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Abstract of the Dissertation
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A. Grothendieck proves that the Newton polygons of a family of smooth
projective algebraic varieties defined on a field of characteristic p > 0 go up
under a smooth specialization. When the family acquires semistable singular
members, we prove the smallest slope of the Newton polygons attached to the rigid
cohomology groups cannot become smaller upon degeneration. This is achieved
by constructing the “generic higher direct images” for a singular morphism, using
the convergent topoi. Our result generalizes the theorem of Grothendieck, and
partially answers a question of H. Esanult. As geometric applications, we prove
that several families of algebraic varieties must have “ordinary” members. Special
cases of these applications recover older theorems of L. Illusie and Wolf-Riedl.
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Introduction

This article proves results on “degeneration of coniveau” for varieties over
fields of characteristic p.

When the ambient field is a finite field, our result can be roughly described as
follows: according to a theorem of Esnault [11], there is a simple, cohomological
condition (the “coniveau ≥ 1” condition) on proper varieties, which, by the
Lefschetz fixed point formula, can force the existence of points over the finite field;
when a family of varieties with such a condition degenerates, the cohomological
condition retains, so the degenerate member should still contain a rational point
over the finite field.

In [10], Hélène Esnault proved a theorem on the existence of points for
a singular specailization of a smooth scheme X over a local field that are of
geometric coniveau ≥ 1:

Theorem 0.0.1 (Esnault [10]). Let X is a regular scheme over the ring of
integers of a local field K whose residue field has q elements, such that XK has
geometric coniveau ≥ 1. Then the number of rational points of the reduction of
X is congruent to 1 modulo q.

Esnault asked the question whether the geometric coniveau condition could
be replaced by certain cohomological coniveau conditions.

In the mixed characteristic situation this is answered affirmatively by the
work [2] of Berthelot, Esnault and Rülling, where the Hodge coniveau condition
is used instead of the geometric one.

Theorem 0.0.2 (Berthelot, Esnault, Rülling [2]). Let K be a local field of
characteristic 0 whose residue field has q elements. Let X be a regular scheme

1



2 INTRODUCTION

over the ring of integers over K. Suppose XK has Hodge coniveau ≥ 1, then the
number of rational points of the reduction of X is congruent to 1 modulo q.

The main result of this article is that in the equal characteristic case, the
existence of points of the singular specialization can be derived under the slope
coniveau ≥ 1 condition on the “general fibers” of the family.

Our first result, stated in terms of étale cohomology, is the following.

Theorem 0.0.3. Fix an integer i > 0 and a real number 0 ≤ s ≤ 1. Let
f : X → B be a proper, flat, generically smooth, morphism of nonsingular
varieties over a finite field k of q elements. Assume that there exists a nonempty
Zariski open subset U of B such that for all closed points t in U , the slopes of
Hi(Xt,Q`) are ≥ s. Then the same is true for all closed points of B0.

In particular, if s = 1, then the number of k-points of the singular fiber is
congruent to 1 modulo q.

The proof of the theorem uses a method found in SGA 7.
The rest of this article prove analogue results for rigid cohomologies of varieies

defined over an arbitrary perfect field of characteristic p. We have two results,
one is conditional, relying on the existence of Leray spectral sequence in rigid co-
homology; the other is unconditional, but assumes the degeneration is semistable.

Proposition 0.0.4. Let f : X → B be a proper, flat, generally smooth
morphism of smooth projective varieties over a perfect field k of characteristic
p > 0. Let 0 ≤ s ≤ 1 be a rational number. Assume that:

(1) there exists a nonempty Zariski open subset U of B, such that for all
closed points t ∈ U , the fiber Xt of f over t has slopes ≥ s in all
cohomology degrees,

(2) the higher direct images Rifrig∗OX/K are coherent on some nonempty
open subset of B.

Then for any closed point t ∈ B, the condition (1) holds.

Proposition 0.0.5. Let f : X → B be a proper, flat, generally smooth
morphism of nonsingular, quasi-projective, varieties over a perfect field k of
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characteristic p > 0. Let 0 ≤ s ≤ 1 be a rational number. Fix an integer i.
Assume that:

(1) there exists a nonempty Zariski open subset U of B, such that for any
closed point t ∈ U , the slopes of Hi

rig(Xt) are ≥ s,
(2) all fibers of f are semistable.

Then for any closed point t ∈ B, the condition (1) holds.

In the last section of this article, we record some geometric applications of
our theorems.





CHAPTER 1

Levels and slopes

In this section, we review the various conivieau conditions and how they relate
to each other.

1.1. Geometric levels of cohomology groups

There are several coniveau conditions that one can put on different cohomology
groups.

Definition 1.1.1. Let X be a smooth, projective variety defined over a field
K. Let K be a chosen separable closure of K. Let H be a Weil cohomology theory
for varieties over K. We say X is of (geometric) conieveau ≥ 1 at cohomological
degree i (with respect to the cohomology theory H), if there is a divisor D of
XK = X ⊗K K such that the natural map

Hi(XK , XK \D)→ Hi(XK)

is surjective. In this case, we say the divisor D supports the cohomology of X.

The geometric coniveau condition can be interpreted slightly differently with-
out using the relative cohomology groups. In the following proposition we give
an illustration of this using étale cohomology. The argument can be modified so
that a similar result could also be obtained for the Betti theory for varieties over
a field of characteristic 0.

Proposition 1.1.2. Let X be a smooth, projective, irreducible scheme of
dimension n over an algebraically closed field k. Let ` be a prime number different
from the characteristic of k. Then X has geometric coniveau one at degree m

5



6 1. LEVELS AND SLOPES

with respect to the `-adic cohomology if and only if there is a smooth, proper
scheme Y of dimension n− 1, a morphism f : Y → X, such that

f ∗ : H2n−m(X,Q`)→ H2n−m(Y,Q`)

is injective.

Proof. Let D be the variety that supports the coniveau of the cohomology
of X. Let f : Y → D be an alteration of D by a smooth, projective k-variety Y .
We shall show that Y is the desired variety.

First, we use spread-out argument to reduce the problem to the case when k
is an algebraic closure of a finite field.

Since X, D and Y by defined in projective spaces by finitely many polynomial
equations, the number of coefficients of these polynomial is finite. Therefore,
there exist:

• a finitely generate Z-algebra R,
• smooth, projective morphisms X → Spec(R), Y → Spec(R),
• a projective morphism D → Spec(R),
• a closed immersion D →X ,
• a generically finite dominant morphism Y → D ,
• a morphism η : Spec(k)→ Spec(R) such that

– X = X ⊗η k,
– Y = Y ⊗η k,
– D = D ⊗η k.

By the smooth base change theorem, after shrinking Spec(R) if possible, we know
that for all closed points t of Spec(R), the variety X ⊗R κ(t) has coniveau ≥ 1

and D ⊗R κ(t) supports the cohomology. If we know the result over κ(t), using
smooth base change theorem again deduces the result over k. Therefore, we can
assume k is already an algebraic closure of a finite field.

By the hypothesis, we have a surjection Hm
D(X)→ Hm(X). By the Verdier

duality, we have an isomorphism

Hm
D(X) ∼= Hom(H2n−m(D),Q`(−n)).
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Taking dual vector spaces, one concludes that the restriction map

H2n−m(X)→ H2n−m(D)

in injective. Now let f : Y → D be an alteration of D by a smooth k-variety Y .
Then the composition

Hm(X)→ Hm(D)→ Hm(Y ).

is injective, since we can take the weight m graded piece and apply Lemma 1.1.3
below and the strictness of the weight filtration. �

Lemma 1.1.3. Let f : X → Y be a morphism of proper varieties over a finite
field k. Let ` be a prime number that is not equal to the characteristic of k. Then
the induced map

GrWi (f ∗) : GrWi Hi(Yk,Q`)→ GrWi Hi(Xk,Q`)

is injective.

Proof. Apply the argument of [21] Theorem 5.31, using the cubical resolution
and the hypercovering spectral sequence, replacing resolution of singularity by
de Jong’s alteration [6]. �

Another demonstration of the implications of the geometric coniveau condition
is the following.

Lemma 1.1.4. Let X be a smooth K-variety of geometric conieveau ≥ 1 at
degree one with respect to the `-adic cohomology theory. Then H1(XK ,Q`) = 0.

Proof. When the support of D of the cohomology is nonsingular, then this
follows from the “Thom isomorphism theorem” (or the purity theorem in étale
cohomology, proven in the current situation by Grothendieck himself, and in a
more general setting by Ofer Gabber), which asserts that

Hi
D(XK ,Q`)

∼−→ Hi−2(DK ,Q`(−1)).

Since there étale cohomology vanishes negative degree, taking i = 1 proves the
lemma in this case. In general, we can write D as a stratification D =

∐
iDi
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into locally closed subschemes such that each Di is a nonsingular. One proves by
induction that removing a codimension ≥ 2 nonsingular closed subscheme won’t
change the H2. It follows that we can remove all the codimension two or higher
strata in the decomposition without changing the second cohomology of X. But
the remaining part is a nonsingular divisor inside a nonsingular variety, so we
win. �

1.2. Hodge coniveau

Definition 1.2.1. Let K be a field of characteristic zero. A smooth, proper
scheme of finite type over k is said to have Hodge coniveau ≥ 1, if Hi(X,OK) = 0,
for all i > 0.

Lemma 1.2.2. Let X be a smooth, proper variety over a field K that can be
embedded into C. Suppose X has geometric conieveau one at degree i with respect
to the Betti theory. Then

Hi(X,OX) = 0

That is, X has Hodge coniveau one at degree i.

Proof. Let σ : K ↪→ C be the embedding of K into the field of complex
numbers, so that X is of geometric coniveau ≥ 1 with respect to the σ-Betti
theory.

Let D be the divisor that supports the coniveau. Let f : X ′ → X be a
strong resolution of singularities such that the preimage of D in X ′ is a simple
normal crossing divisor. By the Poincaré duality, since a subvariety has nontrivial
cohomology class, f induces an injection

f ∗ : H∗(X) ↪→ H∗(X ′).

We are reduced to the case that D is a simple normal crossing divisor.
For the ease of exposition we assume that D has two irreducible components,

D1 and D2. There is a spectral sequence whose E1-stage reads
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...
...

...
H0(D1 ∩D2,Q(−2)) H2(D1,Q(−1))⊕ H2(D1,Q(−1)) H4(X,Q)

0 H1(D1,Q(−1))⊕ H1(D1,Q(−1)) H3(X,Q)

0 H0(D1,Q(−1))⊕ H0(D1,Q(−1)) H2(X,Q)

0 0 H1(X,Q)

0 0 H0(X,Q)

whose horizontal differentials are the Gysin push forwards, and abuts to the
cohomology of X \D. Deligne [8] had proven this spectral sequence degenerates
at E2 (morally speaking, starting at E2, all the differentials mess up the weights,
hence are zero). Since X has geometric conieveau one, the restriction maps
Hi(X) → Hi(X \ D) are zero. It follows that there is nothing in Hi(X) that
survives in E2, as the right most column of the spectral sequence contributes
a factor of the cohomology of X \ D. The results follows from the Hodge
decomposition of the divisors. �

Grothendieck formulated his generalized Hodge conjecture in the 1960s. The
conjecture asserts that the other side of the implication should also hold: namely,
Grothendieck conjectures that a smooth projective variety that has Hodge
coniveau ≥ 1 should also be of geometric coniveau ≥ 1 with respect to any
σ-Betti theory.

What are the implications of the Hodge coniveau ≥ 1 condition in a family?
Being of Hodge coniveau one passes to any smooth fiber in a family, since for

smooth proper families over a field of characteristic zero, the Hodge numbers are
constant upon variation. Now let us consider what happened when the family
acquires singularities.

1.2.3. Consider a proper flat morphism of smooth algebraic varieties f : X →
B of relative dimension n. Let 0 ≤ i ≤ n. Assume that there exists a smooth
fiber Xt such that

(1.2.4) Hi(Xt,OXt) = 0.

That is, assume the fibers of f are of Hodge coniveau one at degree i.
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Esnault, [9], Theorem 1.1, proved that if we assume (1.2.4) for all i > 0 then
one can conclude even for singular fibers, one still has (1.2.4), valid for all i > 0.

Her result did not separate the various indices i. It is hoped that some Hodge
theoretic input would separate the indices in question. This is indeed the case.

Proposition 1.2.5. Let notations be as in Situation 1.2.3. Let i > 1 be an
integer. Suppose (1.2.4) holds for one smooth fiber of f . Then it holds for all
fibers of f (with reduced scheme structures).

Remark 1.2.6. It suffices to prove the result under the hypothesis that B is a
smooth curve, since an two points on B are contained in a complete intersection
curve. By Bertini’s theorem the pullback of X over the curve will remain smooth
over C. Henceforth we will assume dimB = 1.

Proof of Proposition 1.2.5. Without loss of generality, assume b ∈ B is
the only point with singular fiber. Let j : U → B be the open immersion of the
complement of b in B By the decomposition theorem [1], we have a decomposition

(1.2.7) Rf∗CX =
⊕
i

j∗(R
mf∗C)[−i]⊕ Ti[−i]

in the derived category of B, where Ti are some sheaves of finite dimensional C
vector spaces supported solely on b. From the decomposition (1.2.7), we know
that the ith cohomology of the fiber Xb, computed by restricting the left hand
side to Xb, then taking ith cohomology, is equal to the fiber j∗(Rif∗C)b ⊕ Ti. It
turns out both summands have naturally defined Hodge filtrations.

The vector space j∗(Rif∗C)b constitutes the local monodromy invariants of
the cohomology of the nearby smooth fibers. By the work of Schmid [23] it has a
natural limit Hodge filtration, which is part of the limit mixed Hodge structure
he puts on a degenerating family. By definition, the limit Hodge filtration is the
limit

(1.2.8) F • = limIm(z)→∞ exp(−zN) · F •(z),

where N is the logarithm of the unipotent part of the local monodromy operator,
z is the coordinate of the upper half plane. Schmid proves (loc. cit. “nilpotent
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orbit theorem”) that the limit exists. From (1.2.8) it follows that if the nearby
Hodge filtrations satisfies gr0F = 0, then the limit Hodge filtration also satisfies
gr0F = 0.

By the usual Wang sequence, we know that Ti is the local monodromy
coinvariant of Hi−1 of the nearby fibers, twisted by C(−1). Because of the Tate
twist, its Hodge filtration also has zero associated graded at degree 0.

Putting together the above information, we see the Hodge filtration of Hi(Xb)

satisfies gr0F = 0, since we know the natural Hodge filtration of Xb put by
Deligne is compatible with the natural Hodge filtrations of the above topological
components. �

Remark 1.2.9. As can be read off from the above argument, the proof of
the proposition has two pieces: one is the use the invariant cycle theorem, which
relates the cohomology of the general fiber to the special one. The second is
Schmid’s limit formula (1.2.8), which tells how to pass from a general fiber to a
“nearby fiber”.

The local invariant cycle theorem is available in the `-adic setting, as shown
by Deligne in [7]. The limit formula is no longer available when we switch to
`-adic cohomology.

1.3. Rigid cohomology and slopes

First we fix some notations.

1.3.1. Let p be a prime number. Let k be a perfect field of characteristic p.
Let σ : k → k be the Frobenius automorphism of k. Let W (k) be the ring of
Witt vectors of k. Let K = W (k)[1/p] be the fraction field of W (k).

1.3.2. Rigid cohomology for proper varieties. LetX be a smooth, proper,
connected variety over k. Then the rigid cohomology of X is a Weil cohomology
theory. At this point, let us recall the definition of the rigid cohomology for a
proper variety, which will be sufficient for our purpose.

For simplicity, we also assume that X can be embedded into a smooth, proper
formal scheme P over W = W (k). This is satisfied for example if X is projective.
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Let P be the rigid generic fiber of the formal scheme P, defined by Raynaud.
Then there is a specialization morphism of ringed topoi:

sp : (P,OP )→ (P,OP).

The preimage ]X[P= sp−1X is an admissible rigid analytic subspace of P , called
the tube of X in P . The convergent cohomology of X is defined to be the
hypercohomology of the de Rham complex

H•rig(X/K) = H•(RΓ(]X[P ,Ω
•
]X[P

)).

Since we have assumed X is proper, the convergent cohomology defined above is
just the rigid cohomology of X.

Although the Frobenius morphism of X does not lift to the rigid analytic
space ]X[P , miraculously it does act on the rigid cohomology in a semi-linear way.
If σ : W → W is the canonical Frobenius lift on the Witt vectors, and by abuse of
notations σ : K → K its extension to K, then for any X there is also a Frobenius
action ϕ : H•rig(X/K) → H•rig(X/K) such that for all c ∈ K, ϕ(cv) = σ(c)ϕ(v);
i.e., ϕ is σ-semilinear.

At this point, we recall the Dieudonné-Manin classifications of these semilinear
algebraic objects.

Definition 1.3.3. Let notations be as in (1.3.1). A ϕ-module is a finite
dimensional vector space D over K together with an additive endomorphism
ϕ : D → D, such that ϕ(cv) = σ(c)v for all c ∈ K and v ∈ D.

If e = {e1, . . . , en} is a basis of D, and ϕ(ei) =
∑

j ajiej. Then the matrix
A = [ϕ]e = (aij) uniquely characterizes ϕ; the matrices of ϕ under two different
bases is related [ϕ]e = σ(P )[ϕ]e′P

−1, where P is the transition matrix of two
bases e and e′.

We say D is isoclinic (or pure) of slope µ = d/h, where d, h ∈ Z), h ≥ 1, if
there is a W (k)-lattice M ⊂ D such that p−dϕhM = M .

For example, the rigid cohomology of a variety over k is a ϕ-module (the
finite-dimensionality was a nuisance, but it now has been resolved, see e.g., [12]).
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Now we can formulate the Dieudonné-Manin classification theorem of ϕ-
modules.

Theorem 1.3.4 (Dieudonné-Manin). Let D be a ϕ-module. Then there is a
direct sum decomposition D =

⊕
µ∈QDµ, such that Dµ is isoclinic of slope µ.

The rational numbers appeared in the decomposition are called the slopes of
D.

We say a variety X has slope coniveau ≥ 1 if the slopes of Hi
rig(X/K), when

viewed as a ϕ-module, are all at least 1, for all i ≥ 1 (Note: this is not a standard
terminology). In the realm of rigid cohomology, a smooth variety over a finite field
k with geometric coniveau ≥ 1 also has slope coniveau ≥ 1. The proof follows
from a dévissage argument on the singular locus of the divisor that supports the
cohomology and the “purity” result in rigid cohomology. A detailed proof, which
we omit as we find it is of the same vein of many proofs that we will present
below, can be found for example in Esnault’s article [11].

1.3.5. The theorem of Mazur [17] and Ogus [3] relates the notions of slope
coniveau and Hodge coniveau. A form of this theorem asserts that if X is smooth
proper overW , and X ⊗WK has Hodge coniveau one, then the reduction X ⊗W k
has slope coniveau one. The theorem is further generalized by Berthelot-Esnault-
Rülling [2] to the case when X is allowed to have singular reduction (although
the total space is assumed to be regular).

In this article we prove an “equal characteristic” analogue of their result, either
under a “coherence” hypothesis or under a semistability hypothesis.

Proposition 1.3.6. Let f : X → B be a proper, flat, generically smooth
morphism of smooth projective varieties over a perfect field k of characteristic
p > 0. Let 0 ≤ s ≤ 1 be a rational number. Assume that:

(1) for a general closed point t ∈ B, the fiber Xt of f over t has slopes ≥ s

in all cohomology degrees,
(2) the higher direct images Rifrig∗OX/K are coherent on a dense open subset

of B.
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Then for all closed points t ∈ B, the condition (1) hold true.

Proposition 1.3.7. Let f : X → B be a proper, flat, generically smooth
morphism of nonsingular, quasi-projective, varieties over a perfect field k of
characteristic p > 0. Let 0 ≤ s ≤ 1 be a rational number. Fix an integer i.
Assume that:

(1) for a general closed point t ∈ B, the slopes of Hi
rig(Xt) are ≥ s,

(2) all fibers of f are semistable

Then for all closed points t ∈ B, the condition (1) hold true.

Note that although the above proposition restricts the type of singlarities of
the degeneration, it does not require the mapping extends to some projective
varieties.

Both propositions are proven in §3.4.

1.3.8. A conjecture. As an analogue of the generalized Hodge conjecture,
it seems reasonable to conjecture that, for any smooth, projective variety, if the
slopes of at cohomological degree i are all ≥ 1, then its ith cohomology should be
of (geometric) coniveau one. It might not be appropriate, but let us tentatively
call this conjecture the “generalized Tate conjecture”. This being said, we shall
expect being of slope coniveau ≥ 1 is motivic.

However, a variety may have slopes lying strictly between zero and one, since
slopes can be rational numbers. Being of slope > s for some rational number
s ∈ (0, 1) at some cohomological degree does not seem to be a “motivic” condition.
So the result proves in this article does not find its “geometric” counterpart unless
s = 1.

1.4. Computing slopes by reductions to finite fields

So far I have not given any example of algebraic varieties whose slopes are
computed. One methods of calculations is reduction to finite fields. This is the
method we use. This method works well for smooth proper varieties, but less so
for singular or open ones.
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Let X be a smooth proper variety over Fq of pure dimension n, where q is a
power of p. The information of the cohomology of X is captured by the “zeta
function” of X:

ZX(t) =
∞∑
n=1

#|X(Fqn)|
n

tn.

The Weil conjectures, proven by Dwork, Artin-Grothendieck, P. Deligne, and
others asserts that ZX(t) is of the form

ZX(t) =
P1(t)P3(t) · · ·P2n−1(t)

P0(t)P2(t) · · ·P2n(t)

where Pi(t) are integral polynomials with Pi(0) = 1, such that all the complex
conjugates of the reciprocal roots are algebraic integers of absolute value qi/2

(“Weil numbers of weight i”).
On the other hand, it also makes sense to talk about the p-adic absolute values

of the reciprocal roots of Pi. It turns out the valuations of these reciprocal roots
are precisely the slopes for the ith rigid cohomology of X. This builds a bridge
to transport information between rigid cohomology and étale cohomology of X.
Since the method of étale cohomology is more mature than the rigid cohomology
(e.g., there is a good formalism of derived categories, etc.), it is more tempting to
prove results in the étale side and then deduce the corresponding result for rigid
cohomology. The analogue of the Propositions mentioned in the previous section
in the étale realm is the following.

Theorem 1.4.1. Fix an integer i > 0 and a real number 0 ≤ s ≤ 1. Let
f : X → B be a proper, flat, generically smooth morphism of nonsingular varieties
over a finite field k of q elements. Assume that for a general closed point t ∈ B0,
the slopes of Hi(Xt,Q`) are ≥ s. Then the same is true for all closed points of
B0.

In particular, if s = 1, we conclude from the Grothendieck trace formula that
the number of k-points of the singular fiber is congruent to 1 modulo q.
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The idea of the proof of 1.4.1 is quite simple. In plain terms, one only needs the
decomposition theorem of Bernstein-Beilinson-Deligne-Gabber plus the following
observation:

Lemma 1.4.2. If L is a lisse étale sheaf on a curve U , and j : U → C is
an open immersion of smooth curves, the smallest slope of j∗(L ) at C \ U will
not be smaller than the smallest slope of L . Here, “slope” is measured under an
isomorphism ι : Q`

∼= Qp.

Combining Lemma 1.4.2, the decomposition theorem, and some exact se-
quences of cohomology, the result will follow at once. See §2.

As we have said, the method we are going to use to prove the propositions
formulated in the previous section is to “transport” the result in étale cohomology
to rigid cohomology. The hypotheses such as the projectivity of the total space,
and the slope constraints on all cohomological degrees, allow us to carry out
the strategy. The coherence of the higher direct images in rigid cohomology is
currently unproven; we need that to build up a Leray type spectral sequence
for rigid cohomology. Knowing the existence of Leray on some sufficiently small
nonempty open of B will be sufficient for the validity of the above theorem. In a
few cases, we do know the coherence — e.g., when the singular fibers of f have
semistable singularities. This is due to Morrow [18].



CHAPTER 2

Slopes for étale cohomology

In this short section, we prove Theorem 1.4.1. Most lemmata proven in
this section are fairly standard applications of the theory of étale cohomology.
Although the notations, the way of interpreting the objects, and the contexts are
slightly different, the proofs of many of the lemmata are similar (or identical) to
the reslts proven by Deligne in [SGA7II], Exposé XXI, §5.

2.0.1. First we set up some conventions and notations.

(1) k will be a finite field of q elements of characteristic p,
(2) ` will be a prime number coprime to p.
(3) A variety over k is an finite type, geometrically irreducible scheme over

k.
(4) We fix an isomorphism of abstract fields ι : Q` → Qp, and we use the

notation |a| to denote the p-adic absolute value of ι(a) for a ∈ Q`.
(5) For the ease of writing, for a k-variety S and any sheaf on S, we shall

use the notation

Hi(S,E)

to denote the étale cohomology group

Hi(Sk, E ⊗k k).

(6) We say the slope of an `-adic number α is s if |α| = |q|s.

Definition 2.0.2. If E is an `-adic sheaf on a variety S over k, then the
charge of E is the infimum slope of all (geometric) Frobenius eigenvalues of E at
closed points. (It could be −∞.)

17
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Definition 2.0.3. The Newton polygon of a Q`-vector space V with Frobenius
action is defined as follows: let s1 < s2 < · · · < sm be all the slopes of F on V ; with
multiplicities n1, n2, . . . , nm; then the Newton polygon is the polygon with vertices
(0, 0), (n1, s1n1), (n1 + n2, s1n1 + s2n2), . . ., (n1 + · · ·+ nm, s1n1 + · · ·+ smnm).

Let f : X → S be a family of smooth, projective varieties over k. Then the
sheaf E = Rnf∗(Q`) is lisse on S. It is a theorem of Grothendieck (stated for
crystalline cohomology, but can be proven equally in the étale realm, see below)
that the Newton polygon of the fiber of E goes up under specialization.

If f acquires singularities, then it does not make sense to compare the Newton
polygons anymore since the dimensions of cohomology groups of the fibers can
change. In this section, we prove that in any event the charge can only go up
along degeneration. That is, the smallest slope of the cohomology groups at the
point of degeneration won’t be smaller than those of the general one. The major
tool is the following lemma.

Lemma 2.0.4. Let E be lisse étale on S, whose slope are all ≥ s. Assume
that dimS = 1, S smooth and affine, then H1

c(S,E) has slope ≥ s.

Proof. It suffices to settle the case when s = 0. In the general case, one
can twist the sheaf by a rank Weil sheaf, and reduce to the case of s = 0. If
s = 0, then by dévissage we can assume that E is irreducible. So it does not have
monodromy invariants and monodromy coinvariants.

It follows from Grothendieck’s trace formula that∏
x∈|C0|

(
1 + Tr(Fx)T

deg(x) + · · ·
)

= det(1− T · F : H1
c(C,E)).

A closed point x ∈ |C0| contributes to the right hand side if and only if deg(x) = 1,
i.e., x ∈ C0(Fq). Summing up all terms that correspond to T we conclude that∣∣∣Tr

(
F : H1

c(C,E
)∣∣∣ =

∣∣∣∑x∈C0(Fq)
Tr(Fx)

∣∣∣ ≤ |q|min sx ≤ 1

The last inequality follows from the strong triangle inequality of the p-adic
valuation. Now we can replace F by F i and base change the curve to a degree
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i extension of k and do the same thing. This implies the coefficients of the
polynomial det(1− tF ) have slopes ≥ 1. Hence the Newton polygon is entirely
on first quadrant. Hence all the slopes must be ≥ 0. �

Corollary 2.0.5. Let j : U → S be an open immersion of smooth curves
over k. Let E be a lisse étale sheaf on U . Then the charge of j∗E is equal to the
charge of E.

Proof. Again we can assume E is irreducible; so the monodromy invariant
part of E is trivial. Using the exact sequence

0→ j!(E)→ j∗(E)→ (skyscraper)→ 0,

we get an exact sequence of cohomology:

H0(U,E)→ j∗(E)S\U → H1
c(U,E).

By Lemma 2.0.4, we conclude that the slopes of of the stalks of j∗(E) at points
S \ U are no smaller than the charge of E on U . �

Corollary 2.0.6. Let f : Z → S be a smooth morphism of smooth varieties
over k. Suppose that there is an open subscheme V ⊂ S, such that for all
closed points t ∈ V , the Frobenius eigenvalues of Hi(Zt,Q`) are algebraic integers
divisible by q, then for all closed points t ∈ S the same result holds.

Proof. Let α be a Frobenius eigenvalue of Rif∗Q` at a general point. Then
the condition says that for any ι whatsoever, we have |ια| = |q|s with s ≥ 1. By
Corollar 2.0.5, this implies the same holds for all Frobenius eigenvalues β for all
fibers of Rif∗Q`. Then we apply the following simple lemma, Lemma 2.0.7, to
β/q. �

Lemma 2.0.7. Let α ∈ Q` be an algebraic number such that for all isomor-
phisms ι : Q` → Qp one has log|q| |α| ≥ 0, then α is an algebraic integer

Proof. Let P (T ) = T n + a1T
n−1 + · · · + an be the rational polynomial

obtained as the product of T − β where β runs through all the Galois conjugates
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of α. Then the hypothesis says that the all the slopes of the Newton polygon of
P (T ) are ≥ 0. It follows that the end points of the polygon (i, log|q|(ai)) must be
≥ 0. It follows that

ai ∈ Q ∩ OQ`
= Z,

whence α satisfies an integral polynomial relation, we win. �

Now we are ready to prove Theorem 1.4.1. We begin by recalling the situation.

2.0.8. Let f : X → B be a proper morphism of nonsingular varieties over k
that is smooth on an open subset U . Let j : U → X be the open immersion.
Fix some closed point b ∈ X \ U with κ(x) = Fq. Let Y be the “special fiber”
f−1(x)⊗k k. We assume that Y is singular.

There are some “local schemes” that are related to the special fiber Y . Let R
be the strict local ring of b. Denote by η the generic point of Spec(R), and η a
geometric generic point of Spec(R). Let XR be the fiber product X ×B Spec(R),
and let Xη, resp. Xη be the generic, resp. geometric generic, fiber for X over R.

Lemma 2.0.9. Let notations be as in Situation 2.0.8. Then the Frobenius
eigenvalues of the monodromy invariant part of the cohomology group Hi(Xη,Q`)

are algebraic integers whose slopes are ≥ s

Proof. The local monodromy invariant part of Hi(Xη,Q`) is precisely the
stalk of the sheaf j∗Rif∗Q` at b. Note that by the hypothesis, the charge of
Rif∗Q`|U is at least s. By Corollary 2.0.5 for any isomorphism ι, the Frobenius
eigenvalues of j∗Rif∗Q` are of slope ≥ s. That they are algebraic integers follows
from Lemma 2.0.7. �

By suitably using Poincaré duality and Corollary 2.0.5, one may deduce the
following result, which is also proved in [10], Theorem 1.5(1).

Lemma 2.0.10. Let notations be as in Situation 2.0.8. Then the Frobe-
nius eigenvalues of the monodromy coinvariant part of the cohomology group
Hi−1(Xη,Q`) are algebraic integers.

We also need the following well-known “purity theorem” for étale cohomology.
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Lemma 2.0.11. Let Z be a smooth scheme over k. Let D be a divisor in Z.
Then the relative cohomology group Hi

D(Z,Q`) has Frobenius eigenvalues that are
algebraic integers and are divisible by q.

Proof. For the sake of completeness we give a proof of the lemma. One
proceeds by choosing a stratification

∅ = Dm ⊂ Dm−1 ⊂ · · · ⊂ D0 = D,

such that each Di is closed in Di−1 and Di−1 \Di is smooth over k. Then the
relative cohomology sequence in étale cohomology gives an exact sequence:

(2.0.12) · · · → Hi
Di

(Z)→ Hi
Di−1

(Z)→ Hi
Di−1

(Z \Di)→ · · ·

in which we have suppressed the coefficients and all cohomology groups are
understood as taken for the schemes base changed to k. The sequence (2.0.12)
plus an induction on m reduces the claim to the case when both Z and D are
smooth over k. In this case, the “Thom isomorphism” provides the vertical
identification of the following commutative diagram

Hi
D(Z) Hi(Z)

Hi−2(D)(−1)

≈ ϕ

where ϕ is the usual Gysin pushforward. It follows that all the Frobenius
eigenvalues α of the relative group Hi

D(Z) are algebraic integers divisible by q,
since α/q are Frobenius eigenvalues of Hi−2(D) which is an algebraic integer. �

By excision, one immediately deduces the following.

Corollary 2.0.13. Let notations be as in Situation 2.0.8. Then the Frobenius
eigenvalues of the group Hi

Y (XR,Q`) are algebraic integers that are divisible by q
for all i.

Remark 2.0.14. We clarify how one gets the Frobenius action on the
Hi
Y (XR,Q`). The ring R is the maximal unramified extension of the completion
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of the local ring of the geometric point lying over b, so any automorphism of k
admits a unique lift to R. In particular we can lift the Frobenius automorphism.

Proof of Theorem 1.4.1. Consider the analogue of Wang sequence ob-
tained from the Leray spectral sequence for X → Spec(R) and the Hochschild-
Serre spectral sequence for Xη → Xη:

0→ Hi−1(Xη,Q`)I(−1)
ϕ−→ Hi(Xη,Q`)

ψ−→ Hi(Xη,Q`)
I → 0.

Then this sequence is equivariant under the action of Gal(η/η). By Lemma 2.0.9,
the monodromy invariant part Hi(Xη,Q`)

I has Frobenius eigenvalues that are of
slopes ≥ s. The kernel of ψ in the middle group is the Tate twist on the group of
monodromy coinvariants, which also has integral Frobenius eigenvalues that are
divisible by q (2.0.10). Since s ≤ 1, the representation Hi(Xη,Q`) has integral
Frobenius eigenvalues whose slopes are at least s.

Now consider the exact sequence associated to the pair (X,Xη):

(2.0.15) · · · → Hi
Y (X)→ Hi(X)→ Hi(Xη)→ Hi+1

Y (X)→ · · ·

which is again Frobenius equivariant. By purity, Corollary 2.0.13, the Frobenius
eigenvalues of the groups Hi

Y (X) are algebraic integers that are divisible by q,
hence of slopes ≥ 1. By the the previous paragraph, Hi(Xη) has integral Frobenius
eigenvalues whose slopes are at least s. The exactness of the sequence 2.0.15
implies that the Frobenius eigenvalues of Hi(X) are algebraic integers whose
slopes are at least s. Now one uses the isomorphism Hi(X)→ Hi(Y ). �



CHAPTER 3

Slopes for rigid cohomology

3.1. Rigid cohomology of varieties over a finite field

In this section, we will transport Theorem 1.4.1 to rigid cohomology of varieties
over finite fields. See Theorem 3.1.7 below.

Due to the potential cancellation between the numerator and the denominator
of the zeta function of a variety, our result does not separate various cohomology
degrees anymore, except in the cohomological degree 1, see Theorem 3.1.5 below.
One ingredient needed in our argument is the Leray spectral sequence for rigid
cohomology. It exists if the “rigid direct image” is coherent, or if all the singular
fibers are semistable and the total space has a smooth projective compactification
(theorem of Morrow [18]).

The first set of inputs (nontrivial) we need is a result of Matsuda-Trihan, later
improved by Lazda [15].

Remark 3.1.1 (Ogus’s convergent isocrystals are overconvergent). Let f :

Y → U be a smooth, flat, projective morphism of irreducible, nonsingular, quasi-
projective varieties over a field k of characteristic p. Assume that dimU = 1, U
is affine. Then S. Matsuda and F. Trihan [16] prove a conjecture of Berthelot,
which says Ogus’s convergent isocrystal Rif∗OY/K has a unique overconvergent
extension which we shall denote by Rif∗O

†
Y/K .

3.1.2. Hypothesis. In the situation above, assume that we have a noncanonical
isomorphism

H1
rig,c(U/K,R

i−1f∗O
†
Y/K)⊕ H2

rig,c(U/K,R
i−2f∗O

†
Y/K) ∼= Hi

rig,c(Y/K).

Remark 3.1.3. The hypothesis follows from the similar result for rigid co-
homology groups without supports, and Poincaré duality with coefficients. The

23
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similar result for cohomology without support in turn follows from the existence
of Leray spectral sequence.

In rigid cohomology, the existence of Leray spectral sequence has not been
proved in full generality.

In [28], Theorem 3.4.1, the existence of Leray spectral sequences is proven
under the coherence hypotheses. In particular, if the hypothesis of 1.3.6, (2) is
satisfied, Hypothesis 3.1.2 will be satisfied.

A proof of the existence of the Leray spectral sequence in the case of semistable
degeneration can be found in Morrow’s paper [18], Remark 2.8.

Theorem 3.1.4 (Kedlaya). Let E be an overconvergent F-isocrystal on a
variety B over Fq of dimension n. Assume that the slopes of E are in the range
[r, s]. Then H i

rig,c(B/K,E) has slopes in the range [r+max(0, i−n), s+min(i, n)].

Proof. See [14], Theorem 5.5.1. �

Theorem 3.1.5. Let f : X → B be a flat, projective morphism of irreducible,
nonsingular, projective varieties over k that is generically smooth over B. Assume
that

(1) dimB = 1,
(2) there is a nonempty, Zariski open subset U ⊂ B such that for all geo-

metric points b ∈ B, the slopes of the rigid cohomology of H1
rig(Xb/K)

are at least s, where s < 1 is a fixed rational number.
(3) Hypothesis 3.1.2 holds.

Then for all b ∈ B, H1
rig(Xb/K) has slope at least s.

Proof. By the proof of Theorem 1.4.1, we know that in this situation for all
closed points b ∈ B, the slopes of H1(Xb,Q`) are at least s.

We say a Frobenius eigenvalue of H1(X,Q`) is from XU with multiplicity i if
it is a Frobenius eigenvalue of

Im(H1
c(U,Q`)→ H1(X,Q`))

of algebraic multiplicity i.
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We claim that these eigenvalues together with their multiplicities are inde-
pendent of the choice of the Weil cohomology theory, and can be reconstructed
solely from the zeta function of U .

To prove this, we first note that these eigenvalues are precisely the Frobenius
eigenvalues of H1

c(XU ,Q`) of weight 1. On the other hand, the Leray spec-
tral sequence identifies H1

c(XU ,Q`) with H1
c(U,Q`). Therefore, the collection

of Frobenius eigenvalues from U and their multiplicities can be identified with
the reciprocal roots of the numerator of the zeta function of U . Here we have
used the observation that all the Frobenius eigenvalues of H1

c(U) are motivic:
since H2

c(U,Q`) is pure of weight 2, and the weights of H1
c(U,Q`) are ≤ 1, the

polynomials

det(1− tF |H1
c(U)) and det(1− tF |H2

c(U))

have no common roots. This proves the claim.
Having established the claim, we turn to the rigid cohomology side. We write

down the exact sequence

(3.1.6) H1
rig,c(XU/K)→ H1

rig(X/K)→ H1
rig(XS/K)→ H2

rig,c(XU/K).

By the Weil conjecture for smooth projective varieties, we know the set of
Frobenius eigenvalues of H1(X,Q`) can be constructed by H1

rig(X/K) and the
Frobenius action on it. By the claim, we can single out the set of eigenvalues
that are not from XU (together with their multiplicities). Since these eigenvalues
are also Frobenius eigenvalues of H1(XS,Q`), Theorem 1.4.1 implies that they
must be algebraic integers all of whose conjugates are of slopes ≥ s. By the
exactness of (3.1.6), these eigenvalues are eigenvalues of H1

rig(XS/K). The rest of
the eigenvalues of this group are from

H2
rig,c(XU/K) ∼= H1

rig,c(U/K,R
1f∗O

†
XU/K

)⊕ H2
rig,c(U/K,O

†
U/K).

By the hypothesis, the slopes of R1f∗O
†
XU/K

are ≥ s, and those of O†U/K are ≥ 0.
Applying Theorem 3.1.4, we conclude that the slopes of H2

c(XU/K) are at least
min(1, s). This completes the proof. �
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Theorem 3.1.7. Let f : X → B be a flat, projective morphism of irreducible,
nonsingular, projective varieties over k that is generically smooth over B. Assume
that

(1) dimB = 1,
(2) there is a nonempty, Zariski open subset U ⊂ B such that for all geo-

metric points b ∈ B, the slopes of the rigid cohomology of Hi
rig(Xb/K)

are at least s ≤ 1, for all i > 0, and
(3) Hypothesis 3.1.2 holds.

Then for all b ∈ B and all i > 0, Hi
rig(Xb/K) has slope at least s.

Proof. First assume that k is an algebraic closure of a finite field. And we
assume that X, f , B and all the singular fibers of f are defined over a finite field
k0 ⊂ k of cardinality q. Then for any smooth, proper k-variety Y defined over k0,
the Newton polygon of Hi

rig(Y/K) and that of the characteristic polynomial of the
Frobenius φa on the étale cohomology Hi

ét(Y,Q`) coincide, thanks to the purity of
the Frobenius eigenvalues. Therefore we can apply the analogue theorem in étale
cohomology and conclude that all the Frobenius eigenvalues of all the singular
fibers are divisible by q.

Let U be the smooth locus of f with complement S. Then we have an exact
sequence

(3.1.8) Hi
c(XU)→ Hi(X)→ Hi(XS)→ Hi+1

c (XU)

in the étale theory. By the étale analogue of the theorem, we see Hi(XS) has
Frobenius eigenvalues divisible by q. If i > 1, then the cohomology of Hi

c(XU)

may be computed by the compact-supported Leray spectral sequence:

0→ H1
c(U,R

i−1f∗Q`)→ Hi
c(XU)→ H2

c(U,R
i−2f∗Q`)→ 0.

Since i > 1, both the left hand side group and the right hand side group have
Frobenius eigenvalues divisible by q by the analogue of the Weil conjecture. So
the middle group has Frobenius eigenvalues divisible by q. Hence Hi(X) has
Frobenius eigenvalues divisible by q.
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The equation (3.1.8) also has a rigid version

(3.1.9) Hi
rig,c(XU/K)→ Hi

rig(X)→ Hi
rig(XS)→ Hi+1

rig,c(XU/K)

When i = 1, we can apply 3.1.5 above. When i > 1, the previous argument
translates, via the zeta function and the purity, that Hi

rig(X) has slope ≥ 1. By
Hypothesis 3.1.2, and the hypothesis that all positive cohomology of the smooth
fibers have slope ≥ 1, we conclude that Hi+1

rig,c(XU/K) has slope ≥ 1. This forces
the same result for Hi

rig(XS/K). This completes the proof. �

3.2. Generalizations in rigid cohomology

Let g : Y → S is a proper morphism of complex algebraic varieties. Then
Rif∗C is an algebraic constructible sheaf on S. Therefore there is a Zariski open
dense subset U of S such that Rif∗C|U is locally constant. This phenomenon
also has its counterpart in the `-adic étale theory.

In this section, we address a similar question in rigid cohomology. Given
a proper flat morphism g : Y → S of varieties over a perfect field, where S is
smooth but Y may be singular, we prove that, after a finite purely inseparable
base change, there is a convergent isocrystal E on an dense open subset S ′ of S
whose fiber at a closed point s ∈ S ′ computes the rigid cohomology of the fiber
Ys. The basic idea is to use “a family of simplicial resolutions”. This convergent
isocrystal turns out to be the key for the spread-out argument.

Note that, unlike the previous section, where it’s crucial to work with over-
convergent F-isocrystals, the present section works exclusively with convergent
F-isocrystals, since we are not about to take cohomology on the base.

3.2.1. The convergent topos of Ogus [20]. In the following, we assume that k
is a perfect field of characteristic p. Let W = W (k) be the ring of Witt vectors
of k. Let K = W [1/p] be the fraction field of W .

Let X be a variety over k. An enlargement of X/W is an admissible (i.e.,
flat, locally topologically finitely presented) formal scheme Z over Spf(V ), plus a
V -morphism z : Z → X, where Z is a closed subscheme of definition of Z, and Z
contains (Zk)red as a closed subscheme. (Here we are using different notations
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from Ogus’s; in [20], our Zk is called Z1, and Ogus uses Z0 to denote the canonical
reduction (Zk)red.) The morphisms of enlargements are defined naturally. The
category of all enlargements forms a site Enl(X/W ), when equipped with the
Zariski topology. The convergent topos, notation (X/W )conv, is then the sheaf
topos of the site Enl(X/W ).

If we assign to an enlargement Z = (Z, z) the ring OX/W (Z) = OZ(Z), we
get a sheaf of rings in (X/W )conv, which is denoted by OX/W . Similarly, the
assignment Z 7→ OX/W (Z) ⊗Z Q defines a sheaf of rings, which is denoted by
OX/W . (Ogus denotes it by KX/W in [20].)

The category of coherent OX/W -crystals and coherent OX/K-crystals can be
defined as in the crystalline case. A coherent OX/K-crystal in the convergent
topos is also known as a convergent isocrystal. Those convergent isocrystals
acquiring Frobenius structures (“convergent F-isocrystals”) form a category which
is denoted by F -Isoc(X/S).

3.2.2. Let S be an irreducible, smooth, affine scheme over k admitting a
smooth formal lifting S over W . Assume further that the absolute Frobenius of
S also lifts to S.

Although the definition of the convergent site [20] does not allow us to evaluate
a convergent sheaf on not-necessarily topologically-finite-type formal schemes
over W , for crystals and isocrystals we may still do so, as pointed out by Crew [5].
Let us briefly recall how this works.

Let E be a convergent crystal on S. Then E defines a coherent locally free
sheaf E on S. So it makes sense to pull back E to any flat formal scheme T over
S. We shall denote this pull back by ET as if we are evaluating the crystal on a
T.

If E is merely a convergent isocrystal, then we cannot do the above on the
nose. The upshot is that we can do this “generically”: away from a codimension
two formal subscheme of S, E can be described as a crystal tensored with Q.
Let us prove this: By our hypothesis of S, the identity morphism of S defines an
enlargement (S, S) of S/W . If E is a convergent isocrystal on S, then we get a
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locally free OS ⊗Q-module ES on S. In the language of rigid analytic geometry,
we get a locally free sheaf on the Raynaud generic fiber of S, which is also the
tube ]S[S in the sense of Berthelot. If we cover S by finitely many Zariski opens
Ui on which ES is trivialized, then by removing a proper closed subset of Ui we
can give an integral structure of ES. Therefore we have deduced the following
lemma, which is essentially due to Crew [5], Lemma 2.3.

Lemma 3.2.3. Let E be a convergent F-isocrystal on S. Then up on replacing
S by a suitable nonempty Zariski open subset, there is a locally free OS-module
with a Frobenius structure E on S, such that for any morphism of enlargements
z : (Z, Z)→ (S, S), we have a canonical isomorphism

z∗(E )⊗Q ∼= EZ,

compatible with the Frobenius structures. �

In Crew [5], the object E , together with its Frobenius, is called an “F-lattice”.
(Note that Crew’s paper predates the construction of the convergent site.)

Let κ a perfect field that is also an S-algebra containing the function field
of S. Then (Spf(W (κ)), Spec(κ)) defines a flat formal scheme over the formal
scheme S. Note that Spf(W (κ)) is generally not of finite topological type over
W , so (Spf(W (κ)), Spec(κ)) is not an enlargement of S/W . But we can still pull
back the locally free OX/W -module E back to Spf(W (κ)), obtaining a locally free
sheaf EW (κ). We shall refer EW (κ) ⊗Q as the value of the F-isocrystal E at the
non-finite type enlargement (Spf(W (κ)), Spec(κ)). We denote it by Eκ.

3.2.4 (The Newton polygon at a perfect point). Let κ be a perfect field, and
let x : Spec(κ)→ S be a morphism. Then as we explained 3.2.2, we can evaluate
a convergent crystal E at x. The Frobenius structure allows us to talk about
the slopes and Newton polygons of Ex. Clearly, this information only depends
on the image of κ in S. In this situation, one can show that the Grothendieck
specialization holds:
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Proposition 3.2.5 (Grothendieck, Katz). Let notations be as in 3.2.4. Let
E be a convergent crystal on S. The end points of the Newton polygons of E
are all the same. For any convex polygon P , the locus of the points where the
Newton polygon of E is over P is Zariski closed (see e.g., [5], Theorem 1.6,
Proposition 1.7). �

Corollary 3.2.6 (Cf. Crew [5], Theorem 2.1). Let E be a convergent F-
isocrystal on S. Then there is a stratification of S =

∐
α Sα into a disjoint union

of finitely many locally closed subsets, such that the following hold true.

(1) The Newton polygon of E on Sα is constant.
(2) If Sα ⊂ Sβ, then the Newton polygon of E on Sβ is no higher than that

of Sα.
(3) All the Newton polygons of E have the same endpoints. �

3.2.7. Let S be as in 3.2.2. Let f : X → S be a smooth proper morphism of
k-varieties. For each i ≥ 0, then Ogus [19] has defined a unique convergent F-
isocrystal Rif∗OX/K , satisfying a series of properties. For us, the most important
things to know are following.

(1) If T, T is a p-adic enlargement of S/W , and

Ri
f/T = RifX/T(OXT /T)

is the crystalline cohomology sheaf, then we have a natural isomorphism
(Rif∗OX/K)T ∼= Ri

f/T ⊗Q ([19], Theorem 3.1).
(2) In particular, for any closed point s ∈ S, we have

Hcris(Xs/W (s))⊗Q ∼= (Rif∗OX/K)s.

Here, W (s) is the ring of Witt vectors for the residue field of s.
(3) Its formation is compatible with arbitrary finite type base change S ′ → S.

3.2.8. For any convergent isocrystal E on S, we have defined its value at a
possibly non-closed perfect point κ, and the corresponding Newton polygon at
this point. When the isocrystal is E = Rif∗OX/S as above, what is the relation
between Eκ and the crystalline cohomology of X ⊗ κ? The property 3.2.7, (1) of
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the Ogus’s isocrystal gives the answer when κ is above the generic point of S:
they agree.

Lemma 3.2.9. In the situation 3.2.7, let κ be a perfect field extension of the
function field k(S). Then there is a natural isomorphism between Hi

cris(Xκ)⊗Q
and (Rif∗OX/S)κ.

Proof. Since Spec(κ) → S is flat, the local criterion of flatness implies
u : Spf(W (κ)) → S is flat as well. Using the flat base change of crystalline
cohomology, Theorem 7.8 of [3], we infer that the rigid cohomology of Xκ at
degree i is equal to

u∗Ri
f/S.

Hence

Hi
cris(Xκ)⊗Q ∼= u∗Ri

f/S ⊗Q ∼= u∗(E )⊗Q = (Rif∗OX/K)κ.

Here pullbacks are performed with respect to the Zariski topology, and E is the
vector bundle on S we constructed in Lemma 3.2.3. Note that for our purpose
we can always replace S by a Zariski open dense subset, thus we can assume at
the beginning that E is a vector defined on all S. This finishes the proof. �

We include the following lemma, which is well-known (I cannot find a reference),
as an illustration of the spread-out method we’ll be using later.

Lemma 3.2.10. Let X be a smooth, projective variety over k. Then the slopes
of Hi

cris(X/K) are all ≥ 0.

Proof. The variety X is defined over a finitely generated field over a finite
field Fq. Therefore there is a smooth, projective morphism

ϕ : X → S

of nonsingular varieties over a finite field Fq, and a dominant morphism Spec(k)→
S, such that X ×S Spec(k) = X. For any closed point s of S, the slopes of Xs are
non-negative, since these are the slopes of the reciprocals of the zeros and poles
of the zeta function of Xs. By the Grothendieck trace formula, they are algebraic
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integers, whence are of slopes ≥ 0. By Proposition 3.2.5, the Newton polygon of
Hi

cris(X), which agrees with the Newton polygon of the Ogus isocrystal Rif∗OX/K

at the non-finite type enlargement (Spf(W (k)), Spec(k)) by Lemma 3.2.9, is not
below the Newton polygon of any closed point of S. It follows that it must be in
the first quadrant, and it has slopes ≥ 0. �

3.2.11. We now turn to the main goal of this section: to define the “generic
direct image” isocrystal for a singular variety. Let S be as in 3.2.2. Let N be a
positive integer. Let X• → S be an N -truncated, smooth, projective, simplicial
scheme over S. Let Em,n be the convergent F-isocrystals Rnf∗(OXm/K). According
to the general nonsense, there is a spectral sequence with

Em,n
1 = Em,n ⇒ Rm+nf•,∗(OX•/K).

Lemma 3.2.12. In the situation above, Rmf•,∗(OX•/K) is a convergent F-
isocrystal for all m < N/2.

Proof. Since coherent isocrystals form a fully faithful abelian subcategory of
OS/K-modules, we infer that Ei,j

s will be a convergent isocrystal if the three Ei,j
s−1,

Ei+s−1,j−s+2
s−1 , and Ei−s+1,j+s−2

s−1 are convergent isocrystals. We already know that,
for all i < N , Ei,j

1 are convergent isocrystals by the construction of the spectral
sequence. Therefore, some simple counting shows that whenever 2m < N , all
i ≥ 0, all s < m + 2, Ei,m−i

s are in the “good” range. On the other hand, the
spectral sequence we are discussing is a first quadrant spectral sequence. So
Ei,m−i
m+1 = Ei,m−i

∞ . �

3.2.13. Hypotheses. Let S be as in Situation 3.2.2. Let g : Y → S be a
k-morphism where Y is a possibly singular projective variety over k. Assume that
there is a smooth, projective, N -truncated simplicial S-variety f : X• → S, and
an S-morphism h : X• → Y , that is an N -truncated projective hypercovering. In
this situation, in the view of Lemma 3.2.12, for m < N/2, we denote Rm to be
the convergent F-isocrystal Rmf•,∗(OX•/K).
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The above hypothesis is fairly strong, and is surely not to be satisfied for an
arbitrary g : Y → S. But in the applications we have in mind we can always
make some arrangements to force it to happen.

Lemma 3.2.14. Under the hypotheses assumed in 3.2.13, for any perfect field
κ and any κ-point x : Spec(κ)→ S, we have

Hm
rig(Y/W (κ)) ∼= (Rm)κ.

In particular, the mth rigid Betti number for Y is constant on S. Moreover, there
is a stratification of S into locally closed subsets on which the Newton polygon of
Hm

rig(Y ) is constant; and if Sα ⊂ Sβ, then the Newton polygon in Sα is no lower
than that on Sβ.

Proof. By the hypotheses, for any x as in the statement, X•,x → Yx is a
proper hypercovering. By Tsuzuki’s theorem on cohomological descent [27], and
Berthelot’s comparison theorem between rigid and crystalline cohomology groups
for smooth proper varieties ([20], Theorem 0.7.7), the value (Rm)x equals the
rigid cohomology Hm

rig(Yx) for all “perfect” points x : Spec(κ)→ S. Since Rm is a
convergent isocrystal on S, the assertions now follows from Corollary 3.2.6. �

Corollary 3.2.15. Let k ⊂ k′ be an extension of perfect field. Let K, resp.
K ′ be the fraction field of W (k), resp. W (k′). Let Y be a proper, finite type,
separated scheme over k. Then for each i, one has a natural isomorphism

Hi
rig(Y/K)⊗K K ′ ∼= Hi

rig(Y
′/K ′)

compatible with Frobenius structures.

Proof. In Lemma 3.2.14, take S = Spf(W ), S = Spec(k). �

Proposition 3.2.16. Let S be as in 3.2.2. Let N be a fixed positive integer.
Let f : Y → S be a flat, projective morphism. Then there exist a Zariski open
subset S ′ of S, a purely inseparable, finite morphism T → S ′, an N-truncated
simplicial smooth, projective T -variety X•, and a morphism X• → YT that is a
projective hypercovering.
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Proof. Let L = k(S) and Lperf be the perfection of L. Then YLperf is a
typically singular, projective variety on Lperf. We can apply de Jong’s alteration [6]
to construct a projective, N -truncated hypercovering

hLperf : X•,Lperf → YLperf .

by smooth, projective Lperf-varieties. The varieties Xm, m = 1, 2, . . . , N , are
necessarily defined over a finite, purely inseparable extension of L. So upon
shrinking S and replacing S by a purely inseparable finite covering, and a further
shrinking, we can assume that the projective hypercovering has a model X• → YT

on T , where T is a variety that is a finite purely inseparable covering of some
nonempty Zariski open subset S ′ of S. �

Definition 3.2.17. In the situation of Proposition 3.2.16, assume N >

4 dimY . Then for any 0 ≤ m ≤ 2 dimY , the F-isocrystals Rm constructed
in 3.2.13 are called “generic direct images” for YT → T .

3.3. Semistable degeneration of slopes

In this section we prove an analogue of Theorem 1.4.1 for log crystalline
cohomology groups, assuming the degeneration has semistable singularities. We
make the following hypotheses.

3.3.1. Let k be a finite field. Let W be the ring of Witt vectors of k. Let K
be the fraction field of W . Let f : X → B be a smooth, projective morphism
of nonsingular k-varieties. Assume that f is smooth away from a closed point
b ∈ B, and f−1(b) is a simple normal crossing divisor in X. Let 0 ≤ s ≤ 1 be a
rational number. Assume that there is a Zariski open subset U ⊂ B such that for
all t ∈ B, the slopes of the crystalline cohomology Hi

cris(Xt)⊗W K are all ≥ s.

The main result of this section is the following.

Proposition 3.3.2. In Situation 3.3.1, the slopes of Hi
rig(Xb/K) are at least

s.
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The proof of Proposition 3.3.2 resembles the strategy used in the étale case.
The first is to relate the geometric condition on the crystalline cohomology of
general fibers to the “nearby fiber” of the singular fiber. This is formally achieved
by the log crystalline cohomology of a log scheme, and one needs to use the
log-convergent theory of Shiho [26], [24]. The second is to relate the log crystalline
cohomology of the nearby fiber with the singular fiber; to this end we need a sort
of the local invariant cycle theorem. This is provided in the present case by the
p-adic Clemens-Schmid exact sequence of Chiarellotto-Tsuzuki [4].

We first recall an analogue of the Grothendieck specialization theorem in
Shiho’s context of log convergent site. In our special situation, this can be reduced
to the results proven by Crew. For convenience, let us present a proof.

Lemma 3.3.3. Let notations be as in Situation 3.3.1. We regard B as a fine,
saturated, log scheme of dimension 1, equipped with the divisiorial log structure
from a closed point b, whose log structure is denoted by M . Let (E,Φ) be a log
convergent F-isocrystal on (B,M). Let P be the generic Newton polygon of the
isocrystal (E,Φ). Then the Newton polygon of (E,Φ) at b is no lower than P .

Proof. Without loss of generality we assume b is a k-valued point. Otherwise
we can always make a finite field extension. Since we may freely shrink, we can fix
a smooth formal lifting B of B (whose Raynaud generic fiber is denoted by Ban),
together with a lifting σ of the absolute Frobenius, and a lifting b of b. Then
any log convergent isocrystal on (B,M) is the same as a log-∇-module on B: a
coherent OB[1/p]-module E together with a K-linear integrable log-connection

∇ : E → E ⊗K Ω1
Ban/K(log ban).

When the isocrystal has a Frobenius structure, the coherent sheaf also has a
Frobenius structure, i.e., an isomorphism Φ : σ∗E → E . Since B is of dimension
one, the process of “clearing the denominator” can always be done, and we can
assume that E is actually coherent over OB. By replacing Φ with pmΦ, we can
even assume that the isomorphism Φ is defined integrally.
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Now let E be as in the statement, and let E be the OB-module with a
Frobenius structure. In the language of Crew, E is an F-lattice on B. Applying
the Grothendieck specialization theorem in the form of [5], Theorem 2.1, we find
that the Newton polygon at the special point b is no higher than the generic one.
This completes the proof. �

Let us go back to Situation 3.3.1.

3.3.4 (The “Nearby fiber”). There is a natural log structure on the special
fiber Xb, namely, the restriction of M to Xb. We shall denote this log scheme
by (Xb,Mb). This log scheme is the analogue of the “nearby fiber” in the present
situation. It’s log-crystalline cohomology will be thought as the analogue of the
“limiting Hodge structures” in the Hodge setting.

3.3.5 (The log convergent direct images). The theory of log convergent topos
developed by Shiho gives us a log convergent F-isocrystal Riflogconv∗KX/K comput-
ing the log crystalline cohomologies. Here, following the notation of Shiho, we use
K to denote the log convergent structure sheaf inverting p. As pointed out by [18],
Remark 2.8 and [25], §1, these are indeed coherent K(B,M)/W -modules compatible
with base change. Shiho’s theory also identifies the log-convergent cohomology of
log-convergent F-isocrystals with their corresponding rigid cohomology. See [24],
Theorem 2.4.4.

Lemma 3.3.6. The slopes of Hi((Xb,Mb),K ) are at least s. �

Proof. Applying Lemma 3.3.3, we conclude that the slopes of the Newton
polygon of Riflogconv∗KX/K at the point b is at least s. �

To conclude the proof of Proposition 3.3.2, the final input is the following
p-adic analogue of the Clemens-Schmid exact sequence.

Theorem 3.3.7 (Chiarellotto-Tsuzuki [4]). There is an exact sequence

Hi
Xb,rig(X)→ Hi(Xb)→ Hi((Xb,Mb),K ).
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By the “purity theorem” in rigid cohomology over a finite field (see e.g., [11],
Lemma 2.1) the slopes of Hi

Xb,rig(X) at at least 1. By Lemma 3.3.6, the slopes
of Hi((Xb,Mb),K ) are at least s. Since s ≤ 1, the exactness sequence in
Theorem 3.3.7 implies all the slopes of Xb are at least s. This finishes the proof
of Proposition 3.3.2. �

3.4. Spreading-out

This section uses the results in §3.2 to prove Proposition 1.3.6 and Proposi-
tion 1.3.7.

Theorem 3.4.1. Suppose that Proposition 1.3.6 holds for varieties over finite
fields. Let f : X → B be a projective morphism of nonsingular varieties over a
perfect field k. Suppose that the slopes of a general fiber of f are ≥ s. Then the
same holds for all fibers.

Proof. By Corollary 3.2.15, the problem is of geometric nature, so we can
assume k is an algebraically closed field. In particular, the semistable components
of the singular fibers are defined over k.

The field k can be realized as an algebraically closed field containing the
function field of a smooth variety S defined over some finite field Fq. By shrinking
S and perform finite base changes, the varieties B and X admit smooth, projective
models B → S and X → S respectively. By a further restriction, we can assume
f is defined over S. We use the same letter f to denote this S-morphism X → B.
Each point x ∈ B defines a section σx : S → B. If f has semistable fibers, then
by shrinking further (note that f has only finitely many singular fibers over k),
we can assume that for any closed point t of S, the variety Xσx(t) is geometrically
semistable.

For each t ∈ S, ft : Xt → Bt is defined over a finite field. So we can apply
the finite field version of the theorem, proven in §3.1, to conclude that for all
closed points b ∈ Bt, the slopes of the rigid cohomology of Xb are ≥ s in degree
≥ 1. Letting s range all closed points of S, we conclude that for all closed points
b ∈ B, the rigid cohomology groups Hi(Xb) have slopes ≥ s for all i ≥ 1.
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Now consider the family variety fσ,x : Xσx(S) → σx(S). This is a flat family of
singular varieties whose geometric generic fiber is Xx, and we know that all the
rigid cohomology in positive degree of all fibers of this morphism are of slopes
at least s. By restricting to an open subset S ′x of σx(S) and passing to a finite,
purely inseparable extension of Tx, we have constructed in §3.2 the “generic direct
image” Rj for the morphism fσ,x. This convergent F-isocrystal computes the
degree j rigid cohomology groups of all perfect points. It is of slopes ≥ s on all
closed points, hence by Corollary 3.2.6, its Newton polygon at the perfect point
x are of slopes ≥ s. By Lemma 3.2.14, we know this Newton polygon is precisely
the Newton polygon of Hi

rig(Xx/W (k)[1/p]). This completes the proof. �

The same argument shows that, in the semistable case, Proposition 1.3.7 also
follows from its finite field incarnation, Proposition 3.3.2. (We have indicated in
the proof above how to make modifications for the semistable case.)



CHAPTER 4

A few geometric applications

We end this article by giving some applications of the results proven above.
The first is about the non-degeneration phenomenon for supersingular abelian
varieties. This result, due to Oort, is of course well-known before this article.
The second is about the degenerations of surfaces. The results there are known
before for K3 surfaces, but I don’t know where it is stated explicitly for other
“supersingular surfaces”. The last application is more serious: we prove that the
smallest slope of a general hypersurface in a product of projective spaces

∏r
i=1 Pni

is zero, if the multi-degree (d1, . . . , dr) satisfies di ≥ ni + 1. When r = 1 this is
due to Katz (later greatly generalized by Illusie). For the ease of typing I expose
the proof only for r = 2, but for general r the method obviously generalizes. The
method is quite general, so it is expected to be applicable in other situations.

4.1. Degeneration of supersingular abelian varieties

Oort proves that supersingular abelian varieties are contained in the interior
of any moduli of polarized abelian varieties. I wish to redraw this conclusion by
applying the semicontinuity theorem of the charge function. Standard reduction
allows us to treat the case of abelian varieties defined over finite fields.

Let ∆ be the spectrum of the strict henselian localization of an algebraic
curve C over Fq. Let ∆∗ be the generic point of ∆. Let ϕ : M ∗ → ∆∗ be a
family of abelian varieties of dimension g, obtained from restricting a family of
abelian varieties over the algebraic curve C. Assume that the family has unipotent
monodromy γ = exp(2πiN), N being a nilpotent operator. In fact, it’s follows
from the monodromy-weight conjecture (proven by Deligne for varieties over equal
characteristics in [7]) that N2 = 0.

39
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Then: Néron’s theory asserts that there is a family of group varieties M over
∆ that restricts to the original family M ∗, and whose special fiber M fits into an
extension of group varieties:

(†) 1→ T →M → B → 1

where T is a product of Gm, and B is an abelian variety.
It’s well known that N puts a monodromy weight filtration W•(H) on the

first cohomology H = H1(X,Z`) ∼= Z2g
` of nearby fibers. Moreover W−1(H) =

0,W2(H) = H. Then we know:

(1) The dimension of T equals the dimension of gr0(H) with respect to the
monodromy weight filtration.

(2) The dimension of B equals the dimension of gr1(H) with respect to the
monodromy weight filtration.

Knowing the dimension of gr0(H) ∼= gr1(H)⊗Q`(1) amounts to determining the
torus factor T , as tori have no moduli. Knowing the the polarized integral Hodge
structure gr1(H) of weight 1 amounts to recovering the abelian variety factor B.
Therefore the information of the representation H1(M ∗,Q`) tells how the two
structures intertwine with each other, and ultimately recovers the extension (†).

However, if the family M is from a family of supersingular abelian varieties, i.e.,
the r(H1(Mt,Q`)) ≤ |q|1/2, for general t in the family, then by the semicontinuity
of charges, we infer that r(H1(M ∗,Q`)) ≤ |q|1/2, i.e., the monodromy weight
filtration has no weight zero part! Therefore the family cannot degenerate.

4.2. Degeneration of supersingular surfaces

A smooth, projective surface S with b1(S) = 0 over Fq is called supersingular
(in the sense of Michael Artin) if H2(S) has only one slope (which is necessarily 1).
S is called supersingular in the sense of Shioda if b2(S) = %(S), where %(S) is the
Néron-Severi rank of S. The two are equivalent assuming the Tate conjecture.

Unirational surfaces are one huge class of supersingular surfaces. There are
also non-unirational supersingular surfaces, such as Godeaux surfaces associated
to some special quintics, but no known examples are simply connected. (Shioda
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suspects that any simply connected supersingular surface is unirational. If one
wishes to disprove this conjecture, one may try to prove some reductions of a
general Barlow surface are not unirational.)

Theorem 1.4.1 allows us to say something on the degenerations of supersingular
surfaces. We merely give a few illustrations in this regard. Let S → ∆ be a
semistable degeneration of surfaces. Assume that the general member of the
family is a supersingular surface.

Lemma 4.2.1. The homology of the dual complex of the central fiber S0 must
have vanishing H2.

Proof. One can compute the cohomology of the central fiber S0 by means
of the Mayer-Vietoris spectral sequence. The usual theory of weights implies this
spectral sequence degenerates at the E2 stage. If Fi are the components of S0,
then E1 of the spectral sequence reads

⊕ H4(Fi) 0

0 0

⊕ H2(Fi) → ⊕ H2(Fi ∩ Fj) 0

0 0 0

⊕ H0(Fi) → ⊕ H0(Fi ∩ Fj) → ⊕ H0(Fi ∩ Fj ∩ Fk) → 0

The horizontal arrows are d1. The bottom row computes the homology of the
dual complex. Were the H2 of the dual complex nonzero, there would be a weight
zero factor in the final H2(S0). However weight zero Weil numbers are never
divisible by q, whence cannot have slope 1. �

The claim recovers the classical fact that any supersingular K3 surface does
not have a “Type II” semistable degeneration over fields of positive characteristics.

4.3. Hypersurfaces in a product of projective spaces

Recall that the if V is a vector space over a field k of dimension n, and
{e1, . . . , en} is a basis of V , then the Koszul complex is

0→ k →
∧1 V →

∧2 V → · · · →
∧n V → 0.
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Here d(ξ) =
∑

j(−1)jξ ∧ ej. This is an acyclic complex.
If we modify the Koszul complex by omitting the

∧0 and
∧n terms, then we

get the simplicial cochain complex of the dual complex of the generic (n + 1)-
hyperplane arrangement. The exactness of the Koszul complex tells us that in
fact the nonzero cohomology of the dual complex lies in the top and bottom
degrees. In the following we generalize this phenomenon to hypersurfaces in a
product of projective spaces.

Below, we let V and W be two vector spaces over C of dimension m and n
respectively. Let d ≥ m and e ≥ n be integers. Let P = P(V )× P(W ). We shall
cook up a “modified” Koszul complex that computes the cohomology of the dual
complex of a “multi-hyperplane arrangement” of bidegree (m,n).

4.3.1. We define H to be the hypersurface of P cut out by the equation

u1 · · ·um · v1 · · · vn

where ui and vj are homogeneous coordinates on P(V ) and P(W ) respectively.
Let Γ be the dual complex of H. If γ = (i1, . . . , ir; j1, . . . , js) is an r-cell of Γ, we
use Hγ to denote the corresponding subvariety of H defining γ.

Let F (u) (resp. G(v)) be general homogeneous equations in u (resp. v) such
that {F (u) = 0}×P(W ) (resp. P(V )×{G(v) = 0}) meets Hγ transversely for all
γ. Such a hypersurfaces may not be defined over the base field; but by Bertini’s
theorem, it does exist after a finite extension of k. Let X ′ be the hypersurface in
P defined by the equation

F (u)u2 · · ·um ·G(v)v2 · · · vn = 0.

Lemma 4.3.2. The simplicial cochain complex S∗(X ′) of the dual complex of
X ′ is the same as that of Γ up to degree dimX ′ − 1, and the rank of SdimX′(X)

is bigger than that of SdimX′(Γ).

This is because the number of top cell can only become larger when the degree
increases, since there are more than one intersection points with a curve.
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Theorem 4.3.3. Let X ′ be as above. Then the dual complex of X ′ has
nonvanishing cohomology at degree m+ n− 3.

Proof. Since the simplicial complex of the dual complex of X ′ is the same
as a multi-hyperplane arrangement up to top degree, and has more elements in
the top degree, it suffices to consider the case when X ′ is a multi-hyperplane
arrangement. In this case the simplicial complex of the dual complex can be
described as the modified Koszul complex K ′ as follows: the ith term of the
complex K ′ is

K ′i =
⊕

a+b=i,a<m,b<n

∧a V ⊗
∧bW

and the mapping d : K ′i → K ′i+1 is the composition

K ′i ⊂ Ki
d−→ Ki+1 → K ′i+1.

It’s not hard to check that d2 = 0, and that (K ′, d) computes the cohomology of
the dual complex of the multi-hyperplane arrange in P(V )× P(W ).

By the Koszul description of the dual complex, it suffices to prove the mapping∧m−1 V ⊗
∧n−2W ⊕

∧m−2 V ⊗
∧n−1W →

∧m−1 V ⊗
∧n−1W

is not surjective. By taking duals, this reduces to proving the mapping

V ⊗W →
(∧2 V ⊗W

)
⊕
(
V ⊗

∧2W
)

is not injective. This is indeed the case: consider the element

(
∑

(−1)iei)⊗ (
∑

(−1)jfj) .

It’s image is (∑
i,s(−1)i(−1)sei ∧ es

)
⊗ (
∑

(−1)jfj)

± (
∑

(−1)iei)⊗
(∑

j,`(−1)jfj ∧ f`
)

= 0.

This proves the theorem. �

We can now state the main result of this subsection.
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Theorem 4.3.4. Let X be a general hypersurface in P(V ) × P(W ) of de-
gree (d, e) with d ≥ dimV , e ≥ dimW . Assume dimX ≥ 2. Then the rigid
cohomology of X has a slope equal to zero.

Proof. Since the parameter space is defined over a finite field, and is rational,
and since the slope ≥ 1 condition specializes, it suffices to prove this over a finite
field. Let s be the smallest slope of the middle cohomology of X. So we can use
the method of étale cohomology. Choose a 1-parameter degeneration of X to
a hypersurface X ′ of the type above, then by Theorem 1.4.1, we infer that the
smallest slope of X ′ is at least s. We claim that the middle cohomology of X ′

has a piece of weight zero, and then the corollary would follow. This is because
we can compute the cohomology of X ′ by means of the Mayer-Vietoris spectral
sequence, and the complex (Ej,0

1 , d1) is precisely computing the cohomology of the
dual complex of X ′. By Theorem 4.3.3, we conclude that EdimX′,0

2 6= 0. Since the
spectral sequence is E2-degenerate, we have EdimX′,0

2 = EdimX′,0
∞ . It follows that

HdimX′(X ′,Q`) has a Frobenius eigenvalue of weight zero. An algebraic number
of weight zero, i.e., all of whose complex conjugates are of length 1, is necessarily
a root of 1. So its p-adic slope is always 0 for all embeddings ι : Z→ Qp. This
completes the proof. �

Remark 4.3.5. A similar result for complete intersections in a single projective
space Pn has been proven by Katz [SGA7II, Exposé XX] (later generalized by
Illusie [13]: Illusie managed to prove that a general complete intersection is
ordinary).

Theorem 4.3.4, when combined with Lemma 4.3.7 below, implies the following
result:

Corollary 4.3.6. A general multi-hypersurface X of bidegree (d, e) with
d ≥ dimV , e ≥ dimW , is not uniruled.

For non-Fano complete intersections in a projective space, a similar result
has been proven by Riedl and Woolf [22]. Their method seems to be geometric,
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whereas ours is purely cohomological. Note also that the varieties in Corollary 4.3.6
are of Picard number 2.

Lemma 4.3.7. Let X be a geometrically connected, nonsingular variety over a
finite field k of q elements. Assume that the dimension of X equals n, and that
X is geometrically uniruled. Then the Frobenius eigenvalues of Hn

ét(Xk,Q`) are
all algebraic integers divisible by q.

The proof of the lemma is given in the end of this section.

Proof of 4.3.6 (assuming 4.3.7). We use the fact that the parameter
space of multi-hypersurfaces is uniruled, so the problem immediately reduces to
a finite field. If X is as in the hypothesis of Corollary 4.3.6 over a finite field k,
then by 4.3.4, its Newton polygon has at least one piece of slope 0 hence cannot
be uniruled by the lemma. �

Remark 4.3.8. Recall that saying X is geometrically uniruled amounts to
declaring the existence of a proper, dominant, rational map

ϕ : P1 ×M → X

with dimM = n− 1 (after possibly performing an extension of k, which will not
alter the result). By performing an alteration, we may assume that M is smooth
and projective over k.

Remark 4.3.9. Assuming the resolution of singularity in characteristic p, the
lemma is quickly proven: for any (n− 1)-dimensional, smooth, projective variety
M , the Künneth formula of cohomology implies that the Frobenius eigenvalues
of Hn(P1 ×M) are all divisible by q. The same holds for any smooth, projective
varieties that is birational to P1×M , since birational modifications do not change
the “coniveau ≥ 1” condition. Let P → P1 × M be a projective, birational
morphism, then the composition P → P1 ×M → X embeds the cohomology of
X into that of P (Poincaré duality), which shows the Frobenius eigenvalues of X
at middle degree are divisible.
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Without the resolution of singularity, the proof becomes a bit lengthy, but
is still fairly standard. (Note that alterations generally change coniveau, so are
not handy in our situation.) We shall present the proof of it in the rest of this
secition.

4.3.10. Notations. Let Y be the closure of the graph of ϕ. Below, to save ink,
we write Hi

T (S) for Hi
Tk

(Sk,Q`) and Hi(S) for Hi
∅(S). We also use pri to denote

the projections to the ith factor on X × P1 ×M , and use · to denote the cup
product on cohomology.

Lemma 4.3.11. For any c ∈ Hn(X), the element pr∗1(c) · [Y ] is nonzero.

Proof. In fact, let c∨ be the Poincaré dual to c. Then c · c∨ = [x] where x is
a point class on X. Were the class zero, then

0 = pr∗1(c) · [Y ] · pr∗1(c
∨) = [Y ] · [pr−11 (x)].

since ϕ is proper and dominant, for a general x ∈ X, ϕ−1(x) is a well-defined
subvariety of P1 ×M , hence of Y ⊂ X × P1 ×M . Its class will represent the
right hand side of the displayed equation. However, the cohomology class of a
subvariety is never zero (e.g., its intersection with an ample class is nonzero).
This is a contradiction. �

By the construction of the class [Y ] and cup product, the cohomology class
c·[Y ] naturally lands in H3n

Y (X×P1×M)(n), the cohomology group with supports
in Y . So Claim 4.3.11 gives an injective map

Φ : Hn(X) ↪→ H3n
Y (X × P1 ×M)(n).

By purity (“the Thom isomorphism”), we have

H3n
Y (X × P1 ×M) ∼= Hn(Y )∗(−2n);

and, under the Poincaré duality, we have

Hn(P1 ×M) ∼= Hn(P1 ×M)∗(−n), Hn(X)∗ ∼= Hn(X)(n).
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Therefore, to prove the lemma, it suffices to prove that all the generalized
Frobenius eigenvectors of Hn(Y ) whose eigenvalues are not divisible by q are
killed by the transpose of the map Φ(−n).

Proof of 4.3.7. First we set up some notations. Let p = pr2,3|Y be the
projection to P1 ×M . Then p is a birational morphism. Let U be the maximal
open subset of P1 ×M such that p restricts to an isomorphism on p−1(U). Let
E be the complement of U in Y ; and let Z be the complement of U in P1 ×M .
Finally, let V be the complement (X × P1 ×M) \ Y .

There is an exact sequences

Hn
Z(P1 ×M)→ Hn(P1 ×M)→ Hn(U)→ Hn+1

Z (P1 ×M)

By the Künneth formula, the Frobenius eigenvalues of P1 ×M at degree n are
divisible by q. By Lemma 2.0.11, the Frobenius eigenvalues of Hn+1

Z (P1 ×M) are
divisible by q as well. Hence the Frobenius eigenvalues of Hn(U) are divisible by
q.

We also have another exact sequence

Hn
E(Y )→ Hn(Y )→ Hn(U).

So the only Frobenius eigenvalues of the middle that may not be divisible must
come from Hn

E(Y ). Here we cannot use Lemma 2.0.11 any more, since Y is
generally singular. To take care of the eigenvalues of Hn

E(Y ), we use the following
exact sequence

Hn−1(V )→ Hn
E(Y )→ Hn

E(X × P1 ×M).

By Lemma 2.0.11 again, the right hand side of the displayed sequence has
Frobenius eigenvalues divisible by q. So we turn to study Hn−1(V ). It is handled
by the exact sequence

Hn−1(X × P1 ×M)→ Hn−1(V )→ Hn
Y (X × P1 ×M).

By Lemma 2.0.11, the only “bad” eigenvalues are from Hn−1(X × P1 ×M). But
the composition

Hn−1(X × P1 ×M)→ Hn−1(V )→ Hn
E(Y )→ Hn(Y )→ Hn(X)
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must be the zero map, since by the Weil conjecture the source is pure of weight
n− 1, whereas the target is pure of weight n. �
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