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Abstract of the Dissertation

Multiplicativity of perverse filtration for Hilbert schemes of fibered surfaces

by

Zili Zhang

Doctor of Philosophy

in

Mathematics

Stony Brook University

2016

Let S → C be a smooth projective surface with numerically trivial canonical bundle fibered

onto a curve. We prove the multiplicativity of the perverse filtration with respect to the

cup product on H∗(S[n],Q) for the natural morphism S[n] → C(n). We also prove the

multiplicativity for five families of Hitchin systems obtained in a similar way and compute

the perverse numbers of the Hitchin moduli spaces. We show that for small values of n the

perverse numbers match the predictions of the numerical version of the de Cataldo-Hausel-

Migliorini P = W conjecture and of the conjecture by Hausel-Letellier-Villegas.
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1 Introduction

1.1 Nonabelian Hodge theory and the P = W conjecture

Given any smooth complex projective variety X and any algebraic reductive group G, there

are two natural moduli spaces associated with them, the moduli of Higgs G-bundles MD and

the character variety MB. In [17], Simpson proved that these moduli spaces are algebraic

varieties, and that they are canonically diffeomorphic to each other. The diffeomorphism

induces a canonical identification of the cohomology of these moduli spaces. The algebraicity

endows the cohomology groups with mixed Hodge structures. Furthermore, the moduli of

Higgs bundle carries a proper Hitchin map to an affine space, so that the rational cohomol-

ogy H∗(MD) is endowed with the Leray filtration and with the perverse (Leray) filtration.

Under the canonical isomorphism, one may compare the filtrations mentioned above. One

remarkable result is in [6], where de Cataldo, Hausel and Migliorini considered the case when

X is any curve with genus g ≥ 2 and G = GL(2,C). They proved that, via the non-abelian

Hodge theorem, the perverse filtration P on H∗(MD) for the Hitchin map equals the mixed

Hodge theoretic weight filtration W on H∗(MB); they proved that P = W. There are numer-

ous and diverse Hitchin-type moduli spaces MD that come with natural Hitchin-type maps

h : MD → A and which have corresponding (twisted) character varieties MB. It is implicitly

conjectured in [5] and [6] that the P = W phenomenon appears whenever the nonabelian

Hodge theory holds.

Conjecture 1.1 (The P = W conjecture). Under the canonical isomorphism beween the co-

homology groups predicted by nonabelian Hodge theory, the perverse filtration and the weight

filtration correspond to each other.

It had known previously that the weight filtration in mixed Hodge structure is multiplicative

with respect to the cup product, which means ∪ : WkH
i×WlH

j → Wk+lH
i+j. The perverse

filtration is not multiplicative in general, even for proper maps between smooth projective

varieties. So one key step in [6] is to establish that the perverse filtration is also multiplicative.

This dissertation is devoted to prove that for five families of Hitchin moduli spaces, the

perverse filtrations on the rational cohomology are multiplicative with respect to the cup

product. By using the same method, we can also prove the multiplicativity of perverse

filtration on the cohomology on Hilbert schemes of points on elliptic K3 surfaces defined by

the natural elliptic fibration.
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1.2 Perverse filtration

In this section, we define the perverse filtration on the cohomology group defined by maps

between algebraic varieties. We always work with varieties over the field of complex numbers

C. All cohomology groups have rational coefficients.

Definition 1.2 ([6] 1.4.1). Let f : X → Y be a morphism between smooth quasi-projective

varieties. Let r(f) = dimX ×Y X − dimX be the defect of semismallness. Define the

geometric perverse filtration as

PpH
d(X;Q) := Im

{
Hd−dimX+r(f) (Y, pτ≤pRf∗QX [dimX − r(f)])→ Hd(X,Q)

}
,

where the pτ≤p is the truncation functor of the standard perverse t-structure. The filtration

ranges from 0 to 2r(f), i.e. GrPp H
d(X) = 0 if p < 0 or p > 2r(f), where

GrPp H
d(X;Q) := PpH

d(X;Q)/Pp−1H
d(X;Q)

The perverse filtration is multiplicative with respect to the cup product if the following

condition holds for any integer p, q, i, j.

PpH
i(X;Q) ∪ PqHj(X;Q)→ Pp+qH

i+j(X;Q).

Definition 1.3. Let f : X → Y as before. Given a cohomology class 0 6= α ∈ H∗(X),

define the perversity of α, denoted as p(α), to be the integer such that α ∈ Pp(α)H
∗(X) and

α 6∈ Pp(α)−1H
∗(X). By our choice of perversity, the function p takes value in the interval

[0, 2r(f)]. Define p(0) = −∞. Then the perverse filtration is multiplicative with respect to

cup product if and only if for any two classes α, β ∈ H∗(X), one has p(α∪β) ≤ p(α) + p(β).

Definition 1.4. Let f : X → Y as before. A perverse decomposition for Rf∗QX is an

isomorphism in the bounded derived category of constructible sheaves of complex vector

spaces

Rf∗QX [dimX − r(f)] ∼=
2r(f)⊕
i=0

Pi[−i],

where Pi are suitable perverse sheaves.

We will use the perversity function p for a cohomology class α ∈ H∗(X) without mentioning

the map X → Y when no confusion arises. We say “the perversity of α” for p(α). To

simplify notation, we say the perverse decomposition for the map f : X → Y for the

perverse decomposition for Rf∗QX , the push-forward of the contant sheaf. We say the
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perverse filtration for the map f : X → Y for the perverse filtration on the cohomology

group H∗(X;Q) defined by the map f : X → Y .

Definition 1.5. Let f : X → Y be as before. A basis α1, · · · , αk of cohomology group

H∗(X;Q) is filtered with respect to the perverse filtration if the following property holds for

any 0 ≤ p ≤ 2r(f).

PpH
∗(X) = Span {αi | p(αi) ≤ p, 1 ≤ i ≤ k}.

1.3 Dissertation work

In this dissertation, we study a beautiful and classical class of Hitchin systems h : MD → A.

They are five families of moduli spaces of parabolic Higgs bundles over P1 with marked points,

labeled by the affine Dynkin diagrams Ã0, D̃4, Ẽ6, Ẽ7 and Ẽ8. In this setting, Theorem 4.1

and 5.1 in [10] states that these MD are the Hilbert schemes S[n] of n-points of five distinct

smooth algebraic elliptically fibered surfaces S → A1. There are, for each of the five surfaces

and for each n ≥ 1, Hitchin maps h : MD = S[n] → An, hence a perverse filtration P on the

cohomology groups H∗(MD). The construction of Hitchin map h is analogous to the one

that starts with an elliptic K3 surface S → P1 and yields the natural map h : S[n] → Pn.

The Mmin result of the dissertation is the multiplicativity of these perverse filtrations.

Theorem 1.6 (Theorem 5.6). For the five families of Hitchin systems, the perverse filtration

on the rational cohomology H∗(MD;Q) defined by the map h : MD → A is multiplicative .

In the proof, we develop a systematic framework to describe the perverse filtration on

H∗(MD) in terms of the one on H∗(S) defined by the map S → A1. We use the decom-

position theorem of Beilinson-Bernstein-Deligne-Gabber [1] as our main tool to decompose

Rh∗QS, the push-forward of the constant sheaf by the Hitchin map. By using the explicit

geometry, we pick a very special basis of H∗(S) which is filtered respect to the perverse fil-

tration, and use it to produce a filtered basis of H∗(MD). The key step is the determination

of the precise perversity of the class of the small diagonals in the product Sn; the general

bounds for these perversities are too weak for the problem, and we have to improve upon

them by using the special geometry. The description of Lehn in [14], of the cohomology ring

of H∗(S[n]) is a key ingredient in my approach. Since MD is not compact, we prove that it

is also valid for all the moduli spaces MD we are working with.

By using similar techniques, we may also prove the multiplicativity of perverse filtration for

Hilbert schemes of projective surfaces with numerically trivial canonical bundle. In fact,
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one can start with any smooth quasi-projective surfaces f : S → C fibered over a curve

and obtain a map f [n] : S[n] → C(n), where C(n) is the n-th symmetric product of C. In

this case, since we don’t have explicit description of the map, we have to use the “relative”

Hodge-Riemann bilinear relations, due to de Cataldo and Migliorini [3], to “calculate” the

perverse filtration and to produce special basis for the cohomology groups which are adapted

to our problem. We have the following result.

Theorem 1.7 (Theorem 4.17). Let f : S → C be a surjective morphism from a smooth

projective surface with numerically trivial canonical bundle to a smooth projective curve.

Then the perverse filtration of H∗(S[n];Q) defined by the morphism f : S[n] → C(n) is

multiplicative, namely, we have

PpH
∗(S[n];Q) ∪ Pp′H∗(S[n];Q) ⊂ Pp+p′H

∗(S[n];Q)

As a byproduct of our formalism, we can prove that if there is a pair of smooth surfaces SP

and SW , such that the perverse filtration (defined by some proper map h : SP → A1) on

the cohomology H∗(SP ) corresponds naturally to the weight filtration in the mixed Hodge

structure on the cohomology of H∗(SW ), then this correspondence induces an identification

between the perverse filtration on H∗(S
[n]
P ) and the weight filtration on H∗(S

[n]
W ). This

generalizes [5] Theorem 4.1.1.

There is a numerical version of the P = W conjecture, namely instead of requiring the

filtrations to correspond via the nonabelian Hodge theorem, one only requires the dimensions

of the graded pieces to be the same. Conjectures in [7] and [11] predict the perverse numbers

and mixed Hodge numbers for the moduli of parabolic Higgs bundles over curves with marked

points and the corresponding character varieties. In our five families of Hitchin systems, we

compute the perverse filtration explicitly, and also the perverse numbers.

Theorem 1.8 (Theorem 5.11). Let f : S → A1 be the n = 1 case of the five families. Denote

the perverse numbers by pi,jn = dim GrPi H
j(S[n]). Let the perverse Poincaré polynomial be

Pn(q, t) =
∑

i,j p
i,j
n q

itj. Then in the Ã0 case, the generating series is

∞∑
n=0

snPn(q, t) =
∞∏
m=1

(1 + smqmt2m−1)2

(1− smqm−1t2m−2)(1− smqm+1t2m)
.

In the other four cases D̃4, Ẽ6, Ẽ7 and Ẽ8, the generating series are

∞∑
n=0

snPn(q, t) =
∞∏
m=1

1

(1− smqm−1t2m−2)(1− smqmt2m)k(1− smqm+1t2m)
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where k is an integer defined in Proposition 5.4.

Using the explicit description of the corresponding character varieties for n = 1 in [9], we

prove the full version of the P = W conjecture for S → A1 in each of our five cases. For n ≥ 2,

little is known about the corresponding character varieties. However, there are conjectures

concerning the shape of the filtration W on H∗(MB) in [11]. Mathematica computations

show that for small n, the perverse numbers obtained in our theorem match the conjectural

mixed Hodge numbers in [11].

2 Functoriality of the perverse filtrations

In this chapter we prove that external tensor products, symmetric products and alternating

products of perverse sheaves are perverse. We also show we may describe the perverse

filtrations for fn : Xn → Y n and f (n) : X(n) → Y (n) in terms of the perverse filtration for

f : X → Y . We use terms “perversity”, “perverse decomposition”, “perverse filtration”

under the convention defined in section 1.2.

2.1 External tensor product

Proposition 2.1. Let f1 : X1 → Y1, f2 : X2 → Y2 be two proper morphisms between smooth

quasi-projective varieties. Let r(f) denote the defect of semismallness of f defined in section

1.2. Let Fi and Gj be suitable perverse sheaves and

Rf1,∗QX1 [dimX1 − r(f1)] ∼=
2r(f1)⊕
i=0

Fi[−i],

Rf2,∗QX2 [dimX2 − r(f2)] ∼=
2r(f2)⊕
j=0

Gj[−j]

be the perverse decompositions for map f1, f2, respectively. Then

R(f1 × f2)∗QX1×X2 [dimX1 ×X2 − r(f1 × f2)] ∼=
⊕
i,j

Fi � Gj[−i− j]

is a perverse decomposition for the proper map f1 × f2 : X1 ×X2 → Y1 × Y2. In particular,

for α1 ∈ H∗(X1), α2 ∈ H∗(X2), we have p(α1 ⊗ α2) = p(α1) + p(α2), where α1 ⊗ α2 is

viewed as a cohomology class in H∗(X1 × X2), and the perverse filtration is defined by the

map f1 × f2 : X1 ×X2 → Y1 × Y2.

5



Proof. Note that f1, f2 and f1 × f2 are all proper, so Rf∗ = Rf!. By the Künneth formula

(see exercise II.18 of [13]), we have

R(f1 × f2)∗QX1×X2 [dimX1 + dimX2 − r(f1)− r(f2)]

= R(f1 × f2)∗QX1 �QX2 [dimX1 + dimX2 − r(f1)− r(f2)]

= Rf1,∗QX1 [dimX1 − r(f1)] �Rf2,∗QX2 [dimX2 − r(f2)]
∼=

⊕
i,j Fi � Gj[−i− j]

By Proposition 10.3.6 (i)(ii) of [13], the external tensor product Fi�Gj is perverse. Therefore

this gives a perverse decomposition. To check the perversity is additive with respect to tensor

product is basically by definition as follows. Let p1 = p(α1), p2 = p(α2). If α1 = 0 or α2 = 0,

then there is nothing to prove. Suppose none of them are 0, recall that by definition of

geometric perversity, we have

α1 ∈ H

(⊕
i≤p1

Fi[−i]

)
, α2 ∈ H

(⊕
j≤p2

Gj[−j]

)

So

α1 ⊗ α2 ∈H

( ⊕
i≤p1,j≤p2

Fi � Gj[−i− j]

)

⊂H

( ⊕
i+j≤p1+p2

Fi � Gj[−i− j]

)
=Pp1+p2H

∗(X1 ×X2)

This shows that p(α1 ⊗ α2) ≤ p(α1) + p(α2). On the other hand, p(αk) = pk means that

αk 6= 0 ∈ GrPpk H
∗(Xk). So

0 6= α1 ⊗ α2 ∈ GrPp1 H
∗(X1)⊗GrPp2 H

∗(X2) ⊂ GrPp1+p2
H∗(X1 ×X2)

This shows that p(α1 ⊗ α2) = p(α1) + p(α2).

Corollary 2.2. Let f : X → Y be a proper map between smooth quasi-projective varieties.

Then the perverse filtration for the product map fn : Xn → Y n can be described as

PpH
∗(Xn;Q) = Span {α1 ⊗ · · · ⊗ αn | p(α1) + · · ·+ p(αn) ≤ p},

where αi ∈ H∗(X;Q) for i = 1, · · · , n.
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2.2 Symmetric and alternating product

In this section, we give an explicit description of the Sn-action on the n-fold external tensor

product of a bounded complex, where Sn is the symmetric group of n elements. We use

the action to define the symmetric product in derived category of constructible sheaves, and

show that the symmetric product of a perverse sheaf is still perverse. Our method is similar

to the one in [16]. Let X(n) = Xn/Sn denote the n-th symmetric product of X.

Definition 2.3. Let K•i be a bounded complex of constructible sheaves on a complex quasi-

projective variety Xi, for 1 ≤ i ≤ n. Then the n-fold external tensor product �n
i=1K

•
i on∏n

i=1Xi is defined as follows.

1. The j-th component is
⊕∑

ki=j
�n
i=1K

ki
i .

2. The differential is
∑n

i=1 (−1)k1+···+ki−1di on the summand �n
i=1K

ki
i , where di is induced

by the differential of Ki.

Definition 2.4. Let K•i and Xi as above. Then there is a natural Sn-action on �n
i=1K

•
i by:

σ# : �n
i=1K

•
i
∼−→ σ∗

(
�n
i=1K

•
σ(i)

)
which is defined, for mi ∈ Kpi

i , by

�n
i=1mi 7→ (−1)ν(σ,p)σ∗

(
�n
i=1mσ(i)

)
where ν(σ, p) =

∑
i<j,σ(j)<σ(i) pipj.

Definition 2.5. Let X be a complex quasi-projective variety. Let q : Xn → X(n) be the

quotient map. For a bounded complex of constructible sheaves K on X, we define the

symmetric product and alternating product as

K(n) =
(
Rq∗K

�n
)Sn

K{n} =
(
Rq∗K

�n
)sign−Sn

where

(−)Sn =
1

n!

∑
σ∈Sn

Rq∗(σ
#)

is the symmetrizing projector and

(−)sign−Sn =
1

n!

∑
σ∈Sn

(−1)sign(σ)Rq∗(σ
#)

7



is the alternating projector. Here we use the fact that Sn acts trivially on X(n).

Remark 2.6. By [15] (1.1), we have the following canonical isomorphisms.

H∗(X(n), K(n)) = H∗(Xn, K�n)Sn =
⊕
i+j=n

SymiHeven(X,K)
⊗ j∧

Hodd(X,K)

H∗(X(n), K{n}) = H∗(Xn, K�n)sign−Sn =
⊕
i+j=n

i∧
Heven(X,K)

⊗
SymjHodd(X,K)

Furthermore, we have

(K[a])(n) =

K(n)[na] if a is even.

K{n}[na] if a is odd.

Proposition 2.7. Let P be a perverse sheaf on X. Let q : Xn → X(n) be the quotient map.

Then P(n) and P{n} are perverse sheaves on X(n).

Proof. By Proposition 2.1, P�n is perverse. Since the map q : Xn → X(n) is finite, Rq∗K
�n

is perverse due to Corollaire 2.2.6 (i) in [1]. It suffices to prove that the invariant part and the

alternating part under the Sn-action are both perverse. By the definition of the projectors,

we have

(Rq∗P�n)Sn → Rq∗P�n → (Rq∗P�n)Sn

(Rq∗P�n)sign−Sn → Rq∗P�n → (Rq∗P�n)sign−Sn

where both compositions are the identity. This means that (Rq∗P�n)Sn and (Rq∗P�n)sign−Sn

are both direct summands of Rq∗P�n in the bounded derived category of constructible

sheaves. The proposition holds due to the following lemma.

Lemma 2.8. Let P be a perverse sheaf on X. Suppose that P = K ⊕K ′ holds in Db
c(X),

the bounded derived category of constructible sheaves. Then K is perverse.

Proof. The cohomology sheaf satisfiesHiP = HiK⊕HiK ′. Therefore Supp HiK ⊂ Supp HiP ,

and thus dim Supp HiK ≤ dim Supp HiP ≤ −i. This proves the support condition (4.0.1’)

in [1]. Note that P∨ = K∨ ⊕ (K ′)∨, the cosupport condition follows similarly.

2.3 Perverse filtration of symmetric products

In this section, we show that the perverse filtration for a symmetric product a morphism

f (n) : X(n) → Y (n) is compatible with the perverse filtration of the corresponding cartesian

product fn : Xn → Y n. We also use the symmetric product and the alternating product for

perverse sheaves to give a perverse decomposition for the symmetric product of maps.

8



Lemma 2.9. Let X be a smooth quasi projective variety. Let q : Xn → X(n). Let Ki ∈
Db
c(X), i = 1, · · · , n. Then Sn acts on

K̃ =
⊕
σ∈Sn

Kσ(1) � · · ·�Kσ(n)

as an endomorphism. Furthermore, (Rp∗K̃)Sn ∼= Rp∗(K1 � · · · �Kn). More generally, let

k = (k1, · · · , km) with k1 + · · ·+ km = n. Let Sk = {σ : [n]→ [m] : |f−1(i)| = ki}, where [n]

denotes the set {1, · · · , n}. Let qk : X(k1) × · · ·X(km) → X(n). Then Sn acts on

K̃k :=
⊕
σ∈Sk

Kσ(1) � · · ·�Kσ(n),

and we have

(Rq∗K̃k)Sn ∼= Rqk,∗(K
(k1)
1 � · · ·�K(km)

m ).

Similarly, for the alternating part we have

(Rq∗K̃k)sign-Sn ∼= Rqk,∗(K
{k1}
1 � · · ·�K{km}m ).

Proof. Note that Sn acts on K̃ by permuting the direct summands (up to sign). The

invariant part of the push-forward is determined by any one of its summands.

Proposition 2.10. Let X be a smooth quasi-projective variety. Let q : Xn → X(n). Let

K = ⊕mi=1Ki ∈ Db
c(X). Then we have the expansion

K(n) ∼=
⊕
k

Rqk,∗(K
(k1)
1 � · · ·�K(kn)

n ).

and

K{n} ∼=
⊕
k

Rqk,∗(K
{k1}
1 � · · ·�K{kn}n ).

9



Proof. By Lemma 2.9, we have

K(n) = (Rq∗K
�n)Sn

=

(
Rq∗

⊕
1≤i1,··· ,in≤m

Ki1 � · · ·�Kin

)Sn

=

(
Rq∗

⊕
k

K̃k

)Sn

=
⊕
k

(
Rq∗K̃k

)Sn
=

⊕
k

Rqk,∗

(
K

(k1)
1 � · · ·�K(km)

m

)

Lemma 2.11. Let f : X → Y be a proper morphism between smooth quasi-projective vari-

eties. We have the following commutative diagram

Xn X(n)

Y n Y (n)

q

fn f (n)

q

Let K ∈ Db
c(X), then Rf

(n)
∗ K(n) ∼= (Rf∗K)(n).

Proof.

(Rf∗K)(n) ∼=
(
Rq∗(Rf∗K)�n

)Sn ∼= (Rq∗Rf∗K�n
)Sn

∼=
(
Rf

(n)
∗ Rq∗K

�n
)Sn ∼= Rf

(n)
∗
(
Rq∗K

�n
)Sn ∼= Rf

(n)
∗ K(n)

Proposition 2.12. Let f : X → Y be a proper morphism between smooth quasi-projective

varieties. Let

Rf∗QX [dimX − r(f)] ∼=
2r(f)⊕
i=0

Pi[−i]

be the perverse decomposition, where Pi are perverse sheaves on Y . Then the perverse decom-

position of the map f (n) : X(n) → Y (n) is given as follows. The formula is slightly different

10



depending on the parity of dimX − r(f). When dimX − r(f) is even, then

Rf
(n)
∗ QX(n) [n(dimX − r(f))]

∼=
⊕
k

Rqk,∗

(
P(k0)

0 � (P1[−1])(k1) � · · ·� (P2r(f)[−2r(f)])(k2r(f))
)

∼=
⊕
k

Rqk,∗

(
P(k0)

0 � P{k1}1 � · · ·� P(k2r(f))

2r(f)

)− 2r(f)∑
i=0

iki

 .
When dimX − r(f) is odd, then

Rf
(n)
∗ QX(n) [n(dimX − r(f))]

∼=
⊕
k

Rqk,∗

(
P{k0}0 � (P1[−1]){k1} � · · ·� (P2r(f)[−2r(f)]){k2r(f)}

)
∼=

⊕
k

Rqk,∗

(
P{k0}0 � P(k1)

1 � · · ·� P{k2r(f)}2r(f)

)− 2r(f)∑
i=0

iki

 .
Proof. By the canonical isomorphism (QX)(n) = QX(n) , Remark 2.6 and Lemma 2.11, we

have

Rf (n)
∗ QX(n) [n(dimX − r(f))] =

(Rf∗QX [dimX − r(f)])(n) if dimX − r(f) is even.

(Rf∗QX [dimX − r(f)]){n} if dimX − r(f) is odd.

Then we use Proposition 2.10 to obtain the isomorphism. Using Proposition 2.1, Proposition

2.7 and the fact that the projection qk is finite, we know this isomorphism is indeed a perverse

decomposition.

Although the perverse decomposition for the symmetric product is somewhat complicated,

the perverse filtration is much simpler. It is compatible with the one for the cartesian product

as one may expect. To see this, we need the following lemma.

Lemma 2.13. Let f : X → Y as before. Then

pτ≤p
(
(Rf∗QX)(n)

)
=
(
Rq∗

(
pτ≤p(Rf∗QX)�n

))Sn
Proof. Note that the Sn-invariant part is a direct summand, so it commutes with the functor
pτ≤p. Furthermore, the quotient map q is finite, hence Rq∗ is t-exact.

Proposition 2.14. Under the isomorphism

H∗
(
X(n)

)
= (H∗(Xn))Sn ,

11



the perverse filtration can be identified as

PpH
∗ (X(n)

)
= (PpH

∗(Xn))Sn ,

where the perversity in parentheses is taken with respect to fn : Xn → Y n.

Proof. By Lemma 2.11 and Lemma 2.13 , we have

pτ≤pRf
(n)
∗ QX(n) = pτ≤p(Rf∗QX)(n)

=
(
Rq∗

pτ≤p(Rf∗QX)�n
)Sn

After taking cohomology, we have

PpH
∗(X(n)) = H

(
Y (n), pτ≤pRf

(n)
∗ QX(n)

)
= (PpH

∗(Xn))Sn

So the result follows.

3 Perversity of the diagonal

We will prove a technical result about the diagonal embedding, which is true for any algebraic

variety. The result is crucial in the proof of the multiplicativity of the perverse filtration for

Hilbert schemes of surfaces. In fact, by using Lehn’s description of ring structure of Hilbert

scheme of surfaces with numerically trivial canonical bundle, the perversity estimation of the

diagonals is equivalent to the multiplicativity of perversity filtration for the Hilbert schemes.

3.1 Filtered basis for cohomology groups

We choose and fix a basis for the cohomology group with the following properties, which is

crucial in the perversity estimation of the diagonal embedding.

Proposition 3.1. Let f : X → Y be a morphism between projective varieties. Let k(p, d) =

dim GrPp H
d(X). There exists an Q-basis

B = {βdp,i | 0 ≤ d ≤ 2 dimX, 0 ≤ p ≤ 2r(f), 1 ≤ i ≤ k(p, d)} ⊂ H∗(X)

with the following properties:

12



1. βdp,i ∈ PpHd(X). {βdp,1, · · · , βdp,k(p,d)} is a basis of GrPp H
d(X), where βdp,i is the image

of βdp,i under the natural quotient map PpH
d(X)→ GrPp H

d(X).

2. The basis B is signed orthonormal in the following sense.

〈βdp,i, βd
′

p′,j〉 =

±1 d+ d′ = 2 dimX, p+ p′ = 2r(f) and i = j,

0 otherwise.

where −1 can only appear when d = d′ = dimX, p = p′ = r(f) and i = j.

In particular, if A = {αdp,i} is the dual basis of B with respect to the Poincaré pairing, then

we have

p(αdp,i) + p(βdp,i) = 2r(f)

To prove Proposition 3.1, we need the following two results.

Lemma 3.2 ([3] Version 1, Lemma 2.9.1). Let f : X → Y be a morphism of algebraic

varieties. The Poincaré paring

PpH
d(X)× Pp′H2 dimX−d(X)→ Q

is trivial for p+ p′ < 2r(f).

Proof. Denote by Db
c(Y ) the bounded derived category of constructible sheaf on Y . Let

ε : Rf∗QX [n] → D(Rf∗QX [n]) be the duality ismorphism. For every d, the map ε defines

the non-degenerate Poincaré pairing∫
X

: Hd(X)×H2 dimX−d(X)→ Q.

So to prove the pairing is trivial, it suffices to prove that the following composition is 0:

pτ≤p−r(f)Rf∗QX [n]→ Rf∗QX [n]
ε−→ D (Rf∗QX [n])→ D(pτ≤p′−r(f)Rf∗QX [n]).

By our choice of geometric perversity, the dualizing functor D satisfies

D
(
Db
c(Y )≤p

′−r(f)
)
⊂ Db

c(Y )≥r(f)−p′ .

By the axioms of a t-structure, Hom(Db
c(Y )≤p−r(f), Db

c(Y )≥r(f)−p′) = 0, since p − r(f) <

r(f)− p′. So the composition is 0.
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Lemma 3.3. The pairing induced by the Poincaré pairing

GrPp H
d(X)×GrP2r(f)−pH

2n−d(X)→ Q

is non-degenerate.

Proof. By Lemma 3.2, the pairing is well-defined. The non-degeneracy is due to Theorem

2.1.4 and Corollary 2.1.8 of [3]

Proof of Proposition 3.1. Denote Bd
p = {β ∈ B | p(β) = p, β ∈ Hd(X)}. We construct

Bd
p using a Gram-Schmidt type argument. We perform the construction inductively in the

lexicographical order of pairs (p, d).

Induction base: for (p, d) ≺ (r(f), dimX), pick any basis of GrPp H
d(X), and lift them to get

Bd
p . For (p, d) = (r(f), dimX), by Lemma 3.3, the self-intersection form is nondegenerate,

so we may pick a basis such that the intersection matrix is diagonal and has only ±1 on the

diagonal. Denote any lift of this basis by BdimX
r(f) .

We are now going to find Bp,d = {βdp,1, · · · , βdp,k(p,d)}, assuming that all cases below (p, d)

are done. To simplify notation, we let e = 2 dimX − d and q = 2r(f) − p. Note that

(q, e) ≺ (p, d). By Lemma 3.2, the pairing GrPp H
d(X) × GrPq H

e(X) is non-degenerate, so

we may pick a basis B̃d
p =

{
β̃dp,1, · · · , β̃dp,k(p,d)

}
such that the matrix of this bilinear pairing

is the identity matrix with respect to the bases Be
q and B̃d

p . Modify B̃d
p by setting

 βdp,1

· · ·
βdp,k(p,d)

 =


β̃dp,1

· · ·
β̃dp,k(p,d)

+

p−1∑
i=q+1

Ai

 βdi,1

· · ·
βdi,k(i,d)

 , (3.4)

where the Ai are k(p, d) × k(i, d) matrices of rational numbers to be determined. The

condition that the Ai need to satisfy is slightly different when d < dimX, d > dimX and

d = dimX.

1. d < dimX. For degree reasons, it suffices to require the orthogonality between Bd
p and

degree d basis which precedes (p, d) in the lexicographical order, namely Be
1, · · · , Be

p−1.

If we denote the Poincaré pairing by regular multiplication, then the condition can be

written in matrix notation as βdp,1

· · ·
βdp,k(p,d)

( βej,1, · · · , βej,k(j,e)

)
= 0,
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for j = 0, · · · , q̂, · · · , i− 1, and

 βdp,1

· · ·
βdp,k(p,d)

( βeq,1, · · · , βeq,k(q,e)

)
= Ik(p,d),

where I denotes the identity matrix. Pluging in (3.4), we have


β̃dp,1

· · ·
β̃dp,k(p,d)

( βej,1, · · · , βej,k(j,e)

)
+

p−1∑
i=q+1

Ai

 βdi,1

· · ·
βdi,k(i,d)

( βej,1, · · · , βej,k(j,e)

)
= 0

for j = 0, · · · , q̂, · · · , p− 1, and
β̃dp,1

· · ·
β̃dp,k(p,d)

( βeq,1, · · · , βeq,k(q,e)

)
+

p−1∑
i=q+1

Ai

 βdi,1

· · ·
βdi,k(i,d)

( βeq,1, · · · , βeq,k(q,e)

)
= I

The second condition is always satisfied by q+ i < 2r(f) and by Lemma 3.2. The first

condition is true when j < q for the same reason. When q ≤ j ≤ p − 1, by induction

hypothesis, the first condition is reduced to


β̃dp,1

· · ·
β̃dp,k(p,d)

( βej,1, · · · , βej,k(j,e)

)
+ A2r(f)−j = 0

This solves A2r(f)−j. Note that q + 1 ≤ j ≤ p− 1, so q + 1 ≤ 2r(f)− j ≤ p− 1 (note

that p+ q = 2r(f)). That means that all Ai are determined.

2. j > dimX. The only difference in this case is that Be
p is already done, so we need

one more condition to require Bd
p to be orthogonal to Be

p. To make this work, the sum

taken in (3.4) need to be from q to p−1 instead of from q+1 to p−1. The computation

is similar.

3. j = dimX. In this case B̃dimX
p need to be modified to be orthogonal to itself. The

condition to be satisfied is exactly the same as j > dimX case, the result is slightly

different: the matrix Aq is different by a factor 2.
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This completes the induction. In particular, the dual basis αdp,i = ±βeq,i, so p(αdp,i)+p(βeq,i) =

2r(f).

Remark 3.5. The assumption that X and Y are smooth varieties is not necessary. In fact

the construction works for the intersection cohomology for singular varieties.

Remark 3.6. We point out an easy but important fact about B. The basis B is filtered in

the sense that

PpH
∗(X) = Span {β ∈ B | p(β) ≤ p}.

By the additivity of perversities with respect to tensor products, we have the following.

Corollary 3.7. Let f : X → Y be a morphism between smooth projective varieties. Let

B = {β1, · · · , βk} be the basis of H∗(X) in Proposition 3.1. Then the set Bn defined by

Bn := {βi1 ⊗ · · · ⊗ βin | 1 ≤ i1, · · · , in ≤ k}

is a basis of H∗(Xn). Furthermore, this basis is filtered with respect to the perverse filtration

induced by map fn : Xn → Y n .

3.2 Perversity estimation of small diagonals

In this section, we study the perversity of the small diagonal of the cartesian self-product This

estimation is crucial to prove the multiplicativity of perverse filtration of Hilbert schemes.

Proposition 3.8. Let f : X → Y be any morphism between smooth projective varieties.

Suppose the perverse filtration for f : X → Y is multiplicative, i.e. for any two classes

α1, α2 ∈ H∗(X), we have p(α1 ∪ α2) ≤ p(α1) + p(α2). The small diagonal embedding ∆n :

X → Xn induces a Gysin push-forward of cohomology

∆n,∗ : H∗(X)→ H∗+2(n−1) dimX(X)

Then for any γ ∈ H∗(X), we have that

p(∆n,∗(γ)) ≤ p(γ) + 2(n− 1)r(f),

where the perversity on the left side is defined by the map fn : Xn → Y n and the one on the

right side is defined by f : X → Y .

We need an easy fact to prove the proposition.
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Lemma 3.9. Let X be a compact smooth manifold. Let β1, · · · , βk be an additive Q-basis

of H∗(X). Let α1, · · · , αk be the dual basis with respect to the Poincaré pairing, namely

〈αi, βj〉 = δij. Then

∆2,∗(γ) =
k∑
i=1

αi ⊗ (βi ∪ γ)

Proof. Let pr1, pr2 : X×X → X be the projection maps to the two factors. Any cohomology

class Φ ∈ H∗(X ×X) induces a correspondence

[Φ] : H∗(X) → H∗(X)

ξ 7→ pr2,∗(pr∗1(ξ) ∪ Φ)

Now the correspondence induced by left hand side is

[∆2,∗(γ)] (ξ) = pr2,∗(pr∗1(ξ) ∪∆2,∗(γ))

= pr2,∗(ξ ⊗ 1 ∪∆2,∗(γ))

= pr2,∗∆2,∗(∆
∗
2(ξ ⊗ 1) ∪ γ)

= ∆∗2(ξ ⊗ 1) ∪ γ
= ξ ∪ γ,

where the second equality is due to the projection formula, and the third equality uses

∆2 ◦ pr2 = id. The correspondence on right hand side computes as[
k∑
i=1

αi ⊗ βi ∪ γ

]
(βj) =

k∑
i=1

pr2,∗(βj ∪ αi ⊗ βi ∪ γ)

= pr2,∗(βj ∪ αj ⊗ βj ∪ γ)

= βj ∪ γ

Here we use the fact that the nontrivial push-forward takes place only when βj ∪ αi is a

cohomology class of top degree, and hence in this case βj ∪ αi = 〈βj, αi〉 = δij by our choice

of {αi} and {βi}. So there is only one non-zero pairing left in the summation. Now extending

by linearity, we have [
k∑
i=1

αi ⊗ βi ∪ γ

]
(ξ) = ξ ∪ γ.

So the lemma follows.

Proof of Proposition 3.8. We use induction on n to prove the statement. Since n = 1 is

trivial, we prove for n = 2 as induction basis.
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Let {βdp,i}, {αdp,i} be the basis in Proposition 3.1. Then by Lemma 3.9 we have

∆2,∗(γ) =
∑
p,d,i

αdp,i ⊗ (βdp,i ∪ γ)

Now by Proposition 2.1, Proposition 3.1, and the hypothesis that the perverse filtration for

f : X → Y is multiplicative, we have

p(∆2,∗(α)) ≤ maxp,d,i p(αdp,i ⊗ (βdp,i ∪ γ))

≤ maxp,d,i(p(αdp,i) + p(βdp,i) + p(γ))

≤ 2r(f) + p(γ)

For general n, ∆n can be decomposed into the following two diagonal maps.

X
∆n−1−−−→ Xn−1 ∆2×Idn−2

−−−−−−→ Xn

Then by induction hypothesis, we have

p(∆n,∗(γ)) ≤ p(∆n−1,∗γ) + 2r(f)

≤ p(γ) + 2(n− 2)r(f) + 2r(f)

= p(γ) + 2(n− 1)r(f)

4 Hilbert scheme of points on surfaces

In this section we produce a perverse decomposition for the Hibert schemes of points on

smooth surfaces in terms of a perverse decomposition for the fibered surface. We use Lehn’s

description of the ring structure of the cohomology of Hilbert schemes and the perversity es-

timation of the diagonal in self-cartesian product to prove the multiplicativity of the perverse

filtration for Hilbert schemes.

4.1 Ring structure of Hilbert scheme of K3 surfaces

In this section we recall the notation, definition and results on the cup product on the co-

homology ring of the Hilbert scheme of points for K3 surfaces. All results in this section are

due to Lehn’s paper [14].

Let S be a projective surface with numerically trivial canonical bundle. Let A = H∗(S;Q)
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be the cohomology with Q coefficients. Let [n] denote the set {1, · · · , n}.

Definition 4.1 ([14] 2.1). Let I be a finite set of cardinality n. Define

AI =

 ⊕
f :[n]

∼−→I

Af(1) ⊗ · · · ⊗ Af(n)

/Sn

Remark 4.2. In fact, AI is isomorphic to A|I|. This isomorphism is canonical once an iso-

morphism ϕ : [n]→ I is fixed.

Definition 4.3 ([14] 2.1). Let ϕ : I → J be a surjective map between sets. Then ϕ induces

a morphism ϕ : SJ → SI by sending (x1, · · · , x|J |) to (xϕ(1), · · · , xϕ(|I|)). Define ϕ∗ and ϕ∗ to

be the push-forward and pull-back map associated with ϕ between the cohomology groups

H∗(SI) and H∗(SJ).

Remark 4.4. The pull-back map can be described explicitly as follows. First note that ϕ is

a product of diagonal embedding map: the j-th copy of S in SJ is embedded diagonally in

Sf
−1(j). Pulling-back along the diagonal embedding is exactly the definition of cup product.

So if we fix isomorphism f : [n]
∼−→ I, g : [m]

∼−→ J , we will have

ϕ̃ : [n]→ I → J → [m]

Therefore

ϕ̃∗ : An → Am

a1 ⊗ · · · ⊗ an 7→
m⊗
j=1

⋃
i∈ϕ̃−1(j)

ai

and

ϕ∗ : AI → An
ϕ̃∗−→ Am → AJ

It is easy to check that this is independent of choice of f and g.

Now we define the wreath product of A and Sn, which is used to describe the cohomology

of Hilbert scheme of points on smooth surfaces. For a permutation σ ∈ Sn and a partition

ν = 1a1 · · ·nan of n, we say σ is of type ν if σ has exactly ai i-cycles. For K a subgroup

of Sn, and for a K-stable subset E ⊂ [n], let K\E denote the set of orbits for the induced

action of K on E.
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Definition 4.5. For σ, τ ∈ Sn, the graph defect g(σ, τ) : 〈σ, τ〉\[n]→ Q is defined by

g(σ, τ)(E) =
1

2
(|E|+ 2− |〈σ〉\E| − |〈τ〉\E| − |〈στ〉\E|).

In fact, g(σ, τ) is always non-negative integer.

Definition 4.6 ([14] 2.8). The wreath product of A and symmetric group Sn as follows.

A{Sn} :=
⊕
σ∈Sn

A⊗〈σ〉\[n][−2|σ|]·σ

Sn acts on A{Sn} as follows: the action of τ ∈ Sn on [n] induces a bijection

σ : 〈σ〉\[n] → 〈τστ−1〉\[n]

x 7→ τx

for each σ and hence an isomorphism

τ̃ : A{Sn} → A{Sn}

aσ 7→ τ ∗(a)τστ−1

Let

A[n] := (A{Sn})Sn

be the subspace of invariants.

Any inclusion H ⊂ K of subgroups of Sn induces a surjection H\[n] � K\[n] of set of

orbits and hence induces a pull-back map

fH,K : A⊗H\[n] → A⊗K\[n]

and a push-forward map

fK,H : A⊗K\[n] → A⊗H\[n]

Definition 4.7 ([14] 2.12). For σ, τ ∈ Sn, define

mσ,τ : A⊗〈σ〉\[n] ⊗ A⊗〈τ〉\[n] → A⊗〈στ〉\[n]

a⊗ b 7→ f〈σ,τ〉,〈στ〉(f
〈σ〉,〈σ,τ〉(a)· f 〈τ〉,〈σ,τ〉(b)· eg(σ,τ))

where e is the Euler class of S.
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Proposition 4.8 ([14] Proposition 2.13). The product A{Sn} × A{Sn}
·−→ A{Sn} defined

by

aσ· bτ := mσ,τ (a⊗ b)στ

is associative and Sn-equivariant. So it descends to a product on A[n].

Theorem 4.9 ([14] Theorem 3.2). Let S be a smooth projective surface with numerically

trivial canonical divisor. Then there is a canonical isomorphism of graded rings

H∗(S;Q)[n] ∼=−→ H∗(S[n];Q)

4.2 Perverse filtration for Hilbert schemes of fibered surfaces

Partitions of n are denoted as ν = 1a1 · · ·nan , where
∑n

i=1 iai = n. The length of a partition

is denoted by l(ν) =
∑n

i=1 ai. Set Sν := Sa1 × · · · ×San . For a quasi-projective vareity X,

set X(ν) := X l(ν)/Sν = X(a1) × · · · × X(an). For K ∈ Db
c(X), denote the multi-symmetric

and multi-alternating external tensor product by

K(ν) = �n
i=1K

(ai) ∈ Db
c(X

(ν)),

K{ν} = �n
i=1K

{ai} ∈ Db
c(X

(ν)).

We still have

(K[a])(ν) =

K(ν)[l(ν)a], a is even,

K{ν}[l(ν)a], a is odd.

In fact, since the external tensor product is compatible with push-forward and perversity, all

result in section 2.3 can be generalized to the multi-symmetric or multi-alternating context.

Let f : S → C be a proper map from a smooth quasi-projective surface to a smooth quasi-

projective curve. Let S[n] denote the Hilbert scheme of n points on the surface S. Then we

have the following diagram.

S[n]

Sl(ν) S(ν) S(n)

C l(ν) C(ν) C(n)

π

h
/Sν

f l(ν)

r
(ν)
S

f (ν) f (n)

/Sν r
(ν)
C
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To obtain a perverse decomposition for the map h, we need the following result:

Theorem 4.10 ([2] Theorem 4.1.1). Let S be a quasi-projective algebraic surface. Then we

have the decomposition theorem for the Hilbert-Chow morphism.

Rπ∗QS[n] [2n] ∼=
⊕
ν

Rr
(ν)
S,∗QS(ν) [2l(ν)]

The main result of this section is the following.

Proposition 4.11. Let f : S → C be a proper map from a smooth algebraic surface to a

smooth algebraic curve. Let

Rf∗QS[1] = P0 ⊕ P1[−1]⊕ P2[−2]

be a perverse decomposition, where P0,P1,P2 are perverse sheaves on C. Then a perverse

decomposition of the morphism h : S[n] → C(n) is given by:

Rh∗QS[n] [n] ∼=
⊕

ν=1a1 ···nan
Rr

(ν)
C,∗
(
(P0[0]⊕ P1[−1]⊕ P2[−2]){ν}

)
[l(ν)− n]

∼=
⊕

ν=1a1 ···nan
Rr

(ν)
C,∗

( ⊕
r+s+t=a

Rqr,s,t,∗P{r}0 � P(s)
1 � P{t}2

)
[−C(r, s, t)]

where C(r, s, t) = n− l(ν) +
∑n

i=1(si + 2ti), r = (r1, · · · , rn), and similarly for s and t. Here

r + s + t = a means that ri + si + ti = ai holds for any i, and

qr,s,t :

l(ν)∏
i=1

C(ri) × C(si) × C(ti) →
l(ν)∏
i=1

C(ai)

is induced by the natural map C(ri) × C(si) × C(ti) → C(ai).
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Proof. The proof is formal.

Rh∗QS[n] [n] ∼= Rf
(n)
∗ Rπ∗QS[n] [n]

∼= Rf (n)
∗

(⊕
ν

Rr
(ν)
S,∗QS(ν) [2l(ν)− n]

)
∼=

⊕
ν

Rf (n)
∗ Rr

(ν)
S,∗QS(ν) [2l(ν)− n]

∼=
⊕
ν

Rr
(ν)
C,∗Rf

(ν)
∗ QS(ν) [2l(ν)− n]

∼=
⊕
ν

Rr
(ν)
C,∗ (Rf∗QS)(ν) [2l(ν)− n]

∼=
⊕
ν

Rr
(ν)
C,∗ (Rf∗QS[1]){ν} [l(ν)− n]

∼=
⊕
ν

Rr
(ν)
C,∗ (P0[0]⊕ P1[−1]⊕ P2[−2]){ν} [l(ν)− n]

∼=
⊕

ν=1a1 ···nan
Rr

(ν)
C,∗

( ⊕
r+s+t=a

Rqr,s,t,∗P{r}0 � P(s)
1 � P{t}2

)
[−C(r, s, t)]

Here we use Lemma 2.11 and Proposition 2.12 and the fact that dimS − r(h) = 1 is odd.

By Proposition 2.1 and Proposition 2.7 and the fact that the map qr,s,t is finite, all terms

in the parenthesis are perverse. Note that r
(ν)
C,∗ is a closed embedding, so Rr

(ν)
C,∗ is t-exact, it

preserves perversity. Therefore the above gives a perverse decomposition.

Remark 4.12. In the Proposition 4.11, we have symmetric product for odd perversity term

and alternating products for even perversity terms. This counter-intuitive result is due to

the fact that Pi[−i] are direct summands of Rf∗QS[1] rather than Rf∗QS. See Proposition

2.12.

Corollary 4.13. Under the isomorphism

H∗
(
S[n]
)

=
⊕
ν

(
H∗(Sl(ν))

)Sν
[2l(ν)− 2n],

the perverse filtration can be identified as

PpH
∗ (S[n]

)
=
⊕
ν

(
Pp+l(ν)−nH

∗(Sl(ν))
)Sν

[2l(ν)− 2n],

where the perversity in the parenthesis is taken with respect to f l(ν) : Sl(ν) → C l(ν).
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Proof. By t-exactness of Rr
(ν)
C,∗ and Proposition 4.11, we have

pτ≤pRh∗QS[n] [n] =
⊕

ν=1a1 ···nan
Rr

(ν)
C,∗
(
pτ≤p+l(ν)−n(Rf∗QS[1]){ν}

)
[l(ν)− n]

=
⊕

ν=1a1 ···nan
Rr

(ν)
C,∗
(
Rq∗

pτ≤p+l(ν)−n(Rf∗QS[1])�l(ν)
)sign-Sn

[l(ν)− n]

where q is the quotient map denoted as /Sν in the previous diagram and the last isomorphism

is due to Corollary 2.13. After taking the cohomology, we have

PpH
∗(S[n])[n] = H

(
C(n), pτ≤pRh∗QS[n] [n]

)
=

⊕
ν=1a1 ···nan

H
(
C(ν),

(
Rq∗

pτ≤p+l(ν)−n(Rf∗QS[1])�l(ν)
)sign-Sn

)
[l(ν)− n]

=
⊕

ν=1a1 ···nan
H
(
C l(ν), pτ≤p+l(ν)−n(Rf∗QS[1])�l(ν)

)sign-Sn
[l(ν)− n]

=
⊕

ν=1a1 ···nan

(
Pp+l(ν)−nH

∗ (C l(ν), (Rf∗QS[1])�l(ν)
))sign-Sn

[l(ν)− n]

=
⊕

ν=1a1 ···nan

(
Pp+l(ν)−nH

∗ (Sl(ν), (QS[1])�l(ν)
))sign-Sn

[l(ν)− n]

=
⊕

ν=1a1 ···nan

(
Pp+l(ν)−nH

∗
(
Sl(ν),Q�l(ν)

S

))Sn
[2l(ν)− n]

=
⊕

ν=1a1 ···nan

(
Pp+l(ν)−nH

∗(Sl(ν))
)Sn

[2l(ν)− n]

So the result follows.

In fact, we may define an abstract perversity function on the wreath product H∗(S){Sn}
which is easier to handle with. We will show that after restrict to the Sn-invariant part, it

is the same as the one defined by the map S[n] → C(n).

Definition 4.14. Let f : S → C be a morphism from a smooth algebraic surface to a

smooth algebraic curve. Let B be the basis of H∗(S) obtained in Proposition 3.1. Then we

have that

B{Sn} :=

{
n⊗
i=1

ai⊗
j=1

αij·σ | αij ∈ B, σ is of type 1a1 · · ·nan
}

is a basis of H∗(X){Sn}. We define an abstract perversity on B{Sn} as

pabs

(
n⊗
i=1

ai⊗
j=1

αij·σ

)
=

n∑
i=1

ai∑
j=1

p(αij) +
n∑
i=1

(i− 1)ai,
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and extend by linearity in the sense that

PpH
∗(S){Sn} = Span{β ∈ B{Sn} | pabs(β) ≤ p}.

In particular, the basis is filtered with respect to the abstract perverse filtration by definition.

Proposition 4.15. The abstract perversity is invariant under the Sn-action. Furthermore,

after restriction to H∗(S[n]), it is the same as the perversity given by the morphism h : S[n] →
C(n) in Corollary 4.13.

Proof. Note that Sn acts on cohomology by permuting the factors, so the abstract perversity

is invariant under Sn-action. By definition, we have

n− l(ν) =
n∑
i=1

(i− 1)ai

and

pabs

(
n⊗
i=1

ai⊗
j=1

αij·σ

)
= p if and only if pabs

(
n⊗
i=1

ai⊗
j=1

αij

)
= p+ n− l(ν).

where ν = 1a1 · · ·nan be any partition of n. Comparing with Corollary 4.13, the abstract

perversity is the same as the geometric perversity induced by the morphism h on the basis.

Note that on both sides the bases are filtered with respect to perverse filtration, so the

abstract perverse filtration coincides with the geometric perverse filtration.

4.3 Multiplicativity of the perverse filtration

Proposition 4.16. Let f : S → C be a proper surjective morphism from a smooth algebraic

surface to a smooth algebraic curve. Then the perverse filtration on H∗(S) is multiplicative.

Proof. The perverse decomposition of a proper map from a surface to curve can be found in

[4] Theorem 3.2.3. Let f : S → C be a proper surjective map from a smooth surface to a

smooth curve. Let f̂ : Ŝ → Ĉ be its smooth part. Let j : Ĉ → C be the open embedding.

Let R̂i = Rif̂∗QŜ. Then one has a non-canonical perverse decomposition of map f :

Rf∗QS[1] ∼=
{
j∗R̂

0[1]
}⊕{

j∗R̂
1[1]⊕⊕p∈C\ĈQ

np−1
p

}
[−1]

⊕
{j∗R̂2[1]}[−2]

where np is the number of irreducible components of fiber over p. Note that the ordinary

Leray filtration is multiplicaive, and the only difference between ordinary Leray filtration
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and the perverse filtration is that the classes corresponding to ⊕p∈C\ĈQ
np−1
p are shifted from

R2f∗QS[−2] to P1[−1]. Therefore, it suffices to check cup products with these classes. Fur-

thermore, these classes are in perversity 1, the only possibility to violate the multiplicativity

is that their cup with perversity 0 classes have perversity 2. However, they are fundamental

classes of irreducible components of special fibers, and perversity 0 classes are pull-backs

of classes on the curve. The don’t meet if the pull-back class is not the surface itself, and

cupping with fundamental class of the surface is the identity map. So in both cases, the

multiplicativity is preserved.

Theorem 4.17. Let f : S → C be a surjective morphism from a smooth projective surface

with numerically trivial canonical bundle to a smooth projective curve. Then the perverse

filtration of H∗(S[n];Q) with respect to the morphism h : S[n] → C(n) is multiplicative,

namely, we have

PpH
∗(S[n];Q) ∪ Pp′H∗(S[n];Q) ⊂ Pp+p′H

∗(S[n];Q)

To prove this theorem, we need two lemmata. We use the notation introduced in section 4.1.

Lemma 4.18. For surjective map between sets ϕ : I � J , the pullback map ϕ∗ : H∗(S)I →
H∗(S)J does not increase perversity.

Proof. By Corollary 3.7, the basis B|I| is filtered, so it suffices to compute the perversity of

the pull-back of the elements in B|I|. Pick an element α1 ⊗ · · · ⊗ α|I| ∈ B|I|, then

ϕ∗(α1 ⊗ · · · ⊗ α|I|) =

|J |⊗
j=1

⋃
i∈ϕ−1(j)

αi

Note that by Proposition 2.1

p
(
α1 ⊗ · · · ⊗ α|I|

)
=

|I|∑
j=1

p(αj)

where perversity on the left side is defined by map S|I| → C |I|, and the perversity on the

right side is defined by S → C. Now by Proposition 2.1 and Lemma 4.16, we have that

p

 |J |⊗
j=1

⋃
i∈ϕ−1(j)

αi

 ≤ |J |∑
j=1

∑
i∈ϕ−1(j)

p(αi) =

|I|∑
j=1

αj,

where the perversity on the left side is defined by the map S|J | → C |J |.
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Lemma 4.19. For any surjective map ϕ : I � J , the push-forward map

ϕ∗ : H∗(S)J → H∗(S)I

increases the perversity at most by 2(|I| − |J |).

Proof. Again, it suffices to prove for a basis element α1⊗· · ·⊗α|J | ∈ B|J |. Let bj = |ϕ−1(j)|.
By definition,

ϕ∗(α1 ⊗ · · · ⊗ α|J |) = ±
|J |⊗
j=1

∆bj ,∗(αj).

By Proposition 3.8, we have

p

± |J |⊗
j=1

∆bj ,∗(αj)

 ≤
|J |∑
j=1

p
(
∆bj ,∗(αj)

)
=

|J |∑
j=1

p(αj) + 2(bi − 1)

=

|J |∑
j=1

p(αj) + 2

|J |∑
j=1

bi − 2

|J |∑
j=1

1

=

|J |∑
j=1

p(αj) + 2(|I| − |J |),

where the perversity on the left side is defined by the map S|I| → C |I|, the perversities on

the right side of the first line is defined by the map Sbj → Cbj .

Proof of Theorem 4.17. By Proposition 4.15, it suffices to prove that the abstract perverse

filtration defined on H∗(S;Q){Sn} is multiplicative. Furthermore, it suffices to prove the

result for our basis, namely

p

 n⊗
i=1

ai⊗
j=1

αij·σ ∪
n⊗
i=1

a′i⊗
j=1

α′ij· τ


≤

n∑
i=1

ai∑
j=1

p(αij) +
n∑
i=1

(i− 1)ai

+
n∑
i=1

a′i∑
j=1

p(α′ij) +
n∑
i=1

(i− 1)a′i,

where αij and α′ij run over basis B obtained in Proposition 3.1. Note that the cup product

formula computes independently on each orbit of 〈σ, τ〉-action on [n] individually. Let E be
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an orbit of the action 〈σ, τ〉 on [n], i.e. |〈σ, τ〉\E| = 1. The product is computed by

A⊗〈σ〉\E·σ|E ⊗ A⊗〈τ〉\E· τ |E → A⊗〈στ〉\E·στ |E
a·σ|E ⊗ a′· τ |E 7→ f〈σ,τ〉,〈στ〉(f

〈σ〉,〈σ,τ〉(a)· f 〈τ〉,〈σ,τ〉(a′)· eg(σ,τ))·στ |E

for every E. Note that the Euler class e is of top degree, hence eg = 0 for g ≥ 2, so that it

suffices to consider the following two cases.

1. g(σ, τ) = 0. By Lemma 4.18 and Lemma 4.19, we have

p
(
f〈σ,τ〉,〈στ〉(f

〈σ〉,〈σ,τ〉(a)· f 〈τ〉,〈σ,τ〉(a′)· eg(σ,τ))·στ |E
)

=p
(
f〈σ,τ〉,〈στ〉(f

〈σ〉,〈σ,τ〉(a)· f 〈τ〉,〈σ,τ〉(a′))
)

+ |B| − |〈στ〉\E|

=p
(
f 〈σ〉,〈σ,τ〉(a)· f 〈τ〉,〈σ,τ〉(a′))

)
+ 2(|〈στ〉\E| − 1) + |E| − |〈στ〉\E|

=p(a) + p(a′) + |E|+ |〈στ〉\E| − 2

=p(a·σ)− (|E| − |〈σ〉\E|) + p(a′· τ)− (|E| − |〈τ〉\E|) + |E|+ |〈στ〉\E| − 2

=p(a·σ) + p(a′· τ)− 2g(σ, τ)

=p(a·σ) + p(a′· τ)

2. g(σ, τ) = 1. Since e itself is already in top degree, so the only nonzero case arise for

a = a′ = 1. Then

p
(
f〈σ,τ〉,〈στ〉(f

〈σ〉,〈σ,τ〉(1)· f 〈τ〉,〈σ,τ〉(1)· eg(σ,τ))·στ |E
)

=p
(
f〈σ,τ〉,〈στ〉(e)

)
+ |E| − |〈στ〉\E|

=2 + 2(|〈στ〉\E| − 1) + |E| − |〈στ〉\E|

=|E|+ |〈στ〉\E|

=|E| − |〈σ〉\E|+ |E| − |〈τ〉\E|

=p(1·σ) + p(1· τ)

The last but one equality is due to g(σ, τ) = 1, which means |E| = |〈σ〉\E|+ |〈τ〉\E|+
|〈στ〉\E|.

An application of the theorem is the multiplicativity of perverse filtration for the elliptic

fibration of Hilbert schemes of points on K3 surfaces.

Theorem 4.20. Let S be an elliptic K3 surface and f : S → P1 be the elliptic fibration. Then

the perverse filtration on H∗(S[n]) defined by the natural map h : S[n] → Pn is multiplicative.
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4.4 The Hilbert schemes of a surface P = W package

Definition 4.21. A P = W package is a 5-tuple (XP , XW , h, A,Ξ) where

1. XP , XW , A are smooth quasi-projective varieties. h : XP → A is proper morphism.

Ξ : XP → XW is a diffeomorphism.

2. PkH
∗(XP ) = W2kH

∗(XW ) = W2k+1H
∗(XW ) for any k. Here perverse filtration is

defined for map f , and the identity is viewed as pull-back via Ξ.

A homological P = W package (XP , XW , h, A,Φ) is the same as a P = W package except

that the diffeomorphism Ξ is replaced by an isomorphism Φ : H∗(XW )
∼−→ H∗(XP ).

Theorem 4.22. If SP and SW are smooth surfaces and (SP , SW , h,A1,Φ) is a homological

P = W package. Then the Cartesian product (SnP , S
n
W , h

n,An,Φn), the symmetric product

(S
(n)
P , S

(n)
W , h(n),An,Φ(n)) and the Hilbert scheme (S

[n]
P , S

[n]
W , h[n],An,Φ[n]) are also homological

P = W packages, where h[n] : X
[n]
P → X

(n)
P → An and

Φ[n] : H∗
(
X

[n]
W ;Q

)
=

⊕
ν=1a1 ···nan

n⊗
i=1

H∗
(
X

(ai)
W ;Q

)
[2n− 2l(ν)]

⊕Φ(ν)

−−−→
⊕

ν=1a1 ···nan

n⊗
i=1

H∗
(
X

(ai)
P ;Q

)
[2n− 2l(ν)] = H∗

(
X

[n]
P ;Q

)
Proof. The proof is obtained by comparing the functoriality of the weight filtration for the

mixed Hodge structure and the one for the perverse filtration.

Step 1. On one hand, by the Künneth formula for mixed Hodge structures,

WwH
∗(SnW ;Q) = Span {α1 ⊗ · · · ⊗ αn | w(α1) + · · ·+ w(αn) ≤ w},

where αi ∈ H∗(SW ), and the function w denotes the weight of a cohomology class. On the

other hand, by Corollary 2.2,

PpH
∗(SnP ;Q) = Span {α′1 ⊗ · · · ⊗ α′n | p(α′1) + · · ·+ p(α′n) ≤ p},

where α′i ∈ H∗(SP ). By the hypothesis that (SP , SW , h,A1,Φ) is a homological P = W

package, 2p(Φαi) = w(αi). This implies that

W2kH
∗(SnW ;Q) = W2k+1H

∗(SnW ;Q) = PkH
∗(SnP ;Q).

So (SnP , S
n
W , h

n,An,Φn) is a homological P = W package.

Step 2. On one hand, the mixed Hodge structure is functorial with respect to finite group
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quotient. So we have

WwH
∗(S

(n)
W ;Q) = (WwH

∗(SnW ;Q))Sn .

On the other hand, by Proposition 2.14, we have

PpH
∗(S

(n)
P ;Q) = (PpH

∗(SnP ;Q))Sn .

Then result in step 1 immediately implies

W2kH
∗(S

(n)
W ;Q) = W2k+1H

∗(S
(n)
W ;Q) = PkH

∗(S
(n)
P ;Q).

So (S
(n)
P , S

(n)
W , h(n),An,Φ(n)) is a homological P = W package.

Step 3. On one hand, Theorem 5.3.1 in [2] asserts that

H∗
(
S

[n]
W ;Q

)
(n) ∼=

⊕
ν

H∗
(
S

(ν)
W ;Q

)
[2l(ν)− 2n] (l(ν))

is an isomorphism of mixed Hodge structures, so we have

WwH
∗
(
S

[n]
W ;Q

)
=
⊕
ν

Ww+2l(ν)−2nH
∗(S

(ν)
W ;Q)[2l(ν)− 2n].

On the other hand, by Corollary 4.13, the perverse filtration for the map h[n] : S
[n]
P → An

can be expressed as

PpH
∗
(
S

[n]
P ;Q

)
=

⊕
ν

(
Ppl(ν)−nH

∗(S
l(ν)
P ;Q)

)Sν
[2l(ν)− 2n]

=
⊕
ν

Pp+l(ν)−nH
∗(S

(ν)
P ;Q)[2l(ν)− 2n]

where the perversities in the parentheses are taken with respect to hl(ν) : S
l(ν)
P → Al(ν) and

h(ν) : S
(ν)
P → Al(ν) respectively. The result in step 2 implies that

W2kH
∗(S

[n]
W ;Q) = W2k+1H

∗(S
[n]
W ;Q) = PkH

∗(S
[n]
P ;Q).

So (S
[n]
P , S

[n]
W , h[n],An,Φ[n]) is a homological P = W package.
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5 Applications to the P = W conjecture

In this chapter, we will consider five families of Hitchin systems and the corresponding

character varieties. We will prove the multiplicativity of the perverse filtration for the Hitchin

map, compute perverse numbers and prove the full version of P = W for the n = 1 case.

5.1 Five families of Hitchin systems

We first define the five families of Hitchin systems we consider.

1. Type Ã0(n). Consider the moduli space of degree 0 rank n parabolic Higgs bundles

over an elliptic curve (E, 0), whose Higgs field can have at worst a first order pole at

0 and the residue of the Higgs field at 0 is nilpotent with respect to a multi-dimension

{n, 1, 0} flag.

2. Type D̃4(n). Consider the moduli space of degree 0 rank 2n parabolic Higgs bundles

over a weighted curve (P1, p1, p2, p3, p4), whose Higgs field can have at worst a first order

pole at marked points and the residues of the Higgs field are nilpotent with respect to

a multi-dimension {2n, n, 0} flag for p1, p2, p3, and a multi-dimension {2n, n, 1, 0} flag

for p4.

3. Type Ẽ6(n). Consider the moduli space of degree 0 rank 3n parabolic Higgs bundles

over a weighted curve (P1, p1, p2, p3), whose Higgs field can have at worst a first order

pole at marked points and the residues of the Higgs field is nilpotent with respect to

a multi-dimension {3n, 2n, n, 0} flag for p1, p2 and a multi-dimension {3n, 2n, n, 1, 0}
flag for p3.

4. Type Ẽ7(n). Consider the moduli space of degree 0 rank 4n parabolic Higgs bundles

over a weighted curve (P1, p1, p2, p3), whose Higgs field can have at worst a first order

pole at marked points and the residues of the Higgs field are nilpotent with respect to

a multi-dimension {4n, 2n, 0} flag for p1, a multi-dimension {4n, 3n, 2n, n, 0} flag for

p2 and a multi-dimension {4n, 3n, 2n, n, 1, 0} flag for p3.

5. Type Ẽ8(n). Consider the moduli space of degree 0 rank 6n parabolic Higgs bundles

over a weighted curve (P1, p1, p2, p3), whose Higgs field can have at worst a first order

pole at marked points and the residues of the Higgs field are nilpotent with respect to

a multi-dimension {6n, 3n, 0} flag for p1, a multi-dimension {6n, 4n, 2n, 0} flag for p2

and a multi-dimension {6n, 5n, 4n, 3n, 2n, n, 1, 0} flag for p3.
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The geometry of the above moduli spaces of parabolic Higgs bundles are described explicitly

by the following theorem in [10] due to Gröchenig.

Theorem 5.1 ([10] Theorem 4.1). We consider the moduli of parabolic Higgs bundles in n =

1 case for any of the five families. Let Γ =: {0},Z/2Z,Z/3Z,Z/4Z,Z/6Z respectively. Let

MD denote the moduli of parabolic Higgs bundles. Then MD is isomorphic to Γ-equivariant

Hilbert scheme on T ∗E, which is the crepant resolution of the quotient T ∗E/Γ.

Theorem 5.2 ([10] Theorem 5.1). Let MD(n) denote the moduli space of parabolic Higgs

bundle in any of the five families, and MD(1) is abbreviated to MD. Then we have

M
[n]
D
∼= MD(n)

The Hitchin map M
[n]
D → An factors through the Hilbert-Chow map

M
[n]
D →M

(n)
D → (A1)(n) = An,

where M
(n)
D → (A1)(n) is induced by Mn

D → (A1)n.

In parabolic non-abelian Hodge theory, the moduli of parabolic Higgs bundle is canonically

diffeomorphic to the corresponding character variety. The P = W Conjecture 1.1 asserts

that under this canonical diffeomorphism, the weight filtration in mixed Hodge structure on

the cohomology of character variety corresponds to the perverse filtration on the cohomology

of the Higgs moduli space with respect to the Hitchin map. By the Simpson’s table on page

720 in [17], we may find the charcter varieties corresponding to our five families of moduli of

parabolic Higgs bundles. The Conjecture 1.2.1 in [11] predicts that all cohomology class are

of Hodge-Tate type and the mixed Hodge numbers depend on the multiplicities of eigenvalues

of the monodromy action around the punctures rather than the eigenvalues themself. So for

our purpose, we list the corresponding moduli description of character varieties for our five

families of Hitchin systems without mentioning the specific eigenvalues for the monodromy

action.

1. Let E be any elliptic curve. Consider GL(n,C)-representations of π1(E \ p) such that

the image of small loops around punctures are in a prescribed conjugacy class whose

multiplicities of eigenvalue are of type

(n− 1, 1).

2. Let C = P1 \ {p1, · · · , p4}. Consider GL(2n,C)-representations of π1(C) such that the

image of small loops around punctures are in a prescribed conjugacy classes whose
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multiplicities of eigenvalue are of type

(n, n)(n, n)(n, n)(n, n− 1, 1).

3. Let C = P1 \ {p1, p2, p3}. Consider GL(3n,C)-representations of π1(C) such that the

image of small loops around punctures are in a prescribed conjugacy classes whose

multiplicities of eigenvalue are of type

(n, n, n)(n, n, n)(n, n, n− 1, 1).

4. Let C = P1 \ {p1, p2, p3}. Consider GL(4n,C)-representations of π1(C) such that the

image of small loops around punctures are in a prescribed conjugacy classes whose

multiplicities of eigenvalue are of type

(2n, 2n)(n, n, n, n)(n, n, n, n− 1, 1).

5. Let C = P1 \ {p1, p2, p3}. Consider GL(6n,C)-representations of π1(C) such that the

image of small loops around punctures are in a prescribed conjugacy classes whose

multiplicities of eigenvalue are of type

(3n, 3n)(2n, 2n, 2n)(n, n, n, n, n, n− 1, 1).

We have the following explicit description for these character varieties for n = 1 cases.

Theorem 5.3 ([9] Theorem 6.14 and 6.19). The character varieties MB(1) above can be

described explicitly as follows.

1. Type Ã0. C∗ × C∗.

2. Type D̃4. Degree 3 del Pezzo surface with a triangle removed.

3. Type Ẽ6. Degree 3 del Pezzo surface with a nodal P1 removed.

4. Type Ẽ7. Degree 2 del Pezzo surface with a nodal P1 removed.

5. Type Ẽ8. Degree 1 del Pezzo surface with a nodal P1 removed.

Furthermore, these del Pezzo surfaces can be expressed by an explicit formula in weighted

projective space away from the singularities, and the removed triangle or nodal P1 are cut

out by a hyperplane section.
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Contrary to the moduli of parabolic Higgs bundle case, we don’t know much about character

varieties for n > 1. Nevertheless, there are conjectures in [11] which predict the behavior of

the mixed Hodge numbers of character varieties. We will go back to this point in section

5.4.

5.2 Multiplicativity of perverse filtrations for Hitchin systems

We will use the technique we developed in previous chapters to prove the multiplicativity of

the five families of Hitchin systems.

Proposition 5.4. Let h : MD → C be n = 1 cases for five families. Then MD has trivial

canonical bundle. The dual graph of irreducible components of the fiber over 0 is affine

Dynkin diagram Ã0, D̃4, Ẽ6, Ẽ7, Ẽ8, respectively. Let ĥ : h−1C∗ → C∗ be the smooth part of

the map, let j : C∗ → C, let R̂1 = R1ĥ∗Q. Then a perverse decomposition of h : MD → C
can be written as follows.

Rh∗QMD
[1] ∼= {QC[1]}

⊕{
j∗R̂

1 ⊕Qk
0

}
[−1]

⊕
{QC[1]}[−2]

where

k =



0 Ã0 case

4 D̃4 case

6 Ẽ6 case

7 Ẽ7 case

8 Ẽ8 case

In particular, the dimension of the perverse filtration is given by

dim GrpH
d(MD,Q) =



1 p = d = 0

1 p = d = 2

2 p = d = 1, Ã0 case

k p = 1, d = 2, D̃4, Ẽ6, Ẽ7, Ẽ8 case

0 otherwise.

Proof. The quotient of T ∗E by Γ is computed using elementary methods. We list the type

of singularities in our five cases.
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Case Singularities

Ã0 none

D̃4 4 A1

Ẽ6 3 A2

Ẽ7 1 A1, 2 A3

Ẽ8 1 A1, 1 A2, 1 A5

Note that all singularities take place in the fiber over 0, so the dual graph of irreducible

components match the affine Dynkin diagram. The action of Γ on T ∗E preserves the canon-

ical form, so the trivial canonical bundle descends to the quotient. The minimal resolution

of type A singularities is crepant, so MD has trivial canonical bundle. The perverse decom-

position is again due to Theorem 3.2.2 of [4]. Here the map h : MD → C has connected

fibers, so j∗R̂
0 = j∗R̂

2 = QC. The dimension of the perverse filtration will follow if we

show H∗(j∗R̂1) = 0 in D̃4, Ẽ6, Ẽ7, Ẽ8 cases. In fact, the local systems R̂1 can be described

explicitly. They are rank 2 representation of Z = π1(C∗) with monodromy

(
−1 0

0 −1

)
,(

0 −1

1 −1

)
,

(
0 −1

1 0

)
,

(
0 −1

1 1

)
. A simple Čech cohomology argument shows that

all cohomology group of R̂1 vanishes, so does j∗R̂
1.

When MD is smooth and non-compact, the small diagonal embedding ∆n,∗ : MD → Mn
D is

still proper. So we have the push-forward in Borel-Moore homology. We may still define

∆∗,n : H∗(MD) ∼= HBM
4−∗ (MD)→ HBM

4−∗ (Mn
D) ∼= H∗+4(n−1)(Mn

D)

The following proposition is a counterpart of Proposition 3.8.

Proposition 5.5. Let f : MD → C be as in Proposition 5.4. In Ã0 case, the Gysin push-

forward by the small diagonal embedding ∆n,∗(γ) = 0 for any γ ∈ H∗(MD) and n > 1. In

the other four cases, let Ei be exceptional divisors of the resolution, then

∆2,∗(1) = −
k∑
i=1

[Ei]⊗ [Ei]

and ∆n,∗(γ) = 0 for any n > 2 or n = 2, γ 6= 1. In particular, the perversity estimation of

diagonal in Proposition 3.8

p(∆n,∗(γ)) ≤ p(γ) + 2(n− 1)
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is still true.

Proof. Note that ∆n,∗ increases the degree by 4(n−1), however in our cases, the top nontrivial

degree for H∗(Mn
D) is 2n. So when n ≥ 3, the push-forward is automatically 0. When

n = 2, the only possible nonzero term is ∆2,∗(1). In the Ã0 case, H4(MD × MD) is one

dimensional, generated by the class [C] ⊗ [C] and H4(MD ×MD) is generated by E ⊗ E.

〈∆2,∗(1), E ⊗ E〉MD×MD
= 〈E,E〉MD

= 0, so we have ∆2,∗(1) = 0. For other four cases,

according to the decomposition, we pick a basis [E1], · · · , [Ek],Σ ∈ H2(MD), where Σ is

a generic section of map f : MD → C whose perversity is 2. To write ∆2,∗(1) in terms

of the basis, it suffices to intersect it with the dual basis. The dual basis in H2(MD) is

{E1, · · · , Ek, F}, where F denote the cycle class of general fiber. Since

〈∆2,∗(1), Ei ⊗ Ej〉MD×MD
= 〈Ei, Ej〉MD

= −δij,

〈∆2,∗(1), Ei ⊗ F 〉MD×MD
= 〈Ei, F 〉MD

= 0,

〈∆2,∗(1), F ⊗ F 〉MD×MD
= 〈F, F 〉MD

= 0.

We conclude that

∆2,∗(1) = −
k∑
i=1

[Ei]⊗ [Ei]

Theorem 5.6. Let f : MD → C be as in Proposition 5.4. Then the perverse filtration

defined by the map h : M
[n]
D → Cn is multiplicative .

Proof. First, we show that Theorem 4.9 works in our five cases of non-compact surfaces.

In fact, for all of our five cases, MD can be compactified to MD such that the restriction

map H∗(MD)→ H∗(MD) is surjective, so does H∗
(
MD

[n]
)
→ H∗

(
M

[n]
D

)
. To compute the

cup product, we may pull-back to the compact cases, use the result for nontrivial canonical

bundle case and then restrict. Since the extra terms involving the canonical bundle vanish

after restricting, the cup product formula in Theorem 4.9 still hold for our five cases.

The pull-back Lemma 4.18 holds regardless of compactness. The push-forward Lemma 4.19

holds once we have Proposition 5.5. In the non-compact case, the Euler class e = 0, so case

(2) in proof of Theorem 4.17 is trivial, and case (1) follows line by line.

Combining Theorem 5.6 and Theorem 5.2, we have

Theorem 5.7. For the five families of moduli space of parabolic Higgs bundles described in

Theorem 5.2, the perverse filtration defined by the Hitchin map is multiplicative.
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5.3 Full version of P = W for n = 1

In this section, we prove the full version of P = W conjecture in the n = 1 cases by using

the explicit geometry of the Hitchin map.

Lemma 5.8. Let X be any of the del Pezzo surface in Theorem 5.3. Let i : T → X be the

closed embedding of the removed curve in Theorem 5.3 and let j : U ↪→ X be its complement.

Then

W2H
2(U) ∼= Im

(
H2
c (U)→ H2(U)

)
.

Proof. We have a diagram where the row and the column are distinguished triangles

i∗i
!QX

Rj!QU QX i∗QT

Rj∗QU

Taking cohomology in degree 2, we have

H2
T (X)

H2
c (U) H2(X) H2(T )

H2(U)

i∗
ψ

j!

φ

i∗

j∗

By [8], Corollaire 3.2.17, the image of j∗ is precisely W2H
2(U). So it suffices to prove

that Im j! + ker j∗ = H2(X). By exactness, this is equivalent to proving that Im i∗+ ker i∗ =

H2(X). Therefore, it suffices to prove that ψ = i∗i∗ is an isomorphism. In fact, the morphism

ψ maps ξ ∈ H2
T (X) ∼= H2(T ) to ξ† : H2(T ) → Q, where ξ†(γ) =

∫
X
ξ ∪ i∗(γ). This defines

a symmetric bilinear form on H2(T ) defined by the intersection number of components of T

viewed in X. To show that ψ is an isomorphism, it suffices to show that this bilinear form

is nondegenerate. In the case where T is a triangle, then the intersection matrix is −1 1 1

1 −1 1

1 1 −1
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In the case when T is a nodal P1, since it is cut out by hyperplane section away from the

singularities of the weighted projective space, so it is an ample divisor, therefore the self

intersection of T is nonzero.

Theorem 5.9. The perverse filtration for the map MD(1)→ C and the mixed Hodge filtra-

tion on MB(1) correspond.

Proof. By the spectral sequence of weight filtration of mixed Hodge structure, dimensions

of graded pieces of weight filtration is easily computed.

dim GrWw Hd(MB) =



1 w = d = 0

1 w = 4, d = 2

2 w = 2, d = 1, Ã0 case

k w = 2, d = 2, D̃4, Ẽ6, Ẽ7, Ẽ8 case

0 otherwise.

Compare with Proposition 5.4, numerical P = W holds for n = 1 in our five cases. To prove

the full version of the P = W conjecture, it suffices to prove that P1H
2(MD) = W2H

2(MB) in

D̃4, Ẽ6, Ẽ7, Ẽ8 cases. (Ã0 cases is trivially true.) By Proposition 5.4, P1H
2(MD) in four cases

are all spanned by the fundamental classes of exceptional curves of the minimal resolutions,

and H2
c (MD) is generated by the fundamental classes of exceptional curves and a generic

fiber of the morphism MD → C. Note that the fiber class is 0 in H2(MD), so we have

P1H
2(MD) = Im

(
H2
c (MD)→ H2(MD)

)
.

By Lemma 5.8, we have W2H
2(MB) = Im(H2

c (MB)→ H2(MB)). This completes the proof.

Remark 5.10. In [6], Theorem 3.2.1 asserts that the forgetful map H6g−6
c (MD)→ H6g−6(MD)

is the zero map, where 6g − 6 is the complex dimension of the moduli space in the context.

In fact, they consider moduli space of degree 1 Higgs bundles and twisted representations,

so their result does not contradict ours.

5.4 Perverse numbers and numerical P = W

In this section, we give some partial numerical evidence for P = W Conjecture 1.1 for our

five families of Hitchin fibrations. We use Proposition 4.11 and Proposition 5.4 to compute

the perverse numbers GrpH
d(M

[n]
D ). Conjecture 1.2.1 in [11] which predicts that the mixed
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Hodge numbers of character varieties can be computed by a combinatorial formula. We

made a conjecture that in our five families of Hitchin systems, the perverse numbers equal

the conjectural mix Hodge numbers of the corresponding character varieties. We have verified

our conjecture for small n.

Theorem 5.11. Let f : MD → C be n = 1 case of the five families. Denote perverse numbers

by pi,j = dim GriH
j(M

[n]
D ). Let perverse Poincaré polynomial be Pn(q, t) =

∑
i,j p

i,jqitj.

Then for the Ã0 case, the generating series is

∞∑
n=0

snPn(q, t) =
∞∏
m=1

(1 + smqmt2m−1)2

(1− smqm−1t2m−2)(1− smqm+1t2m)
.

For the other four cases, the generating series are

∞∑
n=0

snPn(q, t) =
∞∏
m=1

1

(1− smqm−1t2m−2)(1− smqmt2m)k(1− smqm+1t2m)

where k is defined in Proposition 5.4.

Proof. We prove the equalities by expanding both hand sides and identifying the corre-

sponding terms. Since all cases are similar, we prove the D̃4 case as an illustration of the

calculations. By Künneth formula and MacDonald theorem, we have

H∗
(
M

[n]
D

)
[n]

= H

( ⊕
ν=1a1 ···nan

Rr
(ν)
C,∗

( ⊕
r+s+t=a

P{r}0 � P(s)
1 � P{t}2

)
[−C(r, s, t)]

)
=

⊕
ν=1a1 ···nan

⊕
r+s+t=a

H
(
P{r}0 � P(s)

1 � P{t}2

)
[−C(r, s, t)]

=
⊕

ν=1a1 ···nan

⊕
r+s+t=a

H
(
P{r}0

)
⊗H

(
P(s)

1

)
⊗H

(
P{t}2

)
[−C(r, s, t)]

By Proposition 5.4, we have P0 = QC[1], P1 = j∗R̂
1[1] ⊕ Q4

0, P2 = QC[1]. Note that j∗R̂
1

has no cohomology so that we have

H(P0) H(P1) H(P2)

dimension 1 4 1

degree −1 0 −1

Together with Proposition 2.1 and Remark 2.6, the table shows that the summand

H
(
P{r}0

)
⊗H

(
P(s)

1

)
⊗H

(
P{t}2

)
[−C(r, s, t)]
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is of dimension
n∏
i=1

(
si + 3

3

)
as a vector space, and all cohomology classes in it are of

degree
∑n

i=1−ri + si + ti and perversity
∑n

i=1 si + 2ti. Here we use the fact that H(P0) and

H(P2) are in odd degree, so that

H
(
P{r}0

)
=

n⊗
i=1

SymriH−1(P0) = C,

and similarly for H
(
P{t}2

)
. So

Pn(q, t) =
∑

ν=1a1 ···nan
qn−l(ν)t2n−l(ν)

n∏
i=1

∑
ri+si+ti=ai

(
si + 3

3

)
qsi+2tit−ri+si+ti

=
∑

ν=1a1 ···nan
qn−l(ν)t2n−l(ν)

n∏
i=1

t−ai
∑

ri+si+ti=ai

(
si + 3

3

)
qsi+2tit2si+2ti

=
∑

ν=1a1 ···nan
qn−l(ν)t2n−2l(ν)

n∏
i=1

∑
ri+si+ti=ai

(
si + 3

3

)
qsi+2tit2si+2ti

Therefore

∞∑
n=0

Pn(q, t) =
∞∑
n=0

∑
ν=1a1 ···nan

qn−l(ν)t2n−2l(ν)

n∏
i=1

∑
ri+si+ti=ai

(
si + 3

3

)
qsi+2tit2si+2ti

On the other hand, to get a term in the product generating series with factor sn is equivalent

to the following data: (1) A partition ν = 1a1 · · ·nan of n, such that the factor m = i

contributes (si)ai , (2) a triple (ri, si, ti) for each i satisfying ri + si + ti = ai, such that the

expansions of three parenthesis contribute (si)ri , (si)si and (si)ti , respectively. So the term

obtained in this way is

n∏
i=1

(
si + 3

3

)
si(ri+si+ti)q(i−1)ri+isi+(i+1)tit(2i−2)ri+2isi+2iti

=
n∏
i=1

(
si + 3

3

)
siaiq(i−1)ai+si+2tit(2i−2)ai+2si+2ti

= snqn−l(ν)t2n−2l(ν)

n∏
i=1

(
si + 3

3

)
qsi+2tit2si+2ti .

Here we use the fact that ai = ri + si + ti, n =
∑n

i=1 iai and l(ν) =
∑n

i=1 ai. By comparing

with the expansion of the additive generating series, the theorem follows.

If we believe P = W , the perverse numbers of Hitchin system should equal the mixed
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Hodge numbers of corresponding character varieties. In fact, the Conjecture 1.2.1 in [11]

and Theorem 5.11 suggest the following conjecture.

Conjecture 5.12. Let µ be multi-partition which encodes the parabolic data of MB(n). Let

k be defined as in Proposition 5.4. Let Hµ be defined as in section 1.1 of [11]. Then for

Ã0(n) case, we have

∞∏
m=1

(1 + smqmt2m−1)2

(1− smqm−1t2m−2)(1− smqm+1t2m)
=
∞∑
n=0

(st2q)nHµ(−√q,
√
q

t
)

For the other four cases, we have

∞∏
m=1

1

(1− smqm−1t2m−2)(1− smqmt2m)k(1− smqm+1t2m)
=
∞∑
n=0

(st2q)nHµ(−√q,
√
q

t
)

Remark 5.13. In fact, the conjecture for Ã0 case is the cohomological version of Conjecture

4.2.1 in [12], and the other four cases are new. With the help of Mathematica, we prove for

n ≤ 6 for D̃4 case, n ≤ 4 for Ẽ6 case, n ≤ 3 for Ẽ7 and n ≤ 2 for Ẽ8 case. Efforts to prove for

general n so far all ended with combinatorial difficulties. More understanding on q, t-Kostka

numbers would be helpful.
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Journal de Mathématiques Pures et Appliquées, Volume 96, Issue 5, November 2011,

Pages 462-483.

[17] C.T. Simpson, Harmonic bundles on noncompact curves, Journal of the American Math-

ematical Society, Vol. 3, No. 3 (Jul., 1990), pp. 713-770.

42


	Introduction
	Nonabelian Hodge theory and the P=W conjecture
	Perverse filtration
	Dissertation work

	Functoriality of the perverse filtrations
	External tensor product
	Symmetric and alternating product
	Perverse filtration of symmetric products

	Perversity of the diagonal
	Filtered basis for cohomology groups
	Perversity estimation of small diagonals

	Hilbert scheme of points on surfaces
	Ring structure of Hilbert scheme of K3 surfaces
	Perverse filtration for Hilbert schemes of fibered surfaces
	Multiplicativity of the perverse filtration
	The Hilbert schemes of a surface P=W package

	Applications to the P=W conjecture
	Five families of Hitchin systems
	Multiplicativity of perverse filtrations for Hitchin systems
	Full version of P=W for n=1
	Perverse numbers and numerical P=W


