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Abstract of the Dissertation

On geometric and motivic realizations of
variations of Hodge structure over Hermitian

symmetric domains

by

Zheng Zhang

Doctor of Philosophy

in

Mathematics

Stony Brook University

2014

Based on the work of Gross [1] and Sheng and Zuo [2], Friedman
and Laza [3] show that over every irreducible Hermitian symmetric
domain there exists a canonical variation of real Hodge structure
of Calabi-Yau type. The first part of the thesis concerns motivic
realizations of the canonical Calabi-Yau variations over irreducible
Hermitian symmetric domains of tube type. In particular, we show
that certain rational descents of the canonical variations of Calabi-
Yau type over irreducible tube domains of type A can be realized
as sub-variations of Hodge structure of certain variations which are
naturally associated to families of abelian varieties of Weil type.
The situations for tube domains of type DH are also discussed.

The second part of the thesis aims to understand the exceptional
isomorphism between the Hermitian symmetric domains of type
II4 and of type IV6 geometrically. We shall give some geometric
constructions relating both of the domains to quaternionic covers
of genus three curves.
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Chapter 1

Introduction

Hodge theory is a very powerful tool for studying moduli spaces. Specifically,
by associating to an algebraic variety the Hodge structure on its cohomol-
ogy we obtain a period map from a moduli space to a certain period domain;
we ask whether this period map is injective, and what is the image. For
principally polarized abelian varieties and K3 surfaces, the period map is bi-
rational. In general, there is a highly non-trivial obstruction for period maps
to be dominant, namely Griffiths transversality. For period domains, Griffiths
transversality is trivial only in the case of principally polarized abelian varieties
or K3 surfaces. More generally, one can consider Mumford-Tate subdomains
of period domains. Following [4], a Mumford-Tate domain is defined as the
orbit of a fixed Hodge structure by the group of real points of the correspond-
ing Mumford-Tate group; Mumford-Tate domains are natural objects for the
study of global variations of Hodge structure. Deligne has showed that if a
Mumford-Tate domain is unconstrained (i.e. Griffiths transversality is triv-
ial) then it must be a Hermitian symmetric domain. Furthermore, Friedman
and Laza [3] have noticed that if the periods satisfy certain algebraic relations
then the corresponding Mumford-Tate subdomain is a Hermitian symmetric
domain (c.f. [3] Theorem 1.4).

In the situation that the image of a period map is a Hermitian symmetric
domain D, the moduli space is typically birational to an arithmetic quotient
Γ\D of D, and one can obtain a lot of geometric information on the moduli
space using the rich structures of Γ\D. For example, we can compare various
compactifications of the moduli spaces with the natural compactifications of
Γ\D (e.g. Baily-Borel compactification, Toroidal compactification). Also,
using the automorphic forms associated to Γ\D it can be shown that the
moduli spaces Ag of g-dimensional principally polarized abelian varieties and
the moduli spaces Fd of degree d polarized K3 surfaces are of general type for
g, d� 0.
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It is thus very interesting to study unconstrained Mumford-Tate subdo-
mains (which must be Hermitian symmetric domains) of period domains, or
equivalently, the induced variations of Hodge structures which will be called
Hermitian variations of Hodge structure (see also Definition 2.1 of [3]). Satake
[5] and Deligne [6] (especially Table 1.3.9) classify Hermitian Q-variations of
Hodge structure which give families of abelian varieties. Based on the earlier
work of Gross [1] and Sheng and Zuo [2], Friedman and Laza [3] complete
the classification of Hermitian Q-variations of Hodge structure of Calabi-Yau
(CY) type (c.f. [3] Definition 2.3) which remain irreducible over R.

The question we are interested in this thesis is how to attach moduli mean-
ings to certain arithmetic quotients of unconstrained Mumford-Tate subdo-
mains Γ\D. Beyond the classical cases such as abelian varieties and lattice-
polarized K3 surfaces, there are only a small number of such examples (i.e.
the corresponding moduli spaces are birational to Γ\D) to our knowledge: n
points on P1 with n ≤ 12 ([7]), algebraic curves of genus 3 or 4 ([8]), cubic sur-
faces ([9]), cubic threefolds ([10]) and some examples of Calabi-Yau varieties
([11], [12], [13], [14], [15]).

Between the study of abstract Hermitian variations and the question on
their geometric realizations, there is an immediate problem: does the abstract
Hermitian variations of Hodge structure (specify Q-descents for them first if
necessary) occur in algebraic geometry as sub-variations of rational Hodge
structure of those coming from families of algebraic varieties. We shall re-
fer this as motivic realizations of the abstract Hermitian variations of Hodge
structure.

The first part of this thesis concerns motivic realizations of certain Her-
mitian R-variations of Hodge structure of CY type. More specifically, over
every irreducible Hermitian symmetric domain there is a canonical Hermitian
R-variation of Hodge structure of CY type (see [3] Theorem 2.22). Following
Corollary 2.29 of op. cit., we say a canonical variation is primitive if it is of CY
threefold type and the associated domain is of tube type. There are four prim-
itive Hermitian variations of Hodge structure of CY type, which are over the
(A3, α3) domain, the (C3, α3) domain, the (DH

6 , α6) domain and the (E7, α7)
domain respectively (recall that irreducible Hermitian symmetric domains are
classified by pairs (∆, ν) consisting of a connected Dynkin diagram ∆ and
a special root ν (see for example [6] 1.2.6), we use such pairs to denote the
isomorphic classes of irreducible Hermitian symmetric domains). The guiding
question is then whether these primitive CY variations are realizable geomet-
rically, or from the immediate point of view, motivically. (N.B. the (C3, α3)
case is classical and well-known, see Section 9 of [1].)

We shall give a motivic realization for the canonical CY variations of real
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Hodge structure over Hermitian symmetric domains of type (A2n−1, αn) using
abelian varieties of Weil type (n ∈ Z+), which can also be viewed as a gen-
eralization of the previous work done by Lombardo [16] and Cacciatori and
Filippini [17]. Also, we will discuss the situations for the (DH

2n, α2n) cases
(n ≥ 2). For the (E7, α7) case, the question is still wildly open; one big issue
is that there is no family of abelian varieties over the (E7, α7) domain.

In a different but related direction, we explore the geometric realizations
for the exceptional isomorphisms between Hermitian symmetric domains of
type (DH

4 , α4) and of type (DR
4 , α1) (in the standard Siegel’s notation, the first

domain is of type II4 and the second is of type IV6). There are in total five such
exceptional isomorphisms (see for example [18] Page 20), and among them the
one we consider here involves domains of the highest dimension. This will be
the second part of the thesis.

The idea is to interpret both domains as moduli spaces of some common
geometric objects. On one hand, the domain of type II4 parameterizes abelian
8-folds with totally definite quaternionic multiplication (c.f. [19] or Section
9.5 of [20]); on the other hand, it is well-known that type IV6 domains pa-
rameterizes certain lattice-polarized K3 surfaces. Now the question is to find a
moduli space which can be associated to both domains. We considerM3,Q, the
moduli space of quaternionic covers of genus three smooth projective curves.
According to the earlier work by van Geemen and Verra [21], a generic abelian
8-fold with totally definite quaternionic multiplication is isogenous to a cer-
tain Prym variety determined by a quaternionic cover of a genus three curve.
When the genus three curve C is non-hyperelliptic (i.e. a smooth plane quar-
tic), we prove that a quaternionic cover corresponds (up to finite choices) to
a syzygetic tetrad of bitangent lines of C which can be obtained (in 10 ways)
from any pair of bitangents. We then construct a family of K3 surfaces by
taking double covers of P2 branched over a plane quartic together with two
bitangent lines, and show that they are parameterized by a certain arithmetic
quotient of the type IV6 domain.
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Chapter 2

Variations of Hodge structure
over Hermitian symmetric
domains

2.1 Hermitian symmetric domains

2.1.1 Hermitian symmetric spaces and their automor-
phisms

Hermitian symmetric spaces

Let us start with the definition of Hermitian symmetric spaces. Recall that
a Hermitian manifold is a pair (M, g) consisting of a complex manifold M
together with a Hermitian metric g on M .

Definition 2.1.1. A Hermitian manifold (M, g) is symmetric if

(1) (M, g) is homogeneous. That is, the holomorphic isometry group Is(M, g)
acts transitively on M .

(2) For any point p ∈M , there exists an involution sp (i.e. sp is a holomor-
phic isometry and s2

p = id) such that p is an isolated fixed point of sp.
(Such an involution sp is called a symmetry at p.)

A connected symmetric Hermitian manifold is called a Hermitian symmetric
space.

If (M, g) is homogeneous, then to check Condition (2) it suffices to con-
struct a symmetry sp at some point p of M .
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Also, the automorphism group Is(M, g) consists of holomorphic isometries
of M ; if we denote the underlying smooth manifold of M by M∞, then

Is(M, g) = Is(M∞, g) ∩ Hol(M)

(intersection inside Aut(M∞); Is(M∞, g) is the group of isometries of (M∞, g)
as a Rimannian manifold, and Hol(M) is the group of automorphisms of M
as a complex manifold). We shall take a closer look at Is(M, g) later because
it will play an important role in classifying Hermitian symmetric spaces.

If there is no ambiguity, we shall simply use M to denote the Hermitian
manifold (M, g).

Example 2.1.2. Here are three basic examples of Hermitian symmetric spaces.

(a) The complex upper half plane H1.

(b) The projective line P1 (or the Riemann sphere endowed with the restric-
tion of the standard metric on R3).

(c) Any quotient C/Λ of C by a discrete additive subgroup Λ ⊂ C (endowed
with the natural complex structure and Hermitian metric inherited from
C).

Let us work out the example of upper half plane H1 and leave the others
as exercises. It is easy to see that H1, endowed with the metric dxdy

y2
, is a

Hermitian manifold. The natural action of SL2(R) on H1, given by(
a b
c d

)
z :=

az + b

cz + d
,

identifies SL2(R)/{±I} with the group Is(H1) of automorphisms of H1. Since
for any x+ iy ∈ H1,

x+ iy =

( √
y x/

√
y

0 1/
√
y

)
i,

H1 is homogeneous. The isomorphism z 7→ −1
z

is an involution at the point
i ∈ H1. Because H1 is also connected, it is a Hermitian symmetric space.

These examples are different from each other in several aspects (compact-
ness, curvature, whether simply connected, etc.). In fact, each of them repre-
sents a different type of Hermitian symmetric spaces.

Definition 2.1.3. Let M be a Hermitian symmetric space.

(1) M is said to be of Euclidean type if it is isomorphic to Cn/Λ for some
discrete additive subgroup Λ ⊂ Cn.
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(2) M is said to be irreducible if it is not Euclidean and can not be written
as a product of two Hermitian symmetric spaces of lower dimensions.

(3) M is said to be of compact type (resp. noncompact type) if it is the
product of compact (resp. noncompact) irreducible Hermitian symmetric
spaces. Moreover, Hermitian symmetric spaces of noncompact type are
also called Hermitian symmetric domains.

Every Hermitian symmetric space can be decomposed uniquely into a prod-
uct of Hermitian symmetric spaces of these three types (c.f. Chapter VIII of
[22], especially Proposition 4.4, Theorem 4.6 and Proposition 5.5).

Theorem 2.1.4 (Decomposition Theorem). Every Hermitian symmetric space
M decomposes uniquely as

M = M0 ×M− ×M+,

where M0 is a Euclidean Hermitian symmetric space and M− (resp. M+) is
a Hermitian symmetric space of compact type (resp. of noncompact type).
Moreover, M− (resp. M+) is simply connected and decomposes uniquely as
a product of compact (resp. noncompact) irreducible Hermitian symmetric
spaces.

We shall be especially interested in Hermitian symmetric domains. As a
general property, every Hermitian symmetric domain can be embedded into
some Cn as a bounded domain (via the Harish-Chandra embeddings). Con-
versely, every bounded domain D ⊂ Cn has a canonical Hermitian metric
(called the Bergman metric) which makes D a Hermitian symmetric domain.
For instance, the complex upper half plane H1 can also be realized as the unit
ball D1 ⊂ C.

Automorphism groups of Hermitian symmetric domains

Let (D, g) be a Hermitian symmetric domain. Endowed with the compact-
open topology, the group Is(D∞, g) of isometries has a natural structure of
(real) Lie group. Being a closed subgroup of Is(D∞, g), the group Is(D, g)
is also a Lie group. Let us denote by Is(D, g)+ (resp. Is(D∞, g)+, Hol(D)+)
the connected component of Is(D, g) (resp. Is(D∞, g), Hol(D)) containing the
identity.

Proposition 2.1.5. Let (D, g) be a Hermitian symmetric domain. The inclu-
sions

Is(D∞, g) ⊃ Is(D, g) ⊂ Hol(D)
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gives equalities
Is(D∞, g)+ = Is(D, g)+ = Hol(D)+.

Proof. See Lemma 4.3 of [22] and Proposition 1.6 of [23].

Following Chapter IV Theorem 2.5 and Theorem 3.3 of [22], we can recover
the smooth structure of D as a quotient Lie group of Is(D, g)+ by the stabilizer
of a certain point.

Theorem 2.1.6. Notations as above.

(1) Is(D, g)+ is a adjoint (i.e. semisimple with trivial center) Lie group.

(2) For any point p ∈ D, the subgroup Kp of Is(D, g)+ fixing p is compact.

(3) The map
Is(D, g)+/Kp → D, gKp 7→ g · p

is an Is(D, g)+-equivariant diffeomorphism. In particular, Is(D, g)+ (and
hence Hol(D)+ or Is(D∞, g)+) acts transitively on D.

In particular, every irreducible Hermitian symmetric domain is diffeomor-
phic to H/K for a unique pair (H,K) (obtained as above) with H a connected
noncompact simple adjoint Lie group and K a maximal connected compact
Lie group (c.f. Chapter VIII Section 6 of [22]). Conversely, given such a pair
(H,K) we can easily get a homogenous smooth manifold H/K. The natural
question is how to endow H/K with a complex structure and a compatible
Hermitian metric so that it is a Hermitian symmetric domain.

We should point out that one can figure out the answer in terms of such
pairs (H,K) and accordingly classify the corresponding irreducible Hermitian
symmetric domains (see for example Section 2.1 of [18] and references therein).
However, here we shall answer the question from the viewpoint of Shimura
data. Specifically, we shall replace the Lie group H by an algebraic group G,
replace cosets of K by certain homomorphisms u : U1 → G from the circle
group U1 to G, and then answer the question in terms of the new pairs (G, u).

To conclude this subsection (and as an initial step to produce a Shimura
datum), we discuss how to associate a R-algebraic group G to the real Lie
group Hol(D)+ in such a way that G(R)+ = Hol(D)+. The superscript + in
G(R)+denotes the neutral connected component relative to the real topology
(v.s. the Zariski topology). We shall follow [24] for the terminologies on
algebraic groups, and also refer the readers to it for the related background
materials. For example, we say an algebraic group is simple if it is non-
commutative and has no proper normal algebraic subgroups, while almost
simple if it is non-commutative and has no proper normal connected algebraic
subgroup (N.B. an almost simple algebraic group can have finite center).

7



Proposition 2.1.7. Let (D, g) be a Hermitian symmetric domain, and let
h = Lie(Hol(D)+). There is a unique connected adjoint real algebraic subgroup
G of GL(h) such that (inside GL(h))

G(R)+ = Hol(D)+.

Moreover, G(R)+ = G(R) ∩ Hol(D) (inside GL(h)); therefore G(R)+ is the
stabilizer in G(R) of D.

Proof. See [23] Proposition 1.7.

2.1.2 Classification of Hermitian symmetric domains

Consider the circle group U1 = {z ∈ C | |z| = 1}. Motivated by the following
fact, one can think of a point of D as a homomorphism U1 → G.

Theorem 2.1.8. Let D be Hermitian symmetric domain. For each p ∈ D,
there exists a unique homomorphism up : U1 → Hol(D)+ such that up(z) fixes
p and acts on TpD as multiplication by z.

Proof. See Theorem 1.9 of [23].

Remark 2.1.9. Using the uniqueness of up one can easily see that Hol(D)+

acts on the set of up’s via conjugation. Specifically, given two different points
p 6= p′ we choose f ∈ Hol(D)+ with f(p) = p′, then f ◦ up(z) ◦ f−1 (z ∈ U1)
satisfies the conditions in Theorem 2.1.8 for p′, and so up′ = f ◦ up ◦ f−1.

Example 2.1.10. Let p = i ∈ H1. In Example 2.1.2 we have seen that
Hol(H1) = PSL2(R). The associated real algebraic group (c.f. Proposi-
tion 2.1.7) is (PGL2)R: PGL2(R)+ = PSL2(R). (N.B. the group PSL2 is
not an algebraic group. )

To define ui : U1 → PSL2(R) we first consider the following homomorphism

hi : U1 → SL2(R), z = a+ ib 7→
(

a b
−b a

)
.

It is easy to verify that hi(z) fixes i. Since

d

dw

(
aw + b

−bw + a

)∣∣∣∣
w=i

=
a2 + b2

(a− ib)2
=
z

z̄
= z2,

hi(z) acts on the tangent space TiH1 as multiplication by z2. So for z ∈ U1,
we choose a square root

√
z ∈ U1 and set ui(z) = hi(

√
z). The homomorphism

ui : U1 → PSL2(R) = SL2(R)/± I is independent of the choice of
√
z because

8



hi(−1) = −I. By construction ui(z) fixes i and acts on the tangent space TiH1

as multiplication by z.

Since G(R)+ (= Hol(D)+) acting transitively on D, set-theoretically we
can view D as the G(R)+-conjugacy class of up : U1 → G(R). (We will see
that up is an algebraic homomorphism later). Conversely, given an abstract
pair (G, u : U1 → G) with G a real adjoint algebraic group and u an algebraic
homomorphism we want to ask the following questions.

Question 2.1.11. For a pair (G, u) as above, we letD be theG(R)+-conjugacy
class of u. Denote by Ku the subgroup of G(R)+ fixing u. There is a bijection
G(R)+/Ku → D and so the space D has a natural smooth structure.

(1) Under what conditions can D be given a nice complex structure (or a
Hermitian structure)? Under what additional conditions is D a Hermi-
tian symmetric space?

(2) Under what conditions is Ku compact?

(3) Under what conditions is D a Hermitian symmetric domain (i.e. of
noncompact type)?

To answer these questions, let us first study those pairs (G, u) coming from
Hermitian symmetric domains.

Representation of U1

Let T be an algebraic torus defined over a field k, and let K be a Galois
extension of k splitting T . The character group X∗(T ) is defined by X∗(T ) =
Hom(TK ,Gm). If r is the rank of T , then X∗(T ) is a free abelian group of
rank r which comes equipped with an action of Gal(K/k). In general, to give
a representation ρ of T on a k-vector space V amounts to giving an X∗(T )-
grading VK =

⊕
χ∈X∗(T ) Vχ on VK := V ⊗k K with the property that

σ(Vχ) = Vσχ, all σ ∈ Gal(K/k), χ ∈ X∗(T ).

Here Vχ is the K-subspace of VK on which T (K) acts through χ:

Vχ = {v ∈ VK | ρ(t)(v) = χ(t) · v, ∀ t ∈ T (K)}.

For instance, we can regard U1 as a real algebraic torus. As a R-algebraic
group, the K-valued point (with K a R-algebra) of U1 is

U1(K) =

{(
a b
−b a

)
∈M2×2(K)

∣∣∣∣ a2 + b2 = 1

}
.

9



In particular, U1(R) is the circle group and U1(C) can be identified with C∗
through

(
a b
−b a

)
7→ a+ ib, conversely z 7→

 1
2
(z + 1

z
) 1

2i
(z − 1

z
)

− 1
2i

(z − 1
z
) 1

2
(z + 1

z
)

 .

Noting that X∗(U1) ∼= Z and complex conjugation acts on X∗(U1) as mul-
tiplication by −1, we obtain the following proposition.

Proposition 2.1.12. Consider a representation ρ of U1 on a R-vector space
V . Then VC =

⊕
n∈Z V

n
C with the property that V n

C = V −nC , where V n
C = {v ∈

VC | ρ(z)(v) = zn · v, ∀z ∈ C∗}. Moreover, if V is irreducible, then it must be
isomorphic to one of the following types.

(a) V ∼= R with U1 acting trivially (so VC = V 0
C ).

(b) V ∼= R2 with z = x + iy acting as

(
x −y
y x

)n
for some n > 0 (so

VC = V n
C ⊕ V −nC ).

In particular, every real representation of U1 is a direct sum of representations
of these types.

Remark 2.1.13. Let V be a R-representation of U1 and write VC =
⊕

n∈Z V
n
C

as above. Because V 0
C = V 0

C , the weight space V 0
C is defined over R; in other

words, the complexification the real subspace V 0 of V defined by V ∩ V 0
C is

V 0
C : V 0 ⊗R C = V 0

C . The natural homomorphism V/V 0 → VC/
⊕

n≤0 V
n
C
∼=⊕

n>0 V
n
C is a R-linear isomorphism.

The representations of U1 have the same description no matter we regard it
as a Lie group or an algebraic group, and so every homomorphism U1 → GL(V )
of Lie groups is algebraic. In particular, the homomorphism up is algebraic
for any p ∈ D. Let Kp be the subgroup of G(R)+ fixing p. By Theorem 2.1.8,
up(z) acts on the R-vector space

Lie(G)/Lie(Kp) ∼= TpD

as multiplication by z, and it acts on Lie(Kp) trivially. Suppose TpD ∼= Ck and
identify it with R2k by (a1 + ib1, · · · , ak + ibk) 7→ (a1, b1, · · · , ak, bk), then it is
easy to write down the matrix of multiplication by z = x + iy and conclude
that TpD (as a real representation of U1) splits into a direct sum of R2’s as in
the Part (b) of the previous proposition with n = 1.
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Accordingly, we can determine the representation Ad ◦ up : U1 → G →
GL(Lie(G)) (which is the induced action of up(z) on TpD). It splits into a
direct sum of 1-dimensional real vector spaces (as in Part (a) of Proposi-
tion 2.1.12) and 2-dimensional spaces (as in Part (b) with n = 1). Taking the
complexification of the representation Lie(G), we obtain the following propo-
sition.

Proposition 2.1.14. Notations as above. Only the characters z, 1 and z−1

occur in the representation of U1 on Lie(G)C defined through up.

Cartan involutions

Let G be a connected algebraic group defined over R, and let g 7→ ḡ denote
complex conjugation on G(C).

Definition 2.1.15. An involution of G is said to be Cartan if the group

G(θ)(R) := {g ∈ G(C) | g = θ(ḡ)}

is compact.

Example 2.1.16. Let G = SL2, and let θ be the conjugation by

(
0 1
−1 0

)
.

Since

θ

((
a b
c d

))
=

(
0 1
−1 0

)
·
(
a b
c d

)
·
(

0 1
−1 0

)−1

=

(
d̄ −c̄
−b̄ ā

)
,

we have

SL
(θ)
2 (R) =

{(
a b
c d

)
∈ SL2(C)

∣∣∣∣d = ā, c = −b̄
}

= SU2(R).

Clearly, the group SU2(R) is compact, and hence θ is a Cartan involution for
SL2.

Theorem 2.1.17. A connected R-algebraic group G has a Cartan involution
if and only if it is reductive, in which case any two Cartan involutions are
conjugate by an element of G(R).

Proof. See Chapter I Theorem 4.2 and Corollary 4.3 of [25].

Example 2.1.18. Let G be a connected R-algebraic group.

(a) The identity map is a Cartan involution if and only if G(R) is compact.
Moreover, it is the only Cartan involution of G.
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(b) Let G = GL(V ) with V a real vector space of dimension n. Fix a ba-
sis of V , then G has an involution given by θ : M 7→ (M t)−1. On
G(C) = GLn(C), M = θ(M̄) if and only if MM̄ t = I (i.e. M ∈ U(n)).
Thus θ is a Cartan involution. Note that different choices of bases give
different Cartan involutions, and the previous theorem says that all Car-
tan involutions of G arise in this way.

(c) (Chapter I Corollary 4.4 of [25]) Let G ↪→ GL(V ) be a faithful represen-
tation. Then G is reductive if and only if it is stable under g 7→ gt for a
suitable choice of a basis for V , in which case the restriction of g 7→ (gt)−1

to G is a Cartan involution. Furthermore, all Cartan involutions of G
arise in this way from the choices of a basis of V .

(d) Let θ be an involution of G. Then there is a unique real form G(θ) of GC
such that complex conjugation on G(θ)(C) is g 7→ θ(ḡ). So the Cartan
involutions of G correspond to the compact forms of GC.

Now let us go back to Hermitian symmetric domains. Let D be a Hermitian
symmetric domain. As before, G is the associated real adjoint algebraic group
as in Proposition 2.1.7, and up : U1 → G is an algebraic homomorphism
attached to a point p ∈ D.

Proposition 2.1.19. The conjugation by up(−1) is a Cartan involution of G.

Proof. Let sp be a symmetry at p. Denote by Inn(sp) the conjugation of G by
sp. Inn(sp) is an involution because s2

p = id. According to Section V.2 of [22],
the real form of GC defined by the involution Inn(sp) (c.f. Example 2.1.18 (d))
is that associated to the compact dual of the symmetric space. As a result, a
symmetry at a point of a symmetric space gives a Cartan involution of G if
and only if the space is of noncompact type. In particular, Inn(sp) is Cartan.
On the other hand, both up(−1) and sp fix p and acts as multiplication by
(−1) on TpD, and hence up(−1) = sp (c.f. Proposition 1.14 of [23], which
also implies the uniqueness of symmetries at a point of a Hermitian symmetric
domain.)

Note that Example 2.1.16 is cooked up in this way.

Classification of Hermitian symmetric domains in terms of real groups

We will classify (pointed) Hermitian symmetric domains in this section. Let
D be a Hermitian symmetric domain. We have already proven part of the
following theorem.

12



Theorem 2.1.20. Let G be the associated adjoint real algebraic group of D.
The homomorphism up : U1 → G attached to a point p ∈ D satisfies the
following properties:

(a) only the character z, 1 and z−1 occur in the representation of U1 on
Lie(G)C defined by up;

(b) The conjugation of G by up(−1) is a Cartan involution;

(c) up(−1) does not projects to 1 in any simple factor of G.

Proof. See Proposition 2.1.14 and 2.1.19 for Part (a) and (b). Suppose up(−1)
projects to 1 for some simple factor G1 (which corresponds to a noncom-
pact irreducible factor of D, see Theorem 2.1.4), then the Cartan involution
Inn(up(−1)) is the identity map on G1. But by Example 2.1.18 (a), this implies
that G1(R) is compact, which is a contradiction.

The properties (a), (b), (c) in Theorem 2.1.20 turns out to be an answer
to Question 2.1.11.

Theorem 2.1.21. Let G be a real adjoint algebraic group, and let u : U1 → G
be a homomorphism satisfying (a), (b) and (c) of Theorem 2.1.20. Then the
set D of conjugates of u by elements of G(R)+ has a natural structure of a
Hermitian symmetric domain such that G(R)+ = Hol(D)+ and u(−1) is the
symmetry at u (regarded as a point of D).

Proof. (Sketch) Let Ku be the subgroup of G(R)+ fixing u (i.e. the centralizer
of u). By (b), θ := Ad(u(−1)) is a Cartan involution for G. So G(θ)(R) =
{g ∈ G(C) | g = u(−1) · ḡ · u(−1)−1} is compact. Since Ku ⊂ G(R)+, ḡ = g
for any g ∈ Ku, and so Ku ⊂ G(θ)(R). As Ku is closed, it is also compact.
The natural bijection D ∼= (G(R)+/Ku) · u endows D with the structure of a
smooth (homogeneous) manifold.

With this structure, the (real) tangent space at u is TuD = Lie(G)/Lie(Ku).
Note that Lie(G) a real representation of U1 via Ad ◦ u. Using the notations
in Proposition 2.1.12, (a) gives that Lie(G)C = Lie(G)−1

C ⊕Lie(G)0
C⊕Lie(G)1

C.
Clearly, Ku = Lie(G)0

C ∩ Lie(G). Using the natural isomorphism

Lie(G)/Lie(Ku)→ Lie(G)C/Lie(G)0
C ⊕ Lie(G)−1

C
∼= Lie(G)1

C,

the tangent space TuD can be identified with Lie(G)1
C, the complex vector

space of Lie(G)C on which u(z) acts as multiplication by z. This endows
TpD with a C-vector space structure. (In particular, the corresponding almost
complex structure J is u(i).) Since D is homogenous, this induces a structure
of an almost complex manifold on D, which is integrable (c.f. [26] 8.7.9).
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The action of Ku on D induces an action of it on TuD. As Ku is compact,
there is a Ku-invariant positive definite form on TuD (c.f. Proposition 1.18
of [23]), which is compatible with the complex structure J of TuD because
J = u(i) ∈ Ku. Now use the homogeneity of D to move the bilinear form
to each tangent space, which will make D into a Hermitian manifold. It is
not difficult to see that u(−1) is the symmetric at u and D is a Hermitian
symmetric space.

Finally, D is a Hermitian symmetric domain because of (b) and (c). The
proof is quite similar with that of Theorem 2.1.20.

Remark 2.1.22. As we saw in the proof of Theorem 2.1.21, the condition (b)
guarantees that Ku is compact. If further assuming (a) holds, then one can
endow D with a structure of Hermitian symmetric space. The space D is a
Hermitian symmetric domain because of (b) and (c).

As a corollary, we can classify Hermitian symmetric domains in terms of
such pairs.

Corollary 2.1.23. There is a natural one-to-one correspondence between iso-
morphism classes of pointed Hermitian symmetric domains and pairs (G, u)
consisting of a real adjoint algebraic group G and a non-trivial homomorphism
u : U1 → G satisfying (a), (b), (c) in Theorem 2.1.20.

Classification of Hermitian symmetric domains in terms of Dynkin
diagrams

Let us now focus on irreducible Hermitian symmetric domains. The irre-
ducibility of the domain implies that the associated adjoint algebraic group is
a simple algebraic group. Let G be a simple adjoint group over R, and let u
be a homomorphism U1 → G satisfying (a) and (b) of Theorem 2.1.20 (N.B.
the condition (c) then holds trivially).

Lemma 2.1.24. Let GC be the scalar extension of G from R to C, and µ =
uC : Gm → GC. Then

(1) GC is also simple;

(2) Only the characters z, 1, z−1 occur in the action of Ad ◦ µ : Gm →
Lie(GC).

Proof. See Page 21 of [23] or Page 478 of [27] for Part (1). Part (2) follows
from (a) of Theorem 2.1.20.

Proposition 2.1.25. The map (G, u) 7→ (GC, uC) defines a bijection between
the sets of isomorphism classes of pairs consisting of
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(1) a simple adjoint algebraic group over R and a conjugacy class of u :
U1 → G satisfying (a) and (b) in Theorem 2.1.20, and

(2) a simple adjoint algebraic group over C and a conjugacy class of cochar-
acters satisfying (2) of Lemma 2.1.24.

Proof. See Proposition 1.24 of [23].

Example 2.1.26. Let µ be a cocharacter of (PGL2)C. Let θ be the conjugation
of PGL2(C) by (

0 1
−1 0

)
.

The same computation as in Example 2.1.16 shows that the involution θ̄,
defined by g 7→ θ(ḡ), is complex conjugation on the compact form PGU2 of
(PGL2)C. Consider another involution on PGL2(C) given by g 7→ µ(−1)◦θ̄(g)◦
µ(−1)−1. By Example 2.1.18 (d), there is a real form H of (PGL2)C such that
complex conjugation on H(C) = PGL2(C) is the involution as above. Also
define u := µ|U1 which takes value in H(R). As µ(−1)2 = id, the conjugation
by u(−1) is an involution of H. By construction, it is a Cartan involution. In
this way, we obtain a pair (H, u) as in (1) of Proposition 2.1.25.

In particular, if µ is the scalar extension of ui which is defined in Example
2.1.10, then

µ(−1) =

(
0 1
−1 0

)
.

As µ(−1) ◦ θ̄(g) ◦ µ(−1)−1 = ḡ, the corresponding real form H of (PGL2)C is
(PGL2)R. Also, it is clear that u = ui.

Let GC be a simple algebraic group. We choose a maximal torus T , and let
X∗(T ) = Hom(T,Gm) (resp. X∗(T ) = Hom(Gm, T )) be the character (resp.
cocharacter) group. Note that there is a natural pairing 〈−,−〉 : X∗(T ) ×
X∗(T ) → End(Gm) ∼= Z between X∗(T ) and X∗(T ) (see Page 335 of [24]).
Choose a set of simple roots (αi)i∈I . The nodes of the Dynkin diagram of
(GC, T ) are also indexed by I. Recall that highest root is the unique root
α̃ =

∑
i∈I niαi such that, for any other root

∑
i∈I miαi, ni ≥ mi. We say that

an root αi (or the corresponding node) is special if ni = 1 in the expression of
α̃.

Theorem 2.1.27. The isomorphism classes of irreducible Hermitian symmet-
ric domains are classified by the special nodes on connected Dynkin diagrams.

Proof. Notations as above. By Theorem 2.1.21 and Proposition 2.1.25, it
suffices to construct a bijection between the conjugacy classes of µ : Gm → GC
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satisfying (2) of Lemma 2.1.24, and special nodes of the Dynkin diagram of
GC(C). Since all maximal tori are conjugate, we can assume that µ is in
the cocharacter group X∗(T ) ⊂ X∗(GC) of T . Moreover, there is a unique
representative µ such that 〈αi, µ〉 ≥ 0 for all i ∈ I because the Weyl group
acts transitively and freely on the Weyl chambers. Now (2) of Lemma 2.1.24
is equivalent to 〈α, µ〉 ∈ {−1, 0, 1} for all roots α. Since µ is non-trivial, not
all values can be 0, so there must be a (unique) simple root αi such that
〈αi, µ〉 = 1, which is in fact a special root (otherwise 〈α̃, µ〉 > 1). The other
direction easily follows from the fact that 〈−,−〉 : X∗(T ) × X∗(T ) → Z is a
perfect pairing.

The special roots of connected Dynkin diagrams are listed in the following
table.

Type α̃ Special root
An α1 + · · ·+ αn α1, · · · , αn
Bn α1 + 2α2 + · · ·+ 2αn α1

Cn 2α1 + · · ·+ 2αn−1 + αn αn
Dn α1 + 2α2 + · · ·+ 2αn−2 + αn−1 + αn α1, αn−1, αn
E6 α1 + 2α2 + 2α3 + 3α4 + 2α5 + α6 α1,α6

E7 2α1 + 2α2 + 3α3 + 4α4 + 3α5 + 2α6 + α7 α7

E8, F4, G2 none

Table 2.1: Special roots of connected Dynkin diagrams.

2.2 Hermitian symmetric domains and Hodge

structures

Let D be a Hermitian symmetric domain. In this section, we describe how
to use the associated pair (G, u) (c.f. Proposition 2.1.7 and Theorem 2.1.8)
to construct variations of Hodge structure over D. See [4] Chapters I, II, III
and [23] Chapter 2 for the background of Hodge structures and variations of
Hodge structures.

Given a pair (G, u) as in Theorem 2.1.20, we have seen in Theorem 2.1.21
that the G(R)+-conjugacy class of u has a natural structure of a Hermitian
symmetric domain. Here we would like to consider a slightly more general
situation. Let S = ResC/RGm be the Deligne torus. We consider the following
pairs (G, h) where G is a reductive (e.g. Page 16 of [24]) algebraic group
over R and h : S → G is an algebraic homomorphism. We denote by X the
conjugacy class of h by elements of G(R) (not G(R)+). Note that one can
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produce such a pair from a Hermitian symmetric domain D. Specifically, we
set G to be the adjoint algebraic group G in Proposition 2.1.7 and define h
by h(z) = u(z/z̄) with u = up (c.f. Theorem 2.1.8) for some p ∈ D (See also
Example 2.1.10). In this case, D will be a connected component of X, the
G(R)-conjugacy class of h. (c.f. Proposition 4.9 of [23].)

Let Zh be the centralizer of h in G(R). Then the orbit map identifies X
with G(R)/Zh. We view X as a homogenous manifold via this identification.

For any real representation ρ : G→ GL(V ) and any h′ ∈ X, the composi-
tion ρ ◦ h′ : S→ G→ GL(V ) defines a real Hodge structure on V (e.g. Page
26 of [23]). In other words,

V ⊗R C =
⊕
p,q

V p,q
h′ ,

where V p,q
h′ = {v ∈ VC | (ρ(h′(z)))(v) = z−pz̄−q · v, ∀z ∈ S(R) = C∗}. In

particular, over R we have the weight space decomposition:

V =
⊕
n∈Z

Vn,h′ , Vn,h′ ⊗R C =
⊕
p+q=n

V p,q
h′

(i.e. v ∈ Vn,h′ if and only if (ρ(h′(r)))(v) = rn · v for all r ∈ Gm(R) = R∗, here

Gm is mapped into S via Gm
w→ S, r 7→ r−1).

Remark 2.2.1. For a Hodge structure ϕ : S→ GL(V ), the standard convention
in the theory of Shimura variety is ϕC(z1, z2)(vp,q) = z−p1 z−q2 ·vp,q (c.f. (1.1.1.1)
of [6]). Meanwhile, a different convention ϕC(z1, z2)(vp,q) = zp1z

q
2 ·vp,q is largely

used in Hodge theory (e.g. Page 31 of [4]). We shall use different conventions
in different contexts.

Lemma 2.2.2. The following statements are equivalent.

(1) For all representations (V, ρ) of G, the weight space decomposition of V
induced by h′ ∈ X is independent of the h′.

(2) For any h′ ∈ X, the real Hodge structure on Lie(G) defined by Ad ◦ h′
is pure of weight 0.

Proof. See 1.1.13(α) of [6]. See also Lemma 5.1 of [28].

Assume X satisfies one of the properties in the previous lemma, then for
any representation (V, ρ) the weight spaces Vn,h′ are independent of h′ ∈ X,
and so we have a trivial vector bundle X × (Vn)C → X for every weight n.
Furthermore, the Hodge filtration F •n,h′ on (Vn)C induced by ρ ◦ h′ defines (as
h′ varies) a filtration on X × (Vn)C by subbundles F•n.
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We want to put a complex structure on X such that (1) Fpn will be a holo-
morphic subbundle (0 ≤ p ≤ n); (2) Fpn’s satisfy Griffiths transversality for
the natural connection on X× (Vn)C. To do this, we need the following axiom.
Recall that a type of a Hodge structure VC =

⊕
p,q V

p,q is the set of (p, q) such
that V p,q is non-empty.

(Axiom I) The Hodge structure on Lie(G) given by Ad◦h′ for any h′ ∈ X
is of type {(−1, 1), (0, 0), (1,−1)}.

Note that pairs (G, h) coming from Hermitian symmetric domains clearly
satisfy Axiom I (c.f. (a) of Theorem 2.1.20). Also, if Axiom I is satisfied, then
Lemma 2.2.2 (2) automatically holds.

Assuming Axiom I, we can endow X with a complex structure as follows
(compare to Theorem 2.1.21). Let g = Lie(G). Also fix h′ ∈ X and denote
the Hodge structure on g induced by h′ ∈ X by {gp,qC }. Then there is a natural
isomorphism Th′X ∼= g/g0,0, where g0,0 is the real descent of g0,0

C . Because
Th′X = g/g0,0 ⊂ g1,−1

C ⊕g−1,1
C , Ad(h′(i)) acts on Th′X as multiplication by −1.

Define Jh′ = Ad(h′(e
πi
4 )). Since J2

h′ = −id, this defines a complex structure on
Th′X. Moving Jh′ around using the homogeneity of X, we obtain an almost
complex structure on X.

Theorem 2.2.3. Let G be a reductive group over R and let X be the G(R)-
conjugacy class of an algebraic homomorphism h : S→ G. If (G, X) satisfies
Axiom I, then the almost complex structure defined by {Jh′} is integrable.

For any representation V of G and any integers n and p, Fpn is a holomor-
phic vector bundle on X with respect to this complex structure. Moreover, F•n
satisfies Griffiths transversality for the connection ∇ = 1⊗ d : (Vn)C ⊗OX →
(Vn)C ⊗ Ω1

X . (In other words, (X × (Vn)R,∇,F•n) forms a real variation of
Hodge structure of weight n over X. )

Proof. See Proposition 1.1.14 of [6] and Proposition 5.9 of [23]. See also Propo-
sition 5.3 of [28] and Theorem 3.7 of [29].

Remark 2.2.4. Axiom I is one of Deligne’s axioms in the definition of a Shimura
datum, for which we refer the readers to Page 53 of [23]. Also, see Page 44
and 50 of op. cit. for the definition of a connected Shimura datum. For
the connections between (connected) Shimura data and Hermitian symmetric
domains, see Proposition 4.8, Proposition 5.7 and Corollary 5.8 of op. cit..
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2.3 Locally symmetric domains

2.3.1 Quotients of Hermitian symmetric domains

We start by defining some special (discrete) subgroups for an algebraic group
or a Lie group. Let G be an algebraic group over Q. For an injective homo-
morphism r : G→ GLn, we let

G(Z)r = {g ∈ G(Q) | r(g) ∈ GLn(Z)}.

Note that G(Z)r is independent of r up to commensurability (c.f. Corollary
7.13 of [30]), so r can sometimes be omitted from the notation. A subgroup
Γ of G(Q) is arithmetic if it is commensurable with G(Z)r for some r. (In
other words, Γ∩G(Z)r has finite index in both Γ and G(Z)r.) Note that every
arithmetic subgroup Γ contains a torsion free subgroup of G(Q) of finite index
(c.f. Proposition 17.4 of [30]).

As an example, let us consider

Γ(N) := r(G(Q)) ∩ {A ∈ GLn(Z) | A ≡ I mod N},

and define a congruence subgroup of G(Q) to be any subgroup containing
Γ(N) as a subgroup of finite index. Although Γ(N) depends on the choice of
the embedding r, congruence subgroups do not. Every congruence subgroup
is an arithmetic subgroup.

Recall that a lattice of a Lie group is a discrete subgroup of finite covol-
ume with respect to an equivariant measure. Consider a connected adjoint Lie
group H with no compact factors (e.g. Hol(D)+ for a Hermitian symmetric
domain D), and Let Γ be a subgroup of H. If there exists a simply connected
(c.f. Page 199 of [24]) algebraic group G over Q and a surjective homomor-
phism ϕ : G(R)→ H with compact kernel such that Γ is commensurable with
ϕ(G(Z)), then we also say that Γ is an arithmetic subgroup of H. In fact, such
a subgroup is a lattice of H (c.f. Page 484 of [27]), and so Γ is an arithmetic
lattice.

We now discuss the quotient of a Hermitian symmetric domain D by a cer-
tain discrete subgroup Γ of Hol(D)+ (e.g. a lattice or an arithmetic lattice). If
Γ is torsion free, then it acts freely on D, and there is a unique complex struc-
ture on Γ\D such that the natural quotient map D → Γ\D is holomorphic.
In this case, D is also the universal covering space of Γ\D with Γ the group of
Deck transformations; the choice of a point of D determines an isomorphism
of Γ with the fundamental group of Γ\D. Moreover, it is easy to see that for
each p ∈ Γ\D, there is an involution sp defined in a neighborhood of p having
p as an isolated point. (In other words, Γ\D is “locally symmetric”.)
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Note that a discrete group Γ of Hol(D)+ is a lattice (i.e. Γ\Hol(D)+ has
finite volume) if and only if Γ\D has finite volume.

Let H be a connected semisimple Lie group with finite center. We say that
a lattice Γ in H is irreducible if Γ·N is dense in H for every noncompact closed
normal subgroup N of H. If we further assume that H has trivial center and
no compact factor, then any lattice in H can be decomposes into irreducible
lattices as in Theorem 3.1 of [27]. In particular, one can decompose locally
symmetric domains as follows.

Theorem 2.3.1. Let D be a Hermitian symmetric domain with H = Hol(D)+.
Let Γ be a lattice in H. Then D can be written uniquely as a product D =
D1×· · ·×Dr of Hermitian symmetric domains such that Γi := Γ∩Hol(Di)+ is
an irreducible lattice in Hol(Di)+ and Γ1\D1× · · ·×Γr\Dr is a finite covering
of Γ\D.

Proof. See Theorem 3.2 of [27].

Recall that a connected semisimple algebraic group can be written as an
almost direct product of its almost simple subgroups (called almost simple
factors) (c.f. Theorem 17.16 of [24]). We say a simply connected or adjoint
algebraic group G over Q is of compact (reps. noncompact) type if Gi(R) is
compact (resp. noncompact) for every almost simple factor Gi of G (see also
Definition 3.7 of [27]).

Theorem 2.3.2. Let D be a Hermitian symmetric domain with H = Hol(D)+.
Let Γ be a lattice in H. If rank(Hol(Di)+) ≥ 2 in Theorem 2.3.1, then there
exists a simply connected algebraic group G of noncompact type over Q and a
surjective homomorphism ϕ : G(R) → H with compact kernel such that Γ is
commensurable with ϕ(G(Z)). (In particular, Γ is an arithmetic lattice of H.)
Moreover, such a pair (G,ϕ) is unique up to a unique isomorphism.

Proof. See Theorem 3.13 of [27].

A few remarks on the algebraic structure of locally symmetric domains.
Recall that there is a functor X 7→ Xan associating to a smooth complex alge-
braic variety X a complex manifold Xan. This functor is faithful, but far from
surjective on objects or on arrows. However, if we restrict the functor to closed
subvarieties of the projective spaces PnC, then it produces an equivalence of cat-
egories between smooth projective complex varieties and closed submanifolds
of (PnC)an (Chow’s theorem). By the Baily-Borel theorem, every quotient Γ\D
of a Hermitian symmetric domain D by a torsion free arithmetic subgroup Γ of
Hol(D)+ can be realized (canonically) as a Zariski open subvariety of a projec-
tive variety, and hence has a canonical structure of an algebraic variety. Now
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by a locally symmetric variety we mean a smooth complex algebraic variety
X such that Xan is isomorphic to Γ\D for a Hermitian symmetric domain D
and a torsion free subgroup Γ ⊂ Hol(D)+ (see also Footnote 15 on Page 488
of [27]).

To obtain an interesting arithmetic theory, one needs to put further restric-
tions on a locally symmetric variety X. When Xan ∼= Γ\D for an arithmetic
subgroup Γ of Hol(D)+, we call X an arithmetic locally symmetric variety.
The group Γ is usually a lattice, so by Margulis arithmeticity theorem nonar-
ithmetic locally symmetric varieties can only occur in very few cases. For an
arithmetic locally symmetric variety X with Xan ∼= Γ\D, we let (G,ϕ) be
the pair associated to Γ\D as in Theorem 2.3.2. If there exists a congruence
subgroup Γ0 of G(Z) such that Γ contains ϕ(Γ0) as a subgroup of finite index,
then X will have very rich arithmetic structures; such arithmetic locally sym-
metric varieties are called connected Shimura varieties. We refer the readers to
Chapters 4 and 5 of [23] for the more formal definitions of connected Shimura
varieties and Shimura varieties.

2.3.2 Variations of Hodge structure on locally symmet-
ric domains

We shall describe variations of Hodge structure over locally symmetric domains
following [6] and [27] (especially [27] Chapter 8). In what follows, we shall
always let D be a Hermitian symmetric domain and let Γ be an torsion free
arithmetic lattice of Hol(D)+, and use D(Γ) to denote the arithmetic locally
symmetric variety.

According to Theorem 2.3.1, D decomposes uniquely into a product D =
D1×· · ·×Dr such that Γi = Γ∩Hol(Di)+ is an irreducible lattice of Hol(Di)+

and the map D(Γ1) × · · · × D(Γr) → D(Γ) is a finite covering. We further
assume that

rank(Hol(Di)+) ≥ 2 (2.3.3)

for each 1 ≤ i ≤ r. According to Margulis arithmeticity theorem, there
exists a pair (G,ϕ) where G is a simply connected Q-algebraic group and
ϕ : G(R)→ Hol(D)+ is a surjective homomorphism with compact kernel such
that ϕ(G(Z)) is commensurable with Γ; moreover, such a pair is unique up to
a unique homomorphism. (c.f. Theorem 2.3.2.)

We also fix a point o ∈ D. By Theorem 2.1.8, there exists a unique
homomorphism u : U1 → Hol(D)+ such that u(z) fixes o and acts on ToD
as multiplication by z.

Let
Gad
R = Gc ×Gnc,
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where Gad
R is the quotient of GR by its center and Gc (resp. Gnc) is the product

of the compact (resp. noncompact) simple factors of Gad
R . The homomorphism

ϕ : G(R) → Hol(D)+ factors through Gnc and defines an isomorphism of Lie
groups Gnc(R)+ → Hol(D)+. Now we define h̄ : S→ Gad

R by

h̄(z) = (hc(z), hnc(z)) ∈ Gc(R)×Gnc(R), (2.3.4)

where hc(z) = 1 and hnc(z) = u(z/z̄) in Gnc(R)+ ∼= Hol(D)+. Note that Gm

can be embedded into S via the exact sequence

0→ Gm
w→ S→ U1 → 0,

which is defined on the real valued points by r
w7→ r−1and z 7→ z/z̄ respectively.

It is clear that h̄ factors through S/Gm. Moreover, the Gad(R)+-conjugates of
h̄ can be identified with D through gh̄g−1 7→ g · o.

Proposition 2.3.5. Notations as above. The pair (G, h̄) associated to the
arithmetic locally symmetric domain D(Γ) and a point o ∈ D satisfies the
following properties.

(1) The Hodge structure on Lie(Gad
R ) defined by S h̄→ Gad

R
Ad→ GL(Lie(Gad

R ))
is of type {(1,−1), (0, 0), (−1, 1)};

(2) The conjugation by h̄(i) is a Cartan involution of Gad
R .

Proof. By definition, hnc(z) = u(z/z̄) under the identification Gnc(R)+ ∼=
Hol(D)+. Because Gad

R has trivial center, h̄ satisfies (1) and (2) if and only if
u satisfies (a) and (b) of Theorem 2.1.20.

Let G be a reductive group overQ and let h : S→ GR be a homomorphism.
To state the main results of this subsection, we need to define the weight
homomorphism

wh := h ◦ w

where w : Gm → S is given as above by r 7→ r−1 (note that to give a
Hodge structure on a Q-vector space V amounts to giving a homomorphism
S→ GL(VR) such that wh is defined over Q), and consider the following con-
dition on h.

(Axiom II*) The conjugation by h(i) is a Cartan involution of GR/wh(Gm).

Axiom II* can be motivated from the following fact. Let V be a faithful
representation of G, if wh is defined over Q, then the homomorphism h : S→
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GR defines a rational Hodge structure on V ; assume that G is the Mumford-
Tate group of V , then V is polarizable if and only if (G, h) satisfies Axiom
II*. (c.f. 1.1.18(a) of [6] and Proposition 6.4 of [27]. Roughly speaking, a
Cartan involution produces a bilinear form invariant under the group action,
but the Mumford-Tate group G only preserves a polarization up to scalar, so
we consider a Cartan involution on the quotient of the Mumford-Tate group
by wh(Gm).)

A Hodge structure is said of CM type if it is polarizable and its Mumford-
Tate group is a torus. Also, by a variation of integral Hodge structure we mean
a variation of rational Hodge structure that admits an integral structure (i.e.
the local system of Q-vector spaces comes from a local system of Z-modules).
Finally, we denote by Gder the derived subgroup (c.f. Page 187 of [24]) of G.

Theorem 2.3.6 (Summary 8.6 of [27]). Let D(Γ) be an arithmetic locally sym-
metric domain satisfying (2.3.3). Let G be the simply connected Q-algebraic
group associated to D(Γ) as in Theorem 2.3.2. Choose a point o ∈ D and
define h̄ as in (2.3.4). To give

a polarizable variation of integral Hodge structure on D(Γ) such that some
fiber is of CM type and the monodromy representation has finite kernel

is the same as giving

a triple (G, h : S → GR, ρ : G → GL(V )), where V is a Q-representation
of G and G ⊂ GL(V ) is a reductive algebraic group defined over Q, such that

(1) The homomorphism h satisfies Axiom II* and wh is defined over Q;

(2) The representation ρ factors through G and ρ(G) = Gder;

(3) The composition Ad ◦ h : S→ GR → Gad
R
∼= Gad

R is equal to h̄.

Proof. See Pages 510− 511 of [27].

Remark 2.3.7. The reductive group G should be thought of as the generic
Mumford-Tate group of a polarizable variation of Hodge structure on D(Γ).
Also, we need to assume the variation of Hodge structure is polarizable and
integral so that ρ(G) = Gder (c.f. Theorem 6.22 of [27]).

For every arithmetic locally symmetric variety, there exists a triple (G, h, ρ)
satisfying the conditions in Theorem 2.3.6, and hence there is a polarizable
variation of integral Hodge structure on the variety. See Pages 512 − 514 of
[27] for details.
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2.4 Hermitian variations of Hodge structure

of abelian variety type

In this section, we show how to construct a family of abelian varieties (equiv-
alently, polarizable variations of integral Hodge structure of Hodge level 1) on
an arithmetic locally symmetric variety D(Γ) following Chapter 10 and 11 of
[27]. For simplicity, we assume that D is irreducible. Also, we assume that
rank(Hol(D)+) ≥ 2 as in (2.3.3).

According to Theorem 2.3.2, there is a unique simply connectedQ-algebraic
group G of non-compact type and a surjective homomorphism ϕ : G(R) →
Hol(D)+ with compact kernel such that ϕ(G(Z)) is commensurable with Γ.
Note that ϕ factors through Gad

R (R) and induces an isomorphism of Lie groups
Gad
R (R)+ → Hol(D)+. Fix a point o ∈ D and let h̄ : S→ Gad

R be as defined in
(2.3.4), then ϕ(h̄(z)) fixes o ∈ D and acts on ToD as multiplication by z/z̄.

By Theorem 2.3.6, variations of Hodge structure on D(Γ) corresponds to
certain representations of G. We now define “symplectic representations” and
show that they corresponds to families of abelian varieties on D(Γ).

Let V be a rational vector space and ψ be a nondegenerate alternating
form on V . Denote by GSp(V, ψ) the group of symplectic similitudes (the
algebraic subgroup of GL(V ) whose elements preserves ψ up to scalar). The
derived subgroup of GSp(V, ψ) is the symplectic group Sp(V, ψ). Also, let
D(ψ) be the set of Hodge structures which are of type {(−1, 0), (0,−1)} and
are polarized by 2πiψ.

Definition 2.4.1. A homomorphism G→ GL(V ) with finite kernel is a sym-
plectic representation of (G, h̄ : S→ Gad

R ) if there exists a pair (G, h : S→ GR)
consisting of a reductive Q-algebraic group G and a homomorphism h, a
nondegenerate alternating form ψ on V , and a factorization of G → GL(V )
through G:

G
φ→ G

ξ→ GL(V )

such that

(1) ξ ◦ h ∈ D(ψ);

(2) φ(G) = Gder and ξ(G) ⊂ GSp(V, ψ);

(3) The composition Ad ◦ h : S→ GR → Gad
R
∼= Gad

R is equal to h̄.

Recall that a family on a connected complex manifold is said to be faithful
if the monodromy representation is injective.
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Theorem 2.4.2. Let D(Γ) be an arithmetic locally symmetric variety with D
irreducible (for simplicity only) and rank(Hol(D)+) ≥ 2, and let (G, h̄) be the
pair associated to D(Γ) and a point o ∈ D as above. There exists a faithful
family of abelian varieties on D(Γ) having a fiber of CM type if and only if
(G, h̄) admits a symplectic representation.

Proof. See Theorem 11.8 of [27].

In the rest of this subsection we study symplectic representations. Because
D is irreducible, there is no harm to study symplectic representations over R.
Let ρ : G → GL(V ) be a symplectic representation of (G, h̄). After scalar
extension to R, we assume that G is an almost simple and simply connected
R-algebraic group without compact factors and view V as a real representation
of G. If V is irreducible, then EndG(V ) is a division algebra over R (Shur’s
Lemma), and so there are three possibilities:

EndG(V ) =


R (real type),

C (complex type),

H (quaternionic type).

Accordingly, we have (here VC = VR ⊗R C)

VC =


V+ (real type),

V+ ⊕ V−, V+ � V− (complex type),

V+ ⊕ V−, V+
∼= V− (quaternionic type),

where V± are irreducible complex G(C)-representations and V ∨+
∼= V−. In

practice, one can use Theorem (IV.E.4) of [4] to distinguish these cases.
We now classify the irreducible real symplectic representations of the pairs

(G, h̄). Define µ̄ : Gm → Gad
C by µ̄(z) = h̄C(z, 1), where h̄C : Gm ×Gm → Gad

C
is the complexification of h̄. Let u : U1 → Hol(D)+ ∼= Gad(R)+ be the ho-
momorphism associated to the point o ∈ D as in Theorem 2.1.8. Because
h̄C(z1, z2) = uC(z1/z2) as in (2.3.4), the homomorphism µ̄ is the scalar exten-
sion of u: µ̄(z) = h̄C(z, 1) = uC(z).

Fix a maximal torus T of Gad
C , and let X∗(T ) = Hom(T,Gm) (resp.

X∗(T ) = Hom(Gm, T )) be the character (resp. cocharacter) group. There
is a natural pairing 〈−,−〉 : X∗(T )×X∗(T )→ End(Gm) ∼= Z between X∗(T )
and X∗(T ). Let R ⊂ X∗(T ) (resp. R∨ ⊂ X∗(T )) be the corresponding root
system (resp. coroot system). We also denote by Q(R) the lattice generated
by R. (In this case Q(R) = X∗(T ), but we will not use this.)
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Recall that the lattice of weights is P (R) = {$ ∈ X∗(T )Q | 〈$,α∨〉 ∈
Z all α∨ ∈ R∨}. Choose a set B = {α1, · · · , αn} of simple roots such that
〈α, µ̄〉 ≥ 0 for all α ∈ B, then the fundamental weights are the dual basis
{$1 · · · , $n} of {α∨1 , · · · , α∨n}, and the dominant weights are the elements∑
ni$i with ni ∈ N.
Also, there is a unique permutation τ of simple roots (or the corresponding

Dynkin diagram or the fundamental weights) such that τ 2 = id and the map
α 7→ −τ(α) extends to the action of the Weyl group. Usually τ is called the
opposition involution. Explicitly, τ acts nontrivially on the root systems of
type An (αi ↔ αn+1−i), Dn with n odd (αn−1 ↔ αn) and E6 (α1 ↔ α6), and
trivially on the other root systems.

Theorem 2.4.3. Notations as above. Let V be an irreducible real representa-
tion of G, and $ be the highest weight of an irreducible summand W (e.g. V+

or V−) of VC. The representation V is a symplectic representation of (G, h̄) if
and only if

〈$ + τ($), µ̄〉 = 1. (2.4.4)

Proof. (Sketch) (Step 1) By Lemma 1.3.3 of [6] or Proposition 10.4 of [27], a
representation ρ : G → GL(V ) is a symplectic representation if there exist a
pair (G, h : S → G) and a factorization ρ = ξ ◦ φ of ρ as in definitionrefsym-
plectic rep, such that (1) ξ ◦ h is of type {(−1, 0), (0,−1)}; (2) φ(G) = Gder;
and (3) Ad ◦ h = h̄. In other words, the nondegenerate alternating form ψ is
not needed in the first place.

(Step 2) Consider the projective system (Tn, Tnd → Tn), where the index
set is N − {0} (ordered by divisibility), Tn = Gm, and Tnd → Tn is given by
z 7→ zd. Denote by G̃m its inverse limit.

By 1.3.4 of [6], G̃m is the algebraic universal covering of Gm, so we can
lift µ̄ : Gm → Gad

C to µ̃ : G̃m → GC. Then W ⊂ VC is a representation of
G̃m. According to (10.2) of [27], such a representation G̃m → GL(W ) can be
represented by a homomorphism f : Tn → GL(W ) and defines a gradation
W = ⊕Wr (r ∈ (1/n)Z) with f(z) acting on Wr by multiplication by znr. We
call the r for which Wr 6= 0 the weights of the representation of G̃m on W .
One can check that the weights do not depend on the representative f .

The most important observation here is as follows: the nontrivial irre-
ducible representation W occurs in a symplectic representation if and only if
µ̃ has exactly two weights a and a+ 1 on W. (c.f. Lemma 1.3.5 of [6])

We show the “only if” direction here. For h : S→ GR, we define µh : Gm →
GC by µh(z) = hC(z, 1) as in 1.1.1 and 1.1.11 of [6]. Because Ad ◦ h = h̄ as in
definitionrefsymplectic rep (3), we have φC ◦ µ̃ = µh · ν with ν in the center of
GC. On W , µh has weights 0 and 1 (see (1) of definitionrefsymplectic rep). If
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a is the unique weight of ν on W , then the only weights of µ̃ on W is a and
a + 1. We need the observation in Step 1 for the other direction, see Lemma
10.6 of [27].

(Step 3) Note that the differential of µ̃ equals the differential of µ̄. The
conclusion in Step 2 can be rephrased as follows: if $ is the highest weight
of W , then the representation W occurs in a symplectic representation if and
only if 〈$ + τ($), µ̄〉 = 1. This is (1.3.6.1) of [6]. In fact, the lowest weight
of W is −τ($), and the weights β of W are of the form $ + (a Z-linear
combination of roots α ∈ R). Because 〈α, µ̄〉 ∈ Z for all roots α, 〈β, µ̄〉 takes
values a and a + 1 if and only if 〈−τ($), µ̄〉 = 〈$, µ̄〉 − 1, which is clearly
equivalent to (2.4.4).

To apply (2.4.4), we make the following two observations. Because $ +
τ($) ∈ Q(R), 〈$ + τ($), µ̄〉 ∈ Z for every dominant weight $. Moreover,
〈$+ τ($), µ̄〉 > 0. So only the fundamental weights {$1, · · · , $n} can satisfy
(2.4.4) (Lemma 1.3.7 of [6]).

Also, by the proof of Theorem 2.1.27 there exists a special node αs (de-
termined by the irreducible Hermitian symmetric domain D) such that, for
simple roots α ∈ B = {α1, · · · , αn},

〈α, µ̄〉 =

{
1 if α = αs,

0 if α 6= αs.

Express a weight $ as a Q-linear combination of the simple roots {αi} (c.f.
[31]), then 〈$ + τ($), µ̄〉 = 1 if and only if the coefficient of αs in $ + τ($)
equals 1.

Example 2.4.5. (Type An−1) In this case,

$i =
n− i
n

α1 +
2(n− i)

n
α2 + · · ·+ i(n− i)

n
αi+

i(n− i− 1)

n
αi+1 + · · ·+ i

n
αn−1,

for 1 ≤ i ≤ n− 1. The opposition involution τ switches the nodes i and n− i:
τ($i) = $n−i, and so

τ($i) =
i

n
α1+

2i

n
α2+· · ·+(n− i)i

n
αn−i+

(n− i)(i− 1)

n
αn+1−i+· · ·+

n− i
n

αn−1.

If i ≤ n − i, one can easily compute the coefficient of a simple root αj in
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$i + τ($i):

the coefficient of αj in $i + τ($i) =


j if 1 ≤ j ≤ i,

i if i ≤ j ≤ n− i,
n− j if n− i ≤ j ≤ n− 1.

The special root αs can be any αj with 1 ≤ j ≤ n− 1. We drop the cases that
αs = α1 and αs = αn−1 so that the assumption (2.3.3) holds. Choose a special
root αs = αj for 2 ≤ j ≤ n− 2. It is easy to see that for the coefficient to be
1, $i must be $1. Similarly, if i > n − i, only the fundamental weight $n−1

satisfies (2.4.4).

Example 2.4.6. (Type E6 and E7) In the E6 case, the special root αs =
α1 or α6, and the opposite involution switches α1 and α6. We seek a funda-
mental weight $ such that $ = aα1 + · · · + bα6 with a + b = 1. But there is
no such a fundamental weight for the root system E6, and hence there is no
corresponding symplectic representation.

Similarly, there is no symplectic representation associated to the Hermitian
symmetric domains of type E7. In fact, αs = α7 and the opposite involution
is trivial in the E7 case. Therefore, a fundamental weight $ satisfies (2.4.4) if
and only if ω = · · ·+ 1

2
α7, but no fundamental of E7 is of this form.

If a fundamental weight satisfies (2.4.4), then we call the corresponding
node a symplectic node. They are listed as follows.

Type Symplectic node
(An, α1) $1, · · · , $n

(An, αi), 1 < i < n $1, $n

(Bn, α1), n ≥ 2 $n

(Cn, αn) $1

(Dn, α1), n ≥ 4 $n−1, $n

(D4, α4) $1, $3

(Dn, αn), n ≥ 5 $1

(E6, α1) none
(E7, α7) none

Table 2.2: List of symplectic nodes.
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2.5 Hermitian variations of Hodge structure

of Calabi-Yau (CY) type

In this subsection, we consider Hodge structures of Calabi-Yau type.

Definition 2.5.1. A rational (or real) Hodge structure V of Calabi-Yau (CY)
type is an effective rational (or real) Hodge structure 1 of weight n such that
V n,0 is 1-dimensional. If n = 2, we also say that V is of K3 type.

Based on earlier work of Gross ([1]) and Sheng-Zuo ([2]), Friedman and
Laza classified R-variations of Hodge structures (or the Q-variations of Hodge
structure which remain irreducible over R) of CY type over irreducible Her-
mitian symmetric domains in [3] and [32]. In this subsection, let us discuss
Friedman-Laza’s classification for irreducible Hermitian symmetric domains
of tube type. All the irreducible tube domains are tabulated as follows (the
first column is standard Siegel’s notation; the second column lists the corre-
sponding Dynkin diagrams and special roots (c.f. Theorem 2.1.27); the third
column gives the real simply connected algebraic groups for the unique simple
adjoint algebraic groups (c.f. Proposition 2.1.7) associated to Hermitian sym-
metric domains; the fourth column lists the corresponding maximal compact
subgroup; the last column gives the real ranks of tube domains).

Label (R,αs) G(R) K R-rank
In,n (A2n−1, αn) SU(n, n) S(U(n)× U(n)) n
II2n (D2n, α2n) Spin∗(2n) U1 ×µn SU(2n) n
IIIn (Cn, αn) Sp(2n,R) U(n) n

IV2n−1 (Bn, α1) Spin(2, 2n− 1) Spin(2)×µ2 Spin(2n− 1) 2
IV2n−2 (Dn, α1) Spin(2, 2n− 2) Spin(2)×µ2 Spin(2n− 2) 2
EVII (E7, α7) E7,3 U(1)×µ3 E6 3

Table 2.3: Hermitian symmetric domains of tube type

Remark 2.5.2. Following [6], we shall sometimes use DR
n to denote the domain

(Dn, α1), and use DH
2n to denote the domain (D2n, α2n).

Let D be an irreducible Hermitian symmetric domain, and let D be a clas-
sifying space of polarized rational Hodge structures with fixed Hodge numbers.
Following Definition 2.1 of [3], we call the variations of Hodge structure induced
by an equivariant, holomorphic and horizontal embedding of D ↪→ D a Hermi-
tian variation of Hodge structure. They are the variations of Hodge structure

1In this subsection, we switch to the other convention: if ϕ : S → GL(VR) defines a
Hodge structure of weight n, then h(z) (z ∈ S(R)) acts on V p,q as multiplication by zpz̄q.
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parameterized by Hermitian symmetric domains considered by Deligne [6]. In
the terminology of [4], D ⊂ D is an unconstrained Mumford-Tate domain (and
hence also a Hermitian symmetric domain).

By Proposition 2.1.7, there is a unique simple adjoint real algebraic group
associated to D; we denote by G its algebraic universal covering (N.B. these
simply connected algebraic groups are listed in Table 2.3, see also Section 1 of
[1]). Choose a reference point o ∈ D. According to Theorem 2.1.8, there is a
homomorphism u : U1 → Gad. We define h̄ : S → Gad by h̄(z) = u(z/z̄) as in
(2.3.4).

Choosing a suitable arithmetic subgroup of Hol(D)+, we assume that there
is an algebraic group GQ is defined over Q with GQ ⊗Q R ∼= G. To give a
Hermitian rational variation of Hodge structure over D, one must give a Q-
representation ρQ : GQ → GL(V ) satisfying the conditions in Theorem 2.3.6.
Following Section 2.1 of [3], we assume that the induced real representation
ρ : G → GL(VR) is irreducible. As variations of real Hodge structure are
mainly concerned in this section, we shall focus on the representation ρ.

The question is which irreducible representations ofG correspond to Hermi-
tian variations of Hodge structure of CY type over D. Suppose D corresponds
to the root system R and the special root αi. We call the corresponding fun-
damental weight $i (i.e. $i(α

∨
j ) = δij) a cominuscule weight, and call the

irreducible representation V$i of G(C) with highest weight $i a cominuscule
representation.

Let VR be an irreducible G-representation. Recall that VR may be of real
type, complex type or quaternionic type. Specifically, VC may be irreducible
(real type) or reducible (complex type or quaternionic type); if VC is reducible,
then we can write VC = V+ ⊕ V−, where V+ and V− are irreducible represen-
tations of G(C) and V ∨+

∼= V−. We distinguish the complex case from the
quaternionic case depending on whether V+

∼= V− (quaternionic type) or not
(complex type). We now show that if VR induces a CY Hermitian variation of
Hodge structure over D, then the highest weight of V+ or V− (V+ = VC in the
real case) must be a multiple of the corresponding cominuscule weight.

In what follows, let us focus on tube domains D.

Lemma 2.5.3. Let D be an irreducible Hermitian symmetric domain of tube
type, and let G be defined as above. Suppose D corresponds to (R,αi) (so
$i is the corresponding cominuscule weight), and let Vn$i be the irreducible
representation of G(C) with highest weight n$i (n ∈ N+). Then there exists
a real G-representation VR such that VR ⊗R C = Vn$i.

Proof. The condition that D is of tube type is equivalent to that τ(αi) = αi
where τ is the opposition involution. Let V$i be a cominuscule representation.
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Because the dual representation has highest weight τ($i), we have V$i
∼= V ∨$i .

Now one can verify the reality of the representation using Theorem IV.E.4 of
[4]. The same argument works for Vn$i .

Example 2.5.4. Let D be an tube domain corresponding to (A5, α3). Then
G = SU(3, 3) and the cominuscule weight is $3. Because τ($3) = $3, the
cominuscule representation can not be of complex type. We now determine
whether it is of real type or quaternionic type using Theorem IV.E.4 of [4].

In the root system A5, we have

2$3 = α1 + 2α2 + 3α3 + 2α4 + α5.

(Denote the coefficients of αi by mi.) The only noncompact root in this case
is α3 (c.f. Page 335 of [33]). Because∑

αi compact

mi = 1 + 2 + 2 + 1 = 6

is even, the cominuscule representation is of real type.

In the proof of 2.1.27 we see that there is a µ ∈ X∗(Gad
C ) (µ = uC) such

that

〈α, µ〉 =

{
1 if α = αi,

0 if α 6= αi,

where αi is the special root associated to the domain D. Following [3], we
shall use H0 to denote µ, and use $(H0) to denote the pairing 〈$,H0〉.

Proposition 2.5.5. Notations as above. Let ρ : G→ GL(VR) be an irreducible
representation and λ be the highest weight of an irreducible factor V+ of VC.
Possibly replace V+ with V−, we can assume that τλ(H0) ≤ λ(H0). Then a
necessary condition for ρ to arise from a CY Hermitian variation of Hodge
structure over D is

$(H0) < λ(H0) for all weights $ 6= λ of V+.

Furthermore, this condition implies that λ is a multiple of the fundamental
cominuscule weight $i associated to the domain D. In particular, if D is a
tube domain, then such representations VR are of real type.
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Proof. Consider the following commutative diagram:

U1
i−−−→ S h−−−→ GR −−−→ GL(VR)

2:1

y p

y Ad

y
U1 U1

u−−−→ Gad

where i : U1 ↪→ S is the kernel of the norm map Nm : S→ Gm (Nm(z) = zz̄),
and p : S → U1 is defined by z 7→ z/z̄. (Note also that Gad

R
∼= Gad.) In

the situation considered here, the Hodge decomposition on VC is the weight
decomposition of VC with respective to U1(C) ∼= C∗ via hC◦iC: V p,q corresponds
to the eigenspace for the character zp−q. If VR is of real type, then by the above
diagram the weights of Gm on VC via hC ◦ iC are {2$(H0) | $ ∈ χ(V+)}, where
χ(V+) denotes the weights of the irreducible G(C)-representation V+ (note
that V+ = VC in this case). If VR is of complex or quaternionic case, then
VC = V+⊕V−, and the weights of h◦i on VC are {±2($(H0)−c) | $ ∈ χ(V+)},
where the constant c comes from the action of the center of GR on V+ (c.f.
2.1.2 of [3]).

Since all the other weights of V+ are obtained from λ by subtracting positive
roots, it follows that

max
$∈χ(V+)

$(H0) = λ(H0).

Using the description of the weights of hC ◦ iC on VC, we see that the CY
condition (dimC V

n,0 = 1) implies that the above maximal is attained only
for the highest weight λ. In other words, for other weights $ 6= λ of V+,
$(H0) < λ(H0).

Let αi be the special root associated to D. By applying the reflection in
another simple root αj 6= αi, we get

sαj(λ)(H0) = (λ− λ(α∨j ) · αj)(H0) = λ(H0)− λ(α∨j ) · αj(H0) = λ(H0).

Because sαj(λ) ∈ χ(V+), sαj(λ) = λ, which is equivalent to λ(α∨j ) = 0. Now
we can conclude that λ = n$i. The last assertion follows from the previous
lemma.

Let D be an irreducible Hermitian symmetric domain of tube type, and let
αi (resp. $i) be the corresponding special root (resp. cominuscule weight). As
shown in [1] and [3], if VR is an irreducible representation of G such that VC has
highest weight n$i (n ∈ N+) as a G(C)-representation, then VR induces a CY
R-variation of Hodge structures overD. If VC is the cominuscule representation
(i.e. has highest weight $i), then we call the induced R-variation of Hodge
structure of CY type the canonical CY R-variation of Hodge structure over D.
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Theorem 2.5.6. For every irreducible Hermitian symmetric domain D of tube
type, there exists a canonical R-variation of Hodge structure V of CY type
parameterized by D. Any other irreducible CY R-variation of Hodge structure
can be obtained from the canonical one by taking the unique irreducible factor
of Sym• V of CY type.

Proof. See Section 3 of [1] or Theorem 2.22 of [3].

Remark 2.5.7. For an irreducible tube domain D, the weight of the canonical
R-variation of Hodge structure is also equal to the real rank of D which can
be found in Table 2.3.

Remark 2.5.8. One may wonder what happens if the irreducible domain D is
not of tube type. Let V+ be a cominuscule representation of G(C). Sheng and
Zuo [2] have noted V+ carries a C-Hodge structure of CY type, and so V+⊕V ∨+
will carry a R-Hodge structure. However, this Hodge structure is typically not
of CY type. To fix this, one needs to apply the operation “half twist” defined
by van Geemen [34]. See Section 2.1.3 of [3].
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Chapter 3

On motivic realizations of the
canonical variations of Hodge
structure of Calabi-Yau type
over Hermitian symmetric
domains of tube type

Over each irreducible Hermitian symmetric domain, there exists a canonical R-
variation of Hodge structure of CY type which can descend to a Q-variation of
Hodge structure up to some choices. This chapter concerns motivic realizations
of the canonical R-variations of Hodge structure of Calabi-Yau type VR over
irreducible Hermitian symmetric domains of tube type. Namely, we specify
Q-descents VQ for VR and investigate the possibility of realizing VQ as sub-
variations of rational Hodge structure of those which are naturally associated
with families of abelian varieties.

Up to isomorphism, there are six irreducible Hermitian symmetric domains
of tube type: (A2n−1, αn) (n ≥ 1), (Bn, α1) (n ≥ 2), (Cn, αn) (n ≥ 1), (DR

n , α1)
(n ≥ 3), (DH

2n, α2n) (n ≥ 2) and (E7, α7). The canonical CY R-variation of
Hodge structure over type Bn and DR

n tube domains have weight 2, hence are
of classical K3 surface type and less interesting to us. The Cn case is also well-
known, see [1] Section 9. At the other extreme, Satake and Deligne showed
that there is no variation of Hodge structure of abelian variety type over the
(E7, α7) domain, and hence the canonical CY variation of Hodge structure can
not come from variations of Hodge structure of abelian variety type.

We shall focus on the remaining A2n−1 case and the DH
2n case. In particular,

we will give motivic realizations for the canonical real variations of Hodge
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structure of CY type over the (A2n−1, αn) domains and the (DH
4 , α4) domain.

We will also give motivic realizations for the irreducible CY real variations of
Hodge structure contained in Sym2 VR (VR is the canonical real CY variation)
over the (DH

2n, α2n) domains (n ≥ 3).

3.1 The A2n−1 case

We shall give motivic realizations of the canonical variations of Hodge structure
of Calabi-Yau type over the (A2n−1, αn) domains (n ≥ 1) in this section. Our
starting point is the following theorem in [16] Section 3: let (X,F,E), where
F is an imaginary quadratic field and E is a polarization of X, be an abelian
fourfold of Weil type with discriminant 1, then H2(X,Q) contains a sub-Hodge
structure of K3 type. Since any such (X,F,E) is a member of a family of
abelian fourfolds π : X → D of Weil type with discriminant 1 parameterized
by a Hermitian symmetric domain D of type A3 (see 5.3-5.11 of [35]), we
obtain, over every point s of D, a rational Hodge structure of K3 type which is
a sub-Hodge structure of H2(Xs,Q). We ask whether this forms a Hermitian
variation of rational Hodge structure, and, if so, how to compare it (after a
scalar extension to R) with the canonical K3 variation of real Hodge structure
on D.

After reviewing the definition of abelian varieties of Weil type, we generalize
Lombardo’s theorem to abelian 2n-folds of Weil type with discriminant (−1)n

for any n ∈ Z+ (c.f. Theorem 3.1.2). For geometric reasons, we are especially
interested in the n = 3 case. Using the same methods and some standard
techniques, we then show how to construct the Q-descents of the canonical
variations of CY type over Hermitian symmetric domains of type A2n−1 from
certain families of abelian 2n-folds of Weil type (c.f. Theorem 3.1.13). A gen-
eralization to certain arithmetic locally symmetric domains is also discussed.

3.1.1 Abelian varieties of Weil type

Definition 3.1.1. Let (X,E) be a complex polarized abelian variety of dimen-
sion 2n and let F ↪→ End(X)⊗Q be an imaginary quadratic field. For conve-
nience, we also use E to denote the alternating form from H1(X,Q)×H1(X,Q)
to Q induced by the polarization. The abelian variety X is said to be of Weil
type if for all k ∈ F the action of k on the tangent space T0X has n eigenval-
ues σ(k) and n eigenvalues σ(k) (here we fix an embedding σ : F ↪→ C), and
E(k∗x, k∗y) = σ(k)σ(k)E(x, y) for x, y ∈ H1(X,Q).
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Discriminant

Let (X,F,E) be an abelian variety of Weil type of dimension 2n and F =
Q(
√
−d) (d ∈ Z+). The imaginary quadratic field F acts on H1(X,Q) and

H1(X,Q) via the maps k∗ and k∗ (k ∈ F ) respectively. According to Lemma
5.2.2 and 5.2.4 of [35], the map

H : H1(X,Q)×H1(X,Q)→ F, (x, y) 7→ E((
√
−d)∗x, y) +

√
−d E(x, y)

is a nondegenerate Hermitian form on the F -vector spaceH1(X,Q) of signature
(n, n). (One can also define an F -Hermitian form on H1(X,Q) in the same
way using the dual alternating form of E, which has the same discriminant
and signature as H; we will also H to denote this Hermitian form.) Let Ψ
be the Hermitian matrix corresponding to H with respect to some F -basis of
H1(X,Q). By Lemma 5.2.3 of op. cit.,

det(Ψ) ∈ Q∗/NmF/Q(F ∗)

does not depend on the choice of the F -basis, nor the lattice defining X. So
discr(X,F,E) := det(Ψ) (viewed as an element in Q∗/NmF/Q(F ∗)) defines an
isogeny invariant called the discriminant of (X,F,E).

3.1.2 Sub-Hodge structures of CY type

Let F = Q(ϕ) with ϕ2 = −d (d ∈ Z+). We now prove the following theorem.
Note that the n = 2 case has been proved in Section 3 of [16], and the case
when n = 3 and F = Q(

√
−3) has also been discussed in [17].

Theorem 3.1.2. Let (X,F,E) be a polarized abelian 2n-fold of Weil type. If

discr(X,F,E) = (−1)n,

then Hn(X,Q) contains a rational sub-Hodge structure of CY n-fold type.

To prove the theorem, we need the following two lemmas from linear alge-
bra.

Wedge product over F

Let F = Q(ϕ) with ϕ2 = −d (d ∈ Z+) and V be an F -vector space. We shall
construct a Q-linear map from

∧l
F V to

∧l
Q V (l ∈ Z+).
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Let W = V ∗ := HomF (V, F ) be the dual space of V , note that W ∗ ∼= V .
Because

∧l
F W

∗ ∼= (
∧l
F W )∗, we have the following map

l∧
F

V
∼=−→

l∧
F

HomF (W,F )
∼=−→ HomF (

l∧
F

W,F ).

Let Tr : F → Q, z 7→ z + z̄ be the trace map. Then the map

ω : W ∗ → W ∗Q := HomQ(W,Q), f 7→ Tr ◦ f

is an isomorphism of Q-vector spaces. Similarly, the map

HomF (
l∧
F

W,F )
Tr◦−→ HomQ(

l∧
F

W,Q)

is also a Q-linear isomorphism. As the Q-multilinear map W × · · · ×W →∧l
F W , (w1, · · · , wl) 7→ w1 ∧F · · · ∧F wl is alternating, it must factor through∧l
QW , and so we obtain a Q-linear map

∧l
QW →

∧l
F W which is clearly

surjective. Taking the duals (as Q-vector spaces), we get an injection

HomQ(
l∧
F

W,Q) ↪→ HomQ(
l∧
Q

W,Q).

The space on the right is (
∧l
QW )∗Q ∼=

∧l
Q(W ∗Q), and is thus isomorphic to∧l

QW
∗ (via ω). Since

∧l
QW

∗ ∼=
∧l
Q V , we have constructed a Q-linear map

l∧
F

V
∼=−→ HomF (

l∧
F

W,F )
Tr◦−→ HomQ(

l∧
F

W,Q) ↪→ HomQ(
l∧
Q

W,Q)
∼=−→

l∧
Q

V.

Because the map is a composition of injective maps, we also have the following
lemma.

Lemma 3.1.3. There exists a natural injective Q-linear map
∧l
F V →

∧l
Q V .

The star operator

Let F = Q(
√
−d) as before, and let V be an F -vector space of dimension 2n

equipped with a nondegenerate F -Hermitian from H. In this subsection, we
will construct an F -conjugate linear endomorphism ? on

∧n
F V .

Fix a generator of
∧2n
F V , which gives an isomorphism γ :

∧2n
F V

∼=−→ F .
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We define an F -linear isomorphism ρ by

ρ :
n∧
F

V → (
n∧
F

V )∗, x 7→ [y 7→ γ(x ∧F y)].

On
∧n
F V , we have an induced Hermitian form H̃ given by

H̃(v1 ∧F · · · ∧F vn, w1 ∧F · · · ∧F wn) = det(H(vi, wj)).

Using this, we define an F -conjugate linear bijection

τ :
n∧
F

V → (
n∧
F

V )∗, x 7→ [y 7→ H̃(y, x)].

The F -conjugate linear (hence Q-linear) endomorphism ? is defined by

? = ρ−1 ◦ τ. (3.1.4)

Equivalently, for all x, y ∈
∧n
F V , H̃(y, x) = γ(?(x) ∧F y).

Let us now compute ??. To do that, we choose a basis {e1, · · · , e2n} of V
that diagonalize the Hermitian form H, fix e1 ∧F · · · ∧F e2n as a generator of∧2n
F V , and let Ψ be the corresponding Hermitian matrix.

Lemma 3.1.5. Notations as above. We have ?? = (−1)n det(Ψ) · id.

Proof. See Lemma 3.21 of [3].

Remark 3.1.6. If we multiply the generator of
∧2n
F V by some c ∈ E, we

multiply ? by c, and hence we replace ?? by NmF/Q(c) ? ? (because ?c = c̄?).

The CY 3-folds case

Now let us prove Theorem 3.1.2 for n = 3, which will be completed in two steps.
We have constructed an injective Q-linear map

∧3
F H

1(X,Q) ↪→
∧3
QH

1(X,Q)
in Lemma 3.1.3 (with l = 3 here). Let us denote it by i. In the first
step, we show that the subspace i(

∧3
F H

1(X,Q)) is a sub-Hodge structure
of
∧3
QH

1(X,Q).
For that, let us consider the following map

ϕ∗3 :
3∧
Q

H1(X,Q)→
3∧
Q

H1(X,Q),
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which is defined by

v1 ∧ v2 ∧ v3 7→ ϕ∗v1 ∧ ϕ∗v2 ∧ v3 + ϕ∗v1 ∧ v2 ∧ ϕ∗v3 + v1 ∧ ϕ∗v2 ∧ ϕ∗v3.

Proposition 3.1.7. Notations as above. Then Im(i) = Ker(ϕ∗3 + 3d · id).

Proof. Recall that the injective map i is a composition of several Q or F -linear
maps. Write these maps in terms of Q and F -basis, we have that

i(v1∧Fv2∧Fv3) =
1

4
v1∧v2∧v3−

1

4d
(ϕ∗v1∧ϕ∗v2∧v3+ϕ∗v1∧v2∧ϕ∗v3+v1∧ϕ∗v2∧ϕ∗v3).

It is then easy to verify that i(
∧3
F H

1(X,Q)) ⊂ Ker(ϕ∗3 + 3d · id). For the
equality, it suffices to show that these spaces have the same dimension. As
dimX = 6, dimQH

1(X,Q) = 12, and hence dimQ(
∧3
F H

1(X,Q)) = 40.
Let H1(X,F ) = V+⊕V− be the decomposition of H1(X,F ) = H1(X,Q)⊗Q

F into the subspaces on which ϕ∗ acts as multiplication by ϕ and ϕ̄ respec-
tively. We have that dimF H

1(X,F ) = 12 and dimF V+ = dimF V− = 6
(because V+ = V−).

By direct computation, the minimal polynomial of ϕ∗3 is (T+3d)(T−d) = 0.
So
∧3
QH

1(X,Q) = H3
+⊕H3

−, where H3
+ (resp. H3

−) is the +d eigenspace (resp.
the −3d eigenspace) of ϕ∗3. Note that we have showed that Im(i) ⊂ H3

−. Now
tensor the decomposition by F , we have on one hand that

(
3∧
Q

H1(X,Q))⊗Q F = (H3
+ ⊗Q F )⊕ (H3

− ⊗Q F ) := H3
+,F ⊕H3

−,F ,

and on the other hand that

(
3∧
Q

H1(X,Q))⊗QF =
3∧
F

H1(X,F ) =
3∧
F

V+⊕(
2∧
F

V+⊗FV−)⊕(V+⊗
2∧
F

V−)⊕
3∧
F

V−.

It is easy to show that
∧3
F V+ ⊂ H3

−,F , (
∧2
F V+ ⊗F V−) ⊂ H3

+,F , (V+ ⊗∧2
F V−) ⊂ H3

+,F and
∧3
F V− ⊂ H3

−,F , and so

H3
+,F = (

2∧
F

V+ ⊗F V−)⊕ (V+ ⊗
2∧
F

V−), H3
−,F =

3∧
F

V+ ⊕
3∧
F

V−.

The proposition then follows from the following dimension counting:

dimQ Ker(ϕ∗3 + 3d · id) = dimQH
3
− = dimF H

3
−,F = 20 + 20 = 40.
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Let S = i(
∧3
F H

1(X,Q)) ⊂
∧3
QH

1(X,Q) = H3(X,Q). Using Proposi-
tion 3.1.7, we have S = H3

−, the −3d eigenspace of ϕ∗3. Because ϕ ∈ End(X)⊗
Q, the induced map ϕ∗ preserves the Hodge structure on H1(X,Q). It is then
not difficult to see that the endomorphism ϕ∗3 of

∧3
QH

1(X,Q) = H3(X,Q)
is a morphism of Hodge structures, and hence S is a sub-Hodge structure of
H3(X,Q). Let us now compute the Hodge numbers of S.

Lemma 3.1.8. The subspace S is a sub-Hodge structure of H3(X,Q) with
dimS3,0 = dimS0,3 = 2.

Proof. We have shown that S ⊂ H3(X,Q) is a sub-Hodge structure. Let
H1(X,C) = V+⊕ V− be the decomposition of H1(X,C) into the ϕ = i

√
d and

the ϕ̄ = −i
√
d eigenspaces of ϕ∗. Also let V 1,0

± = V± ∩ H1,0(X), and V 0,1
± =

V±∩H0,1(X). Because X is of Weil type (3, 3), we have that V± = V 1,0
± ⊕V

0,1
±

and dimC V
1,0
± = dimC V

0,1
± = 3 (see for instance the proof of Lemma 5.2.6 of

[35]).
By Proposition 3.1.7 we know that S = H3

−. The same argument as there

shows that H3
− ⊗Q C =

∧3
C V+ ⊕

∧3
C V−. It follows that

dimC S
3,0 = dimC

3∧
C

V 1,0
+ + dimC

3∧
C

V 1,0
− = 2,

dimC S
0,3 = dimC

3∧
C

V 0,1
+ + dimC

3∧
C

V 0,1
− = 2.

It is often convenient to identify
∧3
F H

1(X,Q) with S. In the second
step, we will further decompose S or

∧3
F H

1(X,Q) using the star opera-
tor. To be specific, we first choose an F -basis {e1, · · · , e6} of H1(X,Q)
in which the matrix of the Hermitian form H (defined in Section 3.1.1) is
diag(a, 1, 1,−1,−1,−1) with a ∈ Q+ (see for example [35] 5.4). The element
e1 ∧F · · · ∧F e6 is a generator of

∧6
F H

1(X,Q), so it defines an isomorphism

γ :
6∧
F

H1(X,Q)
∼=−→ F.

Then we define the endomorphism ? on
∧3
F H

1(X,Q) in the same way as in
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(3.1.4). Using the notations there (with V = H1(X,Q) and n = 3), we have

H̃(v, w) = γ(?(w) ∧F v)

for all v, w ∈
∧3
F H

1(X,Q). Recall also that ? is F -conjugate linear and
satisfies

?? = a · id.

Lemma 3.1.9. The Q-linear operator ? is a morphism of rational Hodge struc-
tures. In other words, ? ∈ EndHod(S).

Proof. The space H1(X,R) has the structure of a complex vector space via
the identification H1(X,R) ∼= T0X. Taking the dual, we obtain a complex
structure on H1(X,R) which will be denoted by J . Then the representation

h : C∗ → GL(H1(X,R)), a+ bi 7→ aid + bJ

defines the Hodge structure on H1(X,Q). It is not difficult to see that the
Hodge structure on S corresponds to the representation

h3 : C∗ → GL(S ⊗Q R), h3(z)(v1 ∧C v2 ∧C v3) = h(z)v1 ∧C h(z)v2 ∧C h(z)v3,

where v1, v2, v3 ∈ H1(X,R) (note that S⊗QR =
∧3
CH

1(X,R)). Let us denote
by h6 the representation of C∗ on

∧6
CH

1(X,R) defined in a similar manner.
According to [35] Lemma 5.2.6, we have h6(z)(v ∧C w) = z3z̄3(v ∧C w) =
|z|6(v ∧C w) for all v, w ∈ S ⊗Q R. Using the properties of the Hermitian form
H, one can easily verify that H̃(h3(z)v, h3(z)w) = (zz̄)3H̃(v, w) = |z|6H̃(v, w).
Putting these observations together, we have for all z ∈ C∗ and v, w ∈ S⊗QR
that (we use the same letters to denote the R-extensions of γ, ?, H and H̃
here)

γ(?(h3(z)w) ∧C h3(z)v) = H̃((h3(z)v, h3(z)w) = |z|6H̃(v, w),

and that

γ((h3(z)(?(w)))∧Ch3(z)v) = γ(h6(z)(?(w)∧Cv)) = |z|6γ(?(w)∧Cv) = |z|6H̃(v, w).

It follows that ? ◦ h3(z) = h3(z) ◦ ?, and hence ? ∈ EndHod(S) as claimed.

We are now ready to prove the n = 3 case for Theorem 3.1.2. Let (X,F,E)
be a 6-dimensional polarized abelian variety of Weil type with discr(X,F,E) =
−1. We have shown thatH3(X,Q) has a sub-Hodge structure S with dimC S

3,0 =
dimC S

0,3 = 2 in Lemma 3.1.8. As det(H) = −a, we have discr(X,F,E) = −a,
and so a ≡ 1 in Q∗/NmF/Q(F ∗). In other words, there exists a nonzero element
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c ∈ F such that a = NmF/Q(c). As explained before, if we multiply the gener-

ator e1 ∧F · · · ∧F e6 of
∧6
F H

1(X,Q) by c, we replace ?? by NmF/Q(c) ? ?, and
hence we can assume that ?? = id (note that originally we have ?? = a · id).

By Lemma 3.1.9, we have S = T+⊕T− with T± = Ker(?∓id) be sub-Hodge
structures. Multiplication of

∧3
F H

1(X,Q) by ϕ ∈ F induces an isomorphism
of Hodge structures T+ → T− (it is well-defined because ?ϕ = −ϕ? and the
inverse map is multiplication by ϕ/(−d)). It is now clear that T+

∼= T− is a
Hodge structure of CY type.

The general cases

When n = 1, the abelian variety of Weil type X has dimension 2, and so
the weight 1 Hodge structure H1(X,Q) has Hodge numbers [2, 2]. As in the
weight 3 case, we can define a morphism ? ∈ EndHS(H1(X,Q)) of rational
Hodge structures such that ?? = id. Then it is easy to see that the sub-Hodge
structure T+ = Ker(?− id) of H1(X,Q) has Hodge numbers [1, 1].

For n ≥ 2, the strategy of the proof is the same as the CY 3-fold case. One
more thing we need is a proper generalization of the map ϕ∗3. For a fixed n and
v1, · · · , vn ∈ H1(X,Q), we pick up 2l (0 ≤ 2l ≤ n) elements from {v1, · · · , vn}
and apply the map ϕ∗ to them in the expression v1∧v2∧· · ·∧vn. For instance,
if the elements v1, v2, · · · , v2l are chosen, then we get ϕ∗v1∧ϕ∗v2∧· · ·∧ϕ∗v2l∧
v2l+1∧· · ·∧vn. The sum of such

(
n
2l

)
elements of

∧n
QH

1(X,Q) will be denoted
by E2l(v1 ∧ · · · ∧ vn). We now define the map ϕ∗n by

ϕ∗n :
n∧
Q

H1(X,Q)→
n∧
Q

H1(X,Q), v1 ∧ · · · ∧ vn 7→ E2(v1 ∧ · · · ∧ vn).

Since ϕ∗ is a morphism of Hodge structures, the map ϕ∗n respects the Hodge
structure on

∧n
QH

1(X,Q) = Hn(X,Q).
Write down the map i :

∧n
F H

1(X,Q) ↪→
∧n
QH

1(X,Q) constructed in
Lemma 3.1.3 in terms of Q and F -basis, we obtain

i(v1 ∧F · · · ∧F vn) =
1

2n−1

bn
2
c∑

l=0

1

(−d)l
E2l(v1 ∧ · · · ∧ vn).

(One can see from this that the composition of the map i with the nat-
ural surjective map

∧n
QH

1(X,Q) �
∧n
F H

1(X,Q) is the identity map on∧n
F H

1(X,Q), which confirms that the map i is injective.) Direct calculation
shows that Im(i) ⊂ Ker(ϕ∗n +

(
n
2

)
d · id).

Let H1(X,F ) = V+⊕V− be the decomposition of H1(X,F ) into the ϕ and
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ϕ̄ eigenspaces of ϕ∗ : H1(X,F )→ H1(X,F ). As in the proof of Lemma 3.1.7,
we have that dimF V+ = dimF V− = 2n. Also, we have

(
n∧
Q

H1(X,Q))⊗Q F =
n∧
F

H1(X,F ) =
⊕
r+s=n

(
r∧
F

V+ ⊗F
s∧
F

V−).

Using this, it is easy to see that ϕ∗n ⊗Q F :
∧n
F H

1(X,F ) →
∧n
F H

1(X,F )
acts on the space (

∧r
F V+⊗F

∧n−r
F V−)⊕ (

∧n−r
F V+⊗F

∧r
F V−) as multiplication

by 2r(n − r)d −
(
n
2

)
d. Therefore, the corresponding minimal polynomial is

a product of distinct linear factors which all have rational coefficients. It
follows that the linear operator ϕ∗n has the same minimal polynomial, and
thus

∧n
QH

1(X,Q) splits into a direct sum of eigenspaces of ϕ∗n. It is then not
difficult to show that

dimQ(Ker(ϕ∗n +

(
n

2

)
d · id)) = dimF (

n∧
F

V+ ⊕
n∧
F

V−) = 2

(
2n

n

)
.

Since dimQ Im(i) = 2
(

2n
n

)
, we have proven that Im(i) = Ker(ϕ∗n +

(
n
2

)
d · id).

An immediate corollary is that S :=
∧n
F H

1(X,Q) is a sub-Hodge struc-
ture of

∧n
QH

1(X,Q). The condition that X is of Weil type guarantees that
dimC S

n,0 = dimC S
0,n = 2 (See Lemma 3.1.8). The rest of the proof is the

same as that for the CY 3-fold case. Specifically, we choose an F -basis of
H1(X,Q) which diagonalizes the Hermitian form H, which allows us to de-
fine an F -conjugate linear operator ? as in (3.1.4). Thanks to the assumption
that discr(X,F,E) = (−1)n, we have that ?? = id. The same argument as in
Lemma 3.1.9 shows that ? ∈ EndHS(S). Let T± := Ker(?∓id). The sub-Hodge
structure T+ and T− are isomorphic to each other, and so each of them is of
CY type.

The abelian varieties of Weil type coming form algebraic curves

Some abelian varieties of Weil type can be constructed from algebraic curves
(more precisely, from unramified Galois coverings of algebraic curves with cer-
tain Galois groups). One example is given in [36]. Let Cn+1 be a smooth
projective algebraic curve of genus n + 1. An element of Pic0(Cn+1) of order
four generates a subgroup G = Z/4Z and defines a 4 : 1 covering of Cn+1 and
an intermediate 2 : 1 cover

Cn+1 ← C2n+1 ← C4n+1.
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The Prym variety Pn of the double cover C4n+1/C2n+1 is a principally polarized
abelian variety of dimension 2n. The covering automorphisms of C4n+1/C2n+1

induces an action of Z[i] on Pn. By Theorem 5.3 of op. cit., the abelian variety
(Pn,Q(

√
−1)) (with the natural polarization) is of Weil type (n, n). Another

example is discussed in [37] Section 11, where the (generalized) Prym variety
Q of an unramified Galois cover of a genus 4 curve with Galois group Z/3Z is
shown to be of Weil type (3, 3) with field Q(

√
−3) and discriminant −1.

Combining these observations with Theorem 3.1.2, we obtain the following
corollary.

Corollary 3.1.10. Let Pn, Q be as above. Then Hn(Pn,Q) (resp. H3(Q,Q))
contains a rational sub-Hodge structure of CY n-fold type (resp. of CY 3-fold
type).

Let us also mention that sometimes the converse statements hold (but we
will not need them). All examples we know along this line are listed as follows.

1. A generic abelian 4-fold of Weil type (X,Q(
√
−1)) with discriminant 1 is

isogenous to the Prym variety associated to an unramified Galois cover
of a genus 3 curve with Galois group Z/4Z (see [36]).

2. A generic abelian 6-fold of Weil type (X,Q(
√
−3)) with discriminant −1

is isogenous to the (generalized) Prym variety of an unramified Galois
cover of a genus 4 curve with Galois group Z/3Z (see [37]).

3. A generic abelian 6-fold of Weil type (X,Q(
√
−1)) with discriminant −1

is isogenous to the Prym variety associated to an unramified Galois cover
of a genus 4 curve with Galois group Z/4Z (see [38]).

3.1.3 Hermitian CY variations of Hodge structures and
abelian varieties of Weil type

Hermitian symmetric domains of A2n−1

Let D be an irreducible Hermitian symmetric domain, and denote its auto-
morphism group by Hol(D). There exists a unique simple real algebraic group
G such that G(R)+ = Hol(D)+ (see [27] Page 478), where the superscript +
denotes the identity component. Taking the algebraic universal cover of G, we
obtain a simply connected, simple real algebraic group G whose real points
acts transitively on D. Let K be a maximal compact subgroup of G(R), then
K fixes a unique point of D and D ∼= G(R)/K.

44



According to 1.2.6 of [6] (see also [27] Page 479), the irreducible Hermitian
symmetric domains are classified by pairs (∆, ν), where ∆ is a connected
Dynkin diagram and ν is a special node of ∆.

For the Hermitian symmetric domains D of type A2n−1, the corresponding
special node is the n-th node αn. In this case, we have that G(R) = SU(n, n)
and K = S(U(n) × U(n)). Note also that the real rank of D is n and the
complex dimension is n2.

The canonical variations of real Hodge structures of CY type and
cominuscule representations

We now recall the construction of the canonical CY variations of real Hodge
structure over the irreducible tube domains D following Section 3 of [1]. Let
U1 be the circle group. Let ε be the unique element of order 2 in the center
of G(R) which is contained in the connected component of the center of K.
Now we define the real reductive group G1 to be the quotient of Gm × G by
the central subgroup generated by the involution −1× ε.

Let S = ResC/RGm be the Deligne torus; then we have S = Gm×U1/〈−1×
−1〉. A point of D determines a homomorphism U1 ↪→ K ↪→ G(R) (c.f. also
[23] Proposition 5.7). Since this maps the element −1 of U1 to the element ε
of G(R), it determines a homomorphism h : S → G1 which is the identity on
Gm. The G1(R)-conjugacy class Y of h has two connected components, each
of which is isomorphic to D.

Suppose that the tube domain D corresponds to the pair (∆, ν). Let UR be
a real irreducible representation of G such that UC := UR⊗RC is the irreducible
representation of G(C) determined by ν (i.e. the highest weight of UC is
the fundamental weight corresponding to the node ν). Such a representation
UC is called a cominuscule representation. Because ε acts as (−1)n on UR,
with n = rank(D), UR extends uniquely to a representation of G1 such that
λ ∈ Gm acts as multiplication by λn. According to Proposition 1.1.14 of [6]
(see also Theorem 2.2.3), the representation UR of G1, when combined with the
morphisms h′ ∈ Y , give rise to a polarizable variation of real Hodge structure
on Y (and hence on D).

By Section 4 of [1] or Theorem 2.22 of [3], the variation of real Hodge
structure on D given by UR is pure of weight n = rank(D) and is of CY type.
We call it the canonical CY variations of real Hodge structures over D. ( We
only need the cases when the domain D is of tube type, which is equivalent to
saying that UR⊗RC is still irreducible. See [3] for the non-tube domain cases.)
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A family of abelian varieties of Weil type

Let F = Q(ϕ) with ϕ2 = −d (d ∈ Z+). Also let V be the vector space F 2n

and H the F -Hermitian form of signature (n, n) on V defined by

H(v, w) = v1w̄1 + · · ·+ vnw̄n − vn+1w̄n+1 − · · · − v2nw̄2n (3.1.11)

for v = (v1, · · · , v2n) and w = (w1, · · · , w2n). Then VR := V ⊗Q R is the
standard representation of the real algebraic group G = SU(VR, HR), where
HR denotes the R-bilinear extension of H (note that G(R) = SU(n, n) and
G has a natural Q-descent). Let D be an irreducible Hermitian symmetric
domain of type A2n−1. Up to isomorphism, D can be described as

D = {W ⊂ VR | dimCW = n,HR|W is positive definite}.

Using the previous notations, the element ε = −I in G(R), and so VR
extends to a representation of G1 such that λ ∈ Gm acts by λ. By Proposition
1.1.14 of [6] (see also [27] Section 2.2), the compositions

S h′−→ G1 → GL(VR),

when h′ runs over all elements of Y , define a polarizable rational Hodge struc-
ture V on the local system associated to the rational vector space V over D.
Moreover, the variation of Hodge structure V is pure of weight 1. Applying
Riemann’s Theorem in families (see for example Theorem 2.2 of [39] and its
variants) to V(1) and taking the dual abelian varieties, we obtain a family of
abelian 2n-folds π : X → D such that V is the natural variation of rational
Hodge structure of weight 1 associated to π (by taking R1π∗Q, see for example
Chapter 10 of [40]).

Lemma 3.1.12. Each member of the family π : X → D is an abelian variety
of Weil type for the field F .

Proof. A point o ∈ D determines a homomorphism u : U1 ↪→ K ↪→ G(R)
which extends to h′ : S→ G1. The action of h′(i) defines a complex structure
Jo, or equivalently a Hodge structure of weight one, on VR. By the construc-
tion, the action of h′(i) on VR is the same as the action of u(i), which can
be described as follows: if the point o ∈ D corresponds to a complex sub-
space W ⊂ VR on which the Hermitian form HR is positive definite, then u(i)
acts on W as multiplication by i and acts on W⊥ as multiplication by −i.
With respect to Jo, one can see easily that any element k ∈ F acts on the
n-dimensional subspace W (resp. W⊥) as scalar multiplication by k (resp. k̄).
As in [35] Section 3.4, the complex structure Jo also determines the complex
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structure on T0X for the corresponding abelian variety X (note that X is
unique up to isogeny). Now that Jo commutes with the action of F , we have
F ⊂ End(X)⊗Q. Moreover, the R-bilinear extension of E := Im(H) satisfies
the Riemann conditions for Jo, and induces the required polarization on X. It
is now not hard to conclude that X is of Weil type.

A sub-variation of Hodge structure of CY type

Notations as in the previous sections. Our goal here is to prove the following
theorem.

Theorem 3.1.13. Let π : X → D be the family of abelian variety constructed
as above. Then the natural variation of rational Hodge structure

∧n
Q V of

weight n associated to π contains a variation of rational Hodge structure U of
CY type. Moreover, the scalar extension of U from Q to R is isomorphic to
the canonical variation of real Hodge structure of CY type over D.

Proof. We have shown that
∧n
F V is aQ-subspace of

∧n
Q V in Lemma 3.1.3. Let

{e1, · · · , e2n} be a standard basis of V = F 2n. With respect to the generator
e1∧F · · ·∧F e2n of

∧n
F V , we define the F -conjugate linear operator ? :

∧n
F V →∧n

F V as in (3.1.4). By Lemma 3.1.5, we have ?? = id. Let U := Ker(? − id)
be the +1 eigenspace of ?. We have U ⊂

∧n
F V ⊂

∧n
Q V .

The natural action of G on VR induces an action on (
∧n
F V )⊗QR =

∧n
C VR.

Denote also by ? its scalar extension to R. The action of G preserves the
corresponding volume form of

∧n
C VR, the pairing

∧n
C VR ×

∧n
C VR →

∧2n
C VR,

and the Hermitian form HR, and hence commutes with ?. Being an eigenspace
of ?, the subspace UR := U ⊗Q R is still a representation of G.

As discussed, we can extend this action of G on UR to G1 such that λ ∈ Gm

acts by λn. Let h : S → G1 be the homomorphism defined as before. The
compositions of G1 → GL(UR) with the G1(R)-conjugates of h then induces
a variation of rational Hodge structure U on D. It is well-known that the
representation

∧n
C VR has highest weight $n, and hence it is a cominuscule

representation for D. Since there exists a C-conjugate linear operator ? with
?? = id, the representation

∧n
C VR is defined over R. In other words, we

have UR ⊗R C ∼=
∧n
C VR. This shows that UR is the minimal cominuscule

representation; therefore, the induced variation of Hodge structure U is of CY
type and U ⊗Q R is isomorphic to the canonical one on D.

We claim that with the natural G-actions
∧n
C VR is a subrepresentation of∧n

R VR. Recall that the injective map
∧n
C VR ↪→

∧n
R VR is a composition of

several injective maps. It is not difficult to verify that each of these injective
maps commutes with the action of G. Since the R-vector space UR is a G-
subrepresentation of

∧n
C VR, it is aG-subrepresentation of

∧n
R VR as well. It also
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follows from the construction that the inclusion UR ↪→
∧n
R VR commutes with

the action of Gm, and so UR ↪→
∧n
R VR is a morphism of G1-representations.

Composing both representations with all elements h′ : S→ G1 of Y , we obtain
an inclusion of variations of Hodge structure.

3.1.4 On a generalization to locally symmetric domains

In this section, we discuss an analogue of Theorem 3.1.13 for certain locally
symmetric domains.

Let the field F , the vector space V = F 2n and the Hermitian form H be
as in (3.1.11), also let D be an irreducible Hermitian symmetric domain of
type A2n−1 with n ≥ 2. Consider the Q-algebraic group G = SU(V,H) whose
R-valued points (R is a Q-algebra) are given by

G(R) =

{
A ∈ GL2n(F ⊗Q R)

∣∣∣∣ At( In 0
0 −In

)
A =

(
In 0
0 −In

)}
(The matrix A is obtained by taking the conjugate of every entry of A by
k ⊗ r := k̄ ⊗ r). The algebraic group G is simply connected, and G(R) =
SU(n, n). Since Hol(D)+ ∼= PSU(n, n), there exists a surjective homomor-
phism ξ : G(R) � Hol(D)+. Choose a subgroup Γ of Hol(D)+ which is
commensurable with ξ(G(Q) ∩ GL2n(Z)). By Proposition 3.6 of [23], we can
assume that Γ is discrete of finite covolume and torsion free. Now the quotient
Γ\D is an arithmetic locally symmetric domain in the sense of [27] (see Page
488).

A choice of a reference point of o ∈ D gives a homomorphism h̄ : S→ Gad
R

(see (8.4) of [27], Page 510). By Theorem 2.3.6, to give a polarizable variation
of rational Hodge structure (which admits an integral structure) W on Γ\D
such that some fiber is of CM-type and the monodromy representation has
finite kernel is the same as giving a representation ρ : G → GL(W ) of G,
a reductive algebraic group M ⊂ GL(W ) defined over Q (thought of as the
generic Mumford-Tate group of W), and a morphism of algebraic groups h :
S→MR ⊂ GL(WR), such that

(1) The morphism h defines a polarizable rational Hodge structure on W ;

(2) The representation ρ factors through M and ρ(G) = Mder;

(3) The composition Ad ◦ h : S→MR →Mad
R
∼= Gad

R is equal to h̄.

If only pure Hodge structures are concerned, then it suffices to use the subgroup
Hg = M ∩ SL(W ) (thought of as the generic Hodge group of W).
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The variations of rational Hodge structures on locally symmetric varieties
that give families of abelian varieties are classified in Chapter 10 of [27]. In
our case, let us consider the natural representation ρ : G→ GL(V ). Let VR =
V⊗QR and VC = V⊗QC. It is easy to see that VR is the standard representation
of G(R) = SU(n, n), and so we have VC ∼= V+⊕V− as representations of G(C),
where V+ has highest weight $1 and V− ∼= V ∗+ has highest weight $2n−1.
Because both $1 and $2n−1 correspond to symplectic nodes of D (see Page
528 of op. cit.), the representation ρ is a symplectic representation in the sense
of Definition 10.12 of op. cit., and hence gives a family of abelian varieties
π : X → Γ\D (see Theorem 11.8 of op. cit.). It is not difficult to see that π is
a family of abelian varieties of Weil type for the field F .

Let V be the weight 1 variation of rational Hodge structure on Γ\D given
by the representation ρ, which can also be obtained by taking R1π∗Q for the
family of abelian varieties π : X → Γ\D. Because each fiber of π is of Weil
type, the generic Hodge group Hg(V) is semisimple (see B.63 of [41]). We claim
that the generic Hodge group Hg := Hg(

∧n
Q V) of

∧n
Q V is also semisimple. As

is well known, all quotients of a semisimple algebraic group are semisimple,
and so the generic Hodge group of V⊗n, being a quotient of Hg(V) (see [39]
Remark 1.8), is semisimple. Since the generic fiber of

∧n
Q V can be viewed as

a sub-Hodge structure of that of V⊗n, Hg is a quotient of Hg(V⊗n) (see for
example (I.B.7) of [4]), and hence is semisimple.

As in Lemma 3.1.3, we have an inclusion i :
∧n
F V ↪→

∧n
Q V . The action of

G on V induces the natural actions on
∧n
Q V and

∧n
F V , and it can be verified

that the map i commutes with these G-actions. We also define an F -conjugate
operator ? on

∧n
F V such that ?? = id (see (3.1.4)). It is easy to see that ?

commutes with the G-action. Let U = Ker(?− id), we then have an inclusion
U ⊂

∧n
F V ⊂

∧n
Q V of G-representations.

Let UR = U ⊗Q R ⊂
∧n
C VR. We then have UR ⊗R C ∼=

∧n
C VR, which has

highest weight $n and hence is a cominuscule representation. By Theorem
2.22 of [3], the G-representation U gives rise to a variation of rational Hodge
structure U of CY type.

Consider the representation G → GL(
∧n
Q V ) which corresponds to the

variation of Hodge structure
∧n
Q V . Because Hg = Hg(

∧n
Q V) is semisimple,

we have Hg = Hgder, and hence Hg equals the image of G. It follows that
we also have U ⊂

∧n
F V ⊂

∧n
Q V as Hg-representations. Composing this with

the Hg(R)+-conjugacy class of homomorphisms S→ HgR, we see that the CY
type variation of Hodge structure U is a sub-variation of Hodge structure of∧n
Q V .
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3.2 The DH
2n case

The goal of this section is to prove the following theorem.

Theorem 3.2.1. Let D be the Hermitian symmetric domain (DH
2n, α2n) which

has real rank n (n ≥ 2).

(1) When n = 2, there exist two families of abelian varieties π1 : A1 → D
and π2 : A2 → D such that R1π1∗Q ⊗Q R1π2∗Q contains a Hermitian
Q-variation of Hodge structure of K3 type V. Moreover, V ⊗Q R is
isomorphic to the canonical R-variation of Hodge structure of CY type
(which has weight 2) over D.

(2) When n ≥ 2, there exists a family of abelian varieties π : A → D over
D such that R2nπ∗Q contains an irreducible Hermitian Q-variation of
Hodge structure V ′ of CY type. Moreover, V ′ ⊗Q R is isomorphic to the
unique irreducible factor of CY type in Sym2 VR, where VR is the the
canonical R-variation of Hodge structure of CY type over D.

Remark 3.2.2. Over Hermitian symmetric domains of type DH
2n, one important

reason why the rank 2 case (i.e. n = 2) is distinguished from the higher rank
cases (i.e. n ≥ 3) is that there are two different symplectic nodes for the rank
2 case while there is only one for the higher rank cases (c.f. Pages 529−530 of
[27]). This fact was also noted and used by Abdulali to solve a quite different
problem (c.f. [42]).

Also, in the higher rank cases one has to module out the kernel of ω1 (viewed
as a character) from the simply connected groups of DH type to obtain faithful
symplectic representations (c.f. Page 530 and Theorem 10.21 of [27]). More
specifically, we should view these faithful representations as representations of
the groups SO∗ (c.f. Remark 1.22 of [43]).

Remark. In Part (2) of Theorem 3.2.1, we only realize Sym2 VR (not the canon-
ical CY variation VR). When the rank of the domain is bigger or equal to 3,
this is the best our constructions can do. We shall explain the representation
theoretic reasons in Remark 3.2.13.

After reviewing some background material on Hermitian symmetric do-
mains of type DH

2n and the groups Spin∗ and SO∗ in Sections 3.2.1 and 3.2.2,
we prove the Theorem 3.2.1 for the rank 2 case and higher rank cases in Section
3.2.3 and Section 3.2.4 respectively. The constructions for these two cases are
different, but the ideas of the proof are quite similar (and are also similar with
the A2n−1 case). Specifically, to give a variation of Hodge structure over a Her-
mitian symmetric domain it suffices to give a Hodge representation, and one
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can reduce the construction of a sub-variation of Hodge structure to the con-
struction of a subrepresentation. Another key step is to prove the rationality
of certain representations (e.g. half-spin representations) using representation
theory of spin groups and the ideas from [32].

3.2.1 Hermitian symmetric domains of type DH
2n

Let D = G(R)/K be a Hermitian symmetric domain, where G is the R-
algebraic group (almost simple and simply connected) associated to D, and K
is a maximal compact subgroup of G(R). Recall that irreducible Hermitian
symmetric domains are classified by the root system of G(C) together with one
of its special roots. In particular, an irreducible Hermitian symmetric domain
of type DH

2n (N.B. it has real rank n) corresponds to the pair (D2n, α2n)) and
the associated simply connected algebraic group is Spin∗(4n) (c.f. Section 1
of [1]). By choosing a suitable arithmetic subgroup of Hol(D), we can also
assume that G is defined over Q.

Following Deligne (see also Theorem 2.3.6), to give a Hermitian Q-variation
of Hodge structure over D one must give a representation ρ : G→ GL(V ) de-
fined over Q and a compatible polarization Q on V , so that ρ(V ) ⊂ Aut(V,Q).
As explained in Step 4 of (IV.A) in [4], a compatible polarization typically ex-
ists and is unique. Without loss of generality, one can also assume that ρ is
irreducible over Q.

The necessary and sufficient conditions for ρ : G → GL(V ) together with
a reference point ϕ : U1 → Ḡ (Ḡ = G/Z(G) is the adjoint group) to give a
Hermitian variation of Hodge structure are as follows: there exists a reductive
algebraic group M ⊂ GL(V ) defined over Q (the generic Mumford-Tate group
of the variation of Hodge structure) and a homomorphism of algebraic groups
h : S→MR ⊂ GL(VR) (S = ResC/RGm) such that

(1) the homomorphism h defines a Hodge structure on V ;

(2) the representation ρ factors through M and ρ(G) = Mder;

(3) the induced map h̄ : S/Gm →Mad,R = Ḡ is equal to ϕ : U1 → Ḡ.

Remark.

(1) Following [4], we call ρ a Hodge representation.

(2) Subrepresentations of V correspond to sub-variation of Hodge structure
and operations on representations correspond to the same operations on
Hermitian variations of Hodge structure.
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Let us also recall that the canonical R-variation of Hodge structure of CY
type VR over the (D2n, α2n) domain (n ≥ 2) is given by a R-representation
S+

0,R of G(R) = Spin∗(4n) with the property that S+
0,R ⊗R C is the half-spin

representation with highest weight $2n (which is the fundamental cominuscule
weight associated to the domain (D2n, α2n)). The weight of VR equals n, the
real rank of (D2n, α2n). Furthermore, any other irreducible R-variation of
Hodge structure of CY type can be obtained from VR by taking the unique
irreducible factor of Sym• VR of CY type.

3.2.2 The groups Spin∗ and SO∗

We now construct a Q-form H of the real algebraic group SO∗(2m) following
[32]. Then the spin double cover G of H, which is simply connected gives a
Q-form of Spin∗(2m), and can be associated with type DH

m domains.
Let E = Q(

√
−d) (d ∈ Z+) be an imaginary quadratic extension of Q,

and let W be an E-vector space of dimension 2m with an E-basis e1, · · · , e2m.
We write z =

∑2m
i=1 ziei, and similarly for w ∈ W . Suppose that Q(−,−) is a

nondegenerate E-bilinear form on W , written in the standard form

Q(z, w) =
2m∑
i=1

(ziwm+i + zm+iwi).

Also, let h be the standard (E,Q)-Hermitian form of signature (m,m) on W
given by

h(z, w) =
m∑
i=1

ziw̄i −
m∑
i=1

zm+iw̄m+i.

Now we define H to be the group of E-linear isomorphisms of W which have
determinant 1 and preserve Q and h. The group H is defined over Q since it is
the intersection of ResE/QSO(W,Q) with SU(W,h). Moreover, recall that the
real group SO∗(2m) is defined to be the isometry group of a skew-Hermitian
form on Hm. By Exercise 1.1.5 (12) of [44], we have H ⊗Q R ∼= SO∗(2m).

Define G to be the neutral component of the preimage in ResE/QSpin(W,Q)
of H under the spin double covering map. Then G is a Q-form of Spin∗(2m).

To conclude this subsection, let us note that there are some natural rep-
resentations of G. The first one is the standard representation G → H →
GL(W ). Moreover, G also admits two half-spin representations. To construct
them, let W1 (resp. W2) to be the Q-isotropic E-vector subspace of W spanned
by e1, · · · , em (resp. em+1, · · · , e2m). The half-spin representations are then
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given by

S+ =
even∧
E

W1, S
− =

odd∧
E

W1.

3.2.3 The rank 2 case

We shall prove Part (1) of Theorem 3.2.1 in this section, using notations
from Section 3.2.2 (with m = 4). In particular, D is an irreducible Hermitian
symmetric domain of type (D4, α4), and G is the simply connected Q-algebraic
group associated to D as constructed in Section 3.2.2. First we show that there
are two families of abelian varieties over D.

Proposition 3.2.3. The standard representation G → GL(W ) and the half-
spin representation G → GL(S−) are both Hodge representations giving Q-
variations of Hodge structure of abelian variety type over D.

Moreover, there exists two families of abelian varieties π1 : A1 → D
and π2 : A2 → D such that the associated variation of Hodge structure
R1π1∗Q (resp. R1π2∗Q) corresponds to the Hodge representation ResE/QW
(resp. ResE/QS

−).

Proof. The representations G → GL(W ) and G → GL(S−) are both defined
overQ. By Summary 10.11 of [27] (see also Table 2.2), there are two symplectic
nodes associated to the domain DH

4 , namely $1 and $3. By the standard
representation theory (e.g. Chapter 19 and 20 of [45]), the representations
(ResE/QW )⊗QR and (ResE/QS

−)⊗QR satisfy the conditions in Theorem 2.4.3.
So they give two Hermitian Q-variation of Hodge structure of abelian variety
type, which further give two families of abelian varieties up to choices of the
underlying integral structures (c.f. Theorem 11.8 of [27]).

Remark 3.2.4. Recall that there are four types of irreducible polarizable Q-
Hodge structures (c.f. Albert’s classification and (1.19) − (1.21) of [39]), and
correspondingly four types of simple abelian varieties by looking at the asso-
ciated Q-Hodge structure of weight 1. In our cases, Theorem IV.E.4 of [4]
implies that the generic fiber of π1 and π2 are both of type III; therefore, the
generic special Mumford-Tate group (a.k.a. Hodge group) of the Hermitian
variations of Hodge structure R1π1∗Q and R1π2∗Q are both semisimple (c.f.
Proposition (1.24) of [39]). We also note a general fiber of the family of abelian
varieties A1 is isogenous to a certain Prym variety associated to a quaternionic
cover of a genus three curve (c.f. Section 3 of [21]).

Next we show that ResE/QS
+ is a G-subrepsentation of ResE/QW ⊗Q

ResE/QS
−.
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Lemma 3.2.5.

(1) S+ is a subrepresentation of W ⊗E S−.

(2) There is a natural inclusion ResE/Q(W⊗ES−) ⊂ (ResE/QW )⊗Q(ResE/QS
−)

which also commutes with the G-action.

Proof. (1) Let g = Lie(G). Every representation will be viewed as represen-
tation of g in this proof. Thanks to the complete reducibility, it suffices
to construct a surjection p : W ⊗E S− � S+ compatible with the action
of g. To define p, we use the inclusion W ⊂ C(W,Q) ∼= End(S+ ⊕ S−)
(where C(W,Q) is the Clifford algebra for Q). In other words, there
is an action of W on S+ ⊕ S−. By Lemma 20.9 of [45], the action
of W exchanges S− and S+. In other words, we have W × S− → S+,
(w, ξ) 7→ w(ξ) which is clearly E-bilinear and hence can be used to define
p. It is not difficult to check that p is surjective.

Next we check that p is compatible with the action of g. That is p(g ·(v⊗
ξ)) = g · p(v ⊗ ξ) for every g ∈ g, v ∈ W and ξ ∈ S−. To do this, recall
that we have (g ⊂)so(W,Q) ∼=

∧2
EW ↪→ C(W,Q) ∼= End(S+ ⊕ S−),

where the first two maps are morphisms of Lie algebras and the last one
is an algebra isomorphism (c.f. Lemma 20.7 of [45]). Without loss of
generality we assume that g = a ∧ b for a, b ∈ W . Let us also recall
that the multiplication in the Clifford algebra C(W,Q) is defined by
ab+ ba = 2Q(a, b). Now we have

p(g · (v ⊗ ξ)) = p((g · v)⊗ ξ + v ⊗ (g · ξ))
= (g · v)(ξ) + v(g · ξ)
= 2Q(b, v)a(ξ)− 2Q(a, v)b(ξ) + v(ab(ξ))−Q(a, b)v(ξ)

(By (20.4) and (20.6) of [45])

= 2Q(b, v)a(ξ)− 2Q(a, v)b(ξ) + (vab)(ξ)−Q(a, b)v(ξ)

= (abv)(ξ)−Q(a, b)v(ξ)

(By the definition of Clifford algebra)

= (ab)v(ξ)−Q(a, b)v(ξ)

= g · p(v ⊗ ξ).

(2) The proof is essentially the same as Lemma 3.1.3. Replacing wedge
product by tensor product causes no essential changes. Clearly, let us
denote ResE/Q by Res and the E-dual vector space using ∗. First observe
that there is a natural surjection Res(W ∗) ⊗Q Res(S−∗) � Res(W ∗ ⊗E
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S−∗) which gives by duality an injection

HomQ(Res(W ∗ ⊗E S−∗),Q) ↪→ HomQ(Res(W ∗)⊗Q Res(S−∗),Q).

Also, for any E-vector space M there is a natural isomorphism

Res HomE(M,E) ∼= HomQ(ResM,Q), f 7→ Tr ◦ f.

So the natural inclusion can be defined as follows.

Res(W ⊗E S−) ∼= Res(HomE(W ∗, E)⊗E HomE(S−∗, E))
∼= Res HomE(W ∗ ⊗E S−∗, E)
∼= HomQ(Res(W ∗ ⊗E S−∗),Q)

⊂ HomQ(Res(W ∗)⊗Q Res(S−∗),Q)
∼= HomQ(ResW ∗,Q)⊗Q HomQ(ResS−∗,Q)
∼= Res(W ∗∗)⊗Q Res(S−)∗∗

∼= ResW ⊗Q ResS−.

Finally, it is straightforward to check that this map is G-equivariant (also
after scalar extensions by arbitrary Q-algebras).

Now we show that the half-spin representation S+ is defined over Q.

Lemma 3.2.6. There exists a G-subrepresentation on a Q-vector space S+
0 ⊂

ResE/QS
+ such that S+

0 ⊗Q E ∼= S+.

Proof. As is well known, it suffices to construct an E-conjugate linear operator
? : ResE/QS

+ → ResE/QS
+ which is compatible with G-action and satisfy

? ◦ ? = id. In fact we can use the Hodge star operator associated to the
hermitian form h|W1 and the volume form e1 ∧ · · · ∧ e4 as defined in Section
3.5 of [3] (see also (3.1.4) and Lemma 3.1.5). One can easily show that ? is
E-conjugate linear and maps

∧2+2k
E W1 to

∧2−2k
E W1 (here k = −1, 0, 1). The

more difficult part, which has been done in Section 3 of [32], is to verify that
? is a morphism of G-representations (c.f. Page 96 of op. cit.).

Remark. For an arbitrary CM field, the operator ? may not commute with the
corresponding group action. To fix this, one should use the “twisted Hodge
star operator” defined in Definition 3.10 of [32].

We need a few more lemmas to prove Theorem 3.2.1. In what follows,
we shall denote the special Mumford-Tate group (a.k.a. Hodge group) of a
Q-Hodge structure V by Hg(V ).
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Lemma 3.2.7. Let V be a Q-Hodge structure and W ⊂ V be a sub-Hodge
structure. Then

(1) There exists a surjective homomorphism Hg(V ) � Hg(W ).

(2) If Hg(V ) is semisimple, then Hg(W ) is also semisimple.

Proof. Part (1) follows from (I.B.7) of [4]. Since any quotient of a semisimple
algebraic group is semisimple, Part (2) is clear from Part (1).

Lemma 3.2.8. Let V be a Q-Hodge structure and k ∈ Z+. If Hg(V ) is
semisimple, then Hg(

∧k
Q V ) is semisimple.

Proof. Since
∧k
Q V is a sub-Hodge structure of

⊗k
Q V , by Lemma 3.2.7 it suf-

fices to show that Hg(
⊗k

Q V ) is semisimple. According to (1.8) of [39], we

have Hg(
⊗k

Q V ) = r(Hg(V )) where r : GL(V ) → GL(
⊗k

Q V ) is the natu-
ral homomorphism. In other words, there exists a surjective homomorphism
Hg(V ) � Hg(

⊗k
Q V ), and hence Hg(

⊗k
Q V ) is semisimple as argued in the

previous lemma.

Finally let us prove Part (1) of Theorem 3.2.1.

Proof. By Lemma 3.2.5 and Lemma 3.2.6, we have

S+
0 ⊂ ResE/QS

+ ⊂ ResE/Q(W ⊗E S−) ⊂ (ResE/QW )⊗Q (ResE/QS
−)

as representations of G, and ResE/QW (resp. ResE/QS
+) corresponds to a

family of abelian varieties π1 : A1 → D (resp. π2 : A2 → D) over D (c.f.
Proposition 3.2.3). Let Ai be the generic fiber of πi (i = 1, 2). According to
Theorem IV.E.4 of [4], A1 and A2 are both of type III. By Proposition (1.24)
of [39], the special Mumford-Tate group of H1(A1×A2,Q) is semisimple. The
special Mumford-Tate group of H2(A1 × A2,Q) is also semisimple because
H2(A1×A2,Q) ∼=

∧2
QH

1(A1×A2,Q) (c.f. Lemma 3.2.8). Since H1(A1,Q)⊗Q
H1(A2,Q) is a sub-Hodge structure of H2(A1×A2,Q), H1(A1,Q)⊗QH1(A2,Q)
has a semisimple special Mumford-Tate group as well (Lemma 3.2.7).

As a result, the special Mumford-Tate group of the variation of Hodge
structure R1π1∗Q ⊗Q R1π2∗Q (which corresponds to the Hodge representa-
tion (ResE/QW ) ⊗Q (ResE/QS

−)) is semisimple. Let us denote it by Hg. By
what we recalled in Section 3.2.1, Hg is the image of G in SL((ResE/QW )⊗Q
(ResE/QS

−)). Being a G-subrepresentation, S+
0 is invariant under the action

of the special Mumford-Tate group Hg, and hence corresponds to a sub-Hodge
structure (see for example (1.12) of [39]).
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Now it suffices to show that S+
0 ⊗Q R gives the canonical R-variation of

Hodge structure of CY type. Let us first note that S+
0 ⊗QC ∼= S+

0 ⊗QE⊗QR ∼=
S+ ⊗Q R. Since S+ ⊗Q R is isomorphic to

∧even
C (W1 ⊗Q R) (by construction),

S+
0 ⊗Q R is the half-spin representation of G(C) ∼= Spin(8,C) with highest

weight $4. Because $4 is the fundamental cominuscule weight associated to
the domain D, the theorem follows from Section 3 of [1] or Theorem 2.22 of
[3].

3.2.4 The higher rank cases

Let D be the irreducible Hermitian symmetric domain of type (D2n, α2n) with
n ≥ 2. We will prove Part (2) of Theorem 3.2.1 for D. Still, the notations
are the same as in Section 3.2.2 (with m = 2n). For instance, H is a Q-
form of SO∗(2m) which admits a spin double cover by G (a simply connected
Q-algebraic group associated to D).

We start by constructing a family of abelian varieties over D.

Proposition 3.2.9. The standard representation H → GL(W ) is a faith-
ful Hodge representation corresponding to a Hermitian Q-variation of Hodge
structure of abelian variety type over D. Furthermore, there exists a family
of abelian varieties π : A → D such that the associated variation of Hodge
structure R1π∗Q is given by the Hodge representation ResE/QW .

Proof. By Summary 10.11 of [27], the only symplectic node of DH
2n (n ≥ 3) is

$1. The rest is the same as the proof of Proposition 3.2.3.

Remark. As in Remark 3.2.4, the generic fiber of π is of type III and has a
semisimple special Mumford-Tate group.

Next we note the following lemma.

Lemma 3.2.10. ResE/Q(
∧m
E W ) is an H-subrepresentation of

∧m
Q (ResE/QW ).

Proof. This follows from Lemma 3.1.3 and a similar argument as in Lemma 3.2.5.

Now we decompose
∧m
E W by constructing endomorphisms L and ? in

EndQ[H](
∧m
E W ) and taking the corresponding eigenspaces.

The operator ? is defined in the same way as in (3.1.4) (see also Section
3.5 of [3]). Specifically, note that there are two natural pairings ∧ :

∧m
E W ×∧m

E W →
∧2m
E W ∼= E and ∧mh :

∧m
E W ×

∧m
E W → E, where (∧mh)(w1 ∧

· · · ∧ wm, u1 ∧ · · · ∧ um) = det(h(wi, uj)). They give an E-linear isomorphism
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ϕ :
∧m
E W →

∧m
E W

∗ and an E-conjugate-linear isomorphism ρ :
∧m
E W →∧m

E W
∗ respectively. The operator ? is then defined by

? = ϕ−1 ◦ ρ.

Furthermore, we can obtain one more E-linear isomorphism τ :
∧m
E W →∧m

E W
∗ by considering the pairing ∧mQ :

∧m
E W ×

∧m
E W → E defined by

(∧mQ)(w1 ∧ · · · ∧ wm, u1 ∧ · · · ∧ um) = det(Q(wi, uj)). Now we define L by

L = ϕ−1 ◦ τ.

Concerning the properties of ? and L, we have the following two lemmas.

Lemma 3.2.11.

(1) The E-linear operator L commutes with the H-action and L ◦ L = id.

(2) The E-conjugate-linear operator ? commutes with the action of H and
? ◦ ? = id.

Proof. For Part (1), the action of H preserves the pairing ∧ :
∧m
E W×

∧m
E W →∧2m

E W ∼= E and the symmetric bilinear form ∧mQ, and hence commutes with
L. By Remark (iii) of Theorem 19.2 of [45], L ◦ L = id. Part (2) follows from
Lemma 3.21 of [3].

Lemma 3.2.12. The operators L and ? commutes (i.e. L ◦ ? = ? ◦ L) in
EndQ[H](

∧m
E W ).

Proof. We start by setting up some notations. Let {e1, · · · , e2m} be a basis of
W such that the symmetric bilinear form Q and the hermitian form h can be
expressed in the same form as in Section 3.2.2. Also denote the corresponding
dual basis by {e∗1, · · · , e∗2m}. Now define B : W → W ∗ by B(v)(w) = Q(v, w),
and F : W → W ∗ by F (v)(w) = h(w, v). It is clear that B(ei) = e∗m+i,
B(em+i) = e∗i and that F (ei) = e∗i , F (em+i) = −e∗m+i for 1 ≤ i ≤ m.

Using these we can make the operators τ and ρ more explicit. Specifically,
τ(el1∧el2∧· · ·∧elm) = B(el1)∧B(el2)∧· · ·∧B(elm) and ρ(el1∧el2∧· · ·∧elm) =
F (el1) ∧ F (el2) ∧ · · · ∧ F (elm).

As for ϕ, let I = {i1, i2, · · · , im} with 1 ≤ i1 < i2 < · · · < im ≤ 2m,
and J = {1, 2, · · · , 2m} − I = {j1, j2, · · · , jm} with j1 < j2 < · · · < jm.
Then it is not difficult to see that ϕ(ei1 ∧ ei2 ∧ · · · ∧ eim) = εI,J · e∗j1 ∧ e

∗
j2
∧

· · · ∧ e∗jm = (−1)n+i1+i2+···+ime∗j1 ∧ e
∗
j2
∧ · · · ∧ e∗jm (recall that n = m

2
). So

ϕ−1(e∗j1 ∧ e
∗
j2
∧ · · · ∧ e∗jm) = (−1)n+j1+j2+···+jmei1 ∧ ei2 ∧ · · · ∧ eim .

Now we prove the lemma. Let I and J be the ordered set as above. Clearly,
it suffices to verify that τ ◦ ϕ−1 ◦ ρ = ρ ◦ ϕ−1 ◦ τ for eI = ei1 ∧ ei2 ∧ · · · ∧ eim
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(i1 < i2 < · · · < im). We first determine which e∗j ’s appear for the left-hand-
side (i.e. (τ ◦ ϕ−1 ◦ ρ)(eI)) and the right-hand-side (i.e. (ρ ◦ ϕ−1 ◦ τ)(eI)). To
do this, we define s(i) ∈ {1, 2, · · · , 2m} for every 1 ≤ i ≤ 2m, by s(i) = m+ i
if i ≤ m and s(i) = i−m if i > m. If i ∈ I while s(i) /∈ I, then e∗i will appear
for both the left-hand-side and the right-hand-side; if i ∈ I and s(i) ∈ I, then
neither e∗i nor e∗s(i) will be contained in (τ ◦ ϕ−1 ◦ ρ)(eI) or (ρ ◦ ϕ−1 ◦ τ)(eI); if

i /∈ I and s(i) /∈ I, then e∗i and e∗s(i) will be contained in both the left-hand-side

and the right-hand-side. So (τ ◦ ϕ−1 ◦ ρ)(eI) and (ρ ◦ ϕ−1 ◦ τ)(eI) consist of
the same e∗j ’s.

Having seen that both (τ ◦ϕ−1◦ρ)(eI) and (ρ◦ϕ−1◦τ)(eI) can be expressed
uniquely, up to a sign, as e∗l1 ∧ e

∗
l2
∧ · · · ∧ e∗lm with the same sub-indices l1 <

l2 < · · · < lm, we verify that the signs are the same, which will verify the
lemma. Let k = Card(I ∩ {m + 1, · · · , 2m}). Then it is straightforward to
check that the sign of (τ ◦ ϕ−1 ◦ ρ)(eI) is (−1)k+n+i1+···+im+k, and the sign for
(ρ ◦ ϕ−1 ◦ τ)(eI) is (−1)k+n+s(i1)+···+s(im)+(m−k). Since m is an even number,
i ≡ s(i) (mod 2) for every i, which implies that the two signs are the same.

We now prove Part (2) of Theorem 3.2.1. Note that m = 2n.

Proof. Let S = ker(L− id). Then S is an H-subrepresentation of
∧m
E W . By

Lemma 3.2.12, L ◦ ? = ? ◦ L, which implies that L(?(s)) = ?(L(s)) = ?(s) for
any s ∈ S. So the restriction of ? to S is well-defined. Let S0 = ker(? |S −id) ⊂
S. Since ? is E-conjugate-linear, S0 is a Q-subrepresentation of ResE/QS.

So we have S0 ⊂ ResE/QS ⊂ ResE/Q(
∧m
E W ) ⊂

∧m
Q (ResE/QW ) as rep-

resentations of H (c.f. also Lemma 3.2.10). Recall that the Hodge repre-
sentation ResE/QW corresponds to a family of abelian varieties π : A → D
as in Proposition 3.2.9. By Theorem IV.E.4 of [4] and Proposition (1.24) of
[39], the special Mumford-Tate group of the Hermitian variation of Hodge
structure R1π∗Q (which corresponds to the Hodge representation ResE/QW )
is semisimple. So the special Mumford-Tate group of the variation of Hodge
structureRmπ∗Q given by the Hodge representation

∧m
Q (ResE/QW ) is semisim-

ple (Lemma 3.2.8), and we shall denote it by Hg. The next part of proof is
quite similar as in the rank 2 case. Specifically, by the result of Deligne in
Section 3.2.1, Hg is the image of H (or G) in SL(

∧m
Q (ResE/QW )). Being an

H-subrepresentation, S0 is invariant under the action of the special Mumford-
Tate group Hg, and hence corresponds to a sub-Hodge structure.

So it suffices to prove that S0 is the Hodge representation of CY type
corresponding to V ′. To do this, let us consider S0,R := S0 ⊗Q R. Now that
S0 ⊗Q E ∼= S, we have S0,R ⊗R C ∼= S0 ⊗Q C ∼= S0 ⊗Q E ⊗Q R ∼= S ⊗Q R.
According to Remark (iii) of Theorem 19.2 of [45], S ⊗Q R ⊂

∧m
C WR is the

irreducible representation of H(R) ∼= SO∗(2m) with highest weight 2$m, and
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is isomorphic to an irreducible summand of Sym2(S+ ⊗Q R). Since $m is
the fundamental cominuscule weight associated to the domain D, the theorem
follows from Theorem 2.22 of [3].

Remark 3.2.13. Note that in Part (2) of the Main theorem we only realize
Sym2 VR (not the canonical VR). This is the best our constructions can do
when the rank of the domain is bigger or equal to 3. One important reason
is that the half-spin representation with highest weight $m is not a represen-
tation of the orthogonal group H(C) ∼= SO(2m,C) (c.f. Proposition 23.13 of
[45]). Specifically, let WR be the standard representation corresponding to a
Hermitian variation of Hodge structure of abelian variety type, and set S+

0,R
to be the Hodge representation corresponding to the canonical R-variation of
Hodge structure of CY type. By Theorem (IV.E.4) of [4], WR is of quaternion
type, i.e. WR ⊗R C = U ⊕ U∗ with U ∼= U∗ and ResC/RU = WR. Now sup-

pose we have S+
0,R ⊂

⊗l
RWR as representations of G(R) ∼= Spin∗(2m), then

S+
0,R ⊗R C is a subrepresentation (as representations of G(C) ∼= Spin(2m,C))

of (
⊗l

RWR)⊗R C ∼=
⊗l

C(U ⊕ U∗) which factors through H(C) ∼= SO(2m,C).
Since SO(2m,C) = Spin(2m,C)/{±1}, (−1) also acts trivially on the half-spin
representation S+

0,R ⊗R C which is a contradiction. Note that this argument

also works for other tensor constructions (
⊗l1

R WR)⊗ (
⊗l2

R W
∗
R) of WR.
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Chapter 4

Towards a geometric
interpretation of the exceptional
isomorphisms between (D4, α4)
(II4) and (D4, α1) (IV6)

Aiming to interpret the exceptional isomorphism between the Hermitian sym-
metric domains of type II4 and of type IV6 geometrically, we shall give some
geometric constructions relating both of the domains to quaternionic covers
of genus three curves in this chapter. We first construct quarternionic covers,
quaternionic Pryms and quaternionic Prym maps (in particular, this gives a
dominant map from the moduli of quaternionic covers of genus three curves to
the type II4 domain) in Section 4.1. Also, we show that a quaternionic cover
of a genus three C determines (up to finite choices) a totally isotropic plane
in J2(C), the group of line bundles L such that L⊗2 = OC (see Lemma 4.1.3
and Lemma 4.1.4). Next we recall the classical theory of theta characteris-
tics in Section 4.2, and use it to show that a totally isotropic plane of J2(C)
correspond to a syzygetic tetrad of bitangent lines of C (i.e. there is a conic
passing through all the tangency points). Finally, we construct in Section 4.3 a
family of lattice-polarized K3 surfaces, parameterized by a certain arithmetic
quotient of the type IV6 domain, starting from a smooth plane quartic and
two bitangent lines (N.B. any pair of bitangents can be extended to a syzygetic
tetrad).

61



4.1 Quaternionic covers and quaternionic Pryms

We define quarternionic covers, quaternionic Pryms and quaternionic Prym
maps following [21] (see also [46]) in this section.

4.1.1 Quaternionic covers

A definite quaternionic Q-algebra F is a skew field with center Q, of dimension
4 over Q, and such that F ⊗Q R is isomorphic to the Hamilton’s quaternions.
One can find elements i, j,k ∈ F such that

F = Q+Qi +Qj +Qk, i2 = r, j2 = s, ij = −ji = k, with r, s ∈ Q−.

Such a quaternionic algebra has a canonical involution, it acts as

x = a+ bi + cj + dk 7→ x̄ = a− bi− cj− dk.

We will use HQ to denote the Q-quaternion algebra with r = s = −1, and
denote by Q the following subgroup of H∗Q of order 8:

Q = {±1,±i,±j,±k}, (±i)2 = (±j)2 = (±k)2 = −1, ij = −ji = k.

Definition 4.1.1. Let C be an irreducible smooth projective curve defined
over C. A quaternionic cover π : C̃ → C is an unramified Galois cover with
Galois group Q.

A quaternionic cover π : C̃ → C also determines a 2-dimensional F2-
subspace of H1(C,Z/2). In fact, after choosing a reference point p̃ of C̃ (and
let p = π(p̃)), we obtain a surjective group homomorphism ϕ : π1(C, p) � Q
whose kernel is N = π∗π1(C̃, p̃). Specifically, let [γ] be an element of π1(C, p)
and γ̃ be the unique lift of γ with the starting point p̃, then ϕ([γ]) is the unique
deck transformation sending p̃ to the ending point of γ̃ (see Proposition 1.39
of [47]). Next we compose this homomorphism with the quotient map Q �
Q/{±1}. Because Q/{±1} is isomorphic to Z/2 ⊕ Z/2, the map π1(C, p) →
Q→ Q/{±1} factors through H1(C,Z):

π1(C, p)
ϕ //

��

Q // Q/{±1}

H1(C,Z)

ϕ̄
55

.

Lemma 4.1.2. The map ϕ̄ does not depend on the choice of the reference
point p̃ ∈ C̃.
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Proof. Let us denote the quotient map Q→ Q/{±1} by f . We first claim that
the composition f ◦ϕ : π1(C, p)→ Q/{±1} stays the same if another point q̃ ∈
C̃ with π(p̃) = π(q̃) is chosen to be the reference point. Let us use ϕ′ to denote
the map π1(C, p)→ Q for the reference point q̃. Also, we choose an element [γ]
of π1(C, p) and a path α̃ from p̃ to q̃. Then we have that ϕ([γ])(q̃) = (ϕ([γ]) ◦
ϕ([π(α̃)]))(p̃), and that ϕ′([γ])(q̃) = ϕ([π(α̃])([γ])(1) = (ϕ([π(α̃)]) ◦ ϕ([γ]))(p̃).
It follows that either ϕ([γ])(q̃) = ϕ′([γ])(q̃) or ϕ([γ])(q̃) = ((−1) ◦ ϕ′([γ]))(q̃).
So we have either ϕ([γ]) = ϕ′([γ]) or ϕ([γ]) = (−1) ◦ϕ′([γ]), which verifies the
claim.

Next we choose a reference point õ with o := π(õ) 6= p. We claim that the
map ϕ̄ : H1(C,Z) → Q/{±1} stays the same for õ. Let ϕ′′ : π1(C, o) → Q
be the map corresponding to the reference point õ. Also let β be an arbitrary
path from p to o, and set β̃ to be the unique lift to p̃ with an ending point
õ′. By what we have proven we can also choose õ′ as the reference point for
ϕ′′, and then it is easy to check that ϕ([γ]) = ϕ′′([β−1 · γ · β]) up to a possible
action of (−1) ∈ Q (by looking at where they send the point õ′). Because [γ]
and [β−1 · γ · β] are sent to the same cycle in H1(C,Z), the lemma holds.

We will omit the reference point in what follows. Now using the natural
identification H1(C,Z/2) ∼= H1(C,Z)⊗Z Z/2, it is easy to see that the homo-
morphism ϕ̄ induces a surjective homomorphism H1(C,Z/2)→ Q/{±1} which
is Z/2-linear. Then we obtain by duality an F2-subspace of H1(C,Z/2) ∼=
Hom(H1(C,Z/2),Z/2) of dimension two.

Next we consider J2(C), which is the group of line bundles L such that
L⊗2 = OC . Since Jac(C) = H0(C, ωC)∗/H1(X,Z), we have

J2(C) ∼= H1(C, (1/2)Z)/H1(C,Z) ∼= H1(C,Z/2).

There is also a non-degenerate alternating bilinear form on J2(C) called the
Weil pairing (see Page 284 of [48]):

λ : J2(C)× J2(C)→ Z/2.

Note that via the above identification the Weil pairing λ on J2(C) corresponds
to intersection of cycles on H1(C,Z/2) (see Page 287 of [48]).

Using Poincaré duality, one can identifyH1(C,Z/2) withH1(C,Z/2) canon-
ically, and so a quaternionic cover π : C̃ → C determines an F2-subspace of
J2(C) of dimension two. We shall denote this subspace by Vπ.

Lemma 4.1.3. The subspace Vπ is totally isotropic for the Weil pairing λ.

Proof. Let us consider the alternating form λ|Vπ×Vπ on the F2-subspace Vπ of
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dimension two. By Theorem XV.8.1 of [49], either λ|Vπ×Vπ is non-degenerate
or λ|Vπ×Vπ = 0. We want to show that the first case is impossible.

Now let us assume that λ|Vπ×Vπ is non-degenerate. Let {α1, · · · , αg, β1, · · · , βg}
be a set of generators of π1(C) satisfying [α1, β1] · · · [αg, βg] = 1. Note that, if
we denote by ᾱi (resp. β̄i) the cycle in H1(C,Z/2) corresponding to αl (resp.
βl) where 1 ≤ l ≤ g, then among ᾱ’s and β̄’s only ᾱl ∩ β̄l 6= 0 for the intersec-
tion form on H1(C,Z/2). Because the mapping class group maps onto the the
symplectic group (w.r.t the intersection pairing) on H1(C,Z/2), we can always
choose the generators so that Vπ = {0, ᾱ1, β̄1, ᾱ1 + β̄1}. By construction, this

implies that the map π1(C)
ϕ−→ Q −→ Q/{±1} is given by

α1 7→ ī, β1 7→ j̄, αl, βl 7→ 1̄ (l ≥ 2).

But we then have ϕ([α1, β1] · · · [αg, βg]) = −1, which is a contradiction.

Conversely, we have the following lemma.

Lemma 4.1.4. Given an F2-subspace W of dimension 2 in J2(C) which is
totally isotropic with respect to the Weil pairing λ, there exists a quaternionic
cover π : C̃ → C corresponding to W (i.e. Vπ = W ).

Proof. Using the same notations and argument in the proof of Lemma 4.1.3,
we can choose a set of generators {α1, · · · , αg, β1, · · · , βg} of π1(C) such that
[α1, β1] · · · [αg, βg] = 1 and such that W = {0, ᾱ1, ᾱ2, ᾱ1 + ᾱ2}. Now it is easy
to check that the map π1(C)→ Q/{±1} defined by

α1 7→ ī, α2 7→ j̄, αl, βs 7→ 1̄ (l ≥ 3, 1 ≤ s ≤ g)

corresponds to W . This map can be lifted to a surjective map ϕ : π1(C) →
Q; specifically, we define ϕ by assigning minus signs to the image of αl, βs
arbitrarily, and one can easily check that ϕ([α1, β1] · · · [αg, βg]) = 1. Taking
the quotient of the universal cover of C by the kernel N of ϕ, we obtain a
quaternionic cover N\Cuniv → C of C.

We conclude this subsection by noting that there exists a moduli space
Mg,Q of quaternionic covers of genus g curves (see [21] Section 1). The space
Mg,Q is irreducible (Corollary 1.5 of op. cit.) and admits a natural morphism
Mg,Q →Mg which is finite. In particular, we have dimM3,Q = 3g − 3.

4.1.2 Quaternionic Pryms

In this subsection, we review the construction and properties of quaternionic
Pryms following Section 2 of [21]. Let π : C̃ → C be a quaternionic cover of a
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genus g curve C. It is easy to see that the genus of C̃ is 8g − 7. The quotient
of C̃ by {±1} ⊂ Q is a curve of genus 4g − 3, which will be denoted by Ĉ:

C̃
2:1−→ Ĉ = C̃/{±1} 4:1−→ C.

The Prym variety P := Prym(C̃/Ĉ) is then called the quaternionic Prym
associated to the quaternionic cover π : C̃ → C.

Recall that a polarized abelian variety of quaternionic type is a tripe
(A,E, F ) where A is an abelian variety, E is a polarization on A and F
is a definite quaternionic algebra over Q endowed with an embedding F ⊂
End(A) ⊗Z Q, such that ıE(x) = x̄ for all x ∈ F . Here ıE is the Rosati
involution and ¯ denotes the canonical involution on F .

Concerning quaternionic Pryms (equipped with the natural principal po-
larization, see for instance [48] Page 297), the algebra is HQ. To describe the
action of HQ on P , we introduce the ring

HZ := {a+ bi + cj + dk ∈ HQ | a, b, c, d ∈ Z}

and also the HZ-module

M := {aζ + bi + cj + dk ∈ HQ | a, b, c, d ∈ Z} with ζ = (1 + i + j + k)/2.

Proposition 4.1.5. The quaternionic Prym P is a 4(g−1)-dimensional prin-
cipally polarized abelian variety of quaternionic type for the algebra HQ. More-
over, we have H1(P,Z) ∼= (M ⊕Hg−2

Z )2 as HZ-modules.

Proof. See Proposition 2.4 and 2.6 of [21].

Let us denote by Λ the HZ-module (M ⊕Hg−2
Z )2. Fix an isomorphism

M⊗Z Q
∼=−→ H2g−2

Q

and let M be the image of Λ in H2g−2
Q . (If one takes the obvious isomorphism

induced by HZ ⊂ HQ and M ⊂ HQ, then M = Λ.) Also define a (2g − 2) ×
(2g − 2) matrix T with entries in HQ as in [19] Section 2.2. For such a pair
(M, T ), we put

G(M, T ) := {U ∈ Mat2g−2(HQ) | UT tU = T,MU = M}

as in Section 2.7 of [19] or Section 9.8 of [20]. Note that G(M, T ) acts (de-
scribed in [19] Section 2.7) properly and discontinuously on the Hermitian
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symmetric domain

H2g−2 := {Z ∈ Mat2g−2(C) | tZ = −Z, I2g−2 − tZZ > 0}

which is of type II2g−2. The quotient G(M, T )\H2g−2 is a normal complex ana-
lytic space of dimension (g−1)(2g−3) and parameterizes 4(g−1)-dimensional
polarized abelian varieties of quaternionic type for the algebra HQ which are
associated to the pair (M, T ) (see [19] Theorems 1, 2 or [20] Propositions 9.5.3,
9.5.4, 9.8.2). In particular, quaternionic Pryms corresponds to certain points
of G(M, T )\H2g−2.

4.1.3 Quaternionic Prym maps

Let Rg be the moduli space of étale double covers of genus g curves. There is
a natural morphism

r :Mg,Q → R4g−3, [C̃ → C] 7→ [C̃ → Ĉ = C̃/{±1}]

which associates to the quaternionic cover C̃ → C the étale double cover
C̃ → Ĉ. Also, we have the Prym map

p : R4g−3 → G(M, T )\H2g−2, [C̃ → Ĉ] 7→ Prym(C̃/Ĉ).

Composing them, we obtain the quaternionic Prym map q = p ◦ r :Mg,Q →
G(M, T )\H2g−2.

From now on, we focus on the case when g = 3. Following [21] Section 3,
we now study the locus of quaternionic Pryms via the map q = p◦r :M3,Q →
G(M, T )\H4. For convenience, we shall simply use H to denote the domain
H4 in what follows.

Proposition 4.1.6. A general member of the polarized abelian 8-folds of
quaternionic type parametrized by G(M, T )\H is a quaternionic Prym.

Proof. We will show that the image Im(q) of q has dimension 6, which is
the dimension of G(M, T )\H. By Section 1.6 of [21], the map r is surjective.
Because the automorphism group of a curve of genus at least 2 is finite, a
given Ĉ is in the image of at most finitely many points in M3,Q, and so the
map r is also quasi-finite. Note also that dimM3,Q = dim(G(M, T )\H) = 6.
Therefore it suffices to show that the differential or the codifferential of the
Prym map p has maximal rank at a point σ : C̃ → Ĉ in the image of the map r.
Since the codifferential of p at σ is the multiplication map S2H0(Ĉ, ωĈ⊗η)→
H0(Ĉ, ω⊗2

Ĉ
) with η the order two line bundle defining σ, the proposition follows

from Lemma 3.3 and Theorem 3.6 of op.cit..
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4.2 Theta characteristics and bitangents

In this section, we will give a geometric interpretation of the totally isotropic
planes of (J2(C), λ) (which are associated with quaternionic covers of C as in
Lemma 4.1.3 and Lemma 4.1.4) via theta characteristics.

Let C be an irreducible smooth projective curve of genus g defined over
C. A theta characteristic on C is a line bundle L such that L ⊗ L ∼= ωC (see
for example [48] Page 287). As two theta characteristics differ by an element
of J2(C) and the group J2(C) is isomorphic to (Z/2)2g, there are 22g theta
characteristics. It also follows that the set TCh(C) of theta characteristics on
C is an affine space over the F2-vector space J2(C).

Furthermore, using the Weil pairing λ on J2(C) one can associate to every
theta characteristic L a quadratic form qL on J2(C):

qL : J2(C)→ F2, ε 7→ h0(C,L⊗ ε)− h0(C,L) (mod2).

Note that qL is a quadratic form whose associated bilinear form is the Weil
pairing (see Page 290 of [48]); in other words, we have the Riemann-Mumford
relation: for η, ε ∈ J2(C),

qL(η + ε) + qL(η) + qL(ε) = λ(η, ε).

Using this, one can also show that L 7→ QL gives a natural bijection between
the set of theta characteristics on C and the set of quadratic forms associated
to (J2(C), λ). Now we review the theory of quadratic forms over F2 briefly.
Every concept defined for quadratic forms will have a meaning for theta char-
acteristics.

4.2.1 Quadratic forms over F2

Let V be an F2-vector space of dimension 2g, equipped with a non-degenerate
alternating bilinear form

〈 , 〉 : V × V → F2.

Note that the pairing induces an isomorphism V ∼= V ∗ which associates a
vector v the linear form v∗ := 〈v,−〉.

A quadratic form associated to (V, 〈 , 〉) is a map Q : V → F2 such that

Q(u+ v) = Q(u) +Q(v) + 〈u, v〉,

for all u, v ∈ V . Let us denote by Q(V ) the set of all quadratic forms associated
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to (V, 〈 , 〉). This set Q(V ) is a principal homogenous space over V ∗. In other
words, for any fixed Q0 ∈ Q(V ) we have a bijection

V ∗ → Q(V ), v∗ 7→ Q0 + v∗, conversely Q 7→ Q+Q0.

Choose a standard symplectic basis {e1, · · · , e2g} of V , that is, a basis with
respect to which the intersection matrix of 〈 , 〉 is(

0 Ig
Ig 0

)
.

The Arf invariant of Q ∈ Q(V ) is then defined by

Arf(Q) =

g∑
i=1

Q(ei)Q(eg+i).

A quadratic form Q is called odd (resp. even) if Arf(Q) = 1 (resp. Arf(Q) =
0). The set of even and odd quadratic forms will be denoted by Q(V )+ and
Q(V )− respectively. There are 2g−1(2g+1) even quadratic forms and 2g−1(2g−
1) odd quadratic forms. By [50] Section 5.1.2 we also have the following lemma

Lemma 4.2.1. For any v ∈ V and quadratic forms Q, Q0, Q1, Q2 we have

(1) Arf(Q+ v∗) = Arf(Q) +Q(v);

(2) Arf(Q0 + Q1 + Q2) = Arf(Q0) + Arf(Q1) + Arf(Q2) + 〈v1, v2〉 where
v∗1 = Q0 +Q1 and v∗2 = Q0 +Q2.

Next we define syzygetic triads and tetrads of odd quadratic forms.

Definition 4.2.2. A triad Q0, Q1, Q2 of odd quadratic forms is called a
syzygetic triad if Q0 + Q1 + Q2 is odd. A tetrad Q0, Q1, Q2, Q3 of odd
quadratic forms is called a syzygetic tetrad if Q0 +Q1 +Q2 +Q3 = 0.

For any v ∈ V , v 6= 0, we also consider the Steiner set Sv defined by

Sv := {Q ∈ Q(V )− | Q(v) = 0} = {Q ∈ Q(V )− | Q+ v∗ ∈ Q(V )−}.

The structure of the Steiner sets are described as follows.

Proposition 4.2.3. There are 22g − 1 Steiner sets. Each Steiner set Sv con-
sists of 2g−1(2g−1 − 1) elements paired by Q 7→ Q+ v∗.

If Sv and Sw are two different Steiner sets, then we have

#(Sv ∩ Sw) =

{
2g−1(2g−2 − 1) if 〈v, w〉 = 0;
2g−2(2g−1 − 1) if 〈v, w〉 = 1.
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Proof. See [50] Proposition 5.4.7 and Lemma 5.4.8.

We now make the following observation.

Lemma 4.2.4. Let Q1, Q2 ∈ Q(V )−. Then there exists a syzygetic tetrad
containing Q1 and Q2. Moreover, the number of ways in which the pair Q1,
Q2 can be extended to a syzygetic tetrad of odd quadratic forms is equal to
22g−2 − 2g−1 − 2.

Proof. Write Q1 + Q2 = v∗, then we have Q2 = Q1 + v∗. Because Q1, Q2 ∈
Q(V )−, we have Arf(Q1) = Arf(Q2), which by Lemma 4.2.1 implies that
Q1(v) = 0. Similarly, Q2(v) = 0. Let Q0 be an odd quadratic form, then Q0,
Q1, Q2 is a syzygetic triad if and only if Arf(Q0 +Q1 +Q2) = Arf(Q0 +v∗) = 1.
By Lemma 4.2.1, we have Arf(Q0 + v∗) = Arf(Q0) + Q0(v). So Q0, Q1, Q2 is
syzygetic if and only if Q0(v) = 0, or equivalently, Q0 ∈ Sv − {Q1, Q2}. By
Proposition 4.2.3, there are 2g−1(2g−1 − 1)− 2 = 22g−2 − 2g−1 − 2 possibilities
for Q0. For a chosen Q0, there is a unique way to extend Q0, Q1, Q2 to a
syzygetic tetrad which is Q0, Q1, Q2, Q0 +Q1 +Q2.

To conclude this section, we show that all the isotropic planes can be
obtained from the syzygetic tetrads of odd quadratic forms. Specifically, for a
syzygetic tetrad Q0, Q1, Q2, Q3 of odd quadratic forms we consider the set

{0, Q0 +Q1, Q0 +Q2, Q0 +Q3}.

Using the identification V ∼= V ∗ defined via 〈 , 〉, we view the set {0, Q0 +
Q1, Q0 + Q2, Q0 + Q3} as a subset of V . Using the condition that Q0 + Q1 +
Q2 + Q3 = 0, one can easily check that this map is well-defined and that
{0, Q0 + Q1, Q0 + Q2, Q0 + Q3} is an F2-subspace of V . Write Q0 + Q1 =
v∗1 and Q0 + Q2 = v∗2, then Lemma 4.2.1 implies that 〈v1, v2〉 = 0, and so
{0, Q0 +Q1, Q0 +Q2, Q0 +Q3} is a isotropic plane of V .

Proposition 4.2.5. Every isotropic plane of V can be obtained from 2g−3(2g−2−
1) syzygetic tetrads in the above way.

Proof. Let {0, v1, v2, v1+v2} be an isotropic plane of V , then we have 〈v1, v2〉 =
0. Let us choose an odd quadratic form Q ∈ Q(V )−, and consider the tetrad
Q, Q+v∗1, Q+v∗2, Q+v∗1 +v∗2. This is a syzygetic tetrad of odd quadratic forms
if and only if Q(v1) = Q(v2) = 0 (i.e. Q ∈ Sv1 ∩ Sv2). By the construction,
{0, v1, v2, v1 + v2} must be obtained from syzygetic tetrads of this form.

By Proposition 4.2.3, there are 2g−1(2g−2− 1) possibilities for Q. However,
if we replace Q by Q+v∗1 or Q+v∗2 or Q+v∗1 +v∗2, and add 0, v∗1, v∗2 and v∗1 +v∗2
as above, then we still obtain the same syzygetic tetrad Q, Q + v∗1, Q + v∗2,
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Q+v∗1 +v∗2. The other elements in Sv1∩Sv2 will give different syzygetic tetrads.
So there are 2g−1(2g−2−1)/4 = 2g−3(2g−2−1) syzygetic tetrads corresponding
to the isotropic plane {0, v1, v2, v1 + v2} as claimed.

When g = 3, 2g−3(2g−2− 1) = 1 and hence we have the following corollary.

Corollary 4.2.6. If g = 3, then there is a one-to-one correspondence between
the set of isotropic planes of V and the set of syzygetic tetrads of odd quadratic
forms on V .

4.2.2 Theta characteristics and bitangents

Let us return to the situation when (V, 〈 , 〉) = (J2(C), λ). Using the bijection
L 7→ QL between the set of theta characteristics on C and the set of quadratic
forms associated to (J2(C), λ), we can now talk about odd theta characteristics,
syzygetic tetrads of odd theta characteristics, etc.. Note also that the theta
character L is odd (resp. even) if and only if and only if h0(C,L) is odd (resp.
even).

We shall further assume that C is a smooth non-hyperelliptic curve of genus
g = 3. Via the canonical embedding, we view C as a quartic curve in P2 and
we have ωC ∼= OC(1). A bitangent line l of C is a line such that l∩C = 2p+2q
for some points p, q ∈ C. The correspondence

l 7→ OC
(

1

2
(l ∩ C)

)
establishes a bijection between the set of bitangents and the set of odd theta
characteristics of C.

Now the concepts defined for quadratic forms on (J2(C), λ) has a meaning
for bitangents of C. In particular, we can rephrase Corollary 4.2.6 as follows:
there is a bijection between the set of isotropic planes of J2(C) and the set
of syzygetic tetrads of bitangents of C. Also, let us note that four bitangents
to C form a syzygetic tetrad exactly when the 8 points of tangency are the
complete intersection of C with a conic.

4.3 K3 surfaces and plane quartics together

with two bitangents

We have seen that a quaternionic cover corresponds (up to finite choices) to a
syzygetic tetrad of bitangent lines, which can be obtained from an arbitrary
pair of bitangents. Motivated by this, we construct a family of K3 surfaces
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starting from a plane quartic (i.e. a non-hyperelliptic genus three curve) to-
gether with two bitangent lines. We shall show that these K3 surfaces are
polarized by the lattice U(4) ⊥ D12 of rank 14, and hence are parameterized
by a certain arithmetic quotient of a Hermitian symmetric domain of type IV6.

4.3.1 Standard notations and facts of lattices and K3
surfaces

By a lattice we mean a free Z-module L together with a symmetric bilinear
form (−,−). The basic invariant of a lattice is its signature. A lattice is even
if (x, x) ∈ 2Z for every x ∈ L. The direct sum of lattices is always assumed
orthogonal, and will be denoted using ⊥. For a lattice M ⊂ L, M⊥

L denotes
the orthogonal complement of M in L. Given two lattices L and L′ and a
lattice embedding L ↪→ L′, we call it a primitive embedding if and only if L′/L
is torsion free.

We shall the following lattices frequently: the root lattices An(n ≥ 1),
Dm(m ≥ 4), Er(r = 6, 7, 8) and the hyperbolic plane U . Given a lattice L,
L(n) denotes the lattice with the same underlying Z-module as L but with the
bilinear form multiplied by n.

Notation 4.3.1. Let L be an even lattice. We define:

• L∗ := {y ∈ L⊗Q | (x, y) ∈ Z for all x ∈ L}, the dual lattice;

• AL := L∗/L, the discriminant group endowed with the induced quadratic
form qL : AL → Q/2Z;

• disc(L): the determinant of the intersection matrix with respect to an
arbitrary Z-basis of L.

• O(L): the group of isometries of L;

• O(qL): the automorphisms of AL that preserve the quadratic form qL;

• O−(L): the group of isometries of L of spinor norm 1;

• Õ(L): the group of isometries of L that induce the identity on AL;

• O∗(L) = O−(L) ∩ Õ(L).

• ∆(L): the set of roots of L (δ ∈ L is a root if (δ, δ) = −2).

• W (L): the Weyl group, i.e. the group of isometries generated by reflec-

tions sδ in root δ, where sδ(x) = x− 2 (x,δ)
(δ,δ)

δ.
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For a surface S, the intersection form gives a natural lattice structure on
the torsion-free part of H2(S,Z) and on the Néron-Severi group NS(S). For
a K3 surface S, we have H1(S,OS) = 0, and we identify Pic(S) and NS(S).
Both H2(S,Z) and Pic(S) are torsion-free. The natural map c1 : Pic(S) →
H2(S,Z) is a primitive embedding. We shall use ΛK3 to denote the unique
even unimodular lattice E2

8 ⊥ U3 of signature (3, 19), which is isomorphic to
H2(S,Z) for any K3 surface S.

4.3.2 The K3 surface associated to a smooth plane quar-
tic together with two bitangent lines

Let C ⊂ P2 be a smooth plane quartic curve (we also assume that C has no
hyperflex, which is a codimension 1 condition in M3), and let L1 = V (l1)
and L2 = V (l2) be two bitangent lines (non-hyperflex) of C. By taking the
double cover π1 : X → P2 of P2 branched along the sextic curve C + L1 + L2

and resolving the singularities π2 : X̃ → X, we obtain a a smooth K3 surface
X̃ together with a morphism π := π2 ◦ π1 from X̃ to P2. (Note that X̃ can
also be obtained by first resolving the singularities and then take the double
cover. More specifically, start with X0 = P2 and B0 = C + L1 + L2. Blow up
a singular point of B0. Let ε1 : X1 → X0 be the resulting surface, and let the
strict transform of B0 together with the exceptional divisor of ε1 reduced mod
2 be the new branch divisor B1. Repeat the process until BN is smooth. Set
X ′ = XN and B′ = BN and then take the double cover of X ′ branched along
B′. See [51] Chapter III Theorem 7.2.)

The Picard lattice

We shall show that Pic(X̃) = U(4) ⊥ D12. First let us set up some notations

and find a Z-basis for Pic(X̃).
Suppose L1 ∩ L2 = {p0}, C ∩ L1 = {p1, p2} and C ∩ L2 = {p3, p4}. It is

easy to see that p0 is an A1-singularity and p1, · · · , p4 are all A3-singularities.
We choose the notations as follows.

• γ is the exceptional curve obtained by resolving p0;

• α4 (resp. β4) is the strict transformation of L1 (resp. L2);

• α1, α2, α3 are the exceptional curves obtained by resolving p1. Moreover,
α3 corresponds to the middle node of A3; in other words, α3 is the
exceptional curve that meets α4;

• α5, α6, α7 are the exceptional curves obtained by resolving p2, and α5

meets α4;
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• β1, β2, β3 are the exceptional curves obtained by resolving p3, and β3

meets β4;

• β5, β6, β7 are the exceptional curves obtained by resolving p4, and β5

meets β4.

Consider the sub-lattice of Pic(X̃) generated by {α1, · · · , α7, β1, · · · , β7, γ}.
Note that the only relation among them (the total transformation of L1 is
linearly equivalent to that of L2) is

α1 + α2 + 2α3 + 2α4 + 2α5 + α6 + α7 = β1 + β2 + 2β3 + 2β4 + 2β5 + β6 + β7.

Let
x := α1 + α2 + 2α3 + 2α4 + 2α5 + α6 + α7.

We also have x = β1 + β2 + 2β3 + 2β4 + 2β5 + β6 + β7. It is not difficult to see
that the set

{α1, · · · , α6, β1, · · · , β6, γ, x}

is a Z-basis of this sub-lattice. The intersection matrix with respect to this
(ordered) basis is as follows.

−2 0 1 0 0 0 0 0 0 0 0 0 0 0
0 −2 1 0 0 0 0 0 0 0 0 0 0 0
1 1 −2 1 0 0 0 0 0 0 0 0 0 0
0 0 1 −2 1 0 0 0 0 0 0 0 1 0
0 0 0 1 −2 1 0 0 0 0 0 0 0 0
0 0 0 0 1 −2 0 0 0 0 0 0 0 0
0 0 0 0 0 0 −2 0 1 0 0 0 0 0
0 0 0 0 0 0 0 −2 1 0 0 0 0 0
0 0 0 0 0 0 1 1 −2 1 0 0 0 0
0 0 0 0 0 0 0 0 1 −2 1 0 1 0
0 0 0 0 0 0 0 0 0 1 −2 1 0 0
0 0 0 0 0 0 0 0 0 0 1 −2 0 0
0 0 0 1 0 0 0 0 0 1 0 0 −2 2
0 0 0 0 0 0 0 0 0 0 0 0 2 0


Note additionally that the morphism X̃ → P2 is given by the class h :=
γ + α1 + α2 + 2α3 + 2α4 + 2α5 + α6 + α7.

In what follows, we shall use M to denote the abstract rank 14 lattice
spanned by {α1, · · · , α6, β1, · · · , β6, γ, x} with the intersection form given by

the above matrix. There is a natural lattice embedding j : M ↪→ Pic(X̃) as
described above.
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Lemma 4.3.2. The Picard lattice Pic(X̃) coincides with M via the embedding
j. In particular, j is a primitive embedding.

Proof. Let us consider the elliptic fibration X̃ → P1 defined by the function
π∗(l1/l2). It is not difficult to see that the elliptic fibration contains two fibers
of type I∗2 (which corresponds to the two bitangents), and admits a 2-section
γ. Using the associated Jacobian fibration, we have that disc(Pic(X̃)) = 22 ·
disc(Pic(J(X̃))) = ±64. Meanwhile, one can easily compute that disc(M) =
−64. The lemma then follows from the following standard fact on lattices:
disc(M) = disc(Pic(X̃)) · (Pic X̃ : M)2.

Conversely, we make the following observation.

Proposition 4.3.3. Assume that S is a K3 surface such that Pic(S) is iso-
morphic to the lattice M . Then S is the double cover of P2 branched over a
reducible curve C+L1+L2, where C is a smooth plane quartic and Li (i = 1, 2)
are bitangent lines (non-hyperflex) of C.

Proof. By assumption, there exist α1, · · · , α6, β1, · · · , β6, γ, x ∈ Pic(S) satis-
fying the numerical conditions given by the above 14× 14 intersection matrix.
By changing αi (resp. βj or γ) to −αi (resp. −βj or −γ) (i.e. apply sαi , sβj
or sγ), we can assume that the classes αi, βj and γ are all effective.

Let h = γ + x. Without loss of generality, we assume that h is nef (which
can be achieved by acting by ±W (S)). By replacing h with −h, let us further
assume that h is effective. Noting that (h, h) = 2, the class h defines a degree
2 polarization for S. We claim that h is base point free. Otherwise, Mayer’s
theorem (c.f. [52] Chapter 5 Theorem 27) implies that h = 2E + R with
(E,E) = 0, (R,R) = −2 and (E,R) = 1 for some E,R ∈ Pic(S). This is a
contradiction. Namely, let us write E =

∑6
i=1 aiαi +

∑6
j=1 bjβj + cγ + dx for

some integers ai, bj, c, d. Now we have on one hand that (E, h) = (E, 2E +
R) = 1, on the other hand that (E, h) = 2d, which is impossible. So the linear
system defined by h gives a degree two map π : S → P2 branched along a
sextic curve B.

Let α7 = x − (α1 + α2 + 2α3 + 2α4 + 2α5 + α6) and β7 = x − (β1 +
β2 + 2β3 + 2β4 + 2β5 + β6). It is not difficult to see that (h)⊥M ∩ ∆(M) =
±{α1, α2, α3, α5, α6, α7, β1, β2, β3, β5, β6, β7, γ}. It follows that these are classes
of irreducible rational curves, which are contracted by π to four A3-singularities
and one A1-singularity for the sextic B. Since (α4, h) = (β4, h) = 1, the classes
π∗α4 and π∗β4 are represented by two lines L1 and L2 respectively. Moreover,
since (α4, γ) = (β4, γ) = 1, L1 and L2 intersects at the A1-singularity of B.
Similarly, the conditions that (α4, α3) = (α4, α5) = 1 and (β4, β3) = (β4, β5) =
1 imply that each line passes through two A3-singularities of B. The only
possibility is that B contains L1 and L2 as components.
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Next we use the results in [53] (especially Corollary 1.10.2 and Corollary
1.13.3) to determine M . For that, we need to compute various invariants of
M .

Lemma 4.3.4. The lattice M has rank 14, determinant −64 and signature
(1, 13).

Proof. These can be easily computed from the intersection matrix of M .

Lemma 4.3.5. The discriminant group AM is isomorphic to (Z/2Z)⊕2 ⊕
(Z/4Z)⊕2.

Proof. Let us denote by α∗i (resp. β∗i , γ
∗, x∗) be the dual element of αi (resp.

βi, γ, x). This means α∗i is the element of M⊗ZQ such that the pairing between
α∗i and αi equals 1, and the other pairings of α∗i with the elements of the basis
{α1, · · · , α6, β1, · · · , β6, γ, x} is 0. The coefficients (for the above basis) of the
dual elements can be read from the rows or columns of the inverse intersection
matrix (with respect to the ordered basis {α1, · · · , α6, β1, · · · , β6, γ, x}):

−3
2
−1 −2 −3

2
−1 −1

2
0 0 0 0 0 0 0 3/4

−1 −3
2
−2 −3

2
−1 −1

2
0 0 0 0 0 0 0 3/4

−2 −2 −4 −3 −2 −1 0 0 0 0 0 0 0 3/2
−3

2
−3

2
−3 −3 −2 −1 0 0 0 0 0 0 0 3/2

−1 −1 −2 −2 −2 −1 0 0 0 0 0 0 0 1
−1

2
−1

2
−1 −1 −1 −1 0 0 0 0 0 0 0 1/2

0 0 0 0 0 0 −3
2
−1 −2 −3

2
−1 −1

2
0 3/4

0 0 0 0 0 0 −1 −3
2
−2 −3

2
−1 −1

2
0 3/4

0 0 0 0 0 0 −2 −2 −4 −3 −2 −1 0 3/2
0 0 0 0 0 0 −3

2
−3

2
−3 −3 −2 −1 0 3/2

0 0 0 0 0 0 −1 −1 −2 −2 −2 −1 0 1
0 0 0 0 0 0 −1

2
−1

2
−1 −1 −1 −1 0 1/2

0 0 0 0 0 0 0 0 0 0 0 0 0 1/2
3
4

3
4

3
2

3
2

1 1
2

3
4

3
4

3
2

3
2

1 1
2

1
2
−1



.

We now construct an group isomorphism AM = M∨/M ∼= (Z/2Z)⊕2 ⊕
(Z/4Z)⊕2 by α∗1 − β∗1 7→ (1, 0, 0, 0), α∗4 7→ (0, 1, 0, 0), α∗1 7→ (0, 0, 1, 0) and
x∗ 7→ (0, 0, 0, 1). To verify this, we first check that there is no non-trivial
relations among α∗1 − β∗1 , α∗4, α∗1 and x∗ in M∨/M . Then we observe that all
the other dual basis (module out M) can be generated by these four elements:
α∗2 ≡ α∗4−α∗1, β∗1 = α∗1− (α∗1− β∗1), β∗2 ≡ 2x∗+α∗4−α∗1 + (α∗1− β∗1), α∗3 ≡ β∗3 ≡
γ∗ ≡ 2α∗1, α∗6 ≡ α∗4, β∗4 ≡ β∗6 ≡ 2x∗ + α∗4.

Using the above explicit isomorphism (i.e. the discriminant group AM is
identified with (Z/2Z)⊕2⊕ (Z/4Z)⊕2 by α∗1−β∗1 7→ (1, 0, 0, 0), α∗4 7→ (0, 1, 0, 0),

75



α∗1 7→ (0, 0, 1, 0) and x∗ 7→ (0, 0, 0, 1).), we derive a formula for the quadratic
form qM .

Lemma 4.3.6. For a, b ∈ {0, 1} and c, d ∈ {0, 1, 2, 3}, we have

qM(a, b, c, d) ≡ a2 + b2 +
c2

2
+ d2 + ab+ ac+ bc+ bd+

3

2
cd ∈ Q/2Z.

Proposition 4.3.7. The lattice M is isomorphic to U(4) ⊥ D12.

Proof. We shall use Corollary 1.13.3 of [53]. The two lattices have the same
signature and isomorphic discriminant group. It remains to show that the
discriminant forms are isomorphic to each other as well.

There are three classes of quadratic forms wεp,k, uk and vk on a finite abelian
group. We refer the readers to Section 1.5.3 of [54] for the definitions. We
also need Table A.2 and Table A.3 of op. cit. later. The significance of these
forms is that every nondegenerate quadratic form on a finite abelian group
is isomorphic an orthogonal direct sum of them (c.f. [53] Propositions 1.8.1
and 1.8.2). For the lattice M , we have obtained a formula of the discriminant
quadratic form qM . In particular, we find out that the values of qM have at
worst denominator 2, which rules out a couple possibilities (e.g. there can
be no direct summand wε2,2, ε ∈ {±1,±5} or u4 or v4 for qM). The possible

expressions for qM are as follows: v1 ⊥ u2, u1 ⊥ u2, w1
2,1 ⊥ w−1

2,1 ⊥ u2,

w1
2,1 ⊥ w1

2,1 ⊥ u2, w−1
2,1 ⊥ w−1

2,1 ⊥ u2, v1 ⊥ v2, u1 ⊥ v2, w1
2,1 ⊥ w−1

2,1 ⊥ v2,

w1
2,1 ⊥ w1

2,1 ⊥ v2 and w−1
2,1 ⊥ w−1

2,1 ⊥ v2. By counting the numbers of 0, 1, 1
2
,

−1
2

for each expression and compare with those for qM , the only possibility
left is v1 ⊥ u2, and hence qM ∼= v1 ⊥ u2. Now that the discriminant form of
U(4) ⊥ D12 is also isomorphic to v1 ⊥ u2 (see [54] Table A.2 and Table A.3),
we complete the proof.

Proposition 4.3.8. The lattice M admits a unique primitive embedding M ↪→
ΛK3 into the K3 lattice ΛK3. The orthogonal complement T := M⊥

ΛK3
is iso-

morphic to U ⊥ U(4) ⊥ D4.

Proof. The first statement follows from Theorem 1.14.4 of [53]. The second
statement can be proven in a similar way as above (note that qT = −qM and
the lattice D4 has discriminant form v1 by [54] Table A.2).

M-polarized K3 surfaces and the period map

Definition 4.3.9. The lattice M as above. An M -polarized K3 surface is
a pair (S, j) consisting of a K3 surface S and a primitive lattice embedding
j : M ↪→ Pic(S). The embedding j is called the M -polarization of S. If the
polarization is understand, we simply say that S is an M -polarized K3 surface.
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It is a standard fact (see for example [55]) that the moduli space of M -
polarized K3 surfaces is a quotient Γ\D for a certain Hermitian symmetric
domain of type IV and a certain arithmetic subgroup Γ. Specifically, the
condition of M -polarization determines a tower of primitive embeddings

M ↪→ Pic(S) ↪→ H2(S,Z) ∼= ΛK3.

It follows that the periods of M -polarized K3 surfaces belong to the following
subdomain of the period domain of K3 surfaces:

D = {ω ∈ P(ΛK3 ⊗ C) | (ω, ω) = 0, (ω, ω̄) > 0, ω ⊥M}0.

Conversely, since Pic(S) = H2(S,Z) ∩H1,1(S), every point of D corresponds
to an M -polarized K3 surface. Let T be the orthogonal complement of M (i.e.
the transcendental lattice). It is convenient to identify D with the domain

{ω ∈ P(T ⊗ C) | (ω, ω) = 0, (ω, ω̄) > 0}0.

Note that D is a bounded symmetric domain of type IV6. The group O∗(T )
acts on D naturally.

In our situation, we consider the space M̃ parametrizing (C,L1, L2, σ, σ1, σ2),
where C is a smooth plane quartic curve, L1 and L2 are two bitangents (non-
hyperflex), σ : {1, 2} → {L1, L2} labels L1 and L2 and σi : {1, 2} → C ∩ Li
(i = 1, 2) labels the tangency points. The K3 surface X̃ (together with the

labelings) carries a natural M -polarization j : M ↪→ Pic(X̃). Therefore, there

is a well-defined map P̃ : M̃ → O∗(T )\D sending (C,L1, L2, σ, σ1, σ2) to the

period of X̃.By Torelli theorem for lattice-polarized K3 surfaces, P̃ is injective.
Moreover, Proposition 4.3.3 and subjectivity of the period map implies that
P̃ is birational.
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