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Abstract of the Dissertation

Algebraic Structures with Structure Constants, and Homotopical Algebra

by

Cameron Crowe

Doctor of Philosophy

in

Mathematics

Stony Brook University

2016

We consider algebraic structures on vector spaces (or chain complexes) V with operations
having any number, m, inputs, and any number, n, outputs, including m or n equal to 0.
An operation with 0 inputs and n outputs means a choice of an element in the n-fold tensor
product of V (for example, the unit of a commutative algebra), an operation with m inputs
and 0 outputs means a linear map from the n-fold tensor product of V to the ground field
(for example, a linear functional or a pairing), and an operation with 0 inputs and 0 outputs
means an element of the ground field, ie a constant (for example, the volume of a manifold as
part of an algebra structure its differential forms). The operations may involve a boundary
map, so we call the homology classes of the constant operations “structure constants”.

Such an algebraic structure is determined by a certain map. We study this map up to an
algebraic version of homotopy, and show, for example, that if the maps defining two algebraic
structures are homotopic, then they have equal structure constants.

We can also compare algebra structures expressed in different ways on different spaces,
and transport (resolved) algebra structures on one space to algebra structures on another
space, such that the structure constants only change by an overall scale factor. Given extra
structure, we can give explicit formulas for the transported structures. Such extra structure
always exists, which allows us to transport a structure on a chain complex to its homology
by giving an explicit formula.
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Chapter 1

Introduction

We consider algebraic structures on vector spaces (or chain complexes) V with operations
having any number, m, inputs, and any number, n, outputs, including m or n equal to 0.
An operation with 0 inputs and n outputs means a choice of an element in the n-fold tensor
product of V (for example, the unit of a commutative algebra), an operation with m inputs
and 0 outputs means a linear map from the n-fold tensor product of V to the ground field
(for example, a linear functional or a pairing), and an operation with 0 inputs and 0 outputs
means an element of the ground field, ie a constant (for example, the volume of a manifold as
part of an algebra structure its differential forms). The operations may involve a boundary
map, so we call the homology classes of the constant operations “structure constants”.

One can sometimes do homotopical algebra á la [9] at the level of algebra structures
on chain complexes using free resolutions. but with structures having both products and
coproducts, this becomes impossible, because there are no free structures. However, as
Dmitri Tamarkin discussed with Sullivan, operations themselves form a sort of algebras (with
products given by, for example, composition). Also algebraic structures on chain complexes
are determined by maps of algebras at the level of operations on the chain complex. Thus
one can form resolutions at this level (this is the idea of an infinity version of an algebra).
In [8], Dennis Sullivan describes how one can do homotopical algebra at this second level to
give homotopy theoretic equivalences on algebra structures on chain complexes (though only
for operations having positively many inputs and outputs). In this thesis, we add operations
having 0 inputs or 0 outputs, along with constants, and we examine their role. We show
(for admissible cases) that if the maps defining two algebraic structures are homotopic, then
they have equal structure constants.

Following this scheme requires considering certain algebra structures on spaces of opera-
tions on chain complexes (which is required, for example, to write relations on operations).
We show that if we consider only only certain types of operations (like compositions, tensor
products, and so forth) then it becomes easy to transport (resolved) algebra structures on
one chain complex to algebra structures on another chain complex, such that the structure
constants are equal up to an overall scaling factor. We observe that equivalence of algebra
structures on chain complexes via zig-zags implies homotopy equivalence of their structure
maps.

Finally, given certain extra structure, we can give explicit formulas for the transported
structures. Such extra structure always exists, which allows us to transport a structure on
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a chain complex to its homology by giving an explicit formula.
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Chapter 2

Algebraic Structures, Homotopical
Algebra, and Structure Constants

2.1 Spaces, Operations, and Combination Operations

We wish to consider algebraic structures on chain complexes up to certain homotopy the-
oretic equivalences. We think of an algebraic structures as the data of a chain complex, a
space operations on the chain complex (which one may picture using planar trees with one
internal vertex), and another space of operations–called combination operations–which give
operations on the operations (eg composition of operations). One may imagine combination
operations by how they act on operations (for example by composing outputs of a tree into
inputs of another tree), or as trees themselves. Using this latter image, one sees combination
operations can also be composed, for example, thus providing them with structure.

We think of a space of combinations operations as an algebra under composition and
certain other operations. This algebra of combination operations may act on a space of
operations, giving it algebraic structure, which in turn may act on a vector space, giving
it algebraic structure. Thus just as we consider abstract groups instead of just groups of
permutations, we may consider abstract algebras of combination operations (given algebraic
structure by composition and other operations) and abstract algebras of operations (given
algebraic structure by combination operations).

We allow, most generally, multilinear operations on chain complexes V with k inputs and
l outputs, that is, linear maps of chain complexes

V ⊗ . . .⊗ V︸ ︷︷ ︸
k

→ V ⊗ . . .⊗ V︸ ︷︷ ︸
l

where k and l are allowed to range over 0, 1, 2 and higher. A 0-to-k operation on V means
a map from the zero-fold tensor product V ⊗k = K (which is the chain complex with the
ground field concentrated in degree zero and the zero differential), to V ⊗k, or equivalently,
a choice of an element in V ⊗k. The l-to-0 operations are maps from V ⊗l to K, that is, linear
functionals on V , bilinear pairings on V and so forth. A 0-to-0 operation on V is a map
from K to itself, or equivalently, a choice of an elements of K, that is, a constants.

The k-fold tensor product of a chain complex V is the chain complex whose degree-n
component consists of k-fold tensor products of elements of V whose degrees sum to n, with
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differential

d(v1 ⊗ . . .⊗ vk) :=
∑
i

±v1 ⊗ . . .⊗ dvi ⊗ . . .⊗ vk

whose sign (as most other signs herein) is determined by the Koszul sign convention. The
k-to-l operations on a fixed chain complex V also form a chain complex Hom(V ⊗k, V ⊗l),
and it is graded by degree (which measures the difference between the sum of the degrees of
the inputs and the sum of the degrees of the outputs), with differential given by the (graded)
commutator with the differential on the input and output complexes, that is

∂p := [d, p] := d ◦ p∓ p ◦ d

The space of all operations on a chain complex V is the set End(V ) of chain complexes
Hom(V ⊗k, V ⊗l) operations, where k and l range over some family O of choices of pairs of
k and l. We call O the set of operation types. Thus, in the presence of a set of operation
types, O, a space of operations is (by definition) a set of chain complexes P = {P (a)|a ∈ O}
indexed by O.

We consider only those combination operations, which input n operations and output
1 operation, where n is allowed to range over 0, 1, 2 and higher. An n-to-1 combination
operation on a space of operations P = {P (a)|a ∈ O} consists of map of chain complexes

P (a1)⊗ . . .⊗ P (an)→ P (a0)

for some fixed choices of inputs types a1, . . . , an and output types a0, chosen from O. The
tensor product P (a1)⊗ . . .⊗P (an) is a chain complex with a differential like before, denoted
∂,

∂(p1 ⊗ . . .⊗ pn) :=
∑
i

±p1 ⊗ . . .⊗ ∂pn ⊗ . . .⊗ pn

and the Hom space Hom(P (a1)⊗ . . .⊗ P (an), P (a0)) is a chain complex with differential
like before, denoted D

D(c) := [∂, c] := ∂ ◦ c∓ c ◦ ∂

The space of all combination operations on a space of operations P is the set End(P )
of chain complexes Hom(P (a1)⊗ . . .⊗ P (an), P (a0)) where n ranges over 0, 1, 2, . . ., and
a1, . . . , an and a0 range over O. Thus the set End(P ) is indexed by the set C(O) :=
{(a1 . . . ana0

)|a1, . . . , an, a0 ∈ O, n = 0, 1, 2, . . .} which we call the set of combination operation
types, whose elements we denote with small capital letters, or by (a1 . . . ana0

) to display their
input and output types. Thus, in the presence of a set of operations types O, a space of
combination operations C is (by definition) a set of chain complexes C = {C(f)|f ∈ C(O)}.

We will soon observe that the space End(P ) of combination operations on a space of
operations P has certain natural choices of operations on it, given by composition and
certain other operations, and these satisfy certain relations. We use the spaces End(P )
as prototypes of a combination algebra. We say a space of combination operations C is a
combination algebra, if it has operations analogous to those on the spaces End(P ), which
satisfy the relations we know hold for all End(P ). These form a category with maps that
commute with the operations.
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We define an action of a combination algebra C on a space of operations to be a map of
algebras C → End(P ). Such a map gives P algebraic structure with operations furnished by
C, which compose and interact in the ways operation on End(P ) do. If P has a distinguished
action of C on it, then then P is an algebra of operations, and we call it a C algebra structure.
These form a category with maps that commute with operations.

If V is a chain complex, then End(V ) is a space of operations on V , thus a combination
algebra C may provide End(V ) with algebraic structure (by a map of combination algebras
C → End(End(V ))). If End(V ) has distinguished C algebra structure, then an action of
another C algebra P on V is a map of C algebras P → End(V ). Such a map gives V algebraic
structure with operations furnished by P , which interact in the manner operations in End(V )
and P interact as algebras with operations given by C. These, too, forma a category with
maps that commute with operations. We call the C algebra map P → End(V ) the algebra
structure’s structure map.

We can form free resolutions and do homological algebra at the level of algebras of oper-
ations; this allows us to define various homotopical equivalences between maps of algebras
of operations. Since algebra structures are given by maps, we can study them up to the
homotopical equivalences between their structure maps.

One notes that there aren’t necessarily free resolutions at the level of algebras structures
on a chain complex, since we aren’t even assured of having free algebras when operation with
multiple inputs and outputs are present. Thus we are forced, in a sense, to move up a level
to algebras of operations.

We work over a fixed field K of characteristic 0. All tensor products are taken over K.

2.2 Combination Algebras

We find it convenient to study combination algebras for an arbitrary set O of operation
types.

Definition 2.1. A set of operation types, denoted O is simply a set. In the presence of a
set of operation types, we define

C(O) := {(a1 . . . ana0
)|a1, . . . , an, a0 ∈ O, n = 0, 1, 2, . . .}

to be the set of combination operation types on operation types O.
Let f = (a1 . . . ana0

) be a type of combination operation on O. We call a1, . . . , an the inputs
or input types of f, and a0 the outputs or output type of f. We call the number of input
types of f its arity. The arity zero types look like (a) for some a in O.

Consider the space of all combination operations End(P ) on a space of operations P (as
in the previous section). Let f and g be two combination operations, of types F = (a1 . . . ama0

)
and g = (b1 . . . bnb0

), respectively. If the output b0 of g and the i-th input ai of f are equal, then
we can compose g into the i-th slot of g to get a new operation

(f i◦ g) := f ◦ (1⊗ . . .⊗ g ⊗ . . .⊗ 1)

of type
F i◦ G := (a1 . . .⊗ ai−1b1 . . . bnaa+1 . . . am

a0
)

5



We could also permute the m inputs of f with a permutation σ in the m-th permutation
group Sm to get a new operation

fσ

of type
F σ := (

a
σ−1(1)

. . . a
σ−1(m)

a0
)

For each operation type a, there is also an identity operation

1a

of type
(aa)

Proposition 2.1. There is a certain space of relations that the operations of composition,
permutation of inputs and units on a space of operations satisfy, universally.

We call these relations the relations of a combination algebra, and we discuss them in
Lemm 4.5 of the appendix. We define a combination algebra to be a set of chain complexes
with analogous operations, which satisfy these relations, the relations of a combination al-
gebra:

Definition 2.2. In the presence of a set of operation types O, a combination algebra
(on operation types O) is a set of chain complexes C = {C(f)|f ∈ C(O)} indexed by the
various types of combination operations C(O), together with operations given by degree zero
chain maps, as follows, which satisfy the relations in Proposition 4.5:

1. a composition for each f i◦ g that makes sense

[f i◦ g] : C(f)⊗ C(g)→ C(f i◦ g)

2. a permutation for each fσ that makes sense

[f]σ : C(f)→ C(fσ)

3. and an operation called a unit for each operation type a

K→ C(aa)

There is an analogous notion of a combination algebra without a differential. To empha-
size that a combination algebra lacks a differential, we say graded combination algebra, and
to emphasize that it does have a differential, we say differential graded (or dg) combination
algebra.

We denote the differential on combination operations by D.

We may consider the category of combination algebras on a fixed set O of operation
types. A map of combination algebras B → C is a set of maps of chain complexes (or graded
vector spaces if lacking a differential) B(f)→ C(f) which commute with all the operations

The most important facts to note at present is the following:

Proposition 2.2. Combination algebras can be specified by generators and relations, and
given the zero differential.

One should also note that combination algebras have the usual notions of ideals, kernels,
quotient algebras, subalgebras, isomorphisms, direct limits, and certain other. For full details
see the appendix.
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2.3 Algebras of Operations Over a Combination Alge-

bra

Recall that a space of operations (in the presence of a set of operation types) is a set of chain
complexes indexed by the set of operation types. We note the following tautology:

Proposition 2.3. Let P be a space of operations. The space End(P ) of all combination
operation on P has the structure of a combination algebra.

Definition 2.3. Given a space P of operations, we call the distinguished combination al-
gebra structure on End(P ) given by composition, permutation of inputs and the units the
combination algebra of endomorphisms on P . We only consider End(P ) with this
structure.

An action of a combination algebra C on a space of operations P is a map of
combination algebras C → End(P ).

We say P is a dgC algebra if P has a distinguished action of C on it. We may also
say P is an algebra over C. Or if the action is clear from the context, we may simply say P
is an algebra of operations.

There are analogous definitions without differentials. We emphasize the difference by
applying the graded or differential graded prefix, just as we dif for combination algebras.

Given a fixed combination algebra C we may form the category of all algebras over C,
with or without differentials. These categories have the usual notions of ideals, differential
ideals, kernels, quotient algebras, direct limits, and coproducts. Ignoring the differential, we
can specify algebras over a combination algebra by generators and relations.

We find it convenient to work with algebras over combination algebras that have zero
differential, due, in part, to the sequence of facts to follow, whose proofs are left to the
appendix.

Proposition 2.4. Let C be a combination algebra with zero differential, and let P be a dgC
algebra.

The differential on P acts by derivations of the combination operations, and dgC algbera
structure on P induces a dgC algbera structure on H(P ) (with zero differential), moreover
a map P → Q of dgC algebras induces a map of dgC algebras H(P )→ H(Q).

Proof. The failure of the differential ∂ on P to be a derivation of a combination operation c
in C is measured by its boundary Dc. Since D, and thus Dc,too, is zero, ∂ is a derivation.

The homology of P is an algebra over the homology of C, but C = H(C), so H(P ) is
again a dgC algebra with zero differential.

The induced map is a map of dgH(C) algebras, but C = H(C), so it is a map of dgC
algebras.

Definition 2.4. Fix a set O of operation types.
A free variable, free operations, free generators, etc., is an entity with an integer

degree and operation type in O.
Let C be a combination algebra.

7



Let {xα} be a set of free generators. A free graded C algebra on the set {xα} of free
generators is a graded C algebra K[xα] (without a differential), together with a distinguished
map {xα} → K[xα] such that any map {xα} → Q to an algebra over C extends uniquely to
a map of graded C algebras K[xα]→ Q.

Let P be an algebra over C and {xα} a set of free generators. A free extension of
P by the set {xα} is a graded C algebra P [xα] (without a differential) together with a
distinguished map of sets {xα} → P [xα] and a distinguished map of C algebras P → P [xα]
such that any maps {xα} → Q and P → Q of sets and C algebras, respectively, extend
uniquely over P [xα] to a graded C algebra.

Proposition 2.5. Free algebras and free extensions exist, and are unique up to canonical
isomorphism. We denote the free C algebra on the empty set by K. The algebra K is initial
in the category of graded C algebras, and free algebras are the same same as free extensions
of K.

If C has zero differential, then the initial algebra K with the zero differential is a dgC
algebra.

One may find it useful to note that K simply consists of the space of zero-to-one operations
of C acted on by the higher operations in C (See Proposition 4.14).

The following is a key lemma that allows us to form resolutions of algebras of operations
and do homotopical algebra:

Lemma 2.6. Let C be a combination algebra with zero differential. Let P be a dgC algebra
and P [xα] a free extension of P to a graded C algebra.

A differential on P [xaα] extending the differential on P which makes P [xα] into dgC
algebra both determines and is determined by extensions of the differential over the free
generators such that ∂2(xα) = 0 for all generators xα.

A dgC algebra map f : P [xα] → Q extending dgC algebra map P → Q determines
and is determined by an extension of the algebra map f over the generators, such that
∂f(xα) = ±f∂(xα) for all generators xα.

Extensions of this flavor in other settings are Hirsch extensions.

2.4 Homotopical Algebra for Algebras Of Operations

Let C be a fixed combination algebra with zero differential.
We give two lemmas and a definition, which are analogous to the two lemmas and defini-

tion one gives to do a minimalist kind of homotopy theory in the context of free resolutions
of modules over a ring, which in mock terms, are as follows:

1. Mock Lemma 1: One can form free resolutions.

RP
∼→ P

2. Mock Definition: A definition of homotopy for maps from a resolved space

RP Q�

8



3. Mock Lemma 2: One can lift a map from a free resolution over a quasi-isomorphism
up to homotopy, and any two lifts are homotopic

Q′

RP Q

∼
�

∃!�

It is a further, proposition that being homotopic gives an equivalence relation. This
proposition is nontrivial in the context of algebras.

Using the above ingredients, one can define familiar notions of homotopy equivalence
between objects and maps, and one can show familiar facts, like any two resolutions are
homotopy equivalent, and maps between algebras lift to a unique homotopy class of maps
between their resolutions.

Definition 2.5. We define a map of dgC P → Q to be a quasi-isomorphism if it induces
an isomorphism on homology. We decorate quasi-isomorphism with the symbol: ∼.

We will see that a quasi-isomorphism between resolved algebras is a homotopy equiv-
alence. This is akin to how a map of cell complexes, which induces isomorphisms on all
homotopy groups, is a homotopy equivalence. Free resolutions are our version of cell com-
plexes.

We now discuss these ingredients in the context of algebras of operation.

2.4.1 Free Triangular Extensions

We work over a fixed combination algebra C with zero differential.
We denote the simultaneous free extension by {xα} and {xβ} by P [xα, xβ], which is

canonically isomorphic to their sequential extensions P [xα][xβ]. We denote the simultaneous
free extension by a sequence of free operations {xα1}, {xα2}, . . . by P [xα1 , xα2 , . . .], which
is canonically isomorphic to the direct limit of their sequential extensions P ⊂ P [xα1 ] ⊂
P [xα1 ][xα2 ] ⊂ . . ., thus we may benignly confuse the distinction. Let {xα} be a set of free
operations and {xα} = {xα1}t{xα2}t . . . a partition. We may write P [xα] = P [xα1 , xα2 , . . .]
to connote this partition of its variables.

Definition 2.6. Let P be a dgC algebra with differential d, and let P [xα] be a free extension
of P with a differential extending the differential on P . We call P [xα] a free triangular
extension of P if there is partition of its variables P [xα] = P [xα1 , xα2 , . . .] such that

{∂xα1} ⊂ P
{∂xα2} ⊂ P [xα1 ]
{∂xα3} ⊂ P [xα1 , xα2 ]
...

We describe this situation by saying the differential takes generators into previous terms.
Since a free algebra is the same thing as a free extension of the initial algebra K, it makes

sense to say free triangular algebra when P = K.
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One may think of P as something like a topological space and {xα} as cells whose
boundaries are attached to P [xα] by the boundary map ∂. One thinks of a free triangular
extension P [xα] = P [xα1 , xα2 , . . .] of P as a space P with a first layer of cells {xα1} attached
to P , a second layer of cells {xα2} attached to P [xα], and so forth. One may think of the
initial algebra K as the space of a point, and the unique map K→ P to every algebra P as
a choice of base point. Thus every algebra has a base point, and in a sense, algebra maps
preserve this base point. Free algebras and free extensions of K are the same thing, thus free
triangular algebras are something like cell complexes built off a base point.

The following lemma may be thought of of as the algebraic analogue of replacing a map
of topological spaces with a cofibration (ie a closed embedding), which for spaces one may do
by repeatedly adding cells to the domain of a map and extending the map over these cells,
until it becomes quasi-isomorphic in the sense of spaces. The cofibration is the inclusion of
the original domain into the new domain (a closed embedding). One notes that the cylinder
of a space is formed in this manner, by taking two copies of a space and the map that
pancakes them together, then attaching cells between them the two copies.

An algebraic construction of this flavor dates back to Hirsch, and may be called the
Hirsch extension theorem [3, 2]. This lemma replaces Mock Lemma 1, saying that every
object has a free resolution:

Lemma 2.7 (Every map can be replaced by a cofibration). Let P → Q be a map of dgC
algebras. There is a free triangular extension P [xα] of P and a dgC algebra map P [xα]→ Q
extending the original map to a quasi-isomorphism

P [xα] Q

P

∼

Proof. Let P → Q be a dgC algebra map.
One way to do this, which is not most efficient is as follows: first, we extend P the

differential and the map so the map becomes surjective on homology. Then we extend
them all again to kill the kernel on homology, creating a new kernel with new homology. We
iterate this second step, and then take a direct limit. The differential on each extension maps
generators into the previous algebra, so the limit is a map from a free triangular extension
of P to Q, which we check induces an isomorphism on homology.

Consider the induced map of P → Q on homology. The cokernel of this induced map
measures its failure to be surjective on homology. Lift the cokernel back to a subspace of the
homology H(Q) and pick a set of representatives {x′α1

} of a linear generating set of the lifted
space. Let {xα1} be an isomorphic copy of {x′α1

}. Form the free extension P [xα1 ] of P as
graded C algebras. Extend the differential over {xα1} by zero. Since the differential squares
to zero on {xα1}, it extends uniquely to a differential on P [xα1 ] making P [xα1 ] a differential
graded C algebra. We extend the map over {xα1} by sending it isomorphically to {x′α1

}. By
Lemma 2.6 this induces a map of graded algebras on the extension. Since the differential
commutes with the map on the free generators the map commutes with the differential by
the same lemma. Thus P [xα1 ] → Q is a dcC algebra map, and its obviously surjective on
homology.
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Now consider the kernel of P [xα1 ] → Q on homology. Take a representatives {x′α2
} of a

linear generating set of this kernel. The set {x′α2
} consists of cycles, which map to cycles Y ′

in Q, each of which represents a zero homology class in H(Q). Thus the elements of Y ′ are
boundaries of some elements Y in Q. Let {xα2} be an isomorphic copy of {x′α2

}, shifted up
or down one degree (opposite the direction of the differential). Extend the differential over
xα2 by shifting its elements back the other way to {x′α2

}. Since the differential squares to
zero on {xα2}, the differential determines differential on all of P [{xα1}][{xα2}] by Lemma 2.6.
Extend the map on P [xα1 ] over the set {xα2} by mapping elements of {xα2} to the elements
of Y whose boundaries are the images of corresponding {x′α2

}. This determines a map of
graded C algebras P [xα1 ][xα2 ] → Q. Since this map extends the dgC algebra map on the
presvious extension, P [xα1 ]→ Q and commutes with the differential on the new generators
{xα2}, thus the map on P [xα1 ][xα2 ] is a dgC algebra map by the same lemma. We may
regard this as a map P [xα1 , xα2 ] → Q. One checks that the kernel of the composite map
P [X1]→ P [xα1 , xα2 ]→ Q maps to zero in the homology of P [xα1 , xα2 ].

One iterates this second step to get an increasing sequence of dgC algebras whose differ-
entials send generators into previous terms, and with maps extending the previous maps to
Q. The limiting algebra is a free triangular extension P [xα] = P [xα1 , xα2 , . . .] of P and with
a map P [xα]→ Q. We check this map is a quasi-isomorphism.

The map P [xα1 ]→ P [xα]→ Q is surjective on homology, so P [X]→ Q is, too. Suppose
p represents a nonzero homology class in kernel of P [xα] → Q on homology. This p lives
in some first finite extension P [xα1 , . . . , xαm ], so it must be in the kernel of the composite
map from the next extension P [xα1 , . . . , xαm , xαm+1 ] → P [xα] → Q on homology (since we
conveniently picked a linear generating set in the first step). This implies its homology class
in P [xα] is trivial, contradicting that it’s non-trivial. So the kernel is zero. Thus P [xα]→ Q
is an isomorphism on homology, and the claim follows.

One may think of the inclusion map P → P [xα] as the cofibration which replaces the
original map P → Q.

One may, of course, interpret the words “free resolution” of P by applying Lemma 2.7
to the map K → P from the base point (initial algebra) to P , obtaining a free triangular
algebra K[xα] and a quasi-isomorphism K[xα] → P . We can obtain a relative resolution by
applying the lemma to the inclusion map of any subspace.

Definition 2.7. A free resolution of a dgC algebra P is a free triangular algebra K[xα]
with quasi-isomorphism K[xα]

∼→ P . A free resolution of a dgC algebra P relative to a dgC
subalgebras Q ⊂ P is a free triangular extension Q[xα] and a quasi-isomorphism Q[xα]

∼→ P .

Corollary 2.8. Free resolutions and free resolutions relative to subalgebras exist, by Lemma
2.7, and free resolutions are resolutions relative to the subalgebra determined by the initial
algebra.

2.4.2 Definition of Homotopy

The ability to turn maps into cofibrations (Lemma 2.7 enables us to define a notion of
homotopy and relative homotopy. We will observe that homotopy and homotopy relative to
the subalgebra determined by the initial algebra are really the same thing, which is something
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like saying homotopy is homotopy relative to the base point. Because of this, we mostly work
rel a subalgebra.

Proposition 2.9. Let P [xα] be a free triangular extension of a dgC algebra P , and form
the free graded C algebra P [xα, yα] := P [xα, xα] where yα denotes the second copy of xα. We
may regard P [xα] as a subalgebra in two different ways, by P [xα] and P [yα]

Consider the map
m : P [xα, yα]→ P [xα]

determined by taking each copy of xα to xα.
There is a unique differential on P [xα, yα] extending the differentials P [xα] P [yα] and it

makes m a dgC algebra map.
Given two maps f : P [xα] → Q and g : P [xα] → Q that agree on P and regarding their

domains as P [xα] and P [yα] respectively, the unique algebra map

f ∧P g : P [xα, yα]→ Q

extending both f and g is a dgC algebra map.

Proof. Since P [xα] as above is a free triangular resolution, its variables have a partition
P [xα] = P [xα1 , xα2 , . . .] with descending differential, and let P [yα] = P [yα1 , yα2 , . . .] be a
copy.

We may form P [xα1 , yα1 ] as a graded C algebra. Since the original differentials map {xα1}
and {yα1} to P and square to zero, they determine a differential on P [xα1 , yα1 ] by Lemma
2.6. The map P [xα1 , yα1 ]→ P [xα1 ] induced by sending {xα1} and {yα1} identically to {xα1}
commutes with the differential on {xα1 , yα1}, so it is a dgC algebra map by the same lemma.

We repeat this process inductively over all the groups of free variables. The limit of this
process is a dgC algebra P [xα, yα] = P [xα1 , yα1 , xα2 , yα2 , . . .] and a map P [xα, yα] → P [xα]
taking {xα} and {yα} identically to {xα}.

The differential is completely determined by what it does on P {xα} and {yα}, and it is
determined on those by what it does on the subalgebras P [xα] and P [yα], so the differential
is unique.

Let f : P [xα] → Q and g : P [xα] → Q be dgC algebra maps that agree on P . Regard
their domains as the two dgC subalgebras P [xα] and P [yα] of P [xα, yα]. The maps f and g
determine a map on this by what they do on P , {xα} and {yα}. This map commutes with
the differentials on the generators P , {xα} and {yα}, so the map commutes with d on all
P [xα, yα].

A map P [{xα}t{yα}]→ Q extending f and g must equal on P , and given by f on {xα}
and g on {yα}. This data determines a map P [{xα} t {yα}] → Q, extending both f and g
by the properties of free extensions. Since this map commutes with the differentials on P ,
{xα} and {yα}, and the differential is a derivation, it commutes with the differential on the
entire algebra. Thus the resulting map P [{xα} t {yα}]→ P [{xα}] is a map of dgC algebras
extending f and g, and the claim follows.

Definition 2.8. We call the map m : P [xα, yα] → P [xα] in Proposition 2.9 the product
map of P [xα] (relative to the subalgebra P), and we call the map f ∧P g : P [xα, yα]→
P [xα] the coproduct of f and g rel P .
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If P = K is the initial algebra, then K[xα, yα] is canonically isomorphic to the usual
coproduct of dgC algebras K[xα]∧K[yα], so we may denote f ∧K g using the usual coproduct
notation f ∧ g.

We will use the product map (relative to a subalgebra) to help us define a notion of
homotopy (relative the subalgebra). Before we give this definition, we give imagery to
explain it:

One begins with a space P [xα] and a subspace P , such that P [xα] is formed by adding
cells {xα} to P in groups {xα1}, {xα2}, . . . such that the boundary of the first group {xα1}
is in P , the boundary of the second group {xα1} is in P [xα1 ], and so forth.

Suppose we have two maps f : P [xα] → Q and g : P [xα] → Q of this space to another
space Q which agree on the subspace P .

A relative homotopy from f to g means the following: we form a cylinder on the space
P [xα] by taking the Cartesian product of P [xα] with the closed unit interval. The interval
may be regarded as two 0-cells at the ends, and an 1-cell in the middle. The cylinder on
P [xα] consists of a smaller cylinder corresponding to the subspace P , and a copy of the cells
{xα} at each end (one copy for each of the two 0-cells in the interval) and for each pair of
cells on the end, a cell of one degree higher running between them (corresponding to the
product of a cell and the 1-cell of the interval). Call the two copies of the cells on the ends
xα and {yα}, and the cells in the middle {δ̄α}. We map the ends to Q using f and g; a
homotopy is an extension over the entire cylinder that is constant on the sub-cylinder P .

Alternatively we can pinch the sub-cylinder of P to one copy of P , resulting in a partially
pinched cylinder on P [xα]. We can still map the ends of this to Q using f and g, since they
agree on P ; now, a homotopy relative to P is just a map extending these maps over the
entire pinched cylinder.

We could form this partially squished cylinder by building the cells up in layers as follows:
start with the subspace P and glue on the cells {xα} and {yα} at the ends in groups starting
with xα1 and {yα1}, then {xα2} and {yα2} and so on to get two copies of P [xα] which are
glued at P . This is the space P [xα, yα]. One end is P [xα], the other is P [yα] and they
are glued at P . Now we add the cells {δ̄α} in one higher dimension running between {xα}
and {yα} that fill in the interior of the cylinder. We add these in groups {δ̄α1}, {δ̄α2}, . . .
corresponding to the groups {xα1 , yα1}, {xα2 , yα2}, . . .. The boundary of a cell in {δ̄α1} has
boundary the corresponding cell in {xα1} with one orientation and the corresponding cell in
{yα1} with the opposite orientation, along with some possible extra boundary in P . The next
cells {δ̄α2} have boundary corresponding cells in {xα2} and {yα2} with opposite orientations
and some extra boundary in P [xα, yα][δ̄α1 ]. And so on, eventually resulting in the cylinder
P [xα, yα][δ̄α].

Or we could have added the cells {xα1}, {yα1} followed by {zα1}, and then {xα2},
{yα2} and then {zα2} to get the cylinder a different way: P [xα1 , yα1 , zα1 ][xα2 , yα2 , zα2 ] . . .

∼=
P [xα1 , yα1 , zα1 , xα2 , yα2 , zα2 , . . .]

∼= P [xα, yα][zα]. One might observe this is a very nice way of
turning the product map m into a cofibration.

We could also turn the product map into a cofibration recklessly, and show the space
P [xα, yα][zβ] we obtain instead of our nice cyilinder, and then show P [xα, yα][zβ] is homotopy
equivalent to the nice space P [xα, yα][δ̄α] rel P [xα, yα], concluding that we can use any of
them to define homotopy.
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In our algebraic account, we define homotopy using the reckless version, and then use a
nicer cylinder version to actually prove things, but it is convenient to have both.

Since algebra maps are backwards compared to topology maps, we call the cylinder-like
objects by the name of their dual object objects, path spaces. One observes homotopy in
topological spaces may be given using the path space Y I := Hom(I, Y ) using the usual
topology on Hom spaces, and the usual homeomorphism:

Hom(X × I, Y ) ∼= Hom(X,Hom(I, Y ))

Definition 2.9. Let P [xα] be a free triangular extension of a dgC algebra P , and let m :
P [xα t yα]→ P [xα] be the product map (relative to P ). We call a free triangular extension
P [xα t yα][zβ] of P [xα t yα] a path space of P [xα] (relative to P) if there is a quasi-
isomorphism m̃ : P [xα t yα][zβ]→ P [xα] extending the product map.

Let f : P [xα]→ Q and g : P [xα]→ Q be a two dgC algebra maps to another dgC algebra
Q. Form the coproduct of f and g rel P , f ∧P g : P [xαt yα]→ Q. We say f is homotopic
to g rel P if there is an extension of f ∧P g over some path space P [xα t yα][zβ]

P [xα t yα][zβ]

P [xα t yα] Q

H

f∧P g

We call such a map H : P [xα t yα][zβ]→ Q a homotopy from f to g rel P .
If P = K is the initial algebra, then we simply say “homotopic” and “homotopy”.

Corollary 2.10. Existence of path spaces follows from the the product map can be turned
into a cofibration (Lemma 2.7).

Remark 2.1. It is not yet clear that homotopy gives an equivalence relation.

We construct a nice path space, which we will use to compute, following this lemma:

Lemma 2.11. Let P be a dgC algebra and let P [xα, ∂xα] be a free extension of P by variables
{xα, ∂xα}, with ∂(∂xα) := 0 and ∂(xα) := ∂xα.

Then the ideal 〈xα, ∂xα〉 is a differential ideal, and has zero homology

H(〈xα, dxα〉) = 0

Proof. One notes the extension P [xα, ∂xα] of P is a two-step free triangular extension using
Lemma 2.6.

Since C has zero differerential, the differential ∂ on P [xα, ∂xα] is a derivation.
We may define another derivation s on P [xα, ∂xα] with the opposite degree by defining

it to be zero on P , and by s(xα) := 0 and s(∂xα) := xα (see the appendix).
The commutator of two derivations is a derivation, thus [∂, s] := ∂s+ s∂ is a derivation.

One observes that [∂, s](P ) = 0, [∂, s](xα) = xα and [∂, s](∂xα) = ∂xα.
We may give a weight grading on P [xα, ∂xα] = P [xα, ∂xα](0)⊕P [xα, ∂xα](1)⊕P [xα, ∂xα](2)⊕

. . . by letting all the variables have weight 1 (see appendix). One observes that the weight
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zero part is P [xα, ∂xα](0) = P and the positive weight parts are the ideal generated by
{xα, ∂xα}

〈xα, ∂xα〉 = P [xα, ∂xα](1) ⊕ P [xα, ∂xα](2) ⊕ . . .
One also observes that [∂, s] of the weight n part is n times the identity map. Thus s
scales to a contracting homotopy on the positive weighted parts, thus that the ideal has zero
homology as claimed.

Proposition 2.12. Let P [xα] = P [xα1 , xα2 , . . .] be a free extension of a dgC algebra P , and
consider the product map P [xα, yα]→ P [xα]

Theres is a free triangular extension P [xα t yα][zα] = P [xα, yα][δ̄α1 , zα2 , . . .] of P [xα, yα]
such that

∂δ̄α = yα − xα + previous terms

and a quasi-isomorphism
m̃ : P [xα, yα][δ̄α]

∼→ P [xα]

extending the product map.
It follows that P [xα, yα][δ̄α] with this differential is path space.

Proof. Let P [xα] = P [xα1 , xα2 , . . .], P [xα, yα] and the product map be as above.
Define pα(xβ) := ∂xα, which by assumption lies in earlier terms than xα.
Define δα := yα − xα, and define qα(yβ, xβ) := ∂(δα) = ∂yα − ∂xα = pα(yβ)− pα(xβ). By

the proof of Proposition 2.9, P [xα, yα] = P [xα1 , yα1 , xα2 , yα2 , . . .] is a free triangular extension
with the first sets of variables xα1 and yα1 added first, then the second sets of variables and
so forth. Thus qα(yβ, xβ) lies in earlier terms terms, too.

The differentials of the first extension {xα1} lands in P , so ∂xα1 = ∂yα1 , and so ∂δα1 =
∂(tα1−xα1) = 0. Thus we may form extend the differential over P [xα1 , yα1 , δ̄α1 ]

∼= P [xα1 , δα1 , δ̄α1 ]
∼=

P [xα1 , δ̄α1 , ∂δ̄α1 ]
∼= P [xα][δ̄α1 , ∂δ̄α1 ] by defining ∂δ̄α1 := δα1 . We may extend the product map

on P [xα1 , yα1 ] over {δ̄α1} by zero to a map of graded C algebras. Since the differential com-
mutes with the differential on the generators, it is a map of dgC algebras. And we observes
that the ideals 〈δα2 , δ̄α2〉 = 〈δ̄α2 , ∂δ̄α2〉 are equal.

Consider ∂δα2 = qα2(yβ, xβ) = pα2(yβ) − pα2(xβ). In a similar manner to how one can
rewrite a polynomial aA − bB = (a − b)A + b(A − B), one can rewrite δα2 = qα1(yβ, xβ) as
a sum of monomials each involving a term δα1 = yα1 − xα1 . In other words, qα2(yβ, xβ) =
∂δα2 is a cycle in the ideal 〈δα1 , δ̄α1〉 = 〈δ̄α1 , ∂δ̄α1〉. By Lemma 2.11, this ideal 〈δ̄α1 , ∂δ̄α1〉
of P [xα1 ][δ̄α1 , ∂δ̄α1 ] is acyclic, thus qα2(yβ, xβ) is a boundary of some ηα2 ∈ 〈δ̄α1 , ∂δ̄α1〉 ⊂
P [xα1 ][δ̄α1 , ∂δ̄α1 ]

∼= P [xα1 , yα1 , δ̄α1 ], that is qα2(yβ, xβ) is a boundary in earlier terms than xα2

and yα2 .
We extend the differential over {δ̄α2} by ∂δ̄α2 := yα2−xα2−ηα2 , which by construction has

boundary 0. By our friend, Lemma 2.6, this determines a differential on P [xα1 , yα1 , δ̄α1 , xα2 , yα2 , δ̄α2 ]
∼=

P [xα1 , δα1 , xα2 , δα2 , δ̄α1 , δ̄α2 ]
∼= P [xα1 , yα1 , δ̄α2 , δ̄α2 , ∂δ̄α1 , ∂δ̄α2 ]

∼= P [xα1 , yα1 ][δ̄α2 , δ̄α2 , ∂δ̄α1 , ∂δ̄α2 ].
Since ηα2 is an element of the ideal 〈δα1 , δ̄α1 and that ideal gets mapped to under the

extended product map m̃ : P [xα, yα, δ̄α1]→ P [xα]. One notes that δα2 = yα2 − xα2 gets sent
to zero under the extend product map, too. Thus ∂δ̄α2 = ∂δα2 − ηα2 also gets sent to zero
under the extended product map. Thus by the same Lemma 2.6, the extension of the product
map P [xα, yα][δ̄α1 , δ̄α2 ]→ P [xα] taking δ̄α1 and δ̄α2 to commutes with the differentials, thus
is a map of dgC algebras.
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We may repeat the process above inductively and take its limit, resulting in a map of
dgC algebras

m̃ : P [xα, yα][δ̄α] ∼= P [xα, δα, δ̄α] ∼= P [xα, δ̄α, ∂δ̄α] ∼= P [xα][δ̄α, ∂δ̄α]→ P [xα]

extending the product map, which sends δ̄α to zero, and one computes the kernel of this map
is the ideal 〈δ̄α, ∂δ̄α〉. This ideal is acyclic by Lemma 2.11, and m̃ is surjective. Thus there
is a short exact sequence of linear spaces

0→ ker(m̃)→ P [xα, yα][δ̄α]
m̃→ P [xα]→ 0

Since the kernel has zero homology, m̃ is a quasi-isomorphism by the usual argument using
the induced long exact sequences in homology.

The claim follows.

2.4.3 The Lifting Lemma

The Lifting Lemma is a relative version of the statement: we can lift a map up to homotopy
over a quasi-isomorphism, and any two such lifts are homotopic.

Lemma 2.13 (Lifting lemma). Let P [xα] = P [xα1 , xα2 , . . .] be a free triangular extension of
a dgC algebra P , and let Q′

∼→ Q be a quasi-isomorphism of dgC algebras.
Let f : P [xα]→ Q be a map of dgC algebras. We may extend any lift f̄ of f on P over

Q′
∼→ Q to a lift up to homotopy, and any two such lifts are homotopic rel P .

Proof. Assume the hypotheses of the statement, and let P [xα, yα][δ̄α] be as in Proposition
2.12.

Our lift up to homotopy f̄ : P → Q′ is already defined on P , and is an actual lift of f on
P .

The boundary of xα1 lies in P . Because f̄(dxα1) becomes a boundary downstairs in Q,
and because the upstairs Q′ is quasi-isomorphic to the downstairs Q, f(dxα1) corresponds
to a boundary upstairs of some chain. We can change that chain by a cycle so when pushed
downstairs it is homotopic to f(xα1) relative to their common boundary. Define f̄(yα) to be
that upstairs chain. We can fill in the homotopy by extending the maps on the path space
over δα1 . Any other choice of lift would be homotopic relative to the boundary downstairs,
thus the difference between choices upstairs is a boundary of some chain; if we change that
chain by a cycle so when mapped downstairs it is homotopic to the downstairs homotopy
relative to their common boundary. To make our computation later easier, we can change
the homotopies between the two different images of yα1 downstairs so that the homotopy
upstairs maps exactly to their sum. Thus we can lift over the first layer {δ̄α1}

Now we lift the second layer {δ̄α2}. Recall that ∂δ̄α2 = yα2−xα2−ηα2 and that dxα2 , ∂yα2

and ∂ηα2 lie in terms that have already been lifted. Applying ∂ to both sides of this equality
reveals that ∂ηα2 = ∂yα2 − ∂xα2 . We already have maps taking xα2 − yα2 to downstairs Q,
thus the image of ∂yα2 = ∂(xα2 − ηα2) is a boundary. Since upstairs Q′ and downstairs Q
are quasi-isomorphic, ∂yα2 is a boundary upstairs, too, of some chain. We can change that
chain by a cycle so when mapped downstairs it is homotopic to xα2 − ηα2 relative to their
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common boundary. Define f̄(yα2) to be this upstairs chain. Since the downstairs image of
yα2 is homotopic to the image of xα2 − ηα2 , we can extend the homotopy over δα.

Now we fill in the homotopy between the two different lifts upstairs. We already filled
in the homotopy between the lifts at their first step, and we did it so the δ̄α1 for the homo-
topy between the lifts upstairs maps to the sum of the homotopies of the lifts downstairs
with the original map. Upstairs we want to solve ∂δ̄α2 = yα2 − y′α2

− η̃α2 . Downstairs this
maps to the difference of the images of yα2 = ∂δ̄α2 − xα2 − ηα2 and y′α2

= ∂δ̄′α2
− η′α2

and
also η̃α2 . The boundary of this difference is zero, and the difference lies in the image of
the homotopies assembled into one map from P [xα1 , xα2 , yα1 , yα2 , y

′
α1
, y′α2

, δ̄α1 , δ̄α2 , δ̄
′
α1
, δ̄′α2

] ∼=
P [xα1 , xα2 , δ̄α1 , δ̄α2 , δ̄

′
α1
, δ̄′α2

, ∂δ̄α1 , ∂δ̄α2 , ∂δ̄
′
α1
, ∂δ̄′α2

]. In fact, the difference lives in the image
of the ideal 〈δ̄α1 , δ̄α2 , δ̄

′
α1
, δ̄′α2

, ∂δ̄α1 , ∂δ̄α2 , dδ̄
′
α1
, ∂δ̄′α2

〉. Since that ideal is contractible, the dif-
ference is a boundary of some ζ in the image of of the this ideal. Since upstairs Q′ and
downstairs Q are quasi-isomorphic, we can find a homotopy upstairs between the two dif-
ferent lifts. We change this homotopy by a cycle so that downstairs it becomes homotopic
to δ̄α1 − δ̄′α2

− ζ relative to their common boundary. To make the computation in the next
step easier, we can change the homotopy on δ̄α2 so the upstairs δ̄α2 maps exactly down to
δ̄α2 − δ̄′α2

− ζ (thus putting it in the image of the next level of homotopies assemble into a
single map from P [. . .]).

We can repeat this process inductively. The limit is a lift up to homotopy of the original
map. And since any other lift up to homotopy gives alternative choices in each step, and
we can build a homotopy between it and our choice of lift, any two lifts up to homotopy are
homotopic (all relative to P ). The claim follows.

Proposition 2.14. If the map Q
∼
� Q′ in the Lifting Lemma is surjective, then the lift can

be chosen strictly.

Proof. Since Q→ Q′ is a quasi-isomorphis, its kernel has zero homology.

Suppose we’ve chosen an strict lift on the first several layers of free generators. Let xα be
a generator in the next layer. Then our map lifts pα(xβ) := ∂xα strictly. Pick any lift of xα
upstairs. Its boundary differs from the lift of p(xα) by an element of the kernel of Q→ Q′,
which one checks is a cycle. Since the kernel has zero homology, this cycle is a boundary of
some element which is also in the kernel. We change our lift of xα by this element to get an
strict lift of xα whose boundary is p(xα). Thus we can strictly lift the next layer. The limit
is a strict lift.

We will soon see that homotopy is reflexive (without using this bonus proposition), so
the lift is a lift up to homotopy rel P , and the claim follows.

The lifting lemma has a number of consequences.

Lemma 2.15. If two maps are homotopic, then there is a homotopy from any path space.

Proof. Let P [xα] be a free triangular extension of a dgC algebra P , and let P [xα, yα][zβ]
and P [xα, yα][wγ] be two path spaces. They have quasi-isomorphisms P [xα] extending the
product map P [xα, yα] → P . The identity map on P [xα, yα] supplies a lift of one over the
other on its subspace P [xα, yα]. By the lifting lemma, we can extend this to a lift up over
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the entire domain:
P [xα, yβ][zβ]

P [xα, yα][wγ] P [xα]

∼

∼

Suppose there is homotopy out of P [xα, yα][zβ]. Then precomposing with the dotted map
provides a homotopy out of P [xα, yα][wγ].

Proposition 2.16. Homotopy (relative to subalgebra) gives an equivalence relation.

Proof. Let P [xα] be a free triangular extension of a dgC algebra P .
Denote the product map m : P [xα, yα] → P [xα], and let P [xα, yα][δ̄α] be path space as

in Proposition 2.12, with its quasi-isomorphism m̃ : P [xα, yα][δ̄α] → P [xα] extending the
product map.

1. Reflexivity. Let f : P [xα] → Q be a dgC algebra map. Form f ∧P f : P [xα, yα] → Q,
and observe that f ◦m = f ∧P f , thus the diagram commutes

P [xα, yα][δ̄α] P [xα]

P [xα, yα], Q

m̃

f

f∧P f

m

The map Hff := f ◦ m̃ gives a homotopy rel P from f to itself. It follows that that
homotopy is reflexive.

2. Symmetry. Suppose f is homotopic to g rel P . By Lemma 2.15, there is a homotopy
Hfg : P [xα, yα][δ̄α]→ Q, ie a dgC algebra map extending f ∧P g.

Define the twist map τ : P [xα, yα]→ P [xα, yα] to be identity P , and extended over xα
and yα by τ(xα) := yα and τ(yα) := xα. This commutes with the differential, thus it is
a dgC algebra map by Lemma 2.6. Consider the composite P [xα, yα]

τ→ P [xα, yα] →
P [xα, yα][δ̄]. By Lemma 2.7 we can turn this map into a cofibration, thus there is a
space P [xα, yα][zβ] and maps so the square in the diagram commutes

P [xα]

P [xα, yα][zα] P [xα, yα][δ̄α]

P [xα, yα] P [xα, yα] Q

∼

dr

m̃ ∼

g∧P f

τ f∧P g

The upward maps in the bottom row are inclusion maps. The composite map P [xα, yα][zβ]→
P [xα, yα][δ̄α]→ P [xα] is a quasi-isomorphism extending the product map, so P [xα, yα][zα]
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is a path space. The map f ∧P g ◦ τ = g ∧P f . Thus the map from P [xα, yα] to Q
extends g ∧P f over a path space, that is, its a homotopy from g to f rel P .

It follows that homotopy is symmetric.

3. Transitivity. Let P [xα, yα][δ̄(xα, yα)] and P [yα, zα][δ̄(yα, zα)] denote two copies of our
path space.

In a similar manner to how we formed the product map (Proposition 2.9), we may
form a dgC algebra P [xα, yα, zα] extending three copies of P [xα] with a differential
extending the differentials on those three copies. Form a path space P [xα, yα][δ̄α] as
in Proposition 2.12. We may adjoin to P [xα, yα, zα] two copies of the generators,
{δ̄(xα, yα)} and {δ̄(yα, zα)} with their differentials, to form a free triangular exten-
sion P [xα, yα, zα, δ̄(xα, yα), δ̄(yα, zα)] with differentials extending the differentials on
P [xα, yα, δ̄(xα, yα)] ∼= P [xα, yα][δ̄(xα, yα)] and P [yα, zα, δ̄(yα, zα)] ∼= P [yα, zα][δ̄(yα, zα)],
along with a dgC algebra map

P [xα, yα, zα, δ̄(xα, yα), δ̄(yα, zα)]→ P [xα]

extending the maps P [xα, yα, δ̄(xα, yα)]→ P [xα] and P [yα, zα, δ̄(yα, zα)]. Like in Propo-
sition 2.12, one observes P [xα, yα, zα, δ̄(xα, yα), δ̄(yα, zα)] ∼= P [xα, δ(xα, yα), δ(yα, zα), δ̄(xα, yα), δ̄(yα, zα)] ∼=
P [xα][δ̄(xα, yα), δ̄(yα, zα), dδ̄(xα, yα), dδ̄(yα, zα)], and that the kernel of the above map
is the ideal 〈δ̄(xα, yα), δ̄(yα, zα), dδ̄(xα, yα), dδ̄(yα, zα)〉. This ideal is acyclic by Lemma
2.11, thus the above map is a quasi-isomorphism.

Now form the inclusion P [xα, zα]→ P [xα, yα, δ̄(xα, yα)]. Turn this into a cofibration by
Lemma 2.6 to obtain a free triangular extension P [xα, yα][wβ] and quasi-isomorphism
P [xα, yα][wβ]→ P [xα, yα, δ̄(xα, yα)] extending the old map.

Thus we have most of the commutative diagram:

P [xα]

P [xα, zα][wβ] P [xα, yα, zα, δ̄(xα, yα), δ̄(yα, zα)]

P [xα, zα] P [xα, yα, zα] Q

∼

Hfg∧P [yα]Hgh

∼

f∧P g

f∧P g∧P g

We get the rest as follows: let f , g and h be dgC algebra maps P [xα] to Q that agree
on P , and assume is f homotopic to g and g is homotopic to h, relative to P . One
defines maps f ∧P g ∧P h and Hfg ∧P [yα] Hgh much as we defined the coproduct of
two maps along a subspace, in Proposition 2.9. One notes that P [xα, zα][wβ] is a path
space, because it maps to P [xα] by a quasi-isomorphism extending the product map.

The map along the bottom is f ∧P h and the map from P [xα, yα][wβ] → Q along the
middle extends this over a path path space, this provides a homotopy from f to h
relative to P . Thus homotopy is transitive.
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It follows that homotopy rel a subalgebra gives an equivalence relation.

Lemma 2.17. Algebraic homotopy gives a finer equivalence relation than chain homotopy,
that is if two maps are algebraicly homotopic, then they’re chain homotopic.

Proof. Let P [xα] be a free triangular extension of P . Form a path space P [xα, yα][δ̄α] as in
2.12. Recall that P [xα] is a subalgebra of this in two different ways, by sending xα to xα or
sending xα to yα. This gives two inclusion maps i1 and i2, which are both chain maps. First
we show these are chain homotopic.

Let p(xα) be an element P [xα]. Observe that

i1(p(xα))− i2(p(xα)) = p(xα)− p(yα)

In the proof of Lemma 2.12 we showed that such elements lie in the contractible ideal 〈δ̄, dδ̄〉.
Thus i1−i2 is a chain map that factors through the contractible ideal. Let s be a contracting
homotopy on the ideal, and i〈δ̄α, ∂δ̄α〉 ↪→ P [xα, yα][δ̄α] the inclusion map (which is a chain
map).

Define s′ := i ◦ s ◦ (i1 − i2) we observe that

∂s′ + s′∂ = i ◦ (∂s+ s∂) ◦ (i1 − i2) = i1 − i2

Thus i1 is chain homotopic to i2.
Suppose f : P [xα] → Q and g : P [xα] → Q be dgC algebra maps, which are homotopic

rel P . Then there is a homotopy Hfg : P [xα, yα][δ̄α]→ Q. One observes that the f = Hfg ◦ i1
and g = Hfg ◦ i2. Define s′′ := Hfg ◦ s′. We check

∂s′′ + s′′∂ = ∂s′Hfg + s′Hfgd = (∂s′ + ∂s′)Hfg = (i1 − i2)Hfg = f − g

Thus f and g are chain homotopic.

2.5 Homotopies and Homotopical Relations

We make some observations about homotopies and certain relations that use them.

Definition 2.10. If f is homotopic to g rel P , we write f ∼P g. If they are homotopic (ie
homotopic rel the initial algebra) then we write f ∼ g.

We note the following basic properties of homotopies:

Proposition 2.18. Consider maps of dgC algebras

P [xα] Q R
f

g

h

If f ∼P g then hf ∼P hg.

Proof. If Hfg : P [xα, yα][zα]→ Q is a homotopy from f to g rel P , then h◦Hfg is a homotopy
from hf to hg rel P .
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Proposition 2.19. Consider maps of dgC algebras

P [xα] Q[yβ] Rh
f

g

If fh = gh on P (for example, if g(P ) = f(P ) ⊂ Q) and f ∼P g, then fh ∼Q.

Proof. Form path spaces m̃ : P [xα, x
′
α][x̄ᾱ]

∼→ P [xα] and m̃ : Q[yβ, y
′
β][ȳβ̄]

∼→ Q[yα] and
consider the diagram

P [xα] Q[yβ]

P [xα, x
′
α][x̄ᾱ] Q[yβ, y

′
β][ȳβ̄]

P [xα, x
′
α] Q[yα, y

′
α] R

h

m m ∼

Hfg

h1∧P h2

fh∧P gh

f∧Qg

where Hfg is a homotopy from f to g. Using the two inclusions of Q[yβ] into Q[yβ, y
′
β] we

can map P [xα] to Q[yβ, y
′
β] using h in two different ways, which agree on P . Thus there is

a map h1 ∧P h2. One observes that f ∧Q g ◦ h1 = fh and f ∧Q g ◦ h2 = gh. It follows that
f ∧Q g ◦ h1 ∧P h2 = fh ∧P gh.

The outermost rectangle on the left found by ignoring the dotted arrow commutes, thus
h1 ∧P h2 provides a lift of P [xα, x

′
α][x̄ᾱ] to Q[yβ, y

′
β][ȳβ] on the subspace P [xα, x

′
α] of the

composite map P [xα, x
′
α][xᾱ]

m→ P [xα]
h→ Q[yβ]. Thus by the Lifting Lemma (Lemma

2.13), this lift can be extended to a lift up homotopy, thus the square below the dotted line
commutes. Thus the middle path from P [xα, x

′
α][x̄α] to R provides a homotopy from fh to

gh rel P , and the claim follows.

Definition 2.11. Consider a map f : P [xα]→ P [yβ] extending the identity map on P . We
say f is a homotopy equivalence rel P if there is a map the other way g : P [yβ]→ P [xα]
also extending the identity map such that gf ∼P 1P [xα] and gf ∼P 1P [yβ ].

If P = K is the initial algebra, then we say, simply, homotopy equivalent.

One should think of a homotopy equivalence as a map that is invertible up to homotopy.

Proposition 2.20. An algebra map f : P [xα] → P [yβ] extending the identity map on P is
a homotopy equivalence if an only if it is a quasi-isomorphism.

Proof. Consider the diagram

P [xα]

P [yβ] P [yβ]

f∼
g

�

1P [yβ ]
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We can lift the identity map on P [yβ] over f on P by identity on P . By the Lifting Lemma
(Lemma 2.13), there is a lift g making the diagram commute up to homotopy rel P .

Thus we have found g such that fg ∼P 1P [yβ ].
Since homotopic maps are chain homotopic (by Lemma 2.17), fg is chain homotopic to

the identity map on P [yα], thus it induces isomorphism on homology. Since f is a quasi-
isomorphism, it also induces an isomorphism on homology. Thus g, too, induces isomorphism
on homology. Thus, as before, we may find an f2 : P [xα]→ P [yβ] extending the identity on
P such that gf2 ∼P 1P [xα].

Using the properties of homotopies, above, we compute

gf = gf1P [xα] ∼P gfgf2 ∼P g1P [yβ ]f2 ∼P 1P [xα]

Thus gf ∼P 1P [xα].
Thus if f is a quasi-isomorphism, then it is a homotopy equivalence.
If f is a homotopy equivalence (rel a subalgebra), then there is a a map g the other way

such that fg and gf are homotopic–thus chain homotopic–to their respective identity maps.
Thus their induced maps on homology are isomorphisms. Thus f is a quasi-isomorphism.
Thus homotopy equivalence implies quasi-isomorphism, and the claim follows.

Corollary 2.21. Consider a map P → Q. Suppose we have two free triangular extensions
P [xα] and P [yβ] and quasi-isomorphisms P [xα]

∼→ Q and P [yβ]
∼→ Q extending the original.

Then P [xα] is homotopy equivalent to P [yα] rel P .

Proof. This is an immediate consequence of the Lifting Lemma (Lemma 2.13) and Proposi-
tion 2.20.

Proposition 2.22. Any two resolutions are homotopy equivalence. Maps of algebras lift to
a unique homotopy class of maps of resolutions. Lifts of composite maps are homotopic to
composites of the lifted maps.

Proof. That any two resolutions are homotopy equivalent follows from Corollary 2.21, and
that maps lift to unique homotopy classes of maps follows immediately from the Lifting
Lemma.

Consider algebra maps P
f→ Q

g→ R. Take resolutions RP
∼→ P RQ

∼→ Q and RR
∼→ R

and consider lifts f̃ , g̃ and g̃ ◦ f of f , g and f ◦ g (which exist by the Lifting Lemma.

RP RQ RR

P Q R

∼

f̃

g̃◦f

g̃

∼ ∼

f g

One checks that g̃ ◦ f̃ is a lift of g ◦ f up to homotopy using the properties of homotopies.

By construction g̃ ◦ f is also a lift of g ◦ f up to homotopy. Since lifts up to homotopy are

unique up to homotopy, g̃ ◦ f̃ and g̃ ◦ f are homotopic, and the claim follows.
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Definition 2.12. We say a map of resolved algebras f : P1 → Q1 is homotopy equivalent
to another map of resolved algebras g : P2 → Q2 if there are homotopy equivalences denoted
by the dotted arrows such that the diagram commutes up to homotopy:

P1 P2

Q1 Q2

f

∼

g

∼

�

We say a general algebra map is homotopy equivalent to another general algebra map if
a lift of the first to resolutions is homotopy equivalent to a lift of the second to resolutions.

Lemma 2.23. Homotopy equivalence is reflexive, symmetric, and transitive, thus we can
form classes (though not sets) of homotopy equivalent maps.

Proof. First we check that homotopy equivalence on resolved algebras is reflexive, symmetric
and transitive.

On resolved algebras homotopy equivalence is obviously reflexive.
Suppose f and g are homotopy equivalent maps of resolved algebras. Since quasi-

isomorphisms of resolved algebras are homotopy equivalences, there is a diagram commuting
up to homotopy, such that the top two and bottom two maps are inverse homotopy equiva-
lences

RP1 RP2

RQ1 RQ2

f

∼
�

g

∼

�

∼

∼
�

One checks, using the properties of homotopies, that the outermost paths from RP2 to
RQ1 are homotopic, thus homotopy equivalence is reflexive.

Suppose f , g and h are maps between resolved algebras. Suppose f is homotopy equiva-
lent to g and g is homotopy equivalent to h. Then there is a diagram that commutes up to
homotopy

RP1 RP2 RP3

RQ1 RQ2 RQ3

f

∼ ∼

g h�

∼ ∼

�

The composite of two quasi-isomorphisms is a quasi-isomorphisms, and and one uses the
properties of homotopies to show the outermost routes from RP1 to RQ2 are homotopic,
thus f is homotopy equivalent to h.

The claim follows for maps of resolved algebras. Before we prove the claim for general
maps, we check that any two lifts of a map to (possibly different) resolutions are homotopy
equivalent.

Let f : P → Q and suppose we have resolutions RP1
∼→ P

∼← RP2 and RQ1
∼→ P

∼← RQ2.
And consider the diagram where f1 and f2 are lifts of f up to homotopy to homotopy, and
the curved maps at the top and bottom are lifts up to homotopy between resolutions.
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RP1 P RP2

RQ1 Q RQ2

∼

f1

∼
�

f

∼

f2

∼

�

�
∼

�

∼

Using the properties of homotopies, one easily checks that any two ways of getting from
RP1 to Q are homotopic. Thus the two ways of getting to from RP1 to RQ2 and then to
Q are homotopic. Thus both routes from RP1 to RQ2 are lifts up to homotopy of any of
the routes from RP1 to Q. Thus by the Lifting Lemma (Lemma 2.13), the two routes from
RP1 to RQ2 are homotopic, that is, the outermost square in the diagram commutes up to
homotopy. Thus f1 and f2 are homotopy equivalent.

Now we prove the claim for general algebra maps. Homotopy equivalence is obviously
reflexive for general maps. It’s symmetric, because we can find an inverse up to homotopy
of the homotopy equivalence between the resolutions.

Suppose f , g and h are general algebra maps, and f is homotopy equivalent to g and g is
homotopy equivalent to h. Since any two lifts of g to resolutions are homotopy equivalence,
we may assume the homotopy equivalences of f to g and g to h use the same resolutions for
g. Now we can combine the diagrams of the homotopy equivalences at the resolutions of g.
Since homotopy equivalence is transitive on maps of resolved algebras, we get a homotopy
equivalence from f to h. Thus homotopy equivalence is transitive on general maps, and the
claim follows.

One observes that a homotopy equivalence from f : P1 → Q1 to g : P2 → Q2 amounts to
the existence of a resolutions and maps making the diagram commute up to homotopy

P1 RP1 RP2 P2

Q1 RQ1 RQ2 Q2

f

∼ ∼ ∼

g� �

∼∼

�

∼

If we fix the domain, P1 = P2 = P then we can use the the same resolution for P1 and P2

and the identity quasi-isomorphism on these resolutions. This gives the following relation:

Definition 2.13. Let f : P → Q1 and g : P → Q2 be algebra maps with the same domain.
We say f is homotopy equivalent with restricted domain to g if there are resolutions
RP → P , RQ1 → Q1 and RQ2 → Q2 and quasi-isomorphisms making the following diagram
commute.

P

RP

Q1 RQ1 RQ2 Q2

f g∼

�

∼ ∼

�

∼

�
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Proposition 2.24. Homotopy equivalence with restricted domain is reflexive, symmetric and
transitive, thus we can form classes of maps which are homotopy equivalent with restricted
domain.

Proof. One easily adapts the proposition for general homotopy equivalence of maps to this
situation.

Similarly, can consider homotopy equivalence with restricted co-domain, or restricted
domain and co-domain. The latter amounts maps on the same spaces which are homotopic
after lifting to resolutions.

2.6 Algebraic Structures

Let V be a chain complex. The multilinear operations on V with k inputs and l outputs
form a chain complex Hom(V ⊗k, V ⊗l).

Definition 2.14. Let O be a set of operations types ranging most generally over all pairs
(kl) (written vertically) for k = 0, 1, 2, . . . and l = 0, 1, 2, . . .

Let V be a chain complex. In the presence of such a set O, the space of all operations
on V is End(V ) := {Hom(V ⊗k, V ⊗l)|(kl) ∈ O}. We may denote the k-to-l operations by
End(V )(kl) := Hom(V ⊗k, V ⊗l).

Though later in this thesis we only consider combination algebras that act by certain
distinguished combination operations on the space of operations of a chain complex V , for
example, by composing operations, this need not be the case: we might wish to include
combination operations that rely on, say, a choice of pairing on the chain complex. This
leads us to make the following, modest definition:

Definition 2.15. Let C be a combination algebra with zero differential, and let P be a dgC
algebra.

A dgP algebra structure on V is a choice of a dgC algebra structures on End(V )
and a dgC algebra map P → End(V ). We call this map the algebra structure’s structure
map. Since a map of dgC algebras includes the information of the the dgC algebra structure
on the domain and range, we may refer to an algebra structure by its structure map.

We call operations in End(V ) with zero inputs and zero outputs constant operations.
Since Hom(K,K) is canonically isomorphic to the the ground fields K, we may identify the
constant constant operations with the constants K.

If P → End(V ) is an algebra structure, we call it’s structure constants the induced map
on the constant operations on homology, that is

H(P (0
0))→ K

Recall that there are several notions of homotopy-theoretic equivalences on maps of dgC
algebras. (See Section 2.5). Since algebra structures are given by maps of dgC algebras, we
may apply these equivalences to algebra structures.
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Definition 2.16. We say two algebraic structures are homotopy equivalent if their struc-
ture maps are homotopy equivalent. We say they’re homotopy equivalent with restricted
domain (or codomain) if their structures maps are. We say two algebra structures with
the same domain and range are homotopic if they’re homotopic (after lifting to a resolu-
tion).

We note how structure constants behave on classes of equivalent algebra structures for
various equivalences.

Theorem 2.25. Homotopic algebra structures have equal structure constants. Algebra struc-
tures which are homotopy equivalent with restricted domain have equal structure constants
up to scaling.

Proof. To prove homotopic algebra structures have equal structure constants, its enough
to resolve the domain. Let f : P → End(V ) and g : P → End(V ) be two dgP algebra
structures on V and RP

∼→ P a free resolution of P . If f and g are homotopic (after
composing with the resolution) then the top and bottom path induce the same maps on
homology

RP P End(V )∼
h

f

g

Since the induced map of h is an isomorphism on homology, f and g induce the same maps
on homology, thus they give equal structure constants f0 = g0 : H(P0)→ K.

Let P → End(U) and P → End(V ) be two dgP algebra structures which are homotopy
equivalent with restricted domain. Then there are resolutions and maps making the following
diagram commute up to homotopy

P

RP

End(U) REnd(U) REnd(V ) End(V )

f g
∼

�

∼ ∼

�

∼

�

Since this diagram commutes on homology, there is a commutative diagram

H(P0)

K K

g0f0

∼=

The isomorphism on the bottom is a choice of scalar. Thus their structure constants are
equal up to scaling, and the claim follows.

We observe the following basic, but key fact:
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Proposition 2.26. Fix a combination algebra C with zero differential. Let U and V be
chain complexes, and choose a dgC algebra structure on End(U) an End(V ).

If End(U) and End(V ) have homotopy equivalent resolutions as dgC algebras, then for
every algebra structure P → End(U) there is a homotopy equivalent algebra structure Q →
End(V ). If P is resolved, then we can pick an algebra structure on V which is is homotopy
equivalent with restricted domain.

Proof. Let P → End(V ) be an algebra structure on V , and suppose End(U) and End(V )
have homotopy equivalent resolutions. Then there are resolutions and diagram without the
dotted arrow

P RP

End(U) REnd(U) REnd(V ) End(V )

∼

�

∼
∼ ∼

By the Lifting Lemma (Lemma 2.13), we can lift the map from RP to End(U) to REnd(U)
up to homotopy. We now get a map RP → End(V ) by compositing. One easily checks
RP → End(V ) is homotopy equivalent to P → End(V ).

If P is resolved, then we can simply lift starting from P , so the claim follows.

In the next chapter we show that certain class of combination algebras behaves very well.
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Chapter 3

Algebraic Structures with Natural
Action of Combination Algebras on
Operations on Chain Complexes

In this chapter, we give conditions on the actions of a combination algebra, which insure
that algebra structures are particularly well-behaved.

We find it convenient to first discuss algebra structures over a fixed algebra of operations.

3.1 The Category Algebra Structures Over a Fixed Al-

gebra Of Operations

Fix a combination algebra C and a dgC algebra P .
It is convenient to refer to chain complex with a distinguished dgP algebra structures as

a dgP algebra. Recall that this action includes an action of C on End(V ) and that there
may be different such actions. We may consider the category of dgP algebras with maps in
the usual sense. Namely, a map ψ : U → V is an dgPalgebra map if for every operation p
in P with any number of inputs and outputs k and l, the following diagram commutes

U⊗k V ⊗k

U⊗l V ⊗l

ψ⊗k

f f

ψ⊗l

Recall that the zero tensor power of a chain complex is the chain complex K consisting of
the ground field in degree zero and zero differential, and the zero tensor power of a chain
map is the identity map 1K : K→ K, thus the diagram makes sense for k or l zero, too.

Remark 3.1. It follows that algebra maps exactly preserve constant operations

K K

K K

1K

f f

1K
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We say a subcomplex W of a dpP algebra V is a subalgebra if the operations on V
restrict to W , and we say a subcomplex I of V is an ideal if the operations on V induce
maps on the quotient. We say an algebra map is an isomorphism if it is an isomorphism
as a linear space.

One observes the inverse of an isomorphism is again an isomorphism, because the dia-
grams above commute, using the inverse map. One checks the image of an algebra map is a
subalgebra of the image, and that kernels are ideals. One also checks the usual isomorphism
theorem holds.

3.1.1 Restriction, Induction, and Transportation

Let V be a chain complex, and f : V ⊗k → V ⊗l an operation on V . Let W be a subcomplex
of V with inclusion map i : W → V . We say that f restricts to W if there is a map f |W
making the diagram commute

W⊗k V ⊗k

W⊗k V ⊗l

i⊗k

f |W f

i⊗l

One notes f |W exists if and only if f(W⊗k) ⊂ W⊗l. We call f |W the restriction of f to W ,
and note that the restriction f |W = 0 if and only if f(W⊗k) = 0.

Let I be a subcomplex of V and p : V → V/I the projection map. We say an operation
f : V ⊗k → V ⊗l induces an operation on V/I if there is a map f̄ making the diagram commute

∑
i+1+j=k V

⊗i ⊗ I ⊗ V ⊗j V ⊗k V/I⊗k

∑
i+1+j=l V

⊗i ⊗ I ⊗ V ⊗j V ⊗l V/I⊗l

p⊗k

f f

p⊗l

One notes such an f̄ exists if and only if f(
∑

i+1+j=k V
⊗i⊗I⊗V ⊗j) ⊂

∑
i+1+j=l V

⊗i⊗I⊗V ⊗j,
and that the restriction f̄ = 0 if and only if f(V ⊗k) ⊂

∑
i+1+j=l V

⊗i ⊗ I ⊗ V ⊗j. We call f̄
the induction of f to V/I.

Let V be a chain complex, and consider the space of operations End(V ) on V of some
types O. Given a subspace W of V denote Res(W,V ) the space of operations in End(V )
that restrict to operation on W , and given a subspace I if V , denote Ind(V, V/I) the space
of operation in End(V ) that induce operations on V/I.

Lemma 3.1. The spaces Res(W,V ) and Ind(V, V/I) are subcomplexes of End(V ), and the
maps given by restriction and induction are surjective chain maps

Res(W,V ) � End(W )
f 7→ f |W

Ind(V, V/I) � End(V/I)
f 7→ f̄
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Proof. Let V be a chain complex and W and I subcomplexes. An operation f : V ⊗k → V ⊗l

in End(V ) restricts to a W if and only if f(W⊗k) ⊂ W⊗l, and induces an map on V/I if
and only if f(

∑
i+1+j=k V

⊗i⊗ I ⊗ V ⊗j) ⊂
∑

i+1+j=l V
⊗i⊗ I ⊗ V ⊗j. If two operations satisfy

one of these, then so do their sums and boundaries, thus Res(W,V ) and Ind(V, V/I) are
subcomplexes of End(V ).

Suppose f and g are two k-to-l operation in Res(W,V ). Then (f+g)|W (w) = (f+g)(w) =
f(w) + g(w) = (f |W + gW )(w), moreover ∂(f)|W (w) = (df ± fd)(w) = df(w) ± fdw =
df |W (w) ± f |W (dw) = ∂(f |W )(w), thus one sees restriction is a chain map. If f and g are
in Ind(V, V/I), then we observe that (f + g)(v̄) = (f + g)(v) = f(v) + g(v) = f̄(v̄) + ḡ(v̄),
moreover ∂(f)(v̄) = ∂(f)(v) = df(v)± fd(v) = df̄(v̄) ± f̄(d(v̄)) = ∂(f̄)(v̄), thus one sees
induction is a chain map.

Exact sequences of vector spaces always split, thus so do exact sequences of graded vector
spaces. Thus one can extend any operation on W and V/I to operations on V . Thus the
restriction and induction maps are surjective, and the claim follows.

Define the kernel of restriction to be Ann(W,V ) and the kernel of induction to be
CoAnn(V, V/I). We call these spaces the annihilator of W in V and the co-annihilator
of V on V/I. These contain the operations, which restrict to zero on W and the operations
which induce zero on V/I, respectively.

Proposition 3.2. Given a space End(V ) of operation on V , and subspaces I and W of V
there are diagrams with exact rows and columns

End(V )

0 Ann(W,V ) Res(W,V ) End(W ) 0

0

End(V )

0 CoAnn(V, V/I) Ind(V, V/I) End(V/I) 0

0

We prove a crucial lemma after after recalling a few facts about chain complexes: a chain
complex is called contractible if the identity map is chain homotopic to zero, and such a
chain homotopy is called a contracting homotopy. A chain complex is called acyclic if it
has zero homology. One checks that a chain complex (over a field) is acyclic if and only if it is
contractible. Let V and W be chain complexes, and consider the chain complex Hom(V,W )
with differential ∂(f) := [d, f ] := df − (−1)|f |fd. Suppose V is acyclic, thus contractible
with contracting homotopy s. Then S(f) := sf is a contracting homotopy for Hom(V,W ),
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thus Hom(V,W ) is acyclic, ie has zero homology. If W is acyclic, a similar trick also shows
Hom(V,W ) is acyclic. Finally Let U → V → V/U → 0 be a short exact sequence of chain
complexes. This induces a long exact sequence in homology, which by inspections shows
that U is acyclic if and only if V

∼→ V/U is a quasi-isomorphism, and V/U is acyclic if and
only if U

∼→ V is a quasi-isomorphism. If I is an acyclic complex with contracting homotopy
s, and V is another chain complex, then S = 1⊗n ⊗ s ⊗ 1⊗m is a contracting homotopy on
V ⊗n ⊗ I ⊗ V ⊗m, thus it, too, is acyclic. One observes that direct sums of acyclic complexes
are also acyclic.

Lemma 3.3. If the inclusion i : W
∼→ V is a quasi-isomorphism then so are the maps

End(V )

Res(W,V ) End(W )∼

∼

and Ann(W,V ) is acyclic.
If the projection map p : V

∼→ V/I is a quasi-isomorphism (or equivalently, if I is
acyclic), then so are the maps

End(V )

Ind(V, V/I) End(V/I)∼

∼

and CoAnn(V, V/I) is acyclic.

Proof. Suppose W is a quasi-isomorphic subspace of V , meaning the inclusion map W
∼
↪→ V

is a quasi-isomorphism. Denote the inclusion map i : W → V and the quotient map
p : V → V/W .

Let f : V ⊗k → V ⊗l be a k-to-l operation in End(V ). Using the familiar universal
property of quotients, one checks that f restricts an operation f |W on W if and only if
p⊗l ◦ f ◦ i⊗k = 0, and it induces the zero operation f |W = 0 if an only if it induces a map
f̄ : V ⊗k/W⊗k → V ⊗l/W⊗l:

0 W⊗k V ⊗k V ⊗k/W⊗k 0

0 W⊗l V ⊗l V ⊗l/W⊗l 0

f |W

i⊗k

f f̄

i⊗l p⊗l

This gives a map Ann(W,V )(kl)→ Hom(V ⊗k/W⊗k, V ⊗l/W⊗l) that one checks is an isomor-
phism of chain complexes. These two facts give a diagram with and exact row and exact
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column:

0

Hom(W⊗k, V ⊗l/W⊗l)

End(V )(kl)

0 Hom(V ⊗k/V ⊗k, V ⊗l/W⊗l) Res(W,V )(kl) End(W )(kl) 0

0

Since the inclusion W
∼
↪→ V is a quasi-isomorphism, so is the n-fold tensor product of the

inclusion W⊗n ∼
↪→ V ⊗n. Thus the quotients V k/W⊗n are all acyclic, and thus so are the

various Hom spaces involving them. Recall that when n is zero, the zeroth tensor power of
a chain complex is K and the zeroth tensor power of a chain map is the identity map on K,
so the diagram makes sense for any k and l.

It follows that Ann(W,V ) is acyclic, and the maps from Res(W,V ) to End(V ) and
End(W ) are quasi-isomorphisms.

For the other half the claim, we observe that an operation f : V ⊗k → V ⊗l on V induces
an operation f̄ on V/I if and only if the composition ql ◦ f ◦ jk = 0, and induces the zero
operation if and only if it restricts to a map on the kernels ker(jk)→ ker(jl):

0 ker(jk) V ⊗k (V/W )⊗k 0

0 ker(jl) V ⊗l (V/I)⊗l 0

j

f f

q

This gives a map from CoAnn(V, V/I)→ Hom(ker(jk), ker(jl)), which one checks is an iso-
morphism of chain complexes. Thus there is an isomorphism CoAnn(V, V/I)(kl) ∼= Hom(V ⊗k, (V/I)⊗l),
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and a diagram with an exact row and and exact column:

0

Hom(ker(jk), (V/I)⊗l)

End(V )(kl)

0 Hom(ker(jk), ker(jl)) Ind(V, V/I)(kl) End(V/I)(kl) 0

0

One observes that ker(jk) =
∑

m+1+n=k V
⊗m ⊗ I ⊗ V ⊗n, which is zero when k = 0. Since

I is acyclic, so are tensor products involving I, and thus so is the sum of several of those,
ker(jk). Thus the various Hom complexes involving ker(jk) are acyclic.

It follows that CoAnn(V, V/I) is acyclic, and the maps from Ind(V, V/I) to End(V ) and
End(V/I) are quasi-isomorphisms. The claim follows.

Aside from restriction and induction, we also consider transportation of operations on
chain complexes via isomorphisms of the chain complex:

Definition 3.1. Let φ : U → V be an isomorphism of chain complexes. Form End(U).
Given an operation f : U⊗k → U⊗l we define an operation fφ : V k → V ⊗l by the composition

U⊗k V ⊗k

U⊗l V ⊗l

f fφ

(φ−1)⊗k

φ⊗l

We call this the transportation of f via φ. Transportation of operations on U to opera-
tions on V via an isomorphism φ gives a map

End(U)
∼=→ End(V )

f 7→ fφ

which we call the transportation map (of φ)

Proposition 3.4. If φ : U → V is an isomorphism, then the transportation map End(U)→
End(V ) is an isomorphism that commutes with the differential.

Proof. One easily checks that the differential commutes with transportation, because φ, and
hence its inverse, is a chain map. The inverse map of φ is also a chain map, and transportation
by it provides the inverse map.
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One observes that if two operations restrict to a subspace, then so do composition, more-
over their composition commutes with restriction. Similar facts hold for operations, which
induce operations on quotients. One also notes transportation commutes with composi-
tion. We will see that a combination algebra built from such combination operations (as
composition) have particularly nice properties, as the following tautology foreshadows:

Proposition 3.5. Let C be a combination algebra and P a dgC algebra. Consider the
category of dgP algebras.

W is a dgP subalgebra of V if and only if the structure maps lift to a commutative diagram
(of dg linear spaces):

End(V ) P

Res(W,V ) End(W )

V/I is a dgP quotient algebra of V by an ideal I if and only if their structure maps lift to a
commutative diagram

End(V ) P

Ind(V, V/I) End(V/I)

And φ : U → V is an isomorphism of dgP algebras if and only if their structure maps are
related by the map the transportation map of φ:

End(U) P

End(V )

Remark 3.2. One notes that if the diagrams above were maps of dgC algebra structures, then
the algebra structures related by quasi-isomorphic inclusions, quasi-isomorphic projections
and isomorphisms would be homotopy equivalent with restricted domain.

3.2 Natural Actions of Combination Algebras

3.2.1 Compatibility of Action

Fix a combination algebra C with zero differential. Recall that there is an initial algebra K
over C, which may be found by taking the free algebra on the empty set. One looks at the
construction of a free algebra to discover that K is simply the space of 0-to-1 operations in
C.

Let V be a chain complex, W and I subcomplexes of V and U → V an isomorphism.
Suppose we also have some choice of dgC algebra structures on End(V ), End(W ), End(V/I)
and End(U), such that Res(W,V ) and Ind(V, V/I) are dgC subalgebras of End(V ), and
such that restriction, induction and transportation are dgC algebra maps.
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Since K is initial, there would be a commutative diagram as follows.

End(U) End(V )

K

End(V ) End(V )

Res(W,V ) End(W ) End(V/I) Ind(V, V/I)

transportation

restriction induction

This not only means that W , V , V/I and U are bestowed upon a choice of dgK algebra
structures, but that the inclusion W → V , quotient V → V/I and isomorphism U → V are
maps of dgK algebras (by Proposition 3.5).

If a dgK algebra structure on a chain complex V gives V any nontrivial structure (like a
pairing), thus we cannot do better (ie require less structure) than inclusions, quotients and
isomorphisms for some choices of dgK algebra structures on V , W , I, and U .

Proposition 3.6. Let C be a combination algebra with zero differential. Fix a class of dgC
algebra structures on operations End(V ) on chain complexes V . Assume that transporta-
tion is a dgC algebra map for any choice of dgC algebra structures on operations on chain
complexes. Then for every chain complex, V the dgC algebra structure on End(V ) is unique.

Proof. Let V be any chain complex. The identity map is a chain map, and so for any two
choices of dgC algebra structures on End(V ), transportation End(V )→ End(V ) (which is
also the identity map) is a dgC algebra map, thus C acts the same way on each. Thus the
action on End(V ) is unique.

Thus to do better, we need to have a distinguished dgC algebra structures of C on spaces
End(V ).

We note however, that we can’t do any worse than have the diagrams for dgK, in the
following sense:

Proposition 3.7. Let C be a combination algebra. Fix a class of dgC algebra structures on
spaces of operations End(V ) for chain complexes V . Let K be the initial dgC algebra and P
be a dgC algebra.

If dgK subalgebra, quotient algebra, and algebra isomorphism the diagrams in 3.5 are
diagrams of dgC algebras, then the same is true with P in place of K.

Proof. A dgP algebra structure on a chain complex V includes a choice of action of C on
End(V ), thus it induces a dgK algebra structure on V by the map K → End(V ). One
observes that if U → V is dgP algebra map, it is automatically a dgK algebra map with the
U and V regarded as dgK algebras. The claim follows.
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Finally, given distinguished dgC algebra structures on spaces End(V ), it would also
be convenient to ask they not depend on differentials, and that their induce dgC algebra
structure on homology match their distinguished dgC algebra structure on homology .

We find these conveniences adequate, thus we make the following definition:

Definition 3.2. Let C be a combination algebra with zero differential. We say C acts nat-
urally on operations if for every chain complex V if there is a distinguished action of C on
End(V ), which is defined independently of the differential, commutes with taking homology,
and if for all subcomplexes W and I of V and any isomorphism of chain complexes U → V ,
the restriction and induction spaces, Res(W,V ) and Ind(V, V/I), are dgC subalgebras of
End(V ), and restriction, induction and transportation are dgC algebra maps.

Thus we observe:

Corollary 3.8. If a combination algebra acts naturally on operations, then any chain com-
plex has a distinguished dgK algebra structure, and any chain map is an algebra map of dgK
algebras, thus diagrams in Proposition 3.5 are diagrams of dgC algebras for any P . Addi-
tionally, dgP algebra U → V maps induce dgH(P ) algebra maps H(U) → H(V ) with the
distinguished dgC algebra structures on End((H(U))) and End(H(V )).

Proposition 3.9. Let C be a combination algebra with zero differential, with a distinguished
action on End(V ) on every chain complex V .

If C is generated by operations whose actions on operations only depend on the the under-
lying graded vector space, commute with taking homology, preserve restriction and induction
spaces, and commute with restriction, induction and transportation, then C acts naturally.

Proof. If two operations only depend only on their underlying graded vector space of a chain
complex, then so do operations obtained by composing them and permuting their inputs. The
units of a combination algebra don’t depend on the differential. Thus the algebra generated
by operations that don’t depend on the differential doesn’t depend on the differential. Thus
the action of C on operations on a chain complex only depends on its underlying graded
vector space.

Let c1 and c2 be operations in C acting on End(V ) and End(H(V )). Let [c1] and [c2]
denote the operations on End(H(V )) induced by c1 and c2 on End(V ) by taking homology.
One recalls that, [c1]σ = [cσ1 ] and [c1 i◦ c2] = [c1] i◦ [c2], and that [1a] = 1a. If [c1] = c1 and
[c2] = c2, then [cσ1 ] = [c1]σ = cσ1 , and any composition [c1 i◦ c2] = [c1] i◦ [c2] = c1 i◦ c2. It
follows that the subalgebra of operation in C generated by operations whose actions commute
with homology also acts by operations, which commute with homology. Thus the actions of
C commute with homology.

Let V be a chain complex. Form the space End(End(V )) of all combination operations.
Recall that this is an algebra under units, permutation of inputs and compositions. Consider
the space U(V ) of all combination operations in End(End(V )) that preserve all restriction
spaces, induction spaces, and which commute with restriction, induction and transportation
(and have zero differential). We check below that U(V ) is a subalgebra of End(End(V ))
(with zero differential), and that restriction, induction and transportation commute compo-
sition, units and permutations of inputs of U(V ).
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Since generators of C land in the subalgebra U(V ), so does C. Since composition, units,
and permutation of inputs commute with restriction, induction and transportation of these
elements the restriction induction and transportation maps are dgC algebra maps, so the
claim follows once we’ve checked U(V ) is a subalgebra.

Let W and I be any subcomplexes of V , and φ : U → V be an isomorphism. Consider
the unit combination operation 1

(
k
l)

. This fixes End(V )(kl), so it fixes Res(W,V )(kl) and

Ind(V, V/I)(kl), moreover
(
1

(
k
l)

(f)
)
|W = f |W = 1

(
k
l)

(f |W ) when f restricts, 1
(
k
l)

(f) = f̄ =

1
(
k
l)

(f̄) when g induces, and
(
1

(
k
l)

(h)
)φ

= hφ = 1
(
k
l)

(hφ) for any h. The boundary of 1
(
k
l)

is

zero. Thus 1
(
k
l)
∈ U(V ).

If c1 and c2 are combination operations in U(V ) with the same kinds of inputs and out-
puts, then linear combinations also preserve subspaces, induce operations on the subspaces
and the induced operations commute with restriction, induction and transportation. Thus
U(V ) is a linear space.

If c is in U(V ) and f1, . . . , fn restrict, then cσ(f1⊗. . .⊗fn)|W = ±c(fσ(1)⊗. . .⊗fσ(n))|W =
±c(fσ(1)|W ⊗ . . . ⊗ fσ(n)|W ) = cσ(fσ(1)|W ⊗ . . . ⊗ fσ(n)|W ), so cσ preserves restriction spaces
and commutes with restriction. Similar processions show cσ induces and σ commutes with
induction, and that transportation commutes with permutation. Thus c ∈ U(V ).

If c1 and c2 are in U(V ) and f1, . . . , fm, g1, . . . gn restrict ,then
(
(c1 i◦ c2)(f1 ⊗ . . .⊗ g1 ⊗

. . . ⊗ gn ⊗ . . . ⊗ fm)
)

=
(
c1(f1 ⊗ . . . ⊗ c2(g1 ⊗ . . . ⊗ gn) ⊗ . . . ⊗ fm)

)
|W = c1(f1|W ⊗ . . . ⊗

c2(g1 ⊗ . . . ⊗ gn)|W ⊗ . . . ⊗ fm|W ) = c1(f1|W ⊗ . . . ⊗ c2(g1|W ⊗ . . . ⊗ gn|W ) ⊗ . . . ⊗ fm|W ) =
(c1 i◦ cn)(f1|W ⊗ . . .⊗g1|W ⊗ . . .⊗gn|W ⊗ . . .⊗fm|W ), so c1 i◦ c2 preserves restriction spaces
and commutes with restriction. Similar processions show compositions preserves induction
spaces and commutes with induction and transportation.

Thus U(V ) is closed under all the operations on End(End(V )), thus its a subspace and
the claim follows.

Recall that an combination operation in a combination algebra acts by a chain map if
and only if ∂ is a derivation of it, and if and only if it is a boundary.

Definition 3.3. Let c be a combination operation with a distinguished action on operations
End(V ) of each chain complex V .

We say c is a natural combination operation if c actions preserves all restriction
and induction spaces, c commutes with restriction, induction and transportation, the action
of c only depends on the underlying graded vector space of V , its induced action on homology
is the same as its distinguished action on homology, and the differential on any space of
operations acts by a derivation of c (that is, its distinguished operations are cycles). The
claim follows by the proposition above.

Corollary 3.10. If C is generated by natural operations, then it acts naturally.

Proof. Since a generating set has a distinguished action on operation on each chain com-
plex, so has the entire combination algebra. Since a generating set acts by derivations, its
differential is zero on a generating set, so it is zero on all of C.
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Theorem 3.11. Combination operations given by various compositions of operations, tensor
product of operations, permutations of inputs and outputs and the identity map, are all
natural operations.

Proof. A 0-to-1 combination preserves restriction and induction spaces by simply mapping
into them. The identity map restricts to the identity map on subspaces, and induces the
identity map on quotient spaces, and transports to the identity map on isomorphic spaces.
Thus it restricts, induces and commutes with restriction, induction and transportation. It
obviously induces the identity map on homology, thus commutes with taking homology. Thus
the identity map gives a natural operation.

Let f and g be two operations in End(V ) with k1 and k2 inputs, and l1 and l2 outputs,
respectively. We note that the definition of f ⊗ g means the composition

V ⊗k1+k2
∼=→ V ⊗k1 ⊗ V ⊗k2⊗ f⊗g→ V ⊗l1 ⊗ V ⊗l2

∼=→ V ⊗l1+l2

which involves two natural isomorphisms.
We observe that [f⊗g]([v1⊗. . .⊗vk1+k2 ]) = [(f⊗g)(v1⊗. . .⊗vk1+k2)] = [f(v1⊗. . .⊗vk1)⊗

g(vk1+1 ⊗ . . .⊗ vk1+k2)] Thus after applying the natural isomorphism H(V ⊗l1)⊗H(V ⊗l2) ∼=
H(v⊗l1+l2), thus the induced operation in End(H(V )) gives [f ⊗ g]([v1] ⊗ . . . ⊗ [vk1+k2 ]) =
[f(v1⊗. . .⊗vk1 ]⊗[g(vk1+1⊗. . .⊗vk1+k2)] = ([f ]⊗[g])([v1]⊗. . .⊗[vk1+k2 ]), so [f⊗g] = [f ]⊗[g].
Thus the action of tensoring operations commutes with taking homology.

Recall that an operation restricts to a subspace if and only it preserves the subspace.
If f and g preserve a subspace, then clearly so does f ⊗ g, thus tensor product preserves
restriction spaces. It is trivial to check it commutes with restriction. Recall that an operation
induces an operation on the quotient by an ideal I if given at least one input in I at least
one output is in I. If f and g restrict, and f ⊗ g is given at least one input in I, then one
of f or g in f ⊗ g gets I as an input, thus given an output in I, and thus f ⊗ g has an
output in I. Thus f ⊗ g preserves induction spaces. One uses that canonical isomorphism
(V ⊗V )/(V ⊗I+I⊗V ) ∼= V/I⊗V/I to check that tensor product commutes with restriction.
An easy computation also shows that tensor product commutes with transportation. Thus
the tensoring operation is natural.

One may define various kinds of compositions, which can be combined from the following
composition and permutations. Let f : V ⊗k → V ⊗m+l and g :⊗m→ V ⊗n be operations
on V and l at least 1. We define f ◦L g := f ◦ (g ⊗ 1⊗lV ), which is independent of the
differential. This clearly preserves restriction and induction spaces and commutes with
restriction, induction and transportation, and one checks it commutes with the boundary
map, that is ∂(f ◦Lg) = ∂(f)◦Lg+(−1)|f |f ◦L∂(g). We check that this action of composition
commutes with taking homology: [f ◦L g]([v1]⊗ . . .⊗ [vn+m]) = [(f ◦L g)(v1⊗ . . .⊗ vn+m)] =
[f(g(v1 ⊗ . . . ⊗ vn) ⊗ vm+1 ⊗ . . . ⊗ vn+m)] = [f ]([g(v1 ⊗ . . . ⊗ vm)] ⊗ [vm+1 ⊗ . . . ⊗ [vn]]) =
([f ] ◦L [g])([v1]⊗ . . .⊗ [vn+m]). Thus this composition operation is natural.

It is straight forward to check that permutations of inputs and outputs give natural
operations.

This makes it rather easy to build natural combination algebras out of familiar operations.
Let N be a set of natural operations. Then there is distinguished map to the combination

algebra of endomorphisms End(End(V )) on operations of any chain complex V . Thus there
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is a unique map extending this over the free combination algebra, K[N ] → End(End(V )).
Since N acts by chain maps, they may be given the zero differential. We may extend the
differential over K[N ] by zero.

Proposition 3.12. The space U of all combination operations in K[N ] that vanish for all
V is an ideal of K[N ].

Proof. Suppose not. U is certainly a linear space, and is closed under permutation of inputs.
If it is also closed under composition, then it is an ideal. So it isn’t closed under composition.
Then there is a combination operation u in K[N ] that acts by zero on all operation on all
chain complexes, but when composed with some other c in K[N ] doesn’t act by zero on
operations on some chain complex V . The kernel of K[N ] → End(End(V )) is an ideal,
thus the composition actually does act by zero on End(V ), contradicting that it acts in by
something other than zero. Thus U is an ideal.

It follows that the distinguished maps K[N ]→ End(End(V )) factor through the quotient
C(N) := K[N ]/U .

Theorem 3.13. Let O be a set of operation types, and C(O) the set of combination operation
types on O.

Let N be a set of natural relations. The combination algebra C(N), above, factors through
any other combination algebra extending the action of N , and it acts naturally on operations.

Proof. The free property for combination algebras ensures there is a map K[N ] → D to
any other combination algebra D extending the action of N , and it commutes with the
differential. Since U is the the kernel of the map to D, by commutativity, the map to D
factors through C(N) := K[N ]/U , and the claim follows.

Definition 3.4. We call C(N) the universal combination algebra generated by N .

Thus:

Corollary 3.14. The universal combination algebra generated by various compositions of
operations, tensor product of operations, permutations of inputs and outputs and the identity
map give natural actions on chain complexes.

Perhaps the most common example, though usually not presented in this manner is the
following: let O be the set of k-to-1 operation types for k = 0, 1, 2, . . ., and let N contain the
identity map, maps permuting the inputs of operations by any permutation and composition
of one output into any one input. We define the universal combination algebra generated by
these operations Operad := C(N). Algebras over Operad are called dg operads, and algebra
structures over those are called algebras over operads.

3.3 Algebraic Structures with a Natural Action on Op-

erations

We will see in the presence of a natural action of a combination algebra on operations
that certain pleasant facts hold true. First, if U and V are chain homotopy equivalent
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chain complexes, then End(U) and End(V ) have homotopy equivalent resolutions. Recall
that this implies we can transfer structures between homotopy equivalent chain complexes
up homotopy equivalence. Second, we can often tell that two dgP algebra structures are
homotopy equivalent with restricted domain without having to pass to resolutions. And
third, we given a bit of extra structure relating a complex to a subcomplex or quotient
complex, we give explicit formulas for transfered structures. We can always generate such
data relating a chain complex to its homology, and use it to get an explicit formula for of an
algebra structure transfered to its homology.

3.3.1 Zig-Zags of Algebras

Fix a combination algebra C with zero differential that acts naturally on operations on chain
complexes.

Definition 3.5. Fix a dgC algebra P , and let U and V be dgP algebras.
A zig-zag (of dgP) algebras from U to V is a finite list of dgP algebras U =

W1,W2, . . .Wn = V with dgP algebra maps going either left or right between adjacent
pairs, which are either quasi-isomorphic inclusions, quasi-isomorphic projections, or (quasi-
isomorphic) isomorphisms. We denote a particular choice of zig-zag from U to V with an
arrow U  V .

We say U is zig-zag equivalent to V if there is a zig-zag from U to V .

It is trivial to check:

Proposition 3.15. Zig-zag equivalence is reflexive, symmetric and transitive, thus we can
form classes of zig-zag equivalent algebras.

Theorem 3.16. If two algebras are zig-zag equivalent, then their structure maps are homo-
topy equivalent with restricted domain.

Proof. Suppose W → V is a quasi-isomorphic inclusion of dgP algebras, then there is a
commutative diagram of dgC algebras (by Proposition 3.5):

End(V ) P

Res(W,V ) End(W, )

∼

∼

One easily checks this implies P → End(W ) and P → End(V ) are homotopy equivalent (by
taking resolutions, using the lifting lemma, and the properties of homotopies). The other
diagrams in Proposition 3.5 take care of quasi-isomorphic projections, and isomorphisms
(which are also quasi-isomorphisms).

Now consider a general zig-zag from U to V . Then the structure maps of adjacent
algebras are homotopy equivalent with restricted domain. Since homotopy equivalent with
restricted domain is an equivalence relation, the structure maps of U and V are homotopy
equivalent, as desired.
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One recalls the following facts:

Lemma 3.17. Any chain map can be factored into an inclusion, followed by an isomorphism,
followed by a projection (using the chain complex version of a mapping cylinder). If the chain
map is a quasi-isomorphism, then these can be chosen to be quasi-isomorphisms. Quasi-
isomorphic chain maps are chain homotopy equivalences.

Proposition 3.18. The category of dgK algebras is isomorphic to the category of chain
complexes, and chain homotopy equivalence and zig-zag equivalence give the same relation.

Proof. Every chain complex has a unique dgK algebra structure, because there is a unique
dgC algebra structure on End(V ) and there is a unique map K→ End(V ).

Since the action of C is natural, restriction and induction spacesRes(W,V ) and Ind(V, V/I)
are dgC subalgebras of End(V ) for any subcomplexes W and I of V , and the restriction,
induction and transportation maps are dgC algebra maps. Since K is initial, there are com-
mutative diagrams as in Proposition 3.5 with P = K. The same proposition implies that
inclusions, quotients and isomorphisms are dgK algebra maps.

Since every chain map can be factored into inclusion maps, isomorphisms and quotient
maps, and compositions of algebra maps are algebra maps, every chain map is a dgK algebra
map.

It follows that the category of chain complexes and dgK algebras are isomorphic.
Chain homotopy equivalences are quasi-isomorphisms and vice versa, and they can be fac-

tored into quasi-isomorphic inclusions, isomorphisms, and quasi-isomorphic quotient maps.
It follows that homotopy equivalent chain complexes and zig-zag equivalent dgK algebras
are the same thing, as desired.

Proposition 3.19. In the presence of a natural action of a combination algebra, if chain
complexes U and V are homotopy equivalent then their algebras of endomorphisms End(U)
and End(V ) have homotopy equivalent resolutions.

Proof. If U and V are homotopy equivalent, then U and V are zig-zag equivalent as dgK
algebras. It is quickest, though perhaps obfuscatory, to note that by Proposition 3.16, the
structure maps K → End(U) and K → End(V ) are homotopy equivalent with restricted
domain, thus there is a diagram with resolutions of End(U) and End(V ) and a homotopy
equivalence between them. However, one should really note that there is a zig-zag of dgC
algebras between End(U) and End(V ) built from restriction, induction and endomorphism
spaces. Thus a resolution of End(U) lifts up to homotopy over this whole zig-zag to a
resolution of End(V ).

3.3.2 Existence of Transfered Structures

Fix a combination algebra C that acts naturally on operations on chain complexes.
As a consequence of the Proposition 3.19 above and 2.26, if two chain complexes are

homotopy equivalent, then we can transfer structures from one to the other up to homotopy
equivalent, or homotopy equivalence with restricted domain, given their domain is resolved.
One recalls that if two algebra structures are homotopy equivalent with restriced domain,
then their structure constants are equal up to overal scaling (Theorem 2.25), but in fact, we
can do slightly better:
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Theorem 3.20. Let K[xα] be a resolved dgC algebra. If U and V are homotopy equivalent,
then we can transfer any algebra structure on U to an algebra structure on V , which is
homotopy equivalent with restricted domain and has equal structure constants. Any two such
transfered structures are homotopic.

Proof. Pick a homotopy equivalence from U to V . Since the category of chain complexes
is isomorphic to the category of dgK algebras (Proposition 3.18), there is a zig-zag of dgK
algebras from U to V . Thus there is a zig-zag of dgC algebras from End(U) to End(V ). Thus
the ground fields of End(U) and End(V ) are canonically identified. The claim follows.

If we have a partially resolved dgC aalgebra P [xβ], then we can transfer dgP [xα] alebras,
given we have a way to transfer dgP algebra structures

Theorem 3.21. Let P be a dgC algebra, and P [xα] a free triangular extension of P , and
let U and V be dgP algebras.

If U and V are zig-zag equivalent then we can transfer any dgP [xα] algebra structure on U
(extending its dgP algebra structure) to a dgP [xα] algebra structure on V (extending its dgP
algebra structure) which is homotopy equivalent with restricted domain and equal structure
constants. Any two such transfered structures are homotopic rel P .

Proof. A zig-zag from U to V gives a lift of P through a zig-zag from End(U) to End(V ).
We just lift up to homotopy over this zig-zag to get a dgP [xα] algebra structure on End(U).
Any two such transfered structures with structure maps f and g are homotopy equivalent
with restricted domain, and agree on P , thus using a resolution RP [xα] of P [xα] one checks
f and g are both lifts up to homotopy rel P of some map RP → End(V ). Thus they are
homotopic rel P by the Lifting Lemma.

3.3.3 Explicit Formulas For Transferred Maps

One recalls that a Hodge decomposition on a chain complex in the usual sense gives a splitting
of a chain complex into homology, plus the image of d plus a space which is isomorphic to
the image of d by d. This splitting gives standard representatives for homology classes, and
a standard way to kill boundaries.

We give a more general notion of Hodge decomposition, which has harmonic part a
subcomplex containing all the homology. This gives us a way of compressing an algebra
structure to a subcomplex, or off of a contractible ideal.

The idea for this in inspired by [1, ?]

Hodge Decompositions

Fix a set O of operation types. This is independent of an action of a combination algebra.
Be warned, the following definition is not the usual definition, but one finds it in the

literature [1]:

Definition 3.6. Let V be a chain complex with differential d. A Hodge decomposition
on V with maps s : V → V and t : V → V such that:

1. t is a degree zero projection that commutes with the boudnary, ie t2 = t and dt = td,
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2. s is a chain homotopy of t to the identity map, which squares to zero, ie: ds+sd = 1−t
and s2 = 0

3. s and t are “orthogonal”, ie st = 0 and ts = 0.

We call the map t of a Hodge decomposition the harmonic projection and s the
contracting homotopy. Since t is a projection, so is 1 − t. We call t the harmonic
projection and 1− t the projection onto the contractible part.

We denote the inclusion map i : tV → V and the projection, given p : V → tV , which is
just the restriction of the codomain of t. One observes that tV and (1−t)V are subcomplexes
and that V ∼= tV ⊕(1− t)V . One also observes that s acts by zero on tV and is a contracting
homotopy on (1 − t)V , thus (1 − t)V has zero homology. Additionally, i and p are inverse
chain homotopy equivalences, with ip = t and pi = idtV , and because t is chain homotopic
to the identity (by definition). Thus i and p induce isomorphisms on homology. We call tV
the harmonic subcomplex, and (1− t)V the contractible subcomplex.

Now consider the chain complex Hom(V ⊗k, V ⊗l). Given an operation f : V ⊗k → V ⊗l

we define T (f) := t⊗l ◦ f ◦ t⊗k and call it the compression of f to the harmonic
subcomplex. One notes that T (f) restricts to tV in the sense that if f ∈ End(V ), then
T (f) ∈ Restrict(tV, V ). One recalls that V ⊗0 = K and t⊗0 = idK : K → K, thus T acts by
identity on the constant operations.

We define an operator S on Hom(V ⊗k, V ⊗l) as follows:

S(f) :=
∑

i+j+1=l

(t⊗i ⊗ s⊗ 1⊗j) ◦ f + (−1)|f |
∑

i+j+1=k

t⊗l ◦ f ◦ (t⊗i ⊗ s⊗ 1⊗j)

Proposition 3.22. Let V be a chain complex with a hodge decomposition. Then Hom(V ⊗k, V ⊗l)
has a Hodge decomposition with the operators S and T as above. We denote the inclusion
and projection operators

I : T (Hom(V ⊗k, V ⊗l)→ Hom(V ⊗k, V ⊗l)

P : Hom(V ⊗k, V ⊗l)→ T (Hom(V ⊗k, V ⊗l))

Proof. One checks T 2 = T , ∂T = T∂, S2 = 0 and TS = 0 = ST .
To check ∂S + S∂ = 1− T , one first notes that

(1− T )(f) =
∑

i+j+1=l

(t⊗i ⊗ (1− t)⊗ 1⊗j) ◦ f +
∑

i+j+1=k

t⊗l ◦ f ◦ (t⊗i ⊗ (1− t)⊗ 1⊗j)

The notion of Hodge decomposition extends in an obvious way to sets of chain complexes,
thus

Corollary 3.23. Let V be a chain complex with differential d, and Hodge decomposition s
and t. Then End(V ) with differential ∂ has a Hodge decomposition given by S and T on
each component. We denote the projection and inclusion maps

I : T (End(V ))→ End(V )

P : End(V )→ T (End(V ))

We call S and T the induced Hodge decomposition on End(V ).
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Lemma 3.24. If V is a chain complex with a Hodge decomposition, then the induced Hodge
decomposition on End(V ) restricts to Hodge decompositions on Res(tV, V ) and Ind(V, V/(1−
t)V ), which split into harmonic and contractible parts as

Res(tV, V ) = T (End(V ))⊕ Ann(tV, V )

Ind(V, V/(1− t)V ) = T (End(V ))⊕ CoAnn(V, V/(1− t)V )

Thus restriction and induction give isomorphisms

T (End(V ))
∼=→ End(tV )

T (End(V ))
∼=→ End(V/(1− t)V )

Proof. First, one notes that operations of T (End(V )) given inputs in tV give outputs in
tV . Thus they restrict to maps on tV . Thus T (End(V )) ⊂ Res(tV, V )). Operations in
T (End(V )) given any input in (1 − t)V give zero, thus they induce maps on V/I, thus
T (End(V )) ⊂ Ind(V, V/(1− t)V ). Since they contain the entire image of T , it follows that
the harmonic pars of Res(tV, V ) and Ind(V, V/(1− t)V ) are both T (End(V )).

If an operation f restricts to tV then some inputs or output of S(f) always has an s next
to it, thus maps S(f)((tV )⊗k) = 0. Thus S(f) also restricts to tV (to zero, in fact).

If an operation f induces a map on V/(1− t)V , then

f

( ∑
i+1+j=k

V ⊗i ⊗ (1− t)V ⊗ V j

)
⊂

∑
i+1+j=l

V ⊗i ⊗ (1− t)V ⊗ V j

Some of the summands of of S(f) have are f with an s and some output, and and some have

f with s at some input and t at all outputs, so S(f)
(∑

i+1+j=k V
⊗i ⊗ (1− t)V ⊗ V ⊗j

)
= 0.

So S(f) restricts to V/(1− t)V (to zero, in fact).
Thus S and T both restrict to Res(tV, V ) and Ind(V, V/(1 − t)V ). One observes, thus

that they give hodge decompositions.
Suppose f restricts to zero on tV , one checks that T (f) = 0, so 1 − T (Ann(tV, V )) =

Ann(tV, V ). One also checks if g restricts to any map on tV that (1 − T )(g) restricts to
zero on Ann(V ). Thus (1 − T )(Res(tV, V )) = Ann(tV, V ), that is the annihilator is the
contractible part of the Hodge decomposition.

Suppose f induces the zero map on V/(1 − t)V . Then f(V ⊗k) ⊂
∑

i+1+j=l V
⊗i ⊗ (1 −

t)V ⊗ V j, so T (f) = 0. So (1− T )(CoAnn(V, V/(1− t)V )) = CoAnn(V, V/(1− t)V ). One
also checks if g induces any map on V/(1 − t)V , then (1 − T )(g) induces the zero map on
V/(1− t)V , becuase one may write (1− T )(g) as a sum of gs with a (1− t) at at least one
input or output (along with some ts at other inputs and outputs) and so (1−T )(g)(V ⊗k) ⊂∑

i+1+j=l V
⊗i⊗ (1− t)V ⊗ V j. Thus (1− T )(Ind(V, V/(1− t)V )) = CoAnn(V, V/(1− t)V ).

It follows that Res(tV, V ) and Ind(V, V/(1− t)V ) split as in the statement.
Since Ann(tV, V ) and CoAnn(V, V/(1− t)V ) are the kernels of restriction and induction,

and restriction and induction are surjective, restriction and induction are isomorphisms, and
the claim follows.
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There is always a Hodge decomposition whose harmonic part is the homology.

Proposition 3.25. Let V be a chain complex with differential d. There is Hodge decompo-
sition on V whose harmonic part has zero differential, thus is isomorphic to the homology
H(V ).

Proof. Let V be a chain complex with zero differential. Choose a complement H of im(d) in
ker(d). Choose a complement K of ker(d) = H ⊕ im(d) in V . Observe that d(K) = d(V ) ⊂
im(d). Thus d : K

∼=→ im(d) is an isomorphism. Let s be the inverse isomorphism extended
over H ⊕ im(d) by zero, thus im(d) = K and V = H ⊕ im(d) ⊕ im(s). Define t to be the
projection on to the component H of this decomposition. One checks s and t give a Hodge
decomposition on V with harmonic part tV = H. Observe that dH = 0. Thus the homology
of H is just H itself. Recall that the inclusion H = tV → V is a quasi-isomorphism, thus
the inclusion induces an isomorphism H ∼= H(V ).

The claim follows.

Explicit Transfer Formula Using a Hodge Decomposition

Fix a combination algebra C with zero differential, which acts naturally on operations.
Given an algebra structure, a Hodge decomposition picks out a new algebra structure

and a homotopy to it:

Lemma 3.26. Let P be a dgC algebra and P [xα] a free triangular extension.
Let V be a chain complex with differential d, and a Hodge decomposition given by s and t,

and let End(V ) be the operations on V with differential ∂ and induced Hodge decomposition
given by S and T .

Form a path space P [xα, yα, δ̄α] as in Proposition 2.12.
Given any algebra structure f : P [xα] → End(V ), there is a new algebra structure g :

P [xα]→ End(V ) and a homotopy H from f to g rel P , which are defined recursively by the
formulas

g(xα) := T (f(xα) +H(ηα)) + S(g(∂xα))

H(δ̄α) := −S(H(ηα) + f(xα))

If the harmonic part W = tV is a dgP subalgebra of V , then g maps into Res(W,V ),
and if W is a dgP [xα] subalgebra of V , then T (H(ηα)) = 0.

If the contractible part I = (1 − t)V is a dgP ideal of V , g maps into Ind(I, V/I), and
if I is a dgP [xα] algebra ideal of V , then T (H(ηα)) = 0.

Proof. The free triangular extension P [xα] = P [xα1 , xα2 , . . .] consists of a sequence of exten-
sions with the differential landing in earlier terms.

Recall that ηα is chosen to lie in the ideal 〈δ̄β, dδ̄β〉 of previous terms so that ∂ηα =
∂yα − ∂xα = pα(yβ)− pα(xβ).

We check the formula, below, but note that one may arrive to it by attempting to define
g(xα) := T (xα) and then correcting. One way to do this is by first correcting by T (H(ηα))
and then by a term that kills (1 − T )(g(∂xα)), which one can do by applying S. Then one
has to fill in the homotopy to kill −(1− T )(H(ηα) + f(xα)), which one can do by applying
S.
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Suppose we have defined g and the homotopy H over

g : P [xα1 , . . . xαn−1 ]→ End(V )

H : P [xα1 , yα1 , δ̄α1 , . . . , xαn−1 , yαn−1 , δ̄αn−1 ]→ End(V )

to dgC algebra maps by the formula in the hypothesis.
Let xαn be a variable in the next extension, and define g(xαn) := T (f(xαn))+T (H(ηαn))+

S(g(∂xαn)) as in the hypothesis. By Lemma 2.6, we can extend g over this next extension
to a dgC algebra map, if ∂g(xαn) = g(∂xαn) (since ∂g(∂(xαn = g(∂2xαn = 0). We check this
identity, noting that ∂S = (1−T )+S∂ and H(∂ηαn) = H(∂yαn−∂xαn) = g(∂xαn)−f(∂xαn)

∂g(xαn) := ∂T (f(xαn)) + ∂T (H(ηαn)) + ∂S(g(∂xαn))
= T (f(∂xαn)) + T (H(∂ηαn)) + (1− T )(g(∂xαn))− S∂(g(∂xα))
= T (f(∂xαn)) + T (g(∂xαn))− T (f(∂xαn)) + (1− T )(g(∂xαn))− S(g(∂2(xαn)))
= g(∂xαn)

Thus we can extend over the next layer of variables by the formula to get a dgC algebra
map, and by the same lemma, we can extend the homotopy over the next layer of variables
xαn and yαn by f and g, respectively. We may also extend it over the next layer of variables
δ̄αn by the formula in the hypothesis H(δ̄αn) := −S(H(ηαn))−S(f(xαn)), and this extension
will be a dgC algebra map, if ∂H(δ̄αn) = H(∂ηαn), by the same lemma. We check this,
noting that S(g(xαn)) = 0 and T (H(δ̄αn)) = 0

∂H(δ̄αn) = −∂S(H(ηαn) + f(xα))
= S∂(H(ηαn)) + f(xα))− (1− T )(H(ηαn) + f(xαn))
= S(g(∂(xαn)− f(∂xαn) + f(xαn))− (1− T )(H(ηαn) + f(xαn))
= S∂(g(xαn))− (1− T )(H(ηαn) + f(xαn))
= ∂S(g(xαn)) + (1− T )(g(xαn))− (1− T )(H(ηαn) + f(xαn))
= (1− T )(g(xαn)− f(xαn)− ηαn)
= (1− T )(H(∂δ̄αn))
= H(∂δ̄αn)− ∂T (H(∂))
= H(∂δ̄αn)

The first part of the claim follows.
Let pα(xβ) := ∂xα. Recall, because P [xα] is a free triangular extension, the p(xβ) lie in

earlier terms.
Suppose that the harmonic part W = tV is a dgP subalgebra of V . Then we show

by induction that g(xα) lands in Res(W,V ). One first notes, that T of any operation
lands in Res(W,V ) by Lemma 3.24, moreover Res(W,V ) is closed under S. Suppose some
operations xβ map to Res(W,V ), Then pα(xβ) is some combination of operations which all
land in Res(W,V ). Since C acts naturally, Res(W,V ) is a dgC subalgebra of End(V ), so
p(xα) also lands in Res(W,V ). It follows that g(xα) = T (f(xα) + H(ηα)) + S(pα(g(xβ))) is
in Res(W,V ) if early g(xβ) are. One notes the first terms pα1 are just elements of P , thus
g(xα1) = T (f(xα1)+H(ηα1))+S(pα1)) is in Res(W,V ). By induction, g(xα) is in Res(W,V )
for all α.

If W is a dgP [xα] subalgebra of V , then the original map P [xα] lifts to Res(W,V ) so one
observes the entire computation takes place in Res(W,V ). Since H(δ̄α) is always in the image
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of S, and the image of S is Ann(W,V ), H(δ̄α) is in the annihilator, and so is its boundary.
Since H(ηalpha) is in the ideal of H(δ̄α) and its boundary, which are in the annihilator, and
the annihilator is an ideal of Res(W,V ), it follows that H(ηα) is in the annihilator. The
annihilator is annihilated by the operator T , thus T (H(ηα)) = 0, as derived.

The second part of the claim follows. The third part follows by virtually the same
argument as for the second part.

It follows that we can transfer algebra structures to “harmonic subalgebras” and “har-
monic quotient algebras” with the same recursive formulas, and because the transfer is
through a zig-zag from End(V ) to End(W ) or End(V/I), the structure constants are equal.

Theorem 3.27. If W is a dgP subalgebra of V , and there is a Hodge decomposition on V
whose harmonic part is W , then a dgP [xα] algebra structure on V determined by operations
f(xα) in End(V ) is transfered up to homotopy equivalence with restricted domain (and equal
structure constants) to a dgP [α] algebra structure on W determined operations g(xα) :=
T (f(xα) +H(ηα)).

If V/I is a dgP quotient algebra of V and there is Hodge decomposition on V whose
contractible part is I, then a dgP [xα] algebra structure on V determined by operations f(xα)
in End(V ) is transfered up to homotopy equivalence with restricted domain (and equal struc-
ture constants) to a dgP [xα] algebra structure on V/I determined by the same formula, and
regarding V/I = tV .

If f(xα) preserves W or restricts to V/I, then the term involving H(ηα) can be zeroed
out, and one can simply compress f(xα) to the harmonic subspace.

We can go the other way: given an dgP [xα] algebra structure on a dgP quotient algebra
or subalgebra on an algebra, we can extend over the algebra up to homotopy equivalence.

Suppose V is a dgP algebra and that the harmonic part W = tV is a dgP subalgebra.
The subspace T (End(V )) of Res(W,V ) maps isomorphically onto End(W ) via the restriction
map. Let J : End(W )→ Res(W,V ) be the inverse extended to Res(W,V ) by inclusion.

Suppose V is a dgP algebra with contractible part I which is an ideal so that V/I is
a dgP quotient algebra. The subspace T (End(V )) of Ind(V, V/I) maps isomorphically to
End(V/I) via the induction map. We let J : End(W ) → Ind(V, V/I) be the inverse map,
extended to Ind(V, V/I) by inclusion.

Theorem 3.28. Let V be a dgC algebra with a Hodge decomposition, and give End(V ) the
induce hodge decomposition with S and T .

Suppose V is a dgP algebra whose harmonic W = tV is a subalgebra. Then a dgP [xα]
algebra structure on W determined by f(xα) is extend to a dgP [xα] algebra structure on V
determined by the recursive formula

g(xα) := J(f(xα)) + S(g(∂xα))

which is homotopy equivalence with restricted domain (and equal structure constants).
Suppose V is a dgP algebra whose contractible part I = (1− t)V is an ideal of V . Then a

dgP [xα] structure on V/I determined by f(xα) is extends to a dgP [xα] algebra structure on
V by the same recursive formula to an algebra structure which is homotopy equivalent with
restricted domain (and equal structure constants).
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Proof. Fist consider the case W is a dgP subalgebra of V . Since the restriction map
Res(W,V )→ End(W ) is surjective, and the structure map P → End(W ) lifts to Res(W,V )
by Proposition 3.5, we can find a strict lift of P [xα], by Proposition 2.14.

Let f : P [xα] → End(W ) be the structure map on W , and g : P [xα] → Res(W,V )
be its strict lift. Recall that the Hodge decomposition on End(V ) restricts to a Hodge
decomposition on Res(W,V ). To prove the formula, we simply follow the procedure for
lifting a surjectively, as in 2.14.

On observes that Res ◦ J is the identity on End(W ), and im(J) = im(T ) in Res(W,V ).
Recall also that the kernel of restriction is Ann(W,V ).

Since W is a dgP subalgebra and pα1 := ∂xα1 ∈ P , g(∂xα1) is a strict lift of f(∂xα1).
Since Res ◦ J is identity, J(f(xα1)) provides a strict lift of x1, though ∂(J(f(xα1))) isn’t
necessarily equal to g(pα1). The difference ∂(J(fα1))− g(pα1), however, restricts to zero on
End(W ), and thus is in the annihilator Ann(W,V ). It’s a cycle, too, so its the boundary of
S(g(pα1) − ∂J(f(xα1))), since ∂ commutes with J and SJ = 0, the second term drops off,
leaving S(g(pα1)) Thus g(xα) := J(f(xα1)) + S(g(pα1)) = J(f(xα1)) + S(g(∂xα1)).

Subsequent terms follow the same pattern, thus the formula is a strict lift, thus also a lift
up to homotopy. This formula gives a dgP [xα] algebra structure on V , which is homotopy
equivalent with restricted domain. Thus the inclusion map is a quasi-isomorphism. Thus by
Proposition 3.16, they are homotopy equivalent algebra structures with restricted domain.

The proof for the second part is nearly identical.

3.4 A Simple Example

We consider an example of an algebra structure whose homotopy classes are completely
determined by constant operations, and which we can compute everything completely.

Fix the set of operation types O to contain only the three following types: 1-to-0 opera-
tions, 0-to-0 operations, and 0-to-1 operations.

Given a chain complex V , the space of operations End(V ) on V consists of Hom(K, V ),
Hom(K,K) and Hom(V,K), which we may regard as V , K and V ∗ respectively, that is

End(V ) = {V,K, V ∗}

The evaluation map V ∗ ⊗ V → K is a composition, and we denote it [(1
0) ◦ (0

1)]. With
permuted inputs, we write it [(0

1) ◦ (1
0)].

Let N := {◦} be the set containing the [(1
0) ◦ (0

1)]. Given any chain complex V , there is a
distinguished map N → End(V ) taking [(1

0) ◦ (0
1)] to the evaluation map. By Theorem 3.11,

[(1
0) ◦ (0

1)] is a natural operations, thus the universal combination algebra C(N) generated
by N acts naturally on operations on chain complexes (and has the zero differential). One
observes that C(N) is simply

C(N) = K〈1V , 1K, 1V ∗ , [(
1
0) ◦ (0

1)], [(
0
1) ◦ (1

0)]〉

One notes

v∗ ◦ w = (−1)|w||v|w ◦ v∗
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Let M be a smooth oriented manifold of dimension n, with differential forms Ω(M) and
exterior derivative d. Integrating over the fundamental class gives a chain map, by Stoke’s
Theorem,which is of degree minus n: ∫

: Ω(M)→ K

Let ω be a choice of volume form
ω ∈ Ω(M)n

The volume form is a cycle, which we may regard as a 0-to-1 operation which is a chain map.
It gives the manifold some volume

V ol :=

∫
ω

which we may regard as a 0-to-0 operation.
We study algebra structure given by these operations which have a fixed integration map.
The integration alone forms an dgC(N) algebra

Int := K[
∫

] = K〈
∫
〉

with zero differential. All three operations together (integration, volume form and volume)
form a dgC(N) algebra of operations

IntV ol := K[
∫
, ω, V ol]/〈V ol −

∫
◦ω〉 = K〈

∫
, ω, V ol〉

with zero differential.
Int is a dgC(N) subalgebra of IntV ol, so we may resolve IntV ol relative to this subal-

gebra by turning the inclusion map into a cofibration. One observes that we simply have to
append a single new operation ω to Int with zero boundary and map it to ω in IntV ol to
get our quasi-isomorphism

Int[ω]
∼→ IntV ol

Let Int[ω′] be another copy. We obtain a path space of Int[ω] rel Int by forming the free
extension

Int[ω, ω′, ω̄]

and extending the differential over ω̄ by

∂ω̄ := ω′ − ω

Suppose we have two dgIntV ol algebra structures on Ω(M) with the same integration
map. We may view them as Int[ω] algebras with structure maps Int[ω]→ End(Ω(M)).

Thus we observe they are homotopic rel Int if and only if their volume forms differ by a
boundary, this implies that their volumes are equal (which we already know to be true, by
Theorem 2.25). One notes the converse: if two volume forms give the same volume, then
they differ by a boundary. Thus

Proposition 3.29. Two dgInt[ω] algebra structures are homotopic rel Int if and only if
they have the same volume.
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One knows given a Riemannian metric on a manifold, we get a co-differential d∗, which
determines a Hodge decomposition in the classical sense. We get a splitting of differential
forms into three pieces Ω(M) = H⊕ im(d)⊕ im(d∗) such that H has zero differential, and
d and d∗ are isomorphisms between im(d) and im(d∗). One observes that since (d∗)2 = 0, ∆
is an isomorphism on im(d)⊕ im(d∗) (thus this sum is acyclic). The inverse map G is called
a Green’s operator [1]. One checks that since ∆ commutes with the exterior derivative,
so does G, and since the output of d∗ is in the domain of G, the map s := Gd∗ makes
sense. One defines t := 1− (ds+ sd) and observes that s and t give a Hodge decomposition
on Ω(M) in the sense of Definition 3.6, and that H = tΩ(M) is the harmonic part, and
im(d)⊕ im(d∗) = (1− t)Ω(M) is the contractible part.

Given a dgInt[ω] algebra structure on Ω(M), we note that H is automatically a dgInt
subalgebra, but not necessarily a dgInt[ω] subalgebra. We compute the formula from Lemma
3.26, which allows us to compress the algebra structure onto the harmonic part H = tΩ(M)
to an algebra structure which is homotopy equivalent with restricted domain.

We denote our starting structure map f [ω] : Int → Ω(M), and compute the transfered
one g, which is equal to f on Int, which turns out to be, simply, g(ω) := T (f(ω)) = tf(ω). We
can compute the homotopy, too; it’s H(ω̄) := −S(f(ω)) = −sf(ω) = −sf(ω) = −Gd∗f(ω).

This new structure map restricts to a structure map g : Int[ω] → End(H) which is
homotopy equivalent with restricted domain and equal structure constants, by Theorem
3.27. In fact, one checks tf(ω) is just the old harmonic projection of f(ω) to H, and
H(ω̄) = −sf(ω) is the co-exact form (ie form in im(d∗)) whose boundary is the difference
between f(ω) and its harmonic representative tf(ω). Thus

Proposition 3.30. An orientation and a choice of volume form on M determines a dgInt[ω]
algebra structure on Ω(M). Given a Riemannian metric on M , the dgInt[ω] algebra structure
on the space of harmonic forms H(Ω(M)) given by restricting integration and sending ω to
the harmonic representative the volume form in Ω(M) is homotopy equivalent with restricted
domain and has the same volume.
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Chapter 4

Appendix: Combination Algebras and
Algebras of Over Combination
Algebras

4.1 Linear Spaces

We study algebraic structures on chain complexes. A space of operations on a chain complex
is a set of chain complexes indexed by the various kinds of operations one wishes to consider.
The space of operation on a space of operations is another set of chain complexes indexed
by the various kinds of operation on chain complexes one wishes to consider. Sets of chain
complexes have similar structure to chain complexes, just componentwise. The purpose of
this section is mainly to set conventions.

4.1.1 Vector Spaces

We fix a ground field K of characteristic zero. Tensor product ⊗ mean over tensor product
over the ground field ⊗K.

Quotients One recalls that quotients satisfy a universal property, namely, given a subspace
U of V , and a map V → W whose kernel contains U , the factors uniquely through the
quotient map

U V U

V/U

0

∃!

moreover this map is injective if and only if W is equal to kernel of V → W .
Let U and V be vector spaces with subspaces U ′ ⊂ U and V ′ ⊂ V . One shows that

any map U ⊗ V → W with U ′ ⊗ V + U ⊗ V ′ in its kernel factors uniquely through the map
U ⊗ V → (U/U ′)⊗ (V/V ′). Thus there is a canonical identification

(U ⊗ V )/(U ′ ⊗ V + U ⊗ V ′) ∼= (U/U ′)⊗ (V/V ′)
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Coproducts and Direct Limits Let {Vi} be a set of vector spaces. We call a vector space
C with maps Vi → C a coproduct of {Vi} if it satisfies the following universal property:
Given any maps fi : Vi → W to a vector space W , these maps factor uniquely through C

C W

Vi

∃!

This defines coproducts uniquely up to canonical isomorphism. One observes the vector
space

∑
i Vi with inclusion maps Vi →

∑
i Vi is a coproduct.

We use direct limits in the most basic sense. Let

V0 ⊂ V1 ⊂ V2 ⊂ . . .

be an increasing sequence of spaces. We say a sequence of maps Vi → W is coherent if
two agree where they’re both defined. We way V together with a coherent sequence of maps
Vi → V satisfies the universal property of a directed limit if for any coherent sequence of
maps Vi → W there is a unique map V → W making the diagrams commute

V W

Vi

∃!

and we call V a directed limit). This defines filtered limits uniquely up to unique isomor-
phism.

One observes that the union V = ∪iVi of an increasing sequence of spaces with the
inclusion maps Vi → V is a direct limit.

Given two sequences of increasing spaces Ui and Vi we may view their tensor products
Ui⊗Vi as an increasing sequence of subspaces of U ⊗V . One checks that ∪iUi⊗Vi = U ⊗V ,
thus U ⊗ V is a direct limit of U0 ⊗ V0 ⊂ U1 ⊗ V1 ⊂ U2 ⊗ V2 ⊂ . . ..

Free Objects Given a set X, we define K〈X〉 to be the vector space with basis X. This
space comes with an obvious inclusion map X → K〈X〉.

One observes this construction is functorial, and that K〈X〉 with the inclusion map
satisfy the following universal property: given a map of sets X → V to a vector space V ,
there is a unique linear map K〈X〉 → W extending this map

K〈X〉 V

X

One observes that K〈X〉 ⊗K〈Y 〉 with the obvious map X × Y → K〈X〉 ⊗K〈Y 〉 satisfies
the same property, thus it is canonically identified with K〈X × Y 〉.
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There is a similar notion of increasing sequences and direct limits for sets. Let Xi be
an increasing sequence of sets with direct limit X with distinguished maps Xi → X. One
observes that the spaces K〈X0〉 ⊂ K〈X1〉 ⊂ K〈X2〉 ⊂ . . . for an increasing sequence of vector
spaces and that the space K〈X〉 together with the induced maps K〈Xi〉 → K〈X〉 is a direct
limit.

One notes further that given a sequence of coherent maps Xi → V to a vector space V ,
with limit X → V , the induced maps K〈Xi〉 → V have direct limit K〈X〉 → V which is the
induced map of X → V .

4.1.2 Graded Vector Spaces and Chain Complexes

By a graded vector space, denoted V , we mean a sequence of vector spaces with k-th
component V k, one for each k ∈ Z. We say a vector v in the k-th component has degree k
and denote this |v|.

By a map of graded vector spaces of degree k, denoted f : V → W , we mean a
sequence of maps fn : V n → W n+k. Thus a degree k map has degree k either sense, and we
denote this |f | = k.

We denote the vector space of degree k maps from V to W by Homk(V,W ). The maps of
all degrees from a graded vector space Hom(V,W ) called the Hom space of V and W , and
composition is performed componentwise (f ◦g)k = fk ◦gk and is thus associative. 1V means
the degree 0 map in Hom(V, V ) with identity map in each degree, and as the identity for
composition is called the unit (or identity map) on V . One observes that |f(v)| = |f |+ |v|
and |f ◦ g| = |f |+ |g|.

Sums, quotients, products, kernels, cokernels, subspaces, unions and so forth, are all
defined componentwise

(⊕αVα)k = ⊕α(V α)k (⊕αfα)k = ⊕α(fα)k

Tensor products and products, on the other hand, are convolved

(V ⊗W )k = ⊕i+j=kV i ⊗W j

and maps of tensor products are designed with the Koszul sign .convention built in [see: ??],
that is,

(f ⊗ g)(v ⊗ w) := (−1)|g||v|f(v)⊗ g(w)

It follows that
(f ⊗ g) ◦ (f ′ ⊗ g′) = (−1)|g||f

′|(f ◦ f ′)⊗ (g ◦ g′)

One observes that that |v ⊗ w| = |v|+ |w| and |f ⊗ g| = |f |+ |g|
One observes that quotient, tensor products and direct limits of graded vector spaces

satisfy similar universal property as for non-graded vector spaces.
Thus, since composition is bilinear, we may regard it as a map

− ◦ − : Hom(V,W )⊗Hom(U, V )→ Hom(U,W )

which one computes is degree zero.
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One checks, V ′ ⊂ V and W ′ ⊂ W , there is a canonical isomorphism

(V ⊗W )/(V ′ ⊗W + V ⊗W ′) ∼= (V/V ′)⊗ (W/W ′)

We take K to denote the graded vector space with the ground field in degree zero and
zeros elsewhere.

There are obvious isomorphisms

αU,V,W : U ⊗ (V ⊗W )→ (U ⊗ V )⊗W

λV : K⊗ V → V

ρV : V ⊗K→ V

along with a twisting map
τV,W : V ⊗W → V ⊗W

τV,W (v ⊗ w) = (−1)|v||w|w ⊗ v

which one checks are natural in each slot
Given finitely many graded chain complexes V1, . . . , Vn, and any two ways of tensoring

them together (in pairs, in any order) X1 and X2, any two isomorphism X1 → X2 built out
⊗, α, λ, ρ and τ are equal. By the argument of Saunders Mac Lane [5], it is enough to check
this on a few diagrams. Thus we may mostly dispense with parenthesis, keeping in mind
natural isomorphisms are involved. This is called being a symmetric monoidal category.

There is an evident notion of higher tensor products, which for n multiples of a single
graded vector space V we denote V ⊗n. The zero tensor power and empty tensor product are
taken to mean the graded vector space K. The zero tensor power of a map is the identity
map on K. One observes that

|v1 ⊗ . . .⊗ vn| = |v1|+ . . .+ |vn|

Proposition 4.1. There is a left action of the symmetric group Sn on the n-fold tensor
product V n defined by

σ(v1 ⊗ . . .⊗ vn) = ±vσ(1) ⊗ . . .⊗ vσ(n)

whose sign is determined by the Koszul sign convention.

Proof. Let the transpositions (i, i+ 1) act by

1⊗ . . .⊗ τV,V ⊗ . . .⊗ 1

with τV,V in the i-th slot and apply the remark above. The Koszul sign convention is encoded
by τ .

This left action turns into a right action on Hom(V n, V ) by letting

fσ = f ◦ σ

There are similar notions of graded sets, with component-wise unions, intersections, and
so forth, and convolved products.
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We may restrict to the category of chain complexes with degree zero maps. These have
coproducts, which for a set of graded vector spaces Vi is given by the sum

∑
i Vi with inclusion

maps Vi →
∑

i Vi.
Given a graded set X, we define K〈X〉 to be the graded vector space generated by

Xk in its k-th component K〈X〉k = K〈Xk〉. One observes that it satisfies an analogous
free property as for vector spaces with the obvious map X → K〈X〉. One observes that
K〈X〉 ⊗ K〈X〉 with the obvious choice of map X × Y → K〈X〉 satisfies the free property,
thus K〈X〉⊗K〈X〉 is canonically identified with K〈X×Y 〉. We call K〈X〉 the free graded
vector space generated by X

One notes there are analogous notions of limits for graded sets and graded vector space
and so the analogous facts hold. In particular, one notes that for increasing sequences Ui and
Vi of graded vector spaces, that Ui⊗Vi can be viewed as an increasing sequence of subspaces
of U ⊗ V with union all of U ⊗ V . Hence U ⊗ V , with inclusion maps Ui → Vi → U ⊗ V , is
a direct limit.

Chain Complexes A differential d on a graded vector space is a map of degree ±1 of
square zero. Those of positive degree are called cohomologically graded and those of negative
degree are called homologically graded. By default, our differentials are cohomologically
graded.

A chain complex is a graded vector space with a differential. Maps, sums, kernels,
unions, and so forth for chain complexes are the same as for graded vector spaces, only with
the addition of a differential. By chain map one means a degree zero map that commutes
with the differentiation.

The differential on the Hom space H(V,W ) is given by

∂Hom(V,W )(f) := dW ◦ f − (−1)|f |f ◦ dV

which we often write forgetting subscripts. One notes that a chain map is a cycle in the
corresponding Hom complex. One computes that ∂ is a derivation of composition, that is

∂(f ◦ g) = ∂(f) ◦ g + (−1)|f |f ◦ ∂(g)

This implies that composition is a chain map, thus a cycle in

Hom
(
Hom(V,W )⊗Hom(U, V ), Hom(U,W )

)
One notes that the usual notion of a derivation is the same as a multilinear chain map. Thus
we often call multilinear chain maps derivations.

The differential on sums, products, unions, subspaces, and so forth is componentwise

(
⊕

α dα)k =
⊕

α(dα)k

The differential the tensor products is more interesting; it’s given by

dV⊗W = dV ⊗ 1 + 1⊗ dW
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with the Koszul signs spilling out of the tensor product

dV⊗W (v ⊗ w) = dV (v)⊗ w + (−1)|w|v ⊗ dW (w)

To show this squares to zero, one notes

(1⊗ dW ) ◦ (dV ⊗ dV ) = −(dV ⊗ dW ) = −(dV ⊗ 1) ◦ (1⊗ dW )

The differential is defined analogously on higher tensor products.
We denote the chain complex K to be the graded vector space K with zero differential.
One observes that differentials commute with the natural isomorphisms α, λ, ρ, and τ .

We compute this for τ , since it isn’t obvious:

τV,W ◦ dV⊗W (v ⊗ w) = (−1)(|v|+1)|w|w ⊗ dV (v) + (−1)|v|(|w|+1)+|v|dW (w)⊗ v
= (−1)|v||w|(dV⊗W )w ⊗ v
= dW⊗V ◦ τV,W (v ⊗ w)

It follows that the differential commutes with the action of the permutation group on Sn on
V ⊗n and Hom(V ⊗n, V )

Thus just as for chain complexes, we can essentially dispense with parenthesis.
One checks various notions of quotients, unions, kernels, cokernels and direct limits extend

to chain complexes. If we restrict to using only degree zero maps of chain complexes, then
there are coproducts, which is the same as the coproduct for graded vector spaces, with the
addition of the sum differential.

We may regard graded vector spaces as chain complexes with zero differential. One calls
vectors in a chain complex chains or cochains depending on the degree of the differential.
We simply call everything chains, unless the context demands otherwise. Given a chain
v ∈ V with differential d we call dv the boundary of v. If the boundary of a chain is zero,
then we call the chain a cycle. Since differentials square to zero, boundaries are cycles.

One recalls that given a chain complex V we may form the graded vector space H(V ) :=
ker(d)/im(d), called the homology which we may regard as a chain complex with zero
differential. Given a cycle v, we denote its homology class [v]. One observes that maps
f : V → W which are cycles in the Hom complex induce maps on homology, which only
depend on their homology class. If two maps f ∈ Hom(W,V ) with zero boundary differ by
a boundary of some map s, that is ∂(s) = g − f , we say they’re chain homotopic. If f and
g are degree zero, ie chain maps, this implies the familiar ds+ sd = g − f .

[f ] : H(V ) → H(W )
[v] → [f(v)]

Since we’re working over a field, one recalls that there are natural isomorphisms

H(V )⊗H(W ) → H(V ⊗W )
[v]⊗ [w] 7→ [v ⊗ w]

H(Hom(W,V )) → Hom(H(W ), H(V ))
[f ] 7→

{
[w] 7→ [f(v)]

}
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(by the Kunneth Theorem). We say a chain map is a quasi-isomorphism if it induces an
isomorphism on homology. We say a chain complex V s contractible if its identity map
is homotopic to the identity map, meaning its identity map has the zero homology class of
Hom(V, V ), meaning it induces the zero map on homology, thus the space has zero homology.
We call a space with zero homology acyclic. One checks that a chain complex is acyclic if
and only if it is contractible.

There is an obvious notion of short exact sequence for chain complexes and maps of short
exact sequences. One recalls that given a short exact sequence of chain complexes

0→ U
f→ V

g→ W → 0

induces a long exact sequence of homology groups, which we don’t reproduce here, but we
note that if f (or g) is a quasi-isomorphism, then by the long exact sequence the U (or W )
is acyclic.

4.1.3 Sets of Graded Objects

We find it convenient to organize several graded vector spaces or chain complexes into a
sets indexed by some fixed set. In the presence of a set, a linear space means a set of chain
complexes or graded vector spaces indexed by that set. These form a category with sums,
unions, subspaces, kernels, images, quotients, Hom spaces, homology and so forth taken
componentwise. There is an analogous notion of sets of graded sets. We generally refer to
these simply as sets when the context is clear. We may form free linear spaces on them
componentwise. One checks there are direct limits, coproducts, and so forth.

4.2 Combination Magmas

Definition 4.1. We let O denote a set; we call it the set of operation types. In the
presence of a set of operation types, we define

C(O) := {(a1 . . . ana0
)|a1, . . . , an, a0 ∈ O, n = 0, 1, 2, . . .}

to be the set of combination operation types on operation types O.

Let f = (a1 . . . ana0
) be a type of combination operation on O. We call a1, . . . , an the inputs

or input types of f, and a0 the output or output type of f. We call the number of input
types of f its arity.

Let P = {P (a)|a ∈ O} be a set of chain complexes indexed by O. We define the space of
combination operations on P to be the set of vector spaces End(P ) := {End(P )(f)|f ∈
C(O)} indexed by C(O) where End(P )(a1 . . . ana0

) := Hom(P (a1) ⊗ . . . ⊗ P (an), P (a0)). If
n = 0, then this is simply End(P )(a0) := Hom(K, P (a0)). We denote its differential ∂. We
can make the same definition forgetting differentials.

Such spaces P will be spaces of operations later on. In the presence of a set O, we refer
to a chain complex P like above, as a space of operations (of types O).
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Let f and g be two combination operations of types F = (a1 . . . ama0
) and g = (b1 . . . bnb0

),
respectively. If the output b0 of g and the i-th input ai of f matched, then we could compose
g into the i-th slot of g to get a new operations

(f i◦ g) := f ◦ (1⊗ . . .⊗ g ⊗ . . .⊗ 1)

of type

F i◦ G := (a1 . . .⊗ ai−1b1 . . . bnaa+1 . . . am
a0

)

or we could permute the m inputs of f with a permutation σ in the m-th permutation group
Sm to get a new operation

fσ

of type

F σ := (
a
σ−1(1)

. . . a
σ−1(m)

a0
)

For each operation type a, there is also an identity operation

1a

of type

(aa)

Thus, given O we may consider all the expressions f i◦ g, fσ and 1a that make sense.
We consider linear spaces with these operations.

Definition 4.2. In the presence of a set O, a combination magma is a set of chain
complexes M := {M(f)|f ∈ C(O))} with distinguished chain maps, called composition, per-
mutation of inputs, and units, respectively,

[f i◦ g] : M(f)⊗M(g)→M(f i◦ g)

[f]σ : M(f)→M(fσ)

1a : K→M(aa)

for all expressions that make sense, and all a ∈ O, with no relations assumed. We denote its
differential D . There is an analogous definition without differentials. We say dg combination
magma to emphasize that there are differentials, or graded combination magma to emphasize
that there aren’t.

One observes that the operations being chain maps is equivalent to D being a derivation
of composition, commuting with permutation of inputs. We may treat 1a as a map, as above,
or as the element of M(aa) picked out by the unit in K. The map 1a is a chain map if and
only if the element 1a is a boundary.

Proposition 4.2. For any set P chain complexes indexed by O, the space of combination
operations on P with the distinguished operations of composition, permutation of inputs, and
units give it the structure of a combination magma.
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We may consider the category of combination magmas, with maps that preserve structure.
There are evident notions of subalgebras, kernels, ideals (closed under permutations and
compositions), differential ideals (ideals also closed under the differential), and quotients.
There is an evident notion of the ideal generated by a subset R, which we denote 〈R〉.

Definition 4.3. Let M is a combination magma with a direct sum decomposition M =
M (0) ⊕ M (1) ⊕ M (2) ⊕ . . .. If an element m is in some component, let w(m) denote the
number of that component.

We say the direct sum decomposition is a weight grading on M if

w(f i◦ g) = w(f) + w(g)

w(fσ) = w(f)

w(1a) = 0

when the expressions make sense. If M has a distinguished weight grading, we say it is
weight graded, and we call M (n) the weight n component. If M has a differential, then we
also assume that M preserves components, that is,

w(Df) = w(f)

If I is an ideal of a weight graded combination magma M , we say I respects the weight
grading on M if I(n) := I∩M (n) gives a direct sum decomposition I = I(0)⊕I(1)⊕I(2)⊕ . . ..
If I is a differential ideal, then we assume the differential preserves the components of I.

If R is a graded set of a weight graded combination magma M , we say R respects the weight graded on M
if R(n) := R ∩M (n) gives a partition R = R(0) tR(1) tR(2) t . . .. If we with to consider the
differential, then we assume it preserves the components of R.

Definition 4.4. Let s : M → M be a map of linear spaces with degree k. We say s is a
derivation (not necessarily of square zero) if it is a derivation of the operations on M , that
is

s(f i◦ g) = s(f) i◦ g + (−1)|s||f |f i◦ s(g)

s(fσ) = s(f)σ

s(1a) = 0

We say s respects the ideal I of M if I is closed under s, and we say s respects a
subset R of M if R is closed under s.

Proposition 4.3. Quotients by ideals satisfy the universal property of quotients. Kernels
are ideals. Analogous statements hold when there is a differential.

If a subset of a weight graded combination magma respects its weight grading, then so
does the ideal it generates. If an ideal of a weight graded combination magma respects its
weight grading, then the quotient has an induced weight grading.

If a subset is respects a derivation, then so does the ideal it generates. If an ideal respects
a derivation, then the derivation passes to the quotient.
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Proof. The quotient M/I of M by an ideal I satisfies the universal property of quotients for
linear spaces. The unit operations automatically pass to the quotient. The unary permuta-
tion operations pass to the quotient, because the ideal is preserved by permutation of inputs.
The binary operations pass to the quotient, because the space I ⊗M +M ⊗ I maps into the
quotient and because M/I ⊗M/I is canonically isomorphic to (M ⊗M)/(I ⊗M +M ⊗ I).
Kernels are ideals, because algebra maps commute with the operations. If there are differ-
entials, the kernel is a differential ideal, because it the algebra map is a chain map, and thus
commutes with the differential.

Suppose a subset R of a C respects the weight grading, then so does the linear space R1

it generates, in the obvious sense a linear subspace can respect the grading. Suppose we’ve
defined Rn that sits in 〈R〉 and respects the grading (as a linear subspace). Define Rn+1

to be the linear space generated by Rn, composites of Rn and C, composites of C and Rn

and the elements of Rn with their inputs permuted in all ways. This is clearly still in the
ideal 〈R〉. Since the operations preserve weight, the spaces from which Rn+1 is composed
also preserve weight. Thus so does Rn+1. We obtain an increasing sequence R1 ⊂ R2 ⊂ . . .
contained in 〈R〉. One observes that the direct limit of this sequence is an ideal in 〈R〉, thus
equal to 〈R〉. Since every element of 〈R〉 lies in some finite step Rn it can be written as a
sum of elements in 〈R〉 which lie in some weighted components of M . Thus 〈R〉 splits by
weight, and thus respects the weight grading on M .

If an ideal I respects the weight grading, then the quotient of M has an induced de-
composition (M/I)(k) := M (k)/I(k). Since weight is determined by the weight of any repre-
sentative, and the operations are computed on representatives, the operations preserve sum
weight. Thus the induced decomposition of M/I is a weight grading.

Suppose a subset R respects derivations. Then so does its the linear subspace R1 it
generates (in the obvious sense that a subspace can preserves a derivation). One constructs
the same increasing sequence as before, noting that each additional step is closed under
derivation. Since every element of the limit lies in a finite step, and the finite steps are
are closed under the derivation and contained in the limit, the limit is also closed under
derivations. Thus 〈R〉 respects derivations.

Suppose an ideal respects derivations. Then it induces a map on the quotient. One
checks the map on the quotient is a derivation, because we can compute on representatives.

The claim follows.

Definition 4.5. In the presence of a set O, we say a set of graded sets Y = {Y (f)|f ∈ C(O)}
indexed by C(O) is a combination magma if it has analogous operations to a combination
magma on a linear space, that is maps of sets, called composition, permutation of inputs and
units, respectively,

[f i◦ g] : Y (f)× Y (g)→ Y (f i◦ g)

[f]σ : Y (f)→ Y (fσ)

1a : {?} → Y (aa)

We may treat 1a as a map or element.

Definition 4.6. Let Y be a combination magma with partition Y = Y (0) t Y (1) t Y (2) t . . ..
Denote the partition number of an element y by w(y). We say the partition is a weight
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grading on Y if
w(x i◦ y) = w(x) + w(y)

w(yσ) = w(y)

w(1a) = 0

One observes that a partition on Y is equivalent data to a function Y → N (on the
elements of the elements of Y ). We say a function Y → N is a weight function if its
corresponding partition is a weight grading.

We say Y is weight graded if it has a distinguished weight grading or weight function.

Definition 4.7. Given a set X = {X(f)|f ∈ C(O)} of graded sets indexed by C(O) we
can form the set of all magmatic words in X by taking X and inductively adding in units,
composition, and permutations of current elements (putting them in appropriate components
and degrees), and then taking the direct limit, ie union WX . One observes that WX is
closed under composition, permutation, and units, thus is a combination magma. We call
WX the combination magma of words on X (and we give a more specific account of
the construction in a proof, below). There is a distinguished map X → WX given by the
inclusion.

The operations on WX pass to operations on the linear space K〈WX〉 generated by WX ,
giving it the structure of a combination magma. There is a distinguished map X → K〈WX〉
given by including. We will call K〉WX〉 the free combination magma generated by X
once we show it satisfies the free property.

Proposition 4.4. The combination magma WX of words on a set X (with its distinguished
map X → WX) satisfies the free property in the category of combination magmas on sets
indexed by C(O), and K〈WX〉 (with its distinguished map X → K〈WX〉) satisfies the free
property on X in the category of graded combination magmas.

Any map s : X → K〈WX〉 (possibly of non-zero degree) extends uniquely to a derivation
on K〈WX〉 (which doesn’t necessarily square to zero).

Any map w : X → N on extends uniquely to a weight grading on WX , and any weigh
grading on WX extends uniquely to a weight grading on K〈WX〉 in the sense that there is
a unique weigh grading on K〈WX〉 such that the weight of x ∈ X viewed as an element of
K〈WX〉 is determined by w.

Proof. Given a set X (of graded sets indexed by C(O)) and f ∈ X, let [[f ]] denote the type
of f in C(O). Recall that |f | denotes the degree of f . We define a formal composition to be
a triple (f, i, g) if there is an operation f i◦ g, and we denote the triple f i◦ g. We give it
degree |f i◦ g| := |f | + |g| and type [[f i◦ g]] := [[f ]] i◦ [[g]]. There are similar definitions of
formal permutations and formal units.

LetX1 := X be given. GivenXn we defineXn+1 to be the union of all formal compositions
and permutations of elements in Xn along with formal units. Thus we get an increasing
sequence X = X1 ⊂ X2 ⊂ . . . of sets. Let WX be the direct limit. Define compositions,
permutations and units on WX by formal composition, formal permutation of inputs and
formal units. This gives WX the structure of a magma, with inclusion map X → WX .

We show WX is free. Suppose Y is a combination magma, and φ : X = X1 → WX is a
map preserving degree and type. If we have f defined on Xn so it commutes with operations,
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then there is a unique way to extend it over Xn+1 to commute with operations. The direct
limit φ : WX → Y is map that commutes with operations on any finite step and it’s clearly
unique. Thus WX is free.

Form the space K〈WX〉 with its distinguished map X → K〈WX〉. Suppose M is a
combination magma (now a linear space). If we forget its linear structure, it is a combination
magma as sets. Thus there is unique an extension WX → M as combination magmas of
sets. This extends uniquely over K〈WX〉 → M to a linear map. This map commutes with
the combination operations on generators WX , thus it commutes overall, thus it is a map
of combination algebras. Any other map would have to agree on WX , thus would have to
agree. Thus the map WX →M is unique. And so K〈WX〉 with its distinguished map is free.

Suppose s : X → K〈WX〉 is a map of sets, which possibly changes degree. Supposing
we’ve extended s over Xn so it satisfies the identities of a derivation on the subspace K〈Xn〉.
Then there is a unique way to define it on Xn+1 so it satisfies the required identities on the
next subspace. Taking a direct limit, we get a derivation on K〈WX〉. Since its unique on
every extension, its unique.

Suppose w : X = X1 → N is given. Suppose we’ve extended it over Xn so it satisfies
the required identities on Xn−1 There is a unique way to extend w over Xn+1 so w satisfies
the required identities on elements in Xn. Taking the direct limit we get a function on
WX that satisfies the required identities on all finite steps, hence overall. Hence it is a
weight function, and it is obviously unique. This gives a weight decomposition on K〈WX〉
by K〈WX〉(k) := K〈W (k)

X 〉. Any weight decomposition on K〈WX〉 with the weight of elements
of X given by w, would induce a weight function on WX , thus would have to match the old
one.

The claim follows.

4.3 Combination Algebras

Let O be a set (which we call a set of operation types).
If P be a space of operations (of types O), its space of combination operations End(P )

is a space of operations of type C(O) and it has distinguished operations called composi-
tions, permutations of inputs and units. These operations live in the space of combination
operations on End(End(P )), where, if there is a differential on P , they are cycles. Let
G := {[f i◦ g], [f]σ, 1a} denote the set of these operations. We can form the free operadic
magma K〈WG〉 on G. Then for any space of operations P there is a distinguished map

K〈WG〉 → End(End(P ))

The operations on End(P ) satisfy relations, for example, composition is associative. If one
draws operations as rooted trees, one finds there are several relations, which we detail below.
These relations can all be expressed in terms of the operations on combination operations,
that is, they are in the kernel of the maps K〈WG〉 → End(End(P ) above.

In stead of working out what the relations are, it would be convenient to form the ideal
U(G) of elements which are relations for all choices of P , and define a combination algebra
to be a space with composition, permutation and unit operations which satisfy the relations
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in U(G). We don’t really need to know what they are. However, at a certain point below,
we will need a fact about this space of relations, which isn’t obvious at the time of writing.

The fact is roughly as follows. We would like to form magmas with certain weight
gradings and derivations, and we would like these to pass to the quotient by the ideal of
relations (determined by U(G)), which make the magma into a combination algebra. This
works if the ideal respects the weight grading or derivation on the magma, bu it is unknown
to the author that this is the case. So in lieu of forming U(G), we take a certain subset
R ⊂ U(G), which not only generates all apparent relations, but for which weight gradings
and derivations pass to the quotient.

Lemma 4.5. Let P be a space of operations, and End(P ) the magma of combination oper-
ations on P . Recall that this has compositions, permutations of inputs, and units

[f i◦ g](f⊗g)(v1⊗. . .⊗vn+m−1) := (f i◦ g)(v1⊗. . .⊗vn+m−1) := ±f(v1⊗. . .⊗vi−1⊗g(vi⊗. . .⊗vi+m−1)⊗vi+m⊗. . .⊗vn+m−1)

[f]σ(f)(v1 ⊗ vn) := f⊗σ(v1 ⊗ . . .⊗ vn) := ±f(vσ(1) ⊗ . . .⊗ vσ(n))

1f(f) := f

where f and g have n and m inputs, respectively, f ∈ P (f) and g ∈ P (g).
These operations satisfy relations R come from associativity of composition, group action

given by permutation of inputs, units of composition, and equivariance of composition with
respect to the group action.

If M is a combination magma with a weight grading grading (or derivation), then the
ideal I(R) of relations generated by the relations of R applied in all ways to elements of M
respects all weight gradings and derivations. If there is a differential, I(R) is a differential
ideal, and respects them weight gradings and derivations as a differential ideal.

Proof. The relations as are follows, where f g and h are combination operations in End(P )
of types f, g and h, respectively.

Associativity of Composition One observes there are two general of ways to compose
three combination operations: in serial and in parallel:

f
(
. . . g

(
. . . h(. . .) . . .

)
. . .
)

f
(
. . . g(. . .) . . . h(. . .) . . .

)
Each of these compositions can be done in two different orders, and the result obviously
doesn’t depend on the order.

Leaving the subscripts off the units 1a, because there is no ambiguity, we write associa-
tivity for serial composition

f i◦ (g j◦ h) =

= f ◦ (1⊗ . . .⊗
i

(g j◦ h) ⊗ . . .⊗ 1)

= f
(

1⊗ . . .⊗
i
g
(
1⊗ . . .⊗

j

h ⊗ . . .⊗ 1
)
⊗ 1⊗ . . .⊗ 1

)
=

= f ◦ (1⊗ . . .⊗
i
g ⊗ . . .⊗) ◦ (1⊗ . . .⊗

i+j−1

h ⊗ . . .⊗ 1)
= (f i◦ g) i+j−1◦ h
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and letting m be the arity of g, we write associativity for parallel composition

(f i◦ g) i+m−1◦ h =

= f ◦ (1⊗ . . .⊗
i
g ⊗ . . .⊗ 1) ◦ (1⊗ . . .⊗

i+m−1

h ⊗ . . .⊗ 1)

= (−1)|g||h|f ◦ (1⊗ . . .⊗
j

h ⊗ . . .⊗ 1) ◦ (1⊗ . . .⊗
i
g ⊗ . . .⊗ 1)

= (−1)|g||h|(f j◦ h) i◦ g

The relations can be expressed in U(G), as follows:

[f i◦ (g j◦ h)] ◦
(

1f ⊗ [g j◦ h]
)

= [(f i◦ g) i+j−1◦ h] ◦
(

[f j◦ g]⊗ 1h

)
[(f i◦ g) i+m−1◦ h] ◦

(
[f i◦ g]⊗ 1h

)
= [(f i◦ h) j◦ g] ◦

(
[f i◦ h]⊗ 1g

)
◦
(

1f ⊗ τg,h
)

when the compositions make sense.

Permutations Give Group Actions Permutation of inputs is a group action, that is

(fσ)τ = fστ

f id = f

Thus the operations satisfy the following relations in U(G):

[fσ]τ ◦ [f]σ = [f]στ

[f]idn = 1F

the permutations make sense.

Units are Units of Composition Because composing with the identity in a particular
slot doesn’t change a map, any map f of type f = (a1 . . . ana0

), satisfies

1a0 1◦ f = f

f i◦ 1ai = f

when the compositions make sense. We may write these relations as elements of U(G) as
follows

[f i◦ 1a] = 1f

[1a i◦ f] = 1f
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Permutations Act Equivariantly With Respect to Composition Suppose we per-
mute the inputs of the combination operations f and g with σ and τ and then compose
them

fσ i◦ gτ

One observes the same map may be achieved by plugging g into the σ(i)-th slot of f , and
then permuting the variables in some way determined by σ, τ and i. We call this permutation
σ i◦ τ and observe that is given by permuting the block of inputs corresponding to the inputs
of g in the σ(i)-th slot by τ , and then using σ to permute all of the inputs, with the block of
inputs of g treated as a single unit (one should draw trees to see what they are; it is useful
to let τ or σ be the identity permutation). Thus

(f σ(i)◦ g)σ i◦ τ = fσ i◦ gτ

This, too, gives a relation on the operations in U(G):

[fσ i◦ gτ ] ◦
(

[f]σ ⊗ [g]τ
)

= [f σ(i)◦ g]σ i◦ τ ◦ [f σ(i)◦ g]

Compatibility With the Differential The unit elements 1a ∈ End(V )(aa) are identity
maps, thus obviously chain maps, that is

D(1a) = 0

One observes this is equivalent to the assignment

K→ End
(
P
)
(aa)

beging a chain map. We note

f i◦ g = f ◦ (1a1 ⊗ . . .⊗
i
g ⊗ . . .⊗ 1an)

for some ak ∈ A. One uses that ∂ commutes with composition of functions and ∂(1a) = 0
to show that

D(f i◦ g) = D(f) i◦ g + (−1)|f |f i◦ D(g)

This is equivalent to saying the composition maps [f i◦ g] are chain maps.
Since the differential commutes with the action of permutation, the maps [f]σ are also

chain mappings.
For a more detailed discussion of these relations one can find them under the name

“colored operads”.
We let R be the set of all the relations above in U(G).
Given a magma M , we may form the ideal I(R) as follows: take all elements of M and

plug them in all possible ways that make sense to get a set of relators, that is all the elements
for all combination operations f , g and h that make sense:

f i◦ (g h◦ )− (f i◦ g) i+j−1◦ h

(f i◦ g) i+m−1◦ h−±(f j◦ h) i◦ g
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(mσ)τ −mστ

f − 1a 1◦ f

f − f i◦ 1a

fσ i◦ gτ − (f σ(i)◦ g)σ i◦ τ

and if there is a differential
D(1a)

D(f i◦ g)− (Df i◦ g ± f i◦ Dg)

D(fσ)− (Df)σ

One observes that all these relations respect weight gradings, and ignoring the relations
for a differential, that they respect derivations. The claim follows.

Definition 4.8. In the presence of a set O, a combination algebra is a combination
magma that satisfies the relations of Lemma 4.5, which we call the relations of a combi-
nation algebra.

We can make differential or non-differential versions, thus we say differential graded
combination algebras to emphasize there is a differential, or graded combination algebra to
emphasize there isn’t.

Thus by construction:

Corollary 4.6. If P is a space of operations, then the endomorphisms End(P ) with the
canonical operations form a combination algebra, which we call the combination algebra
of endomorphisms on P .

The category of combination algebras is simply the subcategory of combination magmas
which satisfy the relations of a combination algebra, with maps that preserves their structure,
in other words, the full subcategory. This category has the same notion of subalgebras
and ideals. One notes that quotients by an ideals automatically satisfy the relations of a
combination algebra, because the induced operations are computed on representatives, which
are assumed to to satisfy relations of a combination algebra. Weight gradings and derivations
on combination algebras are defined the same way as for magmas. One observes that direct
limits of combination algebras as combination magmas are again combination algebras, thus
combination algebras inherit direct limits.

Proposition 4.7. The facts in Proposition 4.3, which hold for combination magmas also
hold for combination magmas, as follows:

Quotients by ideals satisfy the universal property of quotients. Kernels are ideals. Anal-
ogous statements hold when there is a differential.

If a subset of a weight graded combination magma respects its weight grading, then so
does the ideal it generates. If an ideal of a weight graded combination magma respects its
weight grading, then the quotient has an induced weight grading.

If a subset is respects a derivation, then so does the ideal it generates. If an ideal respects
a derivation, then the derivation passes to the quotient.
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Proof. The proofs are virtually the same as for combination magmas.

Obviously, not ever thing passes perfectly. Free magmas definitely aren’t free as combi-
nation algebras.

Definition 4.9. Let M be a magma. Let I(R) be the ideal generated by relations of a
combination algebra applied in all ways to M , as in Lemma 4.5. We call I(R) the ideal of
relations of a combination algebra in M .

Given a set X = {X(f)|f ∈ C(O)} of graded sets indexed by C(O), we may form the
combination algebra K[X] := K〈WX〉/I(R). This has a obvious distinguished map X →
K[X]. We will call K[X] the free combination algebra on the set X once we have
shown it satisfies the free property in the category of graded combination algebras. We may
call X a set of free generators or free variables.

Proposition 4.8. The combination algebra K[X] with distinguished map X → K[X] satisfies
the free property in the category of graded combination algebras.

Any map s : X → K[X] of underlying sets of graded sets, possibly of non-zero degree
extends uniquely to a derivation on K[X] (which doesn’t necessarily square to zero).

If s1 and s2 are derivations, then their graded commutator

[s1, s2] := s1s2 − (−1)|s1||s2|s2s1

is a derivation. Thus if s is an derivation of odd degree, which is zero on generators, then
s2 = 0. If s has degree plus or minus one, then it is a differential.

Let f : C → C ′ be a map of graded combination algebras. Suppose C and C ′ have
derivations s and s′, respectively, which are of the same degree. If f commutes with the
derivations on a generating set, then it commutes with the derivations.

Any map w : X → N extends uniquely to a weight grading on K[X] in the sense that
there is a unique weight grading on K[X] such that the weight of the equivalence class of
x ∈ X is determined by W .

Proof. Given a map X → C combination algebra, there is unique map extending it to a map
of magmas K〈WX〉 → C. The ideal I(R) is automatically in the kernel, so the map factors
uniquely through K[X]. Another such map would give the same map on K〈WX〉 thus induce
the same map on K[X], thus the map is unique. Thus K[X] is free.

Let s : X → K[X] be a map of sets of graded sets of some, possibly nonzero, degree. If
it extends to a derivation, it extends uniquely by considering the images of spaces K〈Xn〉
in K[X] and exhausting K[X] much as we did in Proposition 4.8. For existence, lift s to a
map s̃ : X → K〈WX〉. By the analogous proposition for combination magmas, s̃ extends
uniquely to a derivation on K〈WX〉, and since the ideal I(R) respects all derivations it
induces a derivation on the quotient K[X] which extends s by construction.

Suppose s1 and s2 are derivations of the same degree. Let [s1, s2] : s1s2 − (−1)|s1||s2|s2s1.
Clearly [s1, s2](1a) = 0 and [s1, s2](fσ) = ([s1, s2](f))σ. We compute it is a derivation of
composition in the case both s1 and s2 have odd degree, because that is the case we care
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about, and the signs are few. The general case is similar

[s1, s2](f i◦ g) = s1s2(f i◦ g) + s2s1(f i◦ g)

= s1

(
(s2f) i◦ g + (−1)|f |f i◦ (s2g)

)
+s2

(
(s1f) i◦ g + (−1)|f |f i◦ (s1g)

)
= (s1s2f) i◦ g − (−1)|f |(s2f) i◦ (s1g)

(−1)|f |(s1f) i◦ (s2g) + (f i◦ (s1s2g)
(s2s1f) i◦ g − (−1)|f |(s1f) i◦ (s2g)
(−1)|f |(s2f) i◦ (s1g) + f i◦ (s2s1g)

= (s1s2 + s2s1)(f) i◦ g + f i◦ (s1s2 + s2s1)(g)
= [s1, s2](f) i◦ g + f i◦ [s1, s2](g)

The general case is similar. Thus commutators of derivations are derivations.
If s is an odd derivation, then s2 = 1

2
[s, s] is a derivation, too. If a derivation is zero on

generators, then it is zero, thus if s2 = 0 on its entire domain.
Let C and C ′ be graded combination algebras with derivations s and s′ of the same

degree. Suppose f : C → C ′ is a map of graded combination algebras, and that fs = s′f on
a generating set. One observes that it also commutes on products, units and compositions.
So it commutes on the space of compositions of generators, generators with permuted inputs,
and units, too. Doing this repeatedly generates in increasing sequence of subspace on which
it commutes. Thus it commutes on the limit, which is the entire algebra.

Let w : X → N be a function. If there is a weight grading on K[X] such that the weight
of classes of elements of X is determined by w, then it is unique, because then the weights of
classes of elements in WX are completely determined, and K[X] is generated by the classes
of WX .

By Proposition 4.4 this extends to a unique weight grading on K〈X〉 such that the weight
of elements of X is determined by w. The kernel I(R) respects weigh gradings, thus the
weight grading induces a weight grading on the quotient K[X]. Weight is computed by any
member of any class, thus the weight of classes of X in K[X] are given by w. Thus the
desired weight grading exists and is unique.

The claims follows.

We wish to define coproducts of combination algebras. The following notion is convenient

Definition 4.10. Let C be a combination algebra. We call the map

K[C]→ C

induced by the identity map on C the tautological map, and we denote the kernel I(C),
which is an ideal, and we call it the tautological ideal. Thus is a canonical isomorphism
K[C]/I(C) ∼= C.

If C has a differential, then, the differential extends to a differential on K[C] (by Proposi-
tion 4.8), thus K[C] is a differential graded combination algebra map. Since d is a derivation
on each and the map K[C]→ C commutes with the differentials on generators, it commutes
with the differential on all of K[C]. Thus the map is a chain map. Thus the ideal is a
differential ideal, and the isomorphism is an isomorphism of dg combination algebras.
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Let C1 and C2 be combination algebras Then there are canonical maps K[C2] → K[C1 t
C2]← K[C2]. One observes there induced maps K[C2]/I(C1)→ K[C1tC2]/〈I(C1)tI(C2)〉 ←
K[C2]/I(C2), and that if there are differentials, then the maps commute with the differentials
(〈I(C1)tI(C2)〉 is a differential ideal, because its generators are closed under d). We denote
C1∧C2 := K[C1tC2]/〈I(C1tI(C2))〉. Thus there are distinguished maps C1 → C1∧C2 ← C2.
We will call C1 ∧C2 the coproduct of C1 and C2, once we show it satisfies the appropriate
universal property.

Let C be a combination algebra and X a set of free generators. We denote C[X] :=
C ∧K[X] and call it the free extension of C by X. There are distinguished maps from C, X
and K[X] to C[X].

Proposition 4.9. Let C1 and C2 be combination algebras (with or without differentials).
Then C1 ∧ C2 with the distinguished maps C1 → C1 ∧ C2 ← C2 satisfies the universal
property of coproducts. The distinguished maps are inclusions, so we may treat C1 and C2

as subalgebras.
Let C be a combination algebra and X a set of free generators. Let C ′ be a combination

algebra. Given any map of sets (preserving degree) X → C ′ and map of combination algebras
C → C ′, there is a unique extension over C[X], that is, there is unique map C[X] → C ′

such that the diagram commutes

C[X]

C X

C ′

∃!

Proof. That C1∧C2 satisfies the universal property of coproducts, follows from applying the
universal property of quotients. One observe the distinguished maps are inclusions by using
properties of linear spaces. One uses the universal free property and universal property of
coproducts to show that free extensions satisfy their universal property.

Lemma 4.10. Let C be a dg combination algebra and X a set of generators. A map d : X →
C (of the same degree as the differential on C) determines a differential on C[X] extending
the differential on C if d2 = 0 on X.

Let C → C ′ be a map of dg combination algebras, assume C[X] has differential extending
the differential on C. Suppose further that we have a map f : C[X]→ C ′ of graded combina-
tion algebras algebras (ignoring differentials). Then f is a map of dg combination algebras
(ie commutes with the differential) if and only if fd = df on X.

Given a function w : X → N there is a unique weight grading om C[X] such that C has
weight zero, and elements of X have weight determined by w.

Proof. We can assemble the map d and the differential on C into a single map d : C tX →
C t X, which one observes has square zero. This induces a differential on K[C t X] by
proposition 4.8. The differential on C induces a differential on K[C]. There is an evident
map K[C]→ K[C tX], which one notes commutes with the differential. Quotienting the by
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the differential ideals I(C) and 〈I(C)〉, respectively, we get a map of dg combination algebras
C → C[X], which is the distinguished maps C → C[X]. Thinking of the isomorphic image
of C as a subalgebra of C, it follows that the differential on C[X] extends the differential on
C.

If a map commutes with the differential on generators (which ours does), then it commutes
with the differential. The claim follows.

Suppose w : X → N is a weight function. extend it over C to be zero. Then K[CtX] has
a unique weight grading satisfying the desired properties. The image of K[C] has weight zero,
thus I(C) respects the weight grading on K[C tX], thus the grading passes to C[X]. The
weight of any element is given by the weigh on representatives, whose weights are completely
determined by the weights on X and C. Thus the weight grading is unique.

The claim follows.

Proposition 4.11. The homology H(C) of a dg combination algebra C has an induced
combination algebra structure. A map of dg combination algebras C → C ′ induces a map of
combination algebras H(C)→ H(C ′).

Proof. Let C be a combination algebra with homology H(C). Since the operations on C
(composition, permutation of inputs, units) are chain maps, they induce maps on homol-
ogy. Since homology commutes with tensor products (up to unique isomorphism), we get
operations

[f i◦ g] : H(C(f))⊗H(C(g)) ∼= H(C(f)⊗ C(g))→ H(C(f i◦ g))

[f]σ : H(C(f))→ H(C(fσ))

1a : K→ H(C)(aa) = H(C(aa))

If we think of 1a as an element of H(Ca
a), then 1a is a cycle, thus 1a ∈ H(C(aa)). One

observes that the conversion between the element/map notions of a unit commutes with
homology.

Using the natural isomorphisms, one sees that these operations satisfy the relations of a
combination algebra, because they do on homological representatives.

Let f : C → C ′ be a map of combination algebras, with induced map [φ] : H(C)→ H(C ′)
on homology. The induced map [φ] commutes with the induced operations on H(C) and
H(C ′), because it is computed on representatives, and it commutes on those.

4.4 Algebras of Operations over A Combination Alge-

bra

Fix a combination algebra C (on some set of operation types O).
Let P be a space of operations. Recall that the endomorphisms End(P ) of combination

operations on P is a combination algebra.

Definition 4.11. Let C be a combination algebra and P a space of operations. An action
of C on P means a map C → End(P ) of combination algebras. We say P is an algebra
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over C if there is a distinguished action of C on P . We may make this definition with or
without differentials. We emphasize there is or isn’t a differential by saying graded C algebra
or differential graded C algebra.

If we fix a combination algebra C, we may consider the category of algebras over C, with
morphisms given by maps of degree zero (or chain maps) which commute with action of C.
These have evident notions of subalgebras and ideals (one need only check I is closed under
combination operations with at least one input), differential ideals, ideals generated by a
subset, and quotient algebras. One observes that kernels are ideals, and that the universal
property of quotients holds.

There are analogous notions of weight grading as splittings such that operations preserve
the total weight sum, that is

w(c(p1 ⊗ . . .⊗ cn)) = w(p1) + . . .+ w(pn)

for any operations p1, . . . , pn in P an algebra of operations over a combination algebra C,
and c an operation in C. If c has no inputs, then it is tantamount to an operation in P ,
and we require if have weight zero, w(c) = 0. If there is a differential, we require it preserve
weight, too.

We say s is a derivation on an graded algebra of operations P over a combination algebra
C if the graded commutator [s, c], defined as follows, vanishes for every operation C,

[s, c](p1 ⊗ . . .⊗ pn) := sc(p1 ⊗ . . .⊗ pn)− (−1)|s||c|
∑
i

±c(p1 ⊗ . . .⊗ spi ⊗ . . .⊗ pn)

If a combination operation c has not inputs, this means that s(c) = 0. This is the same as
how we required that a derivation on a combination algebra satisfy s(1a) = 0.

Remark 4.1. One notes that if the differential on C is non-zero, then the differential on a
dgC algebra P need not act by derivation of the combination operations, since, for example

∂c(p1 ⊗ p2)− (−1)|c|(c(∂p1 ⊗ p2)± c(p1 ⊗ ∂p2)) = D(c)(p1 ⊗ p2)

One observes that the boundary D(c) of a combination operation measures, exactly, the failure
of d to be a derivation. Because of this, we concern ourselves mainly with combination
algebras with zero differential.

In other words:

Proposition 4.12. Let C be a dg combination algebra and P a dgC algebra. The differential
on P is a derivation of all combination operations if and only if the differential on C is zero.

There are analogous notions of what it means for an ideal to respect a derivation or
weight grading.

Proposition 4.13. The same kinds kinds of facts which hold for combination magmas and
combination algebras in Propositions 4.3 and 4.7 also hold for algebras over combination
algebras, namely:
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Quotients by ideals satisfy the universal property of quotients. Kernels are ideals. Anal-
ogous statements hold when there is a differential.

If a subset of a weight graded combination magma repsects its weight grading, then so
does the ideal it generates. If an ideal of a weight graded combination magma repsects its
weight grading, then the quotient has an induced weight grading.

If a subset is respects a derivation, then so does the ideal it generates. If an ideal respects
a derivation, then the derivation passes to the quotient.

Proof. The proofs are virtually the same.

As one expects, we have to work some to get free algebras, derivations and induced weight
gradings, but due to the following proposition, we don’t have to work very hard.

Definition 4.12. Let C be a combination algebra. One notes that the zero-to-one operations
on C form a space of operations. We denote this space C0 := {C0(a) := C(a)|a ∈ O}, and
we call it the combination algebra’s (underlying) space of operations.

One observes that an n-to-1 combination operation c ∈ C(a1 . . . ana0
) determines an n-to-1

operation on C0 as follows:

µ : C → End(C0)

where given p1, . . . , pn in C0(a1), . . . , C0(an), respectively,

µc(p1 ⊗ . . .⊗ pn) := (. . . (c 1◦ p1) 1◦ p2 . . .) 1◦ pn

If P is a space of operations, then we may regard End(P )0 = Hom(K, P ) simply as the
space P , to which it is canonically isomorphic.

Proposition 4.14. Let C be a combination algebra. The map µ : C → End(C0) gives C0 a
C algebra structure, that is µ is a map of combination algebras. If there is a differential on
C, then it gives C0 a dgC algebra structure.

Proof. One should draw the operations as rooted trees to come up with the following com-
putations.

Let c be in C and p1, . . . pn in C0. We compute:([
D, µc

]
− µDc

)
(p1 ⊗ . . .⊗ pn) =(

Dµc −±µCD − µDc
)

(p1 ⊗ . . .⊗ pn) =

= Dµc(p1 ⊗ . . .⊗ pn)−±µcD(p1 ⊗ . . .⊗ pn)− µDc(p1 ⊗ . . .⊗ pn)

= D
(
µc(p1 ⊗ . . .⊗ pn)

)
−
∑

i

(
µc(p1 ⊗ . . .⊗Dpi ⊗ . . .⊗ pn

)
− µDc(p1 ⊗ . . .⊗ pn)

= D
(

(. . . (c 1◦ p1) 1◦ p2 . . .) 1◦ pn
)

−
(

(. . . (Dc 1◦ p1) 1◦ p2 . . .) 1◦ pn ± (. . . (c 1◦ Dp1) 1◦ p2 . . .) 1◦ pn ± . . .
)

= 0

Thus µ is a chain map if there is a differential on C.
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Let c and c′ be elements of C and p1, . . . , pn be elements of C0. We compute:

µc i◦ c′(c1 ⊗ . . .⊗ cn) =

=
(((

c i◦ c′
)

1◦ p1

)
. . .
)

1◦ pn =

= ±
((((

c 1◦ p1

)
i−1◦ c′

)
1◦ p2

)
. . .
)

1◦ pn
... move first i-1 inputs before q

= ±
(((((

c 1◦ p1

)
. . .
)

1◦ pi−1

)
1◦ c′

)
1◦ pi

)
1◦ . . .

)
1◦ pn

= ±
(((((

c 1◦ p1

)
. . .
)

1◦ pi−1

)
1◦
(
c′ 1◦ pi

))
1◦ . . .

)
1◦ pn

... use associativity to compose the k inputs of q first

= ±
(((((

c 1◦ p1

)
. . .
)

1◦ pi−1

)
1◦
(((

c′ 1◦ pi
)
. . .
)

1◦ pi−1+k

)
1◦ . . .

)
1◦ pn

= ±
(((((

c 1◦ p1

)
. . .
)

1◦ pi−1

)
1◦ µc′(pi ⊗ . . .⊗ pi−1+k)

)
1◦ . . .

)
1◦ pn

= ±µc
(
p1 ⊗ . . .⊗ pi−1 ⊗ µc′(pi ⊗ . . .⊗ pi−1+k)⊗ pi+k ⊗ . . .⊗ pn

)
=

(
µc i◦ µc′

)
(p1 ⊗ . . .⊗ pn)

Thus µc i◦ c′ = µc i◦ µc′ .

It’s enough to check µ commutes with permutations for the permutations (1k), since
these generate all permutations.

First we note that if c in C p1 and q and p are in C0, then

(
c 1◦ p

)
k◦ q = ±

(
c k+1◦ q) 1◦ p

and

(
c(1k)

k◦ p
)

1◦ q = ±
(
c 1◦ p

)(1k) 1◦ id
1◦ q

= ±
(
c 1◦ p

)((k−1)12...(k−2))

1◦ q

= ±
(
c 1◦ p

)
k−1◦ q

)id
=

(
±
(
c 1◦ p

)
k−1◦ q

= ±
(
c k◦ q

)
1◦ p
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Now we compute:

µc(1k)(p1 ⊗ . . .⊗ pn) =

=
(((((

c(1k)
1◦ p1

)
. . .
)

1◦ pk−1

)
1◦ pk

)
. . .
)

1◦ pn
= ±

(((((
c(1k)

1◦ p1

)
. . .
)

2◦ pk
)

1◦ pk−1

)
. . .
)

1◦ pn
... push pk all the way to the beginning using the first computation above

= ±
(((

c(1k)
k◦ pk

)
1◦ p1

)
. . .
)

1◦ pn
using the second computation above

= ±
(((

c k◦ p1

)
1◦ pk

)
. . .
)

1◦ pn
... push p1 all the way to the k-th using first computation above

= ±
(((((

c 1◦ pk
)
. . .
)

2◦ p1

)
1◦ pk−1

)
. . .
)

1◦ pn
= ±

(((((
c 1◦ pk

)
. . .
)

1◦ pk−1

)
1◦ p1

)
. . .
)

1◦ pn
= ±µc(pk ⊗ p2 ⊗ . . .⊗ pk−1 ⊗ p1 ⊗ pk+1 ⊗ . . .⊗ pn)
= µc

(1k)(p1 ⊗ . . .⊗ pn)

Thus µc(1k) = µc
(1k). It follows that µ commutes with all permutations.

Finally, we check that µ preserves the units. Let p be in C0(a). We compute:

µ1a(p) = 1a 1◦ p = 1a(p)

Thus µ sends units to units.
The claim follows.

Proposition 4.14 allows us to transplant certain tools from combination algebras into
algebras of operations.

Definition 4.13. In the presence of a set O, we refer to the a set of graded sets indexed by
O as a set of operations, free generators, etc.

We may regard a set or space of operations as a set or space of combination operations
by treating them as the 0-to-1 operations (opposite of how we did it in Definition 4.12).

In the presence of a combination algebra C, and given a set X of operations, we define
K[X] to be the space of zero-to-one operations of C[X], that is, K[X] := C[X]0. We will call
K[X] the free graded C algebra on X once we know it satisfies the free property. There
is an evident distinguished map X → K[X].

Proposition 4.15. The following facts hold for algebras over a combination algebra, which
are analogous to those in Proposition 4.8:

Fix a combination algebra C.
Then the graded C algebra K[X] with its distinguished map X → K[X] satisfies the free

property in the category of graded C algebras.
Let K[X] be a free graded C algebra. A map s : X → K[X] (of any degree) extends

uniquely to a derivation on K[X].
Any map s : X → K[X] of underlying sets (of any degree) extends uniquely to a derivation

on K[X] (which doesn’t necessarily square to zero).
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If s1 and s2 are derivations, then their graded commutator

[s1, s2] := s1s2 − (−1)|s1||s2|s2s1

is a derivation. Thus if s is an derivation of odd degree, which is zero on generators, then
s2 = 0. If s has degree plus or minus one, then it is a differential.

Let f : P → P ′ be a map of graded combination algebras. Suppose P and P ′ have
derivations s and s′, respectively, which are of the same degree. If f commutes with the
derivations on a generating set, then it commutes with the derivations.

Any map w : X → N extends uniquely to a weight grading on K[X] in the sense that
there is a unique weight grading on K[X] such that the weight of the equivalence class of
x ∈ X is determined by W .

Proof. One recalls that C[X] with the distinguished map X → C[X] satisfies the free prop-
erty in the category of graded combination algebras.

Suppose P is an algebra over C, and and we’re given a map X → P of sets of operations.
Regarding P as the space of operations underlying End(P ), we get a map X → End(P ),
and since P is C algebra, we have a map C → End(P ). Thus by universal property of C[X],
we get a map of combination algebras C[X]→ End(P ). Restricting this to their underlying
spaces of operations gives our map K[X]→ Pm where K[X] is given the action of C[X] as
its space of operations, restricted to an action of C. We check it is a map of C algebras, and
the unique one extending the original map X → P . Denote the map C[X]→ End(P ) by f .
We simply have to check that f(c(c1 ⊗ . . . ⊗ cn)) = c(f(c1)⊗ . . . ⊗ f(cn)). But this follows
immediately from the the definition of c(c1 ⊗ . . .⊗ cn) in definition 4.12 and the fact f is a
map of combination algebras.

Suppose there were another map, K[X] → P extending the map X → P . This extends
uniquely to a map C[X] → End(P ) of combination algebras which extend the action of C
and the original map X → P . Thus the map is f . Thus its restriction to a map K[X]→ P
is f . Thus f = g.

One proves the remaining claims using the same trick.

We define the tautological map and tautological ideal just as we did for combination
algebras. One recalls to show the tautological map is a chain map in the context of combi-
nation algebras, we used that the differentials are derivations. In the context of an algebra
of operations P over a dg combination algebra, the differentials are derivations if and only
if the combination algebra has zero differential (see Lemma 4.12 and preceding remark).

Definition 4.14. Let C be a combination algebra.
Given a C algebra P , we define the tautological map and tautological ideal analogously to

Definition 4.10. If C has the zero differential, and P is a dgP algebra, the tautological ideal
is a differential ideal.

We define coproducts and free extensions of C algebras analogously. If C has zero differ-
ential, then the ideals defining them are differential ideals, thus the coproducts have differ-
entials.

Proposition 4.16. Ignoring the differential, coproducts satisfy the property of coproducts,
and free extensions satisfy an analogous property to free extensions of combination algebras,
as in Proposition 4.9.
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If the combination algebra has zero differential, then there are coproducts of differential
algebras of operations.

Proof. The same proof works.

The following is a key lemma, which we use repeatedly in the other chapters.

Lemma 4.17. Let C be a dg combination algebra with zero differential.
Let P be a dgC algebra, and let and X a set of generators. A map d : X → P (of

the same degree as the differential on P ) determines a differential on P [X] extending the
differential on P if d2 = 0 on X.

Let P → Q be a map of dg combination algebras, and assume P [X] has differential
extending the differential on P . Suppose we have a map f : P [X]→ Q of graded C algebras
(ignoring differentials). Then f is a map of dgC algebras (ie commutes with the differential)
if and only if fd = df on X.

Given a function w : X → N there is a unique weight grading on P [X] such that P has
weight zero, and elements of X have weight determined by w.

Proof. The proof is virtually identical to the proof of the analogous lemma for combination
algebras (Lemma 4.10)

Proposition 4.18. Let C be a combination dg combination algebra, and P a dgC algebra.
There is an induced algebra structure on the homology H(P ) over the induced combination

algebra H(C).
A map P → Q of dgC algebras, induces a map H(P )→ H(Q) of H(C) algebras.

Proof. One observes there is a canonical isomorphism H(End(P )) ∼= End(H(P )). By
the same analogous proposition for combination algebras (Proposition 4.11), There map
C → End(P ) induces a combination algebra map on homology H(C) → H(End(P ))) ∼=
End(H(P )), thus inducing an H(C) algebra structure on H(P ).

If P → Q is a map of dgP algebras, then there is an induced map of linear spaces
H(P ) → H(Q). This map commutes with the operations induced by H(C), because they
are commuted on representatives, and they commute on representatives.
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