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Abstract of the Dissertation
Deformations of twisted cscK metrics
by
Yu Zeng
Doctor of Philosophy
in
Mathematics
Stony Brook University

2016

In this dissertation, we describe a new continuity path introduced by X.
Chen([10]) aiming to attack the existence problem of constant scalar cur-
vature problem via a direct PDE approach. The path connects the solution
of J-equation to the cscK metric. We will present various openness results
about the continuity path. The openness at t = 0 is in fact a perturba-
tion result from a solution of second order partial differential equation to
a solution of a fourth order partial differential equation.
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1 Introduction

1.1 Kahler manifolds

A Kahler manifold is a smooth manifold that admits three mutually com-
patible structures: Riemannian metric, complex structure and symplectic
form corresponding to three major fields in differential geometry.

We start with a smooth manifold M. Recall that a Riemannian met-
ric g on M is a positive definite symmetric bilinear form on the tangent

bundle TM. In local coordinates x1,--- ,x,, one has a natural local basis
%, e ’ai for TM, then g is locally represented by a smooth matrix-
1 Tn

valued function {g;;}, where the matrix with entries ¢;; = g(%, %) is
i J

positive definite. The pair (M, g) is usually called a Riemannian manifold.

An almost complex structure J on M is an endomorphism of the tangent
bundle T'M satisfying J?> = —id. An almost complex structure J is called
integrable if there is a set of charts on M with holomorphic transition
functions such that J corresponds to the induced complex multiplication
on TM ®g C. An almost complex structure is not necessarily integrable.
In fact, we have the following theorem due to Newlander-Nirenberg [38].

Theorem 1.1. An almost complex structure is integrable if and only if the
Nigenhuis tensor Ny : TM x TM — TM

Ny(u,v) := [u,v] + J[Ju,v] + J[u, Jv] = [Ju, Jv] (1)

1S Zero.

We say that J is compatible with a Riemannian metric g if g(u,v) =
g(Ju, Jv) for any tangent vectors u,v. We can then define

wg('?'):g<‘]'7'>' (2)

One can derive easily that w, is in fact a 2-form on M. Usually we call
such w, the Kahler form of ¢g. For fixed complex structure, we see that g
and w, are mutually determined by each other, thus often we also call wy
the Kéhler metric.

We denote by V the Levi-Civita connection of the Riemannian metric
g, which is the unique torsion free connection such that g is parallel.



Definition 1.2. A Kahler manifold (M, g, J) is a Riemannian manifold
(M, g) together with a compatible almost complex structure J such that
VJ=0.

Remark 1.3. Note that VJ = 0 implies that N; = 0 and thus J of a
Kéhler manifold (M, g, J) is automatically integrable.

On a Kahler manifold (M, g, J), we have that Vw, = 0 and thus dw, =
0. In other words, M admits a symplectic form w, such that .J is compatible
with w,. Conversely, we have the following proposition.

Proposition 1.4. If M admits compatible Riemannian metric g and inte-
grable almost complex structure J, then VJ = 0 if and only if dw, = 0.

The proof of this proposition is pure computational and we refer inter-
ested readers to [43].

On a Kahler manifold (M, g, J) of dimension dim¢cM = n, it is more
convenient to work in local holomorphic coordinate z; = x; + /—1y; for
i = 1,---,n. Besides the obvious basis {ai’ e ,%, ai’ e >ai} and

T1 Tn Y1 Yn
{dxy, -+ ,dx,,dy;,- -+ ,dy,} of the complexified tangent bundle TM ® C
and complexified cotangent bundle 7T*M ® C, we have

0 1,0 0., 0 1,0
5s 2o, ¥ Yoy om 2'an TV My,

); (3)

fori=1,---,n of TM ®C corresponding to the 4=v/—1-eigenspaces T+ M
and T%'M of the complex structure J and similarly dual basis

Az = da' + vV—1dy,d7 = dz' — vV—1dy", (4)
of T*M & C.

We extend the metric g C-linearly to TM ®C and then we have g(u,v) =
0if u,v € TH°M or u,v € T M. Then in local coordinates

g = g;(dz' ® dz’ +d77 ® d2Y), (5)
where g;; = g( 8‘1, a%j) and g;; = g;;- Thus the Kéhler form
Wy = \/—_1gi5dzi A dZ. (6)
The Kahler condition dw, = 0 is then equivalent to
"



Furthermore, we extend the Levi-Civita connection V of g in a C-linear
way to I'(T'M @ C). We write the Christoffel symbols as

vi (Ifdz’ +T5d2") @ 9 +(IEde’ +TEdZ) @ 9
0zj 0z, 0z’
I S o ®
= (Thdy +Thqz I TEdz) @ —
vé’zj (Idz" + T5dz") @ —— 5o + (MEdz' + THdz) @ 95

Using the Kahler condition VJ = 0, we have that all Christoffel symbols
vanish except Fk~ and FE— = Tk In fact, we can compute easily that

0 o 0
9. 9 0
8Zigjk g(va%i azjv aik) ij 91k

and thus I‘k = gkrZiz g“’ Given the Levi-Civita connection, the Riemannian
curvature tensor Rm € T(A*T*M ® End(TM)) is defined as

Rm(u,v)w = V,V,w — V,V,w — V[, w.

Similarly we extend Rm C-linearly to I'(A?T* M ®@End(TM ®C)) and under
local holomorphic coordinates

Rm = dz' Ad# @ (R, dzF ®3+R dz* @3

igk a ijk 821 ) (9)
where R, = —52T", and R%E = —R’;. The Ricci tensor Ric € I(T*M ®
T*M) evaluating on X,Y € I'(T'M) is defined as the trace of Rm(-, X)Y €
I'(End(7'M)). Thus in local coordinates, we have

Ric = R;5(dz' ® dZ7 + d77 ® d2), (10)
where R; = Rfﬂ Define the Ricci form to be p(-,-) = Ric(J-,-) and in
local coordmates we have

p=+v—1R;dz' NdZ. (11)
In fact, since
0 0 5091, 0?

Rj=—>-Th=—

=— log det 12
J 82]' i 82]- (g aZl) 82182] ogcet g, ( )

there is a simple global formula for the Ricci form as the following
—v/—100log det g. (13)

Sometimes write as

= —\/—18510gw;, (14)
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since dVy = w)' = det(g;7)v/—1dz' Adz' A - A/ =1d2" Ad2™.

As a consequence, for fixed complex structure J, if given an another
Kéhler metric ¢/, the corresponding Ricci form would be

P =—v—190logdet ¢'. (15)

and then det o
o —p=—v—1001og g , (16)

det g
where log% is in fact a global function on M. Thus, p, p’ necessarily

belongs to the same cohomology class in H'' (M, C)NH?*(M, R), which is in
fact 2 multiple of the first chern class of (M, J) denoted as 2mey (M). The
converse question, if any representative in 27¢q (M) arises as the Ricci form
of some Kéhler metric on complex manifold (M, J), is indeed much harder.
We’ll come back to this question in the subsection of Calabi conjecture and
Kahler-Einstein problems.

1.2 The space of Kahler metrics

An another advantage of being Kahler is the following lemma.

Lemma 1.5. (90-lemma) Let (M,g,J) be a closed Kihler manifold and
b1, € HYY(M,C). Suppose that ¢y is cohomologous to ¢o. Then there
exists a function f € C°(M,C) such that ¢p1 — ¢y = JOf.

Recall that on a complex manifold (M, J), the space of complex valued
k-forms on M naturally splits as QF(M) = @, ,—xQP9(M), where locally
QP4(M) has basis dz" A- - -Adz'» AdZ7 A+ - -AdZ99, for iy < iy < -++ < i, and
j1 < ja < -+ < j, Wehave differential operators 0 : QP4(M) — QP4+L(M)
and 0 : QP9(M) — QPTL4(M) defined as the projection of the exterior dif-
ferential operator d on QP41 (M) and QPT14(M) components respectively.
In fact, 0-lemma is also valid for (p, ¢)-forms with appropriate modifica-
tions and the proof requires some ideas from Hodge theory. Since we are
only interested in (1,1)-forms on M where the Kéhler form lies, in this
simple case we provide a quick proof of the dd-lemma as below.

Proof. By assumptions, there exists a 1-form o on M such that ¢; — ¢y =
da. Write a = o + %! where o' and %! denotes the (1,0) and (0,1)
components of a respectively. Since da = ¢; — ¢y € QM (M) we have that



000 =0, 0a%! = 0 and da = 9a*? + 9a’!. Thus to prove the lemma, it
suffice to look for functions f, g such that 0a®! = 90f and da'’ = 9dg.

It suffices to show that for any d-closed (0, 1)—form, say a!, there exists
a function f € C*°(M,C) such that o®" + 0f is d-closed. We consider
differential operator 0% : Q%' (M) — Q°(M) defined as for § = f;dz7

B = —gﬁﬁﬁ (17)

where 5, denotes the (i, j) entry of V5 . We set function f € C*(M,C)
to be the solution of the equation

—0*0f = 0"t (18)

Since on Kihler manifold, we have 0*0f = %Ag f, where A, is the usual
Laplacian operator with respect to metric g on M, we know that is
solvable if and only if 9*a®! has zero integral on M which follows from its
definition by integration by parts directly. Therefore we get that %! =
%! 4+ Of satisfies both 98%' = 0 and 9*6%! = 0. It is left to show that
06°! = 0. Compute for 6% = 0;dz’

0= 80°0%" = (—g"6;,) pdz* = —g"70; ;. d2F = —g70; A", (19)

Then consider
0= / (00761, 61) AV, = / —g7 g"0; .0,V = / |06™[3dV;  (20)
M M M

Thus we get 90" = 0. In fact, such 6! satisfying both 96" = 0 and
9*6%" = 0 is called 0-harmonic form in Hodge theory. On Kéhler manifold,
we have that the notion 0-harmonic is equivalent to d-harmonic. Thus

00%1 = 0 follows. O

As a corollary to the d0-lemma, if w is a Kihler form on a closed
Kihler manifold, by definition w € H“'(M,C) N H*(M,R) and moveover
we have that any Kahler form cohomologous to w will be given by w, =
w + /=100y for some function ¢ € C*(M,R) such that w, > 0. We
denote all the Kahler forms cohomologous to w by H,. By the discussion
above, we know that equivalently,

Mo = {wy|p € C*(M,R) such that w, > 0}. (21)

Such functions ¢’s are called Kahler potentials and ¢ is uniquely deter-
mined by Kahler form the w, up to constants. Very often, we will drop the
subscript “w” in H,, and call it the space of Kahler metrics whenever it
doesn’t cause any confusions.



1.3 Calabi conjecture and Kahler-Einstein problem

Let us go back to the question at the end of section 1.1. In 1950’s, E.
Calabi[4] first raised the question that on a closed Kéhler manifold M if
any representative in the cohomology class 2me; (M) could be realized as
the Ricci form of some Kahler metric, which is the well-known Calabi con-
jecture. In fact, it suffices to look for the desired Kahler metric within H,,,
and the calabi conjecture the can be reformulated as given « € 2mwe; (M),
there exists a function ¢ € C*°(M,R) such that w, has Ricci form a.

Suppose w is a Kahler metric on M and thus its Ricci form is given by

P = —V—1001logw" € 2me; (M). (22)

Given any « € 2mwci (M), by the 85—le@ma, there exists a function F' €
C*®(M,R) such that o = p, — /—100F. Suppose ¢ € C>(M,R) such
that w, > 0 and its correpsonding Ricci form is

pp = —V—100logw. (23)

Then p, = « is equivalent to

n

- W
d0(log —= — F) =0, (24)
wTL
which is equivalent to
wn
log—= — F =C, (25)
wn
if M is closed. Taking exponential on both hand sides, we have that
P c
det(g;; + 92 agj) = e det(g;;), (26)

where constant C' is obtained by integrating both hand sides on M. With-
out loss of generality, we can always assume that F' € C°°(M,R) satisfies
[y €Fw™ = Vol(M). Thus, the Calabi conjecture is equivalent to the solv-
ability of the following equation

2

) Fo )
det(g;7 + 8%6%) = e" det(g;5). (27)

This equation is called the complex Monge-Ampere equation.

In 1976, S.T. Yau([49]) solved the Calabi conjecture using the continu-
ity method to solve the complex Monge-Ampere. The continuity path he
worked on is

D% - Vol(M )ett
8zi82j N f

M

det(g;; + det(gi7), (28)

etFwn
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for parameter ¢t € [0, 1]. Set

I ={t €0, 1]| Equation (28) with parameter ¢ has a smooth solution.}.

(20)
Clearly I is not empty since 0 € I. Then one wants to show that 1 € [
by proving that I is both open and closed. The openness part is relatively
easy. The key ingredient in proving the closedness is the C2-estimate, which
asserts a uniform bound on (n + Agp) for all smooth functions ¢ that solve
equation with parameter ¢ € [0,1]. This estimate reflects a unique
feature of the Monge-Ampere equations on compact manifolds comparing
to the fact that interior C?-estimate of Monge-Ampere equation on bounded
domains is simply not true, see examples by Pogorelov([39]). Once given
the C*-estimate, Yau further showed that |¢[|cs( is uniformly bounded
for all smooth functions ¢ that solve equation with parameter ¢ € [0, 1].
Soon after him, by instead using the apriori interior C*¢ estimate of Monge-
Ampere equation on domains known as the Evans-Krylov theorem([26],
[31]), one can skip the C3-estimate which simplifies his original proof. All
the higher order estimates could be obtained via elliptic theory of linear
equations by taking differentiation on equation (28]). It is important to
point out at last that the bound on (n + Ay) in fact depends on sup,, |¢|,
which can be obtained in this case.

In particular, by the assertion of the Calabi conjecture when ¢; (M) = 0,
there exists a Ricci-flat metric on M, called the Calabi-Yau metric.

Definition 1.6. Suppose M is a closed Kéhler manifold and ¢; (M) denotes
its first chern class. We say ¢;(M) > O(respectively < 0) if there exists an
a € ¢;(M) such that as a (1,1)-form on M, a > O(respectively < 0).

When ¢ (M) > 0, we consider Kéhler metrics in the 27w¢ (M) where
the Ricci forms also lie. It is natural to ask among all Kahler metrics in

27y (M) if there exists one such that its Ricci form equals to itself, namely
w € 2mcy (M) such that

P = W. (30)
In the ¢ (M) < 0 case, similarly w € —27¢q (M) such that

P = —W. (31)

A metric is called Kéhler-Einstein(KE) if it is Kéhler and its Ricci
form is proportional to itself. By rescaling, all Kahler-Einstein metrics are
essentially given by one of the following equations: p, = 0, p, = —w and
pw = w, corresponding to ¢; (M) = 0, < 0, > 0 respectively.



Existence of KE metrics in the case ¢1 (M) = 0 follows directly from the
statement of Calabi conjecture. While for the ¢;(M) < 0 case, in order to
find KE metrics, equivalently one wants to solve

det(g;; + ¢i;) = efote det(g;7) (32)

where /—100F, = p, + w for w € —27c;(M). Yau’s C2-estimate is still
valid for equation above and moreover one can obtain bounds on sup,, |¢|
easily using the maximum principle. Thus, when ¢;(M) < 0, there always
exists KE metrics in —27w¢;(M). This result is independently proved by
Yau([49]) and Aubin([I]) in late 1970s. When ¢;(M) > 0, the existence
of KE metrics is much more subtle. Equivalently, one wants to solve the
equation

det(gi; + ¢i3) = "¢ det(g7) (33)

where \/—100h,, = p,, — w for w € 27c;(M). While Yau’s C?-estimate is
still valid, the C%-estimate on ¢ doesn’t come for free any more due to the
negative sign in front of .

In fact, there are various obstructions to the existence of KE metrics
when ¢;(M) > 0. Denote the group of all biholomorphisms on complex
manifold (M, J) by Aut(M). In 1957, Matsushima([36]) discovered that
if there exists KE metric in 2w¢; (M) > 0, then Aut(M) is reductive. It
follows from this result that there are Kéhler manifolds with ¢;(M) > 0
which don’t admit KE metrics. For example, if M is CP? blow up one or
two points, then one can compute Aut(M) is not reductive and thus M
doesn’t admit KE metrics.

In 1983, Futaki([27]) introduced an another obstruction known as the
Futaki invariant. Choose w € 2mei(M) > 0 and set h, € C*(M,R)
such that v/—190h, = p, — w. Then the Futaki invariant is defined as
far :n(M) = C,

fa(X) = /M X(hy)", (34)

where n(M) is the Lie algebra of Aut(M) that consists of all holomorphic
vector fields on M. Futaki showed that f); is independent of choice of
w € 2mey(M). Therefore, if M with ¢ (M) > 0 admits KE metrics then
necessarily fy; = 0. In [27], Futaki also constructed an example of 3-
dimensional manifold M with ¢;(M) > 0 and Aut(M) reductive but fy #
0. Hence such an M doesn’t admit KE metrics.

Note that the obstructions above both come from the holomorphic vec-

tor fields. In 1990, Tian([44]) has proved that on a complex surface M with
c1(M) > 0 it admits KE metrics if and only if Aut(M) is reducitive. In

8



particular, when Aut(M) = {1}, then Kéahler surface M with ¢;(M) > 0
automatically admits KE metric. For a while, people believe that this
statement is also true in complex dimension n > 3. However, this forklore
conjecture was disproved by Ding-Tian(]25]) on Kéhler orbifolds in 1992
where they constructed new obstructions by defining the generalized Futaki
invariant on almost Fano varieties(possibly singular). Later, such obstruc-
tions are refined and used to define the K-stability condition([45], [19]). An
explicit counterexample could be found in [45], which is first contructed in
[37].

It is proved by Donaldson-Uhlenbeck-Yau([46],[17]) that the existence of
Hermitian-Yang-Mills connection is equivalent to the stability of underlying
holomorphic bundle. Inspired by this result, in late 1980’s, Yau proposed
that the existence of KE metrics should correspond to certain stability of
the underlying manifold in the geometric invariant theory. The stability
condition is later defined more precicely by Tian([45]) and Donaldson([19])
as the K-stability, which naturally leads to the following famous conjecture.

Conjecture 1.7 (Yau-Tian-Donaldson, [19]). A Fano manifold M admits
KE metrics if and only if it is K-stable.

This conjecture has only recently settled by Chen-Donaldson-Sun([11],[12]
and [13]) in 2013.

1.4 Extremal and cscK metrics

In the 1980’s, E. Calabi([5]) initiated a broader program aiming to find
“the best” canonical metric in each H,,. To this end, he considered the L?-
norm of the scalar curvature as a functional on metrics called the Calabi
functional, namely we define for any ¢ € H,,

2
Calo) = [ R, (35)
M
where R, := ggRicw; = —ggai;z%;;g denotes the scalar curvature of

metric w,. Calabi proposed to seek critical points of the Calabi functional in
each H,,. These metrics are called the extremal metric. By straightforward
computation, we have that

5.Calp) = /M (205, Rp) R + R2(5,67)). (36)



where

SR, = —Afou — ggggj(Ricw)i3u7pq, ouwyy = (Apu)wy. (37)
We have the identity by interchanging the order of differentiations
Uaps = Uapp — D Ripatiy, (38)
l

where the derivatives are taken in the sense of covariant derivates with re-
spect to the Kahler metric w, and Rlﬁm denotes the Riemannian curvature
tensor with respect to metric w,. Thus

2 5 8§ 5 B§ (in \l Te PRy
A2u = g2P9%u apag = 9oP 900U appg — 95T (Ricy)jug — 907 (Ricy)l gt
587 i(Rin \l 1
= ggpggqu’agﬁq — ggq(Rlccp)Buvlq — Rju,.
(39)

Therefore, we have
0.Ca(p) = / (2(—ggﬁggqu7aﬁm + Réuvl)R(p + Ri(A@u))w(Z,
M

(40)
= -2 /M (927927 Ry s .

Then extremal metrics as the critical points of Calabi functional equiv-
alently are given by the following equation on ¢ € H,,

95792 Ry pgap = 0. (41)

Pairing with R, and integrating by parts, we get equivalently ¢ satisfies
that
Rypg =0, (42)

for any p,q € {1,2,---,n}. We define the (1,0)-gradient of R, as the
(1,0)-vector field on M given by VLR, := gg%i;;’a% and thus ¢ € H,
being extremal is equivalent to V3R, being holomorphic. In particular,
when Aut(M) = {1}, namely the only global holomorphic vector field on
M is given by X = 0, ¢ being extremal is equivalent to R, = R where R is
a topological constant given by integral average of the scalar curvature. We
call Kéhler metric w,, the constant scalar curvature Kahler(cscK) metric if

R,=R.

The existence problem of cscK/extremal metrics can be viewed as the
continuation of the KE problem for a general Kahler class H,, in the fol-
lowing sense. If we work in cohomology class 2m¢; (M) > 0, then KE <=
cscK. It is easy to see that KE = cscK. The other direction cscK = KE

10



follows from the fact that p,, is harmonic w.r.t. metric w <= w is cscK
and also the uniqueness of harmonic form in 2wci(M) by Hodge theory.
(Note that w is also harmonic w.r.t metric w.)

Similar to the KE problem, there are obstructions to the existence of
cscK /extremal metrics as well. In [6], Calabi proved the obstruction on the
structure of Aut(M) if M admits cscK/extremal metrics as a generalization
to the Matsushima’s result on KE problems. Moreover, Futaki invariant
could be generalized in the cscK/extermal setting as fa : n(M) — C,

far(X) = /M X(0,)u", (43)

where 6, is the solution to equation A 0, = R, — R. Again, its definition
only depends on the cohomology class [w] € HY'(M,R) and thus if there
exists cscK in H,, then necessarily fy; = 0.

In [19], Donaldson presented a precise algebro-geometric condition as
an obstruction to the existence of cscK metrics, called the K-stability.
Tian([45]) first gave an equivalent definition in the particular case of Fano
varieties. Naturally we have the conjecture about the existence of cscK
metrics.

Conjecture 1.8 (Yau-Tian-Donaldson, [19]). A smooth polarized manifold
(V, L) admits a cscK metric in the class ¢i(L) if and only if it is K-stable.

Besides the Fano case, Donaldson himself proved this conjecture on
toric surfaces([19], [21], [22] and [23]). However, in general, the existence
problem of cscK metrics is very difficult as explained in an expository article
by Donaldson([20]).

11



2 Continuity path via twisted cscK metrics

Recently, Chen proposed a continuity path in [10] aiming to attack the ex-
istence problem of cscK metrics via a direct PDE approach. He considered
the path connecting the solution of J-equation to the cscK metric. More
precisely, he proposed to solve the equation

t(R, — R) — (1 = t)(tryox — X) =0, (44)
with parameter ¢ € [0, 1] using continuity method, where R is a topological
constant given by R = ﬁ Jos Bow?t = [ex(M)][w]" =1 /[w]". Following

M

the terminology in J. Stoppa([41]), a Kéhler metric w,, satisfying is
called twisted cscK metric.

2.1 The J-equation

On a closed Kéhler manifold M with Kahler form w, given a closed positive
(1,1)-form x on M, we define a 1-form on the space of Kéhler metrics H,,
as

() = [ ulen 5 =1 (45)

for u € T,H, = C*(M) where x is a topological constant given by x =

ﬁ Jas tre xw = [x] - [w]" 1 /[w]"). Note that 8., is a closed 1-form on
M
‘H,, since

n—2 n—1

0u0uTy (1) = /M“V—_la‘% A XA (:i X

w2 wi
R T

:—/ V—10u A v A (x A
M

is symmetric in u,v € T,H,. Thus by integration on simply connected
space H,, we can define functional J, on H,, such that its derivative is
given by the 1-form 0.J,. The functional J, on H, is called J-functional,
its critical points by definition satisfies equation

n—1
tr,x=x <= XN ——— =
T X =X X~ &
which is the so called J-equation. J-equation was first defined by Donald-
son [24] in the setting of moment maps and by Chen[§] in his formula of
Mabuchi functional.

n
Yo
n!

(47)
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Donaldson([24]) first observed that if there exists a smooth solution to
J-equation in H,,, then necessarily

[xw —x] > 0.

Locally, one can choose holomorphic coordinate such that y;; = ¢;; and
w;; = 0;;A; at point p. Thus at p the J-equation tr, x = x can be written

Y- (a9

Then necessarily we have x\; > 1 which implies yw > x. Donaldson
conjectured that condition [yw —x] > 0 is also sufficient to the existence of
solution to the J-equation. This conjecture was confirmed by Chen([8]) in
complex dimension 2 when J-equation is equivalent to a complex Monge-
Ampere equation that could be solved by Yau’s method.

In higher dimension, Weinkove([47], [48]) found a sufficient condition
to the existence of solution to J-equation. His condition is

[xw—(n—1)x] > 0. (49)

where n is the complex dimension. In particular, when n = 2, it solves
Donaldson’s conjecture. In [42], Weinkove-Song has found a necessary and
sufficient condition: There exists a metric w’ € [w] such that

m—2

(xw' = (n=1)x) A" " >0. (50)

Until now, Donaldson’s original conjecture about J-equation is still open
in dimension n > 3.

2.2 Twisted Mabuchi energy and its convexity

As described above solution to J-equation is the critical point of J-functional,
while the cscK metric is critical point of the so called Mabuchi functional
or K-energy. In 1986, Mabuchi([34]) introduced the Mabuchi functional
which has cscK metrics as its critical point. It is defined using its deriva-
tive, namely we define a 1-form on H,, as

%sz—ﬂmfﬂmﬁ (51)
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for u € T, H,. In fact, 6 M is a closed on H,, since by direct computation,

040, M (@)

((5va)u - (Rw - E)UA@U)“);

(ALv)(Apu)wy + (vapRic, o5 — vaaRic, gg)uw] + Rul ow])

I
S

(A,0)(Apu)w] — vV —19u A dv A (Ric, — Rw,) Awl ™2,
(52)

is symmetric in u,v € T,H,. Thus by integrating, we can define the
Mabuchi functional M on H, where by definition its critical points are
cscK metrics.

Mabuchi([35]) in 1987 introduced a Riemannian metric on the infinite
dimensional space H,,. At point ¢ € H,,, the inner product on the tangent
space T, H,, is given by

(1, ) = /M wwu? (53)

for u,v € C*(M) = T,H,. Under this Riemannian metric, it becomes an
infinite dimensional symmetric space of nonpositive curvature. Apparently
unaware of Mabuchi’s work, Semmes-Donaldson [40] re-discover this same
metric again from different angles. For a curve p(t) € H, (0 <t < 1), we

define its length by
o= [ [ Gopena (54
0 A Ot et)

Then geodesic equation is given by

B(t) = gl () (1) 5 =0 (55)

As shown by Mabuchi([34], [35]) the functional M is convex along
smooth geodesics ¢(t) in H,,. In fact one can compute directly that

S M(p()
. (56)
= /M D) 0o Wi — /M(Rso(t) — R)(@(t) — 9P (t):0(t) })wine)-

Unfortunately, given two end points ¢, p2 € H,,, there may be no smooth
geodesic ¢(t) connecting them. In 2000, Chen([9]) showed that there ex-
ists a C'! geodesic(may not be smooth) connecting any given end points

14



©1, 2 € H,. Moreover, even if the original definition of the Mabuchi func-
tional requires that w, be positive and C*-smooth (and in particular that
¢ be C*-smooth) Chen went on to show([8]) that the Mabuchi functional
admits an explicit formula which is well-defined along any C'!-geodesic.
It has been conjectured by Chen ([8]) that M is (weakly) convex along
COY1 geodesics. This conjecture has been proved in 2015 by Berndtsson-
Berman([2]) and Chen-Li-Paun ([14]). It was shown in [7] by Chen that
J-functional is strictly convex along C'! geodesics.

Let’s go back to the continuity path . By our discussion above, if
o € H,, solves for t € [0,1] then ¢ is the critical point of functional
tM + (1 — t)J, which is strictly convex along C'! geodesics. We call
tM + (1 —t)J, the twisted Mabuchi energy. Together with the existence
of C™! geodesic connecting any given ¢1, s € H, by Chen([9]), one can
see that twisted cscK metric(t < 1) is unique if it exists.

2.3 Uniqueness of cscK/extremal metrics

The uniqueness problem of the cscK/extremal metrics has a long history
going back to E. Calabi. We refer to [3], [9], [16], [18], [33] and [2] for
the important works generated by this question. In [I5], joint with Chen
and Paun we gave a new proof of this classical result by studying the
deformation of the cscK/extremal metrics. The new deformation results
that we will present below are based on the bifurcation technique first intro-
duced by S. Bando and T. Mabuchi in their celebrated work([3]) concerning
the uniqueness of Kahler-Einstein metrics modulo holomorphic automor-
phisms.

Before introducing our work, let us briefly review Bando-Mabuchi’s
work first. When ¢; (M) > 0, Aut(M) is likely nontrivial. Thus in this
case, we shouldn’t expect that the KE metric is genuinely unique but rather
unique up to holomorphic automorphisms. In fact, if w is KE, then for any
o € Aut(M), o*w € [w] and it is KE as well. The main idea in Bando-
Mabuchi’s paper is to solve the Aubin-Yau path backwards from ¢ = 1,
namely they want to deform a KE metric at t =1 via

Py =t + (1= t)w (57)

backwardly to ¢ = 0. If w, varies within the orbit of KE metrics by the
group action of Aut(M), then w, will still be KE. Thus it implies that the
linearization of the path equation at ¢ = 1 would have nontrivial kernel

15



which locally parametrizes the orbit of KE metrics under Aut(M) actions.
In this case, one can’t apply the implicit function theory directly.

To address this difficulty coming from the nontrivial kernel, Bando-
Mabuchi introduced a clever trick, called the bifurcation technique based
on the geometry of the orbit of KE metrics. They are able to show that on
each KE orbit, there exists a unique KE metric from which one can solve
the Aubin-Yau path backwardly.

As an analog to their result in the cscK case. we have

Theorem 2.1 (Chen-Paun-Zeng, [15]). Given an n-dimensional closed
Kdhler manifold (M,w) that admits a cscK metric w,, € [w|, there ea-
ist a constant 6 > 0 and a smooth function ¢ : (1 —6,1] x M — R such
that o, = ¢(t,-) € H™ wverifies the equation

t(R,, — R) — (1 — t)(trp,w — n) = 0. (58)

Moreover, there exists a holomorphic automorphism f of M such that w,, =

[rwe,-

We also proved an analog in the extremal case as below.

Theorem 2.2 (Chen-Paun-Zeng, [15]). Given an n-dimensional closed
Kdhler manifold (M,w) that admits an extremal metric wy, € W], there
exist a constant § > 0 and a smooth function ¢ : (1 —§,1] x M — R such
that

Vi (tRy, — (1 — t)tr,,w) (59)

is a holomorphic vector field on M, where o, = ¢(t,-) € H™. Moreover,
there exists a holomorphic automorphism f of M such that w,, = [*wy,.

As a consequence of Theorem [2.2] we gave a new proof of the following
statement.

Corollary 2.3 ([16], [33], [2] and [15]). Given an n-dimensional closed
Kdhler manifold (M,w) that admits two extremal metrics {w;}j=12 C [w],
there exists a holomorphic automorphism f of M such that f*w; = ws.

Our new proof of Corollary consists of two main ingredients: the
deformation of extremal metrics(Theorem and the convexity of twisted
Mabuchi funtional introduced above. For simplicity, we will briefly explain
how to derive Corollary in the cscK case. We add a small strictly
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convex perturbation J,, to the Mabuchi functional such that the perturbed
functional tM + (1 — t)J, is strictly convex and then its critical point is
unique. Thus, if we can deform a given cscK metric via a smooth family
of the critical points of the perturbed functionals, then such deformation
must be unique. Fortunately, by our Theorem [2.1] one can always find such
unique deformation by apriori applying a holomorphic transformation to
the given cscK metric. The extremal case follows a similar scheme but with
more delicate settings. In [2], they also proved Corollary but instead
of deriving the deformation theorem above they alternatively deformed the
cscK /extremal metric via “approximately critical points”.

2.4 Openness results

Set

I, = {t € [0,1]| Equation (44) with parameter ¢ has a smooth solution.}

In [I0], X. Chen proved the openness of I, for t € (0,1) NI, by directly
applying the implicit function theorem. However, the openness at t = 0
is quite different from the case at t € (0,1), because equation (44) is a
fourth order PDE for all positive ¢t while it reduces to a second order PDE
at t = 0. In this dissertation, we will first present the proof of Openness
of I, for 0 < t < 1 from [I0] and then mainly prove the openness of I, at
t = 0 assuming that 0 € I,,.

Theorem 2.4 ([10]). Given an n-dimensional closed Kdhler manifold (M, w),
ifto € 1,N(0, 1) then there exists a constant 6 > 0 such that (ty—9,ty+6) C
I,.

Theorem 2.5 (Main Theorem). Given an n-dimensional closed Kdhler
manifold (M,w), if 0 € I, then there exists a constant 6 > 0 such that
0,0) C I,.

Similar results to Theorem [2.5] were first proved in [50] for x € [w] in
which case one automatically has that 0 € I,. Later, Hashimoto[30] proved
that I, is open at t = 0 for all smooth (1,1) form x > 0 with 0 € I,. In
this dissertation, we will give a proof of the openness of I, at ¢ = 0 for all
all smooth (1,1) form x > 0 with 0 € I,, using the ideas developed in [50].
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3 Analytic preparations

We fix a background smooth Kéahler metric g on M. For £k € N and « €
(0, 1), we define the function space C**(M) to be all functions on M which
are continuously differentiable up to kth order with the kth derivatives a-
holder continuous on M. In each local chart ¢ : U ¢ M — R?*", we can
define norm

[ullore ) = Z HDﬁ (worp™ M Lo )
|8]=0

oy D) - Do)
wyep(U)||=k |z =y

Then by a choice of finite open covers M = Uzj\il U; together with local
coordinates 1; : U; — R*", we can introduce norm | - |[cr.aany = sup; || -
| (17 6y 00 CP*(M). Note that different choices of finite covers and local
coordinates may result in different but equivalent norms. In this paper, we
fix a finite cover M = UZ]\LI U; with local coordinates v; : U; — R?",

We introduce the Schauder estimate of Laplacian operator in the fol-
lowing lemma.

Lemma 3.1. Given a smooth Riemannian metric g on compact manifold
M, ifu € C®(M) with [,, udV, = 0 satisfies Agu = f, then for any integer
k > 0 we have

[ullersa.any < Cllflleraimn- (60)

Proof. It suffices to show the case when £ = 0. One can obtain higher
order estimate via taking differentiations on equation Aju = f.

Using the standard interior schauder estimate on domains, one can ob-

tain that
[ullczaary < CUIfllcaon + [lullzzon)- (61)

To estimate [|ulz2(ar), we consider

/M FudV, — / (Ayu)udV, — / Vuldv, (62)

By Porncare inequality, we have

/ uw*dV, < C / [Vul2dV, (63)
M M
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Thus, we have estimate

ullz2anry < Cllfll2any < Clif llewan (64)
Then it ends the proof of the lemma. m

Next, we introduce an interpolation equality that we will use in later
sections.

Lemma 3.2. Suppose u € C*(M) and o € (0,1). Then for any ¢ < 1,
we have

Jullezeay < ellullcraqn +Ce™ el iz, (65)
where y(n, a) = _2+Ta _ 4+Ta2ngr1‘

Proof. By Corollary 1.2.19 in [32], we have that

24«

_2
[ullczeany < Clllullzen) == (lulloten) e,

) e (66)
< Sellullesen + Ce 5 ull e qan-

For any p € (2n,c0), by Sobolev embedding and Theorem 7.28 in [2§],
we have for n < 1

|ull Lo (ary < Cpllullwrean,

_1
< nllullwasan + Con 2 |ull oar),

1 2 1-2 67
< llullwssqany + ol Zagan el bcian (67)
1 _»
< Onllullgaear + §HUHL°°(M) + Cpn ™ 6 ||ull 2(any-
Thus,
_p
|| oo (ary < Cl|ullcaeary + Cpn™ 8 [Jul| L2 (an.- (68)
Combine inequalities and , we get
1 _2ta _2+a _p
[ullo2eary < §€HUHC4,&(M)+C€ 2 nffulleraary + Cpe™ 2 n7 6 ||ullL2(an)-
(69)

+a 1

We can choose 1 < 1 sufficiently small such that 06_2777 = 3¢ and thus,

_2+a_dtap

lullezary < ellullcaan + Cpe 22" 8 |ull 2an)- (70)
Here the constant C, — oo as p — 2n. We could simply fix p = 2n + 1 at
the beginning and therefore we have

24« 44 a 2n+1

HuH02,a(M) < 6HUH04,QL(M) +Ce 2 2 6 HUHL2(M) (71)
O
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Next we quote a fredholm theorem for elliptic operators without proof.

Theorem 3.3 ([29]). If M is compact and P : C®(M) — C>(M) is
an elliptic operator on M, then the kernel of P is finite dimensional and
f € C®(M) is in the range of P if and only if

{(fiv) =0 (72)

for all v in the kernel of the adjoint operator of P, denoted as P!.
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4 Openness for 0 <t <1

The proof presented in this section literally follows from [10]. We denote
HE(M) = {p € C**(M)|w, = w + V—=190¢ > 0}.
Define for a closed postive (1, 1)-form ¥,
Fy: 1Y (M) x [0,1] — C*(M)
(,t) = t(Ry = B) — (1 = ) (trox — X)

Theorem 4.1. Suppose (M,w) is a closed Kdhler manifold and x is a
smooth, closed and positive (1,1)-form on M. If there exist ty € (0,1) and
o € H¥*(M) such that F\(po,to) = 0, then there exists an € = €(tg) > 0
such that for any t € (to — €,ty + €), there exists o, € H¥*(M) such that

FX(()OU t) =0.

We’ll apply the implicit function theorem on Banach spaces to prove
this theorem. First let’s consider the linearization of F) .

Lemma 4.2. The linearization of F\ at (p,t) € H*(M) x [0,1] is given
by

DE (o) (u, s) = — tAZu — t{(v/=100u, Ric,), + (1 — t){(v/=100u, x),

+ 3((R¢ — R) + (try x _K))’
(73)

where (u,s) € C**(M) x R. Thus it’s obvious that DF, |, : C**(M) X
R — C*(M) is continuous in (p,t) € H**(M) x [0, 1].

Lemma 4.2 above follows from straightforward computations, so we
omit its proof.

Lemma 4.3. Given any closed (1,1)-form p and function f € C*(M), we
have the identity

(V=100f, 1) = (fpliap) a9°9"" — fp(tre 1) 59" (74)

Proof. By direct computation, we have

(V=100f, 1) = fpatazd® " = (fpliap).a0"?9"" — fphaz 9”79 . (75)
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Since p is closed, we have fi,5; = g5 Thus

(V=100 1) = (fo1a5) 29™9" = Sphtaq 599"
3 5 (76)
= (fhap)ag™g™ — fp(tre ) 59"

]

Lemma 4.4. For (o, to) € H¥(M) x (0,1) satisfying F\(po,to) = 0, we
have that for any u,v € C**(M)

/M (DFX|(¢0¢0) (uv O)) (U)WZO

(77)
S to/ U G5V,0pWp, — (1-— to)/ UGV 5XaBW g
M M

Proof. Proof of Lemma [4.4] By calculations, we have that
DFX|(900¢0)(U’ O) =—1p (u,aﬁﬁf?ggfgfvg - R%,ﬁulaggf) i
+ (1= to) ((upXap) a930 950 — tn(t740 X).59%0)

= — totappzgolgol + (1 — to) (upXag) a9olg?y

= — toUagpadar giZ +(1 - to)(U,pxaa),qufgifj :

Last step is because F) (¢, tp) = 0. Thus, by integration by parts

| O w.0) @)
. ] (78)
=—to /M Uas gl ghlwl, — (1 — to) /M UpXafl.adn godwlh .

]

Now with the help of Lemma[4.2]and Lemma[f.4] we are ready to prove
Theorem 4.1

Proof. At given point ¢ € H s.t. F\(po,to) = 0, define
Ho" ={p € H4’“|/ pwg, = 0.},
M
C(’)“’O‘ ={fe C’““(M)\/ fwi, =0}, (79)
M
Cz = {rec=an| [ gy, =0},
M
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Denote 7 the projection from C*(M) to its subspace C§. Without loss
. 4,0
of generality, we can assume ¢y € Cy"". So we can define

Fy:Hy® x [0,1] = C§

(o.t) o TEy (i, 1) = Fy(ipnt) — /M Fy(, .

(80)

with E\(¢o,t0) = 0. By Lemma , we get that the linearization of F) at
(¢, 1) is continuous for (¢, t) in a small neighborhood of (g, t) in Cy® x
[0, 1].

By Lemma [L.4] DF,|(p40)(-,0) : C®°(M) — C>(M) is a self-adjoint
elliptic differential operator with kernel and cokernel both equal to subspace
of constant functions on M. Thus by the fredholm theorem, we have that
DF\|(p0,t0)(+,0) : C§° — Cg° is a bijection. In fact, we can further prove that
DF\|(40,t0) (-, 0) : Cy™ — C¢ is an isomorphism between Banach spaces. It
suffice to show an apriori estimate of schauder type, namely we will show
that |[ul|ctaarn < CIDEy] (o.t0) (1 0)||lca(ary for any u € Cy®.

Set

f = DFx|(<po,to)(u> 0)

. . (81)
= —toAiou — (toRicy, — (1 —to)x, V—100u).,.
Thus by the standard Schauder estimate for Laplacian equations,
ullcran < CllAgullozamny < C'([| fllcemn + ullczenn).  (82)
By interpolation lemma [3.2] we have
[ullcsenny < CUf e + ullzn)- (83)
By Lemma [4.4] we have that
- [ put, = 1= 10) [ waraase,

—1 2 n 1—1 2 n
>C /M \Vu|¢0w% >C /Mu Wiy

Last step is because of Porncare lemma and | v uwg, = 0. Thus we get
that

lull2ary < Cllfllzzany < Cllflloa(an- (85)
Therefore we have
lullcaeary < Cl fllcaan- (86)
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Using this apriori estimate together with an approximation argument, we
can conclude that DFy| (.0 (+0) : Cp™* — C& is an isomorphism between
Banach spaces.

Note that DF,|(s0.10) (-, 0) = DFy|(0.10) (> 0). Thus, by the implicit func-
tion theorem, there exists € = €(ty) > 0 such that for any |t — to] < €, we
could solve ¢; € Hy® such that

Fx(@t»t) =0. (87)

From the definition of 7, we could write

0= Fylont) = Blent) ~ [ Floutiol, (39)

Thus we get that F) (¢, t) = C. Notice

/M Fy (o t)ur, = 0. (89)

SoC =0 and
FX(QDt,t) = 0

Moreover, by the regularity of solutions to the elliptic equations, it
follows that ¢, — ¢y as t — to in any C* norms. O
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5 Openness at t =0

The main ingredient of the proof is to build an approximated twisted cscK
metric for small ¢ > 0 via taylor polynomials
2 1k

SOt:SD0+tU1+§U2+"'+EUk7 (90)
where ¢y € H satisfies tr,,x = x and us are smooth functions to be
determined. By a appropriate choice of u,s we can eliminated the first kth
coefficients in the taylor series about ¢ of ¢{(R,, — R) — (tr,,x — x). The
other ingredient is a quantitative inverse function theorem near ¢, so that
we can perturb from the approximated twisted cscK metric to a twisted
cscK metric.

Without further notice, the ”C” in each estimate means a constant de-
pending on the complex dimension n unless specified.

5.1 Approximation of twisted cscK metrics for small
t>0

Define =
WA = [ € CH(M)|w + vV—109p > 0}. (91)

Then for any t > 0, we define the map

Fy - HY — C*(M),

= t(Ry — R) — (tryx — X)- 52

To look for twisted cscK metric for parameter ¢t > 0 sufficiently small, it
suffices to find ¢ € H** such that Fy(p) = 0 for small ¢ > 0. We eventually
will use a quantitative inverse function theorem to find such . But before
doing that, let us first look at a good approximation of the twisted cscK
metric for small ¢ > 0.

Given that 0 € I, then there exists a smooth Kahler potential ¢, such
that tr,,x = x. Note that Fi(¢g) = t(R,, — R) — 0 in C* sense as t — 0.
However, ¢ is not a good enough approximation for our purpuse due to
the possible faster shrinking rate of invertible neighborhood around F; ()
with respect to t as ¢t — 0.
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Starting from ¢g, we could build better approximations of twisted cscK
metric via taylor polynomials such that F;(-) is small in terms of powers of
t. To be more precise, we introduce the following lemma.

Lemma 5.1. Suppose a € (0,1) and k € N. There ezists 6, > 0 depending
on k and @o such that for any 0 <t < 0, there exists a smooth function
wr € C®°(M) such that w + +/—100¢; > 0 and

IF (@) llowan < Cit™, (93)

for some constant Cy, > 0 depending on k and pg. Moreover, we have for
g ¥
any l € N
e — ollorany < Chat, (94)

for some constant Cy,; depending on k,l and py.

Proof. We prove this lemma by explicit construction. For & = 0, ¢ would
suffice. However we are interested in the case when k£ > 1. Consider
¢ tF
got:cpo+tu1+§u2+---+guk, (95)
where uls are smooth functions to be determined. To find these u}s, we
consider the taylor expansion of Fy(y;) with respect to t at t = 0,

s, th oF
Fi(w1) = Folpo) + t(aFt(%)) im0 + -+ + E(@Ft@t» li=o + R, (96)
where the remainder is
1 [ AT
= — —_— F .
R k‘ 0 S (88) 3(@s>d8 (97)

The idea is to eliminate lower order term of ¢ by choosing appropriate
u;s such that the first kth coeflicients in the taylor expansion vanish. We
compute first a few coefficients in the taylor expansion of Fi(y;). Since
try, X = X, we have Fy(pg) = 0. Next compute

0 OR,, i o 00
aFt(%) = (Rgat —R) + ta—: + gsigfiixij(ﬁ),pq- (98)
Set t = 0 we get
0 P
(aFt(sOt)) |t=0 = Ryo — B + g3, 950 Xi7U1,pg (99)

26



Further compute that

0? %) ; Do,
S Filed) =2(=A%, (’%t — gl gui( )i RiCe )
>R ik 8% aSDt
+t—a — (o ) 190 gPI i (=t o) (100)
o o i 0P
— g gk gl ( att>kl i att),qurg@tgwxm( atgt),pq-
Set t = 0 and we have
a—2F( Vimo =2(—=A2 uy — ¢’ g% (uy) ;5Ricy, pg)
o2 t\Pt)t=0 = 0o Ul T Ypp oo \U1) 55 10Cw0 pg
(101)

— g (u1) g% 9% x5 (1) pa
— g2 g% g (un) iz () g + G0 9% X (42) -
Compute one more coefficient, we have
93 82 PR
~F _ Pt
O3 1(t) =0 = atQ =0 + (t O3
+ +g<pog<p0 XZ] (u3),pQ7

)’t o+ (aau1>*3 + 90uy * O0us

(102)

where 828]:;" li=o is a smooth function M only involving u;, uy and ¢q, and
moreover “x” abbreviates for multiplying with smooth functions depending
on ¢y and y as well as proper contractions.
By computations above, we know that each 2 o Ft(got)]t _o only involves
u;s for i < m and the only term involving w,, is g 9% xpgtip, ;. This fact
suggests that we could define u/, s inductively using prev10usly determined

functions u}s for i < m — 1.

Next, we describe how to define functions u}s. First, let us denote

2
A

o = 98 9% Xpg (103)
X>¥P0 woJpo pqaZiaZj
Given the fact that tr,,x = x, A, ,, indeed behaves like Laplacian operator
on M and A, ,,u = f is solvable if and only if [ v JwWo, = 0. We know that
Fy(po) = 0 by assumption. Suppose we have smooth functions us defined
for all 7 < m — 1 such that
a’L

@Ft(%)hzo =0, (104)
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for all # < m — 1. We hope to find smooth function u,, such that

am
—F —0=0. 1
g L1(#0)le=0 = 0 (105)
Following the discussion above we have
am
at—mFt(SOt)h:o = Ay oUm + (0o, Uty 5 Um—1). (106)

So to define wy, it suffices to check if [}, S(po,u1, -, Up_1)w], = 0. In
fact, when ws satisfy ({104]), it is automatically true. Since for any 0 < t <
1 we have

| P, =o (107)

we take derivatives with respect to t of the above identity m times and get

[ Cyrritan + 3 g [ (G ren Dy, —o
. (108)

Set t = 0 and we have
0
/M ((&)mFt(SOt))h:owZO =0. (109)

Since fM Axmumwgo = 0 no matter what u,, is, we get that

/ S(QO(),Ul, T 7um—1)w20 = 0.
M

Thus we could solve u,, such that (105]) holds. Notice in this construction
process, all u;s are smooth functions determined by the previous u}s, and
eventually only determined by the initial Kahler metric ¢y. Thus
holds.

It remains to check and by our construction it suffices to consider
the remainder and to show that

)
(55 Fulpa)llcean < C, (110)

for some constant C}, independent of s < 1. Choose constant ¢, > 0 such
that for any s < g, w++/—199¢p, > 0. Denote gog) = (%)igos for1 <i<k
and they are smooth functions with any C"™ norm uniformly bounded when
s goes to 0. By a direct computation when s < d;, we get that

0

(&)RJAFS(@S) = F(S7 859087 e 73580§k)> Vag@sa Ty Va&@gk), V49057 Ty V490£k))>

(111)
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where F is a smooth functions with respect to its variables, especially

smooth up to s = 0. Thus, that for s < 0, (2)""'F,(p,) is a smooth

function on M and its C* norm is uniformly bounded when s — 0. This
ends the proof of the lemma. n

5.2 Quantitative inverse function theorem

In this section, we study the local invertibility of F} : H** — C*(M) at a
given point ¢ € H for fixed t > 0 sufficiently small. First of all, we notice
that

| R =0, (112)

for any ¢ € H**. Given this fact, one could not expect F, to be surjective
on any open set in C*(M). However, we can modify F; and the corre-
sponding function spaces to get local invertibility in the modified setting.

At any given point ¢ € H, without loss of generality we could assume
that [ 9w = 0 and define

H," = {p e H™ /MWZ = 0.},
Che = (f € Che(ar)] /M fur =01, (113)
Cx = {f € C™(M)| /Mfw:; —0).

Moreover, we could define F; , : ’Hfb’a — Oy

Fou(0) = Fig) - /M ()l (114)

Following these definitions, we get that F} ;(¢) = Fy(¢) since [, Fi(¢)w} =
0 always. Moreover we have that if F},(¢) = 0, then Fi(¢) = 0. It is
shown in [10] that for any fixed ¢t > 0 if ¢ is a twisted cscK metric, namely
F,(¢) = Fiy(¢) = 0, then the map F}y : Hz’a — () is locally invertible
from ¢ € Hi’a to 0 € Cj. If we vary ¢ a little bit away from the twisted
cscK metric, one should expect the local invertibility of F;,; still hold.

In the next theorem, we prove that for ¢ > 0 sufficiently small, F, :
'Hz’a — (7 is still locally invertible from ¢ € Hi’a to Fiy(y) € Cfifp € H
is close to a twisted cscK metric in the sense that || — @ollcey < 1.
Moreover, we derive an estimate on the size of invertible neighborhood of

Fiy: Hi’a — O near Fi,(v) € Cf.
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Theorem 5.2. Gwen ¢y € H such that tr,,x = x and Jus powy, = 0,
there exists constant € = €(pg) > 0 such that for any 0 <t < e andp € H
satisfying [y, vwy =0 and ||V — pollcsary < €, we have that Fyy, - Hfb’o‘ —
Cy is locally invertible from 1 to Fy 4 (¢).

Moreover, we have that for any y € C3 with |y —Fyy(¥) | car) < et*+?
for v given in Lemma we can find an x € Hi’a such that Fy (z) = y.

In order to prove Theorem first of all one needs to study the lin-
earization of F},, at ¢, denoted by DF} 4|, We compute DF; |y Ci’o‘ —

4,
Cy, for any uw € C°

DF, |y (u) = —tAZu+ (x — tRicy, 00u)y

N, (115)
—/ (x — tRicy, 00u)ywy;.
M
Denote Py y(u) = —tALu+ (x — tRicy, ddu)y, then
DFtﬂp’w = Ty © Ptﬂl)? (116)

where 7y f = f — [}, fwl.

P =P,y : C®M)— C®°(M) is an elliptic differential operator. By
the fredholm theorem, we have the orthogonal decomposition C*°(M) =
Im(P) @ Ker(P?). Denote P’ = 7,Pmy and P" = 7yPTm,. For any
[ € O, we have orthogonal decomposition f = Pu+ v for u € C>®(M)
and v € Ker(PT). Applying 7y, we get f = myPu + myv. We have by
computation that myPu = P'u and myv € Ker(P'"). Thus f = P'myu +
myv. Thus we have orthogonal decomposition of C° = Im(P’) @ Ker(P'T).

For t < 1 and |[¢) — @ol|cs(mry < 1 we have that DF, y|y = myPrymy
Cy> — €7 has kernel and cokernel both equal to zero. More precisely, we
introduce the following lemma.

Lemma 5.3. There exists a constant € = €(gg) > 0 such that for any
0<t<eandyp e H with szZJw;Z =0 and [|v — @ollcenry < €, we have
that DF; |y : CF — CFF is bijective.
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Proof. For any u € C*°(M), we compute
/ (T Prpu)uwy, = / (Pryu)mpuwy,
M M
=t [ Inasliet [ manantols
M M
1 n
=5 [ mapaueR, - woou, (117)
M
< —/ u@uﬁgfggqquwg
M
% n
+ Soup ay(tRy — ) [ [Vl
M M
where Cy denotes the Poincaré constant of metric g,. Note that

gf,‘g‘gf,gqu > 0 ggg, for some constant d,, > 0.
Apy (tR gy — trpx) = 1Ay Ry, (118)
Cy < C, for some constant C, > 0, if r_lg < gy <ryg.

Thus we can choose ¢ > 0 depending on ¢, such that for any ¢ with
1% — wollesary < €, we have

a B 1 @
9090 X01 > 50009,
1
s]1\14p |Ay(tRy — tryx)| < Ct + E@,O and Cy, < C, (119)

for some constant C' > 0.

We could choose € > 0 even smaller such that for any 0 < ¢t < €, we
have that C't < %(Xpo. Thus by 1’ we get that

n 60 n 0 n
/ (m/)Pwu)uwlb < —5/ |Vu|iww + %/ |Vu|iw¢,
M M M

6 n
< —%/M|Vu|3,w¢.

Thus 7y P pu = 0 if and only if « is a constant. The same computation
also implies that the adjoint operator (m, P, )"u = 0 if and only if u is a
constant since by definition,

(120)

/u(mp}jt,w)tuwz:/ (T Pr g ) uwy. (121)
M M

By the fredholm theorem for 7, P, ,, 7y, we can get that DF} |y = Ty Py
Cy — CF is a bijection if 0 <t < e and [[¢) — @ollcsar) < € O
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We have shown in the last lemma that DF} 4|, has an inverse defined on
Cy’. Next we show a schauder type apriori estimate for operator DF, 4y,
then by an approximation by smooth functions f; € C7° — f € Cf in

hélder space, we could get that DF, |y C’i’a — (7} is a surjective. And
it’s injective because of Lemma [5.3]

Lemma 5.4. Suppose € > 0 is the constant chosen as in Lemma[5.3. Given
€ (0,1), 0 <t < e andp € H with ||[v — ol lcsy < €, for any u € CF°,

we have
lullosany < CHDFglp(w)llcon, (122)

where 7y is a constant chosen as in Lemma[3.2] and C > 0 is some constant
depending on g only.

Proof. Denote f = DEF,,|y(u). Then we get
1 1 : = 1 : =
Alu = _Ef + ;(x — tRicy, 00u), — ;/ (x — tRicy, 00u)ywy.  (123)
M

Thus by standard schauder estimate, we get

[ullcrann < Ol Apullczamn

c (124)
< < (Ifllcaan + llullozeqn).
By the interpolations in Lemma
C Y
[[ull .0 an) —Ilfllca oan) + = (llullcreon + O lullzoan), (125)
where v is the constant in Lemma . Choose n = 20, we get
lulloremny < Ml flloan + Ot lull L2ary. (126)

Following computations in Lemma , inequality 1' since [ A uwy, =0,
we get

/ ww] < C’/ [Vuljwy < C'/ fuwy, < O fllczonllull 2. (127)

Thus, we have that

Null 2y < C| 220y (128)

and then
[ulloraan < O flloaqan.- (129)
O
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Now we're ready to prove Theorem [5.2]

Proof. By Lemma [5.3] Lemma [5.4] and standard inverse function theorem
we have already shown the local invertibility of F} , : Hz’a — C from ¢
to Fiy(10). Now we estimate the size of invertible neighborhood of F} (1))
in Cy. Given y € Cj, we could define map

. 4,a 4,a0
vy, H, = Oy,

. (130)
=+ (DEyle)” (y — Fiy(x)).

Note that z is the fixed point of W, if and only if y = F} 4(z). In fact W,
is a contraction map near ).

Claim 5.5. Ift > 0, ¢ € H satisfies the assumptions in Theorem[5.2], then
there exists a constant o > 0 depending on g such that for any xo,r, €
’pr’a with ||zg — Y| crean < 60 and |21 — Y| caeny < 68 for y given
in Lemma then

1
Wy (21) — Wy (20) || cte(ary < §||:1:1 — ol|cae(ary, (131)

Proof. Proof of claim [5.5] Denote zs = sz; + (1 — s)zg for s € [0,1] and
we compute

Wy (21) — Wy (x0) = 21 — 20 — (DFyyly) " (Frp(21) — Fiy(zo)),

- /O (DEyply) " (DFiyly — DEyle,) (1 — 30))ds
(132)

where for any ¢ € H?p’a

DF, y|,(u) = —tAiu—l—(X—tRiqp,@éu)(p—/M (—tAiu%—(X—tRij,85u)w)w,’;.
(133)

We first consider
(DFiply — DEyls,)(z1 — 20)
= (A = A2 ) (a1 — 20) + ((x — tRicy )9
— (x — tRicy, )pgg27g27 ) (21 — 20) o5 (134)
b [ 083 = 82 )01 = a0) = (= Ricoas?

— (x — tRica, )pgg27g77) (m1 — @0) 0 }w].
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Thus we have

(DFiyly = DFiyle,) (21 = 20)llcen < Cllb = zsllcseanllzr — zollcren,
(135)
for some C' > 0 depending on ||z,||c4.e () and . Combining (132) and

(135)), by Lemma we get that

1, (21) = Wy (z0) lloraqary < Ct7H(max || — 5[l o121 — zoll ot an),

s€[0,1]

(136)
where C' > 0 is a constant depending on maxco,1] ||| c4.o(ary and ¢o. If
we have [[zg — ¢[|crenn < 67T and [|z1 — ¢||crenny < 67T for some
constant § < 1 to be determined, then ||z4||c4.« is uniformly bounded on
s €[0,1] and [|t) — z4|[caa(ary < 0t7T1. Therefore, we have

H\I/y(xl) — \I/y<$0)||c4,a(M) < C(SHI‘l — xOHC‘l’O‘(M)’ (137)
From the last inequality, it’s clear that we should choose our § = % and
then it ends the proof of claim. m

We continue the proof of Theorem . Fory € Cf with |ly—F 4 ()]l cear) <
et>’*2 we have

19y (%) = Yllcaepn = (DFuply) ™ (y = Frp(¥))llosean

138
< Oy = Fop(@)engny < Cet®t, (5

for some constant C' > 0 just depending on ¢y. We could choose even
smaller € > 0 such that Ce < %(5 where ¢ is given in the above claim. Thus
\If; (1) would be a contracting sequence converging to the fixed point of W,,.
Following the previous discussion, the fixed point of W, say x satisfies that
F,y(x) =y. O

Combining Theorem [5.2)and Lemma 5.1} we could prove our Main The-
orem [2.5] now.

Proof. Let k = [27y + 2] the largest integer smaller than or equal to 27y + 2.
By Lemma [5.1) we could find an approximated twisted cscK metric ¢; for
every t > 0 with bounds

1F(e)llcaqany < CHF Nl = gollesany < Ct. (139)

Denote vy = ¢; — [, pw?,, then
1 F e (Vo) lowary < Crt™ [l4b = ollesary < Cat. (140)
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For t < min{(cil)’”l*@'*”), C%e, ¢} where € is determined in Theorem

[b.2] we have that
10 = Ey e (o) loaqary < et 1y — wollesany < e. (141)

Thus by Theorem we get that there exists ¢ € C’i’f‘ such that F} ,, (¢) =
0 and then Fi(p) = 0.

O
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