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1. Introduction
The purpose of this section is to familiarize the reader with the definitions

and motivation needed to understand the remaining sections.

Let (M, g) be a compact, oriented, Riemannian 4-manifold. Suppose F is a

2-form obeying:

dF = 0

?dF = 0

(ricg + F ◦ F )0 = 0

where F ◦ F denotes the composition of F with itself, when thought of as

an endomorphism of the tangent bundle of M , ((F ◦ F )ij = F k
i Fkj), and the

0 subscript denotes the trace-free part. Such a trio is called an Einstein-

Maxwell metric. It arose originally in the physics literature, where g plays

the role of gravitational field, and F the electromagnetic field. Notice that

if M is compact, then F being both closed and co-closed implies that it’s a

harmonic 2-form. In this work, we will consider exclusively the case where M

is compact. Furthermore, we always take our metrics to be of Riemannian,

as opposed to Lorentzian signature. Whether there is any direct interest to

physics, therefore, remains to be seen.

In [9], C. LeBrun showed that any such metric is necessarily of constant

scalar curvature. Conversely, any constant scalar curvature Kähler surface,

with F defined to be the 2-form

F = ω +
ρ0

2
,

is an example of an Einstein-Maxwell manifold. Here, ω denotes the Kähler

form, and ρ0 denotes the primitive part of the Ricci form.
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There are [9, 10] at least three interesting variational characterizations of

the Einstein-Maxwell equations:

(1) They are the Euler-Lagrange equations for the functional

(g, F ) 7−→
∫
M

(sg + |F |2g)µg

defined on the space {(g, F )|g is a metric of volume V , F is a 2-form

in some fixed de Rham cohomology class}.

(2) They are the Euler-Lagrange equations for the Einstein-Hilbert func-

tional:

g 7−→
∫
M
sgµg√∫
M
µg

,

with g varying in G[ω], which, for a given element, [ω] of H2(M,R)

with [ω]2 > 0 is defined to be the space of smooth metrics g, such that

the harmonic representative of [ω] (with respect to g) is self-dual (also

with respect to g).

(3) They imply the Euler-Lagrange equations for the Calabi functional

g 7−→
∫
M

s2
gµg

as g varies in G[ω].

The second characterization recasts the study of Einstein-Maxwell metrics as

a sort of restricted Yamabe problem. The relationship between these two

subjects was broached in [9] by C. LeBrun, and is further explored in section 4

of this paper. In particular, since G[ω] contains the entire conformal class of [ω],

we see that Einstein-Maxwell metrics are of constant scalar curvature. This

connection bears further study, and will likely lead to much fruitful research.

In another direction, the third characterization above relates the theory to

Calabi’s theory of extremal Kähler metrics [4, 5]. Indeed, every constant scalar
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curvature Kähler manifold is extremal and, as mentioned above, they always

provide examples of Einstein-Maxwell metrics. This connection should make

the subject of Einstein-Maxwell metrics of particular interest to those studying

Kähler geometry.

Definition 1. If (M,J) denotes a complex surface, then a solution of the

Einstein-Maxwell equations, (h, F ), is called strongly Hermitian if both h and

F are J-invariant.

In [10], it was proven that, for any compact complex surface with a strongly

Hermitian solution, (h, F ), of the Einstein-Maxwell equations, there is always

a Kähler metric g, and a holomorphy potential, f > 0, with h = f−2g and

such that F+, the self-dual part of the 2-form F , is a constant multiple of the

Kähler form of g. Recall that a holomorphy potential is a (positive) real-valued

function such that:

• the (1, 0)-component of its gradient is a holomorphic vector field, or

• f has J-invariant Hessian, or

• Jgrad(f) is a Killing field.

In [10, 11], concrete families of Einstein-Maxwell metrics are constructed

(see also [8]). In particular, C. LeBrun found a family of Einstein-Maxwell

metrics including the Einstein metric constructed by Page on CP2CP2. In the

next two sections of this paper, I extend these constructions to the following

higher-dimensional generalization of Einstein-Maxwell metrics:

Apostolov and Maschler [1] then considered higher dimensional analogues

of these strongly Hermitian Einstein-Maxwell metrics.

Definition 2. Let h be a Hermitian metric on a complex manifold (M,J),

and let u denote a smooth function such that g := u2h is a Kähler metric.
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Also suppose h has constant scalar curvature, and obeys

ric = J∗ric.

Then h is called a conformally Kähler Einstein-Maxwell metric.

Remark 1. The condition on the Ricci curvature is equivalent to the condition

that Jgradg(u) is a Killing field for both metrics g and h.

Remark 2. If the Hermitian metric is Einstein, then the conditions on scalar

and Ricci curvature are automatically met. Conformally Kähler Einstein met-

rics were studied by A. Derdzinski and G. Maschler in [6].

Apostolov and Maschler also considered obstructions to the existence of

conformally Kähler Einstein-Maxwell metrics by defining two invariants, sim-

ilar in nature to the traditional Futaki invariants. In particular, they find

obstructions to the problems of:

• finding, on a given compact symplectic manifold, and a fixed confor-

mal factor (coming from a hamiltonian function with respect to the

symplectic structure), a complex structure compatible with the sym-

plectic structure, and such that the conformal change of this Kähler

metric via the fixed conformal factor produces a conformally Kähler

Einstein-Maxwell metric, and

• finding, in a fixed Kähler class, Ω, on a given compact complex manifold

and with a fixed Killing field, K, to play the role of Jgradg(u), and

with some fixed positive real number a, a Kähler metric, ω, in Ω, such

that 1
f2K,ω,a

g is conformally Kähler Einstein-Maxwell. Here, g is the

metric corresponding to ω and fK,ω,a denotes the hamiltonian function

of K with respect to ω, normalized to have total integral a.



5

A very recent paper of A. Futaki and H. Ono [7] recasts the second Futaki-

type invariant above in terms of the volume function on a suitable space of

Killing fields. These results mirror the variational characterization of the 4-

dimensional Einstein-Maxwell equations mentioned above (the second bullet

point). They also construct the same higher-dimensional generalization of the

LeBrun CP1 × CP1 that I do in the following section of this paper, and so,

there is some overlap between their results and my own.

The outline of this work is as follows.

In section 2, we construct conformally Kähler Einstein-Maxwell metrics on

CP1 ×X, where X denotes a constant scalar curvature Kähler manifold.

In section 3, we construct conformally Kähler Einstein-Maxwell metrics on

CP1-bundles over CPm − 1. These metrics, in particular, include a family of

Einstein metrics first constructed by Berard-Bergery [2], and later studied by

Page and Pope [13].

In section 4, we consider the question of rigidity of conformally Kähler

Einstein-Maxwell metrics. In the case that the Kähler metric is Yamabe, and

assuming some other minor condition, we show that there can be no family of

Einstein-Maxwell metrics inhabiting the same Kähler class, passing through

this solution.
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2. Einstein-Maxwell metrics

on CP1 ×X
Let (X, g2) be a Kähler manifold of complex dimension m− 1, and constant

scalar curvature c, and let g1 denote the metric

(2.1)
1

Ψ (t)
dt2 + Ψ (t)σ2,

on (α, β)×S1. Here σ denotes a closed 1-form on S1. Our goal in this section is

to put a conformally Kähler Einstein-Maxwell metric on the product of these

manifolds.

Lemma 1. There exists a complex structure on (α, β)× S1 ×X with respect

to which the product metric on (α, β)× S1 ×X is Kähler.

Proof. Since X is already Kähler, we need only show that the metric g1 on

(α, β) × S1 is a Kähler metric. Following [11], we define an almost complex

structure J on our product manifold by having J send dt to −Ψ(t)σ. In

particular,

dt

Ψ(t)
+ iσ

is a (1, 0)-form and

d

(
dt

Ψ(t)
+ iσ

)
= idσ = 0.

Since the (1, 0)-forms span a closed differential ideal, J is integrable. Notice

that the metric g1 is Hermitian with respect to this complex structure, and,

since the complex dimension is 1, it must be Kähler. �

The associated (1, 1)-form to g1, is given by

ω1 = σ ∧ dt.
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In particular, if η denotes the vector field generating rotation in the S1-

component, so that

dt(η) = 0

σ(η) ≡ 1,

then η is a Killing, Hamiltonian vector field for ω1, with t as its Hamiltonian

function. Notice, too, that J∇t = J (Ψ(t)∂t) = η is Killing, so that t is a

holomorphy potential. (Also notice that the S1-action lifts to (α, β)×S1×X.)

Theorem 1. Let g denote the product metric of g1 and g2 on (α, β)×S1×X,

and let h = t−2g, where t denotes the real variable on (α, β). There exists a

choice of Ψ(t) so that h is an Einstein-Maxwell metric on CP1 ×X.

Since we’ve already seen that t is a holomorphy potential, we need only

arrange for the scalar curvature of g to be constant. The scalar curvature of g

is given by sg = c−Ψ′′ (t), and, so, the scalar curvature of h is given by

(2.2) sh = d = 2
2m− 1

m− 1
tm+1∆g

(
1

tm−1

)
+ t2 (c−Ψ′′ (t)) .

Here, d denotes the intended (constant) scalar curvature of sh. In order to

determine how ∆g acts on functions of t, notice that if η1, ..., η2m−2 denotes

an orthonormal coframe for X, then 1√
Ψ(t)

dt,
√

Ψ (t)σ, η1, ..., η2m−2 forms an

orthonormal coframe for g. Then(
1√
Ψ
dt

)
∧ ∗
(

1√
Ψ
dt

)
= dt ∧ σ ∧ η1... ∧ η2m−2.

This implies that ∗dt = Ψσ ∧ η1...∧ η2m−2. In particular, if we let ϕ (t) denote

any function of t, then

∆g (ϕ) = − ∗ d ∗ dϕ = − ∗ d ∗ (ϕ′dt) = − ∗ d (Ψϕ′)σ ∧ η1... ∧ η2m−2 =

− ∗ (Ψϕ′)
′
dt ∧ σ ∧ η1... ∧ η2m−2 = − (Ψϕ′)

′
.
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The case we’re interested in is ϕ = t1−m, which gives ∆g (t1−m) = − (1−m) (Ψt−m)
′
=

(m− 1) (Ψ′t−m −mΨt−m−1), so plugging into our formula for sh gives

(2.3) sh = d = 2
2m− 1

m− 1
tm+1 (m− 1)

(
Ψ′t−m −mΨt−m−1

)
+ t2 (c−Ψ′′ (t))

⇒ d− ct2 = (−2m (2m− 1)) Ψ + (2 (2m− 1) t) Ψ′ − t2Ψ′′.

The right hand side acts as a differential operator on powers of t by sending

tL 7→ [−2m (2m− 1)+2 (2m− 1)L−L (L− 1)]tL = [−L2+(4m− 1)L+2m−4m2]tL.

In particular, t2m−1 and t2m are sent to 0, and d
2m(1−2m)

, ct2

2(m−1)(2m−3)
are sent

to d,−ct2 respectively. The general solution is then

(2.4) Ψ =
d

2m (1− 2m)
+

ct2

2 (m− 1) (2m− 3)
+Bt2m−1 + At2m =

M +Nt2 +Bt2m−1 + At2m

where A,B are arbitrary constants and M = d
2m(1−2m)

, N = c
2(m−1)(2m−3)

.

We have, thus far, focused on the local character of the problem. Now we

consider the global question of compactifying our manifolds.

To compactify this solution, we let α, β be two consecutive zeroes of Ψ. Then

we require Ψ′ (α) = 2 = −Ψ′ (β) and, of course, we need Ψ to be positive on

the interval (α, β). We may therefore suppose

(2.5) Ψ = (t− α) (t− β)P (t)

for some polynomial, P , of degree 2m−2. Since Ψ′ = (t− β)P (t)+(t− α)P (t)+

(t− α) (t− β)P ′ (t), the conditions that Ψ (0) = M,Ψ′ (0) = 0,Ψ′ (α) = 2 =

−Ψ′ (β) imply the following facts about P :

P (0) =
M

αβ
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(2.6) P ′ (0) =
M (α + β)

(αβ)2

P (α) = P (β) =
2

α− β
.

We get further conditions on P if we notice that Ψ only has terms of order

0, 2, 2m− 1, 2m. Since

(2.7) Ψ(n) =
(
n2 − n

)
P (n−2) + n (2t− α− β)P (n−1) + (t− α) (t− β)P (n),

these conditions on Ψ imply for (3 < n < 2m− 1)

(2.8) Ψ(n) (0) = 0⇒

P (n) (0)

n!
=
α + β

αβ

P (n−1) (0)

(n− 1)!
− 1

αβ

P (n−2) (0)

(n− 2)!
.

We must also take into account the non-zero terms of Ψ:

Ψ′′ (0) = 2N ⇒ P ′′ (0)

2
=

(
N

αβ
− M

(αβ)2 +
M (α + β)2

(αβ)3

)

(2.9) Ψ(2m−1) (0) = (2m− 1)!B

Ψ(2m) (0) = (2m)!A.

For clarity, we make the following definitions:

u =
1

αβ
, v =

(α + β)

αβ

P0 =
M

αβ
= Mu

(2.10) P1 =
M (α + β)

α2β2
= Muv

P2 =
N

αβ
−M

(
1

α2β2
+

(α + β)2

α3β3

)
= Nu−Mu (u+ v) .
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In general,

Pj =
P (j)(0)

j!
.

Then our inductive formula for the coefficients of P is now

(2.11) Pj = vPj−1 − uPj−2.

By inductively expanding the right hand side of this equation, we can reduce

it to a linear combination of P1 and P2. So define qj and rj, for j > 1 so that

Pj = qjP2 + rjP1. The qj, rj are polynomials in u and v and each obey similar

inductive relations to Pj. Indeed, one has that

(2.12) qj =

bj/2c∑
l=1

(−1)l+1

(
j − l − 1

l − 1

)
ul−1vj−2l

rj =

dj/2−1e∑
l=1

(−1)l
(
j − l − 2

l − 1

)
ulvj−2l−1 = −uqj−1.

(Since we have u < v2

4
each qj >

j−1
2j−2v

j−2 is positive, so that each rj = −uqj−1

is negative.) Now, we can write

2

α− β
= P (α) = P0 + P1α + ...+ P2m−2α

2m−2 =

Mu+Muvα +Nuα2 −Mu (u+ v)α2 +
2m−2∑
j=3

[qjP2 + rjP1]αj =

(2.13)

M

[
u+ uvα− u (u+ v)α2 +

2m−2∑
j=3

(−u (u+ v) qj + rjuv)αj

]
+N

[
uα2 +

2m−2∑
j=3

(uqj)α
j

]
=

MSα +NRα.

Here

Sα :=

[
u+ uvα− u (u+ v)α2 +

2m−2∑
j=3

(−u (u+ v) qj + rjuv)αj

]
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and

Rα :=

[
uα2 +

2m−2∑
j=3

(uqj)α
j

]
.

Similarly,

2

α− β
= MSβ +NRβ.

This system of equations can be solved for M,N :

(2.14) M =
2 (Rβ −Rα)

(β − α) (SβRα − SαRβ)

N =
−2 (Sβ − Sα)

(β − α) (SβRα − SαRβ)
.

In order to better understand these formulas, it is helpful to define:

Ωα =
2m−2∑
j=3

qjα
j

Λα =
2m−2∑
j=3

rjα
j,

so that we can now write

Sα = u+ uvα− u (u+ v) Ωα + uvΛα

Rα = uΩα

Rβ −Rα = u (Ωβ − Ωα)

(2.15) Sβ − Sα = uv[β − α + Λβ − Λα]− u (u+ v) [Ωβ − Ωα]

SβRα − SαRβ = −u2[Ωβ − Ωα]− u2v[αΩβ − βΩα]− u2v[ΩβΛα − ΩαΛβ].

Since β > α⇒ Ωβ > Ωα, we see that Rβ−Rα > 0. Sβ−Sα and SβRα−SαRβ,

on the other hand, are negative. This will follow from the inequality:

α + Λα > β + Λβ ⇔ 1 <
Λα − Λβ

β − α
=

2m−2∑
j=3

rj
αj − βj

β − α
= u

2m−1∑
j=2

qj
βj+1 − αj+1

β − α
.
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That Sβ−Sα is negative is now clear. To see that SβRα−SαRβ is also negative,

we need only note that

(2.16) (α + Λα) Ωβ > (β + Λβ) Ωα.

In particular, we see that N and, therefore, c must be positive.
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3. Generalized

Berard-Bergery Metrics
Our goal in this section is to construct examples of conformally Kähler

Einstein-Maxwell metric on CP1-bundles over complex projective spaces of

arbitrary dimension. These metrics include, in particular, examples of Einstein

metrics originally constructed by Berard-Bergery [2] and studied by Page and

Pope [13]. Our discussion begins with local considerations, then we compactify

our local solutions to finish the construction.

Let us consider a metric g on an S1-bundle over (α, β)× CPm−1 given by

(3.1)
1

2tΦ (t)
dt2 + 2tΦ (t)σ2 + 2tπ∗gFS

where σ denotes a 1-form with dσ = π∗ωFS, π denotes the projection to the

CPm−1 factor and gFS, ωFS denote the Fubini-Study metric and Kähler form

respectively. The scalar curvature formula tells us that:

(3.2) −sg =
−4m (m− 1)

2t
+

2m (m− 1)

t
Φ + 4mΦ′ + 2tΦ′′.

An argument entirely analogous to 1 ensures that this metric is Kähler,

and that t is a holomorphy potential. In fact, since one can certainly add

any constant to a holomorphy potential to get another (corresponding to the

same Killing field), we may take our conformal factor to be (t− ξ)−2 for some

constant ξ. This added degree of freedom will be essential in the construction.

Now, we seek to conformally change our Kähler metric into one of con-

stant scalar curvature M , by multiplying by the function (t− ξ)2. It will also



14

simplify notation if we define a new function Ψ by:

(3.3) Ψ = tmΦ.

Then the equation for scalar curvature becomes:

(3.4)

tm−1

[
M +

−4m (m− 1)

2t
(t− ξ)2

]
= −2 (t− ξ)2 Ψ′′+(8m− 4) (t− ξ) Ψ′−m (8m− 4) Ψ.

Define a differential operator D by:

(3.5) DΨ = −2 (t− ξ)2 Ψ′′ + (8m− 4) (t− ξ) Ψ′ −m (8m− 4) Ψ.

Then notice

D
(
t− ξ)L = [−2L (L− 1) + (8m− 4)L−m (8m− 4)] (t− ξ)L = (3.6)

[−2L2 + (8m− 2)L− 8m2 + 4m] (t− ξ)L ,

so, in particular, D (t− ξ)2m = D (t− ξ)2m−1 = 0. An arbitrary linear combi-

nation of these two terms will therefore solve the corresponding homogeneous

equation for our constant scalar curvature equation. In order to find a specific

solution, we will write the left hand side of 3.4 as a polynomial in (t− ξ).

(3.7) tm−1

[
M +

−4m (m− 1)

2t
(t− ξ)2

]
=

M

m−1∑
j=0

(
m− 1

j

)
ξm−1−j (t− ξ)j+−4m (m− 1)

2

m−2∑
j=0

(
m− 2

j

)
ξm−2−j (t− ξ)j+2 =

Mξm−1 +M (m− 1) ξm−2 (t− ξ) +

[
m−3∑
j=0

[
M

(
m− 1

j + 2

)
ξm−3−j +

−4m (m− 1)

2

(
m− 2

j

)
ξm−2−j

]
(t− ξ)j+2]+

k (m− 1)

2
(t− ξ)m .

So a solution to the scalar curvature equation has the general form:

(3.8) Ψ = A (t− ξ)2m +B (t− ξ)2m−1 +
m∑
j=0

cj (t− ξ)j
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for some constants A,B. Here,

(3.9) cj =
M
(
m−1
j

)
ξm−1−j − 2m (m− 1)

(
m−2
j−2

)
ξm−j

−2 (j − 2m) (j − 2m+ 1)
= Mξm−j−1aj + ξm−jbj

for j < m, cm = 1, and cj = 0 for j > m. Here,

aj :=

(
m−1
j

)
−2 (j − 2m) (j − 2m+ 1)

,

and

bj :=
−2m (m− 1)

(
m−2
j−2

)
−2 (j − 2m) (j − 2m+ 1)

.

We have thus far considered only the local picture of our manifolds. We

would now like to impose certain boundary conditions to compactify our so-

lutions. The SU(m)-invariance of our metrics guarantees that our manifolds,

thus far, are open dense sets in some P(O(p) ⊕ O) (see [11]), and the proper

boundary conditions will allow us to extend our metrics to the total space,

smoothly.

To express the required boundary conditions for the zeroes of Ψ as easily as

possible, we begin by defining x = t− ξ, and let

(3.10) Ψ (x) = (x− α) (x− β)Q (x) ,

for some polynomial Q of degree 2m − 2, and for some α < β. Define Qj to

be the coefficients of Q:

(3.11) Q (x) =
2m−2∑
j=0

Qjx
j.

Define

u =
1

αβ

v =
α + β

αβ
,
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and notice that, since Ψ has no terms of order n for m < n < 2m− 1,

(3.12) 0 =
Ψ(n) (0)

n!
=
Q(n−2) (0)

(n− 2)!
− (α + β)

Q(n−1) (0)

(n− 1)!
+ αβ

Q(n) (0)

(n)!

⇒ Qn = vQn−1 − uQn−2.

Then we have that

Ψ (x) =
(
x2 − (α + β)x+ αβ

) 2m−2∑
j=0

Qjx
j =

2m∑
j=2

Qj−2x
j − (α + β)

2m−1∑
j=1

Qj−1x
j

+αβ
2m−2∑
j=0

Qjx
j = αβQ0 + [αβQ1 − (α + β)Q0]x

+
2m−2∑
j=2

[Qj−2 − (α + β)Qj−1 + αβQj]x
j

+[− (α + β)Q2m−2+Q2m−3]x2m−1+Q2m−2x
2m = αβQ0+[αβQ1−(α + β)Q0]x

+
m∑
j=2

[Qj−2 − (α + β)Qj−1 + αβQj]x
j

+
2m−2∑
j=m+1

[Qj−2−(α + β)Qj−1+αβQj]x
j+[− (α + β)Q2m−2+Q2m−3]x2m−1+Q2m−2x

2m.

Setting this equal to our general formula for Ψ gives:

c0 = αβQ0

c1 = αβQ1 − (α + β)Q0

cj = Qj−2 − (α + β)Qj−1 + αβQj (j > 2)

B = − (α + β)Q2m−2 +Q2m−3

A = Q2m−2.

For j < 2m− 1, it follows that

(3.13) Qj =

j∑
k=0

qj−kck
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where

qj =

b j2+1c∑
l=1

(−1)l+1

(
j − l + 1

l − 1

)
ulvj+2−2l.

For our boundary conditions at α, β to be met, we require (for some positive

integer p) that

(3.14) Ψ′(α) = (α− β)Q (α) = p (α + ξ)

Ψ′ (β) = (β − α)Q(β) = −p(β + ξ)

(3.15)
Q(α)

α + ξ
=
−p
β − α

=
Q(β)

β + ξ

Define Rα, Sα, Rβ, Sβ so that

(3.16) Q(α) =
2m−2∑
j=0

j∑
k=0

M [akqj−kξ
m−k−1αj] + [bkqj−kξ

m−kαj] = MRα + Sα

and similarly for Q(β). Then the boundary conditions read

(3.17)
Q(α)

α + ξ
=
MRα + Sα
α + ξ

=
MRβ + Sβ
β + ξ

=
Q(β)

β + ξ

(3.18) ⇒M =
Sβ(α + ξ)− Sα(β + ξ)

Rα(β + ξ)−Rβ(α + ξ)
.

Plugging this back in for M gives

(3.19) F (ξ) := [SβRα − SαRβ] +
p

β − α
[Rα(β + ξ)−Rβ(α + ξ)] = 0.

This is a polynomial equation in ξ. To show there exists a solution for some

ξ, suppose α = 1, and define ραj and σαj by

(3.20) Rα =
m−1∑
j=0

(
2m−2∑

k=m−1−j

qk−m+j+1α
k)am−1−jξ

j =
m−1∑
j=0

ραj am−1−jξ
j

(3.21) Sα =
m∑
j=0

(
2m−2∑
k=m−j

qk−m+jα
k)bm−jξ

j =
m∑
j=0

σαj bm−jξ
j
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(3.22) σαj = ραj−1.

We now claim that, for any p > 0, a large enough choice of β > α implies

F (0) > 0, and that the highest coefficient of F is negative, from which it

immediately follows that F has a (positive) root ξ.

Indeed,

(3.23) F (0) = [σβ0 ρ
α
0 − σα0 ρ

β
0 ]bmam−1 +

p

β − α
am−1[βρα0 − αρ

β
0 ]

where

am−1 =
−1

2m(m+ 1)

bm = 1

and, when α = 1

σα0 =
1

βm−1
(1 + 2β + 3β2 + . . .+ (m− 1)βm−2)

ρα0 =
1

βm
(1 + 2β + 3β2 + . . .+mβm−1)

σβ0 = βm−1(βm−2 + 2βm−3 + . . .+ (m− 1))

ρβ0 = βm−2(βm−1 + 2βm−2 + . . .+m).

From which it follows

F (0) =
−β−m−2

2m(m+ 1)(β − 1)3
(β3−pβm+1−(m+1)βm+3+mβm+4+m(mp−1)β2m

+(1 +m+ 2p− 2pm2)β2m+1 + pm2β2m+2 − (1 + p)β3m+1)

This is positive for large β. The highest two coefficients of F , thought of as a

polynomial in ξ vanish, and the third is negative, given by:

−1

8(2m− 3)(2m− 1)β2m−2
(
2m−4∑
j=0

(2m− 3− j)βj)(
2m−2∑
j=0

(j + 1)βj).

This proves
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Theorem 2. The metric obtained above can be extended to the compactifica-

tion of the S1-bundle over (α, β)×CPm−1 obtained by adding copies of CPm−1

to each end. Namely, there exist conformally Kähler Einstein-Maxwell metrics

on P(O(p)⊕O) for all positive integers p.

Finally, we remark that the Einstein metrics constructed by Berard-Bergery

[2], and also studied by Page/Pope [13] are specific examples of the metrics

we’ve constructed here. Indeed, Page and Pope defined their metric as

(1− r2)m−1

P (r)
dr2 + c2 P (r)

(1− r2)m−1
σ2 + c(1− r2)ds2,

for some polynomial P , a constant c and Einstein-Kähler metric ds2 on the

base. (Their r variable is related to our x variable according to x = −2ξ
1+r

.)
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4. Rigidity in the Yamabe Case

Apostolov and Maschler [1] considered the question: which Kähler classes

of a compact complex m-manifold (M,J) admit a representative which is con-

formal to a conformally Kähler Einstein-Maxwell metric? More precisely, they

begin by fixing a compact subgroup G in the reduced automorphism group of

(M,J), with Lie algebra g, and a Kähler class Ω. If K is any element of g,

and ω ∈ Ω is any G-invariant Kähler metric, then the Hamiltonian function

fK,ω,a is defined by the pair of equations:

ιKω = −dfK,ω,a

∫
M

fK,ω,aµω = a,

where a is a positive real number, and µω is the volume element. The square

of this function serves as the conformal factor acting on ω. Apostolov and

Maschler then define a Futaki-like invariant FGΩ,K,a which must vanish if there

exists an ω ∈ Ω with h(X, Y ) = 1
f2K,ω,a

ω (X, JY ) defines an Einstein-Maxwell

metric.

In this section, we address the question: to what extent is this metric, should

it exist, locally rigid? That is, can we vary ω in Ω and K in g along a curve of

Einstein-Maxwell solutions? In the special case of Yamabe metrics, the answer

is, in general, no.

Suppose we fix a Kahler class Ω on (M,J), and suppose we also fix a

compact subgroup of reduced automorphisms G. Let (K, a, ω) be a triple
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in g × R>0 × Ω such that ω is G-invariant, and 1
f2K,ω,a

ω (X, JY ) an Einstein-

Maxwell metric. Consider a curve in the space g × R>0 × Ω of the form(
K + tL, a+ tb, ω + ti∂∂ϕ

)
. To simplify matters later on, one can choose b

to arrange that we are varying our holomorphy potential f in a direction L2-

orthogonal to the space of constant functions. Consider the scalar curvature

of the conformally changed metric as a function

s̃ : g× R>0 × Ω→ C∞(M).

Our goal is to calculate the first variation of this function along the curve. To

this end, define

ft = fK+tL,a+tb,ω+ti∂∂ϕ,

st = scal(ω + ti∂∂ϕ),

∆t = ∆ω+ti∂∂ϕ,

s̃t = 2
2m− 1

m− 1
f 1+m
t ∆t

(
f 1−m
t

)
+ stf

2
t .

To simplify notation, we write f for f0, s for s0, and ∆ for ∆0. Then the

general formula for the first variation of conformally changed scalar curvature

is

˙̃s0 = 2
2m− 1

m− 1

[
(m+ 1)fmḟ0∆

(
f 1−m)+ f 1+m∆̇0

(
f 1−m)− (m− 1)f 1+m∆

(
f−mḟ0

)]
+ṡ0f

2+2sfḟ0.

In the case that our Kahler metric is of constant scalar curvature, these

formulas simplify considerably. In particular, we may take the conformal factor

f = fK,a,ω to be identically equal to 1. This corresponds to K = 0 ∈ g.

Furthermore, one can show [12] that the Lichnerowicz fourth-order operator

L =
(
∂∂#

)∗
∂∂# =

1

4
(∆2 + 2ric · ∇∇)
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when acting on smooth complex-valued functions. Here, ric denotes the Ricci

curvature of g, and ∂# denotes the (1, 0)-projection of the gradient of the

function. In particular, notice that L is self-adjoint with respect to the L2-

inner product on functions.

In this constant scalar curvature case, the first variation of the scalar cur-

vature term simplifies ([12]) to

ṡ0 = −4L(ϕ).

With these simplifications, we have

˙̃s0 = −2(2m− 1)∆
(
ḟ0

)
+ ṡ0 + 2sḟ0.

Assume our Kähler metric g is a Yamabe metric. In particular, it has

constant scalar curvature sg, so the above simplifications apply.

If we take the L2-inner product of ˙̃s0 with ḟ0, we can arrange our original

choice of b to get 0. This implies

0 =

∫
M

−2(2m− 1)ḟ0∆
(
ḟ0

)
+ 2sḟ 2

0µg =

∫
M

−2(2m− 1)|∇ḟ0|2 + 2sḟ 2
0µg,

where we’ve used the fact that L(ϕ) ∈image(
(
∂∂#

)∗
∂∂#) = (ker(

(
∂∂#

)∗
∂∂#))⊥,

and so is L2-orthogonal to the holomorphy potential ḟ0 = fK,a,i∂∂ϕ + fL,b,ω.

By the Rayleigh quotient interpretation of eigenvalues, the first (non-zero)

eigenvalue of the Laplacian is equal to

λ = inf

∫
M
|∇f |2µg∫
M
f 2µg

,

where the inf is taken over all functions L2-orthogonal to the constants.

But this implies
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0 =

∫
M

−2(2m− 1)|∇ḟ0|2 + 2sḟ 2
0µg ≤

∫
M

[−2(2m− 1)λ+ 2s] ḟ 2
0µg,

from which it follows that

(4.1) λ ≤ s

2m− 1
.

However, we also have the following

Theorem 3. If g is a Yamabe metric on a compact manifold of dimension

n, s denotes its (constant) scalar curvature, and λ denotes the first non-zero

eigenvalue of its Laplacian, then

λ ≥ s

n− 1
.

Furthermore, if λ = s
n−1

, then ∫
M

v3µg = 0,

where v denotes any eigenfunction of the Laplacian with eigenvalue λ. In this

case, we also have that (∫
M
µg
) (∫

M
v4µg

)(∫
M
v2µg

)2 ≤ 3
n+ 2

6− n
.

Proof. Since g is Yamabe, it minimizes the Einstein-Hilbert functional within

its conformal class. So, if ĝ = u
4

n−2 g = up−2g for some function u and p = 2n
n−2

,

then

(4.2)

∫
M
ŝµĝ[∫

M
µĝ
]2/p ≥

∫
M
sµg[∫

M
µg
]2/p = s

[∫
M

µg

] p−2
p

.
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Suppose v is an eigenfunction of the Laplacian, ∆, of g, corresponding to

the eigenvalue λ. That is,

∆(v) = λv.

By the Rayleigh quotient interpretation of eigenvalues, we have that

λ =

∫
M
|∇v|2µg∫
M
v2µg

= inf

∫
M
|∇w|2µg∫
M
w2µg

,

where the inf is taken over all functions L2-orthogonal to the constants. For

our conformal factor, take

u = 1 + εv.

Then, using that [3]

µĝ = upµg = (1 + εv)pµg,

and

ŝ = (p+ 2)u1−p∆(u) + su2−p = (p+ 2)(1 + εv)1−p∆(1 + εv) + s(1 + εv)2−p,

we have

(4.3)∫
M
ŝµĝ[∫

M
µĝ
]2/p =

(p+ 2)
∫

(1 + εv)1−pελv(1 + εv)pµg + s
∫
M

(1 + εv)2−p(1 + εv)pµg

[
∫
M

(1 + εv)pµg]2/p
.

We’d like to expand this expression as series in ε (at least to 4th order). To

that end, define

r(ε) =

p∑
k=0

((
p

k

)∫
M

vkµg

)
εk

and

f(ε) =

[∫
M

(1 + εv)pµg

]−2/p

= [r(ε)]−2/p .

So that f(ε) is the denominator of the above expression.
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Since eigenfunctions corresponding to different eigenvalues of ∆ must be

orthogonal in the L2 inner product, we have that
∫
M

1 ·vµg = 0, which implies

r′(0) = 0. A simple calculation then gives us the following:

f ′(ε) =
−2

p
r(0)

−2−p
p r′(0),

f ′′(ε) =
−2

p
r(0)

−2−p
p r′′(0),

f ′′′(ε) =
−2

p
r(0)

−2−p
p r′′′(0),

f (4)(ε) =
6(2 + p)

p2
r(0)

−2−2p
p (r′′(0))2 +

−2

p
r(0)

−2−p
p r(4)(0).

This allows us to write down the Taylor expansion of f (up to order ε5) as

(4.4) f(ε) =
[∫
M
µg
]−2/p

− ε2
[

2

p

(
p

2

)∫
M

v2µg(

∫
M

µg)
−2−p

p

]
− ε3

[
2

p

(
p

3

)∫
M

v3µg(

∫
M

µg)
−2−p

p

]
+ε4

[
2 + p

p2

(
p

2

)2

(

∫
M

v2µg)
2(

∫
M

µg)
−2−2p

p − 2

p

(
p

4

)∫
M

v4µg(

∫
M

µg)
−2−p

p

]
+O(ε5).

As for the numerator of 4.3, we have

s

(∫
M

µg

)
+ ε2 [(p+ 2)λ+ s]

(∫
M

v2µg

)

so that 4.3 takes the form
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(4.5) s
(∫

M
µg
) p−2

p + ε2
[(

(p+ 2)λ+ s
(

1− 2
p

(
p
2

))) (∫
M
v2µg

) (∫
M
µg
)−2/p

]
− ε3

[
s

2

p

(
p

3

)(∫
M

v3µg

)(∫
M

µg

)−2/p
]

+ ε4

[(
(2 + p)s

p2

(
p

2

)2

− 2

p

(
p

2

)
((p+ 2)λ+ s)

)(∫
M

v2µg

)2(∫
M

µg

)−2−p
p

− 2s

p

(
p

4

)∫
M

v4µg

(∫
M

µg

)−2/p

+O(ε5).

Recall that this expression is just the left hand side of 4.2, and notice that

the first term of this expression coincides with the right hand side of 4.2. So

we must have

(4.6) 0 ≤ ε2
[(

(p+ 2)λ+ s
(

1− 2
p

(
p
2

))) (∫
M
v2µg

) (∫
M
µg
)−2/p

]
− ε3

[
s

2

p

(
p

3

)(∫
M

v3µg

)(∫
M

µg

)−2/p
]

+ ε4

[(
(2 + p)s

p2

(
p

2

)2

− 2

p

(
p

2

)
((p+ 2)λ+ s)

)(∫
M

v2µg

)2(∫
M

µg

)−2−p
p

− 2s

p

(
p

4

)∫
M

v4µg

(∫
M

µg

)−2/p

+O(ε5).

Define P (ε) to be the right hand side of this inequality. Notice that P :

R→ R is a real analytic function with no 0th or 1st order terms.

Define Q by P (ε) = ε2Q(ε), and define an so that Q(ε) =
∑∞

n=0 anε
n. Our

inequality tells us that P (ε) must always be non-negative. Since

lim
ε→0

g(ε) = a0,
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a0 negative would imply g(ε) < 0 for small, but non-zero, ε. This would make

P negative for small ε as well, contradicting the inequality. So

a0 =

[(
(p+ 2)λ+ s

(
1− 2

p

(
p

2

)))(∫
M

v2µg

)(∫
M

µg

)−2/p
]
≥ 0,

which establishes the first claim of the theorem.

If a0 = 0, then P (ε) = ε3
∑∞

n=0 an+1ε
n. If a1 > 0, then

∑∞
n=0 an+1ε

n → a1

as ε→ 0, so
∑∞

n=0 an+1ε
n is positive for small, non-zero ε. But for ε < 0, this

would make P (ε) < 0 as well. So a1 can’t be positive. Similar reasoning shows

that it can’t be negative, so

a1 =

[
s

2

p

(
p

3

)(∫
M

v3µg

)(∫
M

µg

)−2/p
]

= 0⇒
(∫

M

v3µg

)
= 0,

establishing the second claim in the theorem.

We have thus shown that, should the second order term vanish, the third

order term must also vanish. In this case, the positivity of P (ε) rests on the

fourth order term. Here, reasoning similar to the second order term shows

that the coefficient of ε4 in P (ε) must be non-negative. That is,

0 ≤
[(

(2+p)s
p2

(
p
2

)2 − 2
p

(
p
2

)
((p+ 2)λ+ s)

) (∫
M
v2µg

)2 (∫
M
µg
)−2−p

p

− 2s

p

(
p

4

)∫
M

v4µg

(∫
M

µg

)−2/p

Under the assumption that λ = s
n−1

= p−2
p+2

s, this simplifies to

s

[
[(p− 2)(p− 1)(p+ 3)]

4
− (p− 1)(p− 2)

] [∫
M
v2µg

]∫
M
µg

≥ (p− 1)(p− 2)(p− 3)

12

[∫
M

v4µg

]
.

The final claim in the theorem follows from this. �
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Remark 3. As an example, consider the standard product of two spheres with

different radii, S2
1×S2

r , for r < 1. The scalar curavature is s = 2+ 2
r2

and, since

the eigenvalues of a product are sums of eigenvalues from either component,

λ = 2. In this dimension, we are relating λ to s
3
, and we find that, if the

metric is Yamabe, then r ≤ 1√
2
. In the equality case, one can use that the

eigenfunctions for the first non-zero eigenvalue of the laplacian on S2 are just

projections to lines through the origin (in particular, one can take projection

to the z-axis) to verify that the other conditions in the theorem hold, so we can

not rule out the possibility of a λ = s
3

Yamabe metric in this way.

Definition 3. A Yamabe metric of dimension n will be called strict, if λ > s
n−1

.

Finally, we combine the two results in this section.

Theorem 4. Let (M,J) be a compact complex manifold of (complex) dimen-

sion m. Let G be a compact subgroup of its reduced automorphism group, and

let g denote its Lie algebra. Suppose g denotes a Kähler metric on (M,J),

that is G-invariant, and a strict Yamabe metric. Let ω denote its Kähler

form, and let Ω denote the Kähler class containing ω. Then, considering g as

an Einstein-Maxwell metric (with conformal factor identically equal to 1), it

is rigid with respect to perturbations in g× R>0 × Ω.

Proof. Taking f ≡ 1 amounts to taking K = 0 ∈ g (and a > 0 can be taken to

be any positive real number). In the case when our Yamabe metric obeys the

strict version of this inequality, we have a contradiction to 4.1, and so there

can be no curve of Einstein-Maxwell solutions passing through our metric, in

g× R>0 × Ω. �
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