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Abstract of the Dissertation

Classification of gravitational instantons with faster than quadratic curvature decay

by

Gao Chen

Doctor of Philosophy

in

Mathematics

Stony Brook University

2017

In this dissertation, a gravitational instanton is defined to be a complete
non-compact hyperkähler 4-manifold with curvature decaying fast enough at
infinity. Many examples of gravitational instantons have been constructed.
The main result of this thesis is the proof that there are no more examples.
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1 Introduction

A gravitaional instanton is a non-compact, complete hyperkähler 4-manifold
with curvature decaying fast enough at infinity. In 1977, gravitational in-
stanton was first introduced by Hawking as building block of the Euclidean
quantum gravity theory[36]. Even though physicists expect the faster than
quadratic curvature decay at infinity, this seems hasn’t been made precise in
literatures.

For clarity, we always assume that the curvature satisfies a decay condi-
tion

|Rm|(x) ≤ r(x)−2−ε,

where r(x) denotes the metric distance to a base point o in the complex
surface and ε > 0 is any small positive number, say < 1

100
.

One of our main tools comes from the equivalence between the the Calabi-
Yau condition and the hyperkähler condition. Actually, there are three com-
plex structures I, J,K on hyperkähler manifolds. They induce three sym-
plectic forms by

ω1(X, Y ) = g(IX, Y ), ω2(X, Y ) = g(JX, Y ), ω3(X, Y ) = g(KX,Y ).

The form ω+ = ω2 + iω3 is a I-holomorphic symplectic form. This induces
the equivalence of Sp(1) and SU(2). Notice that for any (a1, a2, a3) ∈ S2,
a1I + a2J + a3K is a Kähler structure. There is a special property of Sp(1):
Given any vectors v, w ∈ Tp which are orthogonal to each other and have same
length, there exists an (a1, a2, a3) in S2 such that (a1I + a2J + a3K)v = w.
We will use this property to find the best complex structure.

It’s quite easy to prove the following theorem:

Theorem 1.1. For gravitational instanton M , the following conditions are
equivalent:

(1) M is flat;
(2) M has trivial holonomy;
(3) M splits as R4−k × Tk, k = 0, 1, 2, 3.

It will be proved in Section 2. For simplicity, in this paper, we will exclude
the flat gravitational instantons.

Under those conditions, we want to study two fundamental questions:
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1. The differential and metric structure of the infinity of these gravita-
tional instantons. Note that this is different from the tangent cone at
infinity, especially if the volume growth is sub-Euclidean.

2. Given these end structures, to what extent, do we know these instan-
tons globally and holomorphically? In other words, is gravitational
instanton uniquely determined by its end structure?

Both problems seem to be well known to the research community. Since
1977, many examples of gravitational instantons have been constructed[36]
[4] [48] [22]. The end structures of these examples are completely known
now. According to the volume growth rate, they can be divided into four
categories: ALE, ALF, ALG and ALH, where the volume growth are of order
4,3,2 and 1 respectively. For the convenience of readers, we will give a precise
definition of these ends in Section 2.1. There is a folklore conjecture that
when the curvature decay fast enough, any gravitational instantons must be
asymptotic to one of the standard models of ends.

Except the ALE case, the asymptotical volume growth rate is usually
hard to control, and may oscillate and may even not be an integer. In an
important paper, with additional assumption that the volume growth rate
is sub-Euclidean but at least cubic and a slightly weaker curvature decay
condition depending on volume growth rate, Minerbe[57][58] proved that it
must be ALF. In our paper, we first prove the folklore conjecture.

Theorem 1.2. Let (M4, g) be a non-compact, complete, non-flat hyperkähler
manifold with curvature decay condition |Rm|(x) ≤ r(x)−2−ε, then it must be
asymptotic to the standard metric of order ε. Consequently, it must be one
of the four families: ALE,ALF, ALG and ALH.

For more detail about this theorem, see Theorem 2.14, and Theorem
2.22. We would like to remark that the curvature condition can’t be weaken
to |Rm| = O(r−2). In 2012, besides the study of ALG and ALH instan-
tons on rational elliptic surfaces, Hein[37] also constructed two new classes
of hyperkähler metrics on rational elliptic surfaces with volume growth, in-
jective radius decay, and curvature decay rates r4/3, r−1/3, r−2, and r2,
(log r)−1/2, r−2(log r)−1, respectively. Note that curvature doesn’t satisfy
|Rm| = O(r−2−ε) and they don’t belong to any of the four families!

Our new contribution lies in ALG and ALH cases; in ALF case, our contri-
bution is to remove the volume growth constraint from Minerbe’s work [57].
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In fact, Minerbe’s volume growth constraint becomes an corollary instead
condition of our first main theorem.

We obviously benefit from studying a series of papers by Minerbe [57],
[58], and [59]. Although his work seems only valid in ALF-Ak case, we
manage to make some modest progress in all cases in the present work.

The next essential step is the improvement of the asymptotic rate.

Theorem 1.3. Given any non-flat gravitational instanton (M, g), there exist
a bounded domain K ⊂ M and a diffeomorphism Φ : E → M \K such that
the error term Err = Φ∗g − h satisfies

(ALE) |∇mErr| = O(r−4−m), ∀m ≥ 0.
(ALF-Ak and ALF-Dk) |∇mErr| = O(r−3−m),∀m ≥ 0;
(ALG) |∇mErr| = O(r−δ−m),∀m ≥ 0, where δ = minn∈Z,n<2β

2β−n
β
. In

other words,

Type Regular I∗0 II II∗ III III∗ IV IV∗

β 1 1
2

1
6

5
6

1
4

3
4

1
3

2
3

δ 1 2 2 4
5

2 2
3

2 1
2

(ALH) |∇mErr| = O(e−δr),∀m ≥ 0, where δ = 2πminλ∈Λ∗\{0} |λ|;

Actually, we will show that the deformation space of hyperkähler 4-
manifolds is a subspace of the space of closed anti-self-dual forms. Therefore,
the asymptotic rate is at least the decay rate of the first closed anti-self-dual
form.

Remark that the ALE part of Theorem 1.3 was done by Bando, Kasue
and Nakajima [5]. The ALF-Ak part was done by Minerbe [59]. So we will
focus on the other three parts in this paper.

For the ALE part of the second question, after Bando-Kasue-Nakajima’s
work [5] about the improvement of asymptotic rate, Kronheimer [48] [49]
proved that any ALE gravitational instanton must be diffeomorphic to the

minimal resolution C̃2/Γ of the quotient singularity C2/Γ, where Γ is a finite
subgroup of SU(2). Moreover, the Torelli theorem holds for ALE gravita-
tional instantons.

Theorem 1.4. (Torelli theorem for ALE gravitational instantons)([48, 49])
Let M be the smooth 4-manifold which underlies the minimal resolution

of C2/Γ. Let [α1], [α2], [α3] ∈ H2(M,R) be three cohomology classes which
satisfy the nondegeneracy condition:
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For each [Σ] ∈ H2(M,Z) with [Σ]2 = −2, there exists i ∈ {1, 2, 3} with
[αi][Σ] 6= 0.

Then there exists on M an ALE hyperkähler structure such that the co-
homology classes of the Kähler forms [ωi] are the given [αi]. It’s unique up
to tri-holomorphic isometries which induce identity on H2(M,Z).

Moreover, any ALE gravitational instanton must be constructed by this
way.

H2(C̃2/Γ,Z) is generated by holomorphic curves with self intersection
number -2. Let k be the number of generators. Then, their intersection
patterns can be classified into Ak(k ≥ 1), Dk(k ≥ 4), Ek(k = 6, 7, 8) Dynkin
diagrams. They correspond to different types of Γ.

A crucial point in Kronheimer’s work is to understand “the end” holo-
morphically. In ICM 1978, Yau conjectured that every complete Calabi-Yau
manifold can be compactified in the complex analytic sense[79]. There are
counterexamples if we only assume the completeness without fast curvature
decaying condition[3]. However, when we assume the faster than quadratic
curvature decay condition, we can prove Yau’s conjecture. In higher dimen-
sion n ≥ 3, assuming the curvature exponentially decay and the metric is
asymptotically cylindrical, Haskins, Hein and Nordström [35] constructed a
compactification and therefore verified Yau’s conjecture in their settings.

Theorem 1.5. For any ALG or ALH gravitational instanton M , there exist
a rational elliptic surface M̄ with a meromorphic function u : M̄ → CP1

whose generic fiber is torus. The fiber D = {u = ∞} is regular if M is
ALH, while it’s of type I∗0, II, II∗, III, III∗, IV, IV∗ if M is ALG. There exist
an (a1, a2, a3) in S2 such that when we use a1I + a2J + a3K as the complex
structure, M is biholomorphic to M̄ −D.

Remark. The type of D is related to the tangent cone at infinity of M . See
the table in Theorem 2.22.

In ALF case, more discussions are needed:

1. In ALF-Ak case, Minerbe[59] proved that any ALF-Ak instanton must
be the trivial product or the multi-Taub-NUT metric. In particular,
there is no ALF-Ak instantons for k < −1.

2. In ALF-Dk case, Biquard and Minerbe [8] proved that there is no ALF-
Dk instantons for k < 0. For k ≥ 0, the first example was constructed
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by Atiyah and Hitchin[4], where k = 0. Ivanov and Roček [42] con-
jectured a formula for larger k using generalized Legendre transform
developed by Lindström and Roček [52]. This conjecture was proved
by Cherkis and Kapustin[22] and computed more explicitly by Cherkis
and Hitchin [21]. When k = 2, it’s the Hitchin-Page metric [38] [66].
It’s conjectured that any ALF-Dk instanton must be exactly the met-
ric constructed by them. The first step toward this conjecture is the
existence of the O(4) multiplet which plays an important role in the
Cherkis-Hitchin-Kapustin-Ivanov-Lindström-Roček construction.

Theorem 1.6. In the ALF-Dk case, there exists a holomorphic map from
the twistor space of M to the total space of the O(4) bundle over CP1 which
commutes with both the projection to CP1 and the real structure.

For the definitions of twistor space and the real structure, see Theorem
3.36 and Theorem 3.37.

With the improved asymptotic rate and existence of O(4) multiplet, we
can prove that any ALF gravitational instanton can be compactified in the
complex analytic sense. This confirms Yau’s conjecture in ALF case. As
Kodaira did in [45], we can then analyze the topology of the compactifica-
tion. This allows us to give a complete classification of ALF-Dk gravitational
instantons.

Theorem 1.7. Any ALF-Dk gravitational instanton must be the Cherkis-
Hitchin-Ivanov-Kapustin-Lindström-Roček metric.

We will give a precise definition of the Cherkis-Hitchin-Ivanov-Kapustin-
Lindström-Roček metric as Example 5.5 in Section 5.

To illustrate our method of proving Theorem 1.7, we will first use the
same technique to give a new proof of a theorem of Minerbe [59]:

Theorem 1.8. (Minerbe [59]) Any ALF-Ak gravitational instanton must be
the multi-Taub-NUT metric.

We will give a precise definition of the multi-Taub-NUT metric as Exam-
ple 5.1 in Section 5.

Even though Theorem 1.8 has been proved by Minerbe using other meth-
ods, our new proof is meaningful because it’s a simplification of Theorem
1.7.

As a corollary, we will prove a Torelli-type theorem for ALF gravitational
instantons as an analogy of Kronheimer’s results [48] [49]:
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Corollary 1.9. (Torelli-type theorem for ALF gravitational instantons)
Let M be the 4-manifold which underlies an ALF-Ak or ALF-Dk gravita-

tional instanton. Let [α1], [α2], [α3] ∈ H2(M,R) be three cohomology classes.
Let L > 0 be any positive number. Then there exists on M an ALF hy-
perkähler structure for which the cohomology classes of the Kähler forms [ωi]
are the given [αi] and the length of the asymptotic S1-fiber goes to L at in-
finity. It’s unique up to isometries which respect I,J , and K. Moreover, it’s
non-singular if and only if [αi] satisfy the nondegeneracy condition:

For each [Σ] ∈ H2(M,Z) with [Σ]2 = −2, there exists i ∈ {1, 2, 3} with
[αi][Σ] 6= 0.

In the ALG cases, Hein constructed lots of examples [37]. In this paper,
we will slightly modify his construction and then prove that any ALG grav-
itational instanton must be obtained by the modified Hein’s construction:

Theorem 1.10. (1) Let (M̄, z) be a rational elliptic surface. Suppose the
fiber D = {z =∞} has type I∗0, II, II∗, III, III∗, IV, or IV∗. Let ω+ = ω2+iω3

be a rational 2-form on M̄ with [D] = {ω+ =∞}. For any Kähler form ω on
M̄ , there exists a real smooth polynomial growth function φ on M = M̄ \D
such that (M,ω1 = ω + i∂∂̄φ, ω2, ω3) is an ALG gravitational instanton.

(2) The form ω + i∂∂̄φ in the first part is uniquely determined by its
asymptotic geometry.

(3) Given any ALG gravitational instanton written as (M,ω1, ω2, ω3) af-
ter a hyperkähler rotation which replace a1I+a2J+a3K in Theorem 1.5 by I.
Then ω+ = ω2 + iω3 is a rational 2-form on M̄ with [D] = {ω+ =∞}. There
exist a Kähler form ω on M̄ and a real smooth polynomial growth function
φ on M = M̄ \D such that ω1 = ω + i∂∂̄φ. When D is of type II∗, III∗, or
IV∗, we may need a new choice of M̄ to achieve this.

It’s interesting to notice that in [8], Biquard and Minerbe constructed
ALF-Dk(k ≥ 4), ALG (I∗0, II, III, IV) and ALH gravitational instantons on
the minimal resolutions of the quotient of Taub-NUT metric by the binary
dihedral group, (R2×T2)/Zk(k = 2, 6, 4, 3) or (R×T3)/Z2, respectively. The
three cases ALG-II∗, ALG-III∗, ALG-IV∗ are all missing.

When D is of type Ib(b = 1, 2, ...9) or I∗b(b = 1, 2, 3, 4), Hein [37] also
constructed some hyperkähler metrics on M̄ \ D. Since they don’t have
fast enough curvature decay rates, we exclude them from the discussion.
However, they are still very important because Cherkis and Kapustin [23]
predicted complete hyperkähler metrics on the moduli space of periodic
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monopoles, which is a rational elliptic surface minus a fiber of type I∗0, I∗1,
I∗2, I∗3, I∗4. They are also related to the moduli space of solutions of Hitchin
equations on a cylinder. Notice that they are called ALG-D4, D3, D2, D1, D0

by Cherkis-Kapustin but certainly their definition is different from our def-
inition. Thus, we suggest the notation ALG∗ to denote Hein’s exceptional
examples. In [28] [29], Cherkis-Kapustin’s prediction was partially verified
by Foscolo. He proved that the moduli space of periodic monopoles is a non-
empty hyperkähler manifold. However, it’s still unknown whether the metric
is complete or whether it’s an elliptic surface.

It’s worthwhile to notice that Biquard and Boalch [7] proved that the
moduli space of meromorphic connections on a curve is a complete hy-
perkähler manifold. In Boalch’s previous work [9], he related such moduli
space to the Painlevé equation. Following Okamoto’s work [62] [63] [64] [65],
Sakai [71] related the Painlevé equation to a rational elliptic surface M̄ minus
a fiber D. The type of the fiber D is related to a Dynkin diagram:

I∗0 I∗1 I∗2 I∗3 I∗4 II II∗ III III∗ IV IV∗

D4 D3 D2 D1 D0 E8 A0 E7 A1 E6 A2

It’s not known whether the Biquard-Boalch’s metric is ALG or ALG∗.
However, it’s known that an open part of Biquard-Boalch’s metric is diffeo-
morphic to the corresponding ALE/ALF gravitational instanton denoted by
the same Dynkin diagram. See [10] and [11] for details.

In the ALH case, as a corollary of Theorem 1.5, any ALH gravitational
instantons are diffeomorphic to each other. In particular, they are diffeomor-
phic to the minimal resolution of (R× T3)/Z2 by [8]. The torus T3 = R3/Λ
is determined by the lattice Λ = Zv1 ⊕ Zv2 ⊕ Zv3. It’s easy to see that

H2( ˜(R× T3)/Z2,R) = R11 is generated by three faces Fjk spanned by vj and
vk and eight rational curves Σj coming from the resolution of eight orbifold
points in (R × T3)/Z2. Using those notations, we will prove the following
classification result of ALH gravitational instantons:

Theorem 1.11. (Torelli theorem for ALH gravitational instantons)
Let M be the smooth 4-manifold which underlies the minimal resolution

of (R × T3)/Z2. Let [α1], [α2], [α3] ∈ H2(M,R) be three cohomology classes
which satisfy the nondegeneracy conditions:
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(1) The integrals fijk of αi on the three faces Fjk satisfy∣∣∣∣∣∣
f123 f131 f112

f223 f231 f212

f323 f331 f312

∣∣∣∣∣∣ > 0;

(2) For each [Σ] ∈ H2(M,Z) with [Σ]2 = −2, there exists i ∈ {1, 2, 3}
with [αi][Σ] 6= 0.

Then there exists on M an ALH hyperkähler structure such that Φ in
Theorem 1.3 can be chosen to be the identity map and the cohomology classes
of the Kähler forms [ωi] are the given [αi]. It’s unique up to tri-holomorphic
isometries which induce identity on H2(M,Z).

Moreover, any ALH gravitational instanton must be constructed by this
way.

Remark. Recently, Haskins, Hein and Nordström [35] classified asymptoti-
cally cylindrical Calabi-Yau manifolds of complex dimension at least 3. In
dimension 2, their analytic existence theorem (Theorem 4.1 of [35]) still holds.
However, when T3 doesn’t split isometrically as S1×T2, their geometric exis-
tence theorem (Theorem D of [35]) fails due to the lack of background Kähler
form in the cohomology class.

Remark. In [37], Hein proved that the space of ALH gravitational instan-
tons module isometries is 30 dimensional. After adding 3 parameters of
hyperkähler rotations, the space of ALH gravitational instantons module tri-
holomorphic isometries which induce identity on H2(M,Z) is 33 dimensional.
Our Theorem 1.11 is consistence with Hein’s computation.

It’s interesting to compare Theorem 1.11 with the Torelli theorem for
ALE gravitational instantons (Theorem 1.4), ALF gravitational instantons
(Theorem1.9) as well as K3 surfaces, which was proved by Burns-Rapoport
[12], Todorov [77], Looijenga-Peters [54] and Siu [75]. It was reformulated
by Besse in Section 12.K of [6]. Anderson [2] also proved a version of Torelli
theorem for K3 surfaces which allows orbifold singularities.

Theorem 1.12. ([6])(Torelli theorem for K3 surfaces)
Let M be the smooth 4-manifold which underlies the minimal resolu-

tion of T4/Z2. Let Ω be the space of cohomology classes ([α1], [α2], [α3]) in
H2(M,R)⊕H2(M,R)⊕H2(M,R) which satisfy the following conditions:

(1) (Integrability) ∫
M

αi ∧ αj = 2δijV.

8



(2) (Nondegeneracy) For any [Σ] ∈ H2(M,Z) with [Σ]2 = −2, there exists
i ∈ {1, 2, 3} with [αi][Σ] 6= 0.

Ω has two components Ω+ and Ω−. For any ([α1], [α2], [α3]) ∈ Ω+, there
exists on M a hyperkähler structure for which the cohomology classes of the
Kähler forms [ωi] are the given [αi]. It’s unique up to tri-holomorphic isome-
tries which induce identity on H2(M,Z).

Moreover, any hyperkähler structure on K3 surface must be constructed
by this way.

One may ask whether Torelli Theorem holds for ALG gravitational in-
stantons. The answer is false at least when D is of type II∗, III∗, or IV∗.

Theorem 1.13. When D is of type II∗, III∗, or IV∗, there exist two different
ALG gravitational instantons with same [ωi].

2 Asymptotic Fibration

In this section, we will prove the Theorem 1.1 and Theorem 1.2. It’s es-
sentially a theorem in Riemannian geometry. The basic tool is to view a
ball in the manifold M as a quotient of the ball inside the tangent space
equipped with the metric pulled back from exponential map by the group of
local covering transforms which correspond to the short geodesic loops in M .
In the second subsection, we discuss this picture. In the third subsection,
we provide a rough estimate of the parallel transport along short geodesic
loops. In the fourth subsection, we use that rough estimate to classify the
tangent cone at infinity. In the fifth subsection, we use this information to
get a better control of geodesic loops. Finally, we use this better control to
prove Theorem 1.2.

2.1 Notations and definitions

First, let’s understand the standard models near infinity. The explicit ex-
pression of those models are defined in Theorem 2.22. To avoid singularity,
a ball BR is always removed.

Example 2.1. Let (X, h1) be any manifold of dimension 3−k with constant
sectional curvature 1 and C(X) its metric cone with standard flat metric
dr2 + r2h1. Let Tk be a k-dimensional flat torus. Then the Tk fibration E
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over C(X) − BR with a Tk invariant metric h provides the standard model
near infinity.

1. C(X) = R4/Γ, Γ is a discrete subgroup in SU(2) acting freely on S3.
In this case, (E, h) = C(X)−BR with the flat metric. It’s called ALE.

2. C(X) = R3, (E, h) is either the trivial product (R3 − BR)× S1 or the
quotient of the Taub-NUT metric with mass m outside a ball by Z|e|,
where me < 0. It’s called ALF-Ak with k = −1 in the first case and
k = −e− 1 in the second case.

3. C(X) = R3/Z2, (E, h) is either the Z2 quotient of the trivial product
of R3 −BR and S1 or the quotient of the Taub-NUT metric with mass
m outside a ball by the binary dihedral group D4|e| of order 4|e|, where
me < 0. It’s called ALF-Dk with k = 2 for the first case, and k = −e+2
for the second case.

4. C(X) is the flat cone Cβ with cone angle 2πβ, (E, h) is a torus bundle
over Cβ −BR with a flat metric, where (β,E, h) are in the list of some
special values; It’s called ALG.

5. C(X) = R+, (E, h) is the product of [R,+∞) and a flat 3-torus. It’s
called ALH.

We may call such fiberation a standard model near infinity. It serves as
an asymptotic model in the following sense:

Definition 2.2. A complete Riemannian manifold (M, g) is called asymp-
totic to the standard model (E, h) of order δ if there exist a bounded domain
K ⊂M , and a diffeomorphism Φ : E →M \K such that

Φ∗g = h+O′(r−δ)

for some δ > 0.

Any manifold asymptotic to the standard ALE model is called ALE. It
stands for asymptotically locally Euclidean. Similarly, any manifold asymp-
totic to the standard ALF model is called ALF. It means asymptotically
locally flat. The ALG and ALH manifold are defined similarly. The letters
“G” and “H” don’t have any meanings. They are just the letters after “E”
and “F”.

10



Notice that our definition of ALH manifold is different from the definition
of Hein in [37]. However, Theorem 3.20 implies that there is no essential
difference for gravitational instantons.

Notation. o is a fixed point in M . In this section, r(p) = dist(o, p) is the
geodesic distance between o and p. In other sections, E is a fiberation over
C(X)−BR = {(r, θ) : r ≥ R, θ ∈ X}. So the pull back of r by the projection
is a function on E. On M , we pull back that function, cut it off by some
smooth function, and add 1 to get a smooth function r ≥ 1. The reader
should be careful about the switch of the meanings of r in different sections
of our paper.

O′(rα) means that for any m ≥ 0, the m-th derivative of the tensor
belongs to O(rα−m). χ will be a smooth cut-off function from (−∞,+∞) to
[0, 1] such that χ ≡ 1 on (−∞, 1] and χ ≡ 0 on [2,∞). We will always use
∆ = −Tr∇∗∇ as the Laplacian operator.

2.2 Short geodesic loops and the local covering space

In 1978 Gromov [33] started the research of almost flat manifolds, i.e. man-
ifold with very small curvature. In 1981, Buser and Karcher wrote a book
[13] to explain the ideas of Gromov in detail. In 1982 Ruh [70] gave a new
way to understand it. Assume p is a point in M . The exponential map
exp : Tp → M is a local covering map inside the conjugate radius. We can
pull back the metric from M using the exponential map inside conjugate
radius. There is a lemma about the local geometry on the tangent space:

Lemma 2.3. Suppose gij is a metric on B1(0) ⊂ Rn satisfying the following
condition:

(1) The curvature is bounded by Λ2;
(2) gij(0) = δij;
(3) The line γ(t) = tu is always a geodesic for any unit vector u.
Then there exist constants Λ(n) < π/2 and C(m,n) such that as long as

Λ ≤ Λ(n),
(1) Any two points x and y in B1(0) can be connected by a unique minimal

geodesic inside B1(0);
(2) If the Ricci curvature is identically 0, then the m-th ordinary deriva-

tives |Dm(gij(x)− δij)| < C(m,n)Λ2 for all m ≥ 0 and x ∈ B1/2.

Proof. (1) It was proved by Buser and Karcher as the Proposition 6.4.6 in
[13].

11



(2) Therefore, all the works in [43] apply. We can find functions li satis-
fying

|∇li(x)− ei(x)| ≤ C(n)Λ2

and
|∇2li(x)| ≤ C(n)Λ2

for all x ∈ B1/2(0) as long as Λ(n) is small enough, where ei(x) is a vector
field which is parallel along radical geodesics and equals to ∂

∂xi
at origin. For

even smaller Λ(n), we can use li as coordinate functions in

L0.9(0) = {
∑

l2i < (0.9)2} ⊂ B1(0) = {
∑

x2
i < 1}.

In this coordinate,

|gijwiwj − |w|2| ≤ C(n)Λ2|w|2 ≤ 0.01|w|2,

|∂kgij| < C(n)Λ2 < 1,

∆u =
1√
G

∂

∂lj
(
√
Ggij

∂u

∂li
).

What’s more |∆li| < C(n)Λ2. By Theorem 9.15 of [31], for all 1 < p < ∞,
there is a unique solution ui ∈ W 2,p(L0.9) ∩W 1,p

0 (L0.9) such that ∆ui = ∆li.
By Lemma 9.17 of [31], we actually have

||ui||W 2,p(L0.9(0)) < C(n, p)||∆li||Lp(L0.9(0)) < C(n, p)Λ2.

By Sobelev embedding theorem (c.f. Theorem 7.26 of [31]),

||ui||C1(L0.9(0)) < C(n)||ui||W 2,2n(L0.9(0)) < C(n)Λ2.

In particular, when Λ(n) is small enough, hi = li−ui gives a harmonic coor-
dinate in H0.8(0) := {

∑
h2
i < (0.8)2} ⊂ L0.9(0). In this harmonic coordinate,

1/1.02|w|2 < gijw
iwj < 1.02|w|2. By elliptic regularity, actually all the above

functions are smooth. So we can differentiate them to get equations. Since
Γkijg

ij = 0, we know that 2Ricmk = gimRijklg
jl + gikRijmlg

jl satisfies

grs
∂2(gij − δij)
∂hr∂hs

= −2Ricij +Qij(g, ∂g) +Qji(g, ∂g),

where
Qmk(g, ∂g) = gjl∂lgimΓikj − gjlgimΓhkjΓ

i
lh − gim∂kgjlΓijl.
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We already know that ||gij − δij||W 1,p(H0.8(0)) < C(n)Λ2 from the W 2,p bound
of ui. So ||Qij(g, ∂g)||Lp/2(H0.8(0)) < C(n)Λ4. When the Ricci curvature is
identically 0, by Theorem 9.11 of [31], we have

||gij − δij||W 2,p/2(H0.7) < C(n)(||gij − δij||Lp/2(H0.8) + ||Qij||Lp/2(H0.8)) < C(n)Λ2.

After taking more derivatives, we can get the required bound in the harmonic
coordinate. This in turn bounds the Christoffel symbol and gives a bound of
the geodesic equation. So when we solve this geodesic equation, we can get
the required bound in the geodesic ball.

The above estimate is an interior estimate. The number 1/2 can be
replaced by any number smaller than 1.

To find out the local covering transform, we look at the preimage p1 of p
under the exponential map inside B1(0). There is a local covering transform
F which maps 0 to p1. The image of the radical geodesic from 0 to p1 is
a geodesic loop based at p. This gives a 1-1 correspondence between short
geodesic loops and covering transforms.

Now suppose we have two short enough geodesic loops γ1 and γ2 with
same base point p. Then they correspond to two local covering transforms
F1 and F2. The composition F1 ◦ F2 is also a local covering transform. It
corresponds to another geodesic loop based at p. It’s exactly the product of
γ1 and γ2 defined by Gromov.

For any q close enough to p, choose an preimage q0 of q close enough to
0, then q1 = F (q0) is another preimage of q which is very close to p1. The
image of the shortest geodesic connecting q1 and q2 under the exponential
map is a geodesic loop based at q. It’s called the sliding of γ. When q moves
along a curve α, the sliding of γ becomes a 1-parameter family of curves. It’s
called the sliding of γ along the curve α.

When we parallel transport any vector v along the geodesic loop γ, we
will get another vector Pγ(v). Pγ is a map from Tp to itself. For hyperkähler
manifold, Pγ ∈ Sp(1) = SU(2). Under suitable orthonormal basis, any ele-
ment in SU(2) can be written as

A =

(
eiθ 0
0 e−iθ

)
.

So

A− Id =

(
eiθ − 1 0

0 e−iθ − 1

)
, (A− Id)

(
v1

v2

)
=

(
(eiθ − 1)v1

(e−iθ − 1)v2

)
.
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So |(A− Id)v| = |A− Id||v| if we define the norm by

|A− Id| = |eiθ − 1| = |e−iθ − 1|.

This property is also a special property of SU(2). For instance SO(4) doesn’t
have this property.

In the flat case, local covering transforms are all linear maps. Suppose
T1(x) = ax + b, T2(x) = Ax + B are two local covering transforms, where
a,A ∈ SO(n) and b,B ∈ Rn. They correspond to two geodesic loops γ1, γ2

with same base point p. A, a are exactly the parallel transports along γ1 and
γ2 while |B|, |b| are the same as the length of loops γ1 and γ2 respectively.

T1 ◦ T2(x) = a(Ax + B) + b = aAx + aB + b

will correspond to the Gromov product of γ1 and γ2. So

T−1
1 T−1

2 T1T2(x) = a−1A−1aAx + a−1A−1((a− Id)B + (Id−A)b).

The Lie algebra are also linear maps. Taking the derivative in the above
expression of the commutator at the origin

T1(x) = T2(x) = Id(x) = Id(x) + 0,

the Lie bracket is

[ax + b,Ax + B] = [a,A]x + (aB−Ab).

In general case, we can understand the covering transform in the following
way: We start from q0 in B1(0) ⊂ Tp(M). Then exponential map at p maps
the point p1 ∈ B1(0) to p ∈ M . The derivative maps the tangent vector
at p1 to the tangent vector at p. Let Ã be the inverse of the map. Then
F (q0) = expp1

(Ãq0). In the Ricci flat case, by Lemma 2.3, gij as well as
its m-th derivatives are bounded by C(m,n)Λ2. So the Christoffel symbols
are also bounded as well as their higher derivatives. By the property of
ODE, all the parallel transports and the geodesic equations have the same
kind of bound as well as their higher derivatives. In particular, the difference
between Ã and the parallel transport A along the geodesic loop is bounded by
C(n)Λ2. The difference between F (q0) and p1+Ãq0 is bounded by C(n)Λ2. In
conclusion, the difference between F (q0) and p1 +Aq0 is bounded by C(n)Λ2

while the difference between their higher derivatives is bound by C(m,n)Λ2.
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From now on, we are back to the gravitational instanton M with the point
o. We will rescale the ball Bdist(o,p)/2(p) to a ball with radius 1 and apply the
theory in this section. In particular, the metric on the local covering space is
δij + O′(r−ε). The difference between the local covering transform with the
linear map given by the length, direction, and the parallel transport along
the geodesic loop is O′(r1−ε).

For short loops, there is a better control given by Buser and Karcher as
Proposition 2.3.1 in [13]. They proved that the rotation (i.e. parallel trans-
port) part of the Gromov’s product of γ1 and γ2 is given by the calculation in
the flat case with error bounded by Cr−2−εL(γ1)L(γ2), while the error of the
translation (i.e. length) part is bounded by Cr−2−εL(γ1)L(γ2)(L(γ1)+L(γ2)).

2.3 Control of parallel transport along geodesic loops

In this section, we will use ODE comparison to study the sliding of geodesic
loops and the variation of the parallel transports along them. First let us
recall a well known Jacobi equation

J ′′(t) = (
t

2
)−2−εJ(t).

satisfying the following property:

Proposition 2.4. ( c.f. Theorem C of [32])Let J be the solution of the
Jacobi equation with

J(2) = 0, J ′(2) = 1.

Then

1 ≤ J ′(t)↗ J ′(∞)(:= lim
t→∞

J ′(t)) ≤ exp

∫ ∞
2

(t− 2)(
t

2
)−2−εdt <∞

and
t− 2 ≤ J(t) ≤ J ′(∞)(t− 2).

Suppose γ is a geodesic loop based at p ∈ M , α is an arc-length param-
eterized curve passing through p. Suppose r = dist(0, p) = r(p) > 3. As
discussed before, we slide γ along α and get a 1-parameter family of geodesic
loops γt based at α(t). Then their length and parallel transport along them
satisfy the following:
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Proposition 2.5. Suppose the length of the geodesic loop γt is L(t) and the
parallel transport along γt is P (t) : Tα(t) → Tα(t). Then,

|L′(t)| ≤ |P (t)− Id|

and
|P (t)− Id|′ ≤ L(t) ·max

x∈γt
|Rm|(x).

Proof. Let γ(s, t) = γt(s), then γ(0, t) = γ(1, t) = α(t) and for any fixed t,
γ(s, t) is a geodesic. So ∂s := γ∗(

∂
∂s

) and ∂t := γ∗(
∂
∂t

) satisfy

∇∂s∂s = 0, [∂s, ∂t] = ∇∂s∂t −∇∂t∂s = 0, L(t) =

∫ 1

0

|∂s|ds.

Then

dL(t)

dt
|t=t0 =

∫ 1

0

< ∇∂t∂s, ∂s >

< ∂s, ∂s >1/2
ds

=
1

L(t0)

∫ 1

0

< ∇∂s∂t, ∂s > ds

=
1

L(t0)

∫ 1

0

∇∂s < ∂t, ∂s > ds

=
< ∂t, ∂s > |s=1

s=0

L(t0)
=< α′(t0),

(P − Id)[∂s(0, t0)]

L(t0)
> .

So
|L′| ≤ |P − Id|.

Moreover, given any unit length vector V at γ(0, t0), we can parallel
transport it along α(t) = γ(0, t) and then parallel transport it along γt.
Then P (t)(V (0, t)) = V (1, t). So

||P (t)− Id|′| ≤ |∇∂tV (1, t)| ≤
∫ 1

0

|∇∂s∇∂tV |

=

∫ 1

0

|R(∂s, ∂t)V (s, t)| ≤ max
x∈γt
|Rm|L.
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Theorem 2.6. For any geodesic loop based at p with r = r(p) = d(p, o) > 3
and length L ≤ C1r, the parallel transport along the loop satisfies

|P − Id| ≤ J ′(r)

J(r)
L ≤ C2

L

r
.

Here the constant

C1 =
1

2
inf
t>2

t

J(t)
inf
t>3

J(t)

t
, C2 = sup

t>3
J ′(t) sup

t>3

t

J(t)
.

Proof. If we choose α(t) so that ∂t = P−Id
|P−Id|

∂s
L(t0)

, we can get L′(t) = |P (t)−Id|.
It’s some kind of gradient flow. The other fundamental equation is that
|P (t) − Id|′ is bounded by the product of L and the maximal Riemannian
curvature along the geodesic loop.

Given p whose distance to origin r = r(p) = d(p, o) > 3 and any geodesic

loop based at p with length smaller than C1r <
r
2
, if |P −Id| > J ′(r)

J(r)
L, we can

slide the curve back along the gradient flow. In other words, we start from
α(r) = p and get a curve α : [t1, r]→M as well as the corresponding γt. Let
t1 be the biggest t1 such that one of the following happens: (1) L(t1) = t1/2;
(2) L′(t1) = |P − Id| = 0 or L(t1) = 0; (3) t1 = 2. Then when t ∈ (t1, r),
we have 0 < L(t) < t/2 and t > t1 ≥ 2. So the distance to the origin
is at least t − L(t) > t/2. The curvature is bounded by (t/2)−2−ε and the
conjugate radius is at least π( t

2
)1+ε/2 > t

2
> L(t). So the geodesic loop can

exist without going out of the conjugate radius. Combining two fundamental
equations together,we have

L′′(t) ≤ L(t)max|Rm| ≤ L(t)(t− L(t))−2−ε < L(t)(
t

2
)−2−ε,∀t ∈ (t1, r).

Therefore (L′J−J ′L)′ = L′′J−J ′′L < 0. By our hypothesis L′(r) > J ′(r)
J(r)

L(r).

So L′(t)J(t) − J ′(t)L(t) > 0 ⇒ (L(t)
J(t)

)′ > 0 ⇒ L(t)
J(t)

< L(r)
J(r)

,∀t ∈ [t1, r). So

L(t1) < L(r)
J(r)

J(t1) ≤ C1
r

J(r)
J(t1)
t1
t1 ≤ t1

2
and L′(t1)J(t1) > J ′(t1)L(t1) ≥ 0. In

other words, t1 = 2. But then L(2) < L(r)
J(r)

J(2) = 0. It’s a contradiction.

Similarly, we can prove theorem 1.1:

Theorem 2.7. For gravitational instanton M , the following conditions are
equivalent:
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(1) M is flat;
(2) M has trivial holonomy;
(3) M splits as R4−k × Tk, k = 0, 1, 2, 3.

Proof. Using the method in the proof of Theorem 2.6, it’s easy to see that any
flat gravitational instanton M must have trivial holonomy. It’s well known
that M is isometric to the Euclidean space quotient by covering transforms.
However, since the holonomy is trivial, any covering transform must be a
pure translation. Therefore, M is isometric to the product of the Euclidean
space with a flat torus. Conversely, it’s trivial that (2) or (3) implies (1).

For any fixed geodesic ray α starting from o, any number r > 3 and any
geodesic loop γ based at p = α(r) with length L ≤ C1r, when we slide it along
the ray towards infinity, it will always exist i.e. stay within the conjugate
radius. This follows from the following rough estimate:

Corollary 2.8. The length L(t) of the geodesic loop based at α(t) is smaller
than t/2 for all t ≥ r.

Proof. By Proposition 2.5 and Theorem 2.6, we know that L′(t) ≤ J ′(t)
J(t)

L(t).
So

(lnL)′ ≤ (ln J)′ ⇒ L(t) ≤ L(r)

J(r)
J(t) ≤ t

2
,∀t ≥ r > 3.

We will derive a better estimate and use it to prove Theorem 1.2.

2.4 Classification of tangent cone at infinity

To under how the length of geodesic loops varies, we first need to understand
the structure at infinity. Our assumption of the decay of the curvature means
that we are at a manifold with asymptotically nonnegative curvature. The
end of such a manifold is well studied and goes back to Kasue [44]. Here, a
complete connected noncompact Riemannian manifold M with a base point
o is called asymptotically nonnegative curved if there exists a monotone non-
increasing function k : [0,∞) → [0,∞) such that the integral

∫∞
0
tk(t)dt

is finite and the sectional curvature of M at any point p is bounded from
below by −k(dist(o, p)). Of course, the gravitational instanton M satisfies
this condition.
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However, Drees [27] pointed out a gap in the argument of [44]. It was
smoothed by Mashiko, Nagano and Otsuka [55]. They proved the following
theorem:

Theorem 2.9. (Corollary 0.4 of [55]) For any manifold M with asymptot-
ically nonnegative curvature, there exists a metric cone C(S(∞)) such that
(M, t−2g) converges to C(S(∞)) in Gromov-Hausdorff sense when t goes to
infinity. In other words, the tangent cone at infinity is unique and must be a
metric cone C(S(∞)).

Assuming the faster than quadratic curvature decay condition, the same
theorem was stated without proof by Petrunin and Tuschmann in [67].

The following additional thing is true for gravitational instantons:

Theorem 2.10. For any non-flat gravitational instanton M , S(∞) has only
one connected component.

Proof. If S(∞) has more than one connected components, we can find a large
enough ballBR and two sequences pi, qi such that d(o, pi)→∞, d(o, qi)→∞,
and any minimal geodesics connecting pi and qi must pass through BR for
any i large enough. By compactness of BR, the minimal geodesics converge to
a line. Notice that M is Ricci-flat, so the splitting theorem [17] implies that
M must be isometric to the product of R and a 3-manifold. The 3-manifold
is also Ricci-flat and therefore flat. So M must be flat.

As a corollary, the following is true:

Corollary 2.11. Fix a ray γ starting from o. There is a constant C3 such
that for any point p in the large enough sphere Sr(p), there is a curve within
B1.1r(p) \B0.9r(p) connecting p and γ(r(p)) with length bounded by C3r(p).

There is more information about the tangent cone at infinity of the grav-
itational instanton M .

Theorem 2.12. The tangent cone at infinity C(S(∞)) of the gravitational
instanton M must be a flat manifold with only possible singularity at origin.

Proof. Pick p ∈ C(S(∞)) − {o}, we may find pi ∈ M such that pi → p in
Gromov-Hausdorff sense. Pick some small enough number κ. For i large
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enough the ball (Bκri(pi), r
−2
i g) is Bκ/Gi, where Bκ is the ball in the Eu-

clidean space with metric pulled back by exponential map, and Gi is the
group of local covering transforms. By Fukaya’s result in [30], Gi converge
to some Lie group G and Bκ/Gi converge to Bκ/G. So G is a subgroup of
R4 o SU(2) ≤ Iso(R4). The action of G on Bκ corresponds to the action of
Gi on Bκri(pi). So if an element g ∈ G − {Id} has a fixed point in Bκ, the
geodesic loops in Bκri(pi) corresponding to the sequence gi ∈ Gi converging
to g would have large |P − Id| compared to their lengths by the relationship
between geodesic loops and covering transforms. This contradicts Theorem
2.6. So the action of G is free. Therefore it’s enough to look at the Lie
algebra g i.e. the infinitesimal part of G to determine the local geometry.
We have the following cases:

(0) dimG = 0. We get R4 locally.
(1) dimG = 1. Then g is generated by x → ax + b, where a ∈ su(2).

Notice that SU(2) can be naturally identified with the unit sphere of quater-
nions. Then su(2) would be the space of pure imaginary quaternions. So the
Lie bracket is exactly twice of the cross product in R3.

a must be O or invertible by the property of quaternions. When a = O,
G consists of pure translations, we get R3.

Otherwise, ax+b = a(x+a−1b). The fixed point −a−1b must be outside

Bκ. G is generated by x→
(
eiθ 0
0 e−iθ

)
(x + a−1b)− a−1b. If we take the

1-1 correspondence x→ x + a−1b = (x+ iy, z + iw)→ (x+ iy, z − iw),then

G becomes

(
eiθ 0
0 eiθ

)
. So it’s cone over S3/S1, where S3/S1 is the Hopf

fiberation. So it’s cone over S2, i.e.R3, too.
(2) dimG = 2. Any 2-dimensional Lie algebra has a basis e1, e2 satisfying

[e1, e2] = ce1. For g, e1(x) = ax + b, e2(x) = Ax + B must satisfy

[a,A]x + (aB−Ab) = [ax + b,Ax + B] = ce1 = c(ax + b).

Here A, a ∈ su(2). If a = O, Ab = −cb. So A = O. G consists of pure
translations, we get R2. If a 6= O, then since [a,A] = ca, we must have
a = A, and c = 0. So aB = Ab = ab⇒ B = b, contradiction.

(3) dimG = 3. We get R1.

Theorem 2.13. The tangent cone at infinity C(S(∞)) must be the following:
(ALE) R4/Γ, where Γ is a discrete subgroup of O(4) acting freely on S3

(ALF-Ak) R3
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(ALF-Dk) R3/Z2=cone over RP2

(ALG) flat cone with angle ∈ (0, 2π]
(ALH) R+

Proof. By Theorem 2.9, the tangent cone at infinity is unique and must be
a metric cone C(S(∞)). By Theorem 2.10 and Theorem 2.12, S(∞) is a
connected manifold since we’ve assumed that M is not flat.

(ALH) If S(∞) is 0-dimensional, C(S(∞)) must be R+.
(ALG) If S(∞) is 1-dimensional, C(S(∞)) is a flat cone. If the cone

angle is bigger than 2π, it contains a line, so there is a contradiction from
the almost splitting theorem. (c.f. Theorem 6.64 of [15])

(ALF) If S(∞) is 2-dimensional, S(∞) must be a 2-manifold with con-
stant positive curvature 1. So its universal cover is the space form S2. So
S(∞) = S2/Γ, where the group of covering transforms Γ is a subgroup of
Iso(S2) = O(3) acting freely. Now pick any element A in Γ, A2 ∈ SO(3).
However, any element in SO(3) has a fixed point, so A2 = Id. So A = ±Id.
Therefore S(∞)=S2(the Ak case) or RP2(the Dk case).

(ALE) If S(∞) is 3-dimensional, S(∞) must has constant sectional cur-
vature, too. Its universal cover is the space form, too. So C(S(∞)) = R4/Γ,
where Γ is a discrete subgroup of O(4) acting freely on S3

From now on, we will temporarily use the terminology ALE, ALF, ALG
and ALH to distinguish different type of the (unique) tangent cone at infinity.
Those terminologies only make sense as in Definition 2.2 after we prove more
properties.

Theorem 2.14. In the ALE case, M has maximal volume growth rate and
it’s in Kronheimer’s list.

Proof. By Colding’s volume convergence theorem [24], M4 has maximal vol-
ume growth rate. Moreover, the faster than quadratic curvature decay con-
dition ensures that

∫
M
|Rm|2 <∞. So by Bando-Kasue-Nakajima’s work [5],

M is ALE of order 4. So, Kronheimer’s works in [48] and [49] apply.

2.5 Decomposing geodesic loops into basis

Before proceeding, we need a theorem about Lie groups. For any Lie group
H, the exponential map exp from a small ball Bκ = Bκ(o) in its Lie algebra
h to H is a bijection. We call the inverse of exp to be log. If there is no
ambiguity, the length of g ∈ H will mean | log g|.
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Theorem 2.15. Suppose H is a Lie group, Gi are discrete subgroups of H
converging to a k-dimensional closed Lie subgroup G of H. Then for i large
enough and κ small enough, there exist k elements gi,j(j=1,2,...,k) such that
| log gi,j| converge to 0 as i goes to infinity and all element in Bκ(Id) ∩ Gi

is generated by gi,j. What’s more, for any fixed large enough i, the angle
between log gi,j are bounded from below by a small positive number indepen-
dent of i. In addition, the commutator g−1

i,a g
−1
i,b gi,agi,b is generated by gi,c,

c = 1, 2, ...,min{a, b} − 1. In particular, gi,1 commutes with others.

Proof. Let d be the dimension of H. First of all, choose κ small enough such
that for all v, w ∈ h ∩B

103d+5κ
,

| log(exp(v) exp(w))− v − w| ≤ 10−3d+6

κ−1|v||w|.

Now for all i large enough, we pick the shortest element gi,1 in Gi.
Let Gi,0 = {Id}. Suppose inductively, we’ve picked gi,1, gi,2, ..., gi,j satis-

fying
lim
i→∞
| log gi,l| = 0, l = 1, 2, ..., j,

g−1
i,a g

−1
i,b gi,agi,b ∈ Gi,min{a,b}−1, a, b = 1, 2, ..., j

| log gi,l| ≤ 103l |ProjV ⊥i,l−1
(log gi,l)|, l = 1, 2, ...j,

and
| log gi,l1| ≤ 103l2−3l1 | log gi,l2|, 1 ≤ l1 ≤ l2 ≤ j,

where Vi,l = Span{log gi,1, ... log gi,l} and h = Vi,l ⊕ V ⊥i,l is the orthogonal
decomposition for all l = 1, 2, ..., j. Define Gi,j be the set

Gi,j = {gn1
i,1...g

nj
i,j :

j∑
l=1

|nl log gi,l| ≤ 103d+5−3j+4

κ}.

It is a local group in the sense that for all g1, g2 ∈ B
103d+5−3j+5+2κ

∩ Gi,j,
g1g2, g

−1
1 ∈ Gi,j. Moreover, for all g1, g2, g3 ∈ B

103d+5−3j+5+1κ
∩ Gi,j, there

product and inverse g1g2, g
−1
1 ∈ B103d+5−3j+5+2κ

∩ Gi,j. They satisfy the rela-
tions (g1g2)g3 = g1(g2g3) and g−1

1 g1 = g1g
−1
1 = Id.

If
Gi,j ∩B103d+5−3j+5

κ
= Gi ∩B103d+5−3j+5

κ
,

we stop. Otherwise, let gi,j+1 be the element with shortest ProjV ⊥i,j(log gi,j+1)

among all the element g̃i,j+1 ∈ Gi ∩ B103d+5−3j+5
κ
\ Gi,j whose length is not

longer than any other elements in g̃i,j+1Gi,j.

22



Let ProjVi,j(log gi,j+1) =
∑j

l=1 ci,j,l log gi,l, then there exist integers ni,j,l

such that ci,j,l−ni,j,l ∈ (−0.5, 0.5]. If |ProjVi,j(log gi,j+1)| ≥ 0.7
∑j

l=1 | log gi,l|,
then

|
j∑
l=1

ci,j,l log gi,l| ≥ 1.4|
j∑
l=1

(ci,j,l − ni,j,l) log gi,l|,

so

|
j∑
l=1

ci,j,l log gi,l| − |
j∑
l=1

(ci,j,l − ni,j,l) log gi,l| ≥
1

6
|

j∑
l=1

ni,j,l log gi,l|

by triangle inequality. By induction assumption,

|
j∑
l=1

ni,j,l log gi,l| ≥ |ni,j,jProjV ⊥i,j−1
(log gi,j)| ≥ 10−3j |ni,j,j|| log gi,j|.

So

|
m∑
l=1

ni,j,l log gi,l| ≤ 10
∑j
l=m+1(3l+1)|

j∑
l=1

ni,j,l log gi,l|

and

|ni,j,m log gi,m| ≤ 103m+
∑j
l=m+1(3l+1)|

j∑
l=1

ni,j,l log gi,l|.

So
j∑
l=1

|ni,j,l log gi,l| ≤ 103j+1−2|
j∑
l=1

ni,j,l log gi,l|.

Let hi,j+1 = |ProjV ⊥i,j(log gi,j+1)|, then√√√√h2
i,j+1 + |

j∑
l=1

ci,j,l log gi,l|2 −

√√√√h2
i,j+1 + |

j∑
l=1

(ci,j,l − ni,j,l) log gi,l|2

23



is bounded by the error term in the calculation of gi,j+1(gi,j)
−ni,j ...(gi,1)−ni,1 .

So

10−3j+1 ∑j
l=1 |ni,j,l log gi,l|

| log gi,j+1|
|

j∑
l=1

ci,j,l log gi,l|

≤ 1

2| log gi,j+1|
(|

j∑
l=1

ci,j,l log gi,l|2 − |
j∑
l=1

(ci,j,l − ni,j,l) log gi,l|2)

≤

√√√√h2
i,j+1 + |

j∑
l=1

ci,j,l log gi,l|2 −

√√√√h2
i,j+1 + |

j∑
l=1

(ci,j,l − ni,j,l) log gi,l|2

≤10−3j+2

j∑
l=1

|ni,j,l log gi,l|.

It follows that the induction assumption is also true for j + 1 except the
statement for the commutator and the length of log gi,j+1.

If |ProjVi,j(log gi,j+1)| < 0.7
∑j

l=1 | log gi,l|, then we claim that

|ProjV ⊥i,j(log gi,j+1)| > 0.2|ProjV ⊥i,j−1
(log gi,j)|.

Otherwise, there exists an integer ni,j such that

|ProjV ⊥i,j−1
(log gi,j+1g

−ni,j
i,j )| < 0.8|ProjV ⊥i,j−1

(log gi,j)|.

It’s a contradiction with the definition of gi,j.
By induction assumption,

| log gi,j| ≤ 103j |ProjV ⊥i,j−1
(log gi,j)|

and
| log gi,l| ≤ 103j−3l | log gi,j|, l = 1, 2, ..., j.

So

| log gi,j+1| ≥ 0.2|ProjV ⊥i,j−1
(log gi,j)| ≥

103l−2(3j)

5
| log gi,l| ≥ 103l−3j+1| log gi,l|,

and

| log gi,j+1| ≤ (3.5

j∑
l=1

102(3j)−3l + 1)|ProjV ⊥i,j(log gi,j+1)|

< 103j+1|ProjV ⊥i,j(log gi,j+1)|.
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Thus, no matter |ProjVi,j(log gi,j+1)| is smaller than 0.7
∑j

l=1 | log gi,l| or
not, we can achieve the induction assumption for j+ 1 except the proof that
limi→∞ | log gi,j+1| = 0 and g−1

i,a g
−1
i,b gi,agi,b ∈ Gi,min{a,b}−1. The first statement

is true because Gi converges to G. The second statement is true because
the length of the commutator is bounded by C| log gi,a|| log gi,b| and therefore
much smaller than both | log gi,a| and | log gi,b| if i is large enough.

After iterations, the induction procedure must stop because the dimen-
sion of h is finite. The number of elements will be exactly the same as the
dimension of G because Gi converge to G.

Remark. If we look at the above proof carefully, we know that we only used
elements close enough to identity. Therefore, it’s enough to assume that
Gi have a local group structure near identity rather than being a group.
Actually the theorem is even true if the product of a, b ∈ Gi contains an
error controlled by Ci|a||b|, where Ci converge to 0 as i goes to infinity. In
particular, the local group Gi in Theorem 2.12 satisfy the Theorem. For
those local groups, since the rotation part is bounded by the translation part
by Theorem 2.6, the length of the geodesic loop is equivalent to the length
in the above theorem.

Now we are ready to go back to study the length of short geodesic loops.
In the rest of this section, we fix a geodesic ray α from o to infinity and
start doing analysis about geodesic loops based on the ray. (M,α(t), t−2g)
converges to (C(S(∞)), p∞, g∞) in pointed Gromov-Hausdorff topology.

Theorem 2.16. In the ALF-Ak or ALF-Dk cases, there is a geodesic loop
γ1 such that when we slide it along the fixed ray to get γr,1 based at α(r), its
length

L(r) := L(γr,1) = L∞ +O(r−ε)

and the parellel transport along it satisfies

|P − Id| = O(r−1−ε).

What’s more, any loop based at α(r) with length smaller than κr is generated
by γr,1 in the sense of Gromov.

Proof. In this case, (Bκr(α(r)), r−2g) converge to (Bκ(p), g∞) ⊂ C(S(∞)) by
Theorem 2.12. We may make κ even smaller to apply Theorem 2.15. We get
γr,1 corresponding to gr,1 in Theorem 2.15. Then any loop based at α(r) with
length smaller than κr is generated by γr,1 in the sense of Gromov. There
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is an ambiguity to choose γr,1. The same loop with reverse direction would
play the same role. However, we can choose them consistently so that they
are the sliding of each other along the ray. By Theorem 2.15,

lim
r→∞

L(r)

r
= 0.

So the parallel transport along the loop converges to identity by Theorem
2.6. It follows that

|P − Id|(r) = |P − Id|(∞)−
∫ ∞
r

|P − Id|′dt

≤ 0 +

∫ ∞
r

CLt−2−εdt

≤ O(r−ε).

by the equation that ||P − Id|′| < CLr−2−ε. Plug this back to the equation

|L′| ≤ |P − Id|,

we obtain

L(r) = L(r0) +

∫ r

r0

L′(t)dt ≤ L(r0) +

∫ r

r0

|P − Id|dt

≤ L(r0) +

∫ r

r0

Ct−εdt = L(r0) + C(r1−ε − r1−ε
0 ).

In turn |P − Id| ≤ O(r−2ε), L ≤ O(r1−2ε). · · · Through finite steps of itera-
tions, we have

L = L∞ +O(r−ε)

and
|P − Id| ≤ O(r−1−ε).

Claim: The limit length L∞ = limt→∞ Lt > 0. Otherwise, since L = O(r−ε),
after the integration from infinity to r, we can easily obtain

|P − Id| ≤ O(r−1−2ε)

After a finite number of iterations, we have

L = O(r−1−ε) and |P − Id| ≤ O(r−2−2ε).
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Now let

f(r) =
∞∑
k=0

2(2+ε)kr−kε

ε(ε+ 1)2ε(2ε+ 1)...kε(kε+ 1)
,

Then

f ′′(r) = (
r

2
)−2−εf(r), f(r) = 1 +O(r−ε), f ′(r) = O(r−1−ε).

So for all R large enough, we have

L(R) < R−1f(R)

and
|L′(R)| < R−1|f ′(R)|.

By ODE comparison, we have L(r) < R−1f(r). Let R go to infinity, L(r) = 0,
this is a contradiction. So L∞ > 0.

Theorem 2.17. In the ALG case, there are commutative geodesic loops γ1, γ2

such that when we slide them along the fixed ray α to get γr,1, γr,2 based at
α(r), their length

Lj(r) := L(γr,j) = L∞,j +O(r−ε)

and parallel transports along them satisfy

|Pγr,j − Id| = O(r−1−ε).

What’s more,any loop based at α(r) with length smaller than κr is generated
by γr,1 and γr,2 in the sense of Gromov.

Proof. We proceed as in the proof of Theorem 2.16. We get two loops γr,1
and γr,2 based at α(r). In this case, the ambiguity is as large as GL(2,Z). In
other words, γr,1 and γr,2 may jump to γ100

r,1 γ
99
r,2 and γ101

r,1 γ
100
r,2 respectively after

the sliding. Actually GL(2,Z) is a noncompact group, so we can’t estimate
the length of the geodesic loops obtained by sliding directly. However, we
can still get the same conclusion from the fact that γr,1 and γr,2 commute
and that they form a detectable angle.

Suppose the manifold is flat, then the covering transforms corresponding
to γr,1 and γr,2 are linear maps T1(x) = ax + b, T2(x) = Ax + B, where
a,A ∈ SU(2),b,B ∈ C2. So (Note that by the construction |b| < C|B|)

x = T−1
1 T−1

2 T1T2(x) = a−1A−1aAx + a−1A−1((a− Id)B + (Id−A)b).
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On the manifold, we need to count the error caused by curvature. So actually

|(a− Id)B− (A− Id)b| ≤ Cr−2−ε|b||B|2, |a−1A−1aA− Id| < Cr−2−ε|b||B|.

Now if |a− Id| > r−1−ε/3|b|, then

|A− Id||b| ≥ |a− Id||B| − Cr−2−ε|b||B|2.

It follows that |A − Id| > c · r−1−ε/3|B| for some constant c. Thus, if r is
large enough, the two vectors (A − Id)b and (a − Id)B have almost the
same angle since their difference has much smaller length. Note that both
A and a are very close to identity, so A− Id and a− Id are almost log(A)
and log(a) respectively. So Theorem 2.15 is reduced to that (a− Id,b) form
a detectable angle with (A − Id,B). Therefore, A − Id and a − Id also
form a detectable angle because (A− Id)b has almost the same angle with
(a− Id)B.

Since the Lie algebra in su(2) is simply the cross product and all the
matrices are very close to identity

|a− Id||A− Id| < C|a−1A−1aA− Id| < Cr−2−ε|b||B|.

This is a contradiction. So

|a− Id| ≤ r−1−ε/3|b|.

Similarly
|A− Id| ≤ r−1−ε/3|B|.

We’ve proved that for γr,1 and γr,2, |P − Id| ≤ r−1−ε/3L. For any loop
with length smaller than κr, we have |P − Id| ≤ Cr−ε/3. When we slide γr,j
along the fixed ray towards infinity, the parallel transport along the limiting
loops must be trivial. The proof in Theorem 2.16 then implies our conclusion.
Note that the ambiguity of choosing γr,j now can be removed by requiring
that they are the sliding of loops along α.

Theorem 2.18. In the ALH case, there are commutative geodesic loops
γ1, γ2, γ3 such that when we slide them along the fixed ray α to get γr,1, γr,2, γr,3
based at α(r), their length Lj(r) := L(γr,j) = L∞,j+O(r−ε) and parallel trans-
ports along them satisfy |Pγr,j− Id| = O(r−1−ε). What’s more, any loop based
at α(r) with length smaller than κr is generated by γr,1,γr,2 and γr,3 in the
sense of Gromov.
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Proof. We can proceed exactly in the same way as Theorem 2.17. The only
thing we need to prove is that γr,2 commutes with γr,3. It follows from the
fact that the length of the commutator converge to 0 since the curvature and
therefore the errors converge to 0 as r goes to 0.

2.6 From geodesic loops to Riemannian fiberation

In [16], Cheeger, Fukaya and Gromov first introduced the N-structure i.e.
nilpotent group fiberations of different dimensions patched together consis-
tently. (Torus is the simplest nilpotent group.) In [58], Minerbe followed
their method and improved the result for circle fiberations under a strong
volume growth condition in ALF case. In their papers they all view R4−k×Tk
as the Gromov-Hausdorff approximation of R4−k. In this subsection, we also
include the Tk factor in the analysis. Therefore, we are able to obtain a
better estimate without any volume assumptions.

In the last subsection, we get geodesic loops γp,i along a ray. They can
be represented by s ∈ [0, 1] → expp(svi(p)) for some vectors vi(p) in the
tangent space of the base point p. When p goes to infinity, the vectors vi(p)
converge to some limits vi ∈ R4. Actually, the difference between vi(p) and
vi is bounded by O(r−ε). Define the lattice Λ by Λ = ⊕ki=1Zvi and the
torus Tk = (⊕ki=1Rvi)/Λ with the induced metric. From the estimates in the
last subsection and the estimates in the last paragraph of Section 2.1 (c.f.
Proposition 2.3.1 of [13]), it’s easy to see that for

∑k
i=1 aivi ∈ Λ ∩ Bκr(p),

the translation part of the Gromov product
∏k

i=1 γ
ai
p,i is

∑k
i=1 aivi with error

bounded by O(r1−ε) while the rotation part is bounded by O(r−ε). So the
lattice Λ almost represent the geodesic loops whose length is smaller than
κr(p).

By Proposition 2.5, Corollary 2.11, the estimates in Theorem 2.16, The-
orem 2.17 or Theorem 2.18, we can slide the geodesic loops γp,i along a path
within B1.1r(o)\B0.9r(o) to get geodesic loops γp,i over the whole manifold M
except a compact set K. It satisfies all the above properties. The choice of
path is not unique, so after sliding along different paths, γp,i may be different.
However, all the differences come from a change of basis in Λ. Locally, we
can assume that γp,i are well defined.

Theorem 2.19. There exists a diffeomorphism from Bκr(p) to

Bκr(0)× Tk ⊂ R4−k × Tk,
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such that g = the pull back of the flat metric + O′(r−ε).

Proof. First of all we look at the map exp : Tp → M . Any q ∈ Bκr(p) has
lots of preimages. Choose one preimage q0, then all the other preimages are∏k

i=1 F
ai
i (q0), where Fi are the covering transforms corresponding to γi, and

ai are integers. We know that
∏k

i=1 F
ai
i (q0) is actually q0 +

∑k
i=1 aivi with

error in O′(r1−ε). Define

f(q) = πTk

∑
χ(

10|
∏k
i=1 F

ai
i (q0)|

κr(p)
)(
∏k

i=1 F
ai
i (q0)−

∑k
i=1 aivi)∑

χ(
10|

∏k
i=1 F

ai
i (q0)|

κr(p)
)

∈ R4−k × Tk,

then it’s independent of the choice of q0. It’s easy to prove that using f , the
metric g= the pull back of the flat metric + O′(r−ε).

Lemma 2.20. We can find good covers {B 1
2
κr(pi)

(pi)}i∈I such that I can be
divided into I = I1 ∪ ... ∪ IN , and if i, j ∈ Il, l = 1, 2, ..., N , the intersection
Bκr(pi)(pi) ∩Bκr(pj)(pj) = ∅.

Proof. This kind of theorem was first proved in [16]. In our situation we
can choose maximal κ2l−1 nets in B(2l+1)−B(2l). Then volume comparison
implies the property.

Theorem 2.21. Outside a compact set K, there is a global fiberation and a
Tk invariant metric g̃ = g +O′(r−ε) whose curvature belongs to O′(r−2−ε)

Proof. By Lemma 2.20, we can first modify i ∈ I1 and j ∈ I2 so that they
are compatible. Then modify i, j ∈ I1, I2 and l ∈ I3 to make sure that they
are compatible. After N times, we’re done. So we start from a map

fij : Bκri(pi)× Tk → Bκrj(pj)× Tk.

fij(q, θ) = (f 1
ij(q, θ), f

2
ij(q, θ)) = fj ◦ f−1

i (q, θ).

Average it and get f̃ 1
ij : Bκri(pi)→ Bκrj(pj) by

f̃ij(q) =
1

Vol(Tk)

∫
Tk
f 1
ij(q, θ)dθ.

From the higher derivative control, we know that the distance from origin
to f 2

ij(q, θ) − f 2
ij(q, 0) − θ ∈ Tk is bounded by O(r−ε). (Here we view Tk as
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an abelian group.) For r large enough, we can lift it to Rk while keeping it
bounded by O(r−ε). Fix q and average it with respect to θ, then project it
back to Tk. We get a map f̃ 2

ij : Bκri(pi)→ Tk. Define

f̃ij : Bκri(pi)× Tk → Bκrj(pj)× Tk

by
f̃ij(q, θ) = (f̃ 1

ij(q), θ + f 2
ij(q, 0) + f̃ 2

ij(q)).

It’s easy to see that |∇mf̃ij| = O(r1−m−ε). We may glue the common part
using f̃ij. Now there are two metrics gFlat

i and gFlat
j . Choose a partition of

unity χi + χj = 1, |∇mχi| = O(r−m). Let g̃ = χig
Flat
i + χjg

Flat
j . It’s a Tk

invariant metric with |∇mg̃| = O(r−m−ε). Note that there are still two maps
from M to the gluing Bκri(pi)×Tk∪f̃ijBκrj(pj)×Tk: f̃ij ◦fi and fj. However,

their distance is bounded by O(r−ε). For r large enough, we can find out the
unique g̃-minimal geodesic γ satisfying γ(0) = f̃ij ◦ fi and γ(1) = fj. Then
γ(χj) gives a new map from M to Bκri(pi)×Tk ∪f̃ij Bκrj(pj)×Tk. Call that

f̃i ∪ f̃j.
In conclusion, we have a Tk-invariant metric h on

Bκri(pi)× Tk ∪f̃ij Bκrj(pj)× Tk

and
f̃i ∪ f̃j : M → Bκri(pi)× Tk ∪f̃ij Bκrj(pj)× Tk

with both |∇mh| = O(r−m−ε) and |∇m(f̃i ∪ f̃j)| = O(r1−m−ε).
After repeating everything for (Bκri(pi)×Tk ∪f̃ij Bκrj(pj)×Tk, g̃, f̃i ∪ f̃j)

and (Bκrl(pl) × Tk, gflat
l , fl), we can get a new big chart. After N times, we

are done.

Theorem 2.22. Outside K, there is a Tk-fiberation E over C(S(∞))−BR

and a standard Tk invariant metric h such that after the pull back by some
diffeomorphism h = g +O′(r−ε).

Proof. The metric g̃ can be written as

4−k∑
i,j=1

aij(x)dxi ⊗ dxj +
k∑
l=1

(dθl +
4−k∑
i=1

ηli(x)dxi)
2.
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The curvature of aij belongs to O′(r−2−ε). By the result of Bando, Kasue
and Nakajima [5], there is a coordinate at infinity such that the difference
between aij and the flat metric on C(S(∞))−BR belongs to O′(r−ε). So we
can assume that aij = δij without changing the condition g = g̃ + O′(r−ε).
Similarly, we can also replace ηlj(x) by any standard connection form. As
long as ηlj is still in O′(r−ε), we still have h = g + O′(r−ε). Therefore, we
only need to classify the torus fiberations over C(S(∞))− BR topologically
and give it a good enough standard metric h.

(ALF-Ak)When S(∞) = S2, the circle fiberation must be orientable. It’s
determined by the Euler class e.

When e = 0, we have the trivial product (R3−BR)× S1 as our standard
model.

When e = ±1, we have the Taub-NUT metric with mass m 6= 0: Let

M+ = ({(x1, x2, x3)|x2
1 + x2

2 + x2
3 ≥ R2} − {(0, 0, x3)|x3 < 0})× S1,

M− = ({(x1, x2, x3)|x2
1 + x2

2 + x2
3 ≥ R2} − {(0, 0, x3)|x3 > 0})× S1

Identify (x1, x2, x3, θ+) in M+ with (x1, x2, x3, θ− + sign(m)arg(x1 + ix2)) in
M−. We get a manifold M .

Let r =
√
x2

1 + x2
2 + x2

3, V = 1 + 2m
r
,

η = 4|m|dθ+ + 4m
(x3 − r)(x1dx2 − x2dx1)

2(x2
1 + x2

2)r

= 4|m|dθ− + 4m
(x3 + r)(x1dx2 − x2dx1)

2(x2
1 + x2

2)r
.

Then the Taub-NUT metric with mass m outside the ball BR(R >> |m|) is

ds2 = V dx2 + V −1η2

with
dx1 = I∗(V −1η) = J∗dx2 = K∗dx3.

There are lots of different conventions in the literatures. We use the
convention from [51], but we compute the explicit form of η using the formulas
in [40]. When m > 0, LeBrun [51] proved that M can be smoothly extended
inside BR and becomes biholomorphic to C2. For m < 0, the metric is only
defined outside BR, but it’s enough for our purpose.

There is a natural Z|e| action on Taub-NUT metric by θ± → θ± + 2π/|e|
for e = ±1,±2, ... The quotient of the Taub-NUT metric with positive mass
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m by Z|e| has Euler class e < 0, The quotient of the Taub-NUT metric
with negative mass m by Z|e| has Euler class e > 0. Notice that the mass
parameterm is essentially a scaling parameter. Only the sign ofm determines
the topology.

Usually, people let k = −e− 1 and call that a standard ALF-Ak metric.
(ALF-Dk) When

S(∞) = RP2 = {(x1, x2, x3) ∈ S2|x3 ≥ 0}/(x1, x2, 0) ∼ (−x1,−x2, 0)

topologically, the fiberation is the trivial fiberation over the disc after iden-
tifying (cos t, sin t, 0, θ) with (cos(t+ π), sin(t+ π), 0, f(t)− θ). So

f(π)− f(0) = −2eπ.

The integer e determines the topological type.
When e = 0, we have the trivial product (R3−BR)× S1 after identifying

(x, θ) with (−x,−θ) as our standard model.
When e is nonzero, it’s the quotient of the Taub-NUT metric outside BR

by the binary dihedral group D4|e| = {σ, τ |σ2|e| = 1, σ|e| = τ 2, τστ−1 = σ−1}
which acts by σ(x, θ±) = σ(x, θ± + π/|e|) and τ(x, θ+) = (−x, θ− = −θ+)
from M+ to M− with τ(x, θ−) = (−x, θ+ = π − θ−) from M− to M+. When
the mass is positive, e is negative. When the mass is negative, e is positive.

Usually, people let k = −e+ 2 and call that a standard ALF-Dk metric.
(ALG)When S(∞) = S1, the topological type is determined by the mon-

odramy. In other words, when we travel along S(∞), there is some rotation
but the lattice Λ = Z|v1| ⊕ Zτ |v1| is still invariant. So we have the equation(

a b
c d

)(
1
τ

)
=

(
eiθ 0
0 eiθ

)(
1
τ

)
.

for some (
a b
c d

)
∈ GL(2,Z).

So

0 = det

(
a− eiθ b
c d− eiθ

)
= ad− bc− (a+ d)eiθ + (eiθ)2.

Except the case where eiθ = ±1,we have ∆ = (a + d)2 − 4(ad− bc) < 0. So
ad− bc > 0, it must be 1 to make sure the matrix invertible. So a+ d = 0 or
a+d = ±1. The quadratic equation eiθ satisfies must be one of the following

x2 + x+ 1 = 0, x2 − x+ 1 = 0, and x2 + 1 = 0.
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We can solve eiθ accordingly:

−1± i
√

3

2
= ei

2π
3 , ei

4π
3 ;

1± i
√

3

2
= ei

π
3 , ei

5π
3 ; ±i = ei

π
2 , ei

3π
2 .

Therefore, the rotation angle θ = 2πβ and the lattice Λ = Z|v1| ⊕ Zτ |v1|
are in the following list: (We may replace τ by something like τ −1, but that
won’t change the lattice at all)

(Regular) Imτ > 0, β = 1.
(I∗0) Imτ > 0, β = 1/2.
(II) τ = e2πi/3, β = 1/6.
(II∗) τ = e2πi/3, β = 5/6.
(III) τ = i, β = 1/4.
(III∗) τ = i, β = 3/4.
(IV) τ = e2πi/3, β = 1/3.
(IV∗) τ = e2πi/3, β = 2/3.
Note that they all correspond to Kodaira’s classification of special fibers

of elliptic surface in [45]! If we identify (u, v) with (e2πiβu, e−2πiβv) in the
space {(u, v)|argu ∈ [0, 2πβ], |u| ≥ R} ⊂ (C− BR)× C/(Z|v1| ⊕ Zτ |v1|), we
have the standard flat hyperkähler metric h = i

2
(du∧dū+dv∧dv̄). Note that

SU(2) is transitive, so we can choose the complex structure a1I + a2J + a3K
properly so that ∂̄g = ∂̄h +O(r−ε)∇h.

(ALH)When C(S(∞)) = R+, h can be simply chosen to be the product
metric of [R,∞) and a flat 3-torus.

3 Weighted Analysis

In this section, we prove Theorem 1.3, Theorem 1.5 and Theorem 1.6. There
are two goals in this section: the improvement of asymptotic rate and the
construct of global holomorphic functions on gravitational instantons M with
prescribed growth order.

To improve the asymptotic rate, we view (M \K, g) as a deformation of
(E, h). We will show that the infinitesimal deformation space is a subspace
of three copies of anti-self-dual closed forms. The decay rate of such forms
can be improved automatically.
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To construct holomorphic functions, we start from the construction of
holomorphic functions on the standard models (E, h). Then it can be pulled
back to (M, g) and cut off to obtain an almost holomorphic function f on
M . To get rid of the error, we can solve the ∂̄ equation

∂̄g = ∂̄f

for g much smaller than f . If successful, then f − g will be the required
function. Unfortunately, it is hard for us to solve g directly. So instead, we
solve the equation

−(∂̄∂̄∗ + ∂̄∗∂̄)φ = ∂̄f.

The order of ∂̄∗φ and ∂̄φ will be smaller than the order of f if we solve φ
properly. Notice that there is a covariant constant (0,2)-form ω−, so the har-
monic (0,2)-form ∂̄φ is essentially a harmonic function. Generally speaking,
the order of growth of harmonic functions on M is the same as the harmonic
functions on E. So if we get f from the smallest nonconstant harmonic func-
tion on E, we expect ∂̄φ to be 0. Therefore f + ∂̄∗φ will be the required
global holomorphic function on M .

To relate infinitesimal deformation space with deformation space and to
solve the Laplacian equation for (0,1)-forms, we need some elliptic estimates.
The ALH case requires more care. To obtain a good estimate in ALH case,
we need to prove the exponential decay of curvature first. This is feasible
after we develop some elliptic estimates for the Riemannian curvature tensor.

Therefore, in the first two subsections, we develop the elliptic estimates
for tensors on a manifold M asymptotic to the standard model. We would
like to work on both forms and the curvature tensors on general M which
may not be hyperkähler. Therefore, we always use the Bochner Laplacian
−Tr∇∗∇ in order to apply the Bochner techniques. For gravitational instan-
tons, the Weitzenböck formula tells us that the Bochner Laplacian equals to
the operator −(∂̄∂̄∗ + ∂̄∗∂̄) for functions and (0,1)-forms. Then in the third
subsection, we use this estimate to prove the exponential decay of curva-
ture of ALH-instantons. This allows us to develop an elliptic estimate with
exponential growth weights in the fourth subsection. After the analysis of
infinitesimal deformation space in fifth subsection, we will prove theorem 1.3
in sixth subsection. In the seventh subsection, we use the mentioned tech-
nique to construct global holomorphic functions on ALF and ALG instantons.
Then in the eighth subsection, we use the same method to construct global
holomorphic functions on ALH instantons. In the last three subsections,
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we make use of the global holomorphic functions to prove Theorem 1.5 and
Theorem 1.6.

Analysis in weighted Hilbert space is well studied and perhaps some es-
timates in this section are already known to experts [41] [34] [57]. However,
to avoid problems caused by subtle differences between different settings, we
instead give a self-contained proof.

3.1 Weighted Hilbert space

In this subsection, we do some technical preparations. We will use the fol-
lowing weighted Hilbert spaces: (Please notice the change of the meaning of
r as in the end of Section 2.1.)

Definition 3.1. Define the L2
δ(M)-norm of a tensor by

||φ||L2
δ(M) =

√∫
M

|φ|2rδdVol.

Let L2
δ(M) be the space of tensors with finite L2

δ(M)-norm. Define ∇φ = ψ
in the distribution sense if for any ξ ∈ C∞0 , we have (φ,∇∗ξ) = (ψ, ξ). Let
H2
δ (M) be the space of all tensors φ such that

φ ∈ L2
δ(M),∇φ ∈ L2

δ+2(M),∇2φ ∈ L2
δ+4(M).

We can define the norm in this weighted space by

||φ||H2
δ (M) =

√∫
M

|φ|2rδdVol +

∫
M

|∇φ|2rδ+2dVol +

∫
M

|∇2φ|2rδ+4dVol.

The inner product is defined accordingly.

Proposition 3.2. For any δ, H2
δ (M) is a Hilbert space and the space of

compactly supported smooth tensors C∞0 (M) is dense.

Proof. The map φ→ φrδ/2 defines an isometry between L2
δ(M) and L2(M).

Since L2(M) is complete, L2
δ(M) is also complete. Now if |φi−φj|H2

δ (M) → 0,
then both |φi − φj|L2

δ(M) and |∇mφi −∇mφj|L2
δ+2m(M) go to 0, m = 1, 2. By

completeness, φi converge to φ in L2
δ(M), and ∇φi converge to ψ in L2

δ+2(M).
Now pick any test tensor ξ ∈ C∞0 (M),

(φ,∇∗ξ) = lim
i→∞

(φi,∇∗ξ) = lim
i→∞

(∇φi, ξ) = (ψ, ξ).
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So ∇φ = ψ in the distribution sense. The second derivative is similar. So φi
converge to φ in H2

δ (M), too.
For the density, let χR = χ(r/R). Then

|φ− φχ(r/R)|H2
δ (M) ≤C(

∫
M

|(1− χR)φ|2rδ +

∫
M

|(1− χR)∇φ|2rδ+2

+

∫
M

|∇χR||φ|2rδ+2 +

∫
M

|∇2χRφ|2rδ+4

+

∫
M

|(1− χR)∇2φ|2rδ+4 +

∫
M

|∇χR∇φ|rδ+4)

So χ(r/R)φ converge to φ in H2
δ (M) as R goes to infinity since |∇χR| ≤ C/R

and |∇2χR| ≤ C/R2. Now the standard convolution method implies the
density of C∞0 (M).

Lemma 3.3. For any harmonic tensor φ in H2
δ (M) and any large enough r,

|φ(y)| ≤ C||φ||H2
δ (M)r(y)−δ/2+k/2−2.

When −δ/2 + k/2− 2 < 0, φ = 0.

Proof. Given y ∈ M , suppose r(y) = 20R. Then the ball B2R(y) ⊂ M is
asymptotic to B2R(0)× Tk ⊂ R4−k × Tk. Consider the covering space R4 of
R4−k × Tk. If we apply Gilbarg and Trudinger’s Theorem 9.20 in [31] there,
we would get

|φ|2(y) ≤ C

|B2R(0)|

∫
B2R(0)

|φ|2.

So
|φ(y)| ≤ C||φ||H2

δ (M)r(y)−δ/2+k/2−2.

Now the maximal principle implies the last result in the lemma because
∆|φ|2 = 2|∇φ|2 ≥ 0.

Now we need an weighted L2-estimate.

Lemma 3.4. For the standard ALF, ALG or ALH metric in Theorem 2.22,
suppose φ is a smooth form supported in BR̃ − BR. Then as long as R is
large enough,∫

E

|∇2φ|2rδ+4 +

∫
E

|∇φ|2rδ+2 ≤ C(

∫
E

|∆φ|2rδ+4 +

∫
E

|φ|2rδ)
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Proof. We only need to prove the same thing on Bκrj(pj) ⊂ E uniformly.
It’s enough to consider the covering Bκrj(0) ⊂ R4. Notice that the difference
between h and flat metric is in O′(r−1). So we can simply use the Theorem
9.11 of [31].

3.2 Elliptic estimates with polynomial growth weights

In this subsection, we will prove the main estimate for tensors in the weighted
Hilbert space with polynomial growth weights.

We started the estimate for functions on Rd. Then we extend this to
Tk invariant tensors. We can improve it to general tensors on the standard
fiberation E. Then we can transfer that estimate back to any manifold M
asymptotic to the standard model. This main estimate allows us to prove
the solvablity of Bochner Laplacian equation for tensors.

Theorem 3.5. Suppose f is a real smooth function on Rd(d = 1, 2, 3, ...)
supported in an annulus, δ isn’t an integer. Then∫

Rd
|f |2rδdVol < C

∫
Rd
|∆f |2rδ+4dVol.

Proof. For the Laplacian on the standard sphere Sd−1, it is well know it
has eigenfunctions φj,l with eigenvalue −j(d − 2 + j), l = 1, 2, ..., nj. (For
d = 1,all nj are 0 except n0 = 1 and φj,1 = 1). We write f in terms of those
eigenfunctions

f ∼
∞∑
j=0

nj∑
l=1

fj,l(r)φj,l(θ),

where

fj,l(r) =

∫
Sd−1

f(r, θ)φj,l(θ)dVol.

Then

∆f ∼
∞∑
j=0

nj∑
l=1

(f ′′j,l +
d− 1

r
f ′j,l −

j(d− 2 + j)

r2
fj,l)φj,l(θ)

=
∞∑
j=0

nj∑
l=1

r−j−d+1[r2j+d−1(r−jfj,l)
′]′φj,l(θ).
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From integral by parts and the Cauchy-Schwartz inequality

(

∫ ∞
0

g2rµdr)2 =

(
−2

µ+ 1

∫ ∞
0

gg′rµ+1d r

)2

≤ 4

(µ+ 1)2

∫ ∞
0

g2rµdr

∫ ∞
0

(g′)2rµ+2dr.

So we get the Hardy’s inequality∫ ∞
0

g2rµdr ≤ 4

(µ+ 1)2

∫ ∞
0

(g′)2rµ+2dr.

Therefore∫ ∞
0

f 2
j,lr

δrd−1dr =

∫ ∞
0

(r−jfj,l)
2rδ+2j+d−1dr

≤ 4

(δ + 2j + d)2

∫ ∞
0

[(r−jfj,l)
′]2rδ+2j+d+1dr

=
4

(δ + 2j + d)2

∫ ∞
0

[r2j+d−1(r−jfj,l)
′]2rδ−2j−d+3dr

≤
16
∫∞

0
(r−j−d+1[r2j+d−1(r−jfj,l)

′]′)2rδ+4rd−1dr

(δ + 2j + d)2(δ − 2j − d+ 4)2
.

By Fubini Theorem and the Hilbert-Schmidt Theorem (When d = 2, we get
exactly the Fourier series, so the Hilbert-Schmidt theorem is reduced to the
Parseval’s identity) as long as δ is not an interger, we are done.

Theorem 3.6. Given any harmonic function f ∈ L2
δ(Rd\BR) for some δ, R,

there exist an integer j and some constants (c1, ..., cnj) 6= 0, such that

f = rj
nj∑
l=1

clφj,l(θ) +O′(rj−1)

when d ≥ 3. There may be additional ln r term when d = 2.

Proof. When d ≥ 3, write f in terms of eigenfunctions

f ∼
∞∑
j=0

nj∑
l=1

fj,l(r)φj,l(θ).
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Then the equation is reduced to

f ′′j,l +
d− 1

r
f ′j,l −

j(d− 2 + j)

r2
fj,l = 0.

So

f ∼
∞∑
j=0

nj∑
l=1

(aj,lr
j + bj,lr

2−d−j)φj,l(θ).

By Parserval’s identity, the growth condition of u implies that for large
enough j, aj,l = 0. If one of aj,l is not zero, let j be the largest number
such that aj,l 6= 0. Let U = f − rj

∑nj
l=1 aj,lφj,l(θ). Parseval’s identity again

implies that
∫
B2R\BR

|U |2 has increase rate bounded by C
∫
B2R\BR

|rj−1|2. By

Theorem 9.20 of [31], U = O′(rj−1). If all of aj,l are zero, we can do the
similar thing for bj,l. When d = 2, there may be additional ln r term.

To generalize them to estimates on E, we still use the decomposition of
any tensor φ into Tk-invariant part φ1 and the other part φ2 satisfying∫

π−1(x)

φ2 = 0

as in [57]. Notice that the Laplacian operator −Tr∇∗∇ and more gener-
ally any Tk-invariant operator L preserves this decomposition. Actually, let
Φt(x, θ) = (x, θ+ t) be the diffeomorphism in local coordinates, then L com-
mutes with Φ∗t . So

Φ∗t (Lφ1) = L(Φ∗tφ1) = Lφ1,

and ∫
t∈Tk

Φ∗t (Lφ2) = L

∫
t∈Tk

Φ∗tφ2 = 0.

Theorem 3.7. Suppose (E, h) is the product of [R,∞) and T3, φ is a smooth
T3-invariant tensor supported in BR̃−BR. Then as long as δ is not an integer,
for large enough R, ∫

E

|φ|2rδdVol < C

∫
E

|∆φ|2rδ+4dVol

Proof. Since the tangent bundle is trivial, the estimate of tensors is reduced
to the estimate of their coefficients, which has been proved in Theorem 3.5.
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Theorem 3.8. Suppose (E, h) is the standard ALG metric as in Theorem
2.22, φ is a smooth T2-invariant tensor supported in BR̃−BR. Then as long
as 30δ is not an integer, for large enough R,∫

E

|φ|2rδdVol < C

∫
E

|∆φ|2rδ+4dVol.

Proof. Let β = m
n

. Then it’s enough to do the same estimate on the n-fold

covering Ẽ − BR of E − BR. Ẽ − BR is the isometric product of the m-fold
covering of C− BR and T2. So it’s enough to prove Theorem 3.5 on the m-
fold cover of C−BR. If we write f ∼

∑∞
j=−∞ fj(r)e

iθj/m, where θ ∈ [0, 2mπ]
then all the works in the proof of Theorem 3.5 go through except that we
have to replace j by j/m there. So as long as mδ isn’t an integer, we are
done. (m = 1, 2, 3, 5)

Theorem 3.9. Suppose (E, h) is the standard ALF metric as in Theorem
2.22, φ is a smooth S1-invariant tensor supported in BR̃−BR. Then as long
as δ is not an integer, for large enough R,∫

E

|φ|2rδdVol < C

∫
E

|∆φ|2rδ+4dVol

Proof. By Theorem 2.22, it’s enough to consider the trivial product of R3

and S1 or the Taub-NUT metric with nonzero mass m. We use 1-forms as
example, the proof for general tensors is similar. In the trivial product case,
we can write any form as Adx1 + Bdx2 + Cdx3 + Ddθ. In the remaining
cases, any form can be written as Adx1 + Bdx2 + Cdx3 + Dη. In each case
we get 4 functions on R3−BR which can be filled in by 0 on BR to get smooth
functions on R3. So we can apply Theorem 3.5 to them. Since the Taub-NUT
metric is the flat metric with error O′(r−1), while η = dθ + O′(r−1) locally,
by Lemma 3.4, we can get our estimate as long as R is large enough.

Theorem 3.10. Suppose (E, h) is the standard ALF, ALG, or ALH metric
in Theorem 2.22, φ is a smooth tensor supported in BR̃ −BR. Then as long
as 30δ is not an integer, for large enough R,∫

E

|φ|2rδdVol < C

∫
E

|∆φ|2rδ+4dVol
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Proof. First average φ on each Tk (k=1,2,3) to get an invariant tensor φ0.
Then we only need to get some estimates of the φ− φ0 part. It’s enough to
prove that in each Bκri(pi) ⊂ E,∫

Bκri (pi)

|φ− φ0|2dVol < C

∫
Bκri (pi)

|∆(φ− φ0)|2dVol

for a uniform constant C and any tensor φ supported in Bκri(pi) ⊂ E because
then we can use the partition of unity and move every error term to the left
hand side by Lemma 3.4. Again, we may cancel error terms and assume that
the metric is flat. So the estimate of forms is reduced to functions which are
the coefficients of the forms. Standard Poincaré inequality on torus implies
that

(

∫
Bκr×Tk

|f − f0|2)2 ≤ C(

∫
Bκr×Tk

|∇Tk(f − f0)|2)2 ≤ C(

∫
Bκr×Tk

|∇(f − f0)|2)2

= C(

∫
Bκr×Tk

(f − f0)∆(f − f0))2 ≤ C

∫
Bκr×Tk

|f − f0|2
∫
Bκr×Tk

|∆(f − f0)|2,

where ∇Tk means the partial derivative with respect to the fiber direction.
So we are done when R is large enough.

Lemma 3.11. Suppose X,Y ,Z are Banach spaces, D : X → Y , i : X → Z
are bounded linear operators, i is compact. Suppose

||φ||X ≤ C(||Dφ||Y + ||iφ||Z).

Then as long as KerD = {0}, we have ||φ||X ≤ C||Dφ||Y .

Proof. If the estimate doesn’t hold, then there are φk satisfying ||φk|| = 1,
but ||Dφk|| → 0. By the compactness of i, we know that ||iφk − iφl||Z →0.
So

||φk − φl||X ≤ C(||Dφk −Dφl||Y + ||iφk − iφl||Z)→ 0.

So φk → φ∞. But then Dφk → Dφ∞, Dφ∞ = 0, φ∞ ∈ KerD, contradiction.

Theorem 3.12. Suppose M is asymptotic to the standard ALF, ALG or
ALH model, then for any tensor φ ∈ H2

δ (M), as long as 30δ is not an integer
and −δ/2− 2 + k/2 < 0, we have

||φ||H2
δ (M) < C

∫
M

|∆φ|2rδ+4dVol.

42



Proof. It’s enough to prove everything for C∞0 . Note that

∆gφ = ∆hφ+O(r−ε)|∇2φ|+O(r−ε−1)|∇φ|+O(r−ε−2)|φ|.

After applying Theorem 3.10 and Lemma 3.4, we know that the estimate
holds as long as φ is 0 inside a big enough ball BR. For general φ, we can
apply the estimate to the form (1− χ(r/R))2φ. So

||φ||H2
δ (M) < C(

∫
M

|∆φ|2rδ+4dVol + ||φ||H2(B2R))

< C(

∫
M

|∆φ|2rδ+4dVol +

∫
B4R

|φ|2)

by Theorem 9.11 of [31]. By Lemma 3.11 and Rellich’s lemma, it’s enough
to prove that Ker∆={0}. This follows from Lemma 3.3.

Theorem 3.13. Suppose 30δ is not an integer and −δ/2− 2 + k/2 < 0. For
any φ ∈ L2

−δ(M), there exists a tensor ψ ∈ H2
−δ−4(M) such that ∆ψ = φ.

Proof. Consider the Laplacian operator ∆ : L2
−δ−4(M) → L2

−δ(M). The
formal adjoint is then ∆∗φ = rδ+4∆(r−δφ). Apply Theorem 3.12 to r−δφ,

C−1||∆∗φ||L2
−δ−4(M) ≤ ||φ||H2

−δ(M) = ||r−δφ||H2
δ (M) ≤ C||∆∗φ||L2

−δ−4(M).

So ∆∗ has closed range. Now

|(φ, θ)L2
−δ(M)| ≤ ||φ||L2

−δ(M)||θ||L2
−δ(M) ≤ C||φ||L2

−δ(M)||∆∗θ||L2
−δ−4(M),

so ∆∗θ → (φ, θ)L2
−δ(M) defines a bound linear function in the range of ∆∗. By

Riesz representation theorem, there exists ψ ∈ Im(∆∗) such that

(ψ,∆∗θ)L2
−δ−4(M) = (φ, θ)L2

−δ(M).

Now we get the theorem from the standard elliptic regularity theory.

We can also solve the Laplacian equation outside a large ball instead of on
the whole manifold. Since the maximal principle will not be used globally,
we can relax the Laplacian operator to other operators asymptotic to the
Laplacian operator.
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Theorem 3.14. For any δ 6= 1, there exists a bounded linear operator

S : L2
δ([R,∞))→ H1

δ−2([R,∞))

with ||S|| ≤ 2
|δ−1| + 1 such that (Sf)′ = f in the distribution sense.

Proof. Since (Sf)′ = f , it’s enough to control the L2
δ−2-norm of Sf . We can

further reduce to prove the same estimate for f ∈ C∞0 . So we can assume
that supp(f) ⊂ [R1, R2] with R < R1 < R2 <∞. If δ > 1, define

Sf(r) = −
∫ ∞
r

f(t)dt.

So

||Sf ||2L2
δ−2([R,∞)) =

∫ ∞
R

[

∫ ∞
r

f(t)dt]2rδ−2dr

=
2

δ − 1

∫ ∞
R

[

∫ ∞
r

f(t)dt]f(r)rδ−1dr − Rδ−1

δ − 1
[

∫ ∞
R

f(t)dt]2

≤ 2

δ − 1

√∫ ∞
R

[

∫ ∞
r

f(t)dt]2rδ−2dr

√∫ ∞
R

f 2(t)rδdr − 0

by integral by parts and the Cauchy-Schwarz inequality.
If δ < 1, define

Sf(r) =

∫ r

R

f(t)dt.

Then Sf is constant for r > R2, and therefore belongs to L2
δ−2. Moreover,

it’s 0 for r < R1. Therefore, we can apply the proof of Theorem 3.5 to get
the required estimate.

Lemma 3.15. Suppose φ ∈ C∞(BR̃ \BR) is a tensor vanishing on the
boundary satisfying

∫
π−1(x)

φ = 0 for any x ∈ BR̃ \BR. Suppose

L = Aij∇i∇j + Bi∇i + C

is a Tk-invariant tensor-valued second order elliptic operator with

|Aij − δijId| ≤ Cr−ε, |Bi| ≤ Cr−1−ε, |C| ≤ Cr−2−ε.

Then as long as R is large enough,∫
BR̃\BR

|φ|2rδ +

∫
BR̃\BR

|∇φ|2rδ +

∫
BR̃\BR

|∇2φ|2rδ ≤ C

∫
BR̃\BR

|Lφ|2rδ

for any δ ∈ R, with constant C independent of R and R̃.
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Proof. It’s easy to see that∫
BR̃\BR

|∇2φ|2rδ +

∫
BR̃\BR

|∇φ|2rδ ≤ C(

∫
BR̃\BR

|φ|2rδ +

∫
BR̃\BR

|Lφ|2rδ)

by Theorem 9.11 of [31]. By Theorem 3.10, if φ is compactly supported in
Bκri(pi),∫

(BR̃\BR)∩Bκri(pi)
|φ|2 ≤ C

∫
(BR̃\BR)∩Bκri(pi)

|∇φ|2 ≤ C

∫
(BR̃\BR)∩Bκri(pi)

|∆φ|2.

Therefore∫
|φ|2rδ +

∫
|∇φ|2rδ ≤C

∑
(

∫
|χiφ|2rδ +

∫
|∇(χiφ)|2rδ)

≤C
∑∫

|∆(χiφ)|2rδ

≤C
∑

(

∫
χ2
i |∆φ|2rδ +

∫
|∇χi|2|∇φ|2rδ

+

∫
|∆χi|2|φ|2rδ).

Here, the first inequality holds because R is large enough and by Section 2,
we can choose the charts properly so that the number of charts overlapping
at any given point is uniformly bounded.

Notice that ∇χi = O(r−1) and ∇2χi = O(r−2). By canceling terms, we
can prove the theorem for L = ∆ = −Tr∇∗∇. By the same reasons, it can
be generalized to more general operator L whose coefficients equal to the
Laplacian operator plus small error terms.

From the approximation by φn = φχ(r−n), the condition in Lemma 3.15
that φ ∈ C∞(BR̃ \BR) vanishes on the boundary can be replaced by the
condition that φ ∈ C∞(Bc

R) vanishes on ∂BR and φ,∇φ,∇2φ ∈ L2
δ .

Notice that the estimate in Lemma 3.15 doesn’t scale correctly. Therefore,
we must have the following fact:

Theorem 3.16. If φ ∈ H2
δ (Bc

R) satisfies Lφ = 0. Then φ is Tk-invariant
plus exponentially decay term.
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Proof. We can assume
∫
π−1(x)

φ = 0 and prove that φ decay exponentially.

For any R large enough, we can apply Lemma 3.15 to (1 − χ(r − R))φ.
Therefore, ∫

r>R+2

|φ|2rδ ≤ C

∫
r>R

|L((1− χ(r −R))φ)|2rδ

≤ C

∫
R+1<r<R+2

(|∇2φ|2 + |∇φ|2 + |φ|2)rδ

≤ C

∫
R<r<R+3

|φ|2rδ

for some constant C independent of R. The last inequality holds by Theorem
9.11 of [31]. So

∫
r>R
|φ|2rδ decay exponentially. φ also decay exponentially

in L∞ norm by Theorem 9.20 of [31].

Now we are able to prove the following generalization of Lemma 4 of
Minerbe’s paper [57].

Theorem 3.17. As long as 30δ is not an integer, there exists a bounded
linear operator GL : L2

δ(B
c
R)→ H2

δ−4(Bc
R) such that L(GLφ) = φ.

Proof. It’s enough to prove the same thing for L = ∆ = −Tr∇∗∇ and for
smooth tensor φ on E. For Tk-invariant part, we can use Theorem 3.14
instead of Theorem 3.5 and go through the proof of Theorem 3.7, Theorem
3.8 and Theorem 3.9. For the other part, we can solve the equation ∆ψ = φ
in BR̃ \ BR and ψ = 0 on ∂(BR̃ \ BR). It’s solvable because we can solve it
in H1

0 first, i.e (∇ψ,∇ξ) = (φ, ξ). Then Theorem 8.13 of [31] implies that
ψ ∈ C∞(BR̃ \BR) and vanishes on the boundary. After throwing away the
Tk-invariant part, we can apply Lemma 3.15. Now let R̃ goes to infinity.
We can get a sequence of ψR̃. A subsequence converges to a function ψ∞ in
H1(BR̃\BR) for any R̃ by Rellich lemma and the diagonal argument. ψ∞ is a
generalized solution since we define derivatives in distribution sense. Notice
that actually ψ∞,∇ψ∞,∇2ψ∞ ∈ L2

δ(B
c
R). ψ∞ also lies in C∞(Bc

R) and equals
to 0 on ∂BR by Theorem 8.13 of [31]. Therefore, we can apply Lemma 3.15
to φ∞. In particular, the difference of two ψ∞ must be 0. In other words,
ψ∞ is independent of the choice of subsequence. We call that GLφ.
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3.3 Exponential decay of curvature of ALH gravita-
tional instantons

For ALH instantons, there is a self-improvement forcing the curvature to
decay exponentially. Therefore, the metric must converge to the flat one
exponentially.

Proposition 3.18. If the Ricci curvature is 0, then

∆Rijkl = Q(Rm).

Proof.
∆Rijkl = Rijkl,m

m = −Rijlm,k
m −Rijmk,l

m

= −Rijlm
,m

k −Rijmk
,m

l +Q(Rm)

By Bianchi identity and the vanishing of the Ricci curvature,

Rijlm
,m = Rlmij

,m = −Rlmj
m
,i −Rlm

m
i,j = 0.

Similarly
Rijmk

,m = 0.

So we get the conclusion.

Theorem 3.19. In the ALH case, there exists a constant µ such that the
Riemannian curvature at p is bounded by Ce−µr(p).

Proof. Pull back the Riemannian curvature tensor of g to ([R,∞) × T3, h),
where h is the standard flat metric , we get a tensor T satisfying the equation
DT = 0, where D = Aij∇i∇j + Bi∇i + C is a tensor-valued second order
elliptic operator such that

|Aij − δijId| ≤ Cr−ε, |Bi| ≤ Cr−1−ε, |C| ≤ Cr−2−ε.

By Theorem 2.3,

|T| = O(r−2−ε), |∇T| = O(r−3−ε), |∇2T| = O(r−4−ε),

so T ∈ H2
δ for all δ < 3 + 2ε. By Theorem 3.12 and the interior L2 estimate

(c.f. Theorem 9.11 of [31]), for any large enough R,∫
[R+2,∞)×T3

|T|2 ≤
∫

[R,∞)×T3

(r −R)ε(1− χ(r −R))2|T|2
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≤ C

∫
[R,∞)×T3

(r −R)ε+4|D((1− χ(r −R))T)|2

≤ C||T||2H2([R+1,R+2]×T3) ≤ C

∫
[R,R+3]×T3

|T|2.

So ∫
[R,∞)×T3

|T|2 ≥ (1 + 1/C)

∫
[R+3,∞)×T3

|T|2.

In other words, the Riemannian curvature decays exponentially in L2 sense.
The improvement to L∞ bound is simply Gilbarg and Trudinger’s Theorem
9.20 in [31].

From this better control of curvature, the parallel transport along the
loops γr,i in Theorem 2.18 can be improved to |P − Id| < Ce−µr. Therefore,
we are able to prove the following theorem:

Theorem 3.20. For any ALH gravitational instanton (M, g), there exist a
positive number µ, a compact subset K ⊂M , and a diffeomorphism

Φ : [R,∞)× T3 →M −K

such that
|∇m(Φ∗g − h)|h ≤ C(m)e−µr

for any m = 0, 1, 2, ..., where h = dr2 ⊕ h1 for some flat metric h1 on T3.

3.4 Elliptic estimates with exponential growth weights

In this subsection, we are trying to prove the elliptic estimates for weighted
Hilbert spaces with exponential growth weights.

We first look at the Laplacian operator on T3 = R3/Λ. Define the dual
lattice Λ∗ by

Λ∗ = {λ ∈ R3| < λ, v >∈ Z,∀v ∈ Λ}.

Then ∆ has eigenvalues −4π2|λ|2 with eigenvectors e2πi<λ,θ> for all λ ∈ Λ∗.
We call δ critical if δ = 4π|λ| for some λ ∈ Λ∗. So Theorem 3.5 is replaced
by the following theorem on [R,∞)× T3.
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Theorem 3.21. Suppose f is a real smooth function on [0,∞)×T3 supported
in [R,R′]× T3, δ isn’t critical. Then∫

[0,∞)×T3

|f |2eδrdVol < C

∫
[0,∞)×T3

|∆f |2eδrdVol.

Proof. We write f in terms its Fourier series

f ∼
∑
λ∈Λ∗

fλ(r)e
2πi<λ,θ>.

Then

∆f ∼
∑
λ∈Λ∗

(f ′′λ (r)− 4π2|λ|2fλ(r))e2πi<λ,θ>

=
∑
λ∈Λ∗

(
d

dr
− 2π|λ|)( d

dr
+ 2π|λ|)fλ(r)e2πi<λ,θ>.

This time the Hardy’s inequality is∫ ∞
0

g2eνrdr ≤ 4

ν2

∫ ∞
0

(g′)2eνrdr.

Therefore∫ ∞
0

f 2
λe

δrdr =

∫ ∞
0

(e2π|λ|rfλ)
2e(δ−4π|λ|)rdr

≤ 4

(δ − 4π|λ|)2

∫ ∞
0

[(e2π|λ|rfλ)
′]2e(δ−4π|λ|)rdr

=
4

(δ − 4π|λ|)2

∫ ∞
0

[(
d

dr
+ 2π|λ|)fλ]2eδrdr

≤
16
∫∞

0
[( d

dr
− 2π|λ|)( d

dr
+ 2π|λ|)fλ(r)]2eδrdr

(δ + 4π|λ|)2(δ − 4π|λ|)2
.

So as long as δ isn’t critical, we are done.

Now we define L2
δ(M) by

||φ||L2
δ(M) =

∫
M

|φ|2eδrdVol,
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and H2
δ(M) by

||φ||H2
δ(M) =

√∫
M

|φ|2eδrdVol +

∫
M

|∇φ|2eδrdVol +

∫
M

|∇2φ|2eδrdVol.

Then Theorem 3.13 is replaced by

Theorem 3.22. Suppose δ isn’t critical and δ < 0. For any φ ∈ L2
δ(M),

there exists a tensor ψ ∈ H2
δ(M) such that ∆ψ = φ.

3.5 Deformation of hyperkähler 4-manifolds

It’s well known that in real dimension 4, the hyperkähler condition is equiva-
lent to the Calabi–Yau condition. So we can study the deformation theory by
viewing them as Calabi–Yau manifolds. However, to keep track of the sym-
metry between three complex structures, we prefer a more direct approach
inspired by the lecture of Sir Simon Donaldson in the spring of 2015 at Stony
Brook University.

Lemma 3.23. A 4-manifold is hyperkähler if and only if there exist three
closed 2-forms ωi satisfying

ωi ∧ ωj = 2δijV,

where V is a nowhere vanishing 4-form.

Proof. Given three 2-forms, we can call the linear span of them the “self-
dual” space. The orthogonal complement of the “self-dual” space under
wedge product is called “anti-self-dual” space. These two spaces determine a
star operator. It’s well known that the star operator determine a conformal
class of metric. We can then determine the conformal factor by requiring V
to be the volume form. Using this metric and the three forms ωi, we can
determine three almost complex structures I, J and K. It’s easy to see that
IJ = K or IJ = −K. Since the two cases are disconnected, we can without
loss of generality assume that the first case happens. By Lemma 6.8 of [39],
I,J ,K are parallel.

Therefore, given a family of hyperkähler metrics ωi(t) on a fixed manifold
M , the deformations θi = d

dt
ωi(t)|t=0 satisfy

ωi ∧ θj + ωj ∧ θi = 0, i 6= j;

ω1 ∧ θ1 = ω2 ∧ θ2 = ω3 ∧ θ3.
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Notice that the anti-self-dual components of θi don’t affect the equation, so
we only need to look at the self-dual components. Let

V = {θ ∈ Λ+⊕Λ+⊕Λ+ : ωi∧θj+ωj∧θi = 0, i 6= j;ω1∧θ1 = ω2∧θ2 = ω3∧θ3}.

Then V is generated by the following basis:

e1 : θ1 = −ω1, θ2 = −ω2, θ3 = −ω3;

e2 : θ1 = 0, θ2 = ω3, θ3 = −ω2;

e3 : θ1 = −ω3, θ2 = 0, θ3 = ω1;

e4 : θ1 = ω2, θ2 = −ω1, θ3 = 0.

Now we look at the action of diffeomorphism group. The infinitesimal diffeo-
morphism group X acts simply by θi = LXω

i = d(Xcωi). The projection of
LXω

i to V defines an operator D : Vect(M) → V . Notice that D is canoni-
cally determined by ωi. In particular, if there is a symmetry group G, then
D is also invariant under G.

On R4,

ω1 = dx1 ∧ dx2 + dx3 ∧ dx4,

ω2 = dx1 ∧ dx3 + dx4 ∧ dx2,

ω3 = dx1 ∧ dx4 + dx2 ∧ dx3.

It’s easy to compute that

D(f 1 ∂

∂x1
+ f 2 ∂

∂x2
+ f 3 ∂

∂x3
+ f 4 ∂

∂x4
)

= −(
∂f 1

∂x1
+
∂f 2

∂x2
+
∂f 3

∂x3
+
∂f 4

∂x4
)e1 + (

∂f 1

∂x2
− ∂f 2

∂x1
+
∂f 3

∂x4
− ∂f 4

∂x3
)e2

+ (
∂f 1

∂x3
− ∂f 2

∂x4
− ∂f 3

∂x1
+
∂f 4

∂x2
)e3 + (

∂f 1

∂x4
+
∂f 2

∂x3
− ∂f 3

∂x2
− ∂f 4

∂x1
)e4.

It looks like the Dirac operator on R4 [50].
In fact, define

· : V × TM → TM

by
(a1e1 + a2e2 + a3e3 + a4e4) · v = (a1 + a2I + a3J + a4K)v.
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Define the dual operator

· : TM × TM → V

by
(w · v, c)V = −(w, c · v),

where (ei, ej)V = δij on V . Then

DX =
4∑

i,j=1

gij∇ ∂
∂xj

X · ∂
∂xi

on R4. It is also true on M . Its formal adjoint

D∗Y =
4∑

i,j=1

gij∇ ∂
∂xj

Y · ∂
∂xi

.

So DD∗ = −∆ on M .
On the general hyperkähler 4-manifold, if D has full image, then we

can without loss of generally assume that θi are all anti-self-dual. Notice
that they must be closed as the variation of closed forms. They must
also be co-closed since d(∗θi) = −dθi = 0. In other words, the deforma-
tion space of hyperkähler 4-manifolds is a subspace of three copies of the
space of anti-self-dual harmonic 2-forms. There may be further reductions if
(LXω

1, LXω
2, LXω

3) is anti-self-dual harmonic for some vector field X.

3.6 Asymptotic behavior of gravitational instantons

In this section, we use the principles in the previous section to prove Theorem
1.3.

To prove that D has full image, we instead prove that −DD∗ has full
image. It’s enough to apply Lemma 4 of Minerbe’s paper [57] in ALF case
and its generalization in ALG case.

We are ready to prove Theorem 1.3.

Theorem 3.24. Any ALF-Dk gravitational instanton (M, g) is ALF of order
3 in the sense of Definition 2.2
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Proof. We already proved that M is asymptotic to (E, h) with error O′(r−ε).
We will improve the decay rate slightly and iterate the improvement. The
decay rates are in L∞ sense. However, they are also in weighted L2 sense
after choosing correct weights. To be convenient, we transfer the weighted L2

estimates back into L∞ estimates using standard elliptic theory. During this
process, the weights are usually slightly changed. Therefore, we will choose
irrational δ1 < ε arbitrarily close to ε and irrational δ2 < δ1 arbitrary close
to δ1.

Let ωg be (ω1
g , ω

2
g , ω

3
g) and ωh accordingly. Then

ωg − ωh = O′(r−ε).

The difference is small. So we can write it as infinitesimal difference plus
some quadratic term. In other words, if we use h to distinguish self-dual and
anti-self-dual forms, then the self dual part

ω+
g − ωh = θ +O′(r−2ε),

where θ = O′(r−ε) ∈ V .
The operator −DD∗ satisfies all the conditions of Theorem 3.17. So there

exists G−DD∗ such that
θ = −DD∗G−DD∗θ.

Let X = D∗G−DD∗θ, then X = O′(r1−δ1). Let Φt = exp(−tX) be the 1-
parameter subgroup of diffeomorphisms generated by X. Then

Φ∗t (LXωh)− LXωh = O′(r−2δ1), ∀t ∈ [0, 1].

Therefore,

Φ∗1ωh − ωh − LXωh =

∫ 1

t=0

(Φ∗t (LXωh)− LXωh)dt = O′(r−2δ1).

So
(Φ∗1ωg)

+ − ω+
g −DX = (Φ∗1ωg − ωg − LXωh)+ = O′(r−2δ1)

because ωg − ωh = O′(r−ε). After replacing ωg by Φ∗1ωg, we can assume that

ω+
g − ωh = O′(r−2δ1).

We also have ω−g = O′(r−ε). Write it as ω−g = φ+ψ with φ Tk-invariant and∫
π−1(x)

ψ = 0. Since −d ∗ ω−g = dω−g = −dω+
g = O′(r−2δ1−1),

(dd∗ + d∗d)ω−g = O′(r−2δ1−2).
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In particular,
ψ̃ = ψ +G−(dd∗+d∗d)(dd∗ + d∗d)ψ

is harmonic and ψ− ψ̃ = O′(r−2δ2). By Theorem 3.16, ψ̃ decay exponentially.
Therefore, ψ = O′(r−2δ2).

Now, we write φ as φ = α ∧ η − V ∗R3 α for α ∈ Λ1(R3). Then

dφ = dα ∧ η − α ∧ dη − dV ∧ ∗R3α− V d(∗R3α) = O′(r−2δ1−1)

Let δ3 = min{2δ2, δ2 + 1}. Then dα = O′(r−δ3−1) and d(∗R3α) = O′(r−δ3−1).
Therefore α̃ = α + G−(dd∗+d∗d)(dd∗ + d∗d)α is a harmonic 1-form on R3.
What’s more α− α̃ = O′(r−δ4) for all irrational δ4 < δ3.

Using the method in the proof of Theorem 3.6, we know that α̃ = O′(r−1).
Combining everything together, the decay rate of ωg−ωh can be improved

to min{δ4, 1} when we start from ε, where the irrational number δ4 can be
arbitrarily close to min{2ε, ε+ 1}. After finite times of iterations, the decay
rate of ωg −ωh can be improved to 1. Moreover, the decay rate of dα̃ can be
arbitrarily close to 3. Notice that the coefficients of dxi in α̃ is even, so

α̃ =
adx1 + bdx2 + cdx3

r
+O′(r−3)

for some constants a, b and c. It’s easy to deduce that a = b = c = 0 from
the decay rate of dα̃. So α̃ = O′(r−3) instead. More iterations yield that the
asymptotic rate, i.e the decay rate of ωg − ωh can be improved to 3.

Remark. It’s known [74] that up to some exponentially decay term, the
Cherkis–Hitchin–Ivanov–Kapustin–Lindström–Roček metric outside a com-
pact set can be written as the Z2-quotient of a Gibbons–Hawking ansatz
whose V can be written as

V = 1− 16m

|x|
+

k∑
α=1

(
4m

|x− xα|
+

4m

|x + xα|
) = 1 +

8m(k − 2)

r
+O′(r−3).

Therefore, our estimate is optimal. In ALF-Ak case, the coefficients of dxi in
α̃ are not necessarily even. So the asymptotic rate is only 2 here. Later, we
will use this estimate to give a new proof of Theorem 1.8. Notice that the
asymptotic rate of the multi-Taub-NUT metric is actually 3.

Theorem 3.25. Any ALG gravitational instanton (M, g) is ALG of order
minn∈Z,n<2β

2β−n
β

in the sense of Definition 2.2.
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Proof. The proof of Theorem 3.24 go through until the analysis of the T2-
invariant closed anti-self-dual form φ. Following the notations of our first
paper, the basis of anti-self-dual forms can be written as

ξ1 = du ∧ dv̄, ξ2 = dū ∧ dv, ξ3 = du ∧ dū− dv ∧ dv̄

When (u, v) become (e2πiβu, e−2πiβv), the corresponding forms (ξ1, ξ2, ξ3) be-
come (e4πiβξ1, e−4πiβξ2, ξ3). Notice that φ can be decomposed into combina-
tions of u−δξ1, ū−δξ1, u−δξ3 and their conjugates. Only the first one and its
conjugate are closed. To make u−δξ1 well defined, −2πβδ + 4πβ must be in
2πZ. Therefore, δ must be minn∈Z,n<2β

2β−n
β

.

Remark. In Theorem 1.5 of [37], Hein constructed lots of ALG gravitational
instantons of order minn∈Z,n<2β

2β−n
β

whose tangent cone at infinity has cone
angle 2πβ < 2π. Therefore, our estimate of asymptotic rate is optimal in
ALG case if β < 1.

It’s not hard to extend our method to ALH gravitational instanton using
exponential growth weights and therefore complete the proof of Theorem 1.3.
We will omit the details.

3.7 Holomorphic functions on ALF and ALG gravita-
tional instantons

In this subsection, we will prove the existence of global holomorphic functions
on both ALF and ALG instatons.

Our first theorem deal with the growth order of harmonic functions on
M .

Theorem 3.26. Suppose M is ALF or ALG, g is a Ricci-flat metric on
M . Given any harmonic function f ∈ L2

δ(M) for some δ, there exist an γ
such that f is O(rγ) but not o(rγ). What’s more, in the ALG case, when
C(S(∞)) = Cβ, βγ must be an integer. In the ALF-Ak case, γ must be an
integer. In the ALF-Dk case, γ must be an even number.

Proof. f also belongs to L2
δ′(M) for other δ′. Without of loss of generality,

assume δ is bigger than the superior of those δ′ minus ε. The superior exists
because if f ∈ L2

δ′(M) for some δ′ satisfying −δ
′

2
+ k

2
− 2 < 1, then f must be

a constant by Lemma 3.4, Theorem 3.3 and Cheng-Yau’s gradient estimate
[20]. By Lemma 3.4, f ∈ H2

δ (M). Cut off f so that it vanish inside a
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large ball BR. Move this function to E. Then ∆(f(1 − χ(r/R)) ∈ L2
δ+4+ε.

Decompose f(1 − χ(r/R)) into Tk-invariant part f0 and the perpendicular
part f1.

Then f1 is much smaller than the growth rate of f(1− χ). Without loss
of generality, we can assume that f(1− χ(r/R)) is invariant.

Now again, we can transfer this invariant function to the tangent cone
at infinity C(S(∞)). When C(S(∞)) = R3/Z2 (ALF-Dk), we get a function
f̃ on its double cover R3 naturally. When C(S(∞)) = Cβ (ALG), we get a
function f̃(z) on C = R2 defined by f̃ = (f(1 − χ(r/R)))(zβ). Again the
growth rate of ∆(f̃) is at most the growth rate of f̃ minus two then minus
ε, so we can find out a function ψ with growth rate the rate of f̃ minus ε
such that ∆ψ = ∆(f̃). So f̃ − ψ becomes a harmonic function on R3 or R2.
The gradient estimate implies that after taking derivatives for some times,
we get 0. In other word f̃ − ψ must be a polynomial. So the growth rate
must be integer. For the C(S(∞)) = R3/Z2(ALF-Dk) case, we may replace
ψ(x) by (ψ(x) + ψ(−x))/2 so that it’s invariant under the Z2 action. So the
polynomial must have even degree.

Now we can prove the existence of global holomorphic function on ALG
gravitational instantons.

Theorem 3.27. There exists a global holomorphic function on any ALG
gravitational instanton M such that any far enough fiber is biholomorphic to
a complex torus.

Proof. In this case k = 2. By theorem 2.22, the metric near infinity is
asymptotic to the elliptic surface (E, h). For (E, h), u1/β is a well defined
holomorphic function outside BR. Now if we pull back u1/β from the elliptic
surface, cut it off and fill in with 0 inside K, we obtain a function f satisfying

∂̄gf = φ = O(r1/β−1−ε).

Pick any small positive number δ ∈ (max{−2, 2/β − 2ε}, 2/β − ε), such that
30δ is not an integer. Thus, φ ∈ L2

−δ(M). By Theorem 3.13, there exists
ψ ∈ H2

−δ−4(M) such that

φ = ∆ψ = −(∂̄∗∂̄ + ∂̄∂̄∗)ψ

in the distribution sense. Elliptic regularity implies that ψ is a smooth (0, 1)-
form. Take ∂̄ on both side of this equation. Notice that ∂̄φ = 0. Thus

0 = −∂̄∂̄∗(∂̄ψ) = ∆(∂̄ψ).
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By Lemma 3.3, ∂̄ψ = O(r1/β−ε/2). We can write this (0,2) form as ξω+,
where ω+ is the parallel (0,2)-form. Then ξ is a harmonic function. By
Theorem 3.26, it’s constant. Therefore ∂̄(f + ∂̄∗ψ) = 0. So f + ∂̄∗ψ is a
global holomorphic function. After analyzing the growth rate, we can also
show that |d∂̄∗ψ| << |df | for large r. So the fiber far from origin is an
compact Riemann surface with genus 1. It must be a complex torus by the
uniformization theorem.

Similarly, we can prove

Theorem 3.28. There exists a global holomorphic function on any ALF-Dk

gravitational instanton M .

Proof. M is asymptotic to a fiberation over R3/Z2 = R3/x ∼ −x. The
function (x2 + ix3)2 is well defined over E. The proof of the last theorem will
produce a global holomorphic function in ALF-Dk case.

The existence of global holomorphic function on any ALF-Ak gravita-
tional instanton M can also be proved by the same way. Actually, Minerbe
had a simpler proof in [59]. It’s an essential step in his classification of
ALF-Ak instantons.

3.8 Holomorphic functions on ALH gravitational in-
stantons

To go through all the steps in ALF and ALG cases, we first need to control
the growth rate of harmonic functions:

Lemma 3.29. Suppose (N, h) is a smooth manifold such that outside a com-
pact set, it’s exactly [R,∞)×T3 with flat metric. Then any smooth function
u on N harmonic outside a large enough ball with at most exponential growth
rate can be written as linear combinations of 1, r, e2π|λ|re2πi<λ,θ> and an ex-
ponential decay function , where r and θ are the coordinate functions on
[R,∞)× T3 pulled back by the diffeomorphism.

Proof. Write u as its Fourier series
∑

λ∈Λ∗ uλ(r)e
2πi<λ,θ>. Then the equation

is reduced to u′′λ = 4π2|λ|2uλ. So

u ∼ a0 + b0r +
∑

λ∈Λ∗−{0}

aλe
2π|λ|re2πi<λ,θ> +

∑
λ∈Λ∗−{0}

bλe
−2π|λ|re2πi<λ,θ>.
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By Parserval’s identity, the growth condition of u implies that the first sum
has finite terms. For the second sum U , Parseval’s identity again implies that∫

[R,R+1]×T3 |U |2 decay exponentially. By Theorem 9.20 of [31], U also decay

exponentially in L∞ sense.

Now we can still find the global holomorphic function on ALH instanton
(M, g)

Theorem 3.30. In the ALH case, there exists a global holomorphic function
on M such that any far enough fiber is biholomorphic to a complex torus.

Proof. As before, let [R,∞) × T3 = {(r, θ)|r ≥ R, θ = (θ1, θ2, θ3) ∈ R3/Λ}.
Let Λ∗ be the dual lattice. Choose λ ∈ Λ∗−{0} with minimal length. Choose
(a1, a2, a3) ∈ S2 such that

(a1I
∗ + a2J

∗ + a3K
∗)dr = −λ1dθ1 + λ2dθ2 + λ3dθ3

|λ|
.

Use a1I + a2J + a3K as the complex structure. Then the function
e2π|λ|re2πi<λ,θ> is holomorphic. The growth rate of this function is exactly
O(e2π|λ|r).

Now we pull back this function from [R,∞)×T3 to M , cut it off and fill
in with 0 inside K, we obtain a function f satisfying

∂̄gf = φ = O(e(2π|λ|−µ)r),

where µ is the constant in Theorem 3.19. So φ ∈ L2
−2δ for any non-critical

positive number δ ∈ (2π|λ| − µ, 2π|λ|). By Theorem 3.22, there exists a
solution ψ ∈ H2

−2δ to

φ = ∆ψ = −(∂̄∗∂̄ + ∂̄∂̄∗)ψ

in the distribution sense. Elliptic regularity implies that ψ is a smooth (0, 1)-
form. As before, ∂̄ψ = ξω+ is a harmonic (0,2)-form. So ξ is a harmonic
function of order O(eδr).

Now we use a cut-off function and the diffeomorphism to average g and
the pull back of h. We get a smooth metric g′ on M which is identically the
pull back of h outside a very big ball. Now let ν be the inferior of positive
ν ′ such that ξ is bounded by O(eν

′r). If ν > 0, then ∆g′ξ ∈ L2
−2δ′ for any

positive ν > δ′ > ν−µ. It follows that there exists a function in L2
−2δ′ whose
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Laplacian ∆g′ is ∆g′ξ. The difference of those two functions is a g′-harmonic
function. By Lemma 3.29, it must have at most linear growth rate since the
growth rate is below the first nonlinear harmonic function. It follows that ξ
must lie in O(eδ

′r), a contradiction. So ν = 0. Therefore, ξ is bounded by
any exponential growth function.

So ∆g′ξ decay exponentially. In particular, it’s in L2
1−ε. By Theorem 3.13,

we can find out a function in H2
−3−ε whose ∆g′ is ∆g′ξ. Therefore, we know

that ξ is actually in O(r1+ε). Of course, ∂̄ψ = ξω+ has the same estimate.
By Lemma 3.4, the harmonic (0,1)-form ∂̄∗∂̄ψ = ∂̄(f + ∂̄∗ψ) is in O(rε)

and its covariant derivative is in O(r−1+ε). The Weitzenböck formula implies
that ∇∗∇(∂̄∗∂̄ψ) = 0. Therefore∫

M

|∇(∂̄∗∂̄ψ)|2χ ≤
∫
M

|∂̄∗∂̄ψ||∇(∂̄∗∂̄ψ)||∇χ|

for any smooth compactly supported χ. Let χ = χ(r − R), the right hand
side converges to 0. Therefore ∂̄∗∂̄ψ is a covariant constant (0,1)-form. If this
form is non-zero, it would be invariant under the holonomy group. However,
elements in SU(2) have no fixed point except the identity matrix. So (M, g)
must have trivial holonomy. Therefore, it’s R4−k×Tk with flat metric. It’s a
contradiction with our non-flat assumption. So actually ∂̄∗∂̄ψ is identically
0. f + ∂̄∗ψ is a global holomorphic function on M .

3.9 Compactification of ALG and ALH gravitational
instantons

In Theorem 3.27 and 3.30, we proved the existence of global holomorphic
function u in ALG and ALH cases such that any far enough fiber is biholo-
morphic to a complex torus. Notice that du is never zero on far enough
fiber. Define a holomorphic vector field X by ω+(Y,X) = du(Y ). Then
since X(u) = du(X) = ω+(X,X) = 0, X is well defined when it’s restricted
to each far enough fiber. On each fixed far enough fiber, there exists a unique
holomorphic form φ such that φ(X) = 1. Locally

ω+ = f(u, v)du ∧ dv,X = f−1(u, v)
∂

∂v
, φ = f(u, v)dv.

Notice that each far enough fiber is topologically a torus. So we can in-
tegrate the form φ to get a holomorphic function v ∈ C/Zτ1(u) ⊕ Zτ2(u)
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up to a constant. We can fix this constant locally by choosing a holo-
morphic section of u as the base point. Therefore M is biholomorphic to
U × C/(u, v) ∼ (u, v + mτ1(u) + nτ2(u)), where τ1(u) and τ2(u) are locally
defined holomorphic functions. Actually, they are the integral of φ in the
basis of H1 of each fiber. This gives a holomorphic torus fiberation locally.

Recall that there is a diffeomorphism from M minus a large compact
set to the standard fiberation. Denote the inverse image of the zero section
by s. s is again a section outside large compact set because du differ with
the standard one by a decaying error. Write ∂̄s as e(u)dū ⊗ X, then e is a
function defined on the inverse of the punctured disc with polynomial growth
rate. So there is an at most polynomial growth function E on the inverse of
punctured disc such that ∂̄E(u) = e(u)dū. Now we apply the flow −E(u)X
to the section s to get a holomorphic section s0 on the neighborhood of
infinity. View s0 as the zero section, we know that M minus a large compact
set is biholomorphic to (C−BR)×C/(u, v) ∼ (u, v+mτ1(u)+nτ2(u)) globally,
where τ1(u) and τ2(u) are multi-valued holomorphic functions.

As proved in Kodaira’s paper [45], there exists an (unique) elliptic fiber-
ation B over BR−1 with a section such that B minus the central fiber D is
biholomorphic to (BR−1 − {0}) × C/(ũ, v) ∼ (ũ, v + mτ1(ũ−1) + nτ2(ũ−1)).
We can naturally identity points and get a compactification M̄ of M . So M̄
is a compact complex surface with a meromorphic function u = ũ−1. Now
since the subvariety of critical points {du = 0} is a finite union of irreducible
curves (On those irreducible curves, u is of course constant) and points, we
know that except finite critical values in CP1, any fiber of u has no intersec-
tion with {du = 0}. Therefore, a generic fiber has genus 1 and must be an
elliptic curve. In other words, M̄ is a compact elliptic surface. In conclusion,
we’ve proved the second main theorem.

3.10 The topology of ALG and ALH gravitational in-
stantons

In this section, we will study the topology of ALG and ALH gravitational
instantons.

Therefore, as mentioned in the introduction, we will assume that any
gravitational instanton is non-flat.

Theorem 3.31. The first betti number of any ALG or ALH gravitational
instanton must be 0. Moreover, in the ALG case, D can’t be regular.
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Proof. In the ALH case, Melrose’s theory [56] works. In particular, the first
cohomology group H1(M,R) is a subspace of the space of bounded harmonic
1-forms [56]. By Weitzenböck formula, any bounded (d∗d+dd∗)-harmonic 1-
form φ is also ∇∗∇-harmonic. By Melrose’s theory, ∇φ decays exponentially.
After integration by parts,∫

M

|∇φ|2χ(r −R) ≤
∫
M

|∇φ||∇χ(r −R)| → 0,

as R → ∞. Therefore, φ is a parallel 1-form. If it’s nonzero, the holon-
omy group must be trivial since the action of Sp(1) is free on R4 \ {0}. It
contradicts the non-flat assumption.

In the ALG case, (after hyperkähler rotation) if D is regular, i.e. if β = 1,
the I-holomorphic function z on M is asymptotic to the function u on E.
∇du = 0 on E, so when we go through the construction of z in Theorem
3.27, it’s easy to see that |∇dz| = O(r−1−ε) for any small enough ε. So∫

M

|∇dz|2χ(
r

2R
− 1) ≤

∫
M

|∇dz||∇χ(
r

2R
− 1)| → 0,

as R→∞. As before, it contradicts the non-flat assumption.
Therefore β < 1. Inspired by Lemma 6.11 of [56] ,we define

f(r) = (
1

r
+

1

4R
χ(

2R

r
− 3

2
))−1.

Then f is increasing. f(r) = r when r ≤ R and limr→∞ f(r) = 4R. Let
u = reiθ. The map F (reiθ, v) = (f(r)eiθ, v) on M is homotopic to the
identity. Therefore, any smooth closed 1-form φ is cohomologous to F ∗φ.
It’s easy to see that F ∗φ = O(r).

By Theorem 3.13, for any small positive ε, there exists a smooth 1-form
ψ such that ∫

M

|ψ|2r−8−ε + |∇ψ|2r−6−ε + |∇2ψ|2r−4−ε <∞

and
F ∗φ = dd∗ψ + d∗dψ.

Since F ∗φ is closed, it’s easy to see that d∗dψ is a closed harmonic 1-form.
Similar to Theorem 3.25, the leading term of d∗dψ can be written as

auδdu + būδdū for some δ ≤ 1. To make it well-defined, (δ + 1)β must be
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an integer. The first available choice is δ = 1/β − 1 if β ≥ 1/2 or δ = −1
if β < 1/2. In the first case, d∗dψ − aβdz − bβdz̄ is a much smaller closed
harmonic 1-form on M . Its order is also at most r−1. However, by maximal
principle and the Ricci flatness, any decaying harmonic 1-form on M must
be 0. In conclusion, φ must be exact. In other words, H1(M) = 0 for any
ALG gravitational instanton.

Definition 3.32. Let F , G be two linearly independent cubic homogenous
polynomials on CP2. {F = 0} and {G = 0} intersect at 9 points with
multiplicity. Let M̄ be the blow up of CP2 on these 9 points, if needed
repeatedly. Then z = F/G is a well-defined meromorphic function on M̄
whose generic fiber has genus 1. (M̄, z) is called the rational elliptic surface.
It’s well known that it has a global section σ corresponding to any exceptional
curve in the blowing up construction.

Theorem 3.33. M̄ is a rational elliptic surface.

Proof. Choose a tubular neighborhood T of D. Then M̄ = M ∪ T . The
Mayer-Vietoris sequence is

H0(M)⊕H0(T )→ H0(M ∩ T )→ H1(M̄)→ H1(M)⊕H1(T ).

The first map is surjective, so the second map is 0. So the third map is
injective. Notice that H1(T ) = H1(D) = 0 because D is of type I∗0, II, II∗,
III, III∗, IV, or IV∗. H1(M) also vanishes by Theorem 3.31. So H1(M̄) = 0.

A careful examination of our construction of M̄ in Section 3.9 and Ko-
daira’s paper [45] yields that ω+ can be extended to a meromorphic 2-form
on M̄ with a pole D. In other words, D is the anti-canonical divisor of M̄ .
Since D is homologous to another fiber of z, the self intersection number of
D is 0. In other words c2

1(M̄) = c2
1(−K) = [D]2 = 0. It’s also very easy to

see that H0(M̄,mK) = 0 for any m > 0. In particular the geometric genus
pg = dimH0(M̄,K) = 0.

By Kodaira’s classification of complex surfaces [46], since the first betti
number of M̄ is even and pg = 0, M̄ must be algebraic. By Castelnuovo
theorem, M̄ must be rational because H0,1(M̄) = H0(M̄, 2K) = 0. By
Kodaira’s Equation 13 in [46], c2

1 + dimH0,1 + b− = 10pg + 9. So b− = 9. By
Theorem 3 of [46], b+ = 1+2pg = 1. Therefore the second betti number b2 of
M̄ equals to 10. It’s standard [60] to prove that (M̄, z) is a rational elliptic
surface defined in Definition 3.32.

62



Theorem 3.34. Given any ALH gravitational instantons M , there exists
a diffeomorphism from the minimal resolution of (R × T3)/Z2 to M whose
restriction on [R,∞)× T3 is Φ in Theorem 1.3.

Proof. The divisor D is smooth by our construction of the compactification.
So for any small enough deformation in the coefficients of F and G, the diffeo-
morphism type of M = M̄ \D is invariant. For generic choice of coefficients
of F and G, {G = 0} is smooth and {F = 0} intersects {G = 0} in distinct
points. Since the non-generic parameters have real codimension 2, generic
points can be connected by paths inside the set of generic points. Therefore,
it’s easy to see that any ALH gravitational instantons are diffeomorphic to
each other. In particular, they are diffeomorphic to the specific example of
Biquard and Minerbe [8] on the minimal resolution of (R× T3)/Z2.

3.11 Twistor space of ALF-Dk instantons

On ALF-Dk gravitational instantons, we’ve found quadratic growth holomor-
phic functions for each compatible complex structure. A natural question is,
is there any relationship between those functions? Before going ahead, let’s
recall the definition of twistor space of hyperkähler manifolds.

Definition 3.35. (c.f. [40]) Let (M, g, I, J,K) be a hyperkähler manifold.
Then the twistor space Z of M is the product manifold M × S2 equipped
with an integrable complex structure

I = (
1− ζζ̄
1 + ζζ̄

I − ζ + ζ̄

1 + ζζ̄
J + i

ζ − ζ̄
1 + ζζ̄

K, I0),

where ζ ∈ C ⊂ C ∪ {∞} = CP1 = S2 is the coordinate function, and I0 is
the standard complex structure on CP1.

Notice that our definition is different from [40] to correct a sign error. We
will briefly rewrite Page 554-557 of their paper with a correct sign.

Let φ be a (1,0)-form of I. Then I∗φ = iφ, where (I∗φ)(X) = φ(IX).
Set θ = φ+ ζK∗φ, then

(1 + ζζ̄)I∗θ = ((1− ζζ̄)I∗ − (ζ + ζ̄)J∗ + i(ζ − ζ̄)K∗)θ = i(1 + ζζ̄)θ,

because we have relationships like J∗I∗ = K∗. (In [40], their was a sign error
caused by the wrong statement I∗J∗ = K∗.)
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Now if the form ω+ = ω2 + iω3 can be written as

1

2
ω+ =

n∑
i=1

φi ∧ φn+i

for some (1,0)-forms of I. Then we can define a form on the twistor space by

ω = 2
n∑
i=1

(φi+ ζK∗φi)∧ (φn+i+ ζK∗φn+i) = (ω2 + iω3) + 2ζω1− ζ2(ω2− iω3).

It’s a holomorphic section of the vector bundle Λ2T ∗F ⊗O(2), where F means
the fiber of Z which is diffeomorphic to M . We also have a real structure
τ(p, ζ) = (p,−1/ζ̄). It takes the complex structure I to its conjugate −I. In
[40], they proved the following theorem:

Theorem 3.36. Let Z2n+1 be a complex manifold such that
(i) Z is a holomorphic fiber bundle π : Z → CP1 over the projective line;
(ii) The bundle admits a family of holomorphic sections each with normal

bundle isomorphic to C2n ⊗O(1);
(iii) There exists a holomorphic section ω of Λ2T ∗F ⊗ O(2) defining a

symplectic form on each fiber;
(iv) Z has a real structure compatible with (i),(ii),(iii) and inducing the

antipodal map on CP1.
Then the parameter space of real sections is a 4n-dimensional manifold

with a natural hyperkähler metric for which Z is the twistor space.

Return to the gravitational instantons for which n in the above theorems
equals to 1. Recall that we’ve found the holomorphic function on M by
modifying the pull back of the standard function on the standard model. So
let’s look at the standard model (E, h, I, J,K) first. It’s the quotient of the
Taub-NUT metric outside a compact set by D4|e|. Recall that the Taub-NUT
metric is (c.f. Theorem 2.22)

ds2 = V dx2 + V −1η2

with
dx1 = I∗(V −1η) = J∗dx2 = K∗dx3.

So

(
1− ζζ̄
1 + ζζ̄

I∗− ζ + ζ̄

1 + ζζ̄
J∗+i

ζ − ζ̄
1 + ζζ̄

K∗−i)(2ζdx1−i(1+ζ2)dx2+(1−ζ2)dx3) = 0.
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Therefore, (−x3 + ix2 − 2x1ζ − (−x3 − ix2)ζ2)2 is a holomorphic function
on the twistor space of E. So the holomorphic function on M × {ζ} ∈ Z is
asymptotic to (−x3 + ix2 − 2x1ζ − (−x3 − ix2)ζ2)2 with error O′(r2−ε)

Notice that any harmonic function has even integer growth rate, so the
holomorphic function is unique up to the adding of constant. We may fix
this ambiguity by requiring the value at the fixed base point o to be 0. We
will prove that after the modification the holomorphic functions have some
simple relationship.

Actually, we have a I-holomorphic (ζ = 0) function u1 + iv1 asymptotic
to (−x3 + ix2)2 = (x2

3 − x2
2) − 2ix2x3, J-holomorphic (ζ = −1) function

u2+iv2 asymptotic to (2x1+2ix2)2 = 4(x2
1−x2

2)+8ix1x2, and K-holomorphic
(ζ = −i) function u3+iv3 asymptotic to (−2x3+2ix1)2 = 4(x2

3−x2
1)−8ix3x1.

Notice that u2 + u3 − 4u1 is a harmonic function asymptotic to 0, i.e. in
O′(r2−ε), so it must be 0. Similarly the harmonic function

z(p, ζ) = (u1 + iv1)− 1

2
(v3 + iv2)ζ+

1

2
(u2−u3)ζ2 +

1

2
(v3− iv2)ζ3 +(u1− iv1)ζ4

is asymptotic to (−x3 + ix2 − 2x1ζ − (−x3 − ix2)ζ2)2 and therefore must be
the holomorphic one. In conclusion, we’ve proved the following theorem:

Theorem 3.37. In the ALF-Dk case, there exist 6 harmonic functions ui,vi
with 4u1 = u2 + u3 such that

z(p, ζ) = (u1 + iv1)− 1

2
(v3 + iv2)ζ+

1

2
(u2−u3)ζ2 +

1

2
(v3− iv2)ζ3 +(u1− iv1)ζ4

is a I-holomorphic map from the twistor space of M to the total space of the
O(4) bundle over CP1.

There is a real structure on the O(4) bundle (ζ, η) → (−1/ζ̄, η̄/ζ̄4). It’s
easy to see that the map z commutes with the real structure.

4 ALE gravitational instantons

It’s well known that there is a deep relationship between discrete sub-
groups of SU(2), ADE Dynkin diagrams, platonic solids, ADE singularities
and the ALE gravitational instantons. The main contributors of this well-
known relationship are Arnold, Cartan, Coxeter, du Val, Dynkin, Killing,
Klein, Kodaira, Kronheimer, Lie, McKay, Milnor, Plato, Weyl and other
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Figure 1: Extended A4, D6, E6, E7 and E8 diagrams.
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mathematicians. Since many original references were not written in English,
we will not list them here. Moreover, many statements in this section will
be copied from related textbooks or websites. The Figure 1 is provided by
Alexey Spiridonov’s homepage. Since none of the materials in this section is
new, we will omit the proof and only state the well-known statements.

(1) Extended ADE Dynkin diagram.
By definition, it is a connected diagram with integers associated to each

vertex such that 1 is associated to a marked vertex and two times the number
associated to each vertex equals to the sum of numbers associated to adjacent
vertices. Notice that except the extended-A1 diagram with two vertices and
two edges between them and 1 associated to them, all other diagrams have
at most one edge between two vertices.

They can be classified into extended Ak(k = 1, 2, ...), Dk(k = 4, 5...),
Ek(k = 6, 7, 8) diagrams. k + 1 is the number of vertices.

(2) ADE Dynkin diagram
If we erase the marked point and the numbers in an extended ADE Dynkin

diagram, then we get an ADE Dynkin diagram.
(3) ADE root system
Let V be a finite-dimensional Euclidean vector space, with the standard

Euclidean inner product denoted by (·, ·). A root system in V is a finite set
Φ of non-zero vectors (called roots) that satisfies the following conditions:

• The roots span V .

• The only scalar multiples of a root x ∈ Φ that belong to Φ are x itself
and −x.

• For any two roots x and y, the element σx(y) = y − 2 (x,y)
(x,x)

x ∈ Φ

• For any two roots x and y, the number 〈y, x〉 := 2 (x,y)
(x,x)

is an integer.

It’s called reducible if Φ = Φ1 ∪ Φ2 with Φ1 ⊥ Φ2 for some Φ1,Φ2 6= ∅.
An irreducible root system is called an ADE roots system if the number
〈y, x〉 := 2 (x,y)

(x,x)
is either 0 or ±1.

Given a root system Φ we can always choose (in many ways) a set of
positive roots. This is a subset Φ+ of Φ such that:

For each root α ∈ Φ, exactly one of the roots α,−α is contained in Φ+.
For any two distinct α, β ∈ Φ+ such that α + β is a root, α + β ∈ Φ+. If a
set of positive roots Φ+is chosen, elements of −Φ+ are called negative roots.
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An element of Φ+ is called a simple root if it cannot be written as the
sum of two elements of Φ+.

If Φ is an ADE root system, then let θ1, ..., θk be the simple roots. We
write θ0 = −

∑k
i=1 niθi for the negative of the highest root. Let n0 = 1, then∑k

i=0 niθi = 0. Now let’s draw a diagram with ni associated to each vertex
θi. Draw an edge between θi and θj if (θi, θj) = −1

2
(θi, θi) = −1

2
(θj, θj). Draw

two edges between θ0 with θ1 if k = 1 and θ0 = −θ1. Then it must be an
extended ADE Dynkin diagram. Moreover, θ0 is the marked vertex.

Thus we’ve obtained the classification of ADE root systems:
(Ak, k = 1, 2, ...) Φ = {α ∈ Zk+1 :

∑k+1
i=1 α

2
i = 2,

∑k+1
i=1 αi = 0.}.

(Dk, k = 4, 5, ...) Φ = {α ∈ Zk :
∑k+1

i=1 α
2
i = 2.}.

(E6) Φ = {α ∈ Z6 ∪ (Z + 1
2
)6 :

∑6
i=1 α

2
i + 2α2

1 = 2,
∑8

i=1 αi + 2α1 ∈ 2Z}.
(E7) Φ = {α ∈ Z7 ∪ (Z + 1

2
)7 :

∑7
i=1 α

2
i + α2

1 = 2,
∑7

i=1 αi + α1 ∈ 2Z}.
(E8) Φ = {α ∈ Z8 ∪ (Z + 1

2
)8 : |α|2 =

∑8
i=1 α

2
i = 2,

∑8
i=1 αi ∈ 2Z}.

(4) Lie group
Given a compact Lie group, the adjoint action of the maximal torus on the

Lie algebra produces a root system. In particular, the Ak Dynkin diagram is
related to the projective special unitary group PSU(k + 1), the Dk Dynkin
diagram is related to the projective special orthogonal group PSO(2k), the
Ek Dykin diagrams are related to exceptional Lie groups.

(5) Platonic solids
In three-dimensional space, a Platonic solid is a regular, convex polyhe-

dron. It is constructed by congruent regular polygonal faces with the same
number of faces meeting at each vertex. Five solids meet those criteria:

• Tetrahedron

• Cube

• Octahedron

• Dodecahedron

• Icosahedron

(6) Finite subgroup of SU(2).
Given a finite subgroup Γ of SU(2), we can look at all of its irreducible

representations R0, R1, ...Rk, where R0 is the trivial representation on C1.
Let Q be the canonical representation on C2. Let ni be the rank of each
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representations. Draw a graph with ni associated to each vertex Ri. Draw l
edge between Ri and Rj if (HomΓQ⊗Ri, Rj) = Cl. Then we get an extended
ADE Dynkin diagram.

Γ can be classified into the cyclic group, binary dihedral group, binary
tetrahedral group, binary octahedral group, and binary icosahedral group.
A more precise definition will be given in the ADE singularity part. We can
also look at the image of Γ in SO(3). The image of binary dihedral group
is dihedral group. The image of binary tetrahedral group is the orientation-
preserving symmetry group of the tetrahedron which is isomorphic to the al-
ternating group A4. The image of binary octahedral group is the orientation-
preserving symmetry group of the octahedron or cube which is isomorphic
to the symmetric group S4. The image of binary icosahedral group is the
orientation-preserving symmetry group of the icosahedron or dodecahedron
which is isomorphic to the alternating group A5.

(7) ADE singularity
Let Γ be a finite subgroup of SU(2), then C2/Γ is an ADE singularity. It

can be resolved by blowing-ups. After case-by-case check, the singular fiber

π−1(0) in the resolution π : C̃2/Γ → C2/Γ consists of non-singular rational
curves whose intersection pattern is the same as the ADE Dynkin diagram.

C2/Γ can be expressed as the following:
(Ak) Let u, v be the coordinates of C2. Define the action of the cyclic

group
Zk+1 =< σ|σk+1 = 1 >

by
σ(u, v) = (e2iπ/(k+1)u, e−2iπ/(k+1)v).

Then
x = uv, y = uk+1, z = vk+1

are invariant under the action with the relationship xk+1 − yz = 0.
(Dk) Let u, v be the coordinates of C2. Define the action of the binary

dihedral group

D4(k−2) =< σ, τ |σ2k−4 = 1, σk−2 = τ 2, τστ−1 = σ−1 >

by
τ(u, v) = (v,−u), σ(u, v) = (eiπ/(k−2)u, e−iπ/(k−2)v).

Then
x = uv(u2k−4 − v2k−4)/2, y = (u2k−4 + v2k−4)/2, z = u2v2
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are invariant under the action with the relationship x2 − zy2 = −zk−1.
(E6) Let u, v be the coordinates of C2. Define the action of the binary

tetrahedral group
2T24 =< σ, τ |(στ)2 = σ3 = τ 3 >

by

σ(u, v) =
1

2
((1 + i)u+ (−1− i)v, (1− i)u+ (1− i)v),

τ(u, v) =
1

2
((1 + i)u+ (−1 + i)v, (1 + i)u+ (1− i)v).

Then
x = uv(u4 − v4),

y = (u4 + 2
√

3iu2v2 + v4)(u4 − 2
√

3iu2v2 + v4),

z = (u4 + 2
√

3iu2v2 + v4)3 + (u4 − 2
√

3iu2v2 + v4)3,

are invariant under the action with the relationship

432x4 − 4y3 + z2 = 0.

(E7) Let u, v be the coordinates of C2. Define the action of the binary
octahedral group

2O48 =< σ, τ |(στ)2 = σ3 = τ 4 >

by

σ(u, v) =
1

2
((1 + i)u+ (−1− i)v, (1− i)u+ (1− i)v),

τ(u, v) =
1√
2

((1 + i)u, (1− i)v).

Then
x = u2v2(u4 − v4)2,

y = u8 + 14u4v4 + v8,

z = uv(u12 − 33u8v4 − 33u4v8 + v12)(u4 − v4),

are invariant under the action with the relationship

108x3 − xy3 + z2 = 0.
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(E8) Let u, v be the coordinates of C2. Define the action of the binary
icosahedral group

2l120 =< σ, τ |(στ)2 = σ3 = τ 5 >

by

σ(u, v) =
1

2
((1 + i)u+ (−1− i)v, (1− i)u+ (1− i)v),

τ(u, v) =
1

2
((φ+ φ−1i)u− v, u+ (φ− φ−1i)v),

where φ =
√

5+1
2

. Let

(U, V ) = (−
(2 +

√
2(5 +

√
5)

1 +
√

5
iu+ v,−u+

(2 +
√

2(5 +
√

5)

1 +
√

5
iv)

Then
x = iUV (U10 + 11iU5V 5 + V 10),

y = −U20 − V 20 + 228i(U15V 5 + U5V 15) + 494U10V 10,

z = U30 − V 30 + 522i(U25V 5 − U5V 25) + 10005(U20V 10 − U10V 20),

are invariant under the action with the relationship

−1728x5 + y3 + z2 = 0.

(8) Singular fibers in elliptic surface.
Kodaira [45] classified singular fibers in elliptic surfaces. Some of them

only consist of non-singular rational curves
∑k

i=0 niΘi with self-intersection
number −2 such that one of ni is 1. They will satisfy

2ni = −ni(Θi)
2 =

∑
j 6=i

nj(ΘiΘj).

So they must be an extended ADE Dynkin diagram.

Ib, b=2,... I∗b b=0,... II∗ III III∗ IV IV∗

Ab−1 Db+4 E8 A1 E7 A2 E6
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There is an elliptic surface with a pair of singular fibers (II,II∗), (III,III∗)
or (IV,IV∗). Roughly speaking, this explains the relationship between ALG
gravitational instantons and ALE gravitational instantons.

(9) In [48], Kronheimer constructed ALE hyperkähler metrics on C2/Γ
by the following way:

Given a finite subgroup Γ of SU(2), we can look at all of its irreducible
representations R0, R1, ...Rk, where R0 is the trivial representation on C1.
Let Q be the canonical representation on C2. Let ni be the rank of each
representations. Then the regular representation

R = ⊕ki=0Cni ⊗Ri.

Let V = HomΓ(R,Q ⊗ R). Let G = S(×ki=0U(ni)). Then the hyperkähler

quotient of V by G provides an ALE hyperkähler metric on M = C̃2/Γ.
(10) After the construction of ALE gravitational instantons, Kroheimer

[49] proved the following theorem:

Theorem 4.1. (Torelli theorem for ALE gravitational instantons)
Let M be the smooth 4-manifold which underlies the minimal resolution

of C2/Γ. Let [α1], [α2], [α3] ∈ H2(M,R) be three cohomology classes which
satisfy the nondegeneracy condition:

For each [Σ] ∈ H2(M,Z) with [Σ]2 = −2, there exists i ∈ {1, 2, 3} with
[αi][Σ] 6= 0.

Then there exists on M an ALE hyperkähler structure such that the co-
homology classes of the Kähler forms [ωi] are the given [αi]. It’s unique up
to tri-holomorphic isometries which induce identity on H2(M,Z).

Moreover, any ALE gravitational instanton must be constructed by this
way.

We will prove the analogy in ALF and ALH cases.

5 ALF gravitational instantons

5.1 Definitions and Notations

In this section, we follow the notations of previous sections. Now let’s define
the multi-Taub-NUT metric and more general Gibbons–Hawking ansatz:
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Example 5.1. Let

V (x) = 1 +
k+1∑
α=1

2m

|x− xα|
.

Let π : M0 → R3 \ {xα} be the S1-bundle of Euler class -1 around each xα.
Let η be the connection form with curvature dη = ∗dV . Then

g = V dx2 + V −1η2

gives a metric on M0. Let M = M0 ∪ {pα} be the completion. Then M is
called the multi-Taub-NUT metric with total mass (k+ 1)m. When k = −1,
M is the trivial product of S1 and R3.

More generally, as long as V is harmonic, we can do the similar construc-
tion and call M the Gibbons-Hawking ansatz. It has complex structures
satisfying

dx1 = I∗(V −1η) = J∗dx2 = K∗dx3.

Now let’s recall the holomorphic structure of the multi-Taub-NUT metric
proved by Claude LeBrun [51]

Theorem 5.2. (LeBrun)(M, I) is biholomorphic to the manifold

uv =
k+1∏
α=1

(z − (−x3
α + ix2

α))

if −x3
α + ix2

α are distinct or the minimal resolution of it otherwise.

Proof. The function z = −x3 + ix2 is an I-holomorphic function on M . We
can define a holomorphic vector field X by

ω+(X, Y ) = −idz(Y ).

The action of X gives C∗-orbits of M . For z 6= −x3
α + ix2

α, there is only one
C∗-orbit. If −x3

α + ix2
α are distinct, each {z = −x3

α + ix2
α} is divided into

three C∗-orbits: {x1 < x1
α} ,{x1 = x1

α}, and {x1 > x1
α}. Let

M− = {z 6= −x3
α + ix2

α} ∪ ∪α{z = −x3
α + ix2

α, x
1 < x1

α},
M+ = {z 6= −x3

α + ix2
α} ∪ ∪α{z = −x3

α + ix2
α, x

1 > x1
α}.
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Then both M+ and M− are biholomorphic to C × C∗. On the overlap, we
have

(z, v)M+ ∼ (z,
v∏

(z − (−x3
α + ix2

α))
)M− .

If −x3
α + ix2

α are not distinct. For example, suppose we have two points
(0, 0, 0) and (1, 0, 0). Then we can define

M1 = {z 6= 0} ∪ {z = 0, x1 < 0},
M2 = {z 6= 0} ∪ {z = 0, 0 < x1 < 1},
M3 = {z 6= 0} ∪ {z = 0, x1 > 1}.

On the overlap, we have (z, v)M1 ∼ (z, v
z
)M2 ∼ (z, v

z2 )M3 . In other words,
it’s the minimal resolution of uv = z2 in the sense that we replace the point
{u = v = z = 0} by CP1 = {z = 0, 0 ≤ x1 ≤ 1}. It’s similar in general
case.

Using Theorem 5.2, we can get the twistor description of the multi-Taub-
NUT metric as in [22].

Example 5.3. Let U be the affine variety in C4 with coordinates (ζ, z, ρ, ξ)
defined by

ρξ =
k+1∏
α=1

(z − Pα(ζ))

or the minimal resolution of it, where

Pα(ζ) = aαζ
2 + 2bαζ − āα

with parameters aα ∈ C and bα ∈ R. Take two copies of U and glue them
together over ζ 6= 0,∞ by

ζ̃ = ζ−1,

z̃ = ζ−2z,

ρ̃ = e−z/ζζ−k−1ρ,

ξ̃ = ez/ζζ−k−1ξ.

Then ζ lies in CP1 = C ∪ {∞} and z is a section in O(2). Define

ω = 4id log ρ ∧ dz = idz ∧ dχ.
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Define the real structure τ by

τ(ζ, z, ρ, ξ) = (−1/ζ̄,−z̄/ζ̄2, ez̄/ζ̄(1/ζ̄)k+1ξ̄, e−z̄/ζ̄(−1/ζ̄)k+1ρ̄).

The gluing of U and Ũ is the twistor space of the multi-Taub-NUT metric
up to rescaling.

Notice that our convention is slightly different from [22]. We use the real
form i∂∂̄K as the Kähler form but they use ∂∂̄K following the convention
of [42]. The other difference is that they use the scaling parameter µ but we
rescale our metric to make µ = 1.

Similarly, we can define the twistor space of a hyperkähler 8-manifold:

Example 5.4. Let U be the subvariety with coordinates (ζ, w, z, ρ0, ρ1, ξ0, ξ1)
defined by

(ρ0 + ρ1η)(ξ0 + ξ1η) =
k∏

α=1

(η − Pα(ζ)) mod η2 − wη − z = 0,

where
Pα(ζ) = aαζ

2 + 2bαζ − āα
with parameters aα ∈ C and bα ∈ R.

Take two copies of U and glue them together over ζ 6= 0,∞ by

ζ̃ = ζ−1,

w̃ = ζ−2w,

z̃ = ζ−4z

(ρ̃0 + ρ̃1η̃) = e−η/ζζ−k(ρ0 + ρ1η) mod η2 − wη − z = 0,

(ξ̃0 + ξ̃1η̃) = eη/ζζ−k(ξ0 + ξ1η) mod η2 − wη − z = 0,

Then ζ lies in CP1 = C ∪ {∞} and z is a section in O(4). Define

ω = 4i
2∑
j=1

(dρ0 + βjdρ1) ∧ dβj
ρ0 + βjρ1

,

where β1, β2 are the two roots of η2 − wη − z = 0. Define the real structure
by

τ(ζ, z, ρ, ξ) = (−1/ζ̄, z̄/ζ̄4, eη̄/ζ̄(1/ζ̄)kξ̄, e−η̄/ζ̄(−1/ζ̄)kρ̄),

where ρ = ρ0 + ρ1η and ξ = ξ0 + ξ1η. We can realize the gluing of U and Ũ
as the twistor space of a complete hyperkähler 8-manifold.
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The hyperkähler quotient of the previous example is the Cherkis–Hitchin–
Ivanov–Kapustin–Lindström–Roček metric. When k = 0, it’s the famous
Atiyah–Hitchin metric. Actually, the Atiyah–Hitchin metric [4] provided
the first example of ALF-Dk gravitational instantons. Later, Ivanov and
Roček [42] conjectured a formula for positive k using generalized Legendre
transform developed by Lindström and Roček [52]. Cherkis and Kapustin
[22] confirmed this formula. This metric was computed more explicitly by
Cherkis and Hitchin [21].

Example 5.5. In the previous example, we look at the C∗ action by ρj → λρj
and ξj → λ−1ξj. The moment map is w. To get the hyperkähler quotient,
we set w = 0 and take the C∗ quotient.

The submanifold w = 0 in U can be written as

ρ0ξ0 + zρ1ξ1 = p(z),

ρ1ξ0 + ρ0ξ1 = q(z),

where ∏
α

(η − Pα) = p(z) + ηq(z) mod η2 − z = 0.

The C∗-quotient can be obtained by using the C∗-invariant coordinates

x = ik[ρ1ξ0 − ρ0ξ1],

y = ik[−2ρ1ξ1 + r(z)],

where
p(z) = zr(z) +

∏
α

(−Pα).

Thus

ρ1ξ0 =
q(z) + (−i)kx

2
,

ρ0ξ1 =
q(z)− (−i)kx

2
,

ρ1ξ1 =
r(z)− (−i)ky

2
,

ρ0ξ0 =
zr(z) + (−i)kzy

2
+
∏
α

(−Pα).
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The equation
(ρ0ξ0)(ρ1ξ1) = (ρ0ξ1)(ρ1ξ0)

is reduced to

x2 − zy2 =
1

−z
(
∏
α

(z − P 2
α)−

∏
α

(−P 2
α)) + 2

∏
α

(−iPα)y.

Moreover,

ω = id(
1√
z

log(
yz +

∏
α(−iPα) +

√
zx

yz +
∏

α(−iPα)−
√
zx

)) ∧ dz.

This is the twistor space of Cherkis–Hitchin–Ivanov–Kapustin–Lindström–
Roček metric.

When Pα(ζ) and −Pα(ζ) are distinct, the manifold is non-singular. Oth-
erwise, the CHIKLR metric is the minimal resolution of the singular manifold
which will be discussed later. It’s interesting to notice that [14] when two Pα
equal to 0, the singular manifold is the Z2-quotient of the multi-Taub-NUT
metric. Moreover, when k ≥ 3, if all of Pα equal to 0, the singular manifold
is exactly the quotient of the Taub-NUT metric by the binary dihedral group
D4(k−2) because of the following calculation:

Example 5.6. It’s well known that the Taub-NUT metric is biholomorphic
to C2. Let u, v be the coordinates of C2. Define the action of the binary
dihedral group

D4(k−2) =< σ, τ |σ2k−4 = 1, σk−2 = τ 2, τστ−1 = σ−1 >

by
τ(u, v) = (v,−u), σ(u, v) = (eiπ/(k−2)u, e−iπ/(k−2)v).

Then
x = uv(u2k−4 − v2k−4)/2, y = (u2k−4 + v2k−4)/2, z = u2v2

are invariant under the action with the relationship x2 − zy2 = −zk−1. This
is exactly the previous example with all Pα = 0.
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5.2 Rigidity of multi-Taub-NUT metric

In this subsection, we analyze the ALF-Ak gravitational instantons as a warm
up of Theorem 1.7. We will use the twistor space method as in [22]. An
important step in our approach is a compactification in the complex analytic
sense and the analysis of topology of this compactification following Kodaira’s
work [45].

We start from the compactification.

Theorem 5.7. Any ALF-Ak gravitational instanton (M, I) can be compact-
ified in the complex analytic sense.

Proof. By the remark after Theorem 3.24, M is asymptotic to the standard
model E with error O′(r−2). E is either the trivial product (R3 \ BR) × S1

or the quotient of the Taub-NUT metric outside a ball by Zk+1. In any case,
there exist two I-holomorphic functions zE and ρE satisfying

ω+ = 4id log ρE ∧ dzE.

We are mostly interested in the behaviors when x1 goes to −∞. It corre-
sponds to

C× (C∗ ∩Be−R) ∼= C× (Bc
eR) = {(zE, ρE) : |ρE| > eR}.

We are also interested in the corresponding part of M .
On M , there exists an I-holomorphic function z = zE + O′(r−δ) for any

δ < 1. As in Section 3.9, we can define a holomorphic vector field X by
ω+(X, Y ) = −idz(Y ). On each fixed fiber, there exists a unique holomorphic
form φ such that φ(X) = 1. Locally

ω+ = ic(z, v)dz ∧ dv,X =
1

c(z, v)

∂

∂v
, φ = c(z, v)dv.

Each fiber in the interesting part of M is topologically C∗ ∩ Be−R . So
on each fiber, we can integrate the form φ to get a holomorphic function
χ ∈ C/Zτ(u) up to a function of z. We can fix this ambiguity by requiring
that χ−Φ∗(−4 log ρE) goes to 0 when χ becomes negative infinity, where Φ
is the map from M to E. τ(u) = 8πi since M is asymptotic to E and it’s true
on E. We can fix this ambiguity by writing χ as χ = −4 log ρ. Therefore we
get a part of M biholomorphic to

C× (C∗ ∩Be−R) ∼= {(z, ρ) : |ρ| > eR}
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with ω+ = 4id log ρ ∧ dz. Similarly, the part of M where x1 goes to +∞ is
biholomorphic to

C× (C∗ ∩Be−R) ∼= {(z, ξ) : |ξ| > eR}

with
ω+ = 4idz ∧ d log ξ.

Now we can add the divisors D− = {ρ = ∞} and D+ = {ξ = ∞}
to compactify the two parts. We can get a manifold with a holomorphic
function z whose generic fiber is CP1. Adding D∞ = CP1 = {z = ∞}, we
can get a compact manifold M̄ with a meromorphic function z : M̄ → CP1

whose generic fiber is CP1.

It’s easy to see that −K = {ω+ = ∞} = D− + D+ + 2D∞ is the anti-
canonical divisor. Any generic fiber is a non-singular rational curve C = CP1

with (−KC) = 2 and (C2) = 0. Following the work of Kodaira [45], we can
classify singular fibers.

Theorem 5.8. Any singular fiber C can be written as the sum of non-
singular rational curves

C = Θ0 + ...+ Θm,m = 1, 2, 3, ...,

with

(ΘiΘj) = δ(|j − i| − 1),

(Θ2
i ) = −2 + δ(0) + δ(m),

(−KΘi) = δ(0) + δ(m),

where δ(n) = 1 if n = 0, and δ(n) = 0 otherwise.

Proof. Let C =
∑
niΘi. The main tools are Kodaira’s identities [45]

2π′(Θi)− 2− (Θ2
i ) = (KΘi),

(CΘi) = 0 = ni(Θ
2
i ) +

∑
j 6=i

nj(ΘiΘj),

where the virtual genus π′(Θi) is non-negative and π′(Θi) vanishes if and
only if Θi is a non-singular rational curve.
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If there is only one curve C = Θ0, then (KΘ0) = −2. Notice that
(Θ2

0) = 0 by the second identity. So π′(Θ0) = 0 by the first identity. So Θ0

is a non-singular rational curve. In other words, the fiber is regular.
Otherwise, from the information near D±, there exist two curves Θ0 and

Θm satisfying (−KΘ0) = (−KΘm) = 1 and n0 = nm = 1. All other curves
don’t intersect −K. From the second identity and the fact that C is con-
nected [45], we know that (Θ2

i ) < 0. Therefore, π′(Θi) must be 0, i.e. each
Θi is a non-singular rational curve. It follows that

(Θ2
i ) = −2 + δ(0) + δ(m).

Now the second identity becomes

1 =
∑
j 6=0

nj(Θ0Θj).

If (Θ0Θm) = 1, we are done with m = 1. Otherwise, suppose (Θ0Θ1) = 1.
Then n1 = 1, so

2 = 1 +
∑

j 6=0,j 6=1

nj(Θ1Θj).

If (Θ1Θm) = 1, we are done with m = 2. Otherwise, we can continue. After
several steps, we must stop because the number of curves is finite. Therefore,
the singular fibers must have the required properties.

Remark. That’s exactly the picture in Theorem 5.2.

Remark. Suppose each fiber is regular except the fiber {z = 0}, M is biholo-
morphic to the minimal resolution of xy = zk+1. In this case, the central fiber
has k = m − 1 non-singular rational curves Θ1,...,Θm−1 whose intersection
diagram is called the Ak Dynkin diagram. That’s the reason why we call M
ALF-Ak.

Now we are able to give a new proof of the following theorem. It was first
proved by Minerbe in [59] using the existence of Killing vector fields. How-
ever, since there is no Killing vector field on ALF-Dk gravitational instantons,
we prefer a new proof of this theorem using the twistor space.

Theorem 5.9. (Minerbe) Any ALF-Ak gravitational instanton must be the
multi-Taub-NUT metric.
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Proof. First of all, let’s look at the slice ζ = 0. In other words, we use I as
the complex structure. ω+ as the holomorphic symplectic form. By Theorem
5.7, there exist ρ and ξ such that

ω+ = 4id log ρ ∧ dz = 4idz ∧ d log ξ.

So ρξ is a holomorphic function of z satisfying

lim
z→∞

ρξ/zk+1 = 1.

It’s completely determined by its zeros. By Theorem 5.8 and Theorem 5.2,
it’s easy to see that (M, I) is biholomorphic to ρξ =

∏k+1
α=1(z − Pα) or the

minimal resolution of it.
Now we may vary ζ 6=∞. We can still get

ρξ =
k+1∏
α=1

(z − Pα(ζ))

with
ω = 4id log ρ ∧ dz.

Similarly, for ζ 6= 0, we may use ζ̃ = ζ−1 instead. Then ω̃ = ζ−2ω and
z̃ = ζ−2z are non-singular. So we can get ω̃ = 4id log ρ̃ ∧ dz̃ instead. The
difference ρ̃/ρ is a holomorphic function of ζ and z. It equals to e−z/ζζ−k−1

on E, so ρ̃/ρ must be e−z/ζζ−k−1 on M . Similarly, ξ̃ = ez/ζζ−k−1ξ.
Since ρ̃ξ̃ =

∏k+1
α=1(z̃ − P̃α(ζ̃)). It’s easy to see that Pα(ζ) = ζ2P̃α(ζ̃). So

Pα(ζ) must be a degree two polynomial of ζ.
Now let’s look at the action of the real structure. When ζ becomes

−1/ζ̄, M becomes exactly its own conjugation. Since z is invariant under
the action (ζ, z) → (−1/ζ̄,−z̄/ζ̄2), Pα must have the same property under
the real structure. In other words, Pα(ζ) = aαζ

2 +2bαζ− āα for some aα ∈ C
and bα ∈ R. It’s easy to see that the real structure τ must act by

τ(ζ, z, ρ, ξ) = (−1/ζ̄,−z̄/ζ̄2, ez̄/ζ̄(1/ζ̄)k+1ξ̄, e−z̄/ζ̄(−1/ζ̄)k+1ρ̄).

It’s well known [40] that the form ω and the real structure on the twistor
space determine the metric on M . So M must be the multi-Taub-NUT
metric.

81



5.3 Classification of ALF-Dk gravitational instantons

In this section we prove Theorem 1.7 as we did for the ALF-Ak gravitational
instantons in the previous subsection.

We still start from the compactification.

Theorem 5.10. Any ALF-Dk gravitational instanton (M, I) can be com-
pactified in the complex analytic sense.

Proof. We already know that outside a compact set, M is up to O′(r−3), the
Z2-quotient of a standard S1-fiberation E over R3 − BR. Moreover, there is
an IM -holomorphic function z = (−x3 + ix2)2 +O′(r−1) on M .

Recall that there is a part of (E, IE) biholomorphic to

C× (C∗ ∩Be−R) = {(aE, bE) : aE = −x3 + ix2 ∈ C, bE ∈ C∗ ∩Be−R}.

Now we claim that the corresponding part of (M, IM) is also biholomorphic
to

C× (C∗ ∩Be−R) = {(a, b) : a ∈ C, b ∈ C∗ ∩Be−R}
What’s more, under this diffeomorphism, ω+

M = −4id log b ∧ da.
It’s hard to solve a, b as functions of aE, bE directly. However, following

the idea of Newlander and Nirenberg [61], we can instead solve aE, bE as
functions of a, b and apply the inverse function theorem.

Let
a = u+ iv, log b = t+ iθ, aE = a+ z1, bE = bez

2

.

Let

∂1 =
∂

∂a
=

1

2
(
∂

∂u
− i ∂

∂v
), ∂̄1 =

∂

∂ā
, ∂2 = b

∂

∂b
=

1

2
(
∂

∂t
− i ∂

∂θ
), ∂̄2 = b̄

∂

∂b̄
.

Then the equation is reduced to

∂̄jz
k + φkl (u+ iv + z1, t+ iθ + z2)(∂̄j z̄

l + δlj) = 0,

where
|∇mφ(u+ iv, t+ iθ)| < C(m)(u2 + v2 + t2)(−3−m)/2

for all m ≥ 0 and all t < −R if R is large enough.
Instead of the space C̃n+α in [61], we prefer weighted Hilbert spaces.
Define

||f ||L2
α,β

=

∫
t<−R

|f |2(1 + u2 + v2)α/2|t|β,
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and

||f ||Hm
α,β

=

√ ∑
i+j+k+l≤m

||∂iu∂
j
v∂kt ∂

l
θf ||2L2

α+2i+2j,β+2k+2l
,

then we can find an operator

T1 : L2
α,β → L2

α−2,β

satisfying
∂̄1T1f = f

in the distribution sense if α < 2 and α isn’t an integer. Actually, by Theorem
3.13, we can find G1 such that 4∂1∂̄1G1f = f in the distribution sense. So
T1f = 4∂1G1f .

Similarly, by Theorem 3.17, we can find an operator

T2 : L2
α,β → L2

α,β−2

satisfying
∂̄2T2f = f

in the distribution sense if β isn’t an integer. Since both T1 and T2 are
canonically defined, T1 commutes with ∂2 and ∂̄2 while T2 commutes with
∂1 and ∂̄1. By the work of Newlander and Nirenberg [61], the integrability
condition implies that it’s enough to solve the equation

zi = T 1f i1 + T 2f i2 −
1

2
T 1∂̄1T

2f i2 −
1

2
T 2∂̄2T

1f i1,

where
f ij = −φil(u+ iv + z1, t+ iθ + z2)(∂̄j z̄

l + δlj).

It has a unique solution in H10
−2ε,−2ε for any 0 < ε < 1/2 if R is large enough.

By Sobolev embedding theorem, |zi| ≤ C(1 + u2 + v2)(−1+ε)/2|t|−1+ε.
In conclusion, we’ve solved aE and bE in terms of a and b. We can

invert them to get a and b in terms of aE and bE. By the arguments similar
to Theorem 5.7, we can slightly modify b such that limb→0(b/bE) = 1 and
ω+
M = −4id log b ∧ da.

Therefore, we can add the divisor D = {b = 0} to compactify this part.
On M ∪D, the condition z = a2

E + O′(r−1) is reduced to z(a, 0) = a2. Near
a =∞, let c = 1/a, then M ∪D is locally biholomorphic to

((C∗∩B1/R)×CP1)/Z2 = {(c, b) : 0 < |c| < 1/R, b ∈ CP1}/(c, b) ∼ (−c, 1/b).
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As Kodaira did in [45], we can add {(0, b)}/(0, b) ∼ (0, 1/b) and then replace
the neighborhoods of two singular points (0, 1) and (0,−1) by two copies of
N+2.(See page 583 of [45]). As in page 586 of [45], D∞ = 2Θ + Θ0 + Θ1

with (ΘΘi) = (DΘ) = 1, (Θ1Θ2) = (DΘi) = 0, (Θ2) = −1 and (Θ2
i ) = −2.

Therefore, we get a compact manifold M̄ = M∪D∪D∞ with a meromorphic
function z : M̄ → CP1 whose generic fiber is a non-singular rational curve.

On M̄ , the anti-canonical divisor −K = {ω+ = ∞} = D + D∞. Any
generic fiber is a non-singular rational curve C = CP1 with (−KC) = 2 and
(C2) = 0. Any singular fiber {z = z0} must belong to the list in Theorem
5.8 if z0 6= 0,∞. So we only need to classify the fiber {z = 0}. The main
property is that −K = D +D∞ intersects C at only one point.

Theorem 5.11. The fiber C = {z = 0} can be written as the sum of non-
singular rational curves. There are three cases:

(i) C = Θ, (Θ2) = 0, (−KΘ) = (DΘ) = 2, but D intersects Θ at one
point with multiplicity 2.

(ii) C = Θ0 + Θ1, (Θ2
0) = (Θ2

1) = −1, three curves Θ0, Θ1, D intersect
at same point.

(iii) C = 2Θ0 + ...+ 2Θm + Θm+1 + Θm+2,m = 0, 1, ...,

(Θ0Θ1) = ... = (Θm−1Θm) = (ΘmΘm+1) = (ΘmΘm+2) = 1,

(Θ2
0) = −1, (Θ2

1) = ... = (Θ2
m+2) = −2, (−KΘ0) = (DΘ0) = 1,

and all other intersection numbers are 0.

Proof. Let C =
∑
niΘi. We still use Kodaira’s two identities

2π′(Θi)− 2− (Θ2
i ) = (KΘi),

(CΘi) = 0 = ni(Θ
2
i ) +

∑
j 6=i

nj(ΘiΘj)

and the fact the C is connected. By the second identity,

(Θ2
i ) = − 1

ni

∑
j 6=i

nj(ΘiΘj) ≤ 0.

Since (DC) = (−KC) = 2, but D intersects C at only one point, there
are only three possibilities.
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(i) Θ0 intersects D at one point with multiplicity 2. By Kodaira’s first
identity, (Θ2

0) = 0 and π′(Θ0) = 0. Therefore, there are no other curves at
all. It’s the first case.

(ii) Θ0 and Θ1 intersect D at same point. So (Θ2
i ) = −1 and π′(Θi) = 0.

There are still no other curves at all. It’s the second case.
(iii) Θ0 intersects D at one point but n0 = 2. In this case, (Θ2

0) = −1 and
π′(Θ0) = 0 by Kodaira’s first identity. As in Theorem 5.8, since any other
curve has no intersection with D, it must be a non-singular rational curve
with self intersection number −2.

Therefore, either two different curves Θ1 and Θ2 intersect Θ0 or one curve
Θ1 intersects Θ0 but n1 = 2. In the first case, we are done. In the second
case, we can continue the same kind of analysis. After finite steps, we are
done since there are only finitely many curves.

Remark. If each fiber is regular except the fiber {z = 0}, M is biholomorphic
to the minimal resolution of x2− zy2 = −zk−1. In this case, the central fiber
has k = m + 2 non-singular rational curves Θ1,...,Θm+2 whose intersection
diagram is called the Dk Dynkin diagram. That’s the reason why we call M
ALF-Dk.

Now, we are able to prove Theorem 1.7.

Theorem 5.12. Any ALF-Dk gravitational instanton must be the Cherkis-
Hitchin-Ivanov-Kapustin-Lindström-Roček metric.

Proof. We still start from the slice ζ = 0. We already know that the double
cover M̃ of M \{z = 0} is asymptotic to E.

√
z ≈ a is well defined on M̃ . As

before, we can define a holomorphic function f on M̃ by ω+ = 4id log f∧d
√
z

and limb→0 fb = 1. The composition of f and the covering transform is called
f ′.

Now we are interested in the behavior near a = 0 and b = 0. We can
write z as

z = ebf1(a,b)(a2 + bf2(b)a+ bf3(b)).

The function f4(b) = −(bf2(b))2/4 + bf3(b) can be written as cbm(1 + bf5(b)),
where m = 1, 2,∞ depending on the type of {z = 0}. Change the coordinates
by

a′ = ebf1(a,b)/2(a+ bf2(b)/2),

b′ = bebf1(a,b)/m(1 + bf5(b))1/m.
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Then
z = a′2 + cb′m,

with
ω+ = −4id log b′ ∧ (1 + b′f6(a, b))da′ = 4id log f ∧ d

√
z.

(i) In the first case of Theorem 5.11, m = 1. So

log f = −
∫ √

zdb′

a′b′
= − log b′ + log

(
√
z + a′)2

4z
= log

a′ +
√
z

a′ −
√
z

+ log
−c
4z

if we ignore the term b′f6(a, b). However, the contribution from the term

b′f6(a, b) is bounded by C
∫ e−R

0
|
√
|z|√

||z|−|c|t|
|dt ≤ C

√
|z|. So limz→0 fz = −c/4.

Similarly limz→0 f
′z = −c/4. Therefore, we can write f, f ′ as

fz = P +
√
zQ, f ′z = P −

√
zQ.

Away from {z = 0}, the picture is similar to the A2k−5 case, so

P 2 − zQ2 = (P +
√
zQ)(P −

√
zQ) =

k∏
α=1

(z − P 2
α).

Notice that
lim
z→0

P = −c/4 =
∏
α

(−iPα),

so we can write
P = yz +

∏
α

(−iPα)

and write Q = x. A simple calculation yields

x2 − zy2 =
1

−z
(
∏
α

(z − P 2
α)−

∏
α

(−P 2
α)) + 2

∏
α

(−iPα)y

and

ω+ =id(
1√
z

log(
P +
√
zQ

P −
√
zQ

)) ∧ dz

=id(
1√
z

log(
yz +

∏
α(−iPα) +

√
zx

yz +
∏

α(−iPα)−
√
zx

)) ∧ dz.
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(ii) In the second case of Theorem 5.11, m = 2. So

log f = −
∫ √

zdb′

a′b′
= − log b′ + log

√
z + a′

2
√
z

=
1

2
log

a′ +
√
z

a′ −
√
z

+
1

2
log
−c
4z

if we ignore the term b′f6(a, b). In this case, the contribution from the term
b′f6(a, b) is bounded by

C

∫ e−R

0

|
√
|z|√

||z| − |c|t2|
|dt ≤ C

√
|z| log(1/

√
|z|).

So limz→0 f
√
z =
√
−c/2. It’s also true that limz→0−f ′

√
z =
√
−c/2. So we

can write f, f ′ as

f
√
z = x+

√
zy,−f ′

√
z = x−

√
zy.

It’s easy to see that

x2 − zy2 = (x+
√
zy)(x−

√
zy) = −

k−1∏
α=1

(z − P 2
α).

Notice that limz→0 x =
√
−c/2 on Θ0, but limz→0 x = −

√
−c/2 on Θ1, so we

can no longer reduce x and y. However, let Pk = 0, then

x2 − zy2 =
1

−z
(
k∏

α=1

(z − P 2
α)−

k∏
α=1

(−P 2
α)) + 2

k∏
α=1

(−iPα)y

and

ω+ = 4id log f ∧ d
√
z = id(

1√
z

log(
yz +

∏k
α=1(−iPα) +

√
zx

yz +
∏k

α=1(−iPα)−
√
zx

)) ∧ dz.

It’s convenient to write P = yz and Q = x. So fz = P +
√
zQ still holds.

(iii) In the third case of Theorem 5.11, m =∞. Just as we did in Theorem
5.10 near z = ∞, the manifold becomes the minimal resolution of the Z2-
quotient of multi-Taub-NUT metric. Z2 acts by interchanging ρ and ξ. So
f = ρ and f ′ = ξ. They satisfy ff ′ =

∏k−2
α=1(z − P 2

α). Let x =
√
z(f − f ′)/2

and y = (f + f ′)/2. Then x2 − zy2 = −z
∏k−2

α=1(z − P 2
α). Let Pk−1 = Pk = 0.

Then (M, I) is biholomorphic to the minimal resolution of

x2 − zy2 =
1

−z
(
k∏

α=1

(z − P 2
α)−

k∏
α=1

(−P 2
α)) + 2

k∏
α=1

(−iPα)y
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and

ω+ = 4id log f ∧ d
√
z = id(

1√
z

log(
yz +

∏k
α=1(−iPα) +

√
zx

yz +
∏k

α=1(−iPα)−
√
zx

)) ∧ dz.

Let P = yz and Q = x. Then fz = P +
√
zQ still holds.

In conclusion, we always have the correct biholomorphic type and correct
ω+. The only difference is how many Pα’s equal to 0. Now we may vary
ζ 6= ∞. We can still get similar pictures. For ζ 6= 0, we may use ζ̃ = ζ−1

instead. Then ω̃ = ζ−2ω and z̃ = ζ−4z are non-singular. So we can get f̃ , f̃ ′

x̃, ỹ, P̃ , and Q̃ instead. The difference f̃/f transfer as ρ̃/ρ in the A2k−5 case.
Therefore f̃/f = e−

√
z/ζζ−2k+4. So (P̃ +

√
z̃Q̃))/(P +

√
zQ) = e−

√
z/ζζ−2k.

It’s conventional to rescale the metric. Therefore, we actually have

(P̃ +
√
z̃Q̃))/(P +

√
zQ) = e−2

√
z/ζζ−2k

as our transition function instead. In other words,

(
P̃

Q̃

)
= ζ−2k

(
cosh(2

√
z/ζ) −

√
z sinh(2

√
z/ζ)

−ζ2 sinh(2
√
z/ζ)/

√
z ζ2 cosh(2

√
z/ζ)

)(
P
Q

)
.

As before, Pα(ζ) must be a degree two polynomial in ζ. When we look
at the action of the real structure, it’s easy to see that actually

Pα(ζ) = aαζ
2 + 2bαζ − āα

for some aα ∈ C and bα ∈ R. Moreover, the real structure τ must act by

τ(ζ, z, P,Q) = (ζ̃ = −ζ̄ , z̃ = z̄, P̃ = P̄ , Q̃ = −Q̄).

We can transfer those expressions into expressions in terms of x and y by
the fact that P = yz +

∏
α(−iPα(ζ)), Q = x and P̃ = ỹz̃ +

∏
α(−iP̃α(ζ̃)),

Q̃ = x̃.
It’s well known [40] that the form ω and the real structure on the twistor

space determine the metric on M . So M must be the Cherkis–Hitchin–
Ivanov–Kapustin–Lindström–Roček metric.
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5.4 A Torelli-type theorem for ALF gravitational in-
stantons

In this subsection we prove the Torelli-type theorem for ALF gravitational
instantons as an analogy of Kronheimer’s results [48] [49].

First of all, we can rescale the metric to make the scaling parameter
µ = 1.

In the ALF-Ak case, for each α 6= β, π−1 of the segment connecting xα
and xβ is a sphere Sβ,−α. They generate H2(M,Z). It’s easy to see that they
are the only roots, i.e. homology classes with self-intersection number -2.
The simple roots can be chosen as S2,−1, S3,−2, ..., Sk+1,−k. They form an Ak
root system.

By a simple calculation,∫
Sβ,−α

ω =

∫
Sβ,−α

4id log ρ ∧ dz = 8π

∫
π(Sβ,−α)

dz = 8π(Pβ − Pα).

So (
∫
Sβ,−α

ω1,
∫
Sβ,−α

ω2,
∫
Sβ,−α

ω3) equals to (bβ−bα,Re(aβ−aα), Im(aβ−aα))

up to a constant multiple. Since the ALF hyperkähler structure is completely
determined by the parameters (aβ−aα, bβ−bα), it’s also determined by three
cohomology classes [ωi].

The ALF-Ak gravitational instanton is singular if and only if there exist
α 6= β such that (aα, bα) = (aβ, bβ). It’s equivalent to the vanishing of [ωi]
on some root.

The ALF-Dk case is similar. When k ≥ 2, the roots S±β,±α, α 6= β gen-
erate H2(M,Z). The simple roots can be chosen as S+2,+1, S+2,−1, S+3,−2,
S+4,−3..., S+k,−(k−1). They form a Dk root system. The integrals on them
(
∫
S±β,±α

ω1,
∫
S±β,±α

ω2,
∫
S±β,±α

ω3) are (±bβ±bα,Re(±aβ±aα), Im(±aβ±aα))

up to a constant multiple, too. The ALF-Dk gravitational instanton is sin-
gular if and only if there exist α 6= β such that (aα, bα) = ±(aβ, bβ). So the
Torelli-type theorem also holds in this case.

When k = 1, H2(M,Z) is generated by S+1,−1, a sphere with one ordinary
double point. Its self-intersection number is 0. It’s easy to see that the
Torelli-type theorem holds, too.

When k = 0, H2(M,Z) = 0 and there is only one ALF-D0 gravitational
instanton. The Torelli-type theorem holds trivially.
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6 ALG gravitational instantons

In this section, we will slightly modify Hein’s result in [37] to get Theorem
1.10.

Let ω be any Kähler form on M̄ . Let a be the area of each regular fiber
with respect to ω. Recall that for any section σ′ of z on ∆∗ = {|z|β ≥ R},
Hein [37] wrote down some explicit formula of the semi-flat Calabi-Yau metric
ωsf,a[σ

′] on M |∆∗ whose area of each regular fiber is also a:

Definition 6.1. ([37]) Using σ′ as the zero section, M |∆∗ is locally biholo-
morphic to

M |U = (U × C)/(z, v) ∼ (z, v +mτ1(z) + nτ2(z))

for some holomorphic functions τ1 and τ2. So locally, ω+ = g(z)dz ∧ dv for
some holomorphic function g : U → C. Then locally

ωsf,a[σ
′] = i|g|2 Im(τ̄1τ2)

a
dz ∧ dz̄ +

i

2

a

Im(τ̄1τ2)
(dv − Γdz)(dv̄ − Γ̄dz̄),

where

Γ(z, v) =
1

Im(τ̄1τ2)
(Im(τ̄1v)

dτ2

dz
− Im(τ̄2v)

dτ1

dz
).

It’s easy to check that ωsf,a[σ
′] is actually a globally well-defined form.

After that, the following theorem is essential:

Theorem 6.2. There exist a real smooth polynomial growth function φ1 on
M |∆∗ and a polynomial growth holomorphic section σ′ of z over ∆∗ such that
ωsf,a[σ

′] = ω + i∂∂̄φ1.

Remark. Compared to Hein’s Claim 1 in page 382 of [37], the key improve-
ment in our paper is that both σ′ and φ1 grow at most polynomially.

Proof. As Hein did in [37], there exists a real smooth 1-form ζ on M |∆∗
such that dζ = ωsf,a[σ] − ω. Choose the map F as in Theorem 3.31. By
Cartan’s formula, the homotopy between F and the identity map implies that
F ∗ω−ω = dζ1 and F ∗ωsf,a[σ]−ωsf,a[σ] = dζ2 for some real polynomial growth
1-forms ζ1 and ζ2. However, dF ∗ζ = F ∗ωsf,a[σ] − F ∗ω for some polynomial
growth 1-form F ∗ζ. In conclusion, we can without loss of generality assume
that ζ grows polynomially.
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Using σ as the zero section, any section σ′ of z can be written as v = σ′(z)
in local coordinates. Hein calculated that there exists a real 1-form ζ̃ such
that ωsf,a[σ

′]− ωsf,a[σ] = dζ̃ and the (0,1)-part ξ̃ of ζ̃ can be written as

ξ̃ = − i
2

a

Im(τ̄1τ2)
[σ′(z)(dv̄ − Γ̄(z, v)dz̄)− 1

2
Γ̄(z, σ′(z))dz̄].

Choose σ′ so that i
2

a
Im(τ̄1τ2)

σ′ equals to the average of the coefficient of dv̄

term of the (0,1)-part ξ of ζ on each fiber. Then σ′ and ξ̃ grow polynomially.
Moreover, the average of the coefficient of dv̄ term of ξ + ξ̃ on each fiber
vanishes. So on each fiber, ξ + ξ̃ can be written as i∂̄φ2 by solving the ∂̄-
equation on each fiber. It’s easy to see that φ2 also grows polynomially. So
the (0,1)-form ξ+ ξ̃−i∂̄φ2 can be written as f(z, v)dz̄. However, it’s ∂̄-closed,
so f(z, v) = f(z). By solving the ∂̄-equation on ∆∗, ξ + ξ̃ − i∂̄φ2 = i∂̄φ3 for
some polynomial growth function φ3(z). In conclusion

ωsf,a[σ
′]− ω = d[i∂̄(φ2 + φ3)− i∂(φ̄2 + φ̄3)] = i∂∂̄(φ2 + φ̄2 + φ3 + φ̄3).

Theorem 6.3. There exists a real smooth polynomial growth function φ4

such that ω + i∂∂̄φ4 is ALG and

(ω + i∂∂̄φ4)2 =
1

2
ω+ ∧ ω̄+

Remark. Compared to Hein’s Theorem 1.3 of [37], the key improvements
in our paper are that φ4 grows polynomially and that we obtain 1

2
ω+ ∧ ω̄+

instead of α
2
ω+ ∧ ω̄+ for large enough α.

Proof. To achieve this, we still introduce a real positive bump function b on
C supported in {R ≤ |z|β ≤ 4R} such that b = 1 on {2R ≤ |z|β ≤ 3R}.
The involution with the Green function provides a real at most polynomial
growth function φ5 on C such that i∂∂̄φ5 = ib(z)dz ∧ dz̄.

Now let’s look at the form ω+ i∂∂̄((1−χ( r
R
− 5

2
))φ1). It equals to ω when

r ≤ 2R and ωsf,a[σ
′] when r ≥ 3R. On the part 2R ≤ r ≤ 3R, this form may

not be positive. However, as Hein did in Claim 3 of [37],

ωt = ω + i∂∂̄((1− χ(
r

R
− 5

2
))φ1 + tφ5)
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is positive for large enough t.
To achieve the integrability condition

∫
M

(ω2
1 − 1

2
ω+ ∧ ω̄+) = 0, we start

from choosing large enough R and t such that ωsf,a[σ
′] is close enough to the

standard ALG model i
2

a
Imτ

(dzβ ∧dz̄β + dv∧dv̄) and
∫
M

(ω2
t − 1

2
ω+∧ ω̄+) > 0.

Then we consider

ωs,t = ωt −
i

4

a

Imτ
(1− χ(

r

R
− 6))χ(

r

R
− s)β2|z|2β−2dz ∧ dz̄.

It’s easy to see that for any s ≥ 5, ωs,t must be positive. What’s more, since∫
M

(ω2
s,t − 1

2
ω+ ∧ ω̄+) decreases to negative infinity when s goes to infinity,

by intermediate value theorem, there exists s such that the integrability
condition is achieved. By the work of Tian-Yau [76], there exists a real
smooth bounded function φ6 such that (ωs,t + i∂∂̄φ6)2 = 1

2
ω+ ∧ ω̄+. By

Proposition 2.9 of [37], the solution ωs,t + i∂∂̄φ6 is actually ALG.

Thus, the first part of Theorem 1.10 has been proved. The second part
is quite simple:

Theorem 6.4. Suppose there exist two ALG metrics ωj = ω+i∂∂̄φj, j = 7, 8,
satisfying ω2

7 = ω2
8 = 1

2
ω+∧ ω̄+, |∇m(ω7−ω8)| = O(r−m−δ) and |φj| = O(rN)

for all j = 7, 8,m ≥ 0 and some δ,N > 0. Then ω7 = ω8.

Proof. It’s easy to see that ω̃ = ω + i∂∂̄(φ7 + φ8)/2 also defines a Kähler
metric which is asymptotic to the standard ALG model. Since

ω̃ ∧ i∂∂̄(φ7 − φ8) = 0,

φ7 − φ8 is harmonic with respect to ω̃. We can’t directly apply Theorem
3.26 because ω̃ may not be Ricci-flat. However, using Theorem 3.17, we
can transfer the ω̃-harmonic function to a h-harmonic function on E. By
Theorem 3.16, it’s asymptotic to a Tk-invariant h-harmonic function on E.
It can be reduced to a harmonic function on R2 \ BR. So it’s asymptotic
to anz

n + bnz̄
n for some constants (an, bn) 6= 0 or c log |z| for some nonzero-

constant c by Theorem 3.6. In the second case, the boundary term in the
integration

∫
BR

∆ω̃(φ7 − φ8) will be non-zero. It’s a contradiction. In the
first case, the difference φ7− φ8− anzn + bnz̄

n has smaller order. Repeat the
procedure until the order is smaller than 0. The maximal principle implies
that the difference is 0. In other words,

φ7 − φ8 =
n∑
k=0

akz
k + bkz̄

k.
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Theorem 6.5. The third part of Theorem 1.10 holds.

Proof. Let (M,ωALG, ω
2, ω3) be the ALG gravitational instanton in the third

part of Theorem 1.10. Let a be the area of each regular fiber with respect
to ωALG. Now pick a Kähler metric ω0 on M̄ whose area of each regular
fiber is a. Then ωsf,a[σ

′] = ω0 + i∂∂̄φ9 for some holomorphic section σ′ on
{|z|β ≥ R} and some real function φ9. It’s easy to see that Theorem 6.2 also
holds for ωALG, i.e. ωsf,a[σ

′′] = ωALG + i∂∂̄φ10 for some holomorphic section
σ′′ on {|z|β ≥ R}.

When D is of type I∗0, II, III, or IV, i.e. β ≤ 1/2, our goal is to show
that the action T (z, v) = (z, v + σ′′(z) − σ′(z)) as well as its inverse can be
extended across D. If it’s true, then

ωALG = ωsf,a[σ
′′]− i∂∂̄φ10 = (T−1)∗ωsf,a[σ

′]− i∂∂̄φ10 = (T−1)∗ω0 − i∂∂̄φ11.

So ω = ωALG + i∂∂̄((1−χ( r
R
− 5

2
))φ11 + tφ5) will be the required Kähler form

on M̄ for large enough t.
To understand the structure near D, we start from the elliptic surface over

∆ = {|ũ| ≤ R−1} constructed by (∆× C)/(ũ, v) ∼ (ũ, v +mτ1(ũ) + nτ2(ũ)).
Take the quotient by (ũ, v) ∼ (e2πiβũ, e2πiβv), then there are several orbifold
points in the central fiber. As Kodaira did in [45], those orbifold points
can be resolved by replacing the neighborhoods by the non-singular models
N+m constructed in page 583 of [45]. Then blow down exceptional curves
if they exist. M |∆∗ ∪D is biholomorphic to such model by the relationship
z = u1/β = z̃−1 = ũ−1/β.

In those coordinates, if T is given by T (ũ, v) = (ũ, v+f(ũ)ũ), then by the

proof of Theorem 6.2, i
2
af(ũ)ũ

Im(τ̄1τ2)
will be the average of the coefficient of dv̄ term

of the (0,1)-part ξ of ζ on each fiber, where ζ is a real smooth polynomial
growth 1-form satisfying dζ = ωsf,a[σ

′]−ωALG. By Theorem 1.3, the difference
between the two ALG metrics ωALG and ωsf,a[σ

′] is bounded by |u|−2. By
Theorem 3.17, ζ = (d∗d+dd∗)ψ1 and ωsf,a[σ

′]−ωALG = (d∗d+dd∗)ψ2 for some
ψ1 and ψ2 on M |∆∗ . So (d∗d+dd∗)(d∗dψ1−d∗ψ2) = 0. Therefore, the leading
term of d∗dψ1 − d∗ψ2 must be the linear combinations of uδdu, ūδdu, uδdv,
ūδdv and their conjugates. However, d(d∗dψ1 − d∗ψ2) = d∗dψ2 has small
order. So if δ is large, the leading term of d∗dψ1 − d∗ψ2 must be the linear
combinations of uδdu and its conjugate. However, such kind of term can be
written as the linear combinations of dzm and its conjugate for some integer
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m. We can then subtract the leading term from d∗dψ1 − d∗ψ2 and repeat
the process. Finally, it’s easy to see that f(z̃) = f(ũ) is bounded by |z̃|−ε
for any small positive ε. By removal of singularity theorem of holomorphic
functions on the punctured disc ∆∗, f(z̃) can be extended to a holomorphic
function on ∆.

Therefore, the induced map of T on the resolution is holomorphic outside
the central curves in N+m and continuous across those curves. By removal of
singularity theorem, it can be extended holomorphically. Then, in the blow
down procedure, the induced map is holomorphic outside the blow down of
the exceptional curves. By Hartog’s theorem, it can be extended on M̄ |∆.
Similarly, T−1 can also be extended.

When D is of type II∗, III∗, IV∗, i.e. 1/2 < β < 1, the arguments
above fail because the meromorphic function f may have a pole at {z̃ = 0}
corresponding to the term u1/β−2du ∧ dv̄ in the difference ωsf,a[σ

′] − ωALG.
However, recall that in Section 3.9, we used the section σ as zero section to
compactify M into M̄ . If we use the section σ+σ′′−σ′ instead, then we may
get a different M̄ . For this new choice of M̄ , the form ωsf,a[σ

′′] + i∂∂̄φ12 =
ωALG + i∂∂̄φ13 is a smooth Kähler form on M̄ ∩ {|z̃| ≤ R−1/β} for some
real smooth polynomial growth functions φ12, φ13 on M ∩ {|z̃| ≤ R−1/β}. So
ω = ωALG + i∂∂̄((1 − χ( r

R
− 5

2
))φ13 + tφ5) will be the required Kähler form

on the new choice of M̄ for large enough t.

7 ALH gravitational instantons

7.1 Gluing of ALH gravitational instantons

In this subsection, we will prove that the gluing of any ALH gravitational
instanton with itself is a K3 surface. We learned this idea as well as some
initial set-ups of the gluing construction [26] from the lecture of Sir Simon
Donaldson in the spring of 2015 at Stony Brook University. We will also
construct a counterexample of ALG Torelli Theorem when D is of type II∗,
III∗, or IV∗.

We will use the notations of Kovalev and Singer [47] in order to apply
their results. Pick two copies of M . Define t1 = r on the first copy M1.
Define t2 = −r on the second copy M2. For any gluing parameters (ρ,Θ)
in [R + 8,∞) × T3, the gluing manifold Mρ,Θ is defined by truncating the
two manifolds at tj = ±ρ and identifying the boundary points (ρ, θ) ∈ M1
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with the points (−ρ,Θ − θ) ∈ M2. On Mρ,Θ, the function t is defined by
t = t1 − ρ = t2 + ρ. The picture can be found in page 10 of [47].

Our metric on Mρ,Θ is slightly different from [47]. In fact, there are three
Kähler forms ω1, ω2 and ω3 on M . The closed forms

ωi − ωiflat = aij(r, θ)dr ∧ dθj + bijk(r, θ)dθ
j ∧ dθk

are very small on {ρ− 1 ≤ r ≤ ρ+ 1} by Theorem 1.3. Now define

φi = [

∫ r

ρ

aij(s, θ)ds]dθ
j.

Then

dφi = aij(r, θ)dr ∧ dθj + [

∫ r

ρ

∂

∂θk
aij(s, θ)ds]dθ

k ∧ dθj

= aij(r, θ)dr ∧ dθj + [

∫ r

ρ

∂

∂r
bijk(s, θ)ds]dθ

j ∧ dθk

= aij(r, θ)dr ∧ dθj + bijk(r, θ)dθ
j ∧ dθk − bijk(ρ, θ)dθj ∧ dθk.

Therefore
ωi − ωiflat = dφi + bijk(ρ, θ)dθ

j ∧ dθk

are cohomologous to the forms bijk(ρ, θ)dθ
j ∧ dθk on T3.

Notice that any closed form on T3 can be cohomologous to a form with
constant coefficients and any 2-form with constant coefficients is invariant
under the map θ → Θ− θ. Therefore, when we glue {ρ− 1 ≤ t1 ≤ ρ+ 1} on
M1 with {ρ − 1 ≤ −t2 ≤ ρ + 1} on M2, the difference ωiM2

− ωiM1
= dψi for

some small ψi. Now define the forms ωiρ,Θ on Mρ,Θ by

ωiρ,Θ = ωiM1
+ d((1− χ(t))ψi) = ωiM2

− d(χ(t)ψi).

Then ωiρ,Θ are three closed forms and |∇m(ωiρ,Θ − ωiMj
)| = O(e−λ1ρ) for all

m ≥ 0.
Now we can call the linear span of ωiρ,Θ the “self-dual” space. The or-

thogonal complement of the “self-dual” space under wedge product is called
the “anti-self-dual” space. These two spaces determine a star operator. It’s
well known that the star operator determines a conformal class of metrics.
The the conformal factor is determined by requiring the volume form to
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be 1
2
(det(ωiρ,Θ ∧ ω

j
ρ,Θ))1/3. The resulting metric is called gρ,Θ. It’s slightly

different from [47], but it satisfies all the properties needed in [47].
Now we define three operators on the space of self-dual 2-forms by

P1φ = e−δt1(d∗d + dd∗)(eδt1φ),

P2φ = e−δt2(d∗d + dd∗)(eδt2φ),

Pρ,Θφ = e−δt(d∗d + dd∗)(eδtφ),

where δ < λ1/100 is a small positive number. It’s easy to prove the following
theorem:

Theorem 7.1. (1) P1, P2, Pρ,Θ are Fredholm operators from W k+2,2 to W k,2

for any k ≥ 0. In other words, the kernels are finite dimensional and the
cokernels, i.e. the kernels of P ∗1 , P

∗
2 , P

∗
ρ,Θ are also finite dimensional. The

range is the L2-orthogonal complement of the cokernel. The operator from
the L2-orthogonal complement of the kernel to the range is an isomorphism.

(2) kerP1 = span{e−δt1ωi}, cokerP1 = {0},
kerP2 = {0}, cokerP1 = span{eδt2ωi},
span{e−δtωiρ,Θ} ⊂ kerPρ,Θ, span{eδtωiρ,Θ} ⊂ cokerPρ,Θ.

Proof. The first part was proved by Lockhart and McOwen in [53]. As for the
second part, on any Kähler manifold with Kähler form ω, define the operator
L by Lφ = φ ∧ ω. Then by Kähler identities, [L, ∂̄] = 0 and [L, ∂̄∗] = −i∂.
Therefore

[L, d∗d + dd∗] = 2[L, ∂̄∗∂̄ + ∂̄∂̄∗] = 2[L, ∂̄∗]∂̄ + 2∂̄[L, ∂̄∗] = −2i(∂∂̄ + ∂̄∂) = 0.

In particular for any function f ,

(d∗d + dd∗)(fω) = (−∆f)ω,

where ∆f = −(d∗d + dd∗)f is the ordinary Laplacian operator on functions.
On hyperkähler manifolds M1 and M2, there are three Kähler structures I,
J and K. Therefore,

3∑
i=1

(d∗d + dd∗)(fiω
i) = −

3∑
i=1

(∆fi)ω
i.

In other words, the Laplacian on the self-dual forms is exactly the Laplacian
on the coefficients. On Mρ,Θ, even though the metric is not hyperkähler,
ωiρ,Θ are still harmonic since they are closed self-dual forms. The second part
follows directly from the two facts above.
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The most important result of [47] is the following theorem: (Proposition
4.2 in their paper)

Theorem 7.2. There exists ρ∗ > 0 such that for all ρ ≥ ρ∗, the induced
map P ′′ρ,Θ from the L2-orthogonal complement of span{χ(t1 − ρ/2)e−δt1ωiρ,Θ}
in W k+2,2 to the L2-orthogonal complement of span{χ(−t2 − ρ/2)eδt2ωiρ,Θ}
in W k,2 is an isomorphism and the operator norm of [P ′′ρ,Θ]−1 is bounded
independent of ρ and Θ.

It’s easy to prove the following lemmas in functional analysis:

Lemma 7.3. (1) Suppose V = span{v1, ...vm} is a finite dimensional sub-
space in W k,2 for some k ≥ 0. Let V ⊥ be the L2-orthogonal complement of
V in W k,2, then W k,2 = V ⊕ V ⊥ and

||f + g||Wk,2 ≤ ||f ||Wk,2 + ||g||Wk,2 ≤ (1 + 2C1)||f + g||Wk,2

for all f ∈ V and g ∈ V ⊥, where C1 = supf∈V \{0}
||f ||

Wk,2

||f ||L2
.

(2) Suppose W = span{w1, ...wm} is another subspace. If the matrix
A = {aij} = {(wi, vj)L2} is invertible with A−1 = {aij}, then the composition
of the inclusion and the projection maps P = ProjW⊥ ◦ i : V ⊥ → W⊥ is an
isomorphism. What’s more

(1 + C2)−1||Pf ||Wk,2 ≤ ||f ||Wk,2 ≤ C3||Pf ||Wk,2 ,

where

C2 = sup
f∈W\{0}

||f ||Wk,2

||f ||L2

, C3 = 1 + C(m)||A−1||max ||vi||L2 max ||wj||Wk,2 .

Proof. The proof is quite obvious. The only thing to notice is that

P−1f = f −
m∑

i,j=1

aij(f, vi)L2wj.

The following corollary of Theorem 7.2 and Lemma 7.3 provides the main
estimate of this subsection:
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Corollary 7.4. There exists ρ∗ > 0 such that for all ρ ≥ ρ∗, the space
of harmonic self-dual 2-forms on Mρ,Θ equals to H+ = span{ωiρ,Θ}. The
Laplacian operator ∆ρ,θ = d∗d + dd∗ from the L2-orthogonal complement of
H+ in W k+2,2(Λ+) to the L2-orthogonal complement of H+ in W k,2(Λ+) is
an isomorphism and the operator norm of Gρ,θ = ∆−1

ρ,θ is bounded by Ce2δρ

for some constant C independent of ρ and Θ.

Proof. The isomorphism map in Theorem 7.2 can be decomposed into the
composition of following maps:

(χ(t1 − ρ/2)e−δt1ωiρ,Θ)⊥ → (e−δtωiρ,Θ)⊥ → (kerPρ,Θ)⊥

→ (cokerPρ,Θ)⊥ → (eδtωiρ,Θ)⊥ → (χ(−t2 − ρ/2)eδt2ωiρ,Θ)⊥.

The first and the fifth maps are isomorphisms by Lemma 7.3. Therefore, the
second map must be injective and the fourth map must be surjective. In
other words, kerPρ,Θ = span{e−δtωiρ,Θ} and cokerPρ,Θ = span{eδtωiρ,Θ}. So
all the maps are actually isomorphisms. By Theorem 7.2 and Lemma 7.3, the
operator norm of the inverse of the map Pρ,Θ : (kerPρ,Θ)⊥ → (cokerPρ,Θ)⊥ is
bounded. It’s straight forward to switch this estimate into the estimate of
the Laplacian operator.

We are ready for the main theorem of this subsection:

Theorem 7.5. Fix k ≥ 3. For large enough ρ∗ and any ρ ≥ ρ∗, there exists a
hyperkähler structure ω̃iρ,Θ on Mρ,Θ such that ||ω̃iρ,Θ−ωiρ,Θ||Wk,2 ≤ Ce(−λ1+2δ)ρ

for some constant C independent of ρ and Θ.

Proof. Fix the volume form V = 1
2

det(ωiρ,Θ ∧ ω
j
ρ,Θ)1/3 on Mρ,Θ. When two

symmetric matrices A =
ωiρ,Θ∧ω

j
ρ,Θ

2V
and B are close enough to the identity

matrix, the equation CACT = B has a solution C = B1/2A−1/2. Define
F i(B) by F i(B) = Cijω

j
ρ,Θ. Then F i(B) ∧ F j(B) = 2bijV .

Recall that the map Gρ,Θ on (H+)⊥ ⊂ Λ+ satisfies

ψ = (d∗d + dd∗)Gρ,Θψ = −(∗d ∗ d + d ∗ d∗)Gρ,Θψ

= −(∗+ Id)d ∗ dGρ,Θψ = d+(−2 ∗ dGρ,Θψ).

So if φi ∈ Λ1 satisfy the equation

φi = −2 ∗ dGρ,ΘProj(H+)⊥F
i(δαβ −

d−φα ∧ d−φβ

2V
),
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then the closed forms ω̃iρ,Θ = dφi + ProjH+F i(δαβ − d−φα∧d−φβ

2V
) will satisfy

the required equation ω̃iρ,Θ ∧ ω̃
j
ρ,Θ = 2δijV .

We will solve the equation by iterations

φi0 = 0,

φin+1 = −2 ∗ dGρ,ΘProj(H+)⊥F
i(δαβ −

d−φαn ∧ d−φβn
2V

).

Since W k,2 embeds into C0, if ||φin||Wk+1,2 ≤ e−λ1ρ/2 and ρ ≥ ρ∗, then

||
ωiρ,Θ ∧ ω

j
ρ,Θ

2V
− δij||C0 + ||d

−φin ∧ d−φjn
2V

||C0 ≤ Ce−λ1ρ

can be arbitrarily small if ρ∗ is large. So

||φin+1||Wk+1,2 ≤ Ce2δρ||Proj(H+)⊥F
i(δαβ −

d−φαn ∧ d−φβn
2V

)||Wk,2 ≤ Ce(−λ1+2δ)ρ.

As long as ρ∗ is large enough, the above estimate holds by induction. It
follows that

||φin+2 − φin+1||Wk+1,2 ≤ Ce(−λ1+4δ)ρ||φin+1 − φin||Wk+1,2 .

As long as ρ∗ is large enough, φi = limn→∞ φ
i
n will be the solution.

Corollary 7.6. For any ALH gravitational instanton M ,
∫
M
|Rm|2 = 96π2.

Proof. It’s easy to deduce this conclusion from the well known fact that for
K3 surface Mρ,Θ,

∫
Mρ,Θ
|Rm(ω̃iρ,Θ)|2 = 8π2χ(Mρ,Θ) = 192π2.

Theorem 7.7. Suppose αi are three 2-forms satisfying the following condi-
tions:

(1) ∫
Mρ,Θ

α2 ∧ α3 =

∫
Mρ,Θ

α3 ∧ α1 =

∫
Mρ,Θ

α1 ∧ α2 = 0,∫
Mρ,Θ

α1 ∧ α1 =

∫
Mρ,Θ

α2 ∧ α2 =

∫
Mρ,Θ

α3 ∧ α3;

(2)
||αi − ω̃iρ,Θ||L2 ≤ e−3λ1ρ/4.

Then there exists a hyperkähler structure ωi on Mρ,Θ such that ωi ∈ [αi] and
||ωi − ω̃iρ,Θ||Wk,2 ≤ Ce2δρ||αi − ω̃iρ,Θ||L2 .
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Proof. Using ω̃iρ,Θ as the background hyperkähler structure, we can choose
harmonic representatives βi from the cohomology classes [αi]. Therefore,

C−1||βi − ω̃iρ,Θ||Wk,2 ≤ ||βi − ω̃iρ,Θ||L2 ≤ ||αi − ω̃iρ,Θ||L2 ≤ e−3λ1ρ/4.

After replacing ωiρ,Θ by βi in the proof of Theorem 7.5, we can find a hy-
perkähler structure ωi0 such that span{[ωi0]} = span{[αi]}. By the condition
(1) of αi, the hyperkähler structure ωi can be chosen to be some rescaling
and hyperkähler rotation of ωi0.

Now we will use the method in this subsection to construct a counterex-
ample of Torelli Theorem in ALG case:

Theorem 7.8. When D is of type II∗, III∗, or IV∗, there exist two different
ALG gravitational instantons with same [ωi].

Proof. In Example 3.1 of [37], Hein explains how the pairs (IV,IV∗) occur
in rational elliptic surfaces M̄ birational to (P1 × T2)/Γ with Γ = Z3. Let
D be the fiber of type IV∗. Then, the construction in [37] provides an ALG
gravitational instanton ωi on M = M̄ \D. Moreover, the asymptotic rate is

2 + 1
β
. In particular, |Rm| = O(r−

1
β
−4). There is a similar example when D

is of type II∗ or III∗.
By Theorem 3.13, there exists a harmonic (0,1) form h on M asymp-

totic to 1
1
β
−1
u1/β−1dv̄. So d(Reh) is an exact harmonic form asymptotic to

Re(u1/β−2du∧dv̄). Moreover, it’s anti-self-dual because the coefficients of its
self-dual part are decaying harmonic and thus 0.

Let’s use the notations in Section 3. For example,

||φ||H2
δ

=

√∫
M

|φ|2rδdVol +

∫
M

|∇φ|2rδ+2dVol +

∫
M

|∇2φ|2rδ+4dVol.

Then by Theorem 3.13, for k ≥ 5 and small positive ε, there exists a map
G : Hk

6− 4
β
−ε(Λ

+) → Hk+2
2− 4

β
−ε(Λ

+) such that ψ = (d∗d + dd∗)Gψ. We still

define F i : Γ(R3×3)→ Λ+ as in Theorem 7.5 so that F i(B)∧F j(B) = 2bijV .
Then we do the iteration

φ1
0 = φ3

0 = 0, φ2
0 = tReh,

φin+1 = −2 ∗ dG(F i(δαβ −
d−φαn ∧ d−φβn

2V
)− ωi) + δi2tReh
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When t is small enough, (φ1
n, φ

2
n− tReh, φ3

n)→ (φ1, φ2− tReh, φ3) ∈ Hk+1
4− 4

β
−ε.

Then ωi+dφi will be an ALG gravitational instanton. By direct computation,
the curvature of the metric corresponding to (J, ω2 +td(Reh)) is proportional

to r
1
β
−4. It’s also true for the metric corresponding to ωi + dφi because their

difference is in Hk
6− 4

β
−ε. In particular, the metric corresponding to ωi + dφi

is not isometric to the metric corresponding to ωi.

7.2 Uniqueness of ALH gravitational instantons

In this subsection, we will prove the uniqueness part of Theorem 1.11. We
start from the understanding of the cross section:

Theorem 7.9. The integrals of ωi on the three faces determine the torus T3.

Proof. On the flat model, recall that

dr = I∗dθ1 = J∗dθ2 = K∗dθ3.

So

ω1 = dr ∧ dθ1 + dθ2 ∧ dθ3,

ω2 = dr ∧ dθ2 + dθ3 ∧ dθ1,

ω3 = dr ∧ dθ3 + dθ1 ∧ dθ2.

The torus T3 = R3/Λ is determined by the lattice Λ = Zv1⊕Zv2⊕Zv3. Let
vij be the ∂

∂θj
components of vi. Then f123 f131 f112

f223 f231 f212

f323 f331 f312

 =

 v22v33 − v23v32 v32v13 − v33v12 v12v23 − v13v22

v23v31 − v21v33 v33v11 − v31v13 v13v21 − v11v23

v21v32 − v22v31 v31v12 − v32v11 v11v22 − v12v21


is exactly the adjunct matrix adj(A) of

A =

 v11 v12 v13

v21 v22 v23

v31 v32 v33

 .

Since adj(A)A = det(A)I, it’s easy to see that det(adj(A)) = (det(A))2.
Thus, A = (det(adj(A)))−1/2adj(adj(A)) is determined by adj(A). On M ,
the hyperkähler structure is asymptotic to the flat model. So we can get the
same conclusion.
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Theorem 7.10. ALH gravitational instantons are uniquely determined by
their three Kähler classes [ωi] up to tri-holomorphic isometry which induces
identity on H2(M,Z).

Proof. Suppose two ALH hyperkähler structures ωk,i, k = 1, 2 on M satisfy
[ω1,i] = [ω2,i]. By the results in the previous subsection, we have two families
of K3 surfaces (Mρk,Θk , ω̃

k,i
ρk,Θk

). To understand the relationship between M
and Mρk,Θk , let’s start from the flat orbifold (R×T3)/Z2. Take two copies of
it. On the first copy, define t1 = r. On the second copy, define t2 = −r. Now
we glue them by truncating the two manifolds at tj = ±ρ and identifying the
boundary points (ρ, θ) with the points (−ρ,Θ − θ). An alternating way to
describe the gluing is to start from [0, 2ρ]×T3, and then identify (0, θ) with
(0,−θ) and identify (2ρ, θ) with (2ρ, 2Θ− θ). Let T4 = (R× T3)/Z(4ρ, 2Θ).
Then it’s easy to see that the gluing is actually the orbifold T4/Z2.

The resolution of this picture provides the topological picture of the con-
struction of Mρk,Θk . The second homology group H2(Mρk,Θk ,R) = R22 is
generated by 16 curves Σα corresponding to 16 orbifold points, 3 faces Fαβ
spanned by vα and vβ and 3 faces Fα spanned by (4ρ, 2Θ) and (0, vα). Any
hyperkähler structure ωi on the K3 surface determines 48 integrals ciα on Σα,
9 integrals fiαβ on Fαβ and 9 integrals fiα on Fα. The integrability condition∫
M
ωi ∧ ωj = 2δijV is equivalent to

−1

2

16∑
α=1

ciαcjα +
1

2

∑
(α,β,γ)=(1,2,3),(2,3,1),(3,1,2)

fiαfjβγ + fjαfiβγ = 2δijV.

If ciα, fiαβ are given, it’s a rank 5 linear system in 9 variables fiα.

By the construction of ω̃k,iρk,Θk on Mρk,Θk , the differences c1,ρ1,Θ1

iα − c2,ρ2,Θ2

iα

and f 1,ρ1,Θ1

iαβ − f 2,ρ2,Θ2

iαβ are all bounded by Ce(−λ1+2δ)ρ1 +Ce(−λ1+2δ)ρ2 for large

enough ρk. However f 1,ρ1,Θ1

iα − f 2,ρ2,Θ2

iα may be very large. Fortunately, we
are free to change the 8 parameters ρk,Θk. When ρk and Θk are changed by
adding δρk and δΘk, the integrals fk,ρk,Θkiα are changed by adding the almost
linear terms L(δρk, δΘk) +O(e(−λ1+3δ)ρ1 + e(−λ1+3δ)ρ2), where

L(δρk, δΘk) = 4δρk(vα,
∂

∂θi
) + 2(δΘk × vα,

∂

∂θi
)

are determined by the cross section R3/(Zv1⊕Zv2⊕Zv3), δρk and δΘk. The
image of L is exactly the linear space

{(fiα)|∃Cs.t.
∑

(α,β,γ)=(1,2,3),(2,3,1),(3,1,2)

fiαfjβγ + fjαfiβγ = 2δijC},
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where fiαβ = (vα×vβ, ∂
∂θi

). Therefore, after increasing the gluing parameters
ρ1 or ρ2 and changing the parameters Θk,

min
φ∈[ω̃1,i

ρ1,Θ1
−ω̃2,i

ρ2,Θ2
]
||φ||L2 ≤ Ce(−λ1+4δ)ρ1 + Ce(−λ1+4δ)ρ2 .

By Theorem 7.7, there exists a hyperkähler structure ωi on Mρ2,Θ2 such
that [ωi] = [ω̃1,i

ρ1,Θ1
] and ||ωi − ω̃2,i

ρ2,Θ2
||Wk,2 ≤ Ce(−λ1+6δ)ρ1 + Ce(−λ1+6δ)ρ2 .

By Theorem 1.12, ωi and ω̃1,i
ρ1,Θ1

are tri-holomorphically isometric to each
other. Moreover the isometry induces identity on H2(Mρk,Θk ,Z). Notice
that the long neck regions are almost flat but by Corollary 7.6, the compact
parts are not flat. So all the isometrics must map compact parts to compact
parts. In particular, we can apply the Arzela-Ascoli theorem and the diagonal
argument to get a limiting tri-holomorphic isometry on the original manifold
M which induces identity on H2(M,Z) when ρk go to infinity.

Theorem 7.11. The Kähler classes [ωi] satisfy the two conditions in Theo-
rem 1.11.

Proof. The first condition is a trivial consequence of det(adj(A)) = (det(A))2

and det(A) 6= 0 in the proof of Theorem 7.9. As for the second condition,
any ALH gravitational instanton M can be glued with itself to obtain a K3
surface. By Theorem 7.7, we can modify the hyperkähler metric on the K3
surface so that the integrals of ωi on the 11 cycles are unchanged in the
gluing process. For any [Σ] ∈ H2(M,Z) such that [Σ]2 = −2, we can find a
corresponding element in the second homology group of the K3 surface. By
Theorem 1.12, there exists i such that [ωi][Σ] 6= 0. Since the integrals of ωi

on the K3 surface are the same as the integrals on M , the second condition
must be satisfied.

7.3 Existence of ALH gravitational instantons

In this subsection, we will use the continuity method to prove the existence
part of Theorem 1.11. Given any three classes [αi1] satisfying two conditions
in Theorem 1.11, the cross section T3 is determined by Theorem 7.9. By the
work of Biquard and Minerbe [8], there exists an ALH hyperkähler structure

ωi0 on ˜(R× T3)/Z2. Now we are going to connect [αi1] with [αi0] = [ωi0]. We
require that along the path, the cross section T3, i.e. the integrals on the
faces Fjk are invariant.
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We already know that for any k = 0, 1, and any [Σ] ∈ H2(M,Z) with
[Σ]2 = −2, there exists i ∈ {1, 2, 3} with [αik][Σ] 6= 0. After a hyperkähler
rotation, we can assume that [αik][Σ] 6= 0 for any k = 0, 1, any i = 1, 2, 3 and
any [Σ] ∈ H2(M,Z) with [Σ]2 = −2.

Now we can connect [αi0] with [αi1] by several pieces of segments. Along
each segment, two of [αi] are fixed while the remaining one is varying. We
require that the actions of the two fixed [αi] on any [Σ] ∈ H2(M,Z) with
[Σ]2 = −2 are nonzero. Therefore along the path, the two conditions of
Theorem 1.11 are always satisfied.

So we only need to consider each segment. Without loss of generality, we
can assume that there is only one segment and [α2], [α3] are fixed along the
segment. Actually, we can assume that I, ω2 and ω3 are invariant along the
continuity path. Only [α1], i.e. the I- Kähler class is varying. We denote the
original ω1

0 ∈ [α1
0] by ω0. We will use it as the background metric.

By Proposition 6.16 of [56], the second cohomology group H2(M,R) is
naturally isomorphic to the space of bounded harmonic forms which are
asymptotic to the linear combinations of dθ2 ∧ dθ3, dθ3 ∧ dθ1 and dθ1 ∧ dθ2

with respect to ω0. We only care about the forms whose integrals on Fjk
are 0. Such kind of forms must decay exponentially. By the calculation in
Theorem 7.1 and the maximal principle, the self-dual part of any decaying
harmonic form vanishes. It’s well known that any anti-self-dual form must
be (1,1).

Thus, we can add linear combinations of those exponential decay anti-self-
dual harmonic forms to change the Kähler class. However, the integrability
condition

∫
M

((α1)2 − (ω2)2) = 0 may not be satisfied. Fortunately, there is
an exponential decay exact form d((1−χ(r−R− 2))I∗dr) on M . Moreover,
it’s (1,1) since in local coordinates

d((1− χ(r −R− 2))I∗dr) = d((1− χ(r −R− 2))(irjdz
j − irj̄dz̄j))

= −2i(1− χ(r −R− 2))rjk̄dz
j ∧ dz̄k + 2iχ′(r −R− 2)rjrk̄dz

j ∧ dz̄k.

If we add this term with α1, then∫
M

(α1 + ad((1− χ(r −R− 2))I∗dr))2 − (α1)2 = 2a lim
R→∞

∫
r=R

I∗dr ∧ α1.

The integral
∫
r=R

I∗dr∧α1 on M converges to the term
∫
T3 −dθ1 ∧dθ2 ∧dθ3

on the flat model, which is non-zero. So we can choose a suitable a to achieve
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the integrability condition. We call the resulting (1,1) form αt. It satisfies
the following conditions:

(1) For any m ≥ 0, ||eλ1r∇m
ω0

(αt − αT )||C0 converges to 0 when t goes to
T . In particular, ||eλ1r∇m

ω0
(αt − ω0)||C0 is uniformly bounded.

(2)
∫
M

(α2
t − ω2

0) = 0.

Remark. αt is positive in far enough region. However, it may not be positive
in the compact part. That’s the reason why the geometric existence part of
[35] fails.

Now define I as the set

{t ∈ [0, 1]|∃φts.t.∀m ≥ 0, |∇m
ω0
φt| = O(e−λ1r), ωt = αt + i∂∂̄φt > 0, ω2

t = ω2
0}.

It’s trivial that 0 ∈ I.

Theorem 7.12. I is open

Proof. Suppose T ∈ I, then as long as t is close enough to T , αt + i∂∂̄φT is
positive. It satisfies the integrability condition∫

M

((αt + i∂∂̄φT )2 − ω2
0) =

∫
M

((αt + i∂∂̄φT )2 − α2
t ) +

∫
M

(α2
t − ω2

0) = 0.

By Theorem 4.1 of [35], (αt+ i∂∂̄φT + i∂∂̄φ)2 = ω2
0 has a solution φ. So t ∈ I

with φt = φT + φ.

Now we are going to show that I is closed. Assume that {ti} ∈ I converge
to T . To make the notation simpler, we will use αi, ωi and φi to denote αti ,
ωti and φti .

We start from an estimate:

Theorem 7.13. ∫
M

(trω0ωi − 2)
ω2

0

2
≤ C.

Moreover ∫
M

(trωjωi − 2)
ω2
j

2
→ 0

as i, j →∞.
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Proof. ∫
M

(trω0ωi − 2)
ω2

0

2
=

∫
M

ω0 ∧ ωi − ω2
0 =

∫
M

ω0 ∧ (αi − ω0) ≤ C.

Moreover∫
M

(trωjωi − 2)
ω2
j

2
=

∫
M

ωj ∧ ωi − ω2
j =

∫
M

αj ∧ (αi − αj)→ 0

as i, j →∞.

Remark. By mean inequality, both trω0ωi−2 and trωjωi−2 are non-negative
since ω2

0 = ω2
i = ω2

j .

Theorem 7.14. Let UN be the sets {N ≤ r ≤ N+1} in the sense of ω0. Then
for all large enough N , there exist subsets VNi ⊂ UN such that the volume
Vol(VNi) ≥ Vol(UN)/2 ≥ C and for any y1, y2 ∈ VNi, dωi(y1, y2) ≤ C1.

Proof. It was proved by Demailly, Peternell and Schneider as Lemma 1.3 of
[25] from the bound in Theorem 7.13.

By the volume comparison theorem on Ricci flat manifolds, if we pick
any point pNi ∈ VNi, then the volume of radius R ball centered at pNi in the
sense of ωi has a uniform lower bound depending on R.

Theorem 7.15. For any fixed number R, the ωi-curvature in Bωi(pNi, R) is
uniformly bounded. Moreover, the ωi-holomorphic radius in Bωi(pNi, R) is
uniformly bounded below.

Proof. Suppose on the contrary, the ωi-curvature goes to infinity. Then we
can rescale the metric so that the largest curvature equals to 1. By Theorem
4.7 of [18], the volume lower bound and the curvature bound imply the
lower bound on the injectivity radius. Then, by Lemma 4.3 of [68], the
holomorphic radius has a lower bound. By Page 483 of [1], the bound on
the L2-norm of curvature, the lower bound on the volume and the harmonic
radius imply that the rescaled metric converges to an Einstein ALE space
M∞. Replacing the harmonic radius by the holomorphic radius, we can show
that M∞ is actually Kähler. Moreover, before taking limit, the manifold has
a parallel holomorphic symplectic form ω2 + iω3. Thus, on M∞, there exists
a parallel holomorphic symplectic form, too. In other words, M∞ is actually
hyperkähler.
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By Bando-Kasue-Nakajima [5] and Kronheimer [48] [49], the (non-flat)
ALE-gravitational instanton M∞ contains a curve Σ∞ with self intersection
number -2. Before rescaling, the integrals of ωi, ω

2 and ω3 on Σi converge to
0.

Recall that H2(M,R) is generated by 8 curves Σα and 3 faces F23, F31, F12.
In fact, similar to Section B of [73], any element in H2(M,Z) can be repre-
sented by half integral linear combinations of Σα and Fαβ. Let

[Σi] =
1

2

∑
(miα[Σα] +miαβ[Fαβ]).

Then [Σi]
2 = −2 = −2

4

∑
m2
iα. So there are only finitely many possibilities

of miα. By condition (1) of Theorem 1.11, the actions of limi→∞[ωi], [ω2]
and [ω3] on Fαβ are linearly independent. Since the integrals of ωi, ω

2 and
ω3 on Σi converge to 0, we know that miαβ also has a uniform bound. In
other words, the homology class [Σi] only has finitely many possibilities.
Taking a subsequence where the homology class of Σi are same, we obtain a
contradiction to the condition (2) of Theorem 1.11.

We’ve obtained a bound on the curvature. Theorem 4.7 of [18] and
Lemma 4.3 of [68] now provide a lower bound on the holomorphic radius.

Let D0 be the upper bound on the diameter of UN with respect to ω0.
We are interested in the function e(ti) = trωiω0 = trω0ωi on Bωi(pNi, 10D0).
We start from a theorem:

Theorem 7.16. There exists a constant C2 such that if

γ−2

∫
Bωi (p,γ)

e(ti) ≤ C2

for some ball Bωi(p, γ) ⊂ Bωi(pNi, 10D0), then

sup
σ∈[0, 2

3
γ]

σ2 sup
Bωi (p,

2
3
γ−σ)

e(ti) ≤
1

C2

γ−2

∫
Bωi (p,γ)

e(ti) ≤ 1.

Proof. It’s well known that in the C1,α-holomorphic radius, there are higher
derivative bounds automatically. Thus, the constant in Proposition 2.1 of
[68] is uniform. (There are several errors in [68]. After correcting them, we
can only get “2

3
γ” instead of “γ” in the statement)
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Theorem 7.17. For each i, there exists a set Ai ⊂ {0, 1, 2...} such that for
all N 6∈ Ai, supBωi (pNi,4D0) e(ti) ≤ 2.5 and the number of elements in Ai is
bounded.

Proof. For any point p ∈M , the number of N such that p ∈ Bωi(pNi, 10D0) is
bounded. Actually, by Theorem 7.14, for all such N , the set VNi is contained
in Bωi(p, 10D0 +C1). The volume of Bωi(p, 10D0 +C1) has an upper bound
by volume comparison, while the volumes of the disjoint sets VNi have a lower
bound.

Therefore, by Theorem 7.13∑
N

∫
Bωi (pNi,10D0)

(e(ti)− 2) ≤ C.

Let γ be a constant smaller than D0 such that γ2 ≤ C2

2π2 . Then by the
volume comparison theorem, the volume of B(R) on a Ricci flat 4-manifold
is bounded by π2

2
R4. So∫

Bωi (p,γ)

2 = 2Vol(Bωi(p, γ)) ≤ C2

2
γ2.

Therefore, as long as ∫
Bωi (pNi,10D0)

(e(ti)− 2) ≤ C2

2
γ2,

we can get ∫
Bωi (p,γ)

e(ti) ≤ C2γ
2

for all p ∈ Bωi(pNi, 8D0). So e(ti) = trωiω0 ≤ 9
4
γ−2 in Bωi(pNi, 8D0) by

Theorem 7.16. In particular, Bωi(pNi, 8D0) ⊂ Bω0(pNi, 18γ−2D0).
For any ε ≤ C2

2
γ2, let Ai,ε denote the set of N such that the integral∫

Bωi (pNi,10D0)
(e(ti) − 2) > ε or supBω0 (pNi,18γ−2D0) |Rm(ω0)| > ε. Then the

number of elements in Ai,ε is bounded. For all N 6∈ Ai,ε, it’s well known [68]
that

−∆ωie(ti) ≤ C|Rm(ω0)|e(ti)2 ≤ C|Rm(ω0)|
in Bωi(pNi, 8D0). So both supBωi (pNi,8D0)−∆ωie(ti) and

∫
Bωi (pNi,8D0)

(e(ti)−2)

are bounded by Cε. By Theorem 9.20 of [31], supBωi (pNi,4D0)(e(ti)− 2) ≤ Cε
for all N 6∈ Ai,ε. After a suitable choice of ε, we can make it smaller than
1/2.
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Lemma 7.18. There exists a constant R such that M ⊂ ∪N 6∈AiBωi(pNi, R).

Proof. For all N 6∈ Ai, 1
2
ωi ≤ ω0 ≤ 2ωi in Bωi(pNi, 4D0) by Theorem 7.17.

In particular,
UN ⊂ Bω0(pNi, D0) ⊂ Bωi(pNi, 4D0).

Let UAi = ∪N∈AiUN . Suppose R = supq∈UAi
infN 6∈Ai dωi(pNi, q) is achieved

by qi and Ni. Then we will use the argument similar to Theorem 3.1 of [69]
and Theorem 3.1 of [78] proved by applying Theorem I.4.1 of [72]. Actually,
if R > 10D0, by Theorem 7.17, it’s easy to see that Bωi(qi, R− 10D0) ⊂ UAi
and UNi ⊂ Bωi(qi, R+ 10D0) \Bωi(qi, R− 10D0). Since the volume of UAi is
bounded from above and the volume of UNi is bounded from below, it’s easy
to get a bound on R by the Bishop-Gromov volume comparison theorem.

Theorem 7.19. e(ti) = trω0ωi = trωiω0 is uniformly bounded on M .

Proof. By Theorem 7.15 and Lemma 7.18, the ωi-holomorphic radius is
bounded from below. So the constant in Theorem 7.16 is uniform if we
replace ω0 by ωj in the statement of Theorem 7.16. By Theorem 7.13,∫

M

(trωjωi − 2)
ω2
j

2
→ 0

as i, j →∞. So for large enough i and j, trωjωi is uniformly bounded on M .
Fix j and let i go to infinity. Since C−1

j ω0 ≤ ωj ≤ Cjω0, the bound on trωjωi
automatically implies a bound on trω0ωi.

Now we are ready to use the arguments in [35] to prove Theorem 1.11.
Let N be a large constant such that when r ≥ N , 1

2
ω0 ≤ αi ≤ 2ω0. We start

from a theorem which can be easily deduced from Proposition 4.21 of [35]:

Theorem 7.20. Let w = e−δr∫
M e−δr

be a weight function. Define the weighted

norm ||u||Lpw by ||u||Lpw = (
∫
|u|pw)1/p, then for all u ∈ C∞0 ,

||u||L4
w({r≥N}) ≤ C||∇u||L2({r≥N}) + C||u||L4({N≤r≤N+1}).

It’s easy to see that for all 1 ≤ p ≤ q ≤ ∞, ||u||Lpw ≤ ||u||Lqw by Hölder’s
inequality.

Theorem 7.21. I is closed.
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Proof. Let φai =
∫
M φie

−2δr∫
M e−2δr be the weighted average of φi. By the standard

Lockhart-McOwen theory [53], since constant is the only harmonic function
less than eδr, we can obtain a bound on ||e−δr(φi − φai)||W 2,2 from the L2

bound of e−δr∆ω0φi = e−δr(trω0ωi − trω0αi).
Let ui = φi − φai. We already obtain a bound on ||ui||W 2,2({r≤N+4}) and

||∆ω0ui||L∞(M). So ||ui||W 2,p({r≤N+3}) is bounded for any p ∈ (1,∞) by The-
orem 9.11 of [31].

The C2,α-estimate for real Monge-Ampère equation was done by Evans-
Krylov-Trudinger. See Section 17.4 of [31] for details. Now we are in the
complex case. However, the arguments in Section 17.4 of [31] still work. An
alternative way to achieve the bound on [∂∂̄ui]Cα({r≤N+2}) for all 0 < α < 1
was done by Theorem 1.5 of [19] using the rescaling argument. Now it’s
standard to get a C∞ bound of ui on {r ≤ N+1} through Schauder estimates.

As in [35],∫
r≥N
|∇|ui|

p
2 |2α2

i

≤ p2

p− 1
[

∫
r≥N

ui|ui|p−2(ω2
i − α2

i )−
1

2

∫
r=N

ui|ui|p−2dcui ∧ (ωi + αi)].

Therefore, for p ≥ 2,∫
r≥N
|∇|ui|

p
2 |2 ≤ Cp(

∫
r≥N
|ui|p−1w + Cp−1

3 ) ≤ Cp(C3

∫
r≥N
|ui|p−1w + Cp

3 ),

where C3 is a bound on sup{r≤N+1} |ui|. By Young’s inequality,∫
r≥N
|∇|ui|

p
2 |2 ≤ Cp2(||ui||pLp−1

w ({r≥N})
+ Cp

3 ) ≤ Cp2(||ui||pLpw({r≥N}) + Cp
3 ).

Apply Theorem 7.20 to |ui|p/2. Then

||ui||2pL2p
w ({r≥N})

≤ C4p
4(||ui||2pLpw({r≥N}) + C2p

3 ).

We already know that ||ui||L2
w({r≥N}) ≤ C5. That’s our starting point. We

are going to obtain a bound on ||ui||L∞({r≥N}) = limj→∞ ||ui||L2j
w ({r≥N}) by

Moser iteration.
(1) If ||ui||L2j

w ({r≥N}) ≤ C3 for all j ≥ 1, then ||ui||L∞({r≥N}) ≤ C3.
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(2) If ||ui||L2j
w ({r≥N}) ≤ C3 for all 1 ≤ j ≤ k but ||ui||L2j

w ({r≥N}) > C3 for
all j > k, then

||ui||L∞({r≥N}) ≤ (2C4)
∑∞
j=k 2−j−1

2
∑∞
j=k 2−j+1jC3 ≤ C

(3) If ||ui||L2j
w ({r≥N}) > C3 for all j ≥ 1, then

||ui||L∞({r≥N}) ≤ (2C4)
∑∞
j=1 2−j−1

2
∑∞
j=1 2−j+1jC5 ≤ C

The L∞ bound on ui = φi − φai implies a bound on φai since φi decay
exponentially. Therefore, we actually have a L∞ bound on φi. Then we can
obtain a global C∞ bound as before. Finally, we can go through the Step 3
and Step 4 in [35] to get the C∞ bound on eλ1rφi. We are done by taking
the limit of some subsequence of {φi}.
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[42] I. T. Ivanov and M. Roček, Supersymmetric σ-models, twistors, and the
Atiyah-Hitchin metric, Comm. Math. Phys. 182 (1996), no.2, 291–302.

[43] J. Jost and H. Karcher, Geometrische Methoden zur Gewinnung von a-
priori-Schranken für harmonische Abbildungen, Manuscripta Math. 40
(1982), no.1, 27–77.

[44] A. Kasue, A compactification of a manifold with asymptotically non-
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