliation of Kr

sA, it is obviously not the case that any integral of I(r) in Kr
sA must be one

of the leaves. Rather, one needs an integral of h∗I(r+1).

Example 3.16. The k-planes in a linear or projective space form an order 1 family. Thus
k-planes are characterized by an abstract differential equation of order 2 for submanifolds,
independent of any additional structure, like a metric. A C2-smooth submanifold of
dimension k is a plane if and only if it makes order 2 contact with each of its tangent
k-planes.

Example 3.17. The smooth plane conics form a locally generic family of order 4. The
order 5 differential equation characterizing plane conics seems to have appeared first in
[Hal79].

The results of this section, Propositions 3.7, 3.11, and 3.14, are summarized below.

Theorem 3.18. Let F be a locally-defined smooth family of s-dimensional submanifolds
of a smooth manifold M , whose members have dimension p and codimension q. Let
B ← C → A denote an arbitrary smooth family comprising part of F , lying in an open
submanifold A ⊂M . The following are equivalent:

1. F is jet-generic and dimB = q

(
s+ r
r

)
for some positive integer r.

2. The prolongation C ∼= C(r) → Kr
sA is a diffeomorphism.

3. F is the image in M of the integral manifolds of a Frobenius-integrable exterior dif-
ferential system of the form h∗I(r+1), for some smooth section h : Kr

sM → Kr+1
s M .

4. For each point x of an s-dimensional submanifold N ⊂ A, there is a unique member
Cb making r-order contact with N at x. The parameter b depends smoothly on x.
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4 Projective structures in 2 dimensions

4.1 Projective structures via their straight lines

There are several theorems which are called the Fundamental Theorem of Projective
Geometry, varying in context and generality. For a thorough account, see [Art88] page
85.
We recall one version:

Theorem 4.1. (Fundamental Theorem of the Real Projective Plane) Suppose that f :
RP2 → RP2 is a collineation, meaning a bijection that maps lines to lines. Then f is a
projective transformation.

We shall need a closely related local version, which relies on the classical lemma stated
below.
For three distinct points P1, P2, P3 on a line in RP2, construct a point H12 on the open
segment P1P2 not containing P3 as follows. Set Q1 := P1. Let Q2 be a point not on P1P2P3

and let Q3 be any point of line Q1Q2 not equal to Q1 or Q2. Let I1 be the intersection of
P2Q3 and P3Q2, and let I2 be the intersection of P2Q2 with P1I1. H12 is the point where
line Q3I2 meets P1P2.

Lemma 4.2. H12 is well-defined by the ordered triple (P1, P2, P3), independent of the
choice of Q2 and Q3, and independent of the order of P1 and P2.

H12 is called the harmonic conjuage point of the triple P1, P2, P3. By permuting the Pi, we
obtain two more harmonic conjugate points H23 and H31 lying respectively on the open
segments P2P3 (not containing P1) and P3P1 (not containing P2). The set {H12, H23, H31}
is alternatively characterized as the set of elements which can be adjoined to {P1, P2, P3}
such that the cross-ratio of the resulting 4 points, calculated with respect to any order of
these 4 points, is equal to either −1, 1

2
, or 2.

Although the Proposition 4.3 and Corollaries 4.4 and 4.5 below are well-known (for exam-
ple, the argument in the proof of Proposition 4.3 was presented in [Eas15]), their precise
statements do not seem to follow from the versions of the Fundamental Theorem in the
literature. So the proofs are provided.

Proposition 4.3. Let f be a homeomorphism T → T ′ between two closed triangles T, T ′ ⊂
RP2 which maps line segments to line segments. Then f is the restriction of a unique
projective transformation of RP2.

Proof. f maps the vertices of T to the vertices of T ′, since the sides map to line segments
contained in the sides of T ′. Pick a point C in the interior of T . There is a unique
projective transformation g which maps the vertices of T ′ onto the vertices of T , and
f(C) to C. The composition h := g ◦ f fixes C and the vertices of T . So it suffices to
prove that a homeomorphism h of a single triangle T , fixing the vertices and an interior
point C, and mapping line segments to line segments, is the identity.
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Figure 6: Two constructions of the harmonic conjugate point H12.

Let V be a vertex of T . The intersection of line V C with the side S of T opposite V is
fixed by h, because V C and S are preserved by h. Let P1 and P3 be two of the vertices of
T , and let P2 be the fixed point on side P1P3. The harmonic conjugate H12 of P1, P2, P3

is fixed by h for the following reason. Suppose Q2 and Q3 are selected inside T , for the
construction of H12. Then h(Q2) and h(Q3) also lie in T , and h maps all line segments
appearing in the construction to other line segments. Thus the construction of H12 via
Q2 and Q3 is mapped by h to the construction of H12 via h(Q2) and h(Q3).
Similarly, H23 is fixed by h, as are the pairs of points appearing on the other 2 sides of
T which are the harmonic conjugates of the corresponding triple of points on each side.
Applying this construction recursively to the resulting triples of points, e.g. P1, H12, P2,
and so on, we find that h is the identity on a dense subset of the boundary of T . Since h
is continuous, h is the identity on the entire boundary. It follows that h maps every line
segment not just to some other line segment, but to the same segment. Every point of the
interior of T is the intersection of a pair of line segments with vertices on the boundary
of T , so h is the identity on all of T .

Figure 7: h is the identity on a dense subset of the boundary of T .
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Corollary 4.4. Let f : U → V be a homeomorphism between two path-connected open
sets in RP2 which maps intersections of lines with U to intersections of lines with V .
Then f is the restriction of a unique projective transformations of RP2.

Proof. Each P ∈ U is contained in some (possibly very small) triangle T . According to
Proposition 4.3, the restriction of f to T is equal to the restriction of a unique projective
transformation p. Any other point P ′ ∈ U is also contained in some triangle T ′, on which
f is the restriction of a unique projective transformation p′. If T and T ′ meet in a set with
non-empty interior I, then p = p′ since p′−1 ◦ p is the identity on I and hence the identity
projective transformation on P2. If T and T ′ do not meet in such a set, any path P → P ′

can be covered by the interiors of a finite sequence of triangles T = T1, . . . , Tn = T ′ such
that consecutive triangles do meet in such a set. Therefore the corresponding projective
transformations p = p1, . . . pn = p′ satisfy p = p2 = · · · = pn−1 = p′.

Recall that a projective structure on a smooth surface is defined as an equivalence class
of atlases consisting of projectively-compatible charts to open subsets of the projective
plane.

Corollary 4.5. A projective structure on M is determined by its locally-defined family of
straight lines.

4.2 Straight lines via fields

A generic locally-defined 2-parameter family of curves on a surface M has order 1, and
hence is given by a section h : K1M → K2M . Choose local coordinates (x, y) on M
and recall the corresponding P(1, 1, 3) fiber coordinates for K2M introduced in Corollary
2.14. With respect to these coordinates, h has the form

h : [x′, y′] 7→ [x′, y′, H(x′, y′)](1,1,3)

for some function H = H(x, y)(x′, y′) which is homogeneous of degree 3 in (x′, y′).
In particular, with respect to coordinates that are projective with respect to a given
projective structure ξ on M , the function defining the order 1 straight line family is
H = 0. This is because each straight lines has a parameterization (x(t), y(t)) such that
x′′ = 0 and y′′ = 0, or more generally 0 = x′y′′ − y′x′′ = H(x′, y′).
This H, H = 0, defines at each point p of M a special example of a hyperplane section of
P(1, 1, 3) ⊃ K2

pM with respect to the embedding of P(1, 1, 3) and K2
pM in in P(U5∗) ∼= P4

appearing in Proposition 2.19(3):

[x′, y′, λ](1,1,3) 7→ [x′3, x′2y′, x′y′2, y′3, λ] (4.1)

Definition 4.6. An order 1 curve family F is called pointwise-algebraic if the image of
each K1

pM → K2
pM is a hyperplane section in K2

pM ⊂ P(V 2
pM)∗. That is, if F is given

by a section ψ ∈ Γ(P(V 2M)\P(Sym3 T ∗M),M), called its structure field.

Note that the formula (4.1) implies that an order 1 family F is pointwise-algebraic if and
only if the function H, homogeneous of degree 3 in (x′, y′), is actually polynomial.
We have proved:
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Proposition 4.7. The straight lines of a projective structure ξ on M form a pointwise-
algebraic order 1 family. ξ is characterized by the structure field ψ ∈ Γ(P(V 2M),M) of
this family (with respect to local coordinates, the cubic polynomial H).

That is, a projective structures on M is identified with a section of P(V 2M). Such sections
will be called linearizable, since they are the structure fields of linearizable curve families.
The linearizable sections are identified in the next section, section 4.3.

4.3 Projective connections in 2 dimensions

Recall that two linear connections on the tangent bundle TM of a manifold M , i.e. affine
connections on M , are called projectively equivalent if they have the same geodesics as
unparameterized curves. A projective connection is a projective equivalence class of such
connections.
One usually considers only the projective equivalence classes of torsion-free connections,
because of the following Proposition and Theorem:

Proposition 4.8. The geodesics of an affine connection ∇ are straight lines in some local
coordinate system near any given point if near this point ∇ is projectively equivalent to a
torsion-free flat connection.

Proof. The parallel vector fields of a torsion-free flat connection are the coordinate vector
fields of a coordinate system.

Theorem 4.9. (Cartan [Car24]; c.f. Nurowski [Nur12] page 661, Theorem 1.7)

1. Two torsion-free affine connections ∇ and ∇̃ on a manifold M are projectively
equivalent if and only if ∇XY = ∇̃XY + θ(X)Y + θ(Y )X for some 1-form θ on M .

2. A torsion-free affine connection ∇ is projectively equivalent to a torsion-free flat
connection if and only if its Weyl tensor W (Schouten tensor Y in case of dimension
2) vanishes.

4.9(1) is the basic fact that makes the question of projective equivalence amenable to
algebraic calculation, and 4.9(2) is an almost complete answer to this question.

Remark 4.10. (Torsion). The torsion is clearly an invariant of the equivalence relation
between connections ∇ and ∇̃ determined by the equation in 4.9(1) for 1-forms θ. How-
ever, Theorem 4.9 only uses this equivalence relation in the torsion-free case, and it does
not assert that the torsion is an invariant of projective equivalence. Indeed, Theorem 4.11
below implies that the torsion is not an invariant of projective equivalence.

Theorem 4.11.

1. Let F be a locally-defined 2-parameter curve family on a surface M . F is the family
of geodesics for some linear connection ∇ on TM (affine connection on M) if and
only if F is pointwise-algebraic.
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2. Two affine connections ∇ and ∇̃ on M are projectively equivalent if and only if
their Christoffel symbols satisfy

−Γ2
11 = −Γ̃2

11

−Γ2
12 − Γ2

21 + Γ1
11 = −Γ̃2

12 − Γ̃2
21 + Γ̃1

11

−Γ2
22 + Γ1

12 + Γ1
21 = −Γ̃2

22 + Γ̃1
12 + Γ̃1

21

Γ1
22 = Γ̃1

22

Proof. (1) We simply calculate the structure map h : [x′, y′] 7→ [x′, y′, H(x′, y′)](1,1,3) of
the geodesic family of a connection ∇ with Christoffel symbols Γijk (i, j, k ranging from 1
to 2). The ∇-geodesic equations for a curve (x(t), y(t)) are

x′′ = −Γ1
11x
′2 − (Γ1

12 + Γ1
21)x′y′ − Γ1

22y
′2

y′′ = −Γ2
11x
′2 − (Γ2

12 + Γ2
21)x′y′ − Γ2

22y
′2

Thus the 2-jet of a geodesic of ∇ is described by

[x′,y′, x′(−Γ2
11x
′2 − (Γ2

12 + Γ2
21)x′y′ − Γ2

22y
′2)− y′(−Γ1

11x
′2 − (Γ1

12 + Γ1
21)x′y′ − Γ1

22y
′2)](1,1,3)

= [x′,y′, x′3(−Γ2
11) + x′2y′(−Γ2

12 − Γ2
21 + Γ1

11) + x′y′2(−Γ2
22 + Γ1

12 + Γ1
21) + y′3(Γ1

22)](1,1,3)

That is, H(x, y)(x′, y′) is the cubic polynomial in (x′, y′) with coefficients

(−Γ2
11, −Γ2

12 − Γ2
21 + Γ1

11, −Γ2
22 + Γ1

12 + Γ1
21, Γ1

22) (4.2)

Hence the geodesic family F is pointwise-algebraic.
Conversely: Let F be a pointwise-algebraic order 1 family with H(x′, y′) = Ax′3+Bx′2y′+
Cx′y′2 +Dy′3 for some coefficient functions A,B,C,D on M . Select arbitrarily functions
Γijk such that the linear combinations in (4.2) equal to (A,B,C,D). F is (locally) the
geodesic family of the connection ∇ with Christoffel symbols Γijk.
(2) This follows immediately from expression (4.2) for the structure map of the geodesic
family of a connection.

We call a general affine connection or its associated projective connection geodesically
flat if the geodesics are straight lines in some local coordinate system near each point.
We will also use the alternative term projectively flat, in conformity with convention, in
the context of torsion-free representatives for the projective connection. Theorem 4.9
does not seem to provide a criterion for geodesic-flatness of connections in this generality.
Such a criterion, still ultimately relying on Theorem 4.9, can be obtained by replacing an
arbitrary affine connection by a projectively equivalent one with vanishing torsion. What
we actually do is formally more general, by starting from the curve family itself and not
a connection defining it.

Corollary 4.12. A locally-defined 2-parameter family F of curves on a surface M is
locally linearizable, i.e. equal to the straight lines in some coordinate system, if and only
if both:
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1. F is pointwise-algebraic of order 1, so it is given locally by a structure field ψ specified
with respect to local coordinates by

H(x′, y′)(x, y) = A(x, y)x′3 +B(x, y)x′2y′ + C(x, y)x′y′2 +D(x, y)y′3, and

2. the torsion-free connection ∇ defined by

Γ1
12 = Γ1

21 = Γ2
12 = Γ2

21 = 0

Γ2
11 = −A Γ1

11 = B Γ2
22 = −C Γ1

22 = D
(4.3)

is projectively flat, i.e. its Schouten tensor vanishes.

Proof. (4.2) in the proof of Theorem 4.11 implies that F is the geodesic family of the
connection ∇ defined by the formula (4.3).

Corollary 4.13. (Torsion-free replacement.) A projective connection on a surface M
represented by an affine connection ∇ with local Christoffel symbols Γijk is geodesically

flat if and only if the torsion-free affine connection ∇̃ with Christoffel symbols Γ̃ijk given
by

Γ̃1
12 = Γ̃1

21 = Γ̃2
12 = Γ̃2

21 = 0

Γ̃2
11 = Γ2

11

Γ̃1
11 = −Γ2

12 − Γ2
21 + Γ1

11

Γ̃2
22 = −(−Γ2

22 + Γ1
12 + Γ1

21)

Γ̃1
22 = Γ1

22

is projectively flat, i.e. its Schouten tensor vanishes.

Remark 4.14. The formula for the Christoffel symbols in 4.12(4.3) and 4.13 is not
unique. Even from among torsion-free connections, there is considerable freedom to select
a solution Γijk of the system

−Γ2
11 = A

−Γ2
12 − Γ2

21 + Γ1
11 = B

−Γ2
22 + Γ1

12 + Γ1
21 = C

Γ1
22 = D

4.4 Special families

We have seen how projective structures on surfaces are given by curve families of order 1
which are special enough to be given by a section ψ of a finite-dimensional fiber bundle.
Insofar as the bundles of contact elements Kr

nM for general manifolds M are bundles of
algebraic varieties, we should expect a rough stratification of r-order families in M along
the same lines. That is, the (r+1)-graphs image(h : Kr

nM → Kr+1
n M) which are pointwise

algebraic in some prescibed sense will be given by sections of a finite-dimensional fiber
bundle on M . Moreover the case of families of n-submanifolds for n > 1 is significantly
more interesting than that of curve families, since the Frobenius-integrability condition
for an (r + 1)-graph no longer automatically holds.
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4.5 Linearizability of webs

In this section a resolution of the Blaschke conjecture on the linearizability of d-webs for
d ≥ 4 is presented, alternative to the resolution of [AGL04]. The idea is to extend a given
d-web to a locally-defined 2-parameter family of curves which would necessarily be the
straight lines in any chart linearizing the web.
Consider first a 4-web of foliations on a surface M . The 2-jets of the leaves comprise 4
sections of the bundle K2M ⊂ P(V 2M)∗ over M . If the web is generic, the 4 sections span
a unique 3-dimensional projective hyperplane in each fiber of P(V 2M)∗. With respect
to local coordinates, suppose that the foliations are parameterized by (xi(t), yi(t)), for
i = 1, 2, 3, 4 (Unlike in section 2, here the subscript is an index and not a derivative
order). Then the function H(x, y)(x′, y′) = Ax′3 + Bx′2y′ + Cx′y′2 + Dy′3 describing the
corresponding section ψ of P(V 2M) is obtained by solving a linear system:

x′31 x′21 y
′
1 x′1y

′2
1 y′31

x′32 x′22 y
′
2 x′2y

′2
2 y′32

x′33 x′23 y
′
3 x′3y

′2
3 y′33

x′34 x′24 y
′
4 x′4y

′2
4 y′34



A
B
C
D

 =


x′1y

′′
1 − y′1x′′1

x′2y
′′
2 − y′2x′′2

x′3y
′′
3 − y′3x′′3

x′4y
′′
4 − y′4x′′4



A
B
C
D

 =


x′31 x′21 y

′
1 x′1y

′2
1 y′31

x′32 x′22 y
′
2 x′2y

′2
2 y′32

x′33 x′23 y
′
3 x′3y

′2
3 y′33

x′34 x′24 y
′
4 x′4y

′2
4 y′34


−1 

x′1y
′′
1 − y′1x′′1

x′2y
′′
2 − y′2x′′2

x′3y
′′
3 − y′3x′′3

x′4y
′′
4 − y′4x′′4


The application of Corollary 4.12 to the order 2 family with structure field ψ is a criterion
for linearizability the 4-web.
The generalization to d > 4 can be made in case the d-web satisfies the genericity condition
that the rank of the matrix

L :=



x′31 x′21 y
′
1 x′1y

′2
1 y′31 x′1y

′′
1 − y′1x′′1

x′32 x′22 y
′
2 x′2y

′2
2 y′32 x′2y

′′
2 − y′2x′′2

x′33 x′23 y
′
3 x′3y

′2
3 y′33 x′3y

′′
3 − y′3x′′3

x′34 x′24 y
′
4 x′4y

′2
4 y′34 x′4y

′′
4 − y′4x′′4

x′35 x′25 y
′
5 x′5y

′2
5 y′35 x′5y

′′
5 − y′5x′′5

...
...

...
...

...


is greater than or equal to 4. In this case, the web is linearizable if and only if

1. The rank of L is 4 (i.e., not 5).

2. The resulting structure field ψ :≡ (imageL)⊥ has non-zero last coordinate.

3. ψ is linearizable.

The point of view presented here is non-standard, since it is not formulated explicitly in
terms of well-known web invariants.
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5 Envelopes

5.1 Introduction

For the reader’s convenience, here we present the simplest, classical, computational def-
inition of the envelope of a 1-parameter family of plane curves. Although it is designed
to be equivalent to a geometric definition, there seems to be no obvious generalization of
this definition to higher dimension and jet order for which there is a well-defined geomet-
ric counterpart. Consequently the definition which we eventually adopt is closer to the
coordinate-independent differential topology, and is not directly related to the definition
below.

Definition 5.1. Let H(x, y, t) be a smooth real-valued function defined on some domain
of the form U × I for some open interval I ⊂ R. Assume that the zero locus Z(H) is a
smooth 2-dimensional submanifold of the domain, transverse to each time-slice U × {t}.
Denote Ct := Z(H) ∩ (U × {t}), regarded as a curve in the plane {(x, y)}.
The envelope of the 1-parameter family of curves Ct is defined to be the image in the
plane of the intersection of the zero loci Z(H) ∩ Z(∂tH).

If Z(H) and Z(∂tH) are transverse, the envelope is a curve (or multi-curve) E(t), pa-
rameterized by t, such that E(t) ∈ Ct. One can show that in this case, at non-stationary
points of E(t0), the tangent direction E ′(t0) equals to the tangent direction of Ct0 at
E(t0). Thus the envelope depends only on the family F := {Ct}, not on its presentation
by H, and consists of the curve or curves making first order contact with the members
Ct.

Example 5.2. (Lines in the plane).

Figure 8: Z(H) in orange, Z(∂tH) in light blue. Lower left, the line family. Lower right,
the envelope curve in blue.

A generic 1-parameter family F of lines in the plane is the family of tangent lines to some
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curve γ. γ is constructed as the locus of points dual to the tangent lines of the curve in
the dual plane traced out by the members of F . γ is the envelope of F .

5.2 General definition

Recall that an integral of a manifold M with a differential system I is a submanifold on
which all differential forms of I restrict to 0.

Definition 5.3. A submanifold Y ⊂ Kr
pA is said to extend to a submanifold Y ′ ⊂ Kr

p′A
if

1. Y ′ is a projectable p′-dimensional integral, meaning Y ′ is the r-jet lift of some X ′ ⊂
A.

2. Y is a projectable p-dimensional integral, meaning Y is the r-jet lift of some X ⊂ A.

3. X is a proper submanifold of X ′

That is, if X ⊂ X ′ ⊂ A are submanifolds, the jet lift of X extends to the jet lift of X ′.
Let F = (B ← C → A) be a smooth family of s-submanifolds of A. Let B ← P r

p
π→ Kr

pA
be it’s r order prolongation by p-submanifolds of the members, so P r

p := FKr
pC.

We consider P r
p not with its prolongation system, or fiber contact system, but rather with

the subsystem π∗I(r)
Kr
pA

.

Definition 5.4. A p-dimensional integral Z ⊂ P r
p is said to be an order r enveloped

manifold of F if

1. Y := πZ ⊂ Kr
pA is projectable to some X ⊂ A.

2. Z is not integral for the fiber contact system (i.e. X is not contained in any fiber
Cb).

3. Y is maximal in the sense that there is no extension of Y to Y ′ of the form Y ′ :=
πZ ′ ⊂ Kr

p′A for integral Z ′ ⊂ P r
p′.

F is said to have a regular p-dimensional envelope of order r if the p-dimensional order
r enveloped manifolds of F form a non-empty finite-dimensional smooth family in P r

p .

Technically a family F may have a regular p-dimensional envelope of order r for two
or more distinct p. More commonly, however, there is a unique p of interest for fixed
r. This is because any p-dimensional enveloped manifold Z of F determines an infinite-
dimensional family of p′-dimensional enveloped manifolds for each p′ < p, namely the jet
lifts of any proper submanifolds X ′ ⊂ X (where X ⊂ A is defined by 5.4(1)). In the case
that there is a unique p for which F admits a regular order r p-dimensional envelope, the
smooth family of p-dimensional enveloped manifolds is called simply the envelope of F of
order r, and denoted W r ← Er → P r

p . The members (Er)w ⊂ P r
p , for w ∈ W , are called

characteristics. The image in A of the family W r ← Er → P r
p will be called the spatial

envelope of F of order r.
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5.3 Local coordinate formulas

In this section, Olver’s graph jet formalism is combined with the formula A.15 for the
contact system to produce, locally, explicit equations for the envelopes of families of
submanifolds which are expressed as graphs.
The ambient manifold will still be denoted A. Assume that A = Z × W , so that we
may express families of generic dimZ-dimensional submanifolds of A as graphs of maps
fb : Z → W , for b ∈ B. Since we will need the jets of submanifolds of each member
of a family in A, we must further assume that Z = X × U , in order to express such
submanifolds as fb images of the graphs of maps X → U . Select local coordinates on
these spaces:

X x1, . . . , xp U u1, . . . , ut W w1, . . . , wq B b1, . . . , bn

A = Z ×W = (X × U)×W

We will be interested in families F = (B ← C → A) of submanifolds of A of dimension
p+ t (codimension q), which are specified by a map

f : B × Z = B ×X × U → W

Thus each member of F , the graph of some fb : Z → W , is identified with Z via the
projection A → Z. The space of fiber contact elements FKr

pC is identified locally with

B × (X × U (r)).

Proposition 5.5. Consider a smooth map of the form

X × Ũ ← X × U
xi = xi

ũα = gα(x, u)

Regard each gα as a differential function on X × U = X × U (0). Then the prolongation
(i.e. the effect on r-jets) is

X × Ũ (r) ← X × U (r)

xi = xi

ũα = gα(x, u)

ũαj = (Djg
α)(x, u(1))

...

ũαJ = (DJg
α)(x, u(r))

Proof. Each point of X×U (r) is the r-jet of the graph of some function h : X → U at some
basepoint in X. Its image in X×Ũ (r) is the r-jet of the graph of the map X → Ũ given by
g(x, h(x)). Proposition A.1 implies that for a multi-index J of size r′ in the coordinates
xi, the J th partial derivative of gα(x, h(x)) as a function of x is given by (DJg

α)(x, u(r′))
evaluated on the r′-jet of h.
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Proposition 5.6. With respect to the B × (X × U (r)) coordinates for FKr
pC and the

X× (U ×W )(r) coordinates for Kr
pA, the prolongation π : FKr

pC → Kr
pA of the map C ∼=

B×X×U → A, (b, x, u) 7→ (x, u, fb(x, u)), is given by X× (U×W )(r) π← B× (X×U (r)):

xi = xi

uα = uα wβ = fβb (x, u)

uαj = uαj wβj = (Djf
β
b )(x, u(1))

...
...

uαJ = uαJ wβJ = (DJf
β
b )(x, u(r))

Proof. Apply Proposition 5.5 for fixed b ∈ B.

The contact system I(r) of Kr
pA is generated by

θα = duα − uαi dxi θαj = duαj − uαjidxi · · · θαJ = duαJ − uαJidxi

ηβ = dwβ − wβi dxi ηβj = dwβj − w
β
jidx

i · · · ηβJ = dwβJ − w
β
Jidx

i

(5.1)
Assuming that the family F = (B ← C → A) has a regular r order envelope by p-
submanifolds, to calculate this envelope we must combine the formula of Proposition 5.6
with (5.1) to express π∗I(r), then find the integral manifolds of π∗I(r).

5.4 Lines in the plane

We will calculate the envelopes of families of lines in the plane.
The calculus which we have developed is obviously overkill for the simplest cases, like lines
in the plane, for which there are much clearer points of view. The purpose of working out
these simplest examples will be instead to validate the calculus and demonstrate how to
use it.

A = R2 with coordinates (x,w). X has coordinate x and W has coordinate w. Since
lines have dimension 1, we have no choice but to look for a regular envelope by (p = 1)-
submanifolds of the lines, so U = {∗} and Z = X × U = X. A line family with base B
in A = X ×W is specified by

w = fb(x) = L(b)x+M(b) b ∈ B

with C ∼= B × (X × U) = B ×X.
The prolongation formula becomes

w1 = (D1(fb))(x)

= L(b)

w11 = (D11(fb))(x) = D1(D1(fb))(x) = 0
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The contact system π∗I(r) is generated by the first r forms of the list:

π∗η = dw − w1dx

= (Lb1db
1 + · · ·+ Lbndb

n)x+ Ldx+ (Mb1db
1 + · · ·+Mbndb

n)− Ldx
π∗η1 = dw1 − w11dx

= Lb1db
1 + · · ·+ Lbndb

n − 0

π∗η11 = dw11 − w111dx = 0

...

π∗ηJ = 0 |J | ≥ 2

Let’s restrict to the case that dimB = 1, so that B has a single coordinate b. Then π∗I(1)

is generated by π∗η = (Lbx + Mb)db, and π∗I(2) is generated by π∗η and the additional
form π∗η1 = Lbdb. A curve in C(1) ∼= C ∼= B × X, described by coordinate functions
b(t), x(t), is an integral of π∗I(1) if and only if

x(t) = −Mb(b(t))

Lb(b(t))
b′(t) (5.2)

(provided that Lb(b(t)) 6= 0).
The spatial realization of the curve described by formula (5.2) is the curve in R2:

x(t) = −Mb(b(t))

Lb(b(t))
b′(t)

w(t) = L(b(t))(−Mb(b(t))

Lb(b(t))
b′(t)) +M(b(t))

= −Mb(b(t))b
′(t) +M(b(t))

(5.3)

For generic L and M these equations describe a 1-dimensional manifold enveloped to
order 1 by the 1-parameter family F of lines: It is not contained in a member of F (i.e.
not itself one of the lines), and a priori maximal. Thus F has a regular order 1 envelope
consisting of a single enveloped curve.
Let’s check that this agrees with the classical envelope of Definition 5.1. The function
H(x,w, t) describing the family F implicitly is

H(x,w, t) = w − L(t)x−M(t)

Then Ht = −Ltx−Mt. The locus of (x,w, t) where H = 0 and Ht = 0 projected to (x,w)
is the curve described by formula (5.3), with parameterization b(t) := t.
For order r ≥ 2, the second equation π∗η1 = 0 forces the integral curves in C(r) to satisfy
b′(t) = 0, and so they will belong to one of the fibers of F . There are no manifolds
enveloped to order 2 or higher.
This higher order triviality can be deduced instead from an abstract argument. In the
case dimB = 2 something quite different happens: Generically C(1) → K2

1R2 will be a
local diffeomorphism onto an open subset. If F is the family of all lines in the plane,
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C(1) → K2
1R2 is a global diffeomorphism and π∗I(1) integrals are identified with 1-jet lifts

of arbitrary curves in R2. As we saw in section 3.4, in this case F forms a regular order 1
osculation family. Thus the only integrals of π∗I(2) in C(2) ∼= C are the fibers of C → B,
the straight lines when mapped into A.
Any 1-parameter family of lines in the plane can be regarded as a subfamily of this
“universal” 2-parameter family of lines in the plane. Any integral in a prolongation of
this subfamily is also an integral of the prolongation of the universal family.

5.5 Circles in the plane

Again A = R2 with coordinates (x,w), X has coordinate x, and W has coordinate w. Let
B be the base of the family of circles in the plane, with coordinates x̄, w̄ for the center and
ρ for the radius. Again we must restrict to the case p = 1 to consider 1-submanifolds of
the members. U = {∗} and Z = X×U = X. The function f : B×X×U = B×X → W
has formula

w = f(x̄, w̄, ρ)(x) = w̄ +
√
ρ2 − (x− x̄)2

The prolongation formula B ×X → X ×W (r) becomes

w1 = (D1(f(x̄, w̄, ρ)))(x) = 1
2
(ρ2 − (x− x̄)2)−

1
2 (−2(x− x̄))

=
−(x− x̄)√
ρ2 − (x− x̄)2

w11 = D1(D1(f(x̄, w̄, ρ)))(x) = D1(−(x− x̄)/
√
ρ2 − (x− x̄)2)

=
−ρ2

(ρ2 − (x− x̄)2)
3
2

...

The contact system π∗I(r) is generated by the first r forms in the list:

η = dw − w1dx = dw̄ +
(ρdρ− (x− x̄)(dx− dx̄))

(ρ2 − (x− x̄)2)
1
2

− −(x− x̄)

(ρ2 − (x− x̄)2)
1
2

dx

= dw̄ +
(ρdρ− (x− x̄)(−dx̄))

(ρ2 − (x− x̄)2)
1
2

≡ (ρ2 − (x− x̄)2)
1
2dw̄ + (x− x̄)dx̄+ ρdρ

η1 = dw1 − w11dx = d

(
−(x− x̄)√
ρ2 − (x− x̄)2

)
− −ρ2

(ρ2 − (x− x̄)2)
3
2

dx

≡ ρdx̄+ (x− x̄)dρ

A curve γ of the form x̄(t), w̄(t), ρ(t) specifies a 1-parameter family of circles in the plane.
We look for solutions of η = 0 on the surface γ × X ⊂ C, where C = B × X is the
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total space of the family of all circles. That is, we substitute dx̄ 7→ x̄′(t), dw̄ 7→ w̄′(t),
dρ 7→ ρ′(t), and solve η = 0 for x(t) using the quadratic formula:

x = x̄+ ρ′
−ρx̄′ ± w̄′

√
−ρ′2 + x̄′2 + w̄′2

x̄′2 + w̄′2
(5.4)

If the discriminant ∆ := −ρ′2 + x̄′2 +w̄′2 is non-negative, this formula describes the unique
curve (or pair of curves) which is enveloped to order 1 by the family (to obtain its spatial
realization, apply the formula for w(t) in terms of x(t) determined by the choice of γ).
This curve is also enveloped to order 2 if and only if the x(t) is also given by η1 = 0:

x = x̄− ρx̄
′

ρ′
(5.5)

Given the condition 5.4, 5.5 is equivalent to ∆ = 0. This proves the following proposition:

Proposition 5.7. The order 1 envelope of a 1-parameter family of circles γ(t) := (x̄(t), w̄(t), ρ(t))
is also enveloped to order 2 if and only if γ(t) solves the differential equation

dρ2 − dx̄2 − dw̄2 = 0 (5.6)

Conversely, the family of 2nd order osculating circles to a generic curve (x(t), w(t)) solves
(5.6); that is, the center of the osculating circle travels as much distance as the radius of
the osculating circle increases (or decreases).

Figure 9: The center (x̄(t), w̄(t)) = (cos(t), sin(t)) of a circle moves along the fixed blue
circle. Its radius varies, by the formula ρ(t) = t. The circle family has a second order
envelope because (x̄(t), w̄(t), ρ(t)) satisfies dρ2 − dx̄2 − dw̄2 = 0.

Thus the formation of osculating circles can be regarded as a one-to-one transform from
generic plane curves to generic lightlike curves in 2 + 1-dimensional space-time.
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Remark 5.8. Proposition 5.7 can be given a dynamical interpretation. A second-order
envelopable circle family remains so after a uniform constant is added to all radii. Thus the
second-order envelope curve arises in the context of a disturbance propagating uniformly
outward at a constant speed from a source moving at the same speed as the speed of
propagation. The envelope in this case may be called a shockwave.

5.6 Parabolas in the plane

A = R2 with coordinates (x,w), X has coordinate x, and W has coordinate w. U = {∗}
and Z = X × U = X. Let B be the base of the family of parabolas in the plane, with
coordinates a, b, c.

w = f(a, b, c)(x) = ax2 + bx+ c

The prolongation and the contact system:

w1 = (D1f(a, b, c))(x) = 2ax+ b

w11 = (D11f(a, b, c))(x) = 2a

w111 = 0

...

η = dw − w1dx = x2da+ x db+ dc

η1 = dw1 − w11dx = 2x da+ db

η2 = dw11 − w111dx = 2da

η3 = 0

...

The first order envelope of a 1-parameter family γ(t) = (a(t), b(t), c(t)) of parabolas is
given by η = 0:

x =
−b′ ±

√
b′2 − 4a′c′

2a′

This envelope is also enveloped to order 2 if and only if in addition η1 = 0:

x =
−b′

2a′

That is, γ(t) has a second order envelope if and only if it satisfies the differential equation

db2 − 4da dc = 0

5.7 Degree n polynomial graphs in the plane

w = f(ai)(x) = anx
n + an−1x

n−1 + · · ·+ a0
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The prolongation and the contact system:

w1 = (D1f(ai))(x) =
∂f

∂x
(an, an−1, · · · , a0)(x)

w11 = (D11f(ai))(x) =
∂2f

∂x2
(an, an−1, · · · , a0)(x)

...

w(n) = n!an

η = dw − w1dx = f(dan, dan−1, · · · , da0)(x)

η1 = dw1 − w11dx =
∂f

∂x
(dan, dan−1, · · · , da0)(x)

η2 = dw11 − w111dx =
∂2f

∂x2
(dan, dan−1, · · · , da0)(x)

...

ηn = n!dan

ηn+1 = 0

...

We conclude that γ(t) := (an(t), · · · , a0(t)) has an r-order envelope if and only if the
polynomial

P (x(t)) := a′n(t)xn + · · ·+ a′0(t)

has a root x̃ := x(t) of multiplicity r, in which case (x̃, f(an, · · · , a0)(x̃)) is this envelope.

5.8 Lines in space

We will calculate the envelopes of families of lines in space.

5.8.1 Direct calculation

A = R3 with coordinates (x,w, v). X has coordinate x and W has coordinates (w1, w2).
U = {∗} and Z = X × U = X. Let B, with coordinate b, be the base of a 1-parameter
family of lines in R3, specified locally by

w1 = f 1(b)(x) = L1(b)x+M1(b)

w2 = f 2(b)(x) = L2(b)x+M2(b)
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Thus the prolongation and contact system have the same formulas as in section 5.4,
duplicated across the pair of coordinates w1 and w2 (rather than just w):

w1
1 = L1(b) w2

1 = L2(b)

w1
11 = 0 w2

11 = 0

π∗η1 = (L1
bx+M1

b )db π∗η2 = (L2
bx+M2

b )db

π∗η1
1 = L1

bdb π∗η2
1 = L2

bdb

π∗η1
2 = 0 π∗η2

2 = 0

...
...

The order 1 envelope equations π∗η1 = 0 and π∗η2 = 0 are simultaneously solvable for
some x if and only if

det

(
L1
b M1

b

L2
b M2

b

)
= 0 (5.7)

In this case,

x(b) = −M1
b /L

1
b = −M2

b /L
2
b (5.8)

(assuming that L1
b 6= 0 and L2

b 6= 0).

Proposition 5.9. If the order 1 envelope curve of a 1-parameter family F of spatial lines
exists, then its tangent lines comprise the family F . That is, for each b ∈ B,

[1, L1, L2] = [x′(b), (w1)′(b), (w2)′(b)] ∈ P2

Proof. The computational proof is immediate

(w1)′(b) =
∂

∂b
(L1x(b) +M1) = L1

bx(b) + L1x′(b) +M1
b =

(
L1
b

−M1
b

L1
b

+M1
b

)
+ L1x′(b)

= L1x′(b)

(w1)′(b)/x′(b) = L1

(and similarly for the coordinate w2).
There is also a simple proof from the abstract definition. The order 1 envelope curve, if
it exists, is tangent to each member of F that it meets.

5.8.2 Projective treatment

The first-order-envelopable 1-parameter families of spatial lines were studied by Monge
[Mon95]. The ruled surfaces they trace out are known as developable surfaces, because
they are precisely the intrinsically flat surfaces, those with zero Gauss curvature, i.e. those
that can be developed onto the flat Euclidean plane.
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Yet the envelope of a line family depends only on the differential topology of lines in
space, and for such constructions the projective space is a more natural setting than the
Euclidean space. Here is one dividend of this point of view: The fact that a flat surface
is the same as an envelopable line family implies that a flat surface remains flat even
after a projective transformation of the ambient space. In fact, we shall see in section
6.3 that this is a special case of a more general fact: The conformal class of the second
fundamental form of a surface in space is projectively invariant.
The envelopability condition (5.7) has a well-known projective-geometric and algebraic-
geometric interpretation. The space of lines in the real projective space P3 = P(R4) is
naturally identified with the Grassmannian Gr(2, 4). Gr(2, 4) carries a natural embedding
into P(Λ2R4) ∼= P5, known as the Plücker embedding, onto the quadric hypersurface Q
defined by the quadratic form equal to the exterior square Λ2R4 → Λ4R4 ∼= R. This
quadratic form, of signature (3, 3), descends to a conformal metric [g] on Q of signature
(2, 2). The g-null directions in tangent spaces of Q are precisely the tangent directions of
the family of lines in P5 which lie on Q. This family consists of g-geodesics, so they are
known as null geodesics. Each null geodesic consists of a pencil of lines lying in a fixed
plane and passing through a fixed point.
The local coordinates for Q introduced in section 5.8.1 can be regarded as tangent-plane
coordinates with respect to a stereographic projection Q 99K Tl′Q of Q, from a point l ∈ Q
onto the tangent plane at a point l′ ∈ Q, where l is the line at infinity lying on the (w1, w2)
plane, and l′ is given by L1 = L2 = M1 = M2 = 0. These are conformally flat coordinates
for g, where the translation-invariant metric on the coordinate space is the expression
displayed in (5.7). That is, the envelopable spatial line families are the null curves in Q.
The reader is referred to [WW90] for more on null curves and the complex Grassmannian
Gr(2, 4), where they are the starting point for Roger Penrose’s twistor theory.
The following projectively-natural generalization of the formula (5.8) for the envelope, or
edge of regression, is new.

Proposition 5.10. Suppose that p(t) ∈ Λ2R4 describes a null curve, or envelopable line
family in P3 = P(R4). That is,

p(t) ∧ p(t) = 0 p(t) ∧ p′(t) = 0 p′(t) ∧ p′(t) = 0

Assume that the envelope [X(t)] ∈ P3 is non-degenerate in the sense that it is smooth
of class C2, non-constant, and does not make second-order contact with any line. Let
[Y (t)] ∈ P3∗ = P(R4∗) be its osculating plane. Then

Ψ(p(t)∧p′(t)) ≡ X(t)⊗ Y (t)

where Ψ : Λ2(Λ2R4) → R4 ⊗ R4∗ is the exceptional Lie algebra isomorphism Λ2(Λ2R4) ∼=
so(3, 3) → sl(4,R) composed with the inclusion sl(4,R) ⊂ gl(4,R) = R4 ⊗ R4∗, and ∧
denotes the (outer) exterior product.

Proof. First, let’s see how Ψ can be given a more combinatorial alternative definition.
Consult Appendix B for the definition and properties of the GL(V )-module maps

ψpqk(p+q−k) : ΛpV ⊗ ΛqV → ΛkV ⊗ Λp+q−kV
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which calculate intersections and spans of linear subspaces of a vector space V with respect
to Plücker coordinates.
The map ψ22

13 restricts to Λ2(Λ2V ), and so it specifies a GL(V )-module map Λ2(Λ2V )→
Λ1V ⊗ Λ3V . In the case V = R4, by Schur’s lemma the restricted map is proportional to
Ψ.
Next, we observe that the conclusion is indeed independent of the representative p(t) of
[p(t)] ∈ P(Λ2R4):

p̃(t) := f(t)p(t)

p̃′(t) = f ′(t)p(t) + f(t)p′(t)

p̃(t)∧p̃′(t) = f(t)p(t)∧(f ′(t)p(t) + f(t)p′(t)) ≡ p(t)∧p′(t)

Thus, in light of Proposition 5.9 identifying the tangent lines of the envelope as the original
line family, we can assume that p(t) = X(t) ∧X ′(t), where [X(t)] ∈ P3 is the envelope.

Ψ(p(t)∧p′(t)) ≡ φ22
13(p(t)∧p′(t))

= φ22
13((X(t) ∧X ′(t))∧(X(t) ∧X ′′(t))

≡ X(t)⊗X(t) ∧X ′(t) ∧X ′′(t)
≡ X(t)⊗ Y (t)

5.8.3 Application to visual geometry

The two-parameter families of lines in R3 or P3 are known classically as line congruences.
If S ⊂ Q is a smooth line congruence such that the signature of g|S is (1, 1), then S
locally possesses two transverse null foliations n1, n2, defined by the quadratic equation
g(ni, ni) = 0. The formation of envelopes of the 1-parameter line families defined by the
leaves defines locally two maps f1, f2 : S → P3, known as the focal surfaces of S [Hla53].
The formula of Proposition 5.10 can be composed with the usual quadratic formula for
the ni to yield a closed formula for the focal surfaces fi in terms of a parameterization of
S.
This has the following application to the “structure-from-motion” problem. Consider a
smooth surface Ŝ ⊂ R3 (say convex for simplicity). Suppose that “camera images” of Ŝ are
captured by an observer travelling along a known trajectory nearby. Rather than defining
camera images precisely, let us just assume that the observer is capable of measuring, at
each time t, the set of lines passing through the observation point p(t) which are tangent

lines to Ŝ (in the camera metaphor, these are the visual lines in the directions of the

image points which are boundary points of the camera image of Ŝ). Generically these
measurements comprise a smooth surface S ⊂ Q. One focal surface of S will be a portion
of Ŝ.

Remark 5.11. In this case the other focal surface degenerates to a curve, namely the
trajectory of the observer. The line congruences S for which one focal surface degenerates
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to a curve can be characterized by a certain differential equation on the n1, n2 ([Hla53]
page 151). This condition is also used by [BLN15], where it is called the half-geodesic
condition for the leaves of one null foliation, in the context of a different conformal pseudo-
Riemannian 4-manifold of signature (2, 2), more complicated than the quadric Q (in
particular, their 4-manifold is not conformally flat).

5.9 Planes in space

We will calculate the envelopes of families of planes in space.
This is the simplest example for which one needs proper p-dimensional submanifolds of
the members of the family in calculating envelopes, because it is the first example for
which the members have dimension greater than 1.
A = R3 = X × U ×W , with coordinates x, u, w. A plane family with base B is specified
by

w = fb(x, u) = L(b)x+M(b)u+N(b) b ∈ B

The prolongation formula of Proposition 5.6 is

x = x u = u · · · uJ = uJ

w = L(b)x+M(b)u+N(b)

w1 = L(b) +M(b)u1

w11 = M(b)u11

...

For simplicity assume that B is 1-dimensional with coordinate b. The contact system is
generated by

π∗θ = π∗(du− u1dx) = du− u1dx

π∗θ1 = π∗(du1 − u11dx) = du1 − u11dx

...

π∗η = π∗(dw − w1dx) ≡ (L′(b)x+M ′(b)u+N ′(b))db

π∗η1 = π∗(dw1 − w11dx) ≡ (L′(b) +M ′(b)u1)db

π∗η11 = π∗(dw11 − w111dx) ≡M ′(b)u11db

...

For order 1, we search for curves in {(x, u, u1, b)} satisfying π∗θ = 0, π∗η. The first
equation π∗θ = 0 asserts that the curve has the form {(x, g(x), g′(x), h(x))} when param-
eterized by x. The second equation asserts that in this case (x, g(x)) lies on a certain
line:

L′(h(x))x+M ′(h(x))g(x) +N ′(h(x)) = 0
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There are evidently infinitely many such curves; h(x) can be specified arbitrarily. Thus
a general 1-parameter family of planes in space does not have a regular order 1 envelope
by 1-submanifolds.
Now impose also the order 2 equations π∗θ1 = 0, π∗η1 = 0, on a curve in {(x, u, u1, u11, b)}.
An integral curve has the form {(x, g(x), g′(x), g′′(x), h(x))}, with

L′(h(x))x+M ′(h(x))g(x) +N ′(h(x)) = 0

g′(x) = −L′(h(x))/M ′(h(x))

The second equation g′(x) = −L′(h(x))/M ′(h(x)) asserts that the curve (x, g(x)) is tan-
gent to the line L′(h(x))x + M ′(h(x))g(x) + N ′(h(x)) = 0, or in other words that the
curve (x, g(x)), when regarded as parameterized by b = h(x), is precisely the (order 1)
envelope of the family of lines l(b) := {(x, u)|L′(b)x+M ′(b)u+N ′(b) = 0}.
One can verify by direct calculation that in this case, the corresponding spatial line family
satisfies equation (5.7).
So a general 1-parameter plane family F in 3-space has a regular order 2 envelope by
1-submanifolds consisting of a single curve γ. It turns out that F also has a regular order
1 envelope by 2-submanifolds (this is easier to calculate than the order 2 envelope), which
is a family of lines whose order 1 envelope is γ. That is, the second order envelope γ in
this case is a two-fold iterated envelope of order 1.

6 Extrinsic geometry

The results of section 3 are applied to the question of characterizing submanifolds in
certain geometries.

6.1 Centro-affine submanifold geometry

Let M be an m-dimensional smooth manifold. A smooth immersion M → Rn determines
a vector subspace V ⊂ C∞(M,R) consisting of the real-valued functions on M which are
the restrictions of linear functions on Rn. In the typical case that dimV = n, the map
M → Rn can be recovered from V , up to the action of some element of GL(n,R), by
choosing any basis for V .
The graphs of the maps labelled by elements of V are m-submanifolds of M × R, each
one naturally identified with M by the projection. Thus we have a smooth submanifold
family F = (V ←M × V →M ×R). The prolongations of F possess a convenient linear
structure not shared by arbitrary families, summarized in the following diagram of vector
bundles over M :

M × V

�� && ++
M × R J1(M,R)oo J2(M,R)oo · · ·oo
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(The entries of this diagram are open subsets of the manifolds Kr
mA appearing in section

3.2, with A = M × R.)

Definition 6.1.

1. M → Rn is called generic or jet-generic if the associated graph family F is locally-
generic.

2. M → Rn is called order r if M×V → Jr(M,R) is an isomorphism of vector bundles
over M .

Remark 6.2. The genericity condition 6.1(1) is more easily checked than the genericity
condition for an arbitrary smooth family, because it reduces to a rank condition for vector
bundle maps.

Proposition 6.3.

1. M → Rn has order r if and only if it is generic and n =

(
m+ r
m

)
.

2. Suppose n,m, and r are fixed and satisfy n =

(
m+ r
m

)
. Each generic smooth map

M → Rn, up to GL(n,R), corresponds uniquely to:

(a) An (r + 1)-graph with structure section h : Jr(M,R)→ Jr+1(M,R), fiberwise-
linear over M , such that h∗(I(r+1)) is involutive.

(b) A splitting of the exact sequence 0→ Symr+1 T ∗M → Jr+1(M,R)→ Jr(M,R)→
0.

(c) A retraction Jr+1(M,R)→ Symr+1 T ∗M .

(d) A flat linear connection ∇ on Jr(M,R)→M whose horizontal tangent spaces
belong to the Cartan distribution.

Proof. (1) follows from Proposition 3.7. (2a) follows from Proposition 3.11, and (2b) and
(2c) are equivalent to (2a).
(2d) requires some explanation. Let (x1, ..., xm) be local coordinates on M , and let

(x1, ..., xm, u1, ..., um, u11, u12, ...)

be the induced local coordinates on Jr(M,R). That is, the coordinates such that for any
smooth function f on M , ∂f

∂xJ
(x) = uJ((jrf)(x)) for each multi-index J with |J | ≤ r and

each point x = (x1, ..., xm).
The contact system h∗(I(r+1)) is generated by

θ : = du− uidxi

θ1 : = du1 − u1idx
i

...

θJ : = duJ − uJidxi (|J | ≤ r)

θK : = duK − (uKi ◦ h)dxi (|K| = r + 1)

(6.1)
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(With the summation convention over i.) The formula

∇ = d−
∑
|J |≤r

uJidx
i ∂

∂uJ
−
∑
|K|=r

(uKi ◦ h)dxi
∂

∂uK

defines a linear connection on Jr(M,R) whose horizontal tangent spaces are cut out by
the equations θ = 0, θJ = 0, θK = 0. Since h∗(I(r+1)) is involutive, ∇ is flat.
Conversely if ∇ is a flat linear connection on Jr(M,R) whose horizontal tangent spaces
belong to the Cartan distribution, then the section Jr(M,R) → J1(Jr(M,R),M) defin-
ing ∇ descends to a section h : Jr(M,R) → Jr+1(M,R), with respect to the inclusion
Jr(M,R) ⊂ J1(Jr(M,R),M), such that h∗(I(r+1)) is involutive.

Example 6.4. (m = 1). In this case we must have n = 1 + r.
The centro-affine extrinsic geometry of a generic smooth curve M ⊂ R2 is described
precisely by a certain connection (necessarily flat since dimM = m = 1) on the rank 2
vector bundle J1(M,R).
The centro-affine extrinsic geometry of a generic smooth curve M ⊂ R3 is described
precisely by a certain connection (necessarily flat since dimM = m = 1) on the rank 3
vector bundle J2(M,R), etc.

Example 6.5. (m = 2). In this case we must have n = (r2 + 3r + 2)/2.
The centro-affine extrinsic geometry of a generic smooth surface M ⊂ R3 is described
precisely by a certain flat connection on the rank 3 vector bundle J1(M,R).
The centro-affine extrinsic geometry of a generic smooth surface M ⊂ R6 is described
precisely by a certain flat connection on the rank 6 vector bundle J2(M,R), etc.

Remark 6.6. So far we have described the extrinsic geometry in the centro-affine geom-
etry only for submanifolds of certain dimensions. For the other dimensions, one can use
a similar but more complicated construction. See section 6.3 for the details in the case of
classical surfaces.

6.2 Projective submanifold geometry

Recall that Jr(M,R) is a bundle of commutative associative algebras over M .

Corollary 6.7. Let i1 : M → Rn and i2 : M → Rn be two jet-generic immersions of
order r, avoiding 0 ∈ Rn, such that i2 = fi1 for some non-vanishing smooth function f ∈
C∞(M,R). Let ∇1 and ∇2 be the flat linear connections on Jr(M,R) from Proposition
6.3(2d) encoding the centro-affine geometry of i1 and i2.
∇1 and ∇2 are gauge-equivalent, by the gauge transformation mjrf : Jr(M,R)→ Jr(M,R)
equal to pointwise multiplication by the values of the section jrf .
Conversely, if ∇1 and ∇2 are arbitrary flat linear connections on Jr(M,R), whose hor-
izontal tangent spaces belong to the Cartan distribution, and which are gauge equiva-
lent by a gauge transformation of the form mjrf , then the resulting two immersions
M → Rn 99K Pn−1 (where defined) differ by a projective transformation of Pn−1.
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Corollary 6.7 follows from Proposition 6.3. It asserts that for certain dimensions, immer-
sions of a smooth manifold M into a projective space are described exactly by equiva-
lence classes of certain flat connections on Jr(M,R) with respect to a restricted gauge-
equivalence relation.

6.3 Surfaces in P3

The case of surfaces in P3, or their lifts to maps M → R4, falls outside the scope of section

6.2, because there is no order r such that n =

(
m+ r
m

)
, i.e. such that 4 = (2+r)(1+r)/2.

Nevertheless we will adapt the techniques to this situation, establishing a relation to the
classical Wilczynski equations for surfaces in projective 3-space near hyperbolic points,
and extending these equations to the elliptic or locally-convex case.
For a jet-generic surface immersion M → R4, consider the 4-dimensional vector space
V ⊂ C∞(M,R) and smooth family of surfaces F = (V ←M ×V →M ×R) from section
6.1. The image of M × V as the second prolongation of F is a rank 4 vector subbundle
E ⊂ J2(M,R). Forming the third prolongation of F defines a map h : E → J3(M,R),
a section of J3(M,R) → J2(M,R) defined only over E. By construction E is foliated
by holonomic sections whose tangent distribution defines the map h with respect to the
inclusion J3(M,R) ⊂ J1(J2(M,R),M). Thus h∗I(3) is involutive, as in Proposition 3.11.
The resulting flat linear connection ∇ on E determines the immersion M → R4 up to an
element of GL(4,R).

6.3.1 The conformal second fundamental form

This section is a digression concerning the second fundamental form of a classical surface.
This form will be convenient for presenting the formulas for ∇ on E.
First, let’s see how the existence of a canonical conformal metric on a smooth projective
surface M → P3 can be deduced from a synthetic argument.
The conclusion of Proposition 6.7 suggests that if the immersion M → R4 is modified
by the scalar action of a smooth function f ∈ C∞(M,R), ∇ will be replaced with a
gauge-equivalent connection. Unfortunately this is not quite true, because the subbundle
E ⊂ J2(M,R) itself is not necessarily stable under the gauge transformations of the form
mj2f .
There is, however, one special one-dimensional subbbundle of E which is stable under
all gauge transformations of J2(M,R) of the form mj2f , constructed as follows. Recall
that E has rank 4, J2(M,R) has rank 6, and there is a canonical inclusion Sym2 T ∗M ⊂
J2(M,R). The action of mj2f on Sym2 T ∗M is scalar multiplication on each fiber by a
value of f , so each 1-dimensional subspace of Sym2 T ∗M is preserved. Since the rank of
Sym2 T ∗M is 3, the rank of L := E ∩ Sym2 T ∗M is equal to 1 in the general case. Thus
an immersion M → P3 determines a well-defined line subbundle L ⊂ Sym2 T ∗M via the
second prolongation bundle E associated with any jet-generic lift of M to R4. L will turn
out to be the conformal class of the second fundamental form [II].

54



Now we present several constructions of [II]. Suppose that x(u, v) ∈ R3 is a local param-
eterization of a smooth immersed surface M → R3 (with R3 regarded as an affine chart
for P3).

Definition 6.8. ([dC76] page 154). The second fundamental form II of M is the quadratic
differential form on M defined on the coordinate space {(u, v)} by

II := 〈xuudu2 + 2xuvdu dv + xvvdv
2, xu × xv〉/|xu × xv|

where 〈, 〉 is the Euclidean inner product and × is the vector cross product.

It is not easy to prove directly from this definition that the conformal class of II is invariant
by projective transformations of the ambient space R3 ⊂ P3. There is, however, a simple
and classical proof:

Definition 6.9. Two tangent directions a and b to a surface M ⊂ R3 at a point p ∈ M
are called conjugate if one of the two equivalent conditions holds:

1. The characteristic at time t = 0 of the envelope of the tangent planes to M along a
smooth curve γ(t) with γ′(0) = a is the line through b.

2. The characteristic at time t = 0 of the envelope of the tangent planes to M along a
smooth curve γ(t) with γ′(0) = b is the line through a.

Proposition 6.10. Tangent directions a and b to M are conjugate if and only if II(a, b) =
0, where II is the second fundamental quadratic form of M regarded as a symmetric bilinear
form (on each tangent space TM).

Proof. [Eis09] page 127.

Corollary 6.11. The conformal class [II] ⊂ Sym2 T ∗M for an immersed surface M → R3

is invariant by projective transformations of the ambient space R3 ⊂ P3.

Proof. Definition 6.9 is manifestly projectively-invariant, so the result follows from Propo-
sition 6.10 and the algebraic fact that a quadratic form over R is determined up to a
non-zero scalar by its orthogonality relation on subspaces.

Remark 6.12. The orthogonality involution I of P(TM), equivalent to the class [II] in
the non-degenerate case, has two more projectively-natural definitions:

1. I is the unique involution of P(TM) which is a bundle automorphism over M and
exchanges a certain pair of contact structures α and β on the 3-manifold P(TM).
α and β are defined as the hyperplane fields consisting of the null directions with
respect to the immersion P(TM) → Gr(2, 4). These null directions form two hy-
perplanes because the projectivized tangent plane at each point l ∈ P(TM) is a
tangent plane of the ruled null quadric in P(Tl Gr(2, 4)); see section 5.8.2. α is also
the intrinsic contact structure of P(TM) ∼= P(T ∗M), defined independently of the
immersion M → R3.

2. I is the difference between projective duality applied to M ’s tangent lines in R3 ⊂ P3

(∗22 : Λ2R4 → Λ2R4) and the differential of the projective duality isomorphism
M →M∗ ⊂ P3∗ (∗13 : Λ1R4 → Λ3R4):

I : P(TM)→ Gr(2, 4)
∗22→ Gr(2, 4) 99K P(T (M∗))

d(∗13)→ P(TM)
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6.3.2 Wilczynski equations

The explicit formula for ∇ on E in the hyperbolic case, when II has indefinite signature
(1, 1), appears in [TO04] (pages 111-112). We repeat the derivation here, because it is
similar to the derivation in the definite case.
Let M → P3 be a smooth non-degenerate surface of hyperbolic type. Assume M consists
of a single coordinate chart, and choose the coordinates (u, v) to be asymptotic, meaning
that the coordinate directions are the null directions of II. That is, II ≡ du dv. This is
always possible, because two smooth transverse foliations can always be simultaneously
linearized.
Let X(u, v) ∈ R4 be any smooth lift of M in P3 to the linear space R4. Assume M lies in
the affine subspace of P3 defined by non-vanishing of the 4th coordinate. Let x(u, v) ∈ R3

be the affine lift, so X(u, v) = g · (x(u, v), 1), where g is the last coordinate function of X.
According to Definition 6.8, the asymptotic condition implies that at each point of M ,

〈xuu, xu × xv〉 = 0 〈xvv, xu × xv〉 = 0

Then xuu ∈ span(xu, xv) and xvv ∈ span(xu, xv). Therefore Xuu and Xvv are in the span
of X,Xu, Xv. There exist functions a, b, c and p, q, r of (u, v) such that

Xuu = aX + bXu + cXv

Xvv = pX + qXu + rXv

(6.2)

Regarding this as an equation between smooth functions of (u, v), differentiation yields:

d(X) = Xudu+Xvdv

d(Xu) = Xuudu+Xuvdv

= (aX + bXu + cXv)du+Xuvdv

d(Xv) = Xvudu+Xvvdv

= Xuvdu+ (pX + qXu + rXv)dv

d(Xuv) = ((Xuu)v)du+ (Xvv)udv

= (aX + bXu + cXv)vdu+ (pX + qXu + rXv)udv

= Adu+Bdv

where A := (aX + bXu + cXv)v and B := (pX + qXu + rXv)u. By applying equations
6.2 again, after differentiation, one can find functions Ai(u, v) and Bi(u, v), i = 1, 2, 3, 4,
expressed in terms of the a, b, c and p, q, r and their derivatives, such that

A = A1X + A2Xu + A3Xv + A4Xuv

B = B1X +B2Xu +B3Xv +B4Xuv

Consider the trivialization of E given by the restrictions of the 4 coordinates functions
(w,wu, wv, wuv) of J2(M,R) to E (formula 6.1, with u replaced with w to avoid notational
conflict.) With respect to this trivialization, the 2-jets of the coordinate functions of X
comprise horizontal sections for the linear connection
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∇ = d−


0 1 0 0
a b c 0
0 0 0 1
A1 A2 A3 A4

 du−


0 0 1 0
0 0 0 1
p q r 0
B1 B2 B3 B4

 dv

The classical Wilczynski equations [Wil07] for the coefficient functions a, b, c, p, q, r assert
flatness of ∇.
Now we will repeat this derivation for surfaces M ⊂ P3 of elliptic type. This time there are
no asymptotic directions, so we select instead coordinates (u, v) such that II ≡ du2 + dv2.
Such coordinates, called isothermal, always exist.
According to Definition 6.8, the isothermal condition implies that the affine parameteri-
zation x(u, v) satisfies

〈xuv, xu × xv〉 = 0 〈xuu − xvv, xu × xv〉 = 0

Thus there are functions a, b, c and p, q, r of (u, v) such that

Xuv = aX + bXu + cXv

Xuu−vv = pX + qXu + cXv

This time we use the coordinates (w,wu, wv, wuu+vv) to trivialize E. The identities

u2 =
(u2 + v2)

2
+

(u2 − v2)

2

v2 =
(u2 + v2)

2
− (u2 − v2)

2

are used to calculate d(Xu) and d(Xv) as a linear combination of X,Xu, Xv, Xuu+vv. The
identities

(u2 + v2)u = (u2 − v2)u+ 2(uv)v

(u2 + v2)v = −(u2 − v2)v + 2(uv)u

can be used to calculate d(Xuu+vv) as a linear combination:

d(Xuu+vv) =Adu+Bdv

= (A1X + A2Xu + A3Xv + A4Xuu+vv)du

+ (B1X +B2Xu +B3Xv +B4Xuu+vv)dv

The 2-jets of the coordinate functions of X are horizontal sections of the linear connection

∇ = d−


0 1 0 0
1
2
p 1

2
q 1

2
r 1

2

a b c 0
A1 A2 A3 A4

 du−


0 0 1 0
a b c 0
−1

2
p −1

2
q −1

2
r 1

2

B1 B2 B3 B4

 dv

The coefficient functions a, b, c and p, q, r evidently satisfy a system of differential equa-
tions equivalent to flatness of ∇.
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A Jet notation and formalisms

This appendix presents an extensive yet concise introduction to the notation and for-
malism of natural bundles and submanifold jets, as appearing in [Olv86], [BCG+91], and
[KMS93].

A.1 Background

The theory of jets can be described loosely as the coordinate-free theory of higher deriva-
tives of functions between smooth manifolds.
One may take “functions” to mean analysts’ functions: scalar functions, or more generally
fields on a geometric space which are sections of a fiber bundle. Then jets become jets
of sections of a fiber bundle. The foundations of this theory are relatively well-known,
especially in the linear context where the fiber bundle is a vector bundle.
Alternatively one may take “functions” to mean geometers’ functions: mappings with
values in a geometric space, suppressing the structure of the domain of the map; “shapes”.
Then jets become jets of submanifolds. The foundations of this theory are somewhat less
well understood.
Surprisingly, the local theories of these two alternatives are essentially the same, thanks
to an observation of Olver [Olv86], the authors of [BCG+91], and perhaps several others.
The r-jets of smooth maps X → U can be regarded either as r-jets of sections of a
fiber bundle with local trivialization X × U , or as r-jets of (p = dimX)-dimensional
submanifolds of the manifold X × U . In both cases, one obtains an open subset of the
respective jet space. Note that although the implicit function theorem guarantees that
most submanifolds of X × U of dimension equal to that of X are locally equal to graphs
of smooth maps X → U , it is certainly not obvious that the r-jet of a p-submanifold P
should depend only on the r-jet of the map whose graph is P . Yet this is the case.
With this fact in hindsight, one can retroactively develop the theory of jets of submanifolds
on the foundation of jets of maps using local product decompositions of the ambient
space. A very explicit calculus along these lines was developed by Olver in Applications
of Lie groups to differential equations [Olv86] (Although the interpretation as jets of
submanifolds, rather than jets of functions, is not emphasized until [Olv86] Ch. 3.5).
A different, global approach to jets of submanifolds is developed in [BCG+91]. One
considers a certain subspace of the r-fold iterated tangent p-plane Grassmannian M 7→
Gr(p, TM) 7→ Gr(p, T Gr(p, TM)) · · · . Equivalence with the notion of [Olv86] is evinced
by the local descriptions, which are the same. The contact structure, describing which
“fields” of jets that fit together as the jets of a single submanifold, is apparent in this
formulation and emphasized from the beginning.
On the other hand, an alternative global approach is evident: In an appropriate category
of r-jets of maps, an appropriate quotient Hom(P,M)/Aut(P ) should describe r-jets
of submanifolds in M of dimension p = dimP . Moreover this presents the spaces as
homogeneous spaces for Aut(M). A comprehensive jet formalism sufficient for carrying
out this program was developed by Kolar, Michor, and Slovak in Natural operations in
differential geometry [KMS93].
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We shall review the definitions and basic facts of [Olv86], [BCG+91], and [KMS93] which
are pertinent to this document, reproducing rather faithfully the notation appearing there.
In a very few cases additional notation is inserted without comment. The reader is referred
to the original sources for proofs and other details.

A.2 Conventions

1. Simple definitions appear on a single line, in the format notation-whitespace-definition
or notation:=formula.

2. Simple facts also appear on a single line, as an equation or a sentence.

3. More complex definitions or properties appear in the standard enumerated and
declarative format.

4. Unless it clearly denotes equality, the equals symbol = should be parsed as a natural
isomorphism of functors.

5. The symbol ∼= indicates a not-necessarily-natural isomorphism, or an isomomor-
phism which is natural only in a category broader than the category of current
concern (e.g. when two algebras are naturally isomorphic only as vector spaces.).

6. Simple variables take values in the real numbers R. Manifolds and maps are smooth
of class C∞, unless indicated otherwise.

A.3 Lifts of vector fields to jet spaces

From [Olv86] Chapter II.
X the independent variables space
x = (x1, ..., xi, ..., xp)
U the dependent variables space
u = (u1, ..., uα, ..., uq)
f a smooth function X → U
graph f ⊂ X × U defined by uα = fα(x1, ..., xp)
J finite multi-index for the indices of the xi

J = 0 the empty multi-index
uαJ formal partial derivative of uα with respect to the independent variables xJ

U (n) the space with coordinates uαJ , |J | ≤ n
u(n) := (uαJ)
X × U (n) the space of n-jets of maps X → U
Γ

(n)
f ⊂ X × U (n) the n-graph of f , satisfying uαJ = ∂fα

∂xJ
.

f (n) the evident section X → Γ
(n)
f

∆ : X × U (n) → Rla smooth function; “differential function”
S∆ ⊂ X × U (n) the zero set of ∆, an nth order system of partial differential equations
M ⊂ X × U an open region of interest
M (n) ⊂ X × U (n) the union of the n-graphs of functions whose graphs lie in M
M (n) is an open submanifold of X × U (n).
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ξi = ξi(x, u(n))
ϕJα = ϕJα(x, u(n))∑

i ξ
i ∂
∂xi

+
∑

α

∑
J ϕ

J
α

∂
∂uαJ

a general vector field on X × U (n)

v =
∑

i ξ
i ∂
∂xi

+
∑

α ϕ
0
α

∂
∂uα0

a vector field on X×U , with ξi = ξi(x, u) and ϕ0
α = ϕ0

α(x, u)

exp(tv) is a 1-parameter local group of diffeomorphisms of X × U .
ψ(t) the natural local group of diffeomorphisms of X×U (n) covering exp(tv)
As a function each ψ(t) exists because a graph in X×U is transformed into a graph under
any sufficiently small diffeomorphism of X × U .
pr(n) v := ψ′(0) the prolongation of v to a vector field on X × U (n)

The coordinates are used without special mention in order to lift vector fields by the
non-canonical sections of the projections X × U (n) → X × U (m). For example ∂

∂xi
may

mean a vector field on X, on X × U , on X × U (n), etc.
Dj(∆(x, u)) := ( ∂

∂xj
+
∑

α u
α
j

∂
∂uα

)∆ the total derivative of ∆(x, u); function of (x, u(1))

Dj(∆(x, u(n))) := ( ∂
∂xj

+
∑

α,J u
α
Jj

∂
∂uαJ

)∆ the total derivative of ∆(x, u(n)); of (x, u(n+1))

Proposition A.1. Dj(∆) ◦ f (n+1) = ∂
∂xj

(∆ ◦ f (n))

The Dj commute.
DJ :=

∏
j∈J Dj

Proposition A.2. (Prolongation formula [Olv86] p113)

pr(n) v = v +
∑
α,J

ϕJα(x, u(n))
∂

∂uαJ

ϕJα = DJ(ϕα −
∑
i

ξiuαi ) +
∑
i

ξiuαJi

Caution: Although the right hand side is a function of (x, u(n)), its terms depend on
(x, u(n+1)).

Proposition A.3. (Recursion formula [Olv86] p115)

ϕJkα = Dkϕ
J
α −

∑
i

(Dkξ
i)uαJi

A.4 Prolongation of a differential system

From [BCG+91], Chapter VI section 1.
M smooth manifold of dimension m
N smooth manifold of dimension n
Gn(TM) Grassmannian of tangent n-planes in M
π : Gn(TM)→M
f immersed submanifold N →M
f1 1-lift of f , immersed submanifold N → Gn(TM)
C distribution in TGn(TM) spanned by the tangent planes of the f1, over all f
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C has corank n−m.
I linear dual of C, in T ∗Gn(TM)
Ic differential ideal generated by I, in Ω∗Gn(TM)
Ic is called the canonical Pfaffian system or the contact system.

Proposition A.4. The assignment f 7→ f1 is a bijection between the immersed subman-
ifolds of M and the n-dimensional integral manifolds of the differential system Ic whose
projections to M are immersions.

I a Pfaffian differential ideal in Ω∗M , generated differentially by its 1-forms
Ω an “independence condition”; locally the span of a decomposable n-form on M
Vn(I) set of n-dimensional integral elements of I (i.e. π ∈ Gn(TM) such that I|π = 0)
Assume that Vn(I) is smooth, or else replace Vn(I) (at your discretion, depending on I)
with some smooth stratum.
Vn(I,Ω) open submanifold of Vn(I) defined by Ω 6= 0
p : Vn(I,Ω)→M projection
(M (1), I(1),Ω(1)) := (Vn(I,Ω), Ic|Vn(I,Ω), p

∗Ω)
(M (1), I(1),Ω(1)) is called the first prolongation of (M, I,Ω),
(M (r), I(r),Ω(r)) := ((M (r−1))(1), (I(r−1))(1), (Ω(r−1))(1))
(Note the slight conflict with the notation of [Olv86], whose M (r) means a certain open
subset of this M (r).)

A.5 Natural bundles

From [KMS93] Chapter IV.

A.5.1 Velocities, covelocities, and contact elements

G real Lie group
P principal G-bundle
S smooth manifold with smooth G action
P [S] associated bundle
Mf category of smooth manifolds and smooth maps of class C∞

Mm category of smooth manifolds of dimension m and local diffeomorphisms
FM category of fibered manifolds and fiber-preserving maps
M smooth manifold of dimension m
γ, δ paths R→M
Ir+1(R) the ideal in the algebra of smooth functions h : R → R, satisfying h(0) = 0 and
h(r′)(0) = 0 for all r′ > r.

Definition A.5. γ and δ are said to make rth-order contact, written γ ∼r δ, if the
difference of the algebra homomorphisms C∞(M) → C∞(R) induced by γ and δ is zero
modulo Ir+1(R).
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M,N smooth manifolds of dimensions m,n
f, g smooth maps defined on some open subset of M and with values in N
x ∈M

Definition A.6. f and g are said to have the same r-jet at x, written jrxf = jrxg, if
for any smooth paths γ in M making rth-order contact, its f and g images in M make
rth-order contact.

jrxf = jrxg if and only if, with respect to local coordinates on M near x and on N near
f(x) = g(x), all partial derivatives of the component functions of f and g, up to and
including order r, agree.
jrxf an r-jet equivalence class for a general representative f defined at x
Jrx(M,N) smooth manifold of r-jet equivalence classes at x
Jr(M,N) disjoint union of Jrx(M,N) over x ∈M
Jr(M,N)y subset of Jr(M,N) consisting of all classes jrxf such that f(x) = y ∈ N
Jrx(M,N)y intersection of Jrx(M,N) and Jr(M,N)y
Jr(M,N) is a smooth manifold fibered over M and over N with respective fibers Jrx(M,N)
and Jr(M,N)y.
r-jets are composable; they comprise the morphisms of a category whose objects are based
manifolds.
Jr is a bifunctor Mfm ×M→ FM.
Lrm,n := Jr0 (Rm,Rn)0

x1, ..., xm standard coordinates on Rm

λ multi-index (λ1, ..., λm) for coordinates on Rm

p index for coordinates of Rn

apλ coordinates for the polynomial representatives (
∑
|λ|≤r a

p
λx

λ)p of classes in Lrm,n
Lrm,n × Lrn,q → Lrm,q truncated polynomial composition
Gr
m the Lie group of units in the smooth monoid Lrm,m

Gr
m is called the rth-order jet group in dimension m.

Gr+
m the orientation-preserving component

G1
m
∼= GL(m)

T rkM := Jr0 (Rk,M) k-dimensional order r velocities; (k, r) velocities
T r∗k M := Jr(M,Rk)0 k-codimensional order r covelocities; (k, r) covelocities
T rk is a covariant functor M→ FM
T r∗k is a contravariant functor M→ FM
Caution: Only in the case r = 1 and k = 1 is it true that the R-linear dual of T r∗k is T rk
(For r > 1, T rkM is not even a vector bundle).
T r∗M := T r∗1 M
T r∗M is a bundle of finite-dimensional commutative associative R algebras which are
isomorphic to R[x1, · · · , xm]/(x1, · · · , xm)r+1

Proposition A.7. The following are equivalent:

1. jrxf = jrxg

2. T r1 f |(T r1M)x = T r1 g|(T r1M)x
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3. T r∗1 f and T r∗1 g induce the same algebra homomorphism (T r∗1 N)y → (T r∗1 M)x

Jrx(M,N)y = Homalgebras((T
r∗
1 N)y, (T

r∗
1 M)x)

0 → SrT ∗M → T r∗M → T r−1∗M → 0 exact sequence of vector bundles, natural for
M ∈M
P rM subset of T rdimM(M) consisting of r-jets of charts for M ; rth-order frame bundle
P rM is a principal Gr

m-bundle over M .
T rkM = P r[Lrk,m]
T r∗k M = P r[Lrm,k]
P r(M × N) is Mfm+n-naturally isomorphic to P rM × P rN , with natural reduction of
the structure group from Gr

m+n to Gr
m ×Gr

n.
Jr(M,N) = (P rM × P rN)[Lrm,n]
T r2k M := (T r∗k M)∨(R-linear dual)
T (r)M := T r21 M rth order tangent bundle
T (r)M is a bundle of finite-dimensional cocommutative coassociative coalgebras
0 → T (r−1)M → T (r)M → SrTM → 0 exact sequence of vector bundles, natural for
M ∈M
reg(T rnM) open subset of T rnM consisting of elements whose image in T 1

nM has rank n
Diff(Rn, 0) group of diffeomorphisms of Rn fixing 0
Kr
nM := (reg T rnM)/Diff(Rn, 0) ∼= (reg T rnM)/Gr

n contact elements
Kr+
n M := (reg T rnM)/Gr+

n oriented contact elements

A.5.2 Jet groups

Gk
m → Gk−1

m → · · · → G1
m → 1 chain of surjective homomorphisms

1 = Bk ⊂ Bk−1 ⊂ · · · ⊂ B1 ⊂ B0 = Gk
m associated normal subgroups Bi ⊂ Gk

m

Gk
m is an open subset of Lkm,m. Hence the apλ comprise natural global coordinates on Gk

m.
gkm := Lie(Gk

m) ∼= Lkm,m
gkm is identified as a Lie algebra with the vector fields on Rm with coefficients polynomial
of any degree up to and including k and with zero constant term.
gp the polynomial vector fields with coefficients of degree p+ 1 (not p)
g0 = gl(m)
gkm
∼= g0 ⊕ g1 ⊕ · · · ⊕ gk−1 is a Lie algebra grading

[gi, gj] = gi+j if m > 1, or if m = 0 and at least one of i and j is non-zero
The exact sequence 1→ B1 → Gk

m → G1
m → 1 is split.

bi := Lie(Bi)
b1 = g1 ⊕ · · · ⊕ gk−1 as g0-modules
ω standard volume form on the vector space Rm

X a polynomial vector field on Rm

divX divergence of X; LXω = (divX)ω
Cr

1 ⊂ grthe part of the kernel of gkm → gk−1
m (X 7→ divX) lying in gr

Cr
1 =

{∑
i,λ

|λ|=r+1
aiλx

λ∂xi ∈ gr|
∑

i,λ a
i
λx

λ−(0,...,
i
1,...,0) = 0

}
Y0 :=

∑j=m
j=1 xj∂xjvector field generating the scalar multiplication of Rm
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R graded ring of polynomial functions R[x1, · · · , xm]
R · Y0 graded R-submodule of R-module of polynomial vector fields
Cr

2 := (R · Y0)r ⊂ gr
In dimension m > 1, all Cr

i are GL(m)-irreducible and inequivalent.
In dimension m = 1, all Cr

1 are 0 and all Cr
2 are GL(m)-irreducible and inequivalent.

C1 :=
⊕r=k

r=1 C
r
1

C2 :=
⊕r=k

r=1 C
r
2

Each Ci, i = 1, 2 is a Lie subalgebra of b1.
C1 ⊕ C2

∼= b1 as vector spaces
D1 the group of k-jets of volume-preserving and basepoint-preserving diffeomorphisms
of Rm

D2 the group of k-jets of basepoint-preserving diffeomorphisms of Rm which preserve
each 1-dimensional vector subspace
Lie(Di) = Ci
Gk

1 is solvable.
gk1 is generated as a Lie algebra by x∂x, x

2∂x, x
3∂x.

For k,m ≥ 2, gkm is generated by g0 and any a ∈ g1\(C1
1 ∪ C1

2) (e.g. a = x2
1∂x1).

Extensions of a given GL(m) representation V to Gk
m are in bijection with maps T : b1 →

gl(V ) that are homomorphisms of Lie algebras and of GL(m) modules.
There are no non-trivial extensions of a primary (isotypic) GL(m) representation to Gk

m.

A.5.3 Natural operations

Definition A.8. A bundle functor or natural bundle is a functor F : Mfm → FM
satisfying:

1. (Prolongation). (base functor : FM→M) ◦ F = (forgetful functor :Mfm →M)

2. (Locality). Denote by pM : FM → M the structure map of the value of F on M .
Then the induced map of an open inclusion U ⊂ M is an isomorphism (diffeomor-
phism) of FU onto p−1

M (U) ⊂ FM .

3. (Regularity). The values of F on a smooth family of morphisms form a smooth
family of morphisms: Given a smooth map P × M → N , the induced function
P × FM → FN is smooth.

FRm ∼= Rm × (FRm)|0

Definition A.9. A bundle functor F is said to be of order r if for any morphism f :
M → N in Mfm, the F -induced maps on the fiber at any given x, (FM)x → (FN)y,
depend only on the r-jet of f at x, and r is the smallest integer for which this property
holds.

Theorem A.10. (cf. Palais and Terng [PT77], Epstein and Thurston [ET79], and
[KMS93])
Every bundle functor F has order r for some r.

64



FM,N : Jr(M,N)×M FM → FN, the associated maps of an order r bundle functor F
S := (FRm)|0 the standard fiber of a bundle functor F
qM : P rM × S → FM the restriction of FRn,M to Jr0 (Rm,M) × (FRm)|0, when F has
order r
P rM [S] = FM if F has order r.
GSm the category of smooth manifolds S with smooth action of Gr

m for some r, with
morphisms the smooth maps S → S ′ equivariant with respect to Gr

m → Gr′
m.

Corollary A.11. The assignment S 7→ P rM [S] is an equivalence of categories between
GSm and the category of bundle functorsMfm → FM and their natural transformations.

Jk the functor FM→ FM of k-jets of sections of a bundle (not to be confused with
the more general bifunctor of k-jets of mappings)
We omit the technical definition of a natural operator in [KMS93] in terms of functions
from sections of a bundle to sections of another bundle satisfying some regularity con-
ditions. We substitute instead the equivalent notion appearing there on page 144 as
Proposition 14.17:

Definition A.12. A kth-order natural operator F  F ′ between two bundle functors on
m-manifolds is a natural transformation Jk ◦ F → F ′.

S the standard fiber of F , a bundle functor of order r on m-manifolds
S ′ the standard fiber of F ′, a bundle functor of order r′ on m-manifolds
For each k, Gk+r

m acts smoothly on T kmS.

Theorem A.13. Let q be any integer such that q ≥ r + k and q ≥ r′ (so that there is a
canonical Gq

m action on T kmS and on S ′). The kth-order natural operators F  F ′ are in
bijection with Gq

m-equivariant smooth maps T kmS → S ′.

A.6 Discussion of the functor Kr
n

Kr
nM has been defined as a bundle over the m-dimensional manifold M . An element

of Kr
nM is represented by a smooth based n-dimensional submanifold of the M . The

pushforward of such a submanifold under an arbitrary smooth map represents an r-jet
at the basepoint which may fail to be regular unless the map is an embedding. Thus
as a functor Kr

n is defined on the category Memb of smooth manifolds and embeddings,
intermediate between the categories Mfm and M.
In Definition A.8, the domain of a “bundle functor” is the category Mfm. The authors
[KMS93] also consider the extension of the notion to the categoryM of all smooth maps,
using the same 3 conditions, and explain the analogue of Corollary A.11, which states that
rth-order bundle functors in this generalized sense are associated with systems (S0, S1, · · · )
of standard fibers together with an action of the category whose morphisms are the Lrm,n.
This generalizes the case of single standard fiber Sm with the action of the unit group
Gr
m ⊂ Lrm,m.

The modification to the case of Memb is slight. One replaces the category Lrm,n with
the subcategory of jets of embeddings. Thus the functor Kr

n :Memb → FM fits into the
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framework of bundle functors. The system of standard fibers is (φ, φ, · · · , {∗}, (Kr
nRn+1)|0, · · · )).

The fact that these spaces are manifolds can be verified as follows. Recall that (Kr
nRn+j)|0 =

reg(Jr0 (Rn,Rn+j)0/G
r
n, and so on. The group Diff(Rn+j, 0) of diffeomorphisms of Rn+j rel-

ative to 0 acts transitively on embedded n-submanifold germs. The normal subgroup Nr

of diffeomorphisms agreeing up to order r with the identity acts trivially on each r-jet,
making the spaces homogeneous spaces for the Lie group Gr

n+j
∼= Diff(Rn+j, 0)/Nr.

A.7 Relation between X × U (r), Kr
n, and M (r)

The prolongation space M (r) of the empty differential system (M,φ, φ) with respect to
n-submanifolds is isomorphic to Kr

nM naturally over the categoryMemb, for the following
reason.
The authors [BG95] explain on page 522 that the manifolds M (r) admit natural local
coordinates with respect to local coordinates on M . They are precisely the coordinates
X × U (r) described in [Olv86], with respect to a chart of the form X × U ⊂ M . The
iterated 1-jet lift in M (r) corresponds to the r-graph construction in X × U (r).
On the other hand, ([Olv86] page 220 Theorem 3.28) establishes that these are natural
coordinates on Kr

nM ; in the terminology appearing there, the “extended jet space”. The
natural isomorphism Kr

nM
∼= M (r) then follows from the observation that points k ∈ Kr

n

and z ∈ M (r) corresponding to the same point in X × U (r) are related by a natural
correspondence: z is the iterated 1-jet lift of any submanifold N ⊂ M representing k.
Note that the fact that this correspondence is well-defined would otherwise be difficult to
establish directly.
The following proposition is an immediate consequence of Kr

nM
∼= M (r).

Proposition A.14.

1. Kr
nM has a canonical Pfaffian differential system I(r), its contact system, and bundle

of generating 1-forms Ir.

2. Kr+1
n M can be regarded as a subbundle of Gn(TKr

nM), consisting of the n-dimensional
integral elements of I(r) on Kr

nM .

3. A section s : Kr
nM → Kr+1

n M can be regarded as a rank n distribution D in the
tangent bundle of Kr

nM .

4. s∗Ir+1 = D⊥

With respect to the coordinates X×U (r), the contact system is generated by the 1-forms:

Definition A.15. ([BG95] page 529)

θα :=duα − uαi dxi

θαj :=duαj − uαjidxi

...

θαJ :=duαJ − uαJidxi |J | ≤ r − 1
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B Intersections and spans of linear subspaces

In this section a simple linear formula is presented which calculates the intersections and
spans of any number of linear subspaces of a linear space. It has the character of a closed
formula rather than an algorithm, making it conceptually simpler than the techniques
of numerical linear algebra, like Gaussian elimination or matrix factorizations, which are
usually applied in this situation.
Consider a finite-dimensional vector space V , and its graded exterior algebra Λ := ΛV .
Recall that there is a coproduct ∆ : Λ → Λ ⊗ Λ (the “analyzing map” of [Che56]), the
unique algebra homomorphism such that ∆(v) = 1⊗ v + v ⊗ 1 for v ∈ V . Here Λ⊗ Λ is
endowed with the algebra structure of the graded-commutative tensor product. That is,
for example, (1⊗ v) · (v ⊗ 1) = −(v ⊗ 1) · (1⊗ v).
The formula for ∆(e1 · · · ek) is a sum over all groupings of the symbols e1, · · · , ek into left
and right groups, with increasing indices within each group, signed by the parity of the
shuffle permutation achieving this ordered grouping. More symbolically:

∆(e1 · · · ek) =
∑
p+q=r

∑
σ∈S(p,q) shuffle

cσ σ(e1) · · ·σ(ep)⊗ σ(ep+1) · · ·σ(er)

where cσ is a constant coefficient depending on σ.

Definition B.1. Define ψp qk (p+q−k) : Λp ⊗ Λq → Λk ⊗ Λp+q−k to be the components of the
composition of the coproduct, associator, and product indicated below:

ψ : Λ⊗ Λ
∆⊗id→ (Λ⊗ Λ)⊗ Λ ∼= Λ⊗ (Λ⊗ Λ)

id⊗∧→ Λ⊗ Λ

Proposition B.2. Suppose that π ∈ Λp and σ ∈ Λq are the Plücker coordinates of a p-
plane and a q-plane in V , intersecting in a subspace with coordinate I ∈ Λk and spanning
a subspace with coordinate S ∈ Λp+q−k.

1. ψp ql (p+q−l)(π, σ) = 0 for l < k

2. ψp qk (p+q−k)(π, σ) ≡ I ⊗ S

Proof. The maps ψ are GL(V ) module maps. GL(V ) is transitive on pairs consisting of a
p-plane and a q-plane intersecting in k dimensions, so it suffices to contrive the conclusion
in a special case. Suppose

π = i1i2..ikπ1..πp−k

σ = i1i2..ikσ1..σq−k

In the expression of ∆(π), any terms with right-hand i factors will subsequently map to
zero under the last map comprising ψ (σ contains a copy of each such factor, and the
exterior product of identical i’s is zero). Thus we need only consider those terms of ∆(π)
in which all i factors appear on the left. In particular, there are no terms in the end with
fewer than k left-hand factors; this proves (1).
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On the other hand, there is precisely one such term in which there are k left-hand factors
and all k of the i1..ik appear. The application of the last map comprising ψ upon this
term is evidently equal to

±i1..ik ⊗ π1..πp−ki1..ikσ1..σq−k ≡ I ⊗ S

This proves (2).

Remark B.3. (Specialization to exterior product and meet). The exterior product is the
map ψp q0 p+q with respect to the evident isomorphism Λ0⊗Λp+q ∼= Λp+q, and the “meet” is

the map ψp q(p+q−n)n with respect to the isomorphism Λ(p+q−n)⊗Λn ∼= Λ(p+q−n) determined

by a volume form in Λn (n := dimV ).

Remark B.4. (Generalization to several planes). Tensor products of the map ψ with
itself and the identity can be recursively composed to calculate the intersections and spans
of any number of planes, the intersections and spans of these, and so on.

C Macaulay2 source code

--LagrangeInversionForJetInvariants.m2

PowerSeriesInverse=(series, order)->( --(Only calculates inverse up to given order)

J:= ring series;

Jx:= coefficientRing J;

Coefficients:= for i from 0 to order list sub(coefficient(x^i,series), Jx);

Inverse0:= 1/Coefficients_0;

Temp:= Inverse0 - x * Inverse0 * (Inverse0*Coefficients_1);

for i from 2 to order do

(Temp= Temp - x^i * Inverse0 * (sum for j from 0 to i-1 list coefficient(x^j,Temp)*Coefficients_(i-j) ) );

Inverse:=Temp;

Inverse

);

CalculatePlaneCurveJetReparameterizationInvariants = (r)->(

J:=frac(QQ[a_1..a_r,b_1..b_r]);

Jx:=J[x];

A:= sum for i from 1 to r list a_i*x^i;

B:= sum for i from 1 to r list b_i*x^i;

Aoverx:= sum for i from 1 to r list a_i*x^(i-1);

Boverx:= sum for i from 1 to r list b_i*x^(i-1);

Iab:= for m from 1 to r list (1/m)*coefficient(x^(m-1),diff(x,B)*(PowerSeriesInverse(Aoverx, r))^(m));

Iba:= for m from 1 to r list (1/m)*coefficient(x^(m-1),diff(x,A)*(PowerSeriesInverse(Boverx, r))^(m));

Nab:= transpose matrix{for m from 1 to r list numerator(Iab_(m-1))};

Nba:= transpose matrix{for m from 1 to r list numerator(Iba_(m-1))};

degs:= flatten{for i from 1 to r list i*2-1, for i from 1 to r list i*2-1};

T:= QQ[N_1..N_r,M_1..M_r, Degrees=>degs];

Numerators:= flatten{flatten entries Nab, flatten entries Nba};

f:= map(J,T,Numerators);

K:= ker f;

RK:= radical K;

{Numerators,(entries gens RK)_0,variety RK,r}

);

CalculateSpaceCurveJetReparameterizationInvariants = (r)->(

J:=frac(QQ[a_1..a_r,b_1..b_r,c_1..c_r]);



Jx:=J[x];

A:= sum for i from 1 to r list a_i*x^i;

B:= sum for i from 1 to r list b_i*x^i;

C:= sum for i from 1 to r list c_i*x^i;

Aoverx:= sum for i from 1 to r list a_i*x^(i-1);

Boverx:= sum for i from 1 to r list b_i*x^(i-1);

Coverx:= sum for i from 1 to r list c_i*x^(i-1);

Iab:= for m from 1 to r list (1/m)*coefficient(x^(m-1),diff(x,B)*(PowerSeriesInverse(Aoverx, r))^(m));

Iba:= for m from 1 to r list (1/m)*coefficient(x^(m-1),diff(x,A)*(PowerSeriesInverse(Boverx, r))^(m));

Iac:= for m from 1 to r list (1/m)*coefficient(x^(m-1),diff(x,C)*(PowerSeriesInverse(Aoverx, r))^(m));

Ica:= for m from 1 to r list (1/m)*coefficient(x^(m-1),diff(x,A)*(PowerSeriesInverse(Coverx, r))^(m));

Ibc:= for m from 1 to r list (1/m)*coefficient(x^(m-1),diff(x,C)*(PowerSeriesInverse(Boverx, r))^(m));

Icb:= for m from 1 to r list (1/m)*coefficient(x^(m-1),diff(x,B)*(PowerSeriesInverse(Coverx, r))^(m));

Nab:= transpose matrix{for m from 1 to r list numerator(Iab_(m-1))};

Nba:= transpose matrix{for m from 1 to r list numerator(Iba_(m-1))};

Nac:= transpose matrix{for m from 1 to r list numerator(Iac_(m-1))};

Nca:= transpose matrix{for m from 1 to r list numerator(Ica_(m-1))};

Nbc:= transpose matrix{for m from 1 to r list numerator(Ibc_(m-1))};

Ncb:= transpose matrix{for m from 1 to r list numerator(Icb_(m-1))};

Numerators:=flatten{flatten entries Nab, flatten entries Nba, flatten entries Nac, flatten entries Nca,

flatten entries Nbc, flatten entries Ncb};

degs:= for i from 0 to length(Numerators)-1 list degree(Numerators_i);

T = QQ[M_1..M_r,N_1..N_r,O_1..O_r,P_1..P_r,Q_1..Q_r,R_1..R_r, Degrees=>degs];

f = map(J,T,Numerators);

K:= ker f;

RK:= radical K;

{Numerators,(entries gens RK)_0,variety RK,r}

);

PrintSpatial = result->(

varslist:=concatenate("(N1,..,N",toString(result_3)," .. ,R1,..,R",toString(result_3),")");

print concatenate("Invariants ",varslist," of trivial-1-jets-reparameterization subgroup:");

print " ";

for i from 0 to length(result_0)-1 do (print (result_0)_i; print " ");

print "Relations holding between them:";

print " ";

for i from 0 to length(result_1)-1 do (print (result_1)_i; print " ");

print concatenate("Dimension of the image affine variety in {",varslist,"} under the invariant functions:

",toString(dim result_2));

);

PrintPlanar = result->(

varslist:=concatenate("(N1,..,N",toString(result_3),",M1,..,M",toString(result_3),")");

print concatenate("Invariants ",varslist," of trivial-1-jets-reparameterization subgroup:");

print " ";

for i from 0 to length(result_0)-1 do (print (result_0)_i; print " ");

print "Relations holding between them:";

print " ";

for i from 0 to length(result_1)-1 do (print (result_1)_i; print " ");

print concatenate("Dimension of the image affine variety in {",varslist,"} under the invariant functions:

",toString(dim result_2));

);

compactMatrixForm=false;

planeInvariants2 = CalculatePlaneCurveJetReparameterizationInvariants(2);

planeInvariants3 = CalculatePlaneCurveJetReparameterizationInvariants(3);

planeInvariants4 = CalculatePlaneCurveJetReparameterizationInvariants(4);

spaceInvariants2 = CalculateSpaceCurveJetReparameterizationInvariants(2);

PrintPlanar(planeInvariants2);

PrintPlanar(planeInvariants3);

PrintPlanar(planeInvariants4);

PrintSpatial(spaceInvariants2);
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