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Abstract of the Dissertation

Infinitely primitively renormalizable polynomials

with bounded combinatorics

by

Joseph Adams

Doctor of Philosophy

in

Mathematics

Stony Brook University

2016

Infinitely renormalizable quadratic polynomials have been heavily studied.
In the context of quadratic-like renormalization, one may try to prove the ex-
istence of a priori bounds, a definite thickness for the annuli corresponding
to the renormalizations. In 1997, M. Lyubich showed that a priori bounds
imply local connectivity of the Julia set and combinatorial rigidity for the
corresponding quadratic polynomial [Lyu97]. In a paper from 2006, J. Kahn
showed that infinitely renormalizable quadratic polynomials of bounded prim-
itive type admit a priori bounds [Kah06]. In 2002, H. Inou generalized some
of the polynomial-like renormalization theory to polynomials of higher degree
with several critical points [Ino02]. In my thesis, I generalize Kahn’s theorem
to the context of polynomials of higher degree admitting infinitely many prim-
itive renormalizations of bounded type around each of their critical points.
These a priori bounds imply local connectivity and rigidity.
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Chapter 1

Introduction

In recent years, the theory of renormalization, which involves looking at a small
piece of a dynamical system and rescaling to obtain a new dynamical system
of the same type, has been established as a powerful tool in many different
situations. In my thesis, I prove the following theorems about renormalization
in the dynamics of complex polynomials:

1. Complex polynomials admitting infinitely many bounded-type, primitive
renormalizations around each critical point have a priori bounds, which
means that all of the renormalizations lie in a compact space. (Actu-
ally, we prove the existence of beau bounds, a stronger form of a priori
bounds.)

2. The Julia sets of such polynomials are locally connected, which means
that there is a topological model for the dynamics.

3. The dynamical systems arising from such polynomials are rigid: Combi-
natorial equivalence implies conformal equivalence.

My thesis is among the first steps toward understanding infinitely renor-
malizable complex polynomials of degree ≥ 3 with more than one critical
point. The existence of a priori bounds in the context of polynomials hav-
ing more than one critical point is new, generalizing a result of Jeremy Kahn
for polynomials having exactly one critical point [Kah06]. Furthermore, my
local connectivity result is the first among infinitely renormalizable complex
polynomials that are not real and have more than one critical point, and my
approach to combinatorial rigidity furnishes a new proof in the case where
there is exactly one critical point.

The existence of more than one critical point creates additional combina-
torial difficulties, which are overcome by using certain decompositions of the
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relevant domains. When there is exactly one critical point, the parameter
space is one-dimensional, and there are well-known compactness properties
involving wakes, limbs, and ray portraits. When there is more than one criti-
cal point, the parameter space is much more complicated, necessitating a new
approach to the rigidity problem that does not rely on the one-dimensional
properties.

1 Selected historical background

The study of holomorphic dynamics originated with the analysis of P. Fatou
and G. Julia in the early 1900s. Afterward, L. Ahlfors and L. Bers applied the
theory of quasiconformal maps to the study of Kleinian groups, dynamical sys-
tems generated by groups of Möbius transformations of the Riemann sphere.
The field of rational dynamics was then dormant until the 1980s, when D. Sul-
livan rejuvenated the field by using quasiconformal deformations to prove his
“no wandering domains” theorem [Sul85]. Around the same time, A. Douady
and J. Hubbard offered a systematic treatment of the dynamics of complex
quadratic polynomials in their Orsay notes [DH].

Complex quadratic polynomials fc(z) = z2 + c, with c ∈ C, provide the
easiest examples of holomorphic dynamical systems having critical points, but
as of 2016, they are still not completely understood. Understanding their
dynamics amounts to understanding the corresponding parameter space, the
Mandelbrot set, and the central conjecture in this field is that the Mandelbrot
set is locally connected. Local connectivity of the Mandelbrot set at c is
equivalent to combinatorial rigidity of fc. One important tool used to study
local connectivity is the puzzle decomposition, which first appeared in the work
of Branner and Hubbard in the context of cubic polynomials [BH88, BH92].
By applying puzzle techniques to quadratic polynomials with connected Julia
sets, J. C. Yoccoz proved that if fc does not have neutral periodic points
and admits at most finitely many renormalizations, then the corresponding
Julia set is locally connected, and the Mandelbrot set is locally connected at
c [Hub93, Mil00, Roe00]. The remaining parameters consist of those c such
that fc admits infinitely many renormalizations.

The results obtained by Yoccoz have been generalized in a number of ways.
Using the quasi-additivity law, Kahn and Lyubich showed that if a complex
polynomial z 7→ zd + c, with d ≥ 2, admits at most finitely many renormal-
izations, and if every periodic point is repelling, then the Julia set is locally
connected [KL09a]. Avila, Kahn, Lyubich, and Shen showed that under the
same conditions, the polynomial is combinatorially rigid [AKLS09]. Yarring-
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ton showed that for a polynomial of degree ≥ 3 with at least two critical
points, a certain combinatorial condition implies local connectivity of the Ju-
lia set, provided the Julia set is connected, every periodic point is repelling,
each fixed ray lands at a distinct fixed point, and no critical point admits a
renormalization [Yar95].

To help put the results of my thesis in context, some results from the theory
of infinite renormalization, a priori bounds, local connectivity, and rigidity are
summarized below.

A priori bounds

• Sullivan obtained complex a priori bounds for real quadratic polynomials
admitting infinitely many renormalizations of bounded type [Sul88].

• Lyubich obtained a priori bounds for complex quadratic polynomials
that satisfy the secondary limbs condition and have sufficiently big com-
binatorial depth [Lyu97].

• Lyubich and Yampolsky obtained complex a priori bounds for the cases
not covered by [Sul88] and [Lyu97], real quadratic polynomials admit-
ting infinitely many renormalizations of “essentially bounded but un-
bounded” type, completing the study of complex a priori bounds for real
quadratic polynomials [LY97]. These complex a priori bounds were also
obtained independently, using essentially different methods, by Graczyk
and Świa̧tek and by Levin and van Strien in [GS96, LvS98].

• Kahn obtained a priori bounds for quadratic polynomials admitting in-
finitely many primitive renormalizations of bounded type [Kah06]. While
Sullivan’s proof in the context of real quadratic polynomials exploits the
real symmetry, Kahn’s proof for complex quadratic polynomials relies on
two very general tools: the canonical weighted arc diagram and the quasi-
additivity law. Kahn’s proof is valid without any significant changes in
the case of complex polynomials z 7→ zd + c, with d ≥ 2.

• Kahn and Lyubich obtained a priori bounds for quadratic polynomials
that admit infinitely many primitive renormalizations and satisfy the
decoration condition or the molecule condition [KL08, KL09b]. These
conditions allow certain unbounded combinatorics.
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Local connectivity

• Hu and Jiang showed that the Feigenbaum quadratic polynomial has a
locally connected Julia set [HJ98].

• Jiang showed that if a quadratic polynomial admits infinitely many
renormalizations, the existence of unbranched a priori bounds implies
local connectivity of the Julia set [Jia00]. See also theorem VI in [Lyu97]
and proposition 4.14 in [McM96].

• Lyubich showed that if a quadratic polynomial satisfies the secondary
limbs condition, the existence of a priori bounds implies the existence
of unbranched a priori bounds [Lyu97]. Consequently, for any quadratic
polynomial satisfying the secondary limbs condition, the existence of a
priori bounds implies local connectivity of the Julia set.

• Levin and van Strien showed that the Julia set of a polynomial z 7→
z2d + c, where d is an integer and c is real, is either locally connected
or totally disconnected [LvS98]. Independently, Lyubich and Yampolsky
observed that theorem 1.1 in [LY97] remains valid for real polynomials
z 7→ zd + c, which implies that the corresponding Julia sets are locally
connected.

Rigidity

• McMullen proved that robust infinitely renormalizable quadratic poly-
nomials do not admit invariant line fields on their Julia sets [McM94].

• Lyubich showed that if a quadratic polynomial satisfies the secondary
limbs condition, the existence of a priori bounds implies combinatorial
rigidity [Lyu97]. In particular, real quadratic polynomials satisfying the
secondary limbs condition are combinatorially rigid.

• Inou proved that robust infinitely renormalizable complex polynomials
with more than one critical point do not admit invariant line fields on
their Julia sets [Ino02].

• Kozlovski, Shen, and van Strien showed that for a real polynomial of
degree ≥ 2 with connected Julia set, if every critical point is real and
nondegenerate, and if there are no neutral periodic points, then topolog-
ical conjugacy on R implies quasiconformal conjugacy on C [KSvS07].
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• Cheraghi showed that if a complex polynomial z 7→ zd + c, with d ≥ 2,
satisfies the secondary limbs condition, then the existence of a priori
bounds implies combinatorial rigidity [Che10].

2 The results

A polynomial-like map f : U → V is a holomorphic branched covering map of
degree d ≥ 2, where U and V are topological disks properly contained in C,
and U is a compact subset of V . The Julia set of f is

K(f) =
∞⋂
n=0

f−n(U).

The Julia set is compact, perfect, and full. If a set W is chosen such that
K(f) ⊂ W and f |W is a polynomial-like map of degree d, then K(f |W ) =
K(f).

Let f : U → V be a polynomial-like map, and let c be a critical point of
f . We say that f is primitively renormalizable around c with period p ≥ 2 if
there are topological disks U ′ and V ′ containing c such that fp : U ′ → V ′ is
a polynomial-like map, K(fp|U ′) is connected, and U ′, f(U ′), . . . , f p−1(U ′) are
pairwise disjoint. We call the polynomial-like map fp : U ′ → V ′ a primitive
renormalization of f .

LetR(c) = {pn} denote the set of periods pn such that f admits a primitive
renormalization fpn : Un → V n around c. If |R(c)| = ∞, then we say that
f is infinitely primitively renormalizable around c; in this case, if there is a
positive number B such that pn+1/pn ≤ B for each n, then we say that the
infinitely many primitive renormalizations around c are of bounded type or
have bounded combinatorics. The main theorem is that such maps enjoy a
compactness condition called a priori bounds.

Theorem A. If a polynomial-like map f admits infinitely many primitive
renormalizations of bounded type around each of its critical points, then it has
a priori bounds.

This theorem is a generalization of a theorem due to Jeremy Kahn for maps
of degree 2, which necessarily have only one critical point [Kah06]. Kahn’s
proof remains valid for polynomial-like maps of degree ≥ 3 having exactly one
critical point, so the heart of A is the case where there is more than one critical
point. The a priori bounds condition implies that we can choose the domains
associated with the renormalizations in such a way that the annuli V n \ Un
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have modulus bounded away from 0. This allows us to prove the following
theorem.

Theorem B. The Julia set K(f) is locally connected.

Local connectivity is more than just an arcane topological property. Let
F : C → C be a complex polynomial of degree d ≥ 2. Assume that F is
monic and that its polynomial-like restriction to a disk of large radius admits
infinitely many primitive renormalizations of bounded type around each of its
critical points. The Julia set KF of this restriction of F coincides with the
set of z in C such that F n(z) 6→ ∞ as n → ∞. Since KF is connected and
full, the Riemann mapping theorem implies that there is a unique conformal
isomorphism ΦF : C \ D → C \ KF normalized such that ΦF (z)/z → 1 as
z → ∞. By the classical theorem of Carathéodory, local connectivity of KF

implies that ΦF extends continuously to a map C\D→ C. In this case, Douady
showed that KF is homeomorphic to the quotient space obtained from D by
collapsing to single points the convex hulls of points in ∂D mapped to the
same point by Φ [Dou93].

Let G : C → C be another complex polynomial of degree d. Assume that
G is monic and that G is combinatorially equivalent to F . By combinatorial
equivalence, we mean that if ΦG : C \ D → C \KG is the unique normalized
conformal isomorphism, then ΦG ◦ Φ−1

F : C \ KF → C \ KG extends to a
homeomorphism C→ C. The following theorem says that F is combinatorially
rigid.

Theorem C. The homeomorphism ΦG ◦ Φ−1
F : C→ C is holomorphic.

Hence, F = G.

3 The proofs

The first step in proving theorem A is to implement Jeremy Kahn’s “improve-
ment of life” philosophy in the context of polynomial-like maps of degree d ≥ 2
with more than one critical point. To this end, we need a notion of renormal-
ization that respects geometry, and this requires us to work in a larger space
of maps, the space of pseudo-polynomial-like maps. These maps restrict to
polynomial-like maps.

Let f : (V,K) → (V,K) be a pseudo-polynomial-like map, and assume
that its polynomial-like restriction admits a primitive renormalization of period
p around one of its critical points. Then there is a little Julia set K0 associated
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with this renormalization, and there is the associated cycle of little Julia sets
of f ,

K =

p−1⋃
j=0

Kj ⊂ K.

If f has exactly one critical point, then K contains the critical value. However,
when there is more than one critical point, it can happen that some critical
values of f are outside of K. For now, we will assume that the critical values
of f are contained in K.

For each j = 0, . . . , p− 1, we can define the pseudo-polynomial-like canon-
ical renormalization Rjf : Vj → Vj of f around Kj of period p. Let γj be
the hyperbolic geodesic in V \ K homotopic to Kj. The special property of
Rjf is that the Julia set of the polynomial-like restriction of Rjf is canonically
identified with Kj, and the hyperbolic length of the core geodesic in the an-
nulus Vj \Kj is equal to the hyperbolic length of γj. We prove the following
“improvement of life” theorem.

Theorem D. There exists a threshold µ > 0, depending only on certain com-
binatorial data, such that if f ′ is a canonical renormalization of a pseudo-
polynomial-like map f (with the specified combinatorics), then mod(f ′) < µ
implies mod(f) < µ/2.

Now, assume that the polynomial-like restriction of f admits infinitely
many primitive renormalizations of bounded type around each critical point.
A deceptively strong assumption about the critical points of f , which we will
not discuss further, allows us to consider the “tree of renormalizations” grow-
ing from f , consisting of the canonical renormalizations of f , the canonical
renormalizations of the canonical renormalizations of f , and so on. Theorem
D implies that the moduli of these pseudo-polynomial-like renormalizations
are bounded away from 0.

Proving theorem A now amounts to removing the combinatorial assump-
tions we made on the critical points of f . This follows from decomposing f into
small “pieces” that do satisfy the assumptions, so we obtain a lower bound
for the moduli of all maps in the “forest” of trees of renormalizations for a
general pseudo-polynomial-like map whose polynomial-like restriction admits
infinitely many primitive renormalizations of bounded type around each of its
critical points.

This implies that for a sufficiently deep level of renormalization, there are
definitely thick annuli separating the little Julia sets of each deeper level of
renormalization, which is the key component in the proof of theorem B. We
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finish the proof by appealing to the theory of Yoccoz puzzles and compactness
theorems for univalent maps.

The proof of the rigidity theorem, theorem C, amounts to building a quasi-
conformal map C→ C that is homotopic, relative the postcritical set of F , to
a homeomorphism conjugating F and G. We do this by splicing together qua-
siconformal maps, defined on finitely connected planar domains with bounded
geometry, in such a way that the resulting quasiconformal map is in the desired
homotopy class.

To this end, we consider a compact space X of pseudo-polynomial-like
maps with specified combinatorial data and geometric bounds. We associate
to any f : V → V in X a planar Riemann surface S(f) without cusps that is
homeomorphic to R2 \ {1, . . . , p}. Let Γ be the core geodesic in the annulus
V \K. There is a unique cycle of little Julia sets K = K0 ∪ · · · ∪Kp−1 for f .
For each j = 0, . . . , p−1, let γj be the hyperbolic geodesic in V\K homotopic
to Kj. The Riemann surface S(f) is the domain bounded by Γ and certain
equidistant curves for the geodesics

⋃
j γj. The renormalization combinatorics

of the polynomial-like restriction of f determine a “marking” of the domain
S(f).

Pick a basepoint f∗ in X. Let Teich(f∗) denote the reduced Teichmüller
space of S(f∗). The key step in the proof of theorem C is the following theorem.

Theorem E. The map Ψ : X → Teich(f∗), associating to a map f in X the
marked domain S(f), is continuous.

Then Ψ(X) is a compact subspace of Teich(f∗). The fact that our renor-
malizations have uniformly bounded combinatorics allows us to decompose
the domain of F , our starting polynomial, as the union of the postcritical set
of F and countably many domains with bounded geometry. This gives us a
quasiconformal map C → C that sends the postcritical set of F to the post-
critical set of G, but this map is probably not in the right homotopy class. A
construction similar to the one for S(f) allows us to adjust our map so that it
is in the correct homotopy class, and the proof is finished.

4 The structure of the chapters

There are three chapters following the introduction and background material.
In chapter 3, we generalize Kahn’s improvement of life theorem to the

context of pseudo-polynomial-like maps with more than one critical point.
First, we use a combinatorial model to study the combinatorics of arcs joining
the little Julia sets to each other and to∞. There is an exponential growth of

8



certain canonical weights, which is encapsulated in the main inequality. We use
the canonical arc diagram to relate hyperbolic geometry and combinatorics.
The covering lemma of Kahn and Lyubich [KL09c] gives us a threshold allowing
us to control degenerating geometry. At the end of the chapter, we prove the
existence of a priori bounds, theorem A. Actually, we obtain beau bounds.

In chapter 4, we describe a decomposition that allows us to apply theorem
A to a polynomial admitting infinitely many primitive renormalizations, with
bounded combinatorics, around one of its critical points. This amounts to the
observation that after throwing away the first few levels of renormalization, the
subsequent renormalizations always involve the same set of critical points of
the original map. Using this decomposition, we prove a priori bounds around
the relevant critical points. Then we prove local connectivity of the Julia set,
theorem B. At the end of the chapter, we cycle trees to label the little Julia
sets according to their nested structure. This simplifies notation for the proof
of rigidity.

In chapter 5, we prove the rigidity theorem, theorem C. We begin by de-
scribing some geometric objects associated with simple, closed geodesics in a
hyperbolic Riemann surface. Then we describe a compact space containing all
of the renormalizations of the polynomials under consideration. This allows
us to prove that the domains associated with one level of renormalization have
bounded geometry. Next, we describe another compact space controlling the
geometry of the domains associated with two consecutive levels of renormal-
ization. The proof of rigidity amounts to building a quasiconformal map in the
wrong homotopy class and fixing it. Building the wrong map relies on bounded
geometry for the domains associated with one level of renormalization. Fixing
the homotopy class relies on bounded geometry for the domains associated
with two consecutive levels of renormalization. The proof of rigidity also relies
on two intuitively obvious topology theorems, which we prove at the end of
the chapter.
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Chapter 2

Background

5 Notation and terminology

We will use the following basic definitions:

• A topological disk is a simply connected domain in a Riemann surface.

• A topological annulus is a doubly connected domain, with finite modulus,
in a Riemann surface.

• A (non-degenerate) continuum is a compact, connected subset of C con-
taining at least two points. A continuum K is full if C \K is connected.

• A component of a topological space means a connected component.

We will use the following notations:

• Crit(f) denotes the set of critical points of a smooth map f .

• Dil(h) denotes the quasiconformal dilatation of the quasiconformal map
h.

• diamX(Y ) denotes the diameter of a subset Y of a metric space X.

• distX(a, b) denotes the distance, in a metric space X, between points a
and b.

• f denotes a pseudo-polynomial-like map.

• f : (V, U) → (V ′, U ′) means that U ⊂ V , U ′ ⊂ V ′, f : V → V ′, and
f |U : U → U ′.
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• fn denotes the n-th iterate of f , when n ≥ 0 is an integer.

• G = (V,E) denotes the graph with vertices V and edges E.

• mod(A) and mod(f) denote the modulus of the annulus A and the mod-
ulus of the pseudo-polynomial-like map f , respectively.

• |γ|X denotes the length of curve curve with respect to the metric on X.

• L(Γ) denotes the extremal length of the path family Γ.

• W(Γ) denotes the extremal width of the path family Γ.

Let X and Y be topological spaces, and let f : X → X and g : Y → Y
be continuous maps. We say that f and g are topologically conjugate, denoted
f ∼top g, if there is a homeomorphism h : X → Y such that h ◦ f = g ◦ h.
Suppose that X and Y are Riemann surfaces and that f and g are holomorphic
maps. We say that f and g are quasiconformally conjugate, denoted f ∼qc g,
if there is a quasiconformal map h : X → Y such that h ◦ f = g ◦ h. We say
that f and g are conformally conjugate if there is a conformal isomorphism
h : X → Y such that h ◦ f = g ◦ h.

6 Polynomials

Let f : C → C, f(z) = zd + ad−1z
d−1 + · · · + a0, be a polynomial of degree

d ≥ 2. The filled Julia set of f is the set K = K(f) = {z ∈ C : fn(z) 6→ ∞}.
We call C \K(f) the basin of ∞.

Let g : C → C be another polynomial. We say that f and g are hybrid
conjugate, denoted f ∼hyb g, if there is a quasiconformal conjugacy h : C→ C
with Dil(h) = 0 almost everywhere on K.

Theorem 6.1. The filled Julia set K is compact and full. It is connected if
and only if Crit(f) ⊂ K.

We will only consider polynomials with connected Julia sets. In this case,
there is a unique conformal isomorphism B = Bf : C \K → C \ D such that
B(z)/z → 1 as z →∞. The map B satisfies B(f(z)) = (f(z))d.

Consider the foliations of the domain C\D by radial line segments {re2πiθ :
r ∈ (1,+∞)}, for all θ ∈ R/Z, and by circles {z ∈ C : |z| = er}, for all
r ∈ (1,+∞). We call Rθ = Rθ(f) = B−1(e2πiθ(0,+∞)) the external ray of
angle θ ∈ R/Z. We say that Rθ lands on a point a ∈ ∂K if Rθ ⊂ C is equal
to Rθ ∪ {a}. We call Er = Er(f) = B−1({z ∈ C : |z| = er}) the equipotential
of level r.
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Theorem 6.2. (Assume that K is connected.) Let a ∈ ∂K be a repelling
periodic point. Then there is a finite, positive number of external rays landing
on a.

Let a ∈ ∂K be a repelling p-periodic point. Let R(a) = Rf (a) be the
union of external rays landing on a. Let a = {a = a0, . . . , ap−1} be the p-cycle
containing a. LetR(a) = Rf (a) =

⋃
a∈aR(a). Let Er be an equipotential, and

let D be the bounded component of C\Er. Let Γ be the set (∂D)∪R(a) ∩D.
For each integer n ≥ 0, let Yn be the set consisting of P ⊂ C, where P ⊂ C
is a bounded component of f−n(Γ). We call Yn the set of Yoccoz puzzle
pieces of depth n. The construction of these pieces depends on the choice of
equipotential Er and the repelling periodic cycle a, but our notation will not
reflect this.

7 Polynomial-like maps

For a thorough introduction to the theory of polynomial-like map, the reader
is invited to consult [DH85]. The following theorem says that polynomial-like
maps behave like polynomials.

Theorem 7.1 (Straightening theorem). Let f : U → V be a polynomial-
like map (with connected K) of degree d. Then f is hybrid conjugate to a
polynomial of degree d, unique up to affine conjugacy. If mod(V \U) ≥ µ > 0,
then the dilatation of the quasiconformal map providing the hybrid conjugacy
is controlled by µ.

Proof. See [DH85].

Strictly speaking, polynomials are not polynomial-like maps. However, for
the following theorem, let us adopt the convention that a polynomial of degree
d, with connected Julia set, is also called a polynomial-like map.

Theorem 7.2. Fix an integer d ≥ 2 and a real number µ > 0. The space
of polynomial-like maps f : U → V of degree d, with K(f) connected and
mod(V \ U) ≥ µ, is compact, up to affine conjugation.

Proof. See theorem 5.8 in [McM94].
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8 Pseudo-polynomial-like maps

The theory of pseudo-polynomial-like maps is developed in [Kah06]. We dis-
cuss here only the theory necessary for our results.

A pseudo-polynomial-like map f consists of the following objects:

• topological disks U′ and U properly contained in C,

• a holomorphic branched covering map f : U′ → U of degree d ≥ 2,

• a holomorphic immersion i : U′ → U, and

• compact, connected, and full sets K ⊂ U and K′ ⊂ U′.

We require that K′ = f−1(K) = i−1(K). Abusing notation, we will call
f : (U,K)→ (U,K) a pseudo-polynomial-like map of degree d. We call K the
filled Julia set of f . The modulus of f is defined to be mod(f) = mod(U \K).

The following theorem says that pseudo-polynomial-like maps behave like
polynomial-like maps.

Theorem 8.1. Let f : (U,K) → (U,K) be a pseudo-polynomial-like map
of degree d. Then i restricts to an embedding near K. There exist domains
U, V ⊂ U such that f ◦ i−1 : U → V is a polynomial-like map of degree d, and
K(f ◦ i−1|U) = K. If mod(f) ≥ µ > 0, then the domains U and V can be
chosen so that mod(V \ U) ≥ ε, where ε = ε(d, µ) > 0.

Proof. See lemma 2.4 in [Kah06].

We call f ◦ i−1 : U → V a polynomial-like restriction of f .
We equip the set of pseudo-polynomial-like maps of degree d ≥ 2 with a

topology: The domains are given the Carathéodory topology, and the maps are
given the topology of uniform convergence on compact sets. For the following
theorem, let us also call i, f : C→ C a pseudo-polynomial-like map of degree
d when i ∈ Aut(C), f is a polynomial of degree d, and f ◦ i−1 is a polynomial
with connected Julia set.

Theorem 8.2. Fix an integer d ≥ 2 and a real number µ > 0. The space of
pseudo-polynomial-like maps f of degree d, with mod(f) ≥ µ, is compact, up
to pre- and post-composition by two independent affine maps.

For the proof of this theorem, we will need the following estimate.
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Lemma 8.3. Let A ⊂ C be an annulus, with core geodesic γ ⊂ A and
mod(A) ≥ µ > 0. Let D ⊂ C denote the bounded component of C \ A.
There exists r = r(µ) > 0 such that

distC(γ,D) > r · diamC(γ).

Proof. See theorem 2.5 in [McM94].

Proof of theorem 8.2. Let {in, fn : (Un, K
′
n) → (Vn, Kn)}n be a sequence of

pseudo-polynomial-like maps, where each in is a holomorphic immersion, and
each fn is a holomorphic branched covering map of degree d. Pre- and post-
composing by two affine maps of the form z 7→ Az + B, where (A,B) ∈
(C \ {0}) × C, we can assume that {0, 1} ⊂ K ′n ⊂ D, {0, 1} ⊂ Kn ⊂ D, and
in(0) = 0. Passing to a subsequence, we can assume that there are compact,
connected sets K ′ and K of Euclidean diameter 1 such that K ′n → K ′ and
Kn → K in the Hausdorff topology.

Let γn ⊂ Vn \ Kn be the core geodesic. Let An ⊂ Vn \ Kn denote the
hyperbolic collar around γn. Since mod(Vn\Kn) ≥ µ, we know that |γn|Vn\Kn ≤
L, where L = L(µ) > 0. Then mod(An) ≥ m, where m = m(L) > 0. Let
Dn ⊂ Vn be the topological disk bounded by γn. Lemma 8.3 implies that

distC(∂Vn, 0) > distC(γn, Dn) > r · diamC(γ) > r,

where r = r(m) > 0. This shows that each topological disk Vn contains the
round disk of radius r around 0. Then by passing to a subsequence, we can
assume that there is a topological disk V ⊂ C such that (Vn, 0) → (V, 0) in
the Carathéodory topology. Clearly, mod(V \K) ≥ µ.

Since fn : Un → Vn is a branched covering map of degree d with critical
values in Kn ⊂ V , we know that mod(Un \ K ′n) = mod(Vn \ Kn)/d ≥ µ/d.
By an argument similar to the one in the paragraph above, we can assume
that there is a topological disk U ⊂ C such that (Un, 0) → (U, 0) in the
Carathéodory topology. Then mod(U \K ′) ≥ µ/d.

Let Xn = i−1
n ({0, 1}). Passing again to a subsequence, we can assume that

there is a finite set X such that Xn → X in the Hausdorff topology. Then
{in|Un \Xn}n is a normal family, because it consists of functions omitting the
values 0 and 1. Then this family is uniformly bounded on compact subsets of
U \X. Our normalization implies that {in|Un \K ′n}n is uniformly bounded, so
in fact, {in}n is uniformly bounded on compact subsets of U . Passing again to
a subsequence, we can assume that there is a holomorphic function i : U → V
such that in → i uniformly on compact subsets of U . Since i must assume the
values 0 and 1, it is non-constant, and as a non-constant limit of holomorphic
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immersions, Hurwitz’ theorem implies that i is a holomorphic immersion. (In
the case where U = C, we know that i is an entire immersion, i−1(K) = K ′,
and i is bijective on a neighborhood of K ′. It follows that i is affine.)

Now, let us consider the maps {fn}n. Theorem 5.6 in [McM94] asserts
that by passing to a subsequence, we can assume that there is a holomorphic
branched covering map f : (U, 0) → (V, 0) of degree ≤ d such that fn → f
uniformly on compact subsets of U . Since mod(Un\K ′n) ≥ µ/d, we can assume,
by passing to a subsequence, that Crit(fn) → Crit(f) ⊂ U in the Hausdorff
topology. Then deg(f) = d, and we are finished.

There is a notion of iteration of pseudo-polynomial-like maps. (Iteration
is defined as for holomorphic correspondences. See [Kah06].) We will briefly
describe the construction of f2 : U → U, the second iterate of a pseudo-
polynomial-like map f : U → U consisting of the maps i, f : U1 → U. The
fibered product

U2 := {(x, y) ∈ U1 ×U1 : f(x) = i(y)}

is a Riemann surface, because the derivative of i is non-vanishing. Consider
the diagram,

U2

U1 U1

U U U,

πleft πright

i f i f

where πleft and πright denote the projections to the left and right factors. One
checks that U2 is a topological disk, i2 := i ◦ πleft is a holomorphic immersion,
and f2 := f ◦πright is a holomorphic branched covering map of degree d2. Then
f2 consists of the maps i2, f2 : U2 → U.

For any integer n ≥ 1, we have the n-th iterate of f , denoted fn : U→ U,
which consists of the following data:

Un

U U.

in fn
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The filled Julia set K is embedded in each Un. Abusing notation, we identify
K with its image under the embedding. We can also consider the restriction
of f to Un, which consists of the following data:

Un

Un−1 Un−1.

i f

9 Renormalization

9.1 Polynomial-like renormalization

Let f : U → V be a polynomial-like map of degree d, and let c ∈ Crit(f).
Given an integer p ≥ 2, we say that f is primitively renormalizable around c,
with period p, if there are domains U ′ and V ′ such that

1. c ∈ U ′ ⊂ U ,

2. fp : U ′ → V ′ is a polynomial-like map with K(fp|U ′) connected, and

3. the topological disks U ′j = f j(U ′), for each j = 0, . . . , p− 1, are pairwise
disjoint.

We say that the polynomial-like map fp|U ′ is a primitive renormalization of
period p. For each j = 0, . . . , p − 1, let Kj = f j(K(fp|U ′)). Each set Kj is
a little filled Julia set, and K =

⋃p−1
j=0 Kj is the cycle of little Julia sets. It is

known that f(K) = K.
Each little Julia set Kj has a neighborhood on which fp restricts to a

polynomial-like map with filled Julia setKj. IfKj contains a critical point of f ,
then any such polynomial-like restriction is a polynomial-like renormalization.

If f ′ is a polynomial-like renormalization of a quadratic-like map f , then
deg(f ′) = 2. If f ′ is a polynomial-like renormalization of a polynomial-like
map f , with deg(f) ≥ 3, then it is possible that deg(f ′) > deg(f).

Lemma 9.1. deg(fp|U ′) ≤ 2d−1.

To prove this lemma, we will use the following fact:

Lemma 9.2. Fix an integer d ≥ 2. If a set positive integers {rj}Nj=1 satisfies∑
rj = d− 1, then

∏
(1 + rj) ≤ 2d−1.
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Proof. First, we observe that if each rj = 1, then N =
∑
rj = d − 1, and∏

(1 + rj) = 2N = 2d−1. Otherwise, there is an index n such that rn ≥ 2.
In this case, N ≤ d − 2, because 2 + (N − 1) ≤ rn +

∑
j 6=n rj = d − 1. We

modify the positive integers rj, j = 1, . . . , N , to obtain positive integers sj,
j = 1, . . . , N+1, as follows: sn = rn−1, sN+1 = 1, and sj = rj, j 6= n. Clearly,∑
sj =

∑
rj = d− 1. Since rn ≥ 2, we know that (1 + sN+1)(1 + sn) = 2rn ≥

1 + rn. We compute∏
(1 + rj) = (1 + rn)

(∏
j 6=n

(1 + rj)

)
= (1 + rn)

( ∏
j 6=n,N+1

(1 + sj)

)

≤ (1 + sN+1)(1 + sn)

( ∏
j 6=n,N+1

(1 + sj)

)
=
∏

(1 + sj).

Iterating this process, we see that the largest product is obtained when each
rj = 1.

Proof of lemma 9.1. We will apply the Riemann-Hurwitz formula to the holo-
morphic branched covering map f : U → V of degree d. We obtain χ(U) =
d · χ(V )−∑(dj − 1), where dj denotes the local degree of f near the critical
point cj, and j indexes all of the critical critical points of f . This reduces
to
∑
rj = d − 1, where rj = dj − 1. By the lemma above, we see that

deg(fp|U ′) ≤∏ dj ≤ 2d−1.

We will say that the polynomial-like renormalization fp|U ′ is good, or that
f admits a good renormalization, if f(Crit(f)) ⊂ K. The planar domain V \K
is a hyperbolic Riemann surface. For each j = 0, . . . , p− 1, there is a unique,
peripheral, simple, closed geodesic γj ⊂ V \ K going around Kj.

Lemma 9.3. If f : U → V admits a good renormalization fp|U ′, then
2−(d−1)|γ0|V \K ≤ |γj|V \K ≤ 2d−1|γ0|V \K.

Proof. Using the fact that fp|U ′ is good, we know that f : U \f−1(K)→ V \K
is a covering map. Consider the index j + 1 of γj+1 as an element of Z/pZ.
Let f ∗γj+1 denote the connected component of f−1(γj+1) homotopic to γj in
f−1(V \ K) = U \ f−1(K). By the Schwarz lemma, we know that if dj is the
local degree of f near Kj, then

|γj+1|V \K =
1

dj
|f ∗γj+1|U\f−1(K).

Since U \ f−1(K) is contained in V \ K, the Schwarz lemma also tells us that

|f ∗γj+1|U\f−1(K) ≥ |f ∗γj+1|V \K.
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Since the geodesic γj is homotopic to f ∗γj+1 in V \ K, we know that

|f ∗γj+1|V \K ≥ |γj|V \K.

Iterating these three inequalities, we see that

|γ0|V \K ≥
1

dp−1dp−2 · · · dj
|γj|V \K ≥

1

dp−1 · · · d0

|γ0|V \K.

To finish the proof, we apply lemma 9.1.

Remark 9.1. One problem with polynomial-like renormalization is that there
is too much freedom in the choice of domains. Even if a renormalizable
polynomial-like map has large modulus, we can choose domains such that
a polynomial-like renormalization has small modulus. Consequently, we want
to define a renormalization that takes advantage of all the modulus available.
This leads us to canonical renormalization, defined below.

9.2 Canonical renormalization

Let f : U→ U be a pseudo-polynomial-like map of degree d, consisting of the
following data:

U′

U U.

i f

Let g := f ◦ i−1 : U → V be a polynomial-like restriction of f . Suppose that
g admits a primitive renormalization, with period p, around one of its critical
points. Let K =

⋃
Kj be the corresponding cycle of little Julia sets. Suppose

that g(Crit(g)) ⊂ K. Under these conditions, we say that f is primitively
renormalizable with period p.

Choose a little Julia set Kj ⊂ K. We will define the canonial renormal-
ization of f around Kj. The domain U \ K is a hyperbolic Riemann surface.
Let γ ⊂ U \ K denote the geodesic homotopic to Kj ⊂ K. Let D ⊂ U be the
topological disk bounded by γ.

Let A = Aγ(U \K) be the annulus covering space for U \K corresponding
to γ, and let π : A → U \ K be a covering map. (See figure 2.1.) Identify γ
with the core geodesic in A, and let A0 ⊂ A \ γ be the component on which π
is injective. Gluing A and D by the conformal isomorphism π : A0 → D \Kj,
we obtain a topological disk V.
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A

U \ K

Figure 2.1: The annulus A covers U \ K. The red geodesic in A maps isomet-
rically to the red geodesic in U \ K. The portion of A on the inside of the
red geodesic maps bijectively to the portion of U \ K on the inside of the red
geodesic.

Let fp : Up → Up be the p-th iterate of f . It consists of the following data:

Up

U U.

ip fp

Define Kp = f−1
p (K) ⊂ Up. Let γ′ ⊂ Up \ Kp be the geodesic homotopic to

Kj. Let D′ ⊂ Up be the topological disk bounded by γ.
Let A′ = Aγ′(U

p \ Kp) be the annulus covering space for Up \ Kp, and let
π′ : A′ → Up \Kp be a covering map. Identify γ′ with the core geodesic in A′,
and let A′0 ⊂ A′ \ γ′ be the component on which π′ is injective. Gluing A′ and
D′ by the conformal isomorphism π′ : A′0 → D′ \Kj, we obtain a topological
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disk V′.
The holomorphic branched covering map fp : Up → U restricts to a cov-

ering map fp : Up \ Kp → U \ K and an isometry fp : γ′ → γ. The covering
map fp : Up \ Kp → U \ K lifts to a covering map f ′ : A′ → A. Similarly, the
holomorphic immersion ip : Up \Kp → U\K lifts to an immersion i′ : A′ → A.

A′ A

Up \ Kp U \ K.

i′,f ′

π′ π

i,f

Abusing notation, let f ′ and i′ denote the maps V′ → V obtained by gluing
the maps f ′, i′ : A′ → A with f, i : Up \Kp → U\K by π and π′. Let f ′ denote
the pseudo-polynomial-like map consisting of the following data:

V′

V V

i′ f ′

We call f ′ the canonical renormalization of f around Kj. By construction, we
have mod(f ′) = π/|γ|U\K.

Lemma 9.4. Suppose that f : U → U admits a good renormalization of
period p, with little Julia sets K =

⋃
jKj. Let {γj}j denote the corresponding

peripheral geodesics in U \ K. Then 2−(d−1)|γ0|U\K ≤ |γj|U\K ≤ 2d−1|γ0|U\K.

Proof. The pseudo-polynomial-like map consists of a holomorphic branched
covering map f and a holomorphic immersion i. The proof of this lemma
parallels that of lemma 9.3, with the immersion i taking the place of the
inclusion map.

10 Quasisymmetric extensions and quasicon-

formal interpolations

Lemma 10.1. Let C be a quasicircle, and let A ⊂ C be a topological annulus
such that C is the inner boundary component of A. Let C ′ and A′ be defined
similarly. Let f : A→ A′ be a quasiconformal map. Then there is a quasicon-
formal map F : C → C such that F |C = f . If modA ≥ µ > 0, then DilF is
bounded in terms of µ and the dilatations of C and C ′.
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Proof. Let G be the component of C \ C containing A. Let G′ be defined
similarly. Theorem 6.4 in [LV73] asserts that there exists a quasiconformal
map F : G → G′ with F |C = f and DilF controlled by µ and Dil f . Quasi-
conformal reflection across C and C ′ completes the lemma.

Lemma 10.2. Let A ⊂ C be a topological annulus bounded by quasicir-
cles, with m = modA. Let A′ and m′ be defined similarly. Suppose that
f : ∂A → ∂A′ restricts to a quasisymmetric homeomorphism between the in-
ner (respectively, outer) boundary components of A and A′. Then there is a
quasiconformal map F : A → A′ with F |∂A = f and DilF controlled by the
dilatations of the quasicircle boundaries, Dil f , and max{m/m′,m′/m}.
Proof. See proposition 2.30(b) in [BF14].

11 Extremal length

Two good references for the topic of extremal length are [Ahl10] and [Oht70].
Given a path family Γ on a Riemann surface X, we let L(Γ) denote the ex-
tremal length of Γ. The extremal width of Γ is W(Γ) = 1/L(Γ).

Lemma 11.1. Let Γ and Γ′ be path families on a Riemann surface X. If each
γ ∈ Γ contains some γ′ ∈ Γ′, then L(Γ) ≥ L(Γ′).

Proof. See theorem 4-1 in [Ahl10].

Lemma 11.2. Let f : X → Y be a non-constant holomorphic map. Let Γ be
a path family on X. Then L(f(Γ)) ≥ L(Γ).

Proof. See theorem 2.11 and the remark preceeding theorem 2.14 in [Oht70].
Alternatively, see lemma 4.3 in [KL09c].

Lemma 11.3. Let f : X → Y be a K-quasiconformal map. Let Γ be a path
family on X. Then K−1 L(Γ) ≤ L(f(Γ)) ≤ K L(Γ).

Proof. See Theorem 2.2.1 in [FM07] for a proof when f is C1. The same proof
holds in general by Fuglede’s theorem.

12 Weighted arc diagrams

The study of weighted arc diagrams first appeared in [Kah06].
Let S be a hyperbolic Riemann surface of finite type, without cusps. As-

sume that S is not homeomorphic to an annulus and that the ideal boundary
of S, ∂IS, is non-empty. We define S = S ∪ ∂IS.
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• A path γ : (0, 1)→ S is proper (in S) if it admits a continuous extension
γ : [0, 1] → S such that γ(0) and γ(1) belong to ∂IS. A homotopy
H : (0, 1)× [0, 1]→ S is proper if for each t, γt : s 7→ H(s, t) is a proper
path. We denote by [γ] = [γ]S the proper homotopy class of a proper
path γ.

• An arc in S is the proper homotopy class of a proper path. We say that
α is trivial if for any compact set F ⊂ S, there exists γ ∈ α such that
γ ⊂ S \ F .

• Let A = A(S) be the set of nontrivial arcs in S.

• An arc diagram X on S is a subset of A consisting of non-crossing arcs:
For any α and β in X, there exist γ ∈ α and δ ∈ β such that γ ∩ δ = ∅.

• A weighted arc diagram W on S is a function A(S)→ [0,+∞) such that

supp(W ) = {α ∈ A(S) : W (α) > 0}

is an arc diagram on S. If f : R→ S is a proper, holomorphic map, then
we define a weighted arc diagram f ∗W on R by (f ∗W )(α) = W (f∗α).

• Let X and Y be weighted arc diagrams on S. Given c ∈ [0,+∞), we
write X ≤ Y + c if for every α ∈ supp(X), we have X(α) ≤ Y (α) + c.
Consequently, the set of weighted arc diagrams on S is partially ordered
with respect to ≤.

• We define a norm on the set of weighted arc diagrams:

‖X‖ =
∑
α∈A

X(α).

• The canonical weighted arc diagram Wcan on S is defined in the following
way. Choose a holomorphic covering map π : D → S. Let Γ be the
group of deck transformations of π, and let Λ ⊂ ∂D be the limit set of Γ.
Then S is conformally isomorphic to D/Γ, and π extends continuously
to a covering map π : D \ Λ → S. We can lift a representative γ of
an arc α in A(S) to obtain a proper path γ̃ in D. The proper path
γ̃ joins two connected components, I and J , of (∂D) \ Λ, and there is
a conformal map φ : D → (0, a + 2) × (0, 1) ⊂ R2 ∼= C such that φ
extends to a homeomorphism (D, I, J) → ([0, a + 2] × [0, 1], [0, a + 2] ×
{0}, [0, a + 2] × {1}). We define Wcan(α) = max{0, a}. If Wcan(α) > 0,
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the conformal rectangle φ−1((1, a + 1) × (0, 1)) embeds into S via π,
and we call R(α) = π(φ−1((1, a + 1) × (0, 1))) the canonical rectangle
corresponding to α. It can be shown that Wcan(α) and R(α) are well-
defined, independent of the choice of π and γ̃. There is an obvious
foliation of R(α) induced by the vertical foliation of (1, a+ 1)× (0, 1). If
α and β belong to supp(Wcan), then α 6= β implies that R(α) and R(β)
are disjoint.

• A Borel set F is called a proper lamination on S if there are disjoint
proper paths Lω : (0, 1)→ S such that F =

⋃
ω Lω((0, 1)). We can write

F =
⋃
α∈A(S)F(α), where F(α) = {Lω : α = [Lω]}. By associating to

α the extremal width W(F(α)), we see that the proper lamination F
induces a weighted arc diagram WF . Weighted arc diagrams induced
by proper laminations are called valid. If f : R → S is a holomorphic
covering map, then f ∗F is a proper lamination on R, and Wf∗F = f ∗WF .

Lemma 12.1. If X is an arc diagram on S, then |X| ≤ −3χ(S). In particular,
if S is homeomorphic to a disk minus N points, then |X| ≤ 3N .

Proof. Complete X to a triangulation, and use the fact that each triangle
meets 3 edges, and each edge meets 2 triangles.

12.1 Domination

Let U and V , with U ⊂ V , be hyperbolic Riemann surfaces of finite type,
without cusps. Assume that U and V have non-empty ideal boundary and
that neither U nor V is homeomorphic to an annulus.

Let γ ⊂ V be a proper path. Then at most finitely many components
of γ ∩ U are proper paths in U . Let (γ1, . . . , γn) be the ordered set of these
components. The itinerary of γ is the ordered set I(γ) = ([γi])i, where [γi]
denotes the proper homotopy class of γi ⊂ U . Given a proper arc β in V and
an ordered set (αi)i of proper arcs in U , we write (αi)i −→ β if there exists
γ ∈ β such that I(γ) = (αi)i.

Let X be a weighted arc diagram on U , and let Y be a weighted arc diagram
on V . We say that X dominates Y , denoted X ( Y , if we can write

X =
∑
i

∑
j

wi,jαi,j,

Y ≤
∑
i

viβi,
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where for each i, we have (αi,j)j −→ βi and
∑

j w
−1
i,j ≤ v−1

i . We will not deal
directly with the definition of domination. Instead, domination will be appear
as a hypothesis or conclusion of some of our lemmas and theorems.

The next two lemmas follow trivially from the definitions.

Lemma 12.2. If X +B( Y , then X ( Y − ‖B‖.
Lemma 12.3. If X ( Y ≥ Z, then X ( Z.

12.2 Properties

Lemma 12.4. Let W be a valid weighted arc diagram on S. Then for any arc
α in A(S),

W (α) ≤ W(α) ≤ Wcan(α) + 2.

Proof. See lemma 3.2 in [Kah06].

Lemma 12.5. If f : U → V is a holomorphic covering map of finite degree,
then Wcan(U) = f ∗(Wcan(V )).

Proof. See lemma 3.3 in [Kah06].

Let E denote the set consisting of connected components of ∂IS, and let
E ′ be a subset of E . An arc A(S) that joins elements of E ′ is called horizontal.
An arc in A(S) that joins an element of E ′ and an element of E \ E ′ is called
vertical. We let Ah(S) denote the subset of A(S) consisting of horizontal arcs,
and we define a weighted arc diagram W h

can = Wcan|Ah(S). We define Av(S)
and W v

can in the corresponding way.

Lemma 12.6. If f : U → V is a holomorphic map such that f∗(Ah(U)) ⊂
Ah(V ), then W h

can(U) ≤ f ∗(W h
can(V )).

Proof. See lemma 3.4 in [Kah06].

Lemma 12.7. If U ⊂ V (and π1(U) ↪→ π1(V ) is surjective), then Wcan(U)(
Wcan(V )− 6|χ(U)|.
Proof. See corollary 3.10 in [Kah06].

12.3 Hyperbolic geometry

Let W = Wcan(S), and let γ ⊂ S be a peripheral geodesic. We let 〈W, γ〉 =∑
α∈supp(W ) W (α)〈γ, α〉, where 〈γ, α〉 denotes the geometric intersection num-

ber of γ with α.

Lemma 12.8. If γ is a peripheral geodesic in S, then

|γ| = π〈W, γ〉+O(p).
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13 Moduli space and Teichmüller space

Let S be a hyperbolic Riemann surface. As a set, the moduli space of S,
denoted Mod(S), consists of all hyperbolic Riemann surfaces quasiconformally
equivalent to S, modulo conformal equivalence. Abusing notation, we identify
a representative X with its conformal equivalence class [X] ∈ Mod(S). We
equip Mod(S) with a metric: Given X and Y in Mod(S), we define

dist(X, Y ) = inf
1

2
log Dil(φ),

where the infimum is taken over all quasiconformal maps φ : X → Y .
As a set, the reduced Teichmüller space of S, denoted Teich#(S), consists

of all pairs (X, f), where f : S → X is a quasiconformal map, modulo the
equivalence ∼ defined in the following way: (X, f) ∼ (Y, g) if and only if
g ◦ f−1 is homotopic to a conformal isomorphism X → Y . Sometimes we
will abuse notation by identifying (X, f) with its equivalence class [X, f ]. We
equip Teich#(S) with a metric: Given [X, f ] and [Y, g] in Teich#(S), we define

dist([X, f ], [Y, g]) = inf
1

2
log Dil(φ),

where the infimum is taken over all quasiconformal maps φ : X → Y homotopic
to g ◦ f−1. If S has finite topology, then Teich#(S) is a contractible manifold
of finite dimension. A standard reference for reduced Teichmüller spaces is
[Ear67].
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Chapter 3

Improvement of life

14 The improvement of life theorem

In this chapter, our goal is to prove an “improvement of life” theorem in the
context of pseudo-polynomial-like maps with several critical points, generaliz-
ing theorem 9.1 in [Kah06].

Definition 14.1. Let f : U → V be a polynomial-like map admitting a
primitive renormalization of period p around a critical point c ∈ Crit(f).
Let K =

⋃
Kj denote the corresponding cycle of little Julia sets. We say

that the p-renormalization of f under consideration is good, or that f ad-
mits a good renormalization of period p, if f(Crit(f)) ⊂ K. We say that a
pseudo-polynomial-like map admits a good renormalization of period p if its
polynomial-like restriction does.

Remark 14.1. This condition is automatically satisfied when there is only one
critical point. It will be clear that this condition is reasonable after we prove
lemma 22.2.

Theorem 14.1. For any λ > 1 and any integer d ≥ 2, there exists an integer
p = p(λ, d) ≥ 2 such that for any integer p ≥ p, there exists µ = µ(d, p) > 0
such that the following property holds: Let f be a pseudo-polynomial-like map
of degree d admitting a good renormalization f ′ of period p, with p ≤ p ≤ p; if
mod(f ′) < µ, then mod(f) ≤ λ−1 mod(f ′).

15 Combinatorics of arcs

In this section, let f : U → V be a polynomial-like map of degree d admitting
a good renormalization of period p. Let K =

⋃p−1
j=0 Kj denote the cycle of little
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Julia sets corresponding to p, where for each j ∈ Z/pZ, Kj+1 = f(Kj).

15.1 Superattracting model F of f

By the straightening theorem, there is a hybrid conjugacy between f and a
polynomial-like restriction of a polynomial P : Ĉ→ Ĉ of degree d. Collapsing
each little Julia set of P to a single point, we obtain a topological sphere, and
P descends to a continuous map P0 of degree d. The map P0 has exactly one
p-cycle that contains topological critical points, and except for the topological
critical point at ∞, the remaining topological critical points land in this p-
cycle after one iteration of P0. By theorem B.1 in [McM94], P0 is Thurston
equivalent to a polynomial F : C→ C of degree d. This polynomial is unique,
up to affine conjugacy.

The map F has exactly one superattracting p-cycle, O = {cj}j∈Z/pZ, and
the finite critical points of F are either contained in this p-cycle or land in this
p-cycle after one iteration of F . Let D ⊂ C denote the closure of the immediate
basin of O, and let Dj denote the connected component of D containing cj.
Let dj denote the local degree of F near cj.

15.2 The tree associated with a good renormalization

Since F is hyperbolic, K = K(F ) is locally connected. In this case, the
classical Hubbard tree of F is the legal hull of the critical points of F and
their forward orbits. We will consider a slightly different tree, the legal hull
Ĥ of O. Let H be the corresponding finite, disked tree Ĥ ∪ D. We think of
the components of D as the vertices of H. Each component Hk of H \ D is a
contractible 1-complex.

Remark 15.1. See [DH] or [Dou93] for a detailed discussion of legal hulls and
Hubbard trees.

Lemma 15.1. F (H) = H.

Proof. We can write Ĥ as a union of closed legal arcs [a, b]K , where a, b ∈
O∪(Ĥ∩Crit(F )), and the open legal arc (a, b)K satisfies (a, b)K∩Crit(F ) = ∅.
Then F ([a, b]K) = [F (a), F (b)]K is the legal arc containing F (a) and F (b).
Being a union of such legal arcs, F (Ĥ) is contained in the legal hull of F (O∪
(Ĥ ∩Crit(F ))) = O. Since F (Ĥ) is a legally-convex set containing O, it must
contain the legal hull of O. Hence, F (Ĥ) = Ĥ. It is obvious that F (D) = D,
so F (H) = H.
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Definition 15.1. Given a disked tree H and a disk D ⊂ H, the valence of D
in H, denoted v(D,H), is the number of branches of H attached to D.

Lemma 15.2. For each j ∈ Z/pZ, v(Dj, H) ≤ dj · v(Dj+1, H).

Proof. Since F has finite degree, we know that F−1(H) is a finite, disked
tree. We know that H ⊂ F−1(H), because F (H) = H. It follows that
v(Dj, H) ≤ v(Dj, F

−1(H)) = dj · v(Dj+1, H).

Lemma 15.3. F−1O properly contains O.

Proof. Since F (O) = O, it is obvious that O ⊂ F−1(O). Then we need only
show that this containment is proper. Note that p = |O|, and set r = |F−1(O)|.
The Euler characteristic of C \ O is χ = 1− p, and the Euler characteristic of
C \ F−1(O) is χ′ = 1− r. Since F : C \ F−1(O)→ C \ O is a covering map of
degree d, we have χ′ = d · χ. It follows that r = d(p− 1) + 1. Observing that
d ≥ 2 and p ≥ 2, we see that r > p.

15.3 Pulling back arcs

A path γ ⊂ H \ D is aligned with H if its endpoints belong to distinct com-
ponents of D. A proper arc α in C \ D is aligned with H if it is represented
by a path aligned with H. Since any aligned arc is represented by exactly one
aligned path, there is a bijection between the set of aligned paths and the set
of aligned arcs. We let H denote the set of arcs (or paths, when it is more
convenient) aligned with H.

Let S be a hyperbolic Riemann surface with finite topology. If γ and γ′ are
paths in S, let 〈γ, γ′〉 = |γ ∩ γ′| ∈ [0,+∞]. Given proper arcs α and α′ in S,
define 〈α, α′〉 = inf〈γ, γ′〉, where the infimum is taken over all proper paths γ
and γ′ in S representing α and α′, respectively. If A and A′ are sets of proper
arcs in S, we define 〈A,A′〉 =

∑
α∈A,α′∈A′〈α, α′〉.

The horizontal paths and arcs in C \ D are those having their endpoints
in D, and the vertical paths and arcs in C \ D are those having one endpoint
in D and one endpoint at ∞ ∈ Ĉ. (We will ignore paths and arcs that are
neither horizontal nor vertical. Such paths and arcs connect ∞ to itself.) We
denote by H⊥ the set of vertical arcs α in C\D such that 〈α,H〉 = 0. Clearly,
H consists of the horizontal arcs α in C \ D such that 〈α,H⊥〉 = 0.

Let γ be a proper path in C\D. A lift of γ is a component of F−1(γ). Any
lift of γ is a proper path in C \ F−1(D). Since C \ F−1(D) ⊂ C \ D, we can
view any lift of γ as a path in C \ D, where it is possibly not proper. We will
only be concerned with proper paths that represent non-trivial arcs in C \ D:
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If γ represents a non-trivial arc, we let F ∗γ denote the union of proper (in
C \ D) lifts of γ representing non-trivial arcs.

Let α = [γ] be a non-trivial, proper arc in C \ D. We define F ∗α =
⋃

[γ′],
where the union is taken over all lifts γ′ ⊂ F ∗γ of γ. By the homotopy lifting
property, F ∗α is independent of the choice of representative γ ∈ α. It is
possible that F ∗α is the empty set. We say that α is periodic if there is an
integer ` ≥ 1 such that (F ∗)`α ⊃ α.

Remark 15.2. The following lemma is called Pilgrim’s lemma in several papers.
(For an example, see [Kah06], from which the proof below was taken.)

Lemma 15.4 (Pilgrim’s lemma). Let α be a horizontal arc in C \D. Then α
is not periodic.

Proof. Suppose that α is periodic. Then there is an integer ` ≥ 1 such that
(F ∗)`α ⊃ α. Let γ be the proper path in C \ D representing α such that
γ is geodesic for the hyperbolic metric of C \ O. Since (F ∗)`α ⊃ α, we can
find an iterated lift γ′ ⊂ (F ∗)`γ that also represents α. The covering map
F ` : C \ F−`(O) → C \ O, which is a local isometry, restricts to an isometry
γ′ → γ. Together with lemma 15.3 and the fact that a proper arc contains a
unique geodesic, we have

|γ|C\O = |γ′|C\F−`O > |γ′|C\O ≥ |γ|C\O,

which is a contradiction.

Lemma 15.5. Let α be a vertical arc in C\D. If α is periodic, then α ∈ H⊥.

This lemma corresponds to lemma 4.6 in [Kah06], and the proof there
applies in our case with no meaningful changes.

Proof. The vertical arc α is represented by proper paths in C\D joining Dj and
∞. We know that for a vertical arc α, the statement that α 6∈ H⊥ is equivalent
to 〈α,H〉 ≥ 1. Consequently, if α 6∈ H⊥, then every γ ∈ α intersects a path
aligned with H. In particular, γ ∩K(F ) 6= ∅.

Any γ ∈ α can be decomposed as a concatenation of two sub-paths, one of
which, γ′, is the maximal segment of γ whose endpoints belong to K(F ). More
explicitly, γ′ ⊂ γ begins with the endpoint of γ in some Dj and terminates at
the last point where γ meets K(F ), after which the remaining segment of γ
trails off to ∞ ∈ Ĉ without returning to K(F ). Let α′ = {γ′ : γ ∈ α}.

Since α is periodic, there is an integer ` ≥ 1 such that (F ∗)`α ⊃ α. Given
γ ∈ α, the containment (F ∗)`α ⊃ α implies that we can choose a component
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δ ⊂ (F ∗)`γ such that α = [δ]. Then δ′ ∈ α′. The covering map F ` : C\F−`O →
C \ O restricts to an isometry δ′ → γ′.

Let µ = inf{|γ′|C\O : α = [γ]}. Suppose that µ > 0, and let γ′ be a geodesic
such that µ = |γ′|C\O. Let δ′ be the lift of γ′ described in the paragraph above.
Then

|γ′|C\O = |δ′|C\F−`(O) > |δ′|C\O,
but this contradicts the fact that γ′ has minimal length. This contradiction
implies that µ = 0, so α has a representative that does not return to K(F )
after first leaving D. It follows that 〈α,H〉C\D = 0.

Lemma 15.6. Let α be a vertical arc in C \ D. Then there exists an integer
N ≥ 0 such that

N⋃
n=0

(F n)∗α ⊃ H⊥.

This corresponds to lemma 4.7 in [Kah06], and again, there are no mean-
ingful changes.

Proof. The proof has two steps. First, we show that by repeatedly pulling
back a vertical arc, we can find a periodic arc. The previous lemma implies
that this arc belongs to H⊥. Next, we show that by pulling back such an arc,
we obtain all of H⊥.

We begin with the first step of the proof, pulling α back to an arc in H⊥.
Let γ ∈ α be a proper path in C \ D realizing 〈α,H〉C\D. Let γ′ be a lift of
γ. The covering map F : C \ F−1D → C \ D restricts to a homeomorphism
F : γ′ → γ, so

〈γ′, F−1H〉C\F−1D = 〈γ,H〉C\D.
Since F−1H ⊃ H, we see that the number of points of intersection between γ′

and H is at most the number of points of intersection between γ′ and F−1H.
Since F−1D ⊃ D, these points of intersection belong to C \ D. It follows that
〈γ′,H〉C\D ≤ 〈γ′, F−1H〉C\F−1D. We obtain a vertical arc α′ = [γ′] such that
〈α′,H〉C\D ≤ 〈α,H〉C\D.

Set α0 = α. The procedure in the paragraph above provides us with a
sequence of vertical arcs {αn} such that for each integer n ≥ 0, αn+1 ⊂ F ∗αn,
and 〈αn+1,H〉C\D ≤ 〈αn,H〉C\D. The sequence {〈αn,H〉C\D}n must eventually
stabilize, so there exist integers k ≥ 0 and n0 ≥ 0 such that 〈αn,H〉C\D = k
whenever n ≥ n0. If k = 0, then αn0 ∈ H⊥. Otherwise, k > 0, and we use the
fact that there are only finitely many vertical arcs β such that 〈β,H〉C\D = k.
By the pigeon-hole principle, there exists n ≥ n0 such that αn is periodic, but
by lemma 15.5, αn ∈ H⊥.
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Now we proceed to the second step of the proof, showing that we can obtain
all of H⊥ by pulling back any one arc in H⊥. Suppose that for some j ∈ Z/pZ,
we have already obtained the maximal number of arcs in H⊥ emanating from
Dj; the reasoning in the proof of lemma 15.2 implies that these arcs pull back
to the maximal number of arcs in H⊥ emanating from Dj−1. Any arc in H⊥

can be pulled back to an arc in H⊥ emanating from a vertex of valence one.
Since this is the maximal number of arcs emanating from that vertex, we will
be finished after pulling this arc back p− 1 more times.

16 Trees of complete graphs

Let G = ({Dj},H) be the graph whose vertices are the disks of D =
⋃
Dj

and whose edges are the paths of H. For each integer n ≥ 0, we define

• the union of disks Dn = F−n(D) =
⋃
kD

n
k , where we have enumerated

the components of Dn by Dn
k ,

• the finite disked tree Hn = F−n(H),

• the set Hn of paths aligned with Hn, and

• the graph Gn = ({Dn
k}k,Hn).

Figure 3.1: The disked tree H has a tripod on the left.

Remark 16.1. The “edges” in the tree Hn are simply connected, proper 1-
complexes in C \ Dn. These are not the same as the edges in the graph Gn.
The edges in the graph Gn are obtained by opening up the 1-complexes joining

31



Figure 3.2: This is the abstract graph G, where the tripod has been opened
up.

disks of Dn. (See figures 3.1 and 3.2.) For example, a tripod opens up to a
triangle.

Definition 16.1. A tree of complete graphs is defined inductively in the fol-
lowing way:

• Any complete graph G is a tree of complete graphs.

• Let G1 = (V1, E1) and G2 = (V2, E2) be trees of complete graphs. Given
vertices v1 ∈ V1 and v2 ∈ V2, the one-point union G1 tG2/(v1 ∼ v2) is a
tree of complete graphs.

Remark. The “tree” structure in a tree of complete graphs is as follows: We
can think of a tree of complete graphs as a tree, in the usual sense, whose
vertices are complete graphs.

Lemma 16.1. For each integer n ≥ 0, Gn is a tree of complete graphs.

Proof. See the proof of lemma 4.1 in [Kah06].

Definition 16.2. Let G = (V,E) be a tree of complete graphs obtained
through one-point unions of finitely many complete graphs Gk. Let x, y ∈ V .
Let P be the union of {x, y} and the set of v ∈ V such that G \ {v} is discon-
nected, and x and y belong to distinct components of G\{v}. By lemma 11.10
in [Kah06], there is a unique ordering on the set S such that as an ordered
set, P = (x = v0, v1, . . . , vN = y), and

• for each integer j ∈ {0, . . . , N − 1}, vj and vj+1 belong to the same
complete graph Gk(j),
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• each graph in {Gk(j)}j meets at least one, but at most two, other graphs
in {Gk(j)}j, and

• any vertex in
⋃
j Gk(j) ⊂ G belongs to at most two graphs in {Gk(j)}j.

We call the ordered set P the chain of vertices in G between x and y.

Now consider the tree of complete graphs Gn. Any path γ aligned with H
joins two distinct disks D,D′ ⊂ D. By the paragraph above, there is a unique
chain (D = Dn

0 , . . . , D
n
N = D′) in the complete graph Gn between D and D′.

Lemma 16.2. For any integer r ≥ 1 and any path γ aligned with H, the chain
(Drp

0 , . . . , D
rp
N ) in Drp in Grp between ∂γ := {Drp

0 , D
rp
N } ⊂ D contains at least

2r−1 disks belonging to Drp \ D(r−1)p.

Proof. We claim that for any integer r ≥ 0, if γ is aligned with Hrp, then γ
crosses a disk of D(r+1)p\Drp. Consider r = 0. Let γ be a path aligned with H.
Then F p(γ) ⊂ H. Then F p maps γ over a disk of D, because if this were not
the case, then γ would represent a horizontal arc of period p. Since γ ⊂ C\D,
γ must cross a disk of Dp \D. We will now show that the statement holds for
any r ≥ 1. Let γ be aligned with Hrp. Then γ joins disks of Drp. If γ does not
cross any disk of D(r+1)p \ Drp, then F rpγ does not cross any disk of Dp \ D.
Since F rpγ is aligned with H, this is a contradiction for the case r = 0.

The argument in the paragraph above, shows that, when r ≥ 1 is an integer,
between any two disks of D(r−1)p, there is a disk of Drp \D(r−1)p. This implies
that there is at least one disk of Dp \ D between ∂γ. An obvious induction
implies that there are at least 2r−1 disks of Drp \ D(r−1)p between ∂γ.

17 Restrictions of one pseudo-polynomial-like

map

17.1 Restrictions of W v+h
can

Let us return to the discussion of improvement of life: We have a pseudo-
polynomial-like map f : (U,K) → (U,K) admitting a good renormalization
of period p, with cycle of little Julia sets K ⊂ U. For any integer n ≥ 1, we
have the n-th iterate of f , fn, which consists of the following data:

Un

U U.

in fn
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We have the restriction of f to Un, which consists of the following data:

Un

Un−1 Un−1.

i f

Define K̃ = f−1(K). We have the following diagram:

Un \ K̃ Un \ K

Un−1 \ K Un−1 \ K.

f i

In the diagram above, f is a covering map, so it is proper. The map i is proper
on K. The horizontal map is proper on K ∪ ∂Un.

Lemma 17.1. For any integer n ≥ 1, ‖W v+h
can (U\K)‖ ≤ ‖W v+h

can (Un\K)‖+6p.

Proof. The immersion in : Un \ K → U \ K is proper on K. Any vertical
path in U \ K touching Kj contains a path that lifts by in to a vertical path
in Un \ K touching Kj. Any horizontal path touching Kj either lifts to itself
or contains a path that lifts to a vertical path touching Kj. Consequently,
the proper foliation Γv+h

can overflows a family of paths in U \ K that lifts by in
to a proper foliation Γ on U \ K consisting of horizontal and vertical paths.
Applying lemma 11.1 and lemma 11.2, we obtain L(Γ) ≤ L(in(Γ)) ≤ L(Γv+h

can ).
Then

‖W v+h
can (U \ K)‖ =W(Γv+h

can ) ≤ W(Γ).

Since Γ is a proper foliation on Un\K, lemma 12.4, together with the fact that
| suppW v+h

can (Un \K)| ≤ 3p, tells us thatW(Γ) ≤ ‖W v+h
can (Un \K)‖+ 2 ·3p.

17.2 The pulled-back W h
can is aligned with H

Let U0 = U. Let q0 = 0, and for each integer n ≥ 1, define qn+1 = 6d(p− 1) +
3pqn. For each integer n ≥ 0, let Xn = W h

can(Un \ K), and let X̂n = Xn − qn.

Lemma 17.2. X̂n+1 ≤ i∗X̂n.

Proof. Since i : Un+1 \ K → Un \ K is proper on K, lemma 12.6 implies
Xn+1 ≤ i∗Xn. Since qn+1 ≥ qn, we are finished.
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Lemma 17.3. f ∗X̂n( X̂n+1.

Proof. Since f : Un+1 \ K̃ → Un \ K is a covering map of degree d, we have

χ(Un+1\K̃) = d ·χ(Un\K) = d(1−p), and Wcan(Un+1\K̃) = f ∗Wcan(Un\K).

By lemma 12.7, Un+1 \ K̃ ⊂ Un+1 \ K implies

Wcan(Un+1 \ K̃)( Wcan(Un+1 \ K)− 6 · d(p− 1).

Observing that horizontal arcs in Un+1\K restrict to horizontal arcs in Un+1\
K̃, we obtain

W h
can(Un+1 \ K̃)( W h

can(Un+1 \ K)− 6 · d(p− 1).

Since f preserves the property of an arc being horizontal or vertical, we know
that W h

can(Un+1 \ K̃) = f ∗Xn. Applying lemma 12.3 to

f ∗X̂n + qn = f ∗Xn( Xn+1 − 6 · d(p− 1),

we obtain

f ∗X̂n( Xn+1 − 6 · d(p− 1)− ‖qn‖ ≥ Xn+1 − 6 · d(p− 1)− 3pqn = X̂n+1.

Invariant horizontal arc diagrams are aligned with H

Definition 17.1. Let U and V be Riemann surfaces, with U ⊂ V . Let A and
B be multiarcs on U and V , respectively. We say that A B if for every arc
β ∈ B, there is a set of arcs {αk} ⊂ A such that (αk) −→ β.

We say that a horizontal arc diagram A on C \ D is aligned with H if
〈A,H⊥〉 = 0. We say that A is F -invariant if F ∗A A.

Lemma 17.4. Let A be an F -invariant horizontal arc diagram. Then A is
aligned with H.

Proof. Represent the arcs of A by the corresponding unique proper paths in
C \ D that are geodesic for the hyperbolic metric of C \ O, and let A be the
set of these geodesic segments. Observing that the paths of A are disjoint and
that the endpoints in ∂D of two different paths of A are disjoint, we see that
there is a vertical path γ in C \ D such that 〈γ,A〉 = 0.

Let γ′ ⊂ F ∗γ be a component. The covering map F : C \ F−1D → C \ D
restricts to a homeomorphism F : γ′ → γ. It follows that 〈F ∗γ, F−1(A \ D)〉 =
0. Since F ∗A→ A, we have 〈F ∗γ,A〉 = 0.

Repeating the procedure in the paragraph above, we find that for each
integer n ≥ 0, 〈(F ∗)nγ,A〉 = 0. By lemma 15.6, all of H⊥ is obtained as⋃
n(F ∗)n[γ]C\D, so we see that 〈H⊥,A〉 = 0.
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Lemma 17.5. For each integer n ≥ 3p, supp X̂n is aligned with H.

Proof. For each integer n ≥ 0, set An = supp X̂n. Then lemma 17.3 implies
f ∗An  An+1, and lemma 17.2 implies An+1 ⊂ An|Un+1\K. Since |A0| ≤ 3p,
there must be an integer m, with 0 ≤ m ≤ 3p, such that Am+1 = Am|Un+1\K,
in which case Am is f -invariant. Then An is f -invariant for each integer n ≥ m.
Applying lemma 17.4, we obtain the result.

17.3 The main inequality

In this section, we will need a superficial amount of the theory of electric
circuits developed in [Kah06].

An unplugged electric circuit C = (G,W ) consists of a graph G = (V,E)
and a function W : E → [0,+∞) weighting the edges E. Given v ∈ V , we
define W |v =

∑
v′∼vW ({v, v′}), where the sum is taken over all vertices v′ ∈ V

joined to v by an edge {v, v′} ∈ E. We will consider the unplugged electric
circuits obtained in the following way. Let H be a disked tree, and let Y be a
weighted arc diagram such that supp(Y ) is aligned with H. Let H be the set
of paths aligned with H, and let G be the associated tree of complete graphs.
We obtain an unplugged electric circuit CY = (G, Y ), by letting the weight of
an edge e ∈ H be Y (e). (See sections 6.1 and 11.1 in [Kah06].)

Given two unplugged electric circuits C and C ′, there is a notion of when
C ′ dominates C, denoted C ′ ( C. In what follows, we will mostly rely on
theorems that either yield domination as a consequence or exploit domination
as a hypothesis. In addition to these theorems, we will only need one inequality
that appears in the definition of domination.

Before we state the definition of domination for unplugged electric circuits,
we point out that there is the notion of an electric circuit that is not unplugged;
in other words, it is an unplugged electric circuit C = (G,W ) equipped with
a battery, which is a choice of two vertices of G. Having equipped C with
a battery, there is a notion of the total conductance W(C) ∈ [0,+∞) of C.
(See section 11.6 in [Kah06] for the definition of total conductance.) For
our purposes, it suffices to know the inequality that appears in the following
definition.

Definition 17.2. Let C = (G,W ) be an unplugged electric circuit. Let C ′ =
(G′,W ′) be an unplugged electric circuit, where G′ is a graph obtained from
G by replacing some of its edges e ∈ E(G) with graphs G′(e) ⊂ G′. Given an
edge e ⊂ E(G), let C ′(e) denote the restriction of C ′ to e, viewed as an electric
circuit with battery ∂e. We say that C ′ dominates C, denoted C ′ ( C, if for
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each edge e ∈ E(G), we have

W(C ′(e)) ≥ W (e).

Lemma 17.6. Let H and H ′ be disked trees, with H ′ ⊃ H, and let Y and
Y ′ be weighted arc diagrams aligned with H and H ′, respectively. If Y ′ ( Y ,
then CY ′ ( CY .

Proof. See lemma 6.1 in [Kah06].

Lemma 17.7. Let C = (G,W ) and C ′ = (G′,W ′) be unplugged electric cir-
cuits. If C ′( C, then for any D ∈ V (G), W ′|D ≥ W |D.

Proof. See lemma 11.9 in [Kah06].

Lemma 17.8. Let G be a tree of complete graphs. Let C be an electric
circuit based on G = (V,E), equipped with a battery {a, b} ⊂ V , and let
(a = x0, x1, . . . , xN−1, xN = b) be the chain of vertices connecting a and b.
Then

W ≤
N⊕
k=1

W |xk.

Proof. Note that in the inequality above, we have taken the sum from 1 to N
rather than from 0 to N . See lemma 11.11 in [Kah06].

Having discussed the necessary theory of electric circuits, we can begin
working toward the main inequality.

Lemma 17.9. Let Y and Z be weighted arc diagrams aligned with H such
that F ∗Y ( Z. If D and D′ are disks of H, then Z|D ≤ 2d−1Y |D′.

Compare with lemma 6.2 in [Kah06].

Proof. Assume that j, k ∈ Z/pZ with j < k. By lemma 17.6, CF ∗Y ( CZ .
Then lemma 17.7 implies Z|Dj ≤ F ∗Y |Dj. Observing that

F ∗Y |Dj = deg(F : Dj → Dj+1)Y |Dj+1,

and

Y |Dj+1 ≤ (F ∗)k−(j+1)Y |Dj+1 = deg(F k−(j+1) : Dj+1 → Dk)Y |Dk,

we obtain F ∗Y |Dj ≤ deg(F k−j : Dj → Dk)Y |Dk ≤ 2d−1Y |Dk, which is the
desired inequality.
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The corollary below will be used in lemma 18.1.

Corollary 17.10. Let Y and Z be weighted arc diagrams aligned with H such
that F ∗Y ( Z. Then

max
j

(Z|Dj) ≤
2d

p
‖Y ‖.

Proof. From lemma 17.9, we deduce that for each k ∈ Z/pZ,

max
j

(Z|Dj) ≤ 2d−1Y |Dk.

Summing these inequalities over k, we obtain

p ·max
j

(Z|Dj) ≤ 2d−1

p−1∑
k=0

Y |Dk = 2d−1 · 2‖Y ‖.

Lemma 17.11 (The main inequality). Let Y and Z be weighted arc diagrams
aligned with H. If r ≥ 2 is an integer such that (F ∗)rpY ( Z, then for any
α ∈ H, Z(α) ≤ 2d−r maxj Y |Dj.

Proof. Since Y is aligned with H, the weighted arc diagram (F rp)∗Y is aligned
with the disked tree F−rpH. Since H is forward invariant under F , F−rpH ⊃
H. By lemma 17.6, C(F ∗)rpY ( CZ . By definition of domination for electric
circuits, we have for each α ∈ suppZ,

Z(α) ≤W(C(F ∗)rpY (α)).

Let (Drp
0 , . . . , D

rp
N ) be the chain of disks in Drp ⊂ Grp connecting ∂α =

{Drp
0 , D

rp
N }. By lemma 17.8, we have

W(C(F rp)∗Y (α)) ≤
N⊕
k=1

(F ∗)rpY |Drp
k .

Let I be the set of k ∈ {1, . . . , N} such that Drp
k is a disk of Drp \ D(r−1)p.

Then

N⊕
k=1

(F ∗)rpY |Drp
k ≤

⊕
k∈I

(F ∗)rpY |Drp
k ≤

1

|I| max
k∈I

(F ∗)rpY |Drp
k .
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By lemma 16.2, we know that |I| ≥ 2r−1, so 1/|I| ≤ 1/2r−1. Combining all of
these inequalities, we obtain

Z(α) ≤ 1

2r−1
max
k∈I

(F ∗)rpY |Drp
k .

Observe that F rp = F p ◦ F (r−1)p maps disks of Drp \ D(r−1)p onto disks of
D, passing over the critical orbit O at most one time. More precisely, F (r−1)p

maps any disk of Drp \ D(r−1)p bijectively to a disk of Dp \ D. Applying F p,
we we pass over the cycle of disks D ⊃ O at most once. Hence, if

• Drp
k ∈ Drp \ D(r−1)p,

• Dj ∈ D, and

• F rp : Drp
k → Dj,

then
(F ∗)rpY |Drp

k = deg(F rp : Drp
k → Dj)Y |Dj ≤ 2d−1Y |Dj.

The desired inequality follows.

18 The restricted vertical weight controls to-

tal weight

Lemma 18.1. For any integer n ≥ 5, we have ‖X̂np‖ ≤ 3 · 22d−n+4‖X̂‖.

Proof. It follows from lemma 17.3 that if ` and m are nonnegative integers such
that ` < m, then (F ∗)m−`X̂` ( X̂m. In particular, (F ∗)(n−4)pX̂4p ( X̂np.
Applying the main inequality (lemma 17.11), we see that for any α ∈ H, we
have

X̂np(α) ≤ 2d−(n−4) max
j

(X̂4p|Dj).

Applying corollary 17.10 to F ∗X̂3p( X̂4p, we obtain

max
j

(X̂4p|Dj) ≤
2d

p
‖X̂3p‖,

and combining these inequalities, we see that

X̂np(α) ≤ 22d−n+4

p
‖X̂3p‖.
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Summing over all α ∈ supp X̂np and using the fact that | supp X̂np| ≤ 3p, we
compute

‖X̂np‖ ≤ 3p · 22d−n+4

p
‖X̂3p‖ ≤ 3 · 22d−n+4‖X̂3p‖.

It follows from lemma 17.2 that ‖X̂3p‖ ≤ ‖X̂‖, and we are finished.

Corollary 18.2. For any integer n ≥ 5d, we have

‖X̂np‖ ≤ 3

4
‖X̂‖.

Proof. Obviously, 3 · 22d−n+4 ≤ 3/4 is equivalent to 2d + 6 ≤ n. Since d ≥ 2,
the latter condition is satisfied when n ≥ 5d.

Lemma 18.3. Fix an integer n ≥ 5d. There is a constant Q1 = Q1(n, p) > 0
such that if ‖W v+h

can (U \ K)‖ ≥ Q1, then

1

5
‖W v+h

can (U \ K)‖ ≤ ‖W v
can(Unp \ K)‖.

Proof. Recalling that X̂np = W h
can(Unp \K)− qnp and | supp X̂np| ≤ 3p, we see

that ‖W h
can(Unp\K)‖−3pqnp ≤ ‖X̂np‖. Similarly, ‖X̂‖ ≤ ‖W h

can(U\K)‖+3pq0.
Together with corollary 18.2, these inequalities imply

‖W h
can(Unp \ K)‖ ≤ 3

4
‖W h

can(U \ K)‖+ C(n, p), (1)

where C(n, p) > 0 is a constant depending only on n and p. Combining lemma
17.1 with (1), we see that

‖W v+h
can (U \ K)‖ ≤ ‖W v+h

can (Unp \ K)‖+ 6p

= ‖W v
can(Unp) \ K)‖+ ‖W h

can(Unp) \ K)‖+ 6p

≤ ‖W v
can(Unp \ K)‖+

3

4
‖W h

can(U \ K)‖+ C ′(n, p),

where C ′(n, p) > 0 is a constant depending only on n and p. Then

1

4
‖W v+h

can (U \ K)‖ ≤ ‖W v+h
can (U \ K)‖ − 3

4
‖W h

can(U \ K)‖
≤ ‖W v

can(Unp \ K)‖+ C ′(n, p).

The result follows by taking ‖W v+h
can (U \ K)‖ ≥ 20C ′(n, p) =: Q1.

40



19 Vertical weight controls total weight

19.1 The covering lemma

Let S be a topological disk in C. Given a compact set K contained in S, let
Γ(S,K) denote the set of proper paths in S \K joining K and ∂S.

Let Aj, j = 1, . . . , N , be disjoint islands in S. (See section 7.1 in [Kah06]
for the definition of an island. For us, it suffices to know that the little Julia
sets are islands.) We define X = W Γ(S,

⋃
Aj), Y =

∑W Γ(S,Aj), and
Z =

∑
jW Γ(S \⋃k 6=j Ak, Aj). Clearly,

X ≤ Y ≤ Z.

Lemma 19.1. Let S be a hyperbolic Riemann surface of finite topology, with-
out cusps, having a distinguished outer boundary. Then X = ‖W v

can(S)‖ +
O(|χ(S)|).

Proof. Write ΓX = Γ(S,
⋃
Aj). It obvious that Fv

can ⊂ ΓX . Then L(Fv
can) ≥

L(ΓX), so ‖W v
can(S)‖ =W(Fv

can) ≤ W(ΓX) = X.
Let Γ denote the geodesic of S homotopic to the outer boundary. Let

π : AΓ(S) → S be the annulus cover of S associated with Γ. Then one
component C of ∂IAΓ(S) maps homeomorphically to the outer component
of ∂IS. Let Γ′X denote the set of all lifts by π of curves in ΓX to curves in
AΓ(S) that start from C. Then curves of Γ′X necessarily join the boundary
components of AΓ(S). Let Γ0 denote the set of all curves connecting the
boundary components of AΓ(S).

Since holomorphic maps do not decrease extremal length, L(Γ′X) ≤ L(ΓX).
Since Γ0 ⊃ Γ′X , L(Γ0) ≤ L(Γ′X). Combining the inequalities, we have L(Γ0) ≤
L(ΓX), which gives

X =W(ΓX) ≤ W(Γ0) =
1

π
|Γ| = ‖W v

can(S)‖+O(p).

The following lemma is a special case of the quasi-additivity law, which is
the main theorem in [KL09c].

Lemma 19.2 (Covering lemma). Fix a number ξ ≥ 1, and let p, d, and ∆ be
integers such that p ≥ 2 and d ≥ ∆ ≥ 2. There is a constant L = L(d, p,∆) >
0 satisfying the following property: Assume that

• U and U ′ are topological disks;
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• K1, . . . , Kp ⊂ U and K ′1, . . . , K
′
p ⊂ U ′ are disjoint FJ-sets;

• g : (U,
⋃
Kj)→ (U ′,

⋃
K ′j) is a branched covering map;

• deg(g : U → U ′) = d;

• ⋃K ′j contains the critical values of g;

• for each j ∈ Z/pZ, Kj is a component of g−1(K ′j);

• for each j ∈ Z/pZ, deg(g : Kj → K ′j) ≤ ∆;

• X ≤ Y ≤ Z and X ′ ≤ Y ′ ≤ Z ′ are the conformal moduli associated with
(U,∪Kj) and (U ′,

⋃
K ′j), respectively;

• and ‖W v+h
can (U ′ \ ∪K ′j)‖ ≤ ξY ;

if Y ≥ L(d, p,∆), then X ≤ 4ξ∆2X ′.

Proof. See the Covering Lemma in [Kah06].

19.2 Applying the covering lemma

Lemma 19.3. There are constants M = M(d) > 1 and Q2 = Q2(d, p) > 0
such that if ‖W v+h

can (U \ K)‖ ≥ Q2, then

‖W v+h
can (U \ K)‖ ≤M‖W v

can(U \ K)‖.

Compare lemma 7.1 in [Kah06].

Proof. Let X ≤ Y ≤ Z and X ′ ≤ Y ′ ≤ Z ′ be the conformal moduli associ-
ated with (U5dp,K) and (U,K), respectively. In this proof, we will only be
concerned with X, Y , and X ′. Observe that deg(f 5dp : U5dp → U) = d5dp

and deg((fp)5d : K → K) ≤ (2d−1)5d. By lemma 19.1, there is a constant
L = L(p) > 0 such that

‖W v
can(U5dp \ K)‖ − L ≤ X (2)

and
X ′ ≤ ‖W v

can(U \ K)‖+ L. (3)

Taking n = 5d in lemma 18.3, we find a constant Q1 = Q1(5d, p) such that if
‖W v+h

can (U \ K)‖ ≥ Q1, then

1

5
‖W v+h

can (U \ K)‖ ≤ ‖W v
can(U5dp \ K)‖. (4)
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Combining (2) and (4), we have

Y ≥ X ≥ ‖W v
can(U5dp \ K)‖ − L

≥ 1

5
‖W v+h

can (U \ K)‖ − L.

If ‖W v+h
can (U \ K)‖ ≥ 30L, then the above inequality gives us

Y ≥ 1

6
‖W v+h

can (U \ K)‖.

Now we can apply the covering lemma (lemma 19.2) with ξ = 6 to see that

X ≤ 4 · 6 · ((2d−1)5d)2X ′.

Let C = 4 · 6 · ((2d−1)5d)2. Together with (2) and (3), this implies

‖W v
can(U5dp \ K)‖ ≤ X + L ≤ CX ′ + L

≤ C‖W v
can(U \ K)‖+ (C + 1)L.

Combining this inequality with (4), we obtain

1

5
‖W v+h

can (U \ K)‖ ≤ C‖W v
can(U \ K)‖+ (C + 1)L.

If ‖W v+h
can (U \ K)‖ ≥ 30 · (C + 1)L, then

1

6
‖W v+h

can (U \ K)‖ ≤ C‖W v
can(U \ K)‖.

Defining M = 6C, we obtain the desired inequality.
In order to obtain this inequality, we required ‖W v+h

can (U\K)‖ to be at least
as big as Q1, 30L, and 30(C + 1)L. We can take Q2 = max{Q1, 30L, 30(C +
1)L}.

20 Improvement of the moduli

Lemma 20.1. Fix integers d, p ≥ 2. There exist C = C(d) > 1 and µ =
µ(d, p) > 0 such that the following property is satisfied: Let f be a pseudo-
polynomial-like map of degree d admitting a good renormalization f ′ of period
p; then

mod(f ′) ≥ min{p/C ·mod(f), µ}.
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Proof. First, let us fix our notation. We have two pseudo-polynomial-like
maps, f : (U, K)→ (U, K) and f ′ : (U′, K ′)→ (U′, K ′). Let

K =
⋃

j∈Z/pZ

Kj ⊂ U

denote the union of little Julia sets of f , where K0 is the little Julia set cor-
responding to the canonical renormalization f ′. For each j, let γj ⊂ U \ K
denote the hyperbolic geodesic around Kj. Let Γ ⊂ U \ K denote the hyper-
bolic geodesic separating ∂U from K. Let γ ⊂ U\K denote the core geodesic.
Let γ′ ⊂ U′\K ′ denote the core geodesic. The following equalities are obvious:

|γ|U\K = π/mod(U \K),

|γ0|U\K = |γ′|U′\K′ = π/mod(U′ \K ′).

For convenience, set W = Wcan(U \ K), and for each j, let Wj denote the
restriction of W to the arcs attached to Kj. We know that

‖W v+h
can ‖ ≤

∑
j

‖Wj‖ ≤ 2‖W v+h
can ‖, (5)

because each arc of suppW v+h
can is counted at least once but at most twice in

the sum
∑ ‖Wj‖.

Now, we begin the proof. By lemma 12.8, there is a constant C = C(p) > 0
such that for each j, |γj| ≤ π‖Wj‖+ C. It follows that if |γj| ≥ 2C, then

|γj| ≤ 2π‖Wj‖.

By lemma 9.4, |γ0| ≤ 2d−1|γj|. Consequently, if |γ0| ≥ 2dC, then |γj| ≥ 2C, so

|γ0| ≤ 2d−1|γj| ≤ 2dπ‖Wj‖.

Summing over all j, we obtain

p|γ0| ≤ 2dπ
∑
j

‖Wj‖ ≤ 2d+1π‖W v+h‖, (6)

where the last inequality comes from equation 5. By lemma 19.3, there
are constants L = L(d, p) and M = M(d) such that ‖W v+h‖ ≥ L implies
‖W v+h‖ ≤M‖W v‖. Then

p|γ0| ≤ 2d+1π ·M‖W v‖ ≤ 2d+1Mπ〈W, γ〉, (7)
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where the last inequality uses the fact that ‖W v‖ ≤ 〈W, γ〉. By lemma 12.8,
π〈W, γ〉 ≤ |γ| + C. Consequently, if π〈W, γ〉 ≥ 2C, then π〈W, γ〉 ≤ 2|γ|.
Combining this with 7, we obtain

p|γ0| ≤ 2d+2M |γ|.

Since U \K ⊂ U \ K, the Schwarz Lemma implies that |Γ| ≥ |Γ|U\K. Since γ
is the hyperbolic geodesic in U\K homotopic to Γ, we know that |Γ|U\K ≥ |γ|.
Hence, p|γ0| ≤ 2d+2M |Γ|. This is equivalent to

mod(f ′)

p
=

π

p|γ0|
≥ π

2d+2M |Γ| =
mod(f)

2d+2M
.

Finally, let us summarize the inequalities we required in the paragraph
above. We required that

‖W v+h‖ ≥ L, (8)

π〈W, γ〉 ≥ 2C, (9)

and |γ0| ≥ 2dC. By (6), we see that ‖W v+h‖ ≥ p|γ0|/(2d+1π) ≥ |γ0|/(2dπ), so
(8) is satisfied if

|γ0| ≥ 2dπL.

By (7), we see that π〈W, γ〉 ≥ p|γ0|/(2d+1M) ≥ |γ0|/(2dM), so (9) is satisfied
if

|γ0| ≥ 2dM · 2C.
All of the required inequalities are satisfied if

|γ0| ≥ max{2dC, 2dπL, 2dM · 2C} =: E.

This is equivalent to mod(f ′) ≤ π/E =: µ.

In the lemma above, p ≥ 2. This immediately implies the following corol-
lary, where the constant C below is different than in the lemma above.

Corollary 20.2. Fix integers d, p ≥ 2. There exist C = C(d) > 1 and
µ = µ(d, p) > 0 such that the following property is satisfied: Let f be a pseudo-
polynomial-like map of degree d admitting a good renormalization f ′ of period
p; then

mod(f ′) ≥ min{1/C ·mod(f), µ}.

The following lemma implies theorem 14.1.
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Lemma 20.3. For any λ > 1 and any integer d ≥ 2, there exists an integer
p = p(λ, d) ≥ 2 such that for any integer p ≥ p, there exists µ = µ(d, p) > 0
such that the following property is satisfied: Let f be a pseudo-polynomial-like
map of degree d admitting a good renormalization f ′ of period p, with p ≥ p;
if mod(f ′) < µ, then

mod(f) ≤ λ−1 mod(f ′).

Proof. Let C = C(d) > 1 and µ = µ(d, p) > 0 be the constants from lemma
20.1. Define p = Cλ. Assume that p ≥ p. By lemma 20.1, if mod(f ′) < µ,
then

mod(f ′) ≥ (p/C) mod(f)

≥ (p/C) mod(f)

= λmod(f).

21 Bounds for good renormalization

21.1 Non-associativity of canonical renormalization

Canonical renormalization respects conformal geometry, but it is not associa-
tive: Iterating canonical renormalization or skipping over levels of renormal-
ization lead to different pseudo-polynomial-like maps.

Lemma 21.1. Let p and q be integers ≥ 2. Let f : U → U be a pseudo-
polynomial-like map admitting good renormalizations, with periods p and pq,
around one of its critical points. Let Kp ⊂ U denote the cycle of little Julia
sets corresponding to the period p, and let Kpq ⊂ Kp denote the cycle of little
Julia sets corresponding to the period pq. Choose little Julia sets Kp ⊂ Kp and
Kpq ⊂ Kpq ∩Kp. Let fp = Rpf : Up → Up be the canonical p-renormalization
of f around Kp. Let (fp)q = Rqfp be the canonical q-renormalization of fp
around Kpq. Let fpq = Rpqf be the canonical pq-renormalization of f around
Kpq. Then mod(fpq) > mod((fp)q).

Proof. Let γp ⊂ U \ Kp be the simple, closed geodesic going around Kp. Let
A = Aγp(U \ Kp) be an annulus covering space, and let π : A → U \ Kp be
a covering map. (Note that A is an abstract Riemann surface homeomorphic
to an annulus.) Let D = Dγp ⊂ U be the open disk bounded by γp. Then
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Up := A tπ D. (Note that Up ∩ U = D.) Consider the function e : Up →
U \ (Kp \D), defined by

e(z) =

{
π(z) if z ∈ A,
z if z ∈ D,

and its restriction e|Up\(D∩Kpq) : Up\(D∩Kpq)→ U\((Kp\D)∪(D∩Kpq)).
It is easy to see that e and e|Up \ (D ∩ Kpq) are holomorphic immersions but
not covering maps.

Let γpq ⊂ U\Kpq be the simple, closed geodesic going around Kpq, and let
(γp)q ⊂ Up \ (D ∩ Kpq) be the simple, closed geodesic going around Kpq. We
see that e|Up \ (D∩Kpq) embeds (γp)q into (U\Kp)∪ (D \Kpq). The inclusion
(U \ Kp) ∪ (D \ Kpq) ⊂ U \ Kpq embeds e((γp)q) into U \ Kpq, where e((γp)q)
is homotopic to γpq. It follows that

|(γp)q|Up\(D∩Kpq) > |e((γp)q)|U\((Kp\D)∪(D∩Kpq)) > |e((γp)q)|U\Kpq ≥ |γpq|U\Kpq .

Hence, mod(fpq) > mod((fp)q).

The proof in the lemma above may be carried out under slightly more
general conditions to obtain the following lemma.

Lemma 21.2. Let N ≥ 2 be an integer. Let f be a pseudo-polynomial-like
map admitting good renormalizations of periods q1|q2| · · · |qN around one of its
critical points. Let q0 = 1, let g0 = f , and for each integer n ∈ {1, . . . , N},
let gn = Rqn/qn−1gn−1 be a canonical qn/qn−1-renormalization of gn−1. Let
fqN = RqN f be the canonical qN -renormalization of f having same Julia set as
gN . Then mod(fqN ) > mod(gN).

Proof. As in the previous lemma, one checks that there is a holomorphic im-
mersion that embeds the hyperbolic geodesic corresponding to gN into the
complement of the little Julia sets of f of period qN .

21.2 Beau bounds for good renormalization

The word beau stands for bounded and eventually universally bounded.

Theorem 21.3 (Beau bounds). Let B and d be integers ≥ 2. There exist
µ = µ(B, d) > 0 and a function N = NB,d : (0,+∞) → Z≥0 such that the
following property is satisfied. Let f : U → U be a pseudo-polynomial-like
map of degree d admitting infinitely many good renormalizations around one
of its critical points, with combinatorics bounded by B. Let {pn}n≥1 be the good
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renormalization periods of f . For each integer n ≥ 1, let Kn ⊂ U denote the
cycle of little Julia sets of f corresponding to the renormalization period pn.
Let {Kn ⊂ Kn}n≥1 be a sequence of nested little Julia sets. For each integer
n ≥ 1, let fn = Rpnf be the canonical pn-renormalization of f around Kn. If
mod(f) ≥ δ > 0, then for any integer n ≥ N (δ), mod(fn) ≥ µ.

Proof. Let λ = 10, and let p = p(λ, d) = p(d) ≥ 2 be the constant from

theorem 14.1. Let k = k(d) be the smallest integer ≥ 2 such that p ≤ 2k. Let

p = Bk, and let µ = µ(d, p) = µ(B, d) > 0 be the threshold from theorem
14.1.

Let F be the set of all canonical pn-renormalizations of f , for all n ∈
{1, . . . , k − 1}. Define

µ′ = min{mod(f ′) : f ′ ∈ F}. (10)

Let µ0 = min{δ, µ′}. For notational convenience, let f0 = f . It is obvious that
for any integer n, with 0 ≤ n ≤ k − 1, mod(fn) ≥ µ0. Let N = N(µ, µ0) =
N(B, d, δ, µ′) be the smallest integer ≥ 0 such that µ/λN ≤ µ0.

We will show that for any integer n ≥ Nk, mod(fn) ≥ µ. To this end,
suppose that there is an integer n ≥ Nk such that mod(fn) < µ. Let m be the
greatest integer ≤ n/k. Then n− km ∈ {0, . . . , k− 1}. Consider the sequence
of integers

{qi = pn−km+ik/pn−km+(i−1)k}i≥1 ⊂ [p, p].

Let g0 = fn−km, and for each integer i ≥ 1, let gi = Rqigi−1 be the canonical
qi-renormalization of gi−1 having the same Julia set as fn−km+ik. Lemma 21.2
implies that mod(gm) < mod(fn) < µ. Applying theorem 14.1, we see that

mod(gm−1) ≤ λ−1 mod(gm) < µ/λ < µ.

We are again in a position to apply theorem 14.1. After a total of m applica-
tions of theorem 14.1, we obtain

mod(fn−km) = mod(g0) ≤ µ/λm ≤ µ/λN < µ0,

which is a contradiction.
We would like to define N (δ) = Nk, but this will not meet our require-

ments: N depends on µ′, and µ′ depends on f . Recalling the definition of µ′ in
equation (10), we see that we need only bound the moduli of f ′, for all f ′ ∈ F ,
in terms of the modulus of f . For each n ∈ {1, . . . , k − 1}, we know that

pn =
pn
pn−1

· · · p2

p1

p1 ≤ Bn ≤ Bk−1.
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By corollary 20.2, there are constants C = C(d) > 1 and µ∗ = µ∗(d,Bk−1) =
µ∗(B, d) such that µ′ ≥ min{µ∗, C−1 mod(f)} ≥ min{µ∗, δ/C} =: µ̂. Clearly,
µ̂ = µ̂(B, d, δ). Let N̂ = N̂(µ, µ̂) = N̂(B, d, δ) be the smallest integer ≥ 0 such

that µ/λN̂ < µ̂. We can repeat the argument in the preceding paragraphs,
replacing N with N̂ and µ0 with µ̂. Defining N (δ) = N̂k, we are finished.

Remark 21.1 (Generalization). Although the theorem above is stated for a
pseudo-polynomial-like map admitting infinitely many good renormalizations
around one of its critical points, infinite renormalizability is not an essen-
tial hypothesis. We have actually proven the following: Let B and d be
integers ≥ 2. There exist a constant µ = µ(B, d) > 0 and a function
N = NB,d : (0,+∞) → Z≥0 such that the following property is satisfied.
If f is a pseudo-polynomial-like map of degree d, with mod(f) ≥ δ > 0, ad-
mitting at least N = N (δ) good renormalizations around one of its critical
points, with combinatorics bounded by B, then for any integer n ≥ N , we
have mod(fn) ≥ µ whenever fn is defined.
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Chapter 4

Combinatorics, a priori bounds,
and local connectivity

22 Combinatorial decomposition

Let f : C → C be a polynomial (or a polynomial-like map) of degree d ≥ 2
admitting infinitely many primitive renormalizations around each of its critical
points.

22.1 Around one critical point

Fix c ∈ Crit(f). The objects defined in this subsection are associated with c,
but our notation will not reflect this.

Let P denote the set of periods p such that f is primitively p-renormalizable
around c. We will write P = {p1, p2, . . . }, where for each n, pn < pn+1. It
can be shown that pn divides pn+1. (See proposition 3.8 in [Ino02].) Define
rn = pn+1/pn. Given an integer n ≥ 1, choose domains Un and V n such that
fpn : Un → V n is a polynomial-like renormalization of period pn around c.
Let Kn = K(fpn|Un) denote the corresponding Julia set. Define the following
objects:

An =

pn−1⋃
j=0

f j(Kn),

Cn = Crit(f) ∩ An,

Kn = Un ∩ An+1 =
rn−1⋃
j=0

(fpn)j(Kn+1).

(11)
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Define V n
0 = V n, and for each integer j, with 1 ≤ j ≤ pn − 1, define V n

j =
f j(Un). Let Un

j be the connected component of f−pn(V n
j ) contained in V n

j .
Then fpn : Un

j → V n
j is a polynomial-like map, deg(fpn|Un

j ) = deg(fpn|Un),
and K(fpn|Un

j ) = f j(Kn) = Un
j ∩ An. Define Kn

j = K(fpn|Un
j ), and define

Knj = Un
j ∩ An+1.

Lemma 22.1. For any sufficiently large integer n, Cn = Cn+1.

Proof. By proposition 3.9 in [Ino02], Cn ⊃ Cn+1. Since Crit(f) is a finite set,
the sets Cn eventually stabilize.

Let η be the smallest integer such that n ≥ η implies Cn = Cn+1. All
renormalizations of level n ≥ η involve the same subset of critical points of f .
The following observation is obvious: If a is a critical point of fpn|Un, then the
orbit {a, f(a), . . . , f pn−1(a)} contains a critical point of f , so fpn(a) belongs
to the postcritical set of f . The following lemma will enable us to apply the
improvement of life philosophy.

Lemma 22.2. For each m ≥ n ≥ η, the critical values of fpn|Un are contained
in Kn ∩ Am+1.

Proof. Let a be a critical point of fpn|Un. Then (fpn)′(a) = 0, so there is an
integer j, with 0 ≤ j ≤ pn−1, such that f ′(f j(a)) = 0. Then f j(a) is a critical
point of f . Since Kn is connected, a ∈ Kn, so f j(a) ∈ f j(Kn) ⊂ An. This
shows that f j(a) ∈ Cn.

By lemma 22.1, we know that Cn = Cm+1, so f j(a) ∈ Am+1. By carefully
counting indices, we see that f j(Kn) ∩ Am+1 =

⋃rn···rm−1
k=0 Km+1

j+kpn
. It follows

that there is an integer `, with 0 ≤ ` ≤ rn · · · rm − 1, such that f j(a) ∈
Km+1
j+`pn

. Then fpn(a) = fpn−j(f j(a)) ∈ fpn−j(Km+1
j+`pn

) = f (1+`)pn(Km+1) ⊂
Kn ∩ Am+1.

Remark. For each m ≥ n ≥ η, the polynomial-like restriction of fpn|Un of
period pm+1/pn around any little Julia set of Kn ∩ Am+1 is good.

22.2 Partitioning the set of critical points

In this subsection, it will be necessary to indicate the dependence of the ob-
jects defined in subsection 22.1 on the critical point under consideration; for
example, given a critical point c of f , we will write Cn(c) and η(c).

Lemma 22.3. Let c and c′ be critical points of f . If c′ ∈ Cη(c)(c), then
η(c) = η(c′), and Cη(c)(c) = Cη(c′)(c′). If c′ 6∈ Cη(c)(c), then Cη(c)(c) and Cη(c′)(c′)
are disjoint.
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Consequently, we define an equivalence relation ∼ on the set Crit(f): c ∼ c′

if and only if c′ belongs to Cη(c)(c). We partition Crit(f) into equivalence
classes. Let N be the number of equivalence classes, and for each equivalence
class, choose a representative critical point. Enumerate these critical points as

c1, . . . , cN .

23 A priori bounds

We will now describe a decomposition of our original map f : U → V into
polynomial-like restrictions to which the improvement of life philosophy can
be applied. These restrictions are obtained by ignoring the first few renormal-
ization levels. We will amend our notation for the objects defined in equation
(11) so that, for each k ∈ {1, . . . , N} and each integer n ≥ 0,

Aη(ck)+n(ck) becomes An(k),

Cη(ck)+n(ck) becomes Cn(k), and

Kη(ck)+n(ck) becomes Kn(k).

Similarly, pη(ck)+n(ck) becomes pn(k). For each j ∈ {0, . . . , pn(k)− 1},

U
η(ck)+n
j (ck) becomes Un

j (k),

V
η(ck)+n
j (ck) becomes V n

j (k),

K
η(ck)+n
j (ck) becomes Kn

j (k), and

Kη(ck)+n
j (ck) becomes Knj (k).

In this new notation, we let fk,j = fp0(k) : (U0
j (k), K0

j (k))→ (V 0
j (k), K0

j (k)).
By lemma 22.2, we can think of the polynomial-like restrictions {fk,j}k,j of

iterates of f as pseudo-polynomial-like maps admitting infinitely many good
renormalizations. (These are the maps on the first level for which lemma 22.2
applies.) Provided we have a bound on combinatorics, we can apply theorem
21.3 to obtain beau bounds for these maps. An immediate consequence is the
following theorem.

Theorem 23.1 (A priori bounds). Let f : C → C be a polynomial of degree
d ≥ 2 admitting infinitely many primitive renormalizations around each of
its critical points. Let B ≥ 2 be an integer, and assume that B bounds the
relative renormalization periods of f . Consider the decomposition of f as in
the paragraph above. There exists ε > 0 such that for each k ∈ {1, . . . , N}, for
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each j ∈ {0, . . . , p0(k)− 1}, the canonical renormalizations of the polynomial-
like maps fk,j have moduli ≥ ε.

Remark 23.1. In theorem 23.1, we have in mind the canonical renormalizations
with periods {pn(k)/p0(k)}∞n=1 of fk,j. We are not thinking about the iterated
canonical renormalizations. The beau bounds directly imply that there is an
eventual lower bound on moduli that depends only on B and d. Corollary 20.2
then implies that the constant ε in theorem 23.1 depends only on B, d, and
mink,j{mod(fk,j)}.

Together with theorem 8.1, theorem 23.1 has the following corollary.

Corollary 23.2. Assume the conditions stated in theorem 23.1. There exists
ε > 0 such that for each k ∈ {1, . . . , N} and each integer n ≥ 0, for each j ∈
{0, . . . , pn(k)−1}, the relevant domains may be chosen so that the polynomial-
like maps

fpn(k) : Un
j (k)→ V n

j (k)

satisfy mod(V n
j (k) \ Un

j (k)) ≥ ε.

Remark 23.2. Again, the beau bounds imply that the constant ε in corollary
23.2 depends only on B, d, and min{mod(fk,j)}k,j.
Remark 23.3 (Generalization). Although we have stated theorem 23.1 and
corollary 23.2 in the context of polynomials admitting infinitely many primitive
renormalizations around each of their critical points, infinite renormalizability
around each critical point is not an essential hypothesis. We have actually
proven the following: Let B and d be integers ≥ 2. Let f : C → C be a
polynomial of degree d admitting infinitely many primitive renormalizations
around c ∈ Crit(f), with combintorics bounded by B. In the notation in
subsection 22.1, we have a polynomial-like map

fj = fpη : Uη
j → V η

j

for each j ∈ {0, . . . , pη−1}. Each of the maps fj has beau bounds in the sense
of theorem 21.3. Consequently, there exists ε = ε(B, d,min{mod(fj)}j) > 0
such that the canonical renormalizations of the polynomial-like maps fj have
moduli ≥ ε. Then there exists δ = δ(d, ε) > 0 such that for each integer n ≥ η
and each j ∈ {0, . . . , pn − 1}, the relevant domains may be chosen so that the
polynomial-like maps

fpn : Un
j → V n

j

satisfy mod(V n
j \ Un

j ) ≥ δ.
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Corollary 23.3. Assume the conditions stated in theorem 23.1. We have the
following:

1. The postcritical set P (f) has bounded geometry.

2. As n → ∞, we have max{diamC(P n
j (k))}k,j → 0, where P n

j (k) :=
Kn
j (k) ∩ P (fk,j).

3. There is no f -invariant line field on K(f) = J(f).

Proof. By the Schwarz lemma, robustness of each map in the finite set {fk,j}
follows from a lower bound on some subsequence of moduli, so corollary 4.10(2)
in [Ino02] applies to each of these maps. Since P (f) =

⋃
k,j P (fk,j), this proves

(1). Since there are finitely many maps {fk,j} on the top level, this proves (2).
Corollary 5.2 in [Ino02] applies directly to the map f , proving (3).

Remark 23.4. The decomposition of our original map f into the maps {fk,j}
was good enough for us to obtain theorem 23.1 and deduce corollary 23.3. For
each k ∈ {1, . . . , N}, for each integer n ≥ 0, we know that the little Julia sets
{Kn

j (k)}j are pairwise disjoint. However, up to this point, we do not know
whether K0

j (k) and K0
j′(k

′) are disjoint when k 6= k′. We can quickly prove
the following lemma, which tells us that on some level n ≥ 0, the little Julia
sets {Kn

j (k)}j,k are disjoint.

Lemma 23.4. Assume the conditions stated in theorem 23.1. As n→∞, we
have max{diamC(Kn

j (k))}k,j → 0.

Proof. Corollary 23.3 implies that max{diamC(P n
j (k))}k,j → 0. Lemma 9.1

implies that deg(fpn|Un
j (k)) ≤ 2d−1, where d = deg(f). Furthermore, we

know that the polynomial-like map fpn : (Un
j (k), Kn

j (k)) → (V n
j (k), Kn

j (k))

satisfies mod(V n
j (k) \ Un

j (k)) ≥ ε, where ε > 0 is the constant from corollary
23.2. By corollary 5.10 in [McM94], there exists C = C(d, ε) > 1 such that
diamC(Kn

j (k)) ≤ C · diamC(P n
j (k)), so we are finished.

Remark 23.5. Consequently, by ignoring finitely many levels of renormaliza-
tion (and renumbering all of the corresponding objects once again), we can
assume that the little Julia sets {K0

j (k)}k,j are disjoint. Consider the finitely
many maps {fk,j : (U0

j (k), K0
j (k))→ (V 0

j (k), K0
j (k))}k,j on the (new) top level.

Disjointness of the little Julia sets {K0
j (k)}k,j implies that the finitely many

domains {V 0
j (k)}k,j can be chosen so that they are bounded by pairwise dis-

joint, smooth, Jordan curves. Under these conditions, we may once again use
theorem 21.3 to obtain a priori bounds. Then theorem 23.1, corollaries 23.2
and 23.3, and lemma 23.4 still hold.
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24 Local connectivity

Recall that for the polynomial f under consideration, J(f) = K(f). In this
section, we will prove the following theorem.

Theorem 24.1. Assume the conditions stated in theorem 23.1. Then K(f)
is locally connected.

Given a point x ∈ K(f), we say that K(f) is locally connected at x if there
are arbitrarily small (closed) neighborhoods of x in K(f). We say that K(f)
is locally connected if K(f) is locally connected at each of its points. (For
background on local connectivity, see [Mil06].)

24.1 Local connectivity at the critical points

Let c ∈ Crit(f). Let {Kn := Kn
jn(k)}n be any subsequence of nested little

Julia sets with c ∈ ⋂∞n=0K
n. Let gn := fpn(k) : (Un

jn(k), Kn) → (V 0
j0

(k), Kn)
be the corresponding polynomial-like renormalizations.

Lemma 24.2. K(f) is locally connected at c.

Proof. We will show that c has arbitrarily small connected (closed) neighbor-
hoods in K. Let δ > 0. By lemma 23.4, there is an integer n ≥ 0 such that
Kn ⊂ δD + c. The β-fixed points of gn in Kn are repelling periodic points
of f , so they are the landing points of some periodic, rational external rays
of K. Consider the rational external rays of K landing on the β-fixed points
in Kn and landing on the inverse images (under gn) of these β-fixed points.
Truncate the resulting domain by any equipotential of f to obtain a domain
W . The domain W is a degenerate renormalization domain around Kn. (By
degenerate, we mean that ∂W meets Kn in finitely many periodic and prepe-
riodic points of f , but the set of points in W that do not escape W under
iteration of fpn(k)|W is precisely Kn.) For each integer m ≥ 0, let Wm be the
component of (fpn(k))−m(W ) containing Kn in its closure, and let Ym = Wm.
As m → ∞, the “puzzle pieces” Ym shrink to Kn. Take any YN contained in
δD + c. Then YN ∩K is a connected (closed) neighborhood of c ∈ K.

24.2 Local connectivity everywhere else

Let x ∈ K(f) \ Crit(f). There are two possibilities, either {fn(x)}∞n=0 accu-
mulates on Crit(f), or {fn(x)}∞n=0 does not accumulate on Crit(F ). The proof
of theorem 24.1 will be complete once we show that K(f) is locally connected
at x in both of these cases.
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Lemma 24.3. If {fn(x)}∞n=0 accumulates on Crit(f), then K(f) is locally
connected at x.

Proof. As in the proof of lemma 24.2, we can construct for each c ∈ Crit(F )
a sequence of puzzle pieces {Ym(c)}∞m=0, each containing c, such that

• diamC(Ym(c))→ 0 as m→∞,

• Ym(c) contains a little Julia set of f and does not meet any other little
Julia set of the same depth,

• Ym(c) is surrounded by an annulus Am(c) of definite modulus, and

• the annulus Am(c) separates Ym(c) from P (f) \ Ym(c).

For each m, we will call {Ym(c) : c ∈ Crit(F )} the set of critical puzzle pieces
of depth m.

For each n, let `n ≥ 0 be the first moment that f `n(x) belongs to a critical
puzzle piece Yn(c(n)) of depth n. Pull this piece back univalently along the
orbit {x, f(x), . . . , f `n(x)} to obtain a puzzle piece Qn containing x. We obtain
a sequence {Qn}n of puzzle pieces containing x, and we want to show that
diamC(Qn)→ 0 as n→∞.

Suppose that the orbit of x lands on Crit(f) in finite time: There is a
unique ` ≥ 1 such that f `(x) = c ∈ Crit(f). For some sufficiently deep level
N , the puzzle pieces {Qn}n≥N are obtained by pulling back the puzzle pieces
{Yn(c)}n≥N along the orbit {x, f(x), . . . , f `(x)}. In this case, it is clear that
diamC(Qn)→ 0 as n→∞.

Now, suppose that the orbit of x never lands on Crit(f). We claim that
`n → ∞ as n → ∞. Otherwise, there would be a bounded subsequence of
{`n}n, which we also denote by {`n}n. Then the orbit {fk(x)}`nk=0 would land
in arbitrarily small puzzle pieces containing critical points of f , but this would
imply that x lands on Crit(f) in finite time.

For each n, the annulus An(c(n)) separates Yn(c(n)) from the rest of P (f).
Then the univalent map f `n : Qn → Yn(c(n)) admits a univalent extension to
a definitely bigger domain (in terms of the annulus An(c(n))). By the Koebe
distortion theorem, `n →∞ implies that diamC(Qn)→ 0.

Lemma 24.4. If {fn(x)}∞n=0 does not accumulate on Crit(f), then K(f) is
locally connected at x.

Proof. In this case, {fn(x)}∞n=0 accumulates on a point y ∈ K \ P (f). (If
{fn(x)}n were to accumulate on a point of P (f), then robustness of the maps
{fk,j}k,j would imply that the orbit accumulates on some point of Crit(f).)
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Choose a depth n such that y is in the complement of the union of all little Julia
sets

⋃
kAn(k) of depth n. Consider all of the rational external rays of f landing

at all of the β-fixed points and all of the corresponding “symmetric” points
(the inverse images of the β-fixed points under the appropriate restrictions of
the appropriate iterates of f) of all of the little Julia sets of depth n. We
obtain a “puzzle piece” Q containing y such that Q is separated from P (f) by
an annulus A of positive modulus.

The set of integers ` ≥ 0 such that f `(x) ∈ Q is infinite. Let {`n}n be
the strictly increasing sequence of moments when f `n(x) ∈ Q. For each n,
pull Q back along the orbit {x, f(x), . . . , f `n(x)} to obtain a puzzle piece Qn.
The univalent map f `n : Qn → Q admits a univalent extension to a definitely
bigger domain (in terms of the annulus A). As before, the Koebe distortion
theorem allows us to conclude that diamC(Qn)→ 0.

25 Cycle trees and multi-indices

Our goal in this section will be to describe another way of labeling the little
Julia sets, a way that is compatible with their nested structure.

We will use the following notation: Given an integer q ≥ 1, we define the
set Zq = {0, . . . , q − 1}.
Definition 25.1. Let {qn}∞n=0 be a strictly increasing sequence of positive
integers with the property that qn|qn+1 for all n. For each n, let {Kn

j : j ∈ Zqn}
be a collection of pairwise disjoint subsets of C, and let Kn =

⋃qn−1
j=0 Kn

j .
Assume that

K0 ⊃ K1 ⊃ K2 ⊃ · · · ,
and

K0
0 ⊃ K1

0 ⊃ K2
0 ⊃ · · · .

Assume that there is a map g : K0 → K0 with the property

g(Kn
j ) = Kn

j+1 (12)

for each n and each j, where we consider the index j in equation (12) as an
element of the cyclic group Z/qnZ. We call ({qn}, {Kn}, g) a cycle tree.

Definition 25.2. A multi-index is an element of the set Z =
⋃∞
n=0 Zn+1.

(Note that this is a union of disjoint sets.) The depth of a multi-index α,
denoted |α|, is defined in the following way: |α| = n if and only if α ∈
Zn+1. We define a partial ordering � on the set of multi-indices: Given multi-
indices α = (j0, . . . , jn) and α′ = (j′0, . . . , j

′
n′), we write α � α′ if n ≤ n′ and

57



(j0, . . . , jn) = (j′0, . . . , j
′
n). Given multi-indices α and α′ we write α ≺ α′ if

α � α′ and |α′| = |α|+ 1

Let T = ({qn}, {Kn}, g) be a cycle tree. We define r0 = q0, and for
each integer n ≥ 1, we define rn = qn/qn−1. For each n, define In = ITn =
Zr0 × · · · × Zrn ⊂ Zn+1, and let φn = φTn : In → Zqn be the bijection defined
by φ(j0, . . . , jn) = j0 +

∑n
k=1 qk−1jk. Define I = IT =

⋃∞
n=0 In ⊂ Z. (Again,

this is a union of disjoint sets.) A multi-index α is admissible for T if α ∈ I.
We will only consider multi-indices in the context of cycle trees; conse-

quently, we will always assume that multi-indices are admissible for the cycle
tree under consideration.

Lemma 25.1. Kα ⊃ Kα′ if and only if α � α′.

Lemma 25.2. Fix n, i, and α, with φn(α) = i. Then {Kn+1
j : Kn+1

j ⊂ Kn
i } =

{Kα′ : α ≺ α′}.

Lemma 25.3. For each n, f qn(K(j0,...,jn)) = K(j0,...,jn).

Lemma 25.4. For each n, f qn(K(j0,...,jn,jn+1)) = K(j0,...,jn,jn+1+1).

Remark 25.1. In the notation of the previous sections, it is clear that

Tk = ({pn(k)}, {An(k)}, f)

is a cycle tree. Consequently, we will label the little Julia sets, which are
components of An(k), where n ranges over all integers ≥ 0, by multi-indices.
The little Julia sets determine the corresponding polynomial-like renormal-
izations/restrictions or canonical renormalizations, so we will label these by
multi-indices as well. Given n, j, and α, with φTkn (α) = j, we can write
Uα(k) = Un

j (k), V α(k) = V n
j (k), Kn

j (k) = Kα(k), and Fα
k = Fk,n,j.
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Chapter 5

Rigidity

26 Collars and equidistant curves

The standard collar function is the decreasing homeomorphism η : (0,+∞)→
(0,+∞), defined by

η(`) = sinh−1

(
1

sinh(`/2)

)
=

1

2
ln

cosh(`/2) + 1

cosh(`/2)− 1
= ln

e`/2 + 1

e`/2 − 1
.

Let X be a hyperbolic Riemann surface, and let γ ⊂ X be a simple, closed
geodesic. The standard collar neighborhood of γ is

C(γ) = {z ∈ X : distX(z, γ) < η(|γ|X)}.
Theorem 26.1 (Collar theorem). Let X be a hyperbolic Riemann surface, and
let γ ⊂ X be a simple, closed geodesic. Then C(γ) is an embedded annulus. If
γ′ ⊂ X is a simple, closed geodesic such that γ∩γ′ = ∅, then C(γ)∩C(γ) = ∅.

The standard collar neighborhood C(γ) of γ is foliated by simple, closed
curves at a fixed hyperbolic distance from γ. We will need a notation for these
curves and for sub-annuli of C(γ) determined by these curves. Assume that
X ⊂ C. (This assumption is sufficient for the following definitions. More
generally, we could instead assume that γ is oriented.) Then we define σ :
X → {−1, 1} by

σ(z) =

{
−1 if z belongs to the bounded component of C \ γ,
1 otherwise.

Given T ⊂ [−1, 1], define

γT = {z ∈ X : σ(z) · distX(z, γ)/η(|γ|X) ∈ T}.
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Clearly, C(γ) = γ(−1,1). Given a real number t ∈ [−1, 1], we define γt = γ{t},
and we call γt an equidistant curve.

Lemma 26.2. Let A ⊂ C be an annulus, with mod(A) ≥ µ > 0 and core
geodesic γ ⊂ A. Then γ is a κ(µ)-quasicircle.

Proof. This is a consequence of the Koebe distortion theorem. See lemma
39.1(i) in [Lyu16].

Lemma 26.3. Let X ⊂ C be a hyperbolic Riemann surface, and let γ ⊂ X be
a simple, closed geodesic. For any t ∈ (−1, 1), let At ⊂ C(γ) be the maximal
sub-annulus for which γt ⊂ At is the core geodesic. Then

• modAt ∈ (0,modC(γ)) depends only on |t| and |γ|X ,

• modAt → modC(γ) as |t| → 0, and

• modAt → 0 as |t| → 1.

Consequently, γt is a quasicircle, with dilatation depending only on |t| and
|γ|X .

Proof. The proof is a straightforward exercise involving the band B = {z ∈
C : | Im z| < π/2} and its hyperbolic metric |dz|/ cos(Im z).

26.1 Convergence of hyperbolic surfaces in C
Given a hyperbolic Riemann surface X ⊂ C and a base point x ∈ X, there is
a unique universal covering map π : D→ X satisfying π(0) = x and π′(0) > 0.
We will call π the normalized universal covering map corresponding to (X, x).
Let G denote the subgroup of Aut(D) consisting of deck transformations of π.

For each n, let Xn ⊂ C be a hyperbolic Riemann surface, and choose
a base point xn ∈ Xn. Let πn be the normalized universal covering map
corresponding to (Xn, xn), and let Gn be the group of deck transformations
of πn. We will say that (Xn, xn) → (X, x) geometrically if for every κ > 1
and r > 0, there exists an integer N such that whenever n ≥ N , there is a
(κ, r)-approximate isometry (Xn, xn) 99K (X, x): There are open sets U ⊂ X
and Un ⊂ Xn, with BX(x, r) ⊂ U and BXn(xn, r) ⊂ Un, and an orientation
preserving homeomorphism φn : (U, x) → (Un, xn) such that for all a, b ∈ U ,
we have

1

κ
distX(a, b) ≤ distXn(φn(a), φn(b)) ≤ κ distX(a, b).
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Theorem 26.4. Suppose that (Xn, xn)→ (X, x) in the Carathéodory topology.
Then

1. πn → π in the compact-open topology.

2. (Xn, xn)→ (X, x) geometrically.

3. Gn → G in the Hausdorff topology on compact subgroups of Aut(D).

Proof. See [Hej74] or [Com13] for a proof that Carathéodory convergence is
equivalent to (1). See [MT98] for a proof that (2) and (3) are equivalent. Stan-
dard estimates show that as (Xn, xn)→ (X, x) in the Carathéodory topology,
we have uniform convergence ρXn → ρX of the hyperbolic metrics (with con-
stant curvature −1) on compact subsets of X. It follows that restrictions of the
identity map to increasingly large balls in X, centered at x, provide arbitrarily
good approximate isometries.

26.2 Convergence of equidistant curves

Assume that (Xn, xn) → (X, x) in the Carathéodory topology. Let γ be a
simple, closed geodesic in X, and let γn be a simple, closed geodesic in Xn.
Since γ and γn are simple, closed curves in C, we can equip them with the
induced positive orientation. Let [γ] and [γn] be the corresponding hyperbolic
transformations in Aut(D), and suppose that [γn]→ [γ].

Lemma 26.5. γn → γ in the Hausdorff topology.

Proof. Let p be the repelling fixed point of [γ], and let q be the attracting
fixed point of [γ]. Let pn and qn be the corresponding fixed points of [γn].
As [γn] → [γ] in Aut(D), we know that pn → p and qn → q. Let λ denote
the hyperbolic geodesic in D limiting on p in one direction and on q in the
other. Define λn similarly. Then λn ∪ {pn, qn} → λ ∪ {p, q} in the Hausdorff
topology. It follows that γn = πn(λn) converges to γ = π(λ) in the Hausdorff
topology.

Lemma 26.6. For any t ∈ [−1, 1], γtn → γt in the C1 topology.

Proof. Consider an annulus cover Aγ(X) → X. We can identify Aγ(X) with
a round annulus A(1/r, r), where r = exp(π2/|γ|X), in such a way that the
induced covering map ρ : A(1/r, r) → X satisfies ρ(1) = x, ρ(∂D) = γ, and
deg(ρ|∂D) = 1. Let ρn : A(1/rn, rn) → Xn be the covering map defined
correspondingly. As n → ∞, rn → r, and it is not hard to show that ρn → ρ
uniformly on compact subsets of A(1/r, r). For appropriately chosen λ =
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λ(t, |γ|X) ∈ (1/r, r) and λn = λn(t, |γn|Xn) ∈ (1/rn, rn), the parametrizations
p : ∂D → γt, defined by p(z) = ρ(λz), and pn : ∂D → γtn, defined by pn(z) =
ρn(λnz), satisfy pn → p and p′n → p′ uniformly.

26.3 Some hyperbolic geometry

Let f : (V,K) → (V,K) be a pseudo-polynomial-like map admitting a good
renormalization of period p. Let K =

⋃p
j=0Kj denote the corresponding cycle

of little Julia sets. Let Γ ⊂ V \K denote the core geodesic, and for each j, let
γj ⊂ V \ K denote the simple, closed geodesic going around Kj. (See figures
5.1 and 5.2.)

Figure 5.1: The geodesic Γ ⊂ V \K is shown in purple.

Lemma 26.7. The curve Γ separates
⋃
γ1
j from ∂V.

Proof. Since V \ K ⊂ V \ K, we can view Γ as a simple, closed curve in
V \ K. Let Γ′ ⊂ V \ K be the simple, closed geodesic in the homotopy class
of Γ ⊂ V \ K. By theorem 26.1, Γ′ separates

⋃
γ1
j from ∂V.

Given a domain D ⊂ C, a Borel set E ⊂ ∂D, and a point z in D, let
ω(z,D)(E) be the harmonic measure of E with respect to the pointed domain
(D, z). The geodesic Γ is the 1/2-level set of g : z 7→ ω(z,V \K)(K). The
geodesic Γ′ is the 1/2-level set of h : z 7→ ω(z,V \ K)(K). Both g and h
are harmonic functions on their respective domains. Since g|∂(V \ K) ≥
h|∂(V \ K), we know that g ≥ h|V \ K. Then h|Γ ≤ 1/2, so Γ′ cannot be
closer to ∂V than Γ.
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Figure 5.2: In blue, we have the equidistant curves
⋃
j γ

1/2
j associated with the

simple, closed geodesics
⋃
j γj in V \ K. The green curve is the simple, closed

geodesic in V \ K homotopic to Γ ⊂ V \ ⊂ V \ K.

Definition 26.1. Let f : (V,K)→ (V,K) be a pseudo-polynomial-like map.
Let Γ ⊂ V \K be the core geodesic. We let A(f) denote the annulus Γ(0,1/2) ⊂
V \K.

27 One level of renormalization

27.1 The combinatorial model associated with a good
renormalization

Given a polynomial-like map f : U → V admitting a good renormalization of
period p, a superattracting model F of f was defined in subsection 15.1. It is
a p-good polynomial, unique up to affine conjugacy. (Recall that F being p-
good means that F has exactly one superattracting p-cycle, and all the critical
points of F are either in this p-cycle or land on this p-cycle after one application
of F .) We define combp(f) = F , and by abuse of notation, we may identify F
with its affine conjugacy class.

Lemma 27.1. Fix integers d ≥ 2 and p ≥ 1. Up to affine conjugacy, there
are only finitely many p-good polynomials of degree d.

Proof. By corollary 3.7 in [BBL+00], there are only finitely many rational
maps of degree d with postcritical set of order p.
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27.2 A particular space of maps

Fix real numbers m and M , with 0 < m ≤ M . Let B, d and p be integers
≥ 2. Let F : C→ C be a p-good polynomial of degree d. Let

X = X (d, p, B, F,m,M)

be the space of pseudo-polynomial-like maps f of degree d such that

1. f admits a good renormalization of period p,

2. f admits infinitely many good renormalizations,

3. combp(f) = F ,

4. f the relative renormalization periods are bounded by B, and

5. m ≤ mod(f) ≤M .

Remark 27.1. Let us explain the meaning of these conditions. Condition (1)
and the upper bound in (5) allow us to define the domain S(f) whenever f ∈ X .
This domain is defined in terms of the hyperbolic geodesics going around the
big Julia set and the little Julia sets. Condition (2) guarantees that K(f)
depends continuously on f ∈ X . Since our maps admit infinitely many good
renormalizations, our Julia sets have no interior, so the Julia set is equal to
the filled Julia set. Condition (3) guarantees that all of our maps have the
same “Hubbard tree.” Then we can mark the domains by the Hubbard tree,
and we can choose markings of our Riemann surfaces to build a continuous
map into Teichmüller space. Condition (4) guarantees that our space of maps
is closed. The lower bound in condition (5) guarantees that our space of maps
has compact closure. Compactness is necessary only for the proof of rigidity.

Definition 27.1. Let f : V→ V be a pseudo-polynomial-like map in X . Let
K ⊂ V be the Julia set, and let K = Kp =

⋃
jKj ⊂ K be the little Julia sets

corresponding to the period p. Let Γ denote the core geodesic in V \K, and
let γj denote the simple, closed geodesic in V \K going around Kj. By lemma
26.7, we know that Γ and

⋃
γ1
j are disjoint, and Γ surrounds

⋃
γ1
j . We denote

by S(f) = Sp(f) the domain in C bounded by Γ ∪⋃ γ
1/2
j . (See figure 5.3.)

Fix a base point f∗ ∈ X . Let Mod(f∗) denote the moduli space Mod(S(f∗)).
Let Teich(f∗) denote the reduced Teichmüller space Teich#(S(f∗)).
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Figure 5.3: The domain S(f) is bounded by Γ ∪⋃j γ
1/2
j .

27.3 Continuity in moduli space

Lemma 27.2. The map X → Mod(f∗), defined by f 7→ S(f), is continuous.

Suppose that fn → f in X . For the pseudo-polynomial-like map fn : Vn →
Vn, the simple, closed geodesics Γn ⊂ Vn \Kn and γj,n ⊂ Vn \Kn are defined
correspondingly. Let S = S(f), and let Sn = S(fn). We will show that Sn → S
in Mod(f∗).

Choose a point a in V \K. (The choice of a only matters in that we need
a base point to discuss Carathéodory convergence.) For all sufficiently large
n, a belongs to Vn \Kn.

Lemma 27.3. (Vn \Kn, a)→ (V \K, a) in the Carathéodory topology.

Proof. Observing that K and Kn have empty interior, we see that Kn → K
in the Hausdorff metric. (See [Dou94].)

Lemma 27.4. (Vn \ Kn, a)→ (V \ K, a) in the Carathéodory topology.

Proof. Let f and fn be polynomial-like restrictions of f and fn, respectively.
Consider a little Julia set Kj ⊂ K, and consider a polynomial-like restriction of
fp near Kj. As fn → f , we know that fpn → fp uniformly (on some compact
neighborhood of Kj). Since all of the Julia sets under consideration have
empty interior, we see that the Julia sets of our polynomial-like restrictions of
fpn converge to Kj in the Hausdorff metric.

We will need the following lemma:
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Lemma 27.5. Fix m > 0. There exist C = C(m) > 1 and ε0 = ε0(m) > 0
such that the following property holds: Given ε, with 0 < ε < ε0, and a C1

embedding f : R → C such that ‖f − id ‖C1 ≤ ε, there is an embedding
F : {z ∈ C : 0 < Im(z) < m} → C such that

• F |R = f ,

• F |(R +mi) = id, and

• F |{z ∈ C : 0 < Im(z) < m} is (1 + Cε)-quasiconformal.

Furthermore, if f commutes with a real translation, then F does as well.

Proof. Choose C = 2(2 + 1/m) and ε0 = 1/C. Define F (x + iy) = (1 −
y/m)f(x) + (y/m)x+ iy. The following computations are obvious:

Fx(x+ iy) = f ′(x) + (y/m)(1− f ′(x)),

Fy(x+ iy) = (1/m)(x− f(x)) + i,

2Fz(x+ iy) = f ′(x) + 1 + (y/m)(1− f ′(x)) + i(1/m)(x− f(x)),

2Fz(x+ iy) = f ′(x)− 1 + (y/m)(1− f ′(x)) + i(1/m)(x− f(x)),

2|Fz(x+ iy)| ≤ |f ′(x)− 1|+ (y/m)|1− f ′(x)|+ (1/m)|x− f(x)|
≤ (2 + 1/m)ε,

2|Fz(x+ iy)| ≥
∣∣2− |f ′(x)− 1 + (y/m)(1− f ′(x)) + i(1/m)(x− f(x))|

∣∣,
≥ 2− (2 + 1/m)ε,

|µF (x+ iy)| :=
∣∣∣∣Fz(x+ iy)

Fz(x+ iy)

∣∣∣∣ ≤ (2 + 1/m)ε

2− (2 + 1/m)ε
,

Dil(F ) :=
1 + ‖µF‖∞
1− ‖µF‖∞

≤ 1 +
(2 + 1/m)ε

1− (2 + 1/m)ε
≤ 1 + Cε.

Disjointness of Γ and
⋃
γ1
j implies that there is a real number t, 0 < t ≤ 1,

such that Γ−t and
⋃
γ1
j are disjoint.

Lemma 27.6. Let A ⊂ C denote the annulus whose inner boundary is Γ−t and
outer boundary is Γ. Let An ⊂ C denote the annulus whose inner boundary
is Γ−t and outer boundary is Γn. There exist positive numbers {εn}n, with
εn → 0 as n→∞, and orientation preserving homeomorphisms φn : A→ An
such that

• φn|A is (1 + εn)-quasiconformal, and
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• φn|Γ−t = id.

Proof. By lemma 26.6, we know that Γ−tn → Γ−t in the C1 topology. Consider
V \K realized as a round cylinder

{z ∈ C : | Im(z)| < π/2}/〈z 7→ z + |Γ|〉.

In coordinates z = x + iy, we see that Γ corresponds to the curve y = 0,
and Γ−t corresponds to a curve y = constant. Furthermore, the geodesics Γn
approximating Γ correspond to curves C1 close to y = 0. We apply lemma
27.5.

Lemma 27.7. Let Aj denote the annulus in C whose inner boundary is γ
1/2
j

and outer boundary is γ1
j . Let Aj,n denote the annulus in C whose inner

boundary is γ
1/2
j,n and outer boundary is γ1

j . There exist positive numbers
{εj,n}n, with εj,n → 0 as n→∞, and orientation preserving homeomorphisms
φj,n : Aj → Aj,n such that

• φj,n|A is (1 + εj,n)-quasiconformal, and

• φj,n|γ1
j = id.

Proof. By lemma 26.6, we know that (γj,n)1/2 → γ
1/2
j in the C1 topology.

Realize the annulus cover Aγj(V \ K) of V \ K as a round cylinder

{z ∈ C : | Im(z)| < π/2}/〈z 7→ z + |γj|〉.

The standard collar neighborhood C(γj) of γj embeds in this round cylinder.

In coordinates z = x+iy, we see that γ
1/2
j and γ1

j correspond to curves y = c1/2

and y = c1, respectively, where c1/2 and c1 are constants. The geodesics γ
1/2
j,n

approximating γ
1/2
j correspond to curves C1 close to y = c1/2. We apply lemma

27.5.

To prove continuity of the S domains in moduli space, we want to show
that there exist quasiconformal maps S → Sn that are arbitrarily close to
being conformal. To this end, define ψn : S → Sn by

ψn(z) =


φn(z) if z ∈ A,
φj,n(z) if z ∈ Aj,
z if z ∈ S \ (A ∪⋃j Aj).

(13)
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Since φn|Γ−t = id and φj,n|γ1 = id, we see that ψn is continuous. In particular,
it is an orientation-preserving homeomorphism. Furthermore, we know that

ψn : S \ (Γ−t ∪
⋃
j

γ1
j )→ Sn \ (Γ−tn ∪

⋃
j

γ1
j,n)

is quasiconformal. Since Γ−t ∪⋃j γ
1
j consists of finitely many analytic curves,

we conclude that ψn|S is quasiconformal. Clearly, Dil(ψn) ≤ 1 + max({εn} ∪
{εj,n}j), and this quantity tends to 1 as n→∞. This completes the proof of
lemma 27.2.

27.4 Bounded below implies bounded above

Let X ∗ = X ∗(d, p, B, F,m) denote the space of pseudo-polynomial-like maps
obtained by replacing condition (5) in the definition of X with

mod(f) ≥ m.

We will need the following lemma for the proof of rigidity.

Lemma 27.8. There exists a real number M = M(X ∗) > 0 such that the
following property is satisfied: If f ′ is a canonical p-renormalization of f ∈ X ∗
around a little Julia set of K, then mod(f ′) ≤M .

Proof. By theorem 8.2, the space of maps X ∗ is compact, up to normalization.
By lemma 27.4 and theorem 26.4, the function X ∗ → (0,+∞), defined by
f 7→ min{|γj|V\K}j, is continuous. Consequently, there is a positive lower
bound on the lengths of the small geodesics. This lower bound for length
provides an upper bound M for the moduli of the corresponding canonical
renormalizations.

28 Two consecutive levels of renormalization

Fix real numbers m and M , with 0 < m ≤ M . Let B, d, p, and r be integers
≥ 2. Let F and G be p- and rp-good polynomials, respectively, of degree d.
Let

Y = Y(d, p, r, B, F,G,m,M)

be the set of pseudo-polynomial-like maps f of degree d such that

1. f admits good renormalizations of periods p and rp,
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2. f admits infinitely many good renormalizations,

3. combp(f) = F ,

4. combrp(f) = G,

5. f the relative renormalization periods are bounded by B, and

6. m ≤ mod(f) ≤M .

We define T (f) = Srp(f). Choose a base point f∗ ∈ Y .

Lemma 28.1. The map Y → Mod(f∗), defined by f 7→ T (f), is continuous.

Proof. This is an immediate consequence of lemma 27.2.

29 Continuity and compatibility of markings

29.1 Markings

Let U ⊂ C be a domain bounded by at least 3, but finitely many, Jordan
curves.

Definition 29.1. Let n ≥ 2 be an integer. The n-star, denoted Hn, is the
union

⋃n−1
k=0{re2πik/n : 0 ≤ r < 1} of half-open straight line segments joining

0 to the n-th roots of unity. The tips of Hn are the n-th roots of unity
{e2πik/n : k ∈ {0, . . . , n− 1}}.

By an embedding Hn → C, we mean an embedding (in the usual topological
sense) that extends to an orientation preserving homeomorphism C→ C. This
is equivalent to requiring that the embedding (in the usual topological sense)
preserves the cyclic ordering of the tips of Hn. We denote by Hn the closure of
Hn in C. An embedding Hn → U is proper if it admits an extension Hn → U
mapping the tips of Hn to ∂U . Two proper embeddings Hn → U are equivalent
if they are homotopic through proper embeddings. These definitions extend
immediately to embeddings of disjoint unions of n-stars.

Definition 29.2. A marking is a proper embedding h :
⊔N
i=1Ai → U , where

• for each i, Ai = Hni is the ni-star,

• h|Ai and h|Aj are not equivalent when i 6= j, and

• U \ h(
⊔
iAi) is homeomorphic to an annulus.
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Definition 29.3. Let h be a marking of U , and let h′ be a marking of U ′.
Let φ : U → U ′ be an orientation preserving homeomorphism. We say that φ
respects the markings if φ ◦ h is equivalent to h′.

Assume that h is a marking of U . In an obvious way, we can think of
the marking as a disked tree T . (The vertices are the bounded components
of C \ U and the images of 0 ∈ Ai under h. The edges are the remaining
portions of the image of h.) Consider the set of orientation preserving home-
omorphisms φ : U → U respecting the marking of U . The isotopy classes of
these homeomorphisms coincide with symmetries of the corresponding disked
tree. (By such a symmetry, we mean the isotopy class, respecting the disked
tree structure, of a homeomorphism T → T that extends to an orientation
preserving homeomorphism C→ C.) The following lemma is obvious.

Lemma 29.1. Assume that h :
⊔N
i=1Ai is a marking of U , and let φ : U → U

be an orientation preserving homeomorphism.

• If φ respects the marking, then φ is isotopic to the identity.

• If the disked tree corresponding to the marking admits no non-trivial
symmetries, and if φ(h(

⊔
iAi)) can be continuously, properly deformed

to h(
⊔
iAi), then φ is isotopic to the identity.

29.2 The marking induced by the Hubbard tree

Definition 29.4. Let f : C → C be a polynomial of degree d ≥ 2, with
connected Julia set, admitting a primitive renormalization of period p ≥ 2
around one of its critical points. Let K =

⋃p−1
j=0 Kj be the corresponding cycle

of little Julia sets, enumerated according to the dynamics. For each j, let fj
be a polynomial-like restriction of fp near Kj, and let βj be the union of the
β-fixed points of fj together with their pre-images under fj. Let β =

⋃
j βj.

Each point of β is the landing point of at least 2, but finitely many, external
rays of f . Let R = R(β) be the union of these external rays together with their
landing points. A component D ⊂ C \R is peripheral if C \D is connected.
A non-peripheral component D ⊂ C \R is separating if D and K are disjoint.
We say that I ⊂ {0, . . . , p−1} is admissible if there is a separating component
D ⊂ C \R such that

• Ki ∩ ∂D 6= ∅ for each i ∈ I, and

• K ∩ ∂D =
⋃
i∈I Ki ∩ ∂D.

70



Clearly, if such a component exists, then it is unique. We let I denote the
set of admissible subsets of {0, . . . , p − 1}, and for each I ∈ I, we let DI

denote the corresponding separating component. For each I ∈ I, let HI

be the |K ∩ ∂DI |-star. The ordering of K induces an ordering of K ∩ ∂DI .
Choose an embedding hI : HI → DI that extends to an embedding HI → DI

mapping the tips of HI to the points of K∩∂DI , respecting the orderings. The
marking induced by the Hubbard tree of the domain C \ K is the embedding
h =

⊔
I∈I hI :

⊔
I∈I HI → C \ K.

Definition 29.5. Let X be a Riemann surface of finite type. A domain U ⊂ X
is a compact core if U is essential in X, U is homeomorphic to X, U ⊂ X is
compact, and each component of ∂U is a Jordan curve.

Let f and H be as in the definition above. Let U ⊂ C \ K be a compact
core. Then U has a unique outer boundary component, and the enumeration of
the little Julia sets induces an enumeration of the inner boundary components
of U in the obvious way. Furthermore, the marking induced by the Hubbard
tree of the domain C \ K induces a marking of U (in the sense of definition
29.2), which we also denote by h, in the obvious way.

Consider the objects defined in section 27. The construction above gener-
alizes to pseudo-polynomial-like maps in a straightforward way. Consequently,
given f ∈ X and a suitable dynamical enumeration (not just a cyclic order) of
the little Julia sets K, we define the corresponding marking by the Hubbard
tree, denoted hf , of the domain S(f).

Lemma 29.2. Let f ∈ X . Then there is a unique homotopy class of orien-
tation preserving homeomorphisms S(f∗) → S(f) respecting the markings hf∗
and hf .

Proof. The existence of the homotopy class follows from the existence of a
Thurston equivalence between superattracting models of f∗ and f . Uniqueness,
if it is not automatic, follows from lemma 29.1.

29.3 Continuity in Teichmüller space

In light of lemma 29.2, we make the following definition: Given f ∈ X , let
φf : S(f∗)→ S(f) be a quasiconformal map respecting the markings.

Lemma 29.3. The map X → Teich(f∗), defined by f 7→ [S(f), φf ], is contin-
uous.
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Figure 5.4: On the left, we have S(f∗). On the right, we have S(f) and a
nearby marked domain S(fn).

Proof. Suppose that fn → f in X . Consider polynomial-like restrictions fn →
f . Let β = β(f) and {βn = β(fn)}n be the β-fixed points and the symmetric
points in the little Julia sets. (See definition 29.4.) As n→∞, we know that
βn → β, and all of these periodic points are repelling. Then the corresponding
external rays have converging parametrizations.

Define S = S(f), h = hf , and φ = φf . For each n, define Sn = S(fn),
hn = hfn , and φn = φfn . From the proof of lemma 27.2, we know that the
boundary curves of Sn converge to the boundary curves of S in the C1 topology.
This certainly implies Carathéodory convergence, so there exists a compact
core R ⊂ S such that for all sufficiently large n, R is also a compact core of Sn.
Convergence of the external rays implies that the markings h and hn restrict
to equivalent markings on R. (See figure 5.4.) Consequently, φn◦φ−1 : S → Sn
is homotopic to the quasiconformal map ψn : S → Sn defined in equation (13).
Then [Sn, φn] = [Sn, ψn ◦ φ], so

dist([S, φ], [Sn, φn]) ≤ 1

2
log Dil(ψn).

This quantity tends to 0 as n → ∞ (see the proof of lemma 27.2), so we are
finished.
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The set of maps Y , defined in section 28, is a subset of a set of maps X , and
the T domain is defined in terms of an S domain. Hence, we have also proven
the following lemma, where φf : T (f∗) → T (f) denotes a quasiconformal map
respecting the markings.

Lemma 29.4. The map Y → Teich(f∗), defined by f 7→ [T (f), φf ], is continu-
ous.

29.4 Compatibility of the markings

Let f ∈ Y = Yp,rp. For each j ∈ {0, . . . , p − 1}, let fj denote the canonical
p-renormalization of f around Kj. Let H denote the marking induced by the
Hubbard tree of the domain T (f) = Srp(f). Let h denote the marking induced
by the Hubbard tree of the domain S = S(f) = Sp(f). For each j, let hj denote
the marking induced by the Hubbard tree of the domain Sj = S(fj) = Sr(fj).
The marking H restricts to a marking H|S of S in an obvious way. Similarly,
the marking H restricts to a marking H|Sj of Sj for each j. (See figure 5.5.)

Figure 5.5: This is a marked T domain.

Lemma 29.5. The markings h and H|S of the domain S are equivalent. For
each j, the markings hj and H|Sj of the domain Sj are equivalent.
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Proof. Let K = Kp =
⋃p−1
j=0 Kj and K′ = Krp =

⋃rp−1
j=0 K ′j denote the little Julia

sets corresponding to the renormalization periods p and rp of f , enumerated
in such a way that Kj ∩ K′ =

⋃r−1
i=0 K

′
j+ip for each j ∈ {0, . . . , p − 1}. The

marking H is defined using the external rays R′ of f landing on the β-fixed
points and the symmetric points in the little Julia sets K′. The marking h
is defined using the external rays R of f landing on the β-fixed points and
the symmetric points in the little Julia sets K. For each j, the marking hj
is defined using the external rays of R′ contained in the component of the
complement of R containing Kj.

30 The proof of rigidity

Theorem 30.1. Let f and g be polynomials of degree d admitting infinitely
many primitive renormalizations around each of their critical points, with com-
binatorics bounded by B. If f and g are conjugate by an orientation-preserving
homeomorphism, then f and g are hybrid conjugate.

30.1 Setting things up

Consider the decomposition of f in remark 23.5. We have a special set of
critical points

{c1, . . . , cN} ⊂ Crit(f).

For each k ∈ {1, . . . , N}, we have the renormalization periods associated with
ck,

{qn(k)}∞n=0,

which satisfy qn+1(k)/qn(k) ≤ B for all n. For each j ∈ {0, . . . , q0(k)− 1}, we
have a polynomial-like restriction of an iterate of f ,

fk,j := f q0(k) : Uj(k)→ Vj(k).

The domains {Vj(k)}k,j satisfy

Vj(k) ∩ Vj′(k′) = ∅ whenever (k, j) 6= (k′, j′). (14)

In this paragraph, we will describe a labeling of the iterated canonical
renormalizations of the maps {fk,j}k,j using cycle trees. This notation respects
the nested structure of the associated little Julia sets. In this way, the set of all
iterated canonical renormalizations of the maps {fk,j}k,j is {fk,α}k,α. Whenever
we speak about a multi-index, we will implicitly require that it is admissible
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for the underlying cycle tree. Fix k, and consider the maps {fk,j}j. In the
notation of section 23, there is an associated cycle tree,

Tk = ({qn(k)}n, {An(k)}n, f).

Each map fk,j admits infinitely many good renormalizations (with periods
{qn+1(k)/q0(k)}n). From the point of view of the cycle tree Tk, the maps
{fk,j}j are those labeled by multi-indices of depth 0. Let us label the iterated
canonical renormalizations of the maps {fk,j}j inductively. (In our notation,
the letter j will be the index of a map on the top level. The letter α will be a
multi-index. We can also think of j as a multi-index of depth 0.) If for some
depth ` ≥ 0, the maps

{fk,α : |α| = `},
have already been defined, then for any α′ � α, where |α| = `, we let fk,α′ be
the canonical renormalization of fk,α around Kα′(k) ⊂ A`+1(k).

Lemma 9.1 and theorem 21.3 imply that for each k and each α,

deg(fk,α) ≤ 2d−1 and mod(fk,α) ≥ µf > 0.

Let B : (C, K(f), P (f)) → (C, K(g), P (g)) be an orientation preserving
homeomorphism conjugating f to g. There is a set of special critical points,

{c′1 = B(c1), . . . , c′N = B(cN)} ⊂ Crit(g),

with the same associated renormalization periods {qn(k)}k,n. Furthermore,
there are polynomial-like maps

{gk,j := gq0(k) = B ◦ fk,j ◦ B−1 : U ′j(k)→ V ′j (k)}k,j,

on the top level, where U ′j(k) = B(Uj(k)) and V ′j (k) = B(Vj(k)) for each k and
each j. The domains {V ′j (k)}k,j satisfy the disjointness property corresponding
to (14). There are the iterated canonical renormalizations {gk,α}k,α, where
K(gk,α) = B(K(fk,α)) for each k and each α. Lemma 9.1 and theorem 21.3
imply that for each k and each α,

deg(gk,α) ≤ 2d−1 and mod(gk,α) ≥ µg > 0.

The domains A(f), S(f), and T (f) associated with a pseudo-polynomial-
like map f were defined in definition 26.1, definition 27.1, and section 28,
respectively. (See figure 5.6.) For eack k and each α, we define Ak,α = A(fk,α),
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Figure 5.6: A domain Sk,α is outlined in black, and an annulus Ak,α is outlined
in gray.

Sk,α = S(fk,α), and Tk,α = T (fk,α). We letO denote the unbounded component
of C \⋃k,j Ak,j. By lemma 26.3, each component of

(C \ P (f)) \ (O ∪
⋃
k,α

(Ak,α ∪ Sk,α))

is a quasicircle, whose dilatation is bounded in terms of µf .
We define the corresponding objects for g: A′k,α = A(gk,α), S ′k,α = S(gk,α),

and T ′k,α = T (gk,α). We let O′ denote the unbounded component of C \⋃
k,j A

′
k,j. By lemma 26.3, each component of

(C \ P (g)) \ (O′ ∪
⋃
k,α

(A′k,α ∪ S ′k,α))

is a quasicircle, whose dilatation is bounded in terms of µg.
We have the common lower bound for the moduli of {fk,α}k,α and {gk,α}k,α,

µ = min{µf , µg}. (15)

30.2 Bounded geometry

Consider the relative renormalization periods

{rn(k) := qn+1(k)/qn(k)}k,n
for the maps {fk,α}k,α and {gk,α}k,α. (The correspondence between n and α
is n = |α|.) By hypothesis, we know that rn(k) ≤ B for all k and all n.
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By lemma 9.1, we know that deg(fk,α) = deg(gk,α) ≤ 2d−1 for all k and all
α. Then lemma 27.1 implies that there are only finitely many combinatorial
models: The set of p-good polynomials of degree D, with D ≤ 2d−1 and p ≤ B,
is finite, up to affine conjugacy. Consequently, we need only consider finitely
many spaces of pseudo-polynomial-like maps

X ∗1 , . . . ,X ∗M (16)

based on these combinatorial models. (See subsection 27.4.) More precisely,
each X ∗i is equal to some space X ∗(D, p,B, F, µ), where D ≤ 2d−1, p ≤ B, F is
a p-good polynomial of degree D, and µ is the lower bound on moduli coming
from (15).

For each k and each α, the topological conjugacy B between f and g
restricts to a topological conjugacy between polynomial-like restrictions of fk,α
and gk,α. It follows that

combr|α|(k)(fk,α) = combr|α|(k)(gk,α).

Then fk,α and gk,α both belong to the same space X ∗i , for some i. By lemma
27.8, the moduli of the canonical r|α|(k)-renormalizations of fk,α and gk,α are
bounded above by a constant µi = µi(X ∗i ).

Let µ = max({µi}i ∪{mod(fk,j)}k,j ∪{mod(gk,j)}k,α). Consider the spaces
of pseudo-polynomial-like maps

X1, . . . ,XM ,

with moduli bounded below by µ and above by µ, corresponding to (16) above.
(See section 27.) Then for each k and each α, fk,α and gk,α belong to the same
space Xi, for some i.

Lemma 30.2. There exists K1 = K1(X1, . . . ,XM) ≥ 1 such that for each k
and each α, there is a K-quasiconformal map Sk,α → S ′k,α in the homotopy
class determined by B.

Proof. By theorem 8.2, the space of maps Xi is compact, up to normalization.
By lemma 29.3, the image of Xi in Teichmüller space is bounded.

30.3 Building a quasiconformal map in the wrong ho-
motopy class

We will build a quasiconformal map in the wrong homotopy class by gluing
together the maps obtained in lemma 30.2, but first we need an estimate on
the annuli separating the S domains:
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Lemma 30.3. The moduli of the annuli {Ak,α}k,α and {A′k,α}k,α are bounded
below and above.

Proof. Recall that for a pseudo-polynomial-like map f : (V,K) → (V,K),
we have A(f) = Γ(0,1/2) ⊂ V \ K. For each k and each α, we have µ ≤
mod(fk,α) ≤ µ. Then the modulus of Ak,α is bounded above by µ and bounded
below in terms of µ. The corresponding statements also hold for {gk,α}k,α and
{A′k,α}k,α.

Consider some fixed k and α. Lemma 30.2 provides an orientation preserv-
ing homeomorphism

hk,α : Sk,α → S ′k,α

such that

• hk,α is in the homotopy class determined by B,

• hk,α|Sk,α is K1-quasiconformal, and

• the restriction of hk,α to any component of ∂Sk,α is M = M(K1, µ)-
quasisymmetric.

Lemma 30.3 (upper and lower bounds on moduli), lemma 26.3 (boundary
curves are quasicircles), and lemma 10.2 (quasiconformal interpolation with
controlled dilatation) imply that for each β, with α ≺ β, we can find an
orientation preserving homeomorphism

ak,β : Ak,β → A′k,β

such that

• ak,β|Ak,β is K3-quasiconformal, where K3 depends only on M , µ, and the
bounds on moduli from lemma 30.3,

• restricted to ∂Sk,α ∩ ∂Ak,β, ak,β = hk,α, and

• restricted to ∂Ak,β ∩ ∂Sk,β, ak,β = hk,β.

Now, consider the domains on the top level: O, O′, {Ak,j}k,j, and {A′k,j}k,j.
Obviously, there is an orientation preserving homeomorphism e : O → O′ such
that

• e|O is quasiconformal, and
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• e is in the homotopy class of homeomorphisms O → O′ determined by
B.

We again apply lemmas 30.3, 26.3, and 10.2: For each k and each j, there is
an orientation preserving homeomorphism ak,j : Ak,j → A′k,j such that

• ak,j|Ak,j is K4-quasiconformal, where K4 depends only on the dilatation
of e|O, M , µ, and the bounds from lemma 30.3,

• restricted to ∂O ∩ ∂Ak,j, ak,j = e, and

• restricted to ∂Ak,j ∩ ∂Sk,j, ak,j = hk,j.

Finally, we can define the desired quasiconformal map in the wrong homo-
topy class. Let h : C \ Pf → C \ Pg be defined by

h(z) =


e(z) if z ∈ O,
ak,α(z) if z ∈ Ak,α,
hk,α(z) if z ∈ Sk,α.

For purely topological reasons, h : C \ P (f) → C \ P (g) extends uniquely
to a homeomorphism h : (C, P (f)) → (C, P (g)). Since P (f) is a Cantor set
satisfying the divergence property (there is a lower bound on moduli of the
annuli {Ak,α}k,α), the extension h : C→ C is quasiconformal. By construction,
the homeomorphism h|P (f) : P (f) → P (g) agrees with B|P (f). However,
there is no reason at this point that h should be homotopic to B relative P (f).

30.4 Fixing the homotopy class

In this subsection, we make use of the topology theorems in section 31.
Reasoning similar to that in subsection 30.2 shows that we need only con-

sider finitely many spaces of pseudo-polynomial-like maps

Y1, . . . ,YM ′

based on the combinatorial models reflecting two levels of renormalization,
with moduli bounded below by µ and above by µ. (See section 28 for the
definition of these spaces.) For each k and each α, we have

combr|α|(k)(fk,α) = combr|α|(k)(gk,α),

combr|α|(k)r|α|+1(k)(fk,α) = combr|α|(k)r|α|+1(k)(gk,α).

Then fk,α and gk,α belong to the same space of maps Yi, for some i.
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Lemma 30.4. There exists K2 = K2(Y1, . . . ,YM ′) ≥ 1 such that for each k
and each α, there is a K2-quasiconformal map Tk,α → T ′k,α in the homotopy
class determined by B.

Proof. By theorem 8.2, the space of maps Yi is compact, up to normalization.
By lemma 29.4, the image of Yi in Teichmüller space is bounded.

Consider some fixed k and α. Lemma 30.4 provides an orientation preserv-
ing homeomorphism

tk,α : Tk,α → T ′k,α

such that

• tk,α is in the homotopy class determined by B, and

• tk,α|Tk,α is K2-quasiconformal.

Lemma 29.2 and lemma 29.5 imply that

• tk,α|Sk,α is homotopic to hk,α : Sk,α → S ′k,α, as a map into C \ P (g), and

• for each β, with α ≺ β, the “restriction” of tk,α to Sk,β is homotopic
to hk,β, as a map into C \ P (g). (There is a unique component R =
Rk,β ⊂ Tk,α \ Sk,α that is isotopic in C \ P (f) to Sk,β. Consequently,
the inclusion R ↪→ C \ P (f) induces an isomorphism π1(R)→ π1(Sk,β).
Then the homomorphisms π1(tk,α|R) : π1(Sk,β) → π1(C \ P (g)) and
π1(hk,β) : π1(Sk,β)→ π1(C \ P (g)) coincide.)

Then φ = φk,α := h−1 ◦ tk,α : Tk,α → C \ P (f) is a quasiconformal embedding
(with Dil(φ) ≤ Dil(h) ·K2). By lemma 31.4, the homotopy class of φ is that of
a composition of Dehn twists around the inner boundary components of Sk,α.
In other words, φ is homotopic to a Dehn multi-twist, a composition of finitely
many commuting Dehn twists.

We would like to post-compose φ with Dehn twists around the annuli
{Ak,β : α ≺ β} so that the resulting map is quasiconformal, with controlled
dilatation, and homotopic to the identity embedding Tk,α → C \ P (f). By
lemma 30.3, we know that there is a uniform lower bound on the moduli of
the annuli {Ak,β : α ≺ β}, so we need only check that there is also a uniform
upper bound (independent of k and α) on the order of twisting. This is a
consequence of bounded geometry (for the domains bounded by Γ(f)∪Krp(f)
corresponding to maps f ∈ Y) and the following theorem applied to φ.
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Theorem 30.5. Let C ⊂ C be a Jordan curve, and let U be the bounded
component of C\C. Let K =

⋃
Kj ⊂ U be a finite union of disjoint, compact,

connected sets, each containing at least 2 points. Let Y = U \ K. Let X ⊂ Y
be an essentially embedded domain bounded by finitely many Jordan curves,
such that (∂X) ∩ (∂Y ) = C. Let {γj}kj=1 be a finite set of disjoint, simple,
closed, geodesics contained in X, and assume that no component of X \⋃ γj
is an annulus. Let f : X → Y be a quasiconformal embedding such that
f(C) = C. Let D = Dn1

γ1
◦ · · · ◦Dnk

γk
: X → X be a Dehn multi-twist. Assume

that f and D are homotopic as maps X → Y . Let n = max{|nj|}j. There
exists K = K(n,X, Y ) ≥ 1 such that Dil(f) ≥ K. Furthermore, K → ∞ as
n→∞.

Proof. Choose γi such that ni = n. Let E0 denote the components of ∂X
outside of γi, and let E1 denote the components of ∂X inside γi. Let h : X →
[0, 1] be the unique continuous function, harmonic on X, which assumes the
value 0 on E0 and 1 on E1. The flow lines for ∇h determine a singular foliation
of X. Let Γ denote the path family made up of the nonsingular leaves of this
foliation. (This is the foliation associated with the extremal distance between
E0 and E1. See [Oht70].)

Let d = min{diamC(Kj)}j. Let ε = ε(Y ) = d/ diamC(C) ∈ (0, 1). For
convenience, let us rescale the objects under consideration so that d = 1.
(Then diamC(C) = 1/ε.) Clearly, this does not change ε.

We will find a lower bound on the extremal length of the path family
f(Γ). To this end, let δ be any path of f(Γ). Suppose that n ≥ 2. Then
|δ|C ≥ n, because d = 1, and one endpoint of δ must remain on C. Using the
fact that diamC(f(X)) = diamC(C), the isodiametric inequality implies that
areaC(f(X)) ≤ π(diamC(C)/2)2 = π/(4ε2). Then

L(f(Γ)) ≥ n2

areaC(f(X))
≥ 4ε2n2/π.

Since f is quasiconformal, we know that

L(f(Γ)) ≤ (Dil f)L(Γ).

Combining these inequalities, we obtain Dil(f) ≥ 4ε2n2/(πL(Γ)) =: K.

Abusing notation, let us use the same letter h for the map we obtain
after adjusting h by the appropriate Dehn twists around the annuli {Ak,α}k,α
as described above. At this point, we have built a quasiconformal map h :
C \ P (f) → C \ P (g) such that B−1 ◦ h : C \ P (f) → C \ P (f) satisfies the
hypotheses of theorem 31.1. Hence, h is homotopic to B : C\P (f)→ C\P (g).
We summarize our progress in the following lemma.
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Lemma 30.6. The quasiconformal map h : (C, P (f))→ (C, P (g)) is equal to
B on P (f) and is homotopic to B relative P (f).

30.5 Constructing a quasiconformal conjugacy

The pullback argument (see the remark at the end of section 10.2 in [Lyu97])
allows us to promote h to a quasiconformal conjugacy of f and g. Consider
polynomial-like restrictions

f : (U1, K(f))→ (U0, K(f)) and g : (V 1, K(f))→ (V 0, K(f)),

where the domains are bounded by smooth curves. The existence of h readily
implies that there is a quasiconformal map

h1 : (U0, U1, P (f))→ (V 0, V 1, P (g))

such that

• h1|P (f) ∪ ∂U1 conjugates f |P (f) ∪ ∂U1 and g|P (g) ∪ ∂V 1, and

• h1 is homotopic, relative P (f), to a conjugacy of f and g.

We define inductively a sequence {hn : (U0, P (f))→ (V 0, P (g))}∞n=1 of quasi-
conformal maps with uniformly bounded dilatation: Having already defined

hn : (U0, P (f))→ (V 0, P (g))

for some n ≥ 1, the map hn+1 is obtained by gluing a lift h̃n of hn to hn along
∂Un.

(Un+1, f−1(P (f))) (V n+1, g−1(P (g)))

(Un, P (f)) (V n, P (f))

h̃n

f g

hn

For each n, we have hn ◦f = g◦hn+1 on (U0 \Un+1)∪P (f). Abusing notation,
let us denote by h any subsequential limit of {hn}n. By construction, we have
the following:

Lemma 30.7. The quasiconformal map h : U0 → V 0 conjugates f |U1 and
g|V 1.

This completes the proof that f ∼top g implies f ∼qc g. By corollary 5.2 in
[Ino02], we know that f and g do not carry invariant line fields on their Julia
sets. Consequently, f ∼qc g implies f ∼hyb g, completing the proof of rigidity.

Lemma 30.8. The polynomials f and g are hybrid equivalent.
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31 Some topology theorems

Let C ⊂ R2 be a Cantor set, and define X = R2 \ C. Except when R2 is
mentioned explicitly, we will view X intrinsically, forgetting that X ⊂ R2. Let
Γ ⊂ X be a union of disjoint, simple, closed curves such that each component
of X \Γ is homeomorphic to a sphere with at least 3, but finitely many, holes.
An adjacent pair W ⊂ X is a domain Y ∪ γ ∪Z, where γ ⊂ Γ is a component,
and Y and Z are components of X \ Γ such that ∂Y ∩ ∂Z = γ.

Theorem 31.1. Let h : X → X be a homeomorphism. Suppose that for any
adjacent pair W ⊂ X, there is a homotopy W × [0, 1]→ X between h|W and
the identity map. Then h is homotopic to the identity map.

Corollary 31.2. Let h : X → X be a homeomorphism. Suppose that for any
adjacent pair W ⊂ X, there is a domain W ′ ⊂ X such that

• there is a homotopy W ′× [0, 1]→ X between h|W ′ and the identity map,
and

• there is a path of embeddings it : W → X, t ∈ [0, 1], such that i0 = id |W ,
and i1(W ) = W ′.

Then h is homotopic to the identity map.

Let S1 = R/Z denote the unit circle.

Lemma 31.3. Let A = S1 × [0, 1] be an annulus. Let F : A → A be an
orientation-preserving homeomorphism. Let f = F |S1 × {0}, and let g =
F |S1 × {1}. If ht : S1 × {1} → S1 × {1}, t ∈ [0, 1], is a homotopy such that
h0 = g and h1 = id, then there is a homotopy Ht : A→ A, t ∈ [0, 1], such that

• H0 = F ,

• for each t, Ht|S1 × {1} = ht, and

• for each t, Ht|S1 × {0} = f .

Proof. Consider the vertical curve V = {0} × [0, 1] ⊂ A. Its image F (V ) is a
curve in A joining f(0) and g(0). There is a unique “straight line segment”
L0 ⊂ A joining f(0) and g(0), which is homotopic rel endpoints to F (V ). For
any other point x ∈ S1 \ {0}, there is a unique straight line segment Lx ⊂ A
joining f(x) and g(x), which is disjoint from L0. Let G : A → A be the map
taking (x, y) to the point on the line segment Lx at height y. Then G is an
orientation-preserving homeomorphism with the same boundary values as F ,
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and G−1 ◦ F takes V to a curve in the same homotopy class rel endpoints.
Since the mapping class group of A rel ∂A is isomorphic to Z, we conclude
that G is homotopic rel ∂A to F .

We will construct a homotopy Ht : A → A, t ∈ [0, 1]. Define H0 = G.
Suppose that for some 0 ≤ s < 1, Hs has already been defined. Choose
s < T ≤ 1 such that hs and hT are uniformly close. For each x ∈ S1 and
t ∈ (s, T ], there is a unique straight line segment Lx,t ⊂ A joining f(x) and
ht(x), whose distance from Hs(x × [0, 1]) is at most the uniform distance
between hs and ht. We let Ht denote the map taking (x, y) to the point on the
line segment Lx,t at height y. Concatenating the homotopy we just constructed
with the homotopy between G and F , we obtain the desired homotopy.

For each component γ ⊂ Γ, choose an open collar neighborhood C(γ)
containing γ. We will assume that the collar neighborhoods have been chosen
so that if γ and γ′ are different components of Γ, then C(γ) and C(γ′) are
disjoint. Adjusting h by a homotopy, we can assume that for each component
γ ⊂ Γ, h(γ) = γ, and h(C(γ)) = C(γ).

In this context, an adjacent pair W ⊂ X is a domain Y ∪C(γ)∪Z, where
γ ⊂ Γ is a component, and Y and Z are components of X\⋃γ⊂ΓC(γ) such that
∂Y ∩ ∂Z = ∂C(γ). We can assume that for any adjacent pair W ⊂ X, there
is an isotopy wt : W → W , t ∈ [0, 1], such that w0 = h|W and w1 = id |W .

We will define a unionW ⊂ X of disjoint adjacent pairs and a union C ⊂ X
of collar neighborhoods such thatW and C are disjoint, ∂W = ∂C, andW∪C =
X. Let W 0 ⊂ X be an adjacent pair containing the unbounded component
of R2 \ ⋃γ⊂ΓC(γ). Let C0 ⊂ X be the union of collar neighborhoods C(γ)

sharing a boundary component with W 0. We define W n and Cn inductively:
For each n ≥ 1, let W n be the union of adjacent pairs W ⊂ X \ W n−1

sharing a boundary component with Cn−1, and let Cn be the union of collar
neighborhoods C(γ) ⊂ X \ Cn−1 sharing a boundary component with W n.
Define W =

⋃
nW

n, and define C =
⋃
nC

n.

Proof of theorem 31.1. Let W ⊂ W be a component. By hypothesis, there is
an isotopy wt : W × [0, 1] → W such that w0 = h|W , and w1 = id |W . Let
V ⊂ X be the domain such that V ⊃ W , V is homeomorphic to W , and
∂V ⊂ Γ. Let γ ⊂ ∂V be a component. Let δ = ∂C(γ) ∩ ∂W . Let Aδ be the
closed, topological annulus bounded by δ and γ. Applying lemma 31.3 to the
annulus Aδ, we see that the isotopy wt|δ extends to a homotopy vγt : Aδ → Aδ,
t ∈ [0, 1], satisfying

• vγ0 = h|Aδ,
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• for each t, vγt |δ = wt, and

• for each t, vγt |γ = h.

Gluing the isotopy wt with the homotopies vγt , γ ⊂ ∂V , we obtain a homotopy
ut : V → V , t ∈ [0, 1], defined by

ut(z) =

{
wt(z) if z ∈ W,

vγt (z) if z ∈ Aδ,

which satisfies u0 = h|V , u1|W = id, and for each t, ut|∂V = h.
For each component of W , we obtain a homotopy as in the previous para-

graph. Gluing together these homotopies, we obtain a homotopy Ht : X → X,
t ∈ [0, 1], such that H0 = h, and H1|W = id. Define F = H1.

We will show that F : X → X is homotopic to the identity rel W . Let
γ ⊂ Γ∩C be a component, and let W be the adjacent pair containing γ. Since
W \W = C(γ), we know that F |W \C(γ) = id. Since F : X → X is homotopic
to h, we know that F |W is homotopic to the identity. Choose a vertical
curve β in C(γ) (such curves can be defined via a choice of homeomorphism
C(γ) → S1 × [0, 1]), and complete it to a proper curve α ⊂ W such that
α ∩ C(γ) = β. Since F |W is homotopic to the identity, F (α) is properly
homotopic to α. Since F |W \ C(γ) = id, it follows that F (β) ⊂ C(γ) is
homotopic rel endpoints to β. Then F |C(γ) is homotopic rel ∂C(γ) to the
identity. Since the collars C(γ), γ ⊂ Γ′ are disjoint, we are finished.

We include the following theorem for completeness. It says that if the
restriction of a homeomorphism to the complement of an annulus is homotopic
to the identity, then the homeomorphism is homotopic to Dehn twist. (See
figure 5.7.)

Theorem 31.4. Let W = Y0 ∪ C(γ) ∪ Y1 ⊂ X be an adjacent pair. Let f :
W → X be an orientation-preserving embedding such that for each i ∈ {0, 1},
f |Yi is homotopic, by a homotopy Yi × [0, 1] → X, to the identity. Then f is
homotopic, by a homotopy W × [0, 1]→ X, to a Dehn twist around γ.

Proof. For each i ∈ {0, 1}, let δi = (∂Yi) ∩ ∂C(γ), let Vi ⊂ W \ γ be the com-
ponent containing Yi, and let Ai be the closed, topological annulus bounded
by δi and γ. Adjusting f by a homotopy, we can assume that f(γ) = γ,
f(C(γ)) = C(γ), and f(W ) = W . Then the homotopy conditions can be
strengthened: For each i, there is an isotopy wi,t : Yi ∪ δi → Yi ∪ δi, t ∈ [0, 1],
such that wi,0 = f , and wi,1 = id. For each i, lemma 31.3 implies that the
isotopy wi,t|δi extends to a homotopy vi,t : Ai → Ai, t ∈ [0, 1], such that
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Figure 5.7: Theorem 31.4 says that if a homeomorphism from the surface illus-
trated above to itself is homotopic to the identity map on the black portions
of the figure in the complement of the blue curve, then the homeomorphism
is homotopic to a Dehn twist around the blue curve.

• vi,0 = f ,

• for each t, vi,t|δi = wi,t, and

• for each t, vi,t|γ = f .

For each i, we can glue wi,t with vi,t, and we can glue v0,t with v1,t. We obtain
a homotopy Ht : W → W , t ∈ [0, 1] such that H0 = f , and H1|W \C(γ) = id.
It follows that H1|C(γ) : C(γ)→ C(γ) is homotopic to a Dehn twist.
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