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Abstract of the Dissertation

Curve jets, submanifold families, and envelopes
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Stony Brook University

2017

Synthetic or qualitative methods can provide insight into geometric structures not ap-
parent from the purely analytic point of view. For example, much of the geometry of a
classical surface in Euclidean space is coded in the di�erential topology of its family of
normal lines. This thesis extends the range of applicability of such methods by develop-
ing the basic theory of submanifold families in general, emphasizing higher-order contact
phenomena and making use of the modern theory of jets. A main technical contribution
is, in certain cases, the calculation of invariants of parameterized submanifold jets by the
reparameterization group, a construction of the quotient varieties, and compacti�cations
of these varieties.
As applications, in 2 dimensions we deduce:

1. a description of projective structures by (second order) tensorial data,

2. a characterization of the curve families realizable by geodesics for some connection,
and a description of the connections in this case, and

3. a linearizability criterion for curve families, including d-webs for d � 4,

and in higher dimensions:

4. general formulas for envelopes of submanifold families, including line envelopes for
visual applications, and

5. a characterization of the extrinsic geometry of m-submanifolds in projective space
RPn, for certain m, including a generalization of the classical Wilczynski equations
for surfaces in RP3.
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