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Abstract of the Dissertation

On the moduli space of quintic surfaces

by

Patricio Gallardo

Doctor of Philosophy

in

Mathematics

Stony Brook University

2014

We describe the GIT compactification for the moduli space of
smooth quintic surfaces in projective space. This GIT quotient
is used along with the stable replacement for studying the geom-
etry of another special compactification which was developed by
Kollár, Shepherd-Barron and Alexeev. In particular, we discuss
the interplay between GIT stable quintic surfaces with minimal
elliptic singularities and boundary divisors in the KSBA space.
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Chapter 1

Introduction

To construct a geometric compactification for the moduli space of surfaces of
general type is a central problem in algebraic geometry. Work of Gieseker [20]
shows that the coarse moduli spaceMs of smooth projective surfaces of general
type with fixed numerical invariants pg, q, and c2

1 is a quasiprojective variety.
A geometric compactification ofMs, called KSBA, was given by the works of
Kollár, Shepherd-Barron [39] and Alexeev [1]. However, this compactification
is difficult to understand (see Section 4.1), and there is not a description of it
for even relatively simple examples such as the quintic surfaces. An alternative
approach is to describe a more accessible compactification ofMs, such as the
one provided by geometric invariant theory (GIT) and to use this GIT quotient
for obtaining information about the KSBA space.

Specifically, here we consider the GIT compactification for quintic surfaces
in the projective space, and we discuss the KSBA replacement for some stable
GIT surfaces that do not have semi log canonical singularities. Particularly,
we related minimal elliptic singularities with boundary divisors in the KSBA
space. In our case the GIT compactification MGIT

is well suited for being
explicitly calculated. It contains an open set, Mstb, called the stable locus
which has a modular interpretation and it parametrizes a large array of singular
surfaces with worse than semi log canonical singularities.

Our geometric quotient is of particular relevance. Indeed, it is a weakly
modular compactification of the moduli space of canonical surfaces of general
type with invariants pg = 4, q = 0 and c2

1 = 5, for which the canonical
line bundle is base point free (see Horikawa [27]). The birational geometry
associated to singular quintic surfaces is rather rich, and the GIT quotient
parametrizes a wealth of surfaces of general type (see Section 4.3). Moreover,
It is expected that the GIT compactification for quintic surfaces plays an
important role in the birational geometry of the moduli space of surfaces with
those invariants. Specifically, we expect a situation similar to the Hassett-Keel
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program for curves of genus three: The GIT compactification of plane quartics
M

GIT

d=4 is the log canonical model of the Deligne-Mumford compactification M3

(see [29]).

1.1 Motivation from the Moduli of Curves

The curves with ample canonical bundle are classified by an invariant g called
genus of the curve that satisfies the inequality g ≥ 2. For a fixed value of
the genus, there is a quasiprojective variety Mg that parametrizes the smooth
curves of genus g. In particular, the curves of genus g = 3 are divided into
two families.

1. A six dimensional family of curves for which the canonical bundle KC

defines an embedding:

φKC : C ↪→ P(H0(C,KC)) ∼= P2

whose image is a smooth quartic plane curve. These curves are called
non hyperelliptic ones.

2. A five dimensional family of curves for which the canonical bundle KC

does not induces an embedding into P2. In this case, the image of C
under the associated map φKC is a nonreduced conic.

In fact, the moduli space of smooth non hyperelliptic curves of genus three
Mnh

3 is identified with the moduli space of smooth quartic plane curves in
P2. This is a six dimensional moduli space which have at least two possible
compactifications:

1. The Deligne-Mumford compactification M3 (see [9]) which is a modular
compactification of Mnh

3 . This compactification is obtained from con-
sidering all curves of genus g = 3 with ample canonical bundle, and
with at worst log canonical singularities (N.B for curves, they are nodal
singularities)

2. A weakly modular compactification obtained from taking the GIT quo-
tient

M
GIT

3 = P
(
Sym4

(
H0
(
P2,OP2(1)

) ))ss
//SL(3,C)

Hyeon and Lee showed that M
GIT

g=3 is the log canonical model of M3 ([29]),
and they described the relationship between these two alternative compactifi-
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cations.

M3

π

""
Mnh

3

?�

OO

� � // M
GIT

3

We currently understand:

1. The curves of genus three parametrized by M3. In particular, there is a
boundary divisor Γ ⊂ M3 \Mnh

3 parametrizing the union of a curve of
genus 2 and an elliptic one intersecting at a point. These stable curves
are called elliptic tails.

2. The quartic plane curves parametrized by M
GIT

3 .

3. The map π : M3 99K M
GIT

3 . In particular, the generic quartic plane
curve parametrized by the loci π(Γ).

Moreover, we have a procedure, known as stable replacement, that allow us
to study the fibers of the π : M3 99K M

GIT

3 . The stable replacement for
toric and quasitoric plane curve singularities was studied by Hassett [26]. A
generalization of his work plays a central role in our results.

1.2 Moduli of Surfaces of General Type

Surfaces with ample canonical bundle are classified by three invariants: The
geometric genus pg = H0(S,KS), the irregularity q = H1(S,KS), and K2

S.
Those invariants satisfy inequalities such asKS > 0 andK2

S ≥ 2pg−4. Gieseker
[20] showed that if we fixed these invariants, there is a quasiprojective variety
parametrizing those surfaces with at worst ordinary double point singularities.
In particular, we are interested in the numerical quintic surfaces which have
invariants pg = 4, q = 0, and K2

S = 5. These surfaces are, in some way, similar
to the curves of genus three (see [27]). Indeed, numerical quintic surfaces are
divided into three families:

1. A 40 dimensional family of surfaces for which the canonical bundle KS

defines an embedding

φKS : S ↪→ P(H0(S,KS)) ∼= P3

whose image is a quintic surface with at worst ordinary double point
singularities. These surfaces are called type I numerical quintics.
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2. A 39 and a 40 dimensional family of surfaces for which the canonical
bundle is ample but with a base point. After solving the base locus of
KS, the induced image of S is a nonreduced quintic surface.

We are interested in the moduli space M5 of numerical quintic surfaces of type
I which we can identify with the moduli space of quintics surfaces in P3 with
at worst DuVal singularities. This is 40 dimensional moduli space with at least
two possible compactifications:

1. The Kollar-Shepherd-Barron-Alexeev (KSBA) compactification M
KSBA

5

([39], [1],[36]) which is a generalization of the Deligne-Mumford construc-
tion, but for surfaces of general type. This compactification is obtained
by considering numerical quintic surfaces with ample canonical bundle
and at worst semi log canonical singularities.

2. A weakly modular compactification obtained from taking the GIT quo-
tient for quintic surfaces

M
GIT

5 = P
(
Sym5

(
H0
(
P3,OP3(1)

) ))ss
//SL(4,C)

Unfortunately, we do not know if the compactification M
KSBA

5 is divisorial. We
do not know which are the surfaces parametrized by M

KSBA

5 or M
GIT

5 , and we
do not understand the diagram:

M
KSBA

5

π

$$
M5

?�

OO

� � // M
GIT

5

In this thesis, we address the following questions.

1. Are there divisors Γi on M
KSBA

5 that generalizes the behavior of the
elliptic tail divisor on M3 ?

2. What are the GIT stable quintic surfaces?

3. Can we describe the generic surface parametrized by the image π(Γi) in
the GIT quotient?

Recent work by J. Rana [58], proves the existence of a divisor on M
KSBA

5

by considering the deformation of surfaces with a 1
4
(1, 1) quotient singularity.

Furthermore, J. Rana and J. Tevelev conjectured and partially proved the
existence of 22 divisors on M

KSBA

5 associated to Fucshian singularities. We
prove the existence 21 of these divisors by different methods.
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1.3 Main Results

Theorem. (see Thm 4.2.4) There are at least 21 boundary divisors Γi ⊂
M

KSBA

5 which are contracted by the map:

π : M
KSBA

5 99KM
GIT

5

for those divisors it holds:

1. The generic surface parametrizes by Γi is the union of a K3 surface ST
and a surface of general type S1 with pg = 3, q = 0 and K2

X ∈ {4, 3, 2}.

2. The surface S1 and ST intersect along a rational curve which support at
most five cyclic quotient singularities.

g=0

S0

ST

S1

The generic surface parametrized by π(Γi) is a quintic surface S0 with one of
the following minimal elliptic singularities:

E12 E13 E14 Z11 Z12 Z13 S11

W12 W13 Q10 Q11 Q12 U12 S12

Z15 Q14 U14 W15 S14 V15 N16

Remark 1.3.1. The previous theorem generalizes behavior observed in the
moduli of curves:

1. The minimal elliptic singularities are the two dimensional equivalent of
the cusp plane curve singularity.

2. The divisors Γi generalize the elliptic tail divisors in M3. In our case, a
K3 surface plays the role of an elliptic curve.

Sketch of proof: We generalize a construction used by Hassett for the case
of plane curves singularities [26]. Let S0 := (f(x, y, z) = 0) be a surface
singularity with a C∗-action. We start with a generic smoothing (f(x, y, z) +
t = 0) of S0. After a base change, ta → t, induced by the monodromy of
the surface singularity, we arrive at a smoothing X of S0 with a strictly log
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canonical threefold singularity. The canonical modification X̃ of X is obtained
by a weighted blow up. We show that the central fiber S1 + ST of X̃ has at
worst semi log canonical singularities, and we explicitly check the ampleness
of the canonical bundle on our surface S1 + ST . This procedure generates

C

S1

πw̃ πw

Eπw̃

S0 X

X̃

ST

S1

Eπw

Figure 1.3.1.1: KSBA stable replacement of S0 into S1 + ST

KSBA stable surfaces in the central fiber of X̃ → ∆. Finally, we count the
moduli associated to the surface S1, to the exceptional surface ST , and to the
intersection S1 ∩ ST .

We also have a good understanding of the quintic surfaces parametrized
by the GIT quotient.

Theorem. (see Section 2) Let S be a quintic surface with at worst one of the
following singularities

1. Minimal elliptic singularities

2. Isolated singularities with Milnor number small than 21 or modality
smaller than 5

3. Isolated double points or isolated triple points with reduced tangent cone

Then S is stable. On other hand, suppose that the quintic surface has one of
the following singularities

1. a triple line

2. a double plane
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3. a point of multiplicity four

Then S is GIT unstable. The GIT boundary has four irreducible disjoint com-
ponents of dimension 6, 1, 0, and 1, and the maximal stabilizer of a semistable
quintic surface is SL(2, C).

dim(Λ2) = 1

Milnor
Number ≤ 21

Isolated
double points

Minimal
Elliptic sing.

Stable Locus

dim(Λ3) = 0

dim(Λ4) = 1

dim(Λ1) = 6

Figure 1.3.1.2: GIT quotient of Quintic Surfaces

Remark 1.3.2. The GIT quotient of quintic surfaces has some similarities
with the GIT quotient of quartic plane curves:

1. There is only one non reduced semistable scheme parametrized by the
GIT quotient. In the case of quartic plane curves, we have the double
conic. In the case of quintic surfaces, we have the union of a double
smooth quadratic surface and a transversal hyperplane.

2. All the minimal elliptic singularities are stable. For quartic plane curves
the analogous statement is the stability of the cusp singularity.

Sketch of Proof: The GIT construction has three parts: First a combinatorial
one based on the Hilbert-Mumford numerical criterion. From this analysis,
we obtain a list of critical one parameter subgroups λk. Each critical λk
induces a generic surface (Fλk(x0, x1, x2, x3) = 0) constructed by generic linear
combinations of the monomials

M⊕(λk) =
{
xi00 x

i1
1 x

i2
2 x

i3
3 | a0i0 + ...+ a3i3 ≥ 0, i0 + i1 + i2 + i3 = 5, ik ≥ 0

}
The second part of the analysis is to describe the surfaces parametrized by the
stable loci. Our approach is to use invariants associated to the singularities
and the classifications that they induced. In particular, we use the Milnor
number, the modality, the log canonical threshold, and the geometric genus of
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a singularity because they are semicontinuous. The final part of the analysis
is to describe the GIT boundary Λi. This description is done by using Luna’s
Theorem.

1.4 Future work

There are several questions that we wish to address in our future work:

1. In the case of plane quartic curves, we can blow up the GIT quotient
for obtaining a moduli space that includes the hyperelliptic curves. Can
we do something similar for the GIT quotient of quintic surfaces? In
particular, can we related the Kirwan blow up to the Horikawa divisor
parametrizing numerical quintics of type IIb?

2. Quintic surfaces are related to the construction of Enrique and Godeaux
surfaces. Can we use the GIT quotient for constructing compactifications
of the moduli spaces of those surfaces?

3. Can we generalize the results on quasihomogeneous singularities for con-
structing KSBA stable surfaces at the boundary of other moduli spaces
of surfaces of general type?

1.5 Related work

This work fits in a series of related GIT constructions including Shah [61], Laza
[44], Yokoyama [72], Lakhani [41]. For analyzing the singularities, we benefited
from the work of Laufer [42], Reid [59], Wall [68] and Prokhorov [57]. The
moduli of numerical quintic surfaces was studied first by Horikawa [27], and
J. Rana [58] has recently studied its KSBA compactification. On the stable
replacement, we follows closely Wahl [67] and Hassett [26]. We use Macaulay
[21], Singular [8] for producing examples, and verifying some calculations.

1.6 Notation

The homogeneous coordinates are given by [x0 : x1 : x2 : x3], we denote as
pi the point (xj = xk = xl = 0) with i 6= j, k, l; and we denote as Lij the
line (xk = xl = 0) with i, j 6= k, l. The homogenous polynomials of degree d
are denoted fd(x0, x1, x2, x3). We work over the complex numbers. Otherwise
indicated, whenever a polynomial occurs in an example or calculation, we
suppose it has generic coefficients. However, we write it without non-zero
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coefficients. For example cix
2
i + ckx

2
k will be written as x2

i + x2
k. Moreover, if

we work at the completion of the local ring of a singularity, we do not write the
coefficients whenever they are invertible elements. For example u(x, y, z)x2 +
v(x, y, z)y2 will be simply written as x2 + y3 if u(x, y, z) and v(x, y, z) are
invertible power series. Finally, let X = (FX = 0) be a hypersurface with
equation FX(x0, x1, x2, x3) with respect a given coordinate system, we denote
as ΞX its set of non zero monomials. Our computational framework follows
the one in Mukai [53, sec 7.2].

9



Chapter 2

GIT for Quintic Surfaces.

2.1 Geometric Invariant Theory Analysis

Geometric invariant theory gives a standard way to compactify some moduli
spaces. In particular, the moduli of smooth quintic surfaces, Ms, is an open
quasiprojective subset of the GIT compactification MGIT

which is given by
the quotient

MGIT
= P

(
Sym5

(
H0
(
P3,OP3(1)

) ))ss
//SL(4,C)

As usual, the stability of a given surface X is decided by means of the Hilbert-
Mumford Numerical Criterion: A quintic surface is stable (resp. semistable) if
and only if for all the one parameter subgroup λ (t) : Gm → SL (4,C), it holds
µ(λ,X) < 0 (resp. ≤ 0 ). We assume that the one parameter subgroups (or
1-PS) are diagonal and their weights are normalized to:

λ = diag (ta0 , ..., ta3) with a0 ≥ ... ≥ a3 and a0 + ...+ a3 = 0

then on our coordinate system, the numerical function can be written as

µ(λ,X) = min{λ.mk | mk ∈ ΞX} (2.1.1)

= min{a0i0 + a1i1 + a2i2 + a3i3 | xi00 xi11 xi22 xi33 ∈ ΞX}

The normalized one parameter subgroups induce a partial order among the
monomials. Indeed, given two monomials m, m′. Then m ≥ m′ if and only if
λ.m ≥ λ.m′ for all normalized 1-PS (see [53, Lemma 7.18]). From the definition
of the numerical criterion, the minimal monomials in a configuration ΞX are
the ones that determine the value of µ(λ,X).

An alternative formulation of the numerical criterion is: X is not a stable
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surface if and only if there exist a coordinate system and at least one normalized
parameter subgroup λ = (a0, a1, a2, a3) such that X := (FX = 0) and its
associated set of monomials ΞFX is contained in

M⊕(λ) =
{
xi00 x

i1
1 x

i2
2 x

i3
3 | a0i0 + ...+ a3i3 ≥ 0, i0 + i1 + i2 + i3 = 5, ik ≥ 0

}
For the analysis of the stability, it suffices to consider the maximal sets M⊕(λ)
with respect the inclusion. We call them maximal non stable configurations ;
and they are determined by a finite list of 1-PS that we call critical one pa-
rameter subgroups.

Proposition 2.1.2 (Critical one parameter subgroups). A quintic surface X
is non GIT stable if and only if for a suitable choice of a coordinate system
such that X := (FX = 0), and the monomial configuration ΞFX is contained
in M⊕ (λi) for one of the following 1-PS:

λ1 = (1, 0, 0,−1) λ2 = (2, 1,−1,−2) λ3 = (4, 2,−1,−5)

λ4 = (2, 1, 0,−3) λ5 = (3, 0,−1,−2) λ6 = (5, 1,−2,−4)

λ7 = (2, 1, 1,−4) λ8 = (2, 2,−1,−3) λ9 = (7, 1,−4,−4)

λ10 = (8,−1,−2,−5)

Furthermore, if for a suitable choice of coordinates ΞFX ⊆ M⊕ (λi) for i > 6.
Then, X is unstable (see Table 2.1.2.1).

Proof. Since there exist finitely many configurations of monomials; only finitely
many configurations are relevant for the GIT analysis. To find them, with aid
of a computer program, we list all the configurations and we identify the max-
imal ones. In fact, the computation complexity is greatly reduced by using
two basic observations: First, it suffices to consider the configurations associ-
ated to M⊕ (λ) where λ is such that there exist monomials m1, m2 satisfying
λ.m1 = λ.m2 = λ.0d = 0, where 0d denotes the centroid in the simplex of
monomials. Second, a configuration is characterized by its set of minimal
monomials with respect the previously defined partial order.

Moreover, we can also check that our list of critical 1-PS is complete.
Indeed, by examining the equations of a hyperplane containing m1, m2 and
0d, it is clear that any ρ = (a0, a1, a2, a3) satisfies |ai| < 3(5)3 with ai ∈ Z. By
using criterion [53, Prop. 7.19], we can confirm that Mρ(ρ) ⊂ M⊕(λk). Our
implementation follows similar cases in the literature (e.g. [44],[41], [72]).

Remark 2.1.3. Let F λi := F λi(x0, x1, x2, x3) be the equation obtained from a
generic linear combination of the monomials stabilized by λi. The unstability

11



Table 2.1.2.1: Singularities associated to Critical 1-PS(See Proposition 2.1.2)

1-PS Associated Geometric Characteristics

λ1, λ3, λ4 Isolated triple point singularity with non-reduced tangent
cone

λ7 Isolated ordinary quadruple point singularity

λ2, λ6, λ8 Double line of singularities supporting a non isolated triple
point

λ5, λ9 Double line of singularities with a distinguished double point

λ10 The union of a quartic surface and a hyperplane

of M⊕ (λi) for i > 6 is related to bad geometric properties of V (F i). Indeed,
we find that the zero set of F λ7 = x3p4(x1, x2) has a quadruple line, the zero
set of F λ8 = x2

3p3(x0, x2) has a double plane, the zero set of F λ9 = x4
1l(x2, x3)

has a quadruple plane and the zero set of F λ10 = x0x
3
1x3 +x0x

4
2 contains a line

of multiplicity three and a point of multiplicity four.

To start the GIT analysis, we interpret the geometric characteristics of
the zero set associated to the equation Fλi(x0, x1, x2, x3) which is obtained
from a generic linear combination of the monomials on M⊕ (λi). Our goal is
to interpret intrinsically the statement: There exist a coordinate system such
that the surface X := (FX = 0) satisfies ΞFX ⊂M⊕ (λi)

Kempf showed, [34, Thm 3.4], that a non stable point in the GIT quo-
tient always defines a canonical worst one parameter subgroup. From this
worst 1-PS, we can relate the failure of stability with geometric properties
of our non stable surface. Specifically, each 1-PS λ acts on the vector space
W := H0(P3,OP3(1)) determining a weight decomposition W = ⊕kWk. This
decomposition induces a (partial) flag of subspaces (Fn)m := ⊕k≤mWk ⊂ W
which determines a (partial) flag (Fn)λ := pλ ⊂ Lλ ⊂ Hλ ⊂ P3. For instance,
in a coordinate system such that the normalized λ has different weights ai.
The flag (Fn)λ is:(

pλ := [0 : 0 : 0 : 1]
)
∈
(
Lλ := V (x0, x1)

)
⊂
(
Hλ := V (x0)

)
We say that (Fn)λ is a bad flag for the surface X, if the associated one param-
eter subgroup λ satisfies µ(λ,X) ≥ 0. Typically, the geometric properties of
X leading to failure of stability can be expressed in terms of a bad singularity
which is singled out by a bad flag in P3. We call this singularity a destabilizing
one, and it is clearly supported at pλ. Similarly, the other terms of the bad
flag impose additional geometric conditions on our surface. For example, the
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line Lλ usually singles a bad direction or a curve of singularities in X. Given
the surfaces (Fλi(x0, x1, x2, x3) = 0) ⊂ P3, our first step is to describe the
singularities singled out by their bad flag.

Proposition 2.1.4 (Semistable surfaces). Let X be a quintic surface, and
let ∆ be its singular locus. If X is a strictly semistable quintic surface with
isolated singularities. Then:

1. ∆ contains a triple point singularity p ∈ X whose tangent cone is the
union of a double plane H2 and another one. The intersection multi-
plicity of the surface with any line in H containing the triple point is
five.

2. ∆ contains a triple point singularity p ∈ X whose tangent cone is the
union of a double plane H2 and another one intersecting along a line L
which is contained in X. The intersection of the hyperplane H with the
surface X is the union of a double line L2 and a nodal cubic plane curve
such that the double line is tangent to the cubic curve at the node.

3. ∆ contains a triple singularity p ∈ X whose tangent cone is a triple
plane H3. The quintic plane curve obtained from the intersection of the
surface X with H has a quadruple point which tangent cone contains a
triple line.

If X is an irreducible strictly semistable quintic surfaces with non isolated
singularities, Then:

4. ∆ contains a double line L2 supporting a special double point whose tan-
gent cone is H2. At the completion of the local ring, the equation asso-
ciated to the double point has the form

x2 + xy3 + xy2z + xyz3 + y5

The intersection of X with H is a quintuple line supported on L.

5. ∆ contains a double line L2 supporting a special triple point p ∈ X. The
tangent cone of the triple point is the union of three planes intersecting
along L. At the completion of the local ring, the equation associated to
the triple point has the form:

xf2(x, y) + y3z + y4 + x2z2 + xyz3

The intersection of the surface with one of the hyperplanes H is the union
of a conic and a transversal triple line supported on L.
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6. ∆ contains a double line L2 supporting a special triple point whose tan-
gent cone is the union of a double plane H2 and another one. At the
completion of the local ring, the equation associated to the triple point
has the form:

x2y + x4 + y4 + x3z + x2z2 + xy3 + xy2z + xyz3

The intersection of the surface with the hyperplane H is the union of a
quadruple line supported on L and another line.

Remark 2.1.5. A converse result will require an individual analysis which
is carried out in the following sections. For an analogous result in quartic
surfaces see [61, Thm 2.4]

Proof. We suppose the quintic surface is strictly semistable. Then, by Propo-
sition 2.1.2, we only need to find the geometric characterization of the zero
set associated to the equations Fλi(x0, x1, x2, x3) for 1 ≤ k ≤ 6. Our proposi-
tion describes the main geometric features of these surfaces. In particular, the
intersection of the corresponding generic surface (Fλi(x0, x1, x2, x3) = 0) with
its bad flag pλk ∈ Lλk ⊂ Hλk which singles out the destabilizing singularity.
The first case correspond to the quintic surface associated to the equation

Fλ1(x0, x1, x2, x3) = x2
3x

2
0f1(x0, x1, x2) + x3x0f3(x0, x1, x2) + f5(x0, x1, x2)

The equation associated to the quintic surface described in the second case is:

Fλ3(x0, x1, x2, x3) = x2
3x

2
0f1(x0, x1) + x3(x2

0x
2
2 + x2f3(x0, x1) + f4(x0, x1))

+ x2
1f3(x1, x2) + x0f4(x0, x1, x2)

The equation associated to the quintic surface described in the third case is :

Fλ4(x0, x1, x2, x3) = x2
3x

3
0 + x3x

3
1f1(x1, x2) + x3x

3
0h1(x0, x1, x2)

+ x3x
2
0f2(x1, x2) + x3x0x1g2(x1, x2) + f5(x0, x1, x2)

The strictly semistable quintic surfaces with non isolated singularities are
destabilized by the one parameter subgroups λ5, λ2, λ6. The fourth case
corresponds to the quintic surface defined by the equation

Fλ5(x0, x1, x2, x3) = x3
3x

2
0 + x2

3x
2
0f1(x0, x1, x2) + x3x

2
0f2(x0, x1, x2)

+ x3x0x
2
1f1(x1, x2) + x2

0f3(x0, x1, x2) + x0x1g3(x1, x2) + a1x
5
1
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The equation associated to the fifth case is given by

Fλ2(x0, x1, x2, x3) = x2
3x0f2(x0, x1) + x3x

3
1f1(x1, x2) + x3x0x

2
1h1(x1, x2)

+ x3x
2
0g2(x0, x1, x2) + x2

0f3(x0, x1, x2) + x0x1g3(x1, x2)

+ x3
1h2(x1, x2)

The equation associated to the last case is

Fλ6(x0, x1, x2, x3) = x2
3x

2
0f1(x0, x1, x2) + x3(x2

0f2(x0, x1, x2) + x0x
2
1h1(x1, x2))

+ x3a2x
4
1 + x4

1g1(x1, x2) + x0x1f3(x1, x2) + x2
0g3(x0, x1, x2)

To find the local equation of the singularities we use the convention described
at Section 1.6.

Some of the maximal 1-PS induce unstable configurations (Remark 2.1.3).
Next, we describe their main geometric characteristics.

Proposition 2.1.6 (Unstable surfaces). Let X be a quintic surface and let
∆ be its singular locus. If for a coordinate system ΞX ⊂ M⊕(λk) for k > 6.
Then, it holds

1. ∆ contains an ordinary quadruple point.

2. ∆ contains a double line supporting a special triple point p ∈ X whose
tangent cone is the union of three concurrent hyperplanes intersecting
along a line L. At the completion of the local ring, the equation associated
to the triple point has the form:

f3(x, y) + y2z3 + xyz3 + x2z3

The intersection of the surface with one of the hyperplanes is the union
of a cubic curve and a tangential double line supported at L.

3. ∆ contains a double line supporting a special double point whose tangent
cone is H2. At the completion of the local ring, the equation associated
to the double point has the form:

x2 + xy2 + y4 + zy4 + y5

The intersection of the surface with H is the union of a quadruple line
supported on L and another line.

4. X is the union of a smooth quartic surface and a hyperplane.
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4.1. The intersection of the hyperplane with the quartic surface is a quar-
tic plane curve with a triple point which tangent cone has a triple
line L3.

4.2. The intersection of the quartic surface with this line L is a quadruple
point.

and X is an unstable quintic surface.

Proof. A quintic surface with an isolated quadruple point singularity is desta-
bilized by λ7. Conversely, the generic equation associated to λ7 is

Fλ7(x0, x1, x2, x3) = x3f3(x0, x1, x2) + f5(x0, x1, x2, x3)

The equation associated to the second case is given by

Fλ8(x0, x1, x2, x3) = x2
3f3(x0, x1) + x3(x2f3(x0, x1) + f4(x0, x1))

+ x3
2f2(x0, x1) + x2

2f3(x0, x1) + x2f4(x0, x1) + f5(x0, x1)

The equation associated to the third case is given by

Fλ9(x0, x1, x2, x3) = x3
3x

2
0 + x2

3x
2
0f1(x0, x1, x2) + x2

3x0x
2
1 + x3x

2
2x

2
0

+ x3x2x0f2(x0, x1) + x3f4(x0, x1) + x3
2x

2
0 + x2

2x0f2(x0, x1)

+ x2f4(x0, x1) + f5(x0, x1)

The reducible unstable quintic surface is destabilized by λ10, and its associated
equation is given by

Fλ10 = x0

(
x3

3x0 + x2
3x0l(x0, x1, x2) + x3x2x0f1(x0, x1, x2) + x3f3(x0, x1)

)
+ x0f4(x1, x2, x0)

This proposition follows from computations similar to the previous one, and
it is left to the reader.

Next, we discuss some stability results that appear as consequences of the
previous propositions.

Corollary 2.1.7. Let X be a normal quintic surface with a triple point singu-
larity whose tangent cone contains a double plane. Let X̃ → X be its monomial
transformation with center at the triple point. Then, X̃ is not normal if and
only if there is a coordinate system such that ΞFX ⊂ ΞFλ1

.

Proof. It is clear that if ΞFX ⊂ ΞFλ1
then X̃ is not normal. Conversely assume

X has the geometric properties stated in the Corollary. Then, we can select
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a coordinate system such that the triple point is supported at p3 and the
tangent cone is supported at (x0 = 0). The statement follows from the fact
that the singularities of X̃ happens along the intersection of (x0 = 0) with
(f4(x0, x1, x2) = 0). See [71, Prop. 4.2] or the proof of [71, Prop. 4.5].

Corollary 2.1.8. Let X be a normal quintic surface with at worst an isolated
double point singularity or an isolated triple point singularity whose tangent
cone is reduced. Then X is stable.

Proof. Let X be such a quintic surface and assume that X is not stable. Then
ΞX is contained in one of the M⊕(λk) associated to the critical 1-PS of Propo-
sition 2.1.2. It is immediate to check that for every case the corresponding
singular point has multiplicity larger than or equal to 3 with non reduced
tangent cone, or M⊕(λk) has a curve of singularities.

Corollary 2.1.9. Let X be a quintic surface containing a line, L, of singu-
larities such that multp(X) = 3 for all p ∈ L ⊂ X. Then X is unstable.

Proof. Let X be such a quintic surface. We can suppose that, in our coordinate
system, the triple line is supported on (x0 = x1 = 0). Then, the equation
associated to X can be written as:

x3
0f2(x0, x1, x2, x3)+x2

0x1g2(x1, x2, x3)+x0x
2
1h2(x0, x2, x3)+x3

1p2(x0, x1, x2, x3)

Now, we apply the numerical criterion with respect λ8 we find that µ(λ8, X) ≥
0 which implies X is unstable by Proposition 2.1.2.

Corollary 2.1.10. Let X be a quintic surface with a singularity of multiplicity
larger or equal to four. Then X is unstable.

Proof. The equation obtained from a generic linear combination of the mono-
mials in M⊕(λ7) determines a quintic surface with an ordinary quadruple
point. Conversely, a quintic surface with a singularity of multiplicity larger or
equal to four can be written as x3f4(x0, x1, x2)+f5(x0, x1, x2) which monomials
are contained in M⊕(λ7).

Corollary 2.1.11. Let X be an irreducible quintic surface with a curve of
singularities C ⊂ Sing(X). Suppose the genus of Cred is larger than one, and
Cred does not contain any line. Then X is stable.

Proof. The Lemma 2.4.2 and our hypothesis on the genus of C imply the
quintic surface has not triple point singularities. If X is non stable, there exist
a coordinate system such that ΞFX ⊂M⊕(λi). The singularities at X and the
geometry associated to the critical 1-PS (see Table 2.1.2.1) imply that i = 5
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or i = 9. Isolated double points are stable by Corollary 2.1.8. Therefore, the
singularity singled out by the bad flag must be a non isolated double point.
From the GIT analysis, we know that those singularities must be supported
on a line. By hypothesis, this is not our case. Then, the surface is stable.

Corollary 2.1.12. A nonreduced quintic surface X is semistable if and only
if X = 2Q+H where Q is a smooth quadratic surface, and H is a hyperplane
intersecting Q along a smooth conic.

Proof. First, we claim that if X decomposes as the union of a double plane and
another cubic surface; then X is unstable. Indeed, we can select a coordinate
system such that the double plane is supported on (x0 = 0). The equation
associated to this quintic surface can be written as (x2

0p3(x0, x1, x2, x3) = 0)
which is destabilized by λ10. By degree considerations, it remains to consider
whenever X is the union of a double quadratic surface Q2 and a hyperplane H.
If the quadratic surface is singular, it contains a quadruple point which implies
it is unstable by Corollary 2.1.10. By Lemma 2.1.15, if the quadratic surface
is smooth, the quintic surface is unstable if and only if Q ∩H is singular.

To decide the semistability of a quintic surface with SL(2,C) stabilizer, we
make use of its symmetry to reduce the number of 1-PS for which we have to
check the numerical criterion (for a similar argument see [2, Prop. 2.4])

Lemma 2.1.13. Let X be a quintic surface that decomposes in the union
of quartic surface and a hyperplane. Suppose there is a SL(2,C) ⊂ Aut(X)
action that fixes a smooth conic, C, on X. Then, there is a coordinate system
{xi} such that the equation associated to X has the form

x1

(
f2(x0, x2, x3)k + x1g3(x0, x1, x2, x3)

)
where (x1 = f2(x0, x2, x3) = 0) defines the invariant conic. Moreover, the
quintic surface X is semistable if and only if it is semistable with respect every
1-PS acting diagonally on {xi} and of the form λ = diag(a0, a1, a2, a3) with
a1 ≥ a2 ≥ a3.

Proof. Let V ∼= H0(P1,OP1(1)) be the standard two dimensional representa-
tion of SL(2,C). The embedding C ↪→ P3 induces a decomposition

W := H0(P3,OP3(1)) ∼= Sym2(V )⊕ Sym0(V )

where P(Sym2(V )) is the plane containing the invariant conic C. We say that
a basis {xi} of H0(P3,OP3(1)) is compatible with a reductive group G0

x if given
a G0

x-equivariant decomposition of W , the equivariant subspaces are spanned
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by a subset of the variables {xi}. Next, we select a distinguished coordinate
system {xi} compatible with our G0

x
∼= SL(2,C) representation. In particular,

P(Sym2(V )) = (x1 = 0).
If X is unstable, there is a destabilizing 1-PS ρ with an associated filtration

(Fρ)n and a parabolic group Pρ that preserves it. By Kempf results, [34, Cor
3.5.b], it holds G0

x ⊂ Pλ which implies we can write each term of the flag
(Fρ)n as a direct sum of G0

x-invariant subspaces induced by C ↪→ P3. Let
Tmax be a maximal torus compatible with the {xi}. By our choice of the
coordinate system, it is clear that Tmax fixes the flag associated to ρ. Therefore,
Tmax ⊂ Pρ, and the generic equation associated to X is:

x1

(
f2(x0, x2, x3)k + x1g3(x0, x1, x2, x3)

)
(2.1.14)

where the invariant conic is given by (x1 = f2(x0, x2, x3) = 0) and 1 ≤ k ≤ 2.
Moreover, in this coordinate system all the one parameter subgroups λ ⊂ Tmax
can be written as λ = diag(a0, a1, a2, a3) with a0 ≥ a2 ≥ a3; where this
last condition is achieved by relabelling. Finally, by Kempf [34, Thm 3.4
(c)(4)], every maximal torus Tmax contains a destabilizing 1-PS. Therefore, the
existence of a destabilizing ρ can be decided by the existence of a destabilizing
one parameter subgroup λ ⊂ Tmax.

Proposition 2.1.15. Let X be a quintic surface that decomposes as the union
of a double smooth quadratic surface Q and a hyperplane H. Then X is
semistable if and only if Q ∩H is smooth

Proof. If the intersection Q ∩ H is singular, the equation associated to the
quintic surface can be written as

x1

(
x2

0 + x0x2 + x2
1 + x1x3

)2

which is destabilized by λ = (2, 2,−1,−3). Next, suppose that the conic
Q ∩ H is smooth and X is unstable. By Lemma 2.1.13, we can suppose our
1-PS have the form λ = (a0, a1, a2, a3) with a0 ≥ a2 ≥ a3. In fact, we can
take, by relabelling, λ to be a normalized 1-PS. Although, in that case, the
hyperplane’s equation may be given by any of the variables (xi = 0). In this
coordinate system the equation of the quintic surface is

xi
(
f2(xj, xk, xl) + xil(x0, x1, x2, x3)

)2

The smoothness of the conic implies the equation f2(xk, xj, xl) has at least
one monomial xkxsk for each variable xk. Therefore, the numerical criterion
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satisfies

µ(X,λ) ≤ min{ai + 2aj + 2asj , ai + 2ak + 2ask , ai + 2al + 2asl , 3ai + 2ak}

for j, k, l, sr 6= i plus additional conditions that ensure both the conic and
the surface Q are smooth. There is a finite number of normalized 1-PS that
determine the stability of a quintic surface (see proof of Proposition 2.1.2).
With the help of a computer, we checked that the above numerical function is
non-negative for all the normalized 1-PS.

2.2 Minimal Orbits of the GIT compactifica-

tion

In this section, we describe the boundary components that compactify the
stable locus on the GIT quotient. Our main result is Theorem 2.2.1 which
describes the semistable quintic surfaces with minimal closed orbits.

Theorem 2.2.1. The GIT quotient of quintic surfaces is compactified by
adding four irreducible boundary components Λ1, Λ2, Λ3 and Λ4 of dimensions
6, 1, 0, 1 respectively. These boundary components are disjoint (see Figure
1.3.1.2), and the largest stabilizer associated to a closed orbit is SL (2,C). Let
Xi be a generic quintic surface parametrized by the component Λi. Then, Xi

has the following geometric properties (see Figure 2.2.1.1)

1. The surface X1 is normal; it contains two isolated triple point singular-
ities of geometric genus 3, modality 7, and Milnor number 24. At the
completion of the local ring, the equation associated to the singularity is

x2y + xz3 + f5(y, z)

which label as V ∗24 on [15, Table II] (see also [12, Table 5]).

2. The surface X2 is singular along three lines that support two non iso-
lated triple points singularities. At the completion of the local ring, the
equation associated to the triple points can be written, for t 6= 0, as

x2y + y2z2 + xyz3 + tx3z

3. The surface X3 has a triple point isolated singularity of geometric genus
2, modality 5, and Milnor number 24. At the completion of the local ring
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the equation associated to the singularity has the form

x2y + y3z + xz4

Additionally, the surface X3 is also singular along a line supporting a
distinguished triple point of the form

x2y + xy2z + z4

which after normalization, it becomes a rational triple point of type C1,0.

4. The surface X4 has an isolated triple point singularity of geometric genus
2, modality 5, and Milnor number 22. At the completion of the local ring
the equation associated to the singularity has the form

x3 + y3z + xyz2 + z5

which is label as V
′

22 on [64, pg 244]. Furthermore, the surface X4 is also
singular along a line supporting a distinguished non isolated double point
of the form

x2 + xy3z + txyz2 + z5

The boundary component Λ1 is associated to the 1-PS λ1, Λ2
∼= P1 is associated

to λ2, Λ3 is associated to λ3 and λ6, Λ4
∼= P(3 : 5) is associated to λ4 and λ5.

X1 X2 X3 X4

Figure 2.2.1.1: Generic boundary surfaces Xi. The bold lines represent the
singular locus of Xi.

Proof. The main theoretical tool for the analysis of the minimal orbits is the
Luna’s criterion (see [48]): Let W be an affine variety with an G action and
let x ∈ W be a point stabilized by a reductive subgroup Gx ⊂ G. Then the orbit
G · x is closed in W if and only if the orbit NG(Gx) · x is closed in WGx where
WGx ⊂ W denotes the invariant set under the Gx action. We use the Luna’s
criterion for the affine space W = H0(P3,OP3(5)), the group G = SL(4,C),
and the connected component Gx of the stabilizer of a general quintic surface
on the M⊕(λi) families. Note also that in our case NG(Gx) = Gx · CG(Gx)
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where CG(Gx) is the centralizer of Gx in G. Therefore, we can study the
quotient of V Gx//CG(Gx) because Gx acts trivially on V Gx (see also discussion
at Section 2.2.1).

We start by describing the first boundary component. The boundary stra-
tum associated to λ1 parametrizes surfaces which associated equation can be
written as

x2
3x

2
0x1 + x3x0f3(x1, x2) + f5(x1, x2) (2.2.2)

and it satisfies conditions described below The generic surface parametrized
by this stratum has two isolated singular points analytically isomorphic to the
one induced by x2y + xz3 + g5(y, z). The stabilizer is Gx = (1, 0, 0,−1) and
the centralizer is given by

CG(Gx) =


a 0 0

0 A 0

0 0 1
a detA

 : A ∈ GL(2,C)


We select a coordinate system such that the one parameter subgroups of
CG(Gx) are given by

λ = diag(1, tb+c, tb−c, t−2b)

where we can take c ≥ 0 so our one parameter subgroups are normalized. The
Hilbert-Mumford numerical criterion implies we must look configurations of
monomials ΞFX such that the centroid is inside the convex hull of ΞFX . This
condition translates into: The term x2

3x
2
0x1 must be different to zero. The

term f3(x1, x2) has a root of degree smaller than two at (x1 = 0). The term
f5(x1, x2) has a root of degree smaller than three at (x1 = 0). Therefore, under
an appropriate change of coordinates the equations associated to the unstable
degeneration of X1 can be written as either

(x0x3f3(x1, x2) + f5(x1, x2) = 0)

which generically describes a quintic surface with a quadruple point singularity,
or (

x1

(
x2

0x
2
3 + x0x3x1l(x1, x2) + x1c(x1, x2)

)
= 0
)

which is the equation associated to the first unstable case on Remark 2.2.6, or(
x2

0x
2
3x1 + x0x3x

2
2l(x1, x2) + x4

2l1(x1, x2) = 0
)

which also induces a surface with a quadruple point. The dimension of Λ1 is
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equal to the dimensions of the quotient

(W λ1)ss//
(
CG(λ1)/λ1

)
where the parameter space W λ1 is ten dimensional, and dim(CG(Gx)/Gx) = 4.

The proofs for the other cases are similar, so we omit some details. The
boundary stratum Λ2 associated to λ2 is one dimensional and it parametrizes
surfaces which associated equation can be taken as:

x2
3x0x

2
1 + x3x

2
0x

2
2 + a1x3x2x

3
1 + a2x0x1x

3
2 where [a1 : a2] ∈ P1 (2.2.3)

The generic surface parametrized by this stratum is singular along the lines
L01, L03 and L2,3. Those singular curves support two triple points at p0 and
p3. The quintic surfaces induced by the semistable degeneration associated to
[a1 : a2] = [0 : 1] and [a1 : a2] = [1 : 0] are projectively equivalent. Moreover,
if a1 = a2 the parametrized surface decomposes as

(x3x0 + x1x2)(x3
1 + x0x

2
2)

The boundary stratum Λ3 associated associated to λ3 and λ6 is zero dimen-
sional and it parametrizes a surface X3 which associated equation can be taken
as:

x2
3x

2
0x1 + x3x

3
1x2 + x0x

4
2 (2.2.4)

The generic surface parametrized by this stratum has an isolated singularity
at p3, and it is singular along the line L01 which support a triple point at p0.
We use Singular [8] to find the normalization of it. A study of the syzygies
of the normalization implies by Hilbert-Burch theorem than the singularity
is determinantal in C4. The normal form of a rational triple point C1,0 can
be found after algebraic manipulations. To prove the GIT stability on the
associated maximal torus we need to show that

0d ∈ ConvexHull
(
x2

3x
2
0x1, x3x

3
1x2, x0x

4
2

)
which is deduced from: 2(2, 1, 0, 2) + (0, 3, 1, 1) + (1, 0, 4, 0) = (5, 5, 5, 5). The
stratum Λ4 associated to λ4 and λ5 is one dimensional and it parametrizes
surfaces which associated equation can be taken as:

x3
0x

2
3 + x3x2x

3
1 + a1x0x1x

2
2x3 + a2x

5
2 where [a1 : a2] ∈ P(5 : 3) ∼= P1. (2.2.5)

The generic surface parametrized by this stratum has an isolated singularity
at p3 and it is also singular along the line L01 which supports a distinguish
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double point at p0. The GIT stability follows from the equalities:

(5, 5, 5, 5) = (3, 0, 0, 2) + (0, 3, 1, 1) + 2(1, 1, 2, 1)

(15, 15, 15, 15) = 5(3, 0, 0, 2) + 5(0, 3, 1, 1) + 2(0, 0, 5, 0)

In particular, we require the monomials x3
0x

2
3 and x3x2x

3
1 plus either x0x1x

2
2x3

or x5
2 to have non zero coefficients. Given λ = (a0, a1, a2, a3) acting on the

generic surface X4, the conditions 3a0 + 2a3 = 0, and 3a1 + a2 + a3 = 0 imply
that the action on the space of parameters is:

(a1, a2)→ (ta0+a1+2a2+a3a1, t
5a2a2) = (t

5
3
a2a1, t

a2a2)

so (V λ4)ss//(NG(λ4)) ∼= P(3 : 5). Proposition 2.2.7 determines the dimension
of the maximal stabilizer of a semistable quintic surface.

Remark 2.2.6. We describe non generic surfaces parametrized by Λi for i 6= 1.

1. The points [0 : 1] and [1 : 0] in Λ2 parametrize a reducible quintic
surface as described on the second case of Theorem 2.4.4. The point
[1 : 1] parametrizes a quintic surfaces that decomposes as the union of a
non normal cubic surface and a smooth quadratic one.

2. The [0 : 1] ∈ Λ4 parametrizes a surface as described on the third case of
Theorem 2.4.4.

For all surfaces parametrized by Λi 6=1 the points p0 and p3 support singularities
that are either a triple point or a distinguish double point one. For i 6= 1, the
point p1 is always singular as well as the line L01 Moreover, a generic point p
in a curves of singularities at Xi with i 6= 1 is formally of the form x2 + y2 (see
Example 2.3.8) Among the unstable degeneration of a surface parametrized
by Λ1 we find:

1. The union of a hyperplane and a quartic surface Y such that the quartic
surface has two Ẽ7 singularities, and a line L ⊂ Y joining them. The
intersection of the hyperplane with the tangent cone of one of the Ẽ7 sin-
gularities is supported on L (compare with the first case on Proposition
2.4.4)

2. The union of a smooth double quadratic surface Q2, and a hyperplane
H such that Q ∩H is a degenerate conic.

Proposition 2.2.7. Let G0
x be the stabilizer associated to the closed orbit of

a strictly semistable point. Then rank(G0
x) = 1, and up to isogeny, the largest

stabilizer for a semistable quintic surface are SL(2,C) and Gm.
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Proof. By Lemma 2.2.8, we know that Λi ∩ Λj = ∅, and that there is not a
surface with a (C∗)2 stabilizer. Then, the statement follows from the Mat-
sushima’s criterion: If G0

x is the stabilizer of a closed orbit. Then, G0
x is

a reductive group, and the classification of reductive groups of rank one in a
field of characteristic zero. An example of a strictly semistable surface with a
SL(2,C) stabilizer is given by the union of a double smooth quadratic surface
with a transversal hyperplane.

Lemma 2.2.8. Let Λi and Λj be the GIT boundary associated to two different
one parameter subgroups. Then Λi ∩ Λj = ∅ for every i and j. Moreover, for
any semistable surface the largest rank of its stabilizer group G0

x is one.

Proof. Let Xij be a semistable surface parametrized by an open orbit associ-
ated to Λi ∩ Λj. Then, its stabilizer GXij contains two distinct one parameter
subgroups λi and λj which can commute between them or not. We reach a
contradiction by studying each case separately.

If λi and λj commute, they can be simultaneously diagonalized. Then, we
can select a coordinate system such that λi and λj are two of the 1-PS on
Proposition 2.1.2 with i, j ≤ 6. In that case, the configuration of monomials,
ΞXij is stabilized by λi and λj. This is impossible because the equation λi.m =
λj.m = 0 is satisfied by only one monomial in all but the two following cases:
The equation a0x0x

2
1x2x3 + a1x

5
1 is invariant under the action of λ1 and λ5,

but destabilized by λ4. The equation a0x0x1x
2
2x3 + a1x

2
2 invariant under the

action of λ1 , λ4, but destabilized by λ7. This argument also implies there are
not semistable surface with a two dimensional torus stabilizer.

Suppose that λi and λj do not commute, we will show there is a g ∈ Pλi
such that g · λi = λj. Therefore, Hilbert-Mumford numerical function is the
same for both of them

µ(·, λi) = µ(·, g · λi)

This will implies our result by the uniqueness of the worst one parameter
subgroup [34, Thm 3.4.c]. By the properties of a good quotient, we can take,
without loss of generality, Xij to be parametrized by a closed orbit. We choose
i 6= 1, and we will work in a coordinate system where λi (but not λj) is a
normalized 1-PS. We claim that the fixed locus of λi and λj includes most of
the coordinate points. Recall that the equivariant decomposition induced by
λi:

H0(P3,OP3(1)) =
⊕
ai

Vi where Vi := {v | λi · v = taiv} (2.2.9)

induces the fixed locus of the action λi. For example, in our coordinate system
we have: pi := P

(
Vi
)

and Lij := P
(
Vk ⊕ Vl

)
. From Remark 2.2.6 , we know
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every surface parametrized by Λi with i 6= 1 have distinguished singularities
at p0 and p3 which are either a triple point or a particularly bad double point.
Therefore, those points must be also fixed by the λj action. Otherwise, λj ⊂
Aut(Xij) will generate a curve of bad singularities by taking the λj-orbit on
Xij. The singularities on that curve are of the same type than our original
fix point. This is impossible, because we do not have a curve of singularities
with either triple points or bad double points in surfaces parametrized by Λi

(see Example 2.3.8). Similarly, for all the λi there is singular point p1 and
a singular line L01 which is fixed by λi. By acting with λj, we obtain that
either L01 and p1 are fixed by the λj action, or the λj-orbit of L01 generates
a non reduced surface component of our surface. This last case is impossible,
because the only non reduced quintic surface is stabilized solely by λ1 and
i 6= 1 (Corollary 2.1.12). The common fix locus of λi and λj contains the
points p0, p1, p3 and the line L01. Next, consider the equivariant decomposition
H0(P3,OP3(1)) =

⊕
Ṽ ni
i induced by λj. In our coordinate system and from

the discussion on the previous paragraph, each monomial {xi} generates both
Vi and Ṽi for i ∈ {0, 1, 3}. Moreover, L01 := (x2 = x3 = 0) is fixed by
the action of both λi and λj. Then, Ṽ2 is generated by c1x2 + c3x3 and the
two coordinate systems that diagonalize λi and λj are related by a change of
coordinates induced by a g that fixes the flag associated to λi. So our claim
follows.

2.2.1 Local Analysis of the GIT boundary

Here, we discuss the local structure, in the etale topology, of our GIT quotient

MGIT
:=
(
PN
)ss

//G

where G ∼= SL(4,C) and N = 55. The main technical tool is the Luna’s
slice Theorem [48, App D]. Let x ∈ (PN)ss be a strictly semistable point with
stabilizer Gx. There is a Gx-invariant slice Vx to the orbit G · x which can
be taken to be a smooth, affine, locally closed subvariety of (PN)ss such that
U = G · Vx is open in (PN)ss. Given (G ×Gx V )/Gx where the action on the
product is given by h · (g, v) = (g ·h−1, hv), and by considering the fiber of the
normal bundle Nx :=

(
NG·x|Pn

)
|x we have the following commutative diagram

for any x ∈ Gx.

G×Gx Nx
étale←−−− G×Gx V

étale−−−→ U ⊂ (PN)ssy y y y
Nx//Gx

étale←−−− V//Gx
étale−−−→ U//G ⊂ (PN)ss//G ∼=MGIT
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From the perspective of the KSBA compactification, MKSBA
, of the moduli

space of surfaces of general type with invariants pg = 4, q = 0, and K2
X = 5.

It is of special interest to understand the Kirwan blow up of MGIT
at the

point ω that parametrizes the union of a double smooth quadratic surface and
a transversal hyperplane. Indeed, J. Rana [58, Thm 1.4 and 4.1] prove that

MKSBA
has a Cartier divisor D associated to the deformations of the 1

4
(1, 1)

singularity. At least one component of this divisor is obtained from taking the
stable replacement of the following family of quintic surfaces deforming to ω :

Xt =
(
f2(x)2l1(x) + tf2(x)f3(x) + t2f5(x) = 0

)
(2.2.10)

where f(x) := f(x0, x1, x2, x3). J. Rana results imply the natural birational

map MKSBA
99KMGIT

contracts the divisor D to the point ω. It is an open
problem to describe all the divisors in the KSBA space that contracts to ω.
On other hand, Kirwan constructed a partial desingularization of the GIT
quotient by blowing up the loci associated to positive dimensional stabilizers.
We expect this blow up to be related to divisors in the KSBA space. In
particular, the divisor parametrizing numerical quintic surfaces of type IIb
(see [27]) should be related to the exceptional divisor of the Kirwan blow up

of MGIT
at ω. (for a similar situation in degree four see Shah [61, Sec 4])

Lemma 2.2.11. Let ω ∈ MGIT
be the point parametrizing the union of a

double smooth quadratic surface Q and a transversal hyperplane H. Let x be a
semistable point with closed orbit mapping to the point ω ∈ MGIT

. Then, the
natural representation of its stabilizer G0

x
∼= SL(2,C) on the normal bundle

Nx is isomorphic to

Nx =
(
Sym5(V )⊗ Sym5(V )

)
⊕ Sym6(V )

where V ∼= H0(P1,OP1(1)) is the standard three dimensional representation of
SL(2,C) induced by the conic Q ∩H.

Remark 2.2.12. The exceptional divisor P(Nx)ss//Gx associated to the Kir-
wan blow up often carries itself a modular meaning (for example [45, Cor
4.3], [60, Sec 2], [29, Thm1.3] ). In future work, we plan to investigate the
modular meaning of the points parametrized by our exceptional divisor by
using the geometric interpretation of the SL(2,C) plethysm (for example [18,
prop.11.16]).

Proof. The lemma follows from calculating an appropriate SL(2,C) equivari-
ant decomposition of the summands in the normal exact sequence

0→ TG·x → TPN → NG·x|PN → 0 (2.2.13)
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which we localize at x. Let P1 ↪→ P3 be an embedding of P1 into a conic C
which lies in the hyperplane H in P3. The action of Gx

∼= SL(2,C) induces
an equivariant decomposition

W := H0
(
P3,OP3(1)

) ∼= Sym2(V )⊕ Sym0(V ) where V ∼= H0(P1,OP1(1))

To find our equivariant decomposition of TPN , we use [18, Exer. 11.14] to
calculate:

H0
(
PN ,OPN (1)

)
= Sym10(V )⊕ Sym8(V )⊕

(
Sym6(V )

)⊕2 ⊕
(
Sym4(V )

)⊕2

⊕
(
Sym2(V )

)⊕3 ⊕
(
Sym0(V )

)⊕3

By the Euler sequence, the decomposition of H0(PN ,OP3(1)) induces one at
the tangent space TPN |x. Indeed,

0→ OPN |x → OPN (1)|x ⊗H0
(
PN ,OPN (1)

)
→ TPN |x → 0 (2.2.14)

where OPN |x correspond to the constants functions Sym0(V ), and OPN (1)|x is
the only one dimensional representation of SL(2,C) which is also Sym0(V ).
To calculate the decomposition of the tangent space TG.x|x we use the exact
sequence

0→ TGx → TG → TG·x → 0 (2.2.15)

The tangent space TGx|x is identified with the adjoint representation of sl(2,C)
which is isomorphic to Sym2(V ). The tangent space of TG|x corresponds to
the lie algebra sl(4,C) which has a 15 dimensional adjoint respresentation.
The embedding C ↪→ P3 induces a decomposition in terms of the SL(2, C)
representation V as:

TG|x ∼= Sym4(V )⊕
(
Sym2(V )

)⊕3 ⊕ Sym0(V )

from which we obtain TG·x|x. Therefore, by comparing irreducible summands
on the normal exact sequence 2.2.13, we obtain the following decomposition
for NG·x|Pn|x:

Sym10(V )⊕ Sym8(V )⊕
(
Sym6(V )

)⊕2 ⊕ Sym4(V )⊕ Sym2(V )⊕ Sym0(V )

from which we obtain our statement by [18, Exer. 11.11].

The quintic surface Q2 + H ⊂ P3 induces two natural decompositions of
H0(P3,OP3(5)). Indeed, Let GQ and GH be the stabilizer of Q and H respec-
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tively. The GQ-equivariant decomposition induced by the quadratic surface
Q := (FQ = 0) is:

H0(P3,OP3(5)) ∼= W5 ⊕ FQ ·W3 ⊕ F 2
Q ·W1

where W5
∼= Sym5(V )× Sym5(V ) is the space of quintic surfaces intersecting

the quadratic surface Q along a (5, 5) curve, W3
∼= Sym3(V ) × Sym3(V )

corresponds to quintic surfaces decomposing as the union of the quadratic
surface Q and a disjoint cubic surface F3, and V1

∼= Sym1(V )×Sym1(V ) which
corresponds to the quintic surfaces that decomposes as a double quadratic
surface Q2 and an arbitrary hyperplane. We decompose W5 by consider the
action of SL(2,C) associated to the conic.

Sym5(V )× Sym5(V ) ∼=
k=5⊕
i=0

Sym2k(V )

Similarly, Sym6(V ) ⊂ W3 parametrizes the six points in C0 which are marked
by the intersection of the a cubic surface (F3 = 0), the quadratic Q and
the hyperplane H. Suppose the quadratic surface, the hyperplane and the
invariant conic are given by

F0 := x1

(
x0x3 − x2

2 − x2
1

)2
; [s0 : s1]→ [s2

0 : 0 : s0s1 : s2
1]

Then, we can write the polynomial parametrized to (Sym5(V )⊗ Sym5(V )) as

F (x0, x1, x2, x3) = x1(x0x3 − x2
2)2 + (x0x3 − x2

2)2l1(x0, x2, x3)

+ x1(x0x3 − x2
2)(f2(x0, x2) + g2(x2, x3))

+ (x0x3 − x2
2)(f3(x0, x2) + g3(x2, x3))

+ x1(h4(x0, x2) + p4(x2, x3)) + f5(x0, x2) + g5(x2, x3)

and the term parametrized by Sym6(V ) can be written as:

F2(x0, x1, x2, x3)G(x0, x1, x2, x3) = (x0x3 − x2
2 + x2

1) (f3(x0, x2) + g3(x2, x3))

The previous discussion, Luna’s theorem and Lemma 2.2.11 implies a stan-
dardization lemma (for a similar result in quartic surfaces see [61, Lemma
4.2])

Lemma 2.2.16. We may modify a given family of quintic surfaces specializing
to (F0 = 0), such that the new family is defined by an equation of the form:

Pt = F0(x0, x1, x2, x3) + F2(x0, x1, x2, x3)Gt(x0, x1, x2, x3) + Ft(x0, x1, x2, x3)
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where

1. Ft(x0, x1, x2, x3) ∈ (Sym5(V )⊗ Sym5(V ))⊗ C[[t]] and limt6=0Ft 6= 0

2. Gt(x0, x1, x2, x3) ∈ Sym6(V )⊗ C[[t]] and limt6=0Gt 6= 0

Moreover, the point in P(Nx) corresponding to the limits of Ft=0 and Gt=0 is
semistable and belongs to a minimal orbit.

Next, consider other components of the GIT boundary.

Proposition 2.2.17. Let x the semistable point with closed orbit mapping
to the GIT boundary Λ2, Λ3, or Λ4. Then, the natural representation of its
stabilizer G0

x
∼= C∗ on the normal bundle Nx is isomorphic to

Nx =
⊕
χ

V ⊕nχχ

where Vχ is an irreducible Gm representation with eigenvalue χ. Specifically,
if x is mapped to the boundary Λ2, the values of χ and nχ are:

χ -10 - 9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10

nχ 1 1 1 2 3 3 2 2 3 2 1 2 3 2 2 3 3 2 1 1 1

If x is mapped to the boundary Λ3, the values of χ and nχ are:

χ -25 -21 −18 ≤ n ≤ 5, n 6= −15, 0, 1 1 6 7 ≤ n ≤ 9 10 11 12 ≤ n ≤ 16 18 20

nχ 1 1 1 2 2 1 2 2 1 1 1

If x is mapped to the boundary Λ4, the values of χ and nχ are:

χ -15 −12 ≤ n ≤ −8 -7 -6 -5 -4 -3 -2 -1 0 1 2 ≤ n ≤ 6 7 8 9 10

nχ 1 1 2 2 1 1 2 2 1 1 2 3 2 2 1 1

Proof. Given the one parameter subgroup λk = diag(a0, a1, a2, a3) with k =
{2, 3, 4}, the λk equivariant decomposition W ∼=

⊕
ai
Vai induces a decompo-

sition of the space of monomials

Sym5(W ) =
⊕
α

V ⊕nαα

We can choose the point x so it parametrizes quintic surfaces given by the
equations 2.2.3, 2.2.4, and 2.2.5. To calculate TPN , we localize the Euler se-
quence at x. The line bundle OPN has weight zero. We claim that OPN (1) = V0

as well. Indeed, the coordinates in PN correspond to the monomials of degree
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five: [x5
0 : . . . : x2

ix
3
2 : . . . : x5

3]. A surface Xk stabilized by λk correspond to
a point [0 . . . : 1 : . . . : 0] with 1 in the places corresponding to monomials
mi that are always part of the equation of Xk. For example, for X4 we can
take m = x3

0x
2
3 or m = x2

1x2x3 for λ4. We choose an affine chart D+(mi) by
localizing at the coordinate corresponding to mi. It is clear that the weight of
the λk-action on OPN (1)|D+(mi) is proportional to the weight corresponding the
invariant monomial mi. So, our claim follows. At x, From the Euler sequence
2.2.14 we obtain

0→ V0 → V0 ⊗
⊕
α

V ⊕nαα → TPN |x → 0

from which we obtain the decomposition of TPN |x. To obtain the decomposition
of TG.x|x, we use the exact sequence 2.2.15. The tangent space to G is the Lie
algebra sl(4,C), and TGx is the adjoint representation of λk ∼= Gm. The one
parameter subgroup λk acts by conjugation on sl(4,C) with eigenvalues of the
form ai − aj for all i, j. Therefore, the exact sequence 2.2.15 becomes

0→ V0 →
⊕
i,j

V(ai−aj) → TG·x|x → 0

From the previous discussion and the exact sequence 2.2.13 we find the ex-
pression of the normal bundle for each λk.

2.3 Stable Isolated Singularities

In this section, we interpret the failure of stability for a normal irreducible
quintic surface in terms of the existence of a bad singularity on it. From
the GIT analysis, we know that isolated double points and isolated triple
point singularities with reduced tangent cone are stable. Quadruple points are
unstable. Therefore, we consider triple points singularities with non reduced
tangent cone. We recall that a surface singularity is of type Ẽ8 if at the
completion of the local ring its equation is equivalent to z2+x3+y6+tx2y2. This
singularity can be recognized by the weights

(
1
3
, 1

3
, 1

6

)
. Similarly, a singularity

of type Z13 is semiquasihomogeneous with respect the weights
(

1
9
, 5

18
, 1

6

)
and

it is equivalent to z2 + x3y + y6 + txy5.

Proposition 2.3.1. Let X be a normal quintic surface which has a triple
point singularity at p ∈ X as its unique non-canonical singularity. Let X̃ be
the monomial transformation of X with center at p.

1. If the tangent cone of p ∈ X contains a double plane. Then X is stable
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if and only if X̃ does not have a line of singularities or a singularity that
deform to Z13.

2. If the tangent cone of p ∈ X contains a triple plane. Then, X is stable if
and only if X̃ does not have a singularity deforming to a Ẽ8 singularity

Remark 2.3.2. As an immediate corollary, if X̃ has at worst ADE singular-
ities then X are stable. These singularities belong to a larger family called
minimal elliptic singularities ([68]). We describe them later in this section
2.3.13.

Proof. We first describe representations of quintic surfaces with a triple point
as double covers of P2. Let p ∈ X be a triple point on a reduced quintic
surface which contains only finitely many lines through p. Let X̃ → X be
the monomial transformation of X from the triple point. We have a natural
morphism from X̃ → P2. Consider its Stein factorization X̃ → X∗ → P2, so
the map X∗ → P2 is finite. Thus, X∗ is the double cover of P2 branching along
an octic plane curve B(X). If the equation associated to the quintic surface is

FX(x0, x1, x2, x3) := x2
3f3(x0, x1, x2) + x3f4(x0, x1, x2) + f5(x0, x1, x2)

then the equation of the branch locus B(X) is

f3(x0, x1, x2)f5(x0, x1, x2)− f4(x0, x1, x2)2 (2.3.3)

The map X̃ → X∗ contracts the proper transform of the lines L ⊂ X through
the triple point, and it is an isomorphism everywhere else. In particular,
suppose Sing(X) is supported at p. Then, the singularities on X̃ are supported
in the exceptional divisor of the monomial transformation. The reduced image
of the exceptional divisor of X̃ in P2 is the curve defined by the equation
f3(x0, x1, x2) = 0. By using partial derivatives (see [71, Prop. 4.2]), it is easy
to show the singularities of X̃ are supported over the points

Sing
(
f3(x0, x1, x2) = 0

)
∩
(
f4(x0, x1, x2) = 0

)
Our surface X is non stable if and only if there is a change of coordinates
such that ΞFX ⊂ M⊕(λi) for k ∈ {1, 3, 4} (see Table 2.1.2.1). It is clear
than on those cases, X satisfies the conditions on the statement. Next, we
discuss the converse ones. By Corollary 2.1.7, X̃ is not normal if and only if
ΞFX ⊂ M⊕(λ1). By our hypothesis, the singularities of X̃ are solely induced
by the ones at the tangent cone of the triple point. Those are at worst a
double line of singularities. On other hand, the singularities of the double
cover are induced solely by the branch cover. Therefore, X̃ is not normal if
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and only if B(X) contains a double line. On other hand, suppose X̃ is normal,
the tangent cone of the triple point at X contains a double plane and B(X)
has a semiquasihomogeneous singularity of degree 18 with respect the weights
w(x) = 5, and w(y) = 3 at [0 : 0 : 1]. We choose a coordinate system such
that the triple point is supported at p3, the double plane in the tangent cone is
supported at (x0 = 0), and the singularity at B(X) is supported at [0 : 0 : 1].
The most general equation associated to a branch cover with respect these
conditions is:

x2
0f1(x0, x1)(x0f4(x0, x1, x2)− x2

1f3(x1, x2))− (x2
2x

2
0 + x2f3(x0, x1) + f4(x0, x1))2

From which, we obtain the quintic surface

x2
3x

2
0f1(x0, x1)+x3x

2
2x

2
0+x3x2f3(x0, x1)+x3f4(x0, x1)+x2

1f3(x1, x2)+x0f4(x0, x1, x2)

By comparing with the Equation at the proof of Proposition 2.1.4, we can
verify that ΞFX ⊂ M⊕(λ3). Next, suppose that X satisfies the conditions of
the second claim in the statement. Select a coordinate system such that the
triple point is supported p3, the tangent cone is supported at (x0 = 0), and
B(X) has a semiquasihomogeneous singularity of degree 6 with respect the
weights w(x) = 3, and w(y) = 2 at [0 : 0 : 1]. The most general equation for
such an octic plane curve can be written as:

FBX = x3
0f5(x0, x1, x2)− (x2

2x0f1(x0, x1) + x2f3(x0, x1) + f4(x0, x1))2

From which we obtain the quintic surface

x2
3x

3
0 + x3(x2

2x0f1(x0, x1) + x2f3(x0, x1) + f4(x0, x1)) + f5(x0, x1, x2)

we can also verify that ΞFX ⊂M⊕(λ4).
From our previous discussion, we conclude that if X is a non stable normal

quintic surface with a triple point singularity, we can find a general deformation
of X that preserves the type of M⊕(λi). In particular, the singularities of X̃
deform to either a double line, or to Ẽ8, or to Z13 depending on the tangent
cone associated to the triple point. On other hand, if X̃ has one of those
singularities, then the branch locus satisfies ΞBX is contained in one of the
ΞFλi

for λi = 1, 3, 4. Therefore, we can find a coordinate system such that
ΞFX ⊂M⊕(λi), so X is non stable.
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2.3.1 Invariants of Singularities and GIT Stability

In this section we related the stability of normal quintic surfaces with the
study of invariants associated to its singularities. In particular, we use the log
canonical threshold, the Milnor number, the geometric genus of the singularity,
the classification of singularities due to Arnold [3], Yoshinaga-Suzuki [64, 76],
Estrada et. al [76], and the description of minimal elliptic singularities due to
Laufer [42], Prokhorov [57], and Reid [59].

First, we recall the definition of the Milnor number and modality of a singu-
larity. Let (f(x, y, z) = 0) be a non degenerated quasihomogeneous singularity
with leading term fw with respect the weights w. The dimension of the formal
ring C[x, y, z]/(∂1f, ∂2f, ∂3f) is the Milnor number of the singularity. To define
modality, we choose a basis of monomial mi for this formal ring. The number
of monomials mi with weighed degree w(mi) ≥ w(f) is known as the inner
modality of f(x, y, z). It is known that for non degenerate quasihomogeneous
polynomials the inner modality is also the number of moduli of deformations
of (fX = 0) with the same Milnor number (see [4, pg. 222] [22, pg 118]).

Proposition 2.3.4. A normal quintic surface having at worst a singularity
with either Milnor number small than 22 or modality smaller than 5 is stable.

Proof. We proved this by contradiction. If the surface X is not stable, the GIT
analysis implies there is a coordinate system such that ΞFX is contained in one
of the M⊕(λi) for λi as on Proposition 2.1.2. In particular, the destabilizing
isolated singularity of X is supported at p = [0 : 0 : 0 : 1]; and the singularity
p ∈ X deforms to the singularity of (Fλi = 0) for λ1, λ3, λ4, or λ7. (see
Table 2.1.2.1). We consider a general deformation of X that preserves the
type M⊕(λi) with respect the given choice of coordinates, By Theorem 2.2.1,
the singularities at (Fλi = 0) are either V ∗24 (notation as [15]), or V ∗24 (notation
as [64]), or V ′22 (notation as [64, pg 244]) or an ordinary quadruple point. The
Milnor number of a quadruple point is at least 27, and its modality is at least
6 (see [64], [15]). Therefore, the statement follows by the upper semicontinuity
of both the Milnor number and the modality of the singularity associated to
the semistable families.

Example 2.3.5. The converse statement does not hold. In particular, quintic
surfaces can have highly singular isolated double points which are always GIT
stable by Corollary 2.1.8. At (t 6= 1) the zero set of the equation

Ft(x0, x1, x2, x3) = x3
0x

2
3 + 2x2x

3
1x3 + x5

2 + t
(
x3

3x
2
2 − 3x2

0x
2
1x3 + 3x0x

4
1 + x3

2x
2
0

)
has a weakly elliptic singularity at [0 : 0 : 0 : 1] which is formally equivalent to
the singularity induced by the equation x2 + y3 + z13 (see [71, pg 452]). This
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singularity has Milnor number equal to 24. The zero set (F0(x0, x1, x2, x3) = 0)
is a non normal surface parametrized by the boundary Λ4.

A 1-PS λ defines a natural set of positive rational weights wλ

Definition 2.3.6. Given an one parameter subgroup λ = (a0, a1, a2, a3) its
associated set of weights is wλ = (a0 − a3, a1 − a3, a2 − a3). Reciprocally,
every set of weights wλ has associated one parameter subgroup λw. These
correspondences are inverse to each other i.e λwλ = λ, and we say that wλ is
normalized if λ is a normalized 1-PS. We denote the sum of the weights on
wλ as wλ(1).

From the perspective of moduli theory, we can classify isolated singulari-
ties in two families: Log canonical which are the isolated singularities on the
surfaces parametrized by the KSBA compactification (similar to the nodal sin-
gularities on the Deligne-Mumford compactification of the moduli of curves);
and non log canonical singularities. For a non log canonical singularity p ∈ X,
the log canonical threshold cp(X) is an invariant valued between 0 and 1 such
that the smaller its value, the worst is the singularity (see [37, pg. 45] for
definitions and details). For example:

cp
(
x2 + ym1 + zm2

)
=

1

2
+

1

m1

+
1

m2

The relation between the Hilbert-Mumford numerical criterion and the log
canonical threshold springs from the fact that, in many cases, the last one can
be calculated from a set of weights associated to the variables (see also [40,
prop 2.1]).

Lemma 2.3.7. [37, Prop 8.14] Let f(x0, . . . , xn) be a holomorphic function
near 0 ∈ Cn. Assign rational weights w(xi) to the variables xi and let w(f) be
the weighted multiplicity of f . Then,

c0(f) ≤
∑
w(xi)

w(f)

The equality holds if the log pair(
Cn, c0 (fw = 0)

)
is log canonical outside of the origin for c0 :=

∑
w(xi)
w(f)

Example 2.3.8. The non isolated singularities on irreducible quintic surfaces
parametrized by Λ2, Λ3 and Λ4 satisfy the conditions on Lemma 2.3.7. We
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illustrate the calculation. For the cases, i = 3, 4, the surfaces are singular along
the line L01 with a distinguish singularity at p0. Consider the completion of
the local ring at pt := [1 : t : 0 : 0] for t 6= 0, The distinguish non isolated
triple point on the surface parametrized by Λ3 has the form x2y + xzy2 + z4

which at pt can be simplified, in the completion of the local ring, as:

x2t+ xzt2 + z4 =

(
x
√
t+

zt2

2
√
t

)2

− z2

(
t3

4
− z2

)
∼= x̃2 + z̃2 for t 6= 0

Similarly, for the distinguish non isolated double point p0 parametrized by Λ4,
we have

x2 + xzt3 + a1xz
2t+ a2z

5 =

(
x+

zt3 + a1tz
2

2

)2

− t2z2 (t2 + a1z)2

4
+ a2z

5

which is formally equivalent to x2 + y2.

The relationship relation between the log canonical and the GIT stability
was noticed by Hacking [23, Prop 10.4], Kim-Lee [35], and Kim [47, Lemma
2.1]. Let p ∈ X := (FX(x0, x1, x2, x3 = 0) be a singular point, by a change
of coordinate we can suppose the singular point is supported at p3. Let fp :=
FX(x0, . . . , xn−1, 1) be the localization at p3. Then, from Equation 2.1.1 and
Definition 2.3.6 we obtain wλ(fp) = µ(λ,X) − a3 deg(X). By Lemma 2.3.7
and since the sum of the weights wλ(1) := −4a3, we find that:

4

deg(X)
wλ(fp)− wλ(1) =

4

deg(X)
µ(λ,X) (2.3.9)

≤ wλ(1)

(
4

deg(X)cp(X)
− 1

)

This allows us to rewrite the numerical criterion.

Proposition 2.3.10. Let X ⊂ Pn be a hypersurface of degree d. Then, X is
(semi-stable) stable if for every point p ∈ X, the infimum

infwλ

(
4

deg(X)
wλ(fp)− wλ(1)

)
is (nonpositive) negative for all the positive rational weights, and for all the
linear coordinates which fix the point p. In particular,

1. A quintic surface having at worst a singularity with log canonical larger
than 4/5 is stable.
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2. If a stable, isolated singularity has log canonical smaller than 4/deg(X).
Then, it does not exist a set of weight w̃ that calculate its log canonical
threshold (in the sense of Lemma 2.3.7).

3. If the leading term of fp with respect wλ satisfies the condition on Lemma
2.3.7. Then, cp(X) < 4/ deg(X) implies X is unstable.

Proof. The first part follows from Equation 2.3.9 and Lemma 2.3.7. If X is
stable, the inequality µ(λ,X) < 0 holds for every 1-PS. Therefore, it holds
4/deg(X) < wλ(1)/wλ(f) for every set of weights wλ, and the log canonical
threshold cannot be calculate from them. The last statement follows from the
second equality at Equation 2.3.9.

We describe in Proposition 2.3.13 that there is a natural family of singu-
larities, called minimal elliptic with log canonical threshold larger than 4/5.
We recall that the geometric genus of a singularity p ∈ X is, in our case, the
higher dimensional analogous of the classical genus drop invariant δ for plane
curves singularities (see Proposition 2.3.14).

Definition 2.3.11. Let X be a normal surface singular at p, the geometric
genus of the singularity is dim(R1π∗OY ) where π : Y → X is a resolution of
X.

This invariant induces a well known classification of singularities: Rational
singularities are those for which the geometric genus is zero. For surfaces, the
rational Gorenstein surface singularities are the DuVal ones. After rational
surface singularities, we find the family of minimal elliptic ones classified by
Laufer [42]. Next, we provide not the original definition of minimal elliptic
singularities, but rather a convenient one. Recall that we work with isolated
hypersurface singularities which are always Gorenstein.

Definition 2.3.12. ([42, Thm 3.10]) A surface singularity is minimal elliptic
if and only if it is Gorenstein and dimR1π∗ (OX) = 1

An important application of the log canonical threshold criterion is the
GIT stability of the minimal elliptic singularities. In this case, it is possible to
show by direct computation that their log canonical threshold is strictly larger
than 4

5
. This implies their stability:

Proposition 2.3.13. Let X ⊂ P3 be a surface of degree larger of equal than
five with at worst minimal elliptic singularities. Then X is stable. In fact the
minimum value reached by the log canonical threshold is 4

5
+ 1

180
.
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Proof. In our case, minimal elliptic singularities are either isolated double
points or isolated triple points singularities such that after its blow up the sur-
face has at worst ADE singularities (see [68]). Therefore, our statement follows
by Corollary 2.1.8 and Proposition 2.3.1. On another direction, by using the
equations of minimal elliptic singularities at [42, pg 1290], it is possible to
compute their log canonical threshold. For most of the cases, this can be done
with the help of the Lemma 2.3.7. An analysis of the log canonical threshold
for minimal elliptic singularities is done by Prokhorov in [57, Table 1-3]. In
particular, their log canonical value is larger than or equal to (4/5 + 1/180).
Therefore, they are GIT stable by Proposition 2.3.10.

It is well known that the genus of a singularity p ∈ X can be interpreted
by its effect on the geometric genus, pg(X), of the variety X. We include a
proof for completeness.

Proposition 2.3.14. Given the minimal resolution π : Y → X of a nor-
mal hypersurface of degree d, with an unique non DuVal singularity of genus
R1 (π∗OY ). Then, it holds

(d− 1)(d− 2)(d− 3)

6
− pg(Y ) + q(Y ) = R1 (π∗OY )

Furthermore, if X is quintic surface and Y is of general type then q(Y ) = 0
and we have

4− pg(Y ) = R1 (π∗OY )

Proof. On a normal hypersurface X of degree d, we have H1(X,OX) = q(X) =
0 and

H2(X,OX) = pg(X) = (d− 1)(d− 2)(d− 3)/6

From those values and the exact sequence (see [71, pg. 433 ])

0→ H1 (X,OX)→ H1 (Y,OY )→ R1π∗OY → H2 (X,OX)→ H2 (Y,OY )→ 0

we obtain pg(X)− dimR1 (π∗OY ) = pg(Y )− q(Y ) = pa(Y ). If X is a quintic
surface and Y is of general type, we use the main result of Umezu [65]: Let
X be a normal quintic surface and Y denotes its resolution. If Y is of general
type then its irregularity, q(Y ), vanishes.

The geometric genus of a quasihomogeneous hypersurface isolated singu-
larity is determined by its weights.

Lemma 2.3.15. ([77, pg 48]) Let fX be a quasihomogeneous function with
an isolated critical point at (0, 0, 0) and with weights (w0, w1, w2) such that

38



w(fX) = 1. Denote the triple of rational numbers wi with common denomina-
tor (n0/d, n1/d, n2/d) provided we take that denominator d to be the smallest
such on. Then, the geometric genus of the hypersurface isolated singularity
(fX = 0) is given by the number of non-negative integer that satisfies

{(i, j, k) ∈ Z3
≥0 | d− (n0 + n1 + n2) ≥ n0i+ n1j + n2k} (2.3.16)

This lemma allows us to list all quasihomogeneous singularities of a given
genus. See [74] [75] for a partial classification of the singularities with geometric
genus less than or equal to three. To illustrate the complexity of the surface
singularities parametrized by the GIT quotient, we exhibit a lower bound for
the geometric genus of the singularities on the semistable surfaces.

Proposition 2.3.17. There is at least one semistable hypersurface X ⊂ P3 of
degree d ≥ 4 with an isolated quasihomogeneous singularity of genus

d(d− 2)(4d− 10)

48
if d is even

(d− 1)(d− 3)(4d− 2)

48
if d is odd

For quartic surfaces, this value is 1, for quintic surfaces is 3, and for sextic
surfaces is 7.

Proof. From the combinatorics of the GIT setting, it is clear that for any
degree d the one parameter subgroup λ1 = (1, 0, 0,−1) is always a critical
one. From Luna’s theorem, (see discussion at proof of Theorem 2.2.1), we can
reduce ourselves to study the polynomial Fλ1(x0, x1, x2, x3) that it is stabilized
by λ1. If d = 2m+ 1 then

Fλ1(x0, x1, x2, x3) = xm3 x
m
0 f1(x1, x2) +xm−1

3 xm−1
0 f3(x1, x2) + . . .+f2m+1(x1, x2)

Also, a similar equation is associated to the case d = 2m. The quasihomoge-
neous singularity associated to λ1 is non degenerate. After localizing, we have
a quasihomogeneous polynomial of weights (2, 1, 1) and weighted multiplicity
d. By using Lemma 2.3.15 we find the geometric genus associated to the singu-
larity at the surface (Fλ1(x0, x1, x2, x3) = 0). Indeed, Let λi = (a0, a1, a2, a3) be
a normalized 1-PS with associated weights wλi . Suppose the wλi-leading term
of Fλi(x0, x1, x2, x3) defines an isolated singularity. We rewrite the Lemma
2.3.15 with the expressions ni/d = (ai − a3)/w(f), and by noting that our
configurations are strictly semistable which implies wλ(fp) + a3 deg(X) = 0
(see Equation 2.3.9). Therefore, the geometric genus of the singularity at Fλi
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is given by the number of non-negative integer solutions of the Equations:

deg(X) = i0 + i1 + i2 + i3 (2.3.18)

|a3|(deg(X)− 4) ≥ (a0 − a3)i0 + (a1 − a3)i1 + (a2 − a3)i2

In particular if λ1 = (1, 0, 0,−1), and by using [49, Eq. 11], we obtain that
the number solutions of the Equations 2.3.18 is

[deg(X)−4
2 ]∑

k=0

(
deg(X)− 2− 2k

2

)
This formula become the expression of the statement after some algebraic
manipulations.

2.4 Stability and non Isolated Singularities

The GIT semistable locus parametrizes quintic surfaces with non isolated sin-
gularities. Then, we need to understand them for completing the description
of the GIT quotient. We proved in Corollary 2.1.12 that the only semistable,
nonreduced quintic surface is the union of a double quadratic surface and a
hyperplane intersecting along a smooth conic. This configuration is a closed
orbit, its stabilizer is SL(2,C), and it is parametrized by a point in the GIT
quotient. In Corollary 2.1.9, we showed that a quintic surface containing a
triple line is unstable. In Corollary 2.1.11, we proved that if an irreducible
quintic surface contains a double curve of singularities C with genus larger
than one, and such that it does not contain any line. Then, the surface is
stable. Therefore, it remains to study the following cases: Reducible reduced
quintic surfaces (a quartic surface plus a plane, a cubic surface plus a quadratic
one) and irreducible quintic surfaces singular along an elliptic or a rational
curve.

Our first step is to bound the degree of the possibles curve of singularities
in a quintic surface.

Lemma 2.4.1. Let X ⊂ P3 be an irreducible surface of degree d containing a
singular curve C. Then

degC ≤ (d− 1)(d− 2)

2

Proof. If X is irreducible, then the generic hyperplane section is also irre-
ducible (see [33, Thm 6.10]. The lemma follows from applying the genus

40



formula to the generic hyperplane section

g(X ∩H) =
(d− 1)(d− 2)

2
−

∑
pi∈Sing(C∩H)

δ(pi) ≥ 0

If the quintic surface also contains a triple point. Then, the genus of C can
be further bounded.

Lemma 2.4.2. Let X be an irreducible quintic surface with at least one triple
point singularity and a double curve of singularities

1. If the triple point is not supported on the curve. Then, the curve of
singularities is a twisted cubic or a degeneration of it.

2. If the triple point is supported on the curve. Then, the curve of singu-
larities is a twisted cubic, an elliptic quartic curve or a degeneration of
those.

Proof. Let H be a generic hyperplane intersecting X such that p ∈ X ∩ H.
Then X ∩ H is irreducible, and it has a triple point at p. If the triple point
singularity is supported on the curve, there are deg(C) − 1 double points on
X ∩ H which are induced by C ∩ H. By the genus formula, we have that
7 − δP ≥ deg(C) where δp is the delta invariant associated to the curve’s
triple point supported at p. By construction, H is generic, then δp = 3 and
4 ≥ deg(C). This implies that the genus is strictly smaller than 2 because
C is not a quartic plane curve, and there are not curves of degree four and
genus two on P3 (see [25, pg 354]). On the other hand, if the triple point is
not supported on the curve the same argument shows 3 ≥ deg(C).

A generic quintic surface that decomposes as the union of a quartic surface
and a hyperplane is both GIT and KSBA stable. On our moduli space the
locus, called M(4, 1), that parametrizes those surfaces is twenty two dimen-
sional: Nineteen dimensions are associated to the moduli of K3 surfaces and
three dimensions arises from the hyperplane.

Proposition 2.4.3. Let X be a quintic surface that decomposes as the union
of a hyperplane, H, and a quartic normal surface, Y , with isolated singularities
such that

1. Any isolated singularity satisfies conditions in either Corollary 2.1.8 or
Proposition 2.3.1, 2.3.4 or 2.3.13.
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2. The singular locus of the quartic surface Y is disjoint from the hyper-
plane, and the quartic plane curve Y ∩ H has at worst a triple point
which tangent cone has a double line.

Then X is stable.

Proof. By definition the isolated singularities on our quartic surface cannot
destabilize the quintic surface. Therefore, the destabilizing singularity must
be supported on the intersection of the hyperplane with the quartic surface.
This singularity has at worst multiplicity two, because the singular locus of the
quartic surface is disjoint from the hyperplane. Suppose the quintic surface X
is non stable and our coordinate system is such that the critical one param-
eter subgroups are given by Proposition 2.1.2. The set of monomials ΞFX is
contained in M⊕(λk) for k = 5, 9, 10 (see Table 2.1.2.1). By the fourth case
of Proposition 2.1.6, If ΞX ⊂ M⊕(λ10), the intersection of the quartic surface
with the hyperplane contains a triple point which tangent cone has a triple
line. If ΞX ⊂M⊕(λk) for k = 5, 9, the destabilizing singularity is a distinguish
double point supported at p3 whose tangent cone is non reduced and supported
at H. Therefore, the tangent cone of the quartic surface Y at p3 is supported
at the hyperplane, as well. By the fourth case of Proposition 2.1.4 and the
third case of Proposition 2.1.6, the intersection between the quartic surface
Y and the hyperplane H contains at least a quadruple line. The hypotheses
imply there is not coordinate system such that ΞFX ⊂M⊕(λk) for k = 5, 9, 10.
Therefore, X must be stable.

Next, we describe the intersection between M(4, 1) and our GIT boundary.

Proposition 2.4.4. Let X be a quintic surface parametrized by a point on the
intersection between the locus M(4, 1) and the GIT boundary (as on Theorem
2.2.1). Then, one of the following conditions holds:

1. The surface X is parametrized by the first boundary component and it
satisfies

1.1. The singular locus of the quartic surface is the union of two double
point singularities of type Ẽ7.

1.2. The intersection of the hyperplane and the quartic surface is the
union of two conics of the form(

(xy − a1z
2)(xy − a2z

2) = 0
)

1.3. The hyperplane does not intersect the singularities along their tan-
gent cones.
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2. The surface X is parametrized by the second boundary component and it
satisfies

2.1. The singular locus of the quartic surface decomposes as the union of
two coplanar double lines L1 and L2 intersecting at a non isolated
triple point with associated equation of the form

x2y + x3z + y2z2

2.2. The intersection of the hyperplane and the quartic surface decom-
poses as the union of a cuspidal plane curve, and a line that is
contained but not singular, on the quartic surface. The singularity
of the cuspidal curve is away from the triple point.

3. The surface X is parametrized by the fourth boundary component and it
satisfies

3.1. The singular locus of the quartic surface has a double line L and a
distinguish triple point given by the equation x3− xyz2 + zy3 which
is away from the hyperplane.

3.2. The intersection of the hyperplane and the quartic surface is the
union of two lines and a conic tangential to them.

We represent those geometric characteristics in the following diagram.

Y1 Y2 Y4

Figure 2.4.4.1: Yi are our quartic surfaces, the dotted lines represent the in-
tersection Yi ∩H, bold lines represent the singular locus of Yi.

Proof. Let X be such a quintic surface. Then, there is a one parameter sub-
group λ such that X is invariant under the action of it. Let X = Y ∪H, then
it is easily seen that the hyperplane is also invariant under the action of λ. In
particular, this implies that in our coordinate system the equation associated
to H must be (xi = 0). From our results on Section 2.2, and up to a change
of coordinates, we have the equations of these surfaces. Indeed, if the surface
is a degeneration of X1, then the associated equation is:

x1

(
x2

3x
2
0 + x0x3f2(x1, x2) + f4(x1, x2)

)
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If the surface is a degeneration of X2, then the associated equation is:

x0(x2
3x

2
1 + x3x0x

2
2 + x1x

3
2)

If the surface is a degeneration of X3, then the associated equation is:

x3(x3
0x3 + x2x

3
1 + x0x1x

2
2)

The proposition follows from computations similar to Proposition 2.1.4 and it
is left to the reader.

Remark 2.4.5. The stability for the union of a quartic surface Y and a
hyperplane H fits naturally on the VGIT setting for the pair (Y, αH) with
α ≥ 0 (see [46]). Indeed, for α = 0 the VGIT-stability is basically the one due
to Shah for quartic surfaces [61]. For the case α = 1 the pair is stable if and
only if the associated quintic surface Y +H is stable. For α large enough the
stability reduces to analyzing the quartic plane curves Y ∩ H (for a similar
example see [43, Thm 2.4]).

We describe a quintic surface with a non-linear curve of singularities of
multiplicity of degree three

Proposition 2.4.6. Let X be a quintic surface with a curve of singularities C
such that C does not contain a line and multp(X) = 3 for every p ∈ C. Then
X decomposes as the union of a hyperplane and a quartic surface, and there
is a coordinate system such that its associated equation can be written as

xi
(
f2(xj, xk, x3)2 + x2

i g2(x0, x1, x2, x3) + xif2(xj, xk, x3)l(x0, x1, x2, x3)
)

Moreover, this surface is generically stable (compare with Corollary 2.1.9).

Remark 2.4.7. We describe an unstable degeneration. The union of two
singular quadratic surfaces and an hyperplane such that all of them are inter-
secting along a conic can be written as(

x2

(
x2x0 + c2(x3x0 − x2

1)
) (
x2x0 + c1(x3x0 − x2

1)
)

= 0
)

which is unstable with respect λ = (7, 1,−4,−4).

Proof. Let C be such a curve. Consider two generic distinct points p and q
on it, and let Lp,q be the line that join them. Since p and q are triple points,
then Lp,q intersect X with multiplicity larger or equal than six. However, X is
a quintic surface, this implies that the surface contains the line Lp,q for every
p and q on C. So, X contains the secant variety Sec(C) of C. For a curve
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C in P3, the secant variety of C is either the whole P3, or it is an hyperplane
with the last option only happening if C is a plane curve itself (see [24, pg
144]). Therefore, Sec(C) ⊂ X which implies that C is a plane curve and X
decomposes as a hyperplane H and a quartic surface Y . Moreover, from the
hypothesis and by a degree consideration C is a smooth conic.

Let our coordinate system be such that the critical one parameter sub-
groups are the ones on Proposition 2.1.2. So, we have a partial order among
monomials x0 ≥ x1 ≥ x2 ≥ x3 (see discussion after Equation 2.1.1). It is
enough to consider the cases when the hyperplane is given by (xi = 0). In-
deed, if the equation of the hyperplane supporting C is (l(x0, x1, x2, x3) = 0),
then we can take the minimal non zero monomial xi ∈ Ξl. By its defini-
tion, this change does not affect the value of µ(λ,X). Therefore, the equation
associated to the quintic surface can be written as

xi (f4(xj, xk, xl) + xig3(x0, x1, x2, x3))

By hypothesis mp(X) = 3 for every point p ∈ C ⊂ Y ∩ H and C does not
contain a line. This implies f4(xj, xk, xl) = (f2(xj, xk, xl))

2 and either xi or
f2(xj, xk, xl) divides g3(x0, x1, x2, x3). The equation associated to the quintic
surface is obtained by combining both cases.

Given a normalized one parameter subgroup λ = (a0, a1, a2, a3). We have:

µ(λ,X) ≤ min{ai + 2µ(λ, f2), 3ai + µ(λ, g2), 2ai + µ(λ, f2) + µ(λ, l)}

In our coordinate system, the curve cannot be supported at (x3 = 0) because
a triple point is supported at pλ = [0 : 0 : 0 : 1]. By the smoothness of the
curve, we have

f2(xj, xl, x3) = x3l(xj, xl) + p2(xj, xl)

with the set of monomials Ξf2 containing at least {x3xj, x
2
l } with j 6= l and

j, l 6= i. Moreover, generically it holds that µ(λ, g2) ≤ 2a1, µ(λ, l) ≤ a0. Then,
the numerical function with respect λ satisfies:

µ(λ,X) ≤ min{ai + 2(a3 + aj), ai + 4al, 3ai + 2a1, 2ai + (a3 + aj) + a0, 2ai + 2al + a1}

A direct calculation shows that the numerical criterion is nonpositive for all
our critical one parameter subgroups. Then X is semistable.

A generic quintic surface X that decomposes as the union of a cubic and a
quadratic surface is stable. On the moduli space, the locus that parametrizes
these surfaces is thirteen dimensional: Nine dimensions arise from the genus 4
curve defined by the intersection of the cubic and the quadratic surface. The
other four dimensions arise from the fact that we can add a multiple of the
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quadratic equation to the cubic surface equation without changing the genus
4 curve.

Proposition 2.4.8. Let X be the union of a smooth quadratic surface Q and a
cubic surface Y with a triple point away from Q. Suppose the surfaces intersect
along a smooth curve. Then, X is unstable if and only the tangent cone at the
triple point has worst than cuspidal singularities.

Proof. Suppose that X is not stable, and that our coordinate system is such
that the critical 1-PS are the ones in Proposition 2.1.2. In particular, the triple
point is supported at p3. The cubic surface is a cone over a plane cubic curve
C; the associated equation to the quintic surface can be written as:

f3(x0, x1, x2)g2(x0, x1, x2, x3)

By hypothesis, the quadratic surface is away from the triple point. Therefore,
the monomial x2

3 is always present on Ξg2 which implies µ(λ,X) = 2a3 +
µ(λ, f3). The following analysis is divided by the singularities on the cubic
curve. If C has a triple point, then C is either non reduce or the union of
three concurrent lines.Therefore, X is unstable by either Proposition 2.1.12 or
Corollary 2.1.9. If C is a conic with a tangent line. We can write its associated
equation as x0(x2x0 − x2

1)f2(x0, x1, x2, x3) which is destabilized by λ9. If C is
the union of three non concurrent lines, the associated equation to the quintic
surface is:

l1(x0, x1, x2)l2(x0, x1, x2)l3(x0, x1, x2)f2(x0, x1, x2, x3)

In particular, the monomial x0x1x2x
2
3 must have coefficient different to zero

because the lines are no concurrent. For our critical one parameter subgroups,
it holds: µ(λk, X) ≤ a0 +a1 +a2 +2a3 ≤ −1 which implies our surface is stable.
The union of a conic and a transversal line deforms to three nonconcurrent
lines. Then, it is stable, as well. If C has a cuspidal singularity. We claim
the associated surface is stable. The triple point is singled out by p3. By
considering the partial order among monomials (see discussion after Equation
2.1.1) we see from all the possible equations associated to the cusp in our
coordinate system, the one that induces the highest value of the numerical
criterion is x2

ixj +x3
0 + p3(x0, xi) For the critical 1-PS in Proposition 2.1.2 and

i, j 6= 0 it holds that:

µ(λk, X) ≤ min{2ai + aj + 2a3, 3a0 + 2a3} ≤ −2

Since, nodal singularities deform to cuspidal ones, the associated surface is
stable, as well.
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A quintic surface with at worst double point singularities can be repre-
sented as a triple cover of the plane (for example see [71, Thm 10.3]). Next,
we explore that representation.

Lemma 2.4.9. Let (Fλi = 0) be a quintic surface obtained from a generic
linear combination of the monomials on M⊕(λi) for i ∈ 5, 9. There is an
associated surface in P(2, 1, 1, 1) with equation

Gλi(ψ, x0, x1, x2) := ψ3 + h4(x0, x1, x2)ψ + h6(x0, x1, x3)

where h4(x0, x1, x2) and h6(x0, x1, x2) are obtained from a generic linear com-
bination of the monomials

Ξh4 =
{
xj00 x

j1
1 x

j2
2 | w0j0 + w1j1 + w2j2 ≥ c1(λi) ; j0 + j1 + j2 = 4

}
Ξh6 =

{
xj00 x

j1
1 x

j2
2 | w0j0 + w1j2 + w2j2 ≥ c2(λi) ; j0 + j1 + j2 = 6

}
with c1(λ5) = 10, c2(λ5) = 15 and c1(λ9) = 20, c2(λ9) = 30. In particular, if
the equation associated to (Fλi = 0) is given by

x3
3x

2
0 + x2

3x0g2(x0, x1, x2) + x3f4(x0, x1, x2) + f5(x0, x1, x2)

Then

Gλi(ψ, x0, x1, x2) := ψ3 +

(
f4 −

g2
2

3

)
ψ +

(
x0f5 +

2

27
g3

2 −
g2f4

3

)
Conversely, if X is a quintic surface with a double point singularity such that
GX,p(ψ, x0, x1, x2) satisfies the above conditions. Then, there is a change of
coordinates such that ΞX ⊂M⊕(λk).

Proof. We recall the representation of quintic surfaces with a double point as
a finite cover of the plane. Our discussion follows the one at [71, pg 471]. Let
X be a, non necessarily normal, quintic surface with at worst double point
singularities. We suppose there is at least a double point p ∈ X with only
finitely many lines through it and distinct to a normal crossing or a pinch
point. Let X̃ → X be monomial transformation of X with center p. There
is a morphism X̃ → P2 induced by the projection from the point p ∈ X
that is generically finite of degree three. The surface X̃ is singular along the
exceptional divisor of the monomial transformation. Indeed, if the double
point at the quintic surface is supported at p3 and defined by the equation

x3
3x

2
0 + x2

3x0g2(x0, x1, x2) + x3f4(x0, x1, x2) + f5(x0, x1, x2)
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The surface X̃ is given by the equation

t3x2
0 + t2sx0g2(x0, x1, x2) + ts2f4(x0, x1, x2) + s3f5(x0, x1, x2)

with [t : s] ∈ P1. From the equation, we see X̃ is singular along the line
(s = x0 = 0). Blowing up X̃ along this singular line, the total transform X ′ is
given by the set of equations:

x2
0

(
t3 + t2sg2(x0, x1, x2) + ts2f4(x0, x1, x2) + x0s

3f5(x0, x1, x2)
)

s2
(
t3x2

0 + t2x0g2(sx0, x1, x2) + tf4(sx0, x1, x2) + sf5(sx0, x1, x2)
)

At the first chart and by taking ψ = t/s, we obtain:

ψ3 + ψ2g2(x0, x1, x2) + ψf4(x0, x1, x2) + x0f5(x0, x1, x2)

We substitute ψ by ψ − g2(x0, x1, x2) to find the equation associated to X ′:

GX,p := ψ3 +

(
f4 −

g2
2

3

)
ψ +

(
x0f5 +

2

27
g3

2 −
g2f4

3

)
(2.4.10)

where fd denotes fd(x0, x1, x2) and the subindex p ∈ X denotes the choice of
the double point for projecting X to P2. This equation can be thought as a
weighted homogeneous hypersurface of degree 6 in P(2, 1, 1, 1). For the quintic
surfaces (Fλi = 0), we project from the double point singularity singled out by
the bad flag at p3. To characterize the monomials in Ξh4 and Ξh6 we notice
that for λ = (a0, a1, a2, a3) it holds:

λi.
(
xi00 x

i1
1 x

i2
2 x

i3
3

)
= wλ(x

i0
0 x

i1
1 x

i2
2 ) + 5a3

Therefore, for λ5 we find wλ5 = (5, 2, 1), and a monomial in either Ξf4 , Ξg2 or
Ξf3 is induced by one in the maximal configuration if and only if wλ5(f4) ≥ 10,
wλ5(g2) ≥ 5, and wλ5(f5) ≥ 10. Similarly, for λ9, we find that wλ9 = (11, 5, 0),
wλ9(f5) ≥ 30, wλ9(f4) ≥ 30, and wλ9(g2) ≥ 9. By the nature of the weights,
we can take wλ9(g2) ≥ 10. This implies that if ΞFX ⊂ M⊕(λk), the Equation
GX,p3 will satisfies the conditions of the statement.

Now, suppose G(ψ, x0, x1, x2) satisfies the conditions of the statement and
that it arises from a quintic surface. Then, we must prove that every monomial
from h4 and h6 is induced by one in M⊕(λk) which implies the associated
quintic surface satisfies ΞFX ⊂ M⊕(λi) for i ∈ {5, 9}. For the monomials in
h4, we must rule out monomials of the form m1m2 where wλ(m1) < 5 but
wλ(m1 + m2) ≥ 10. This will implies m1 is not induced by a monomial in a
maximal configuration. Indeed, this is not possible because if m1 +m2 ∈ Ξh4 ,
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then also 2mi. Similarly, a monomials in h6 will be from either x0f5 or g3
2 or

g2g4. In the first case, wλk(f5) ≥ c2(λk) − w0, in the second case, we have
3wλk(g2) ≥ c2(λk), in the third case, we have wλk(g2) +wλk(g2) ≥ c2(λk). The
conclusion follows because there is not a monomial m in a quintic surface such
that wλ9(m) = 19 which could be the only counterexample.

Proposition 2.4.11. A quintic surface X with at worst double point singular-
ities is non stable if and only if there is a coordinate system and a distinguish
non double point p ∈ X with only finitely many lines through it such that the
branch locus associated to the morphism

(GX,p(ψ, x0, x1, x2) = 0)→ P2

can be written as one of the following equations

Dλ5(x0, x1, x2) = x2
0

(
x7

2x
3
0 +

k=2∑
k=1

xk0

i=2∑
i=0

x3k−i
2 f10−4k+i(x0, x1) + f10(x0, x1)

)

Dλ9(x0, x1, x2) = x6
2x

5
0x1 +

i=5∑
i=0

xi2x
i
0f12−2if(x0, x1)

Proof. Let p ∈ X be a double point as the one at the statement. We construct
its associated surface (see proof of Lemma 2.4.9) which equation is given by:

GX,p(ψ, x0, x1, x2) = ψ3 + h4(x0, x1, x2)ψ + h6(x0, x1, x2)

The morphism (GX,p = 0)→ P2 is generically finite of degree three. It associ-
ated branch locus is given by the equation:

DX,p := 4h4(x0, x1, x2)3 + 27h6(x0, x1, x2)6

The surface X is non stable if and only if there is a coordinate system such
that ΞFX ⊂ M⊕(λi) for i ∈ {5, 9}. By Lemma 2.4.9, it holds that either
wλ5(h4) ≥ 10 and wλ5(h6) ≥ 15 or wλ9(h4) ≥ 10 and wλ9(h6) ≥ 30. Moreover,
those weights determined whenever ΞFX is contained in M⊕(λi) for i = {5, 9}.
In the first case, the equation associated to the branch locus of (Gλ5 = 0)→ P2

is given byDλ5 . In the second case, ΞFX ⊂M⊕(λ9) and the equation associated
to the branch locus of (Gλ9 = 0)→ P2 is Dλ9 .
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Chapter 3

KSBA Stable Replacement of
Selected Surface Singularities

We are interested in generalizing the procedure for calculating the stable re-
placement of a plane curve singularity to the case of an isolated surface singu-
larity S0 ⊂ C3 with a good C∗-action. In the one dimensional case, the stable
replacement for a generic smoothing involves a base change tm → t followed it
by a weighted blow up. This construction was studied by Hassett [26] for the
case of toric and quasitoric plane curve singularities (see Remark 3.2.5). The
purpose of this chapter is to discuss a generalization of that procedure for the
14 exceptional unimodal surface singularities (Theorem 3.5.1), for quasihomo-
geneous singularities of type I (Theorem 3.4.1), and for certain singularities
with a distinguished smoothing (Theorem 3.6.1). We will apply the results
of this chapter for describing boundary loci in the moduli space of quintics
sufaces in Chapter 4.

Our approach uses the natural grading associated to a surface singularity
S0 with a C∗-action and its weighted blow up, also known as the Steifer par-
tial resolution. Indeed, we consider two perspectives for constructing our one
dimensional families of surfaces: First, we impose conditions such that the
smoothing X → ∆ of S0 is unipotent and that it has a graded isolated hyper-
surface singularity. The former condition is of particular interest because the
monodromy theorem implies semistable families have unipotent monodromy
(see [50, pg. 106]). The second type of smoothings are constructed by consid-
ering the possible ways the orbifolds singularities associated to the minimal
resolution of S0 can be extended to isolated threefold canonical singularities.

In this chapter we also highlight a relationship between Dolgachev singular-
ities and K3 surfaces which is analogous to the relationship between the cusp
singularity on a plane curve and the elliptic tail that appears in the context of
moduli of curves. In work in progress, we are generalizing this picture for mini-
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mal elliptic singularities which is a significant larger family of non log canonical
singularities; these singularities appear naturally on moduli constructions of
surface of general type [19, Prop. 4.12]. In Section 3.7, we provide examples
illustrating their behaviour which is different to the unimodal case.

The idea of comparing the partial resolution of a smoothing with that of
an appropriate hypersurface section has been used recently in a more general
setting by Wahl [67]. The relationship between these K3 surfaces, the unimodal
singularities and their unipotent smoothings appears in several instances (see
[11], [32], [57]). We must warn our readers that developments from the work of
Pinkham [56] and Wahl [66] are not included in this note. Moreover, Theorem
3.5.1 is conjectured and partially proved in the recent work of J. Rana [58];
her work partially overlaps with ours but her methods are different.

Remark 3.0.1. In an abuse of notation, we will not distinguish between the
germ of a singularity and a generic hypersurface of large degree with that
singularity. In general, we denote both cases as S0.

3.1 Preliminaries on Singularities

Let S0 be the germ of a surface singularity with a C∗-action defined by
σ(t, (x1, . . . , xn)) = (tw0x1, . . . , t

wnxn). If the integers wi > 0, then we say
that σ is a good C∗-action. We will always suppose the action is good and our
singularities are isolated. In particular, the case of two dimensional hypersur-
face singularities were classified by Orlik, Wagreich [55, 3.1] and Arnold [4].
Indeed, any of those singularities have a topologically trivial deformation into
one of the following polynomials [70, Cor. 3.6]:

Class I = xp0 + yp1 + zp2 Class II = xp0 + yp1 + yzp2

Class III = xp0 + yp1z + yzp2 Class IV = xp0 + yp1z + xzp2

Class V = xp0y + yp1z + xzp2

Class VI = xp0 + xyp1 + xzp2 + yazb (p0 − 1)(p0a+ p2b) = p0p1p2

Class VII = xp0y + xyp1 + xzp2 + xza + yazb (p0 − 1)(p0a+ p2b) = b(p0p1 − 1)

where pi ≥ 2. In this paper, we suppose the equation defining S0 belongs to
one of the previous classes (see Remark 3.1.1) and that S0 has good properties
(see Remark 3.2.3). For us w̃ = (w0, w1, w2) denotes the unique set of integer
weights for which the surface singularity is quasihomogeneous, gcd(w0, w1, w2) =
1, and the weighted multiplicity degw̃(S0) reaches its smallest integer value.
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Remark 3.1.1. There is not a uniform notation among the references. For
example, the class V in [4] is labelled as IV in [70]. We used the notation from
[70].

Example 3.1.2. For singularities of class I, the explicit expressions for the
weights and their weighed multiplicity are:

w̃ =

(
p1p2

gcd(p0p1, p1p2, p0p2)
,

p0p2

gcd(p0p1, p1p2, p0p2)
,

p0p1

gcd(p0p1, p1p2, p0p2)

)
degw(f) =

p0p1p2

gcd(p0p1, p1p2, p0p2)
.

The expressions for the other classes are increasingly cumbersome, so we will
not display them here.

By the work of Orlik and Wagreich, it is known that the dual graph of the
minimal resolution of S0 is star shaped. The central curve is a curve whose
genus is determined by the weights w̃ while the other curves in the branches
of the minimal resolution are rational curves (see [55, Thm 2.3.1, Thm 3.5.1]).
The contraction of these branches generates a set of cyclic quotient singularities
naturally associated to S0.

Definition 3.1.3. Let S0 be a surface singularity with a C∗-action, we denote
by BS0 the set of cyclic quotient singularities supported on the central curve
(S0\0)/C∗ and obtained by contracting the branches on the minimal resolution
of S0.

Remark 3.1.4. Let S0 be a normal Gorenstein surface singularity with a good
C∗- action. Its coordinate ring is a graded algebra A =

⊕∞
k=0 Ak where A0 = C

and the singularity is defined by its maximal ideal. Following Dolgachev,
there exist a simply connected Riemann surface C, a discrete cocompact group
Γ ⊂ Aut(C) and an appropriate line bundle L such that Ak = H0(C,Lk)Γ.
Moreover, there is a divisor D0 ⊂ C and points pi ∈ C such that:

Ak = L

(
kD0 +

r∑
i=1

⌊
k
αi − βi
αi

⌋)

where L(DR) is the space of meromorphic functions with poles bounded by
DR. The set of numbers b := deg(D0) + r, (αi, βi) and g(C) are known as
the orbit invariants of S0. Furthermore, there is a number R, known as the
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exponent of S0 that satisfies the relationships:

R

(
−b+

r∑
i=1

βi
αi

)
=

(
− deg(KC)− r +

r∑
i=1

1

αi

)

where
Rβi ≡ 1 mod (αi) ∀i = 1, . . . r

with this notation the set of cyclic singularities BS0 is
{

1
αi

(1, βi)
}

.

In general there are explicit formulas for finding the singularities in BS0

(see [55, Sec 3.3]). Next, we describe two examples that will be relevant in the
following sections.

Example 3.1.5. Let S0 be the singularity induced by

f(x, y, z) = xp0 + yp1 + zp2

with pi ≥ 2. Then, the weights wi are as on Example 3.1.2, αk = gcd(wi, wj),
R = degw̃(f)−

∑
iwi and BS0 has cyclic quotient singularities of type 1

αk
(1, βk)

where wkβk ≡ −1 mod gcd(wj, wi). In the minimal resolution of S0, let Ĉ be
the proper transform of (S0 \ 0)/C∗. For all the classes of quasihomogeneous
singularities, the self intersection of Ĉ is given by (see [55, Thm 3.6.1])

−Ĉ2 =
degw̃(f)

w0w1w2

+
r∑

k=1

βk
αk

although in general αk may be different to gcd(wj, wi). Let E20 be a singularity
which associated equation is x2 + y3 + z11. Then, we have that:

BE20 =

{
1

2
(1, 1),

1

3
(1, 2),

1

11
(1, 9)

}
Definition 3.1.6. (notation as on Remark 3.1.4) A surface singularity S0 is
called Fuchsian if C is the upper half plane and L = KC. In particular, the 14
exceptional unimodal singularities are Fuchsian ones.

Lemma 3.1.7. Let S0 be a Fuchsian singularity, then

BS0 =

{
1

αi
(1, 1)

}
where αi is an orbit invariant as on Remark 3.1.4 (for a list of the possible αi
see [14, Sec 1, Table 1]).
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Definition 3.1.8. Given a cyclic quotient singularity T1 := 1
r
(1, d1). We say

that 1
r
(1, d2) is dual to T1 if the isolated threefold cyclic quotient singularity

1

r
(1, d1, d2)

is canonical. Let BS0 = {T1, . . . Tn} be the set of cyclic quotient singulari-
ties associated to S0. We say the set of cyclic quotient singularities B̂S0 =
{T̂1, . . . , T̂n} is dual to BS0 if T̂i is dual to Ti for every i.

The dual set can be explicitly founded.

Lemma 3.1.9. The isolated singularity 1
r
(1, d2) is the dual 1

r
(1, d1) if and

only if one of the following equations holds (the three first imply the threefold
singularity is terminal, the last one implies it is Gorenstein):

1 + d1 ≡ 0 mod (r); 1 + d2 ≡ 0 mod (r)

d1 + d2 ≡ 0 mod (r); d1 + d2 ≡ −1 mod (r)

if r = 7, 9 we also must also consider two, somehow exceptional, canonical
cyclic singularities:

1

9
(2, 8, 14)

1

7
(1, 9, 11)

Proof. We use the Reid-Tate criterion [38, pg 105] and the classification due
to Morrison and Stevens [52, Thm 2.4], [51, Thm 3] for finding the dual sets
B̂S0 .

Corollary 3.1.10. Let S0 be a Fuchsian singularity as on Example 3.1.7, then
we have the dual sets B̂S0 = {Ti} where Ti is either 1

αi
(1, αi−1) or 1

αi
(1, αi−2).

Example 3.1.11. Let BE20 be as on Example 3.1.5. Then, two possible dual
sets are:

(B̂E20)1 =

{
1

2
(1, 1),

1

3
(1, 1),

1

11
(1, 2)

}
(B̂E20)2 =

{
1

2
(1, 1),

1

3
(1, 1),

1

11
(1, 10)

}

3.2 On the smoothing of surface singularities

In this section, we construct two types of one dimensional families of sur-
faces motivated by a similar construction due to Hassett [26] in the context of
plane curves singularities (see Remark 3.2.5). Our definitions spring from two
questions:
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1. What is the base change need it for calculating the stable replacement
of a non log canonical surface singularity?

2. Given the union of two surfaces with singularities BS0 and B̂S0 , is it
possible to find a Q-Gorenstein smoothing of them?

Our partial advances in these questions yield the Theorems 3.4.1 and 3.5.1.
Next, we describe the weighted blow ups that are used in our work.

Let X := Spec(A) be an isolated graded normal singularity with a good
C∗-action. Then, A can be written as the quotient of a graded polynomial ring
C[x1, . . . xn] where the variables xi have weights wi > 0 ([55, 1.1]). The C∗-
action determines a weighted filtration whose blow up is known as the Steifer
partial resolution of X (for more details see [67, Sec. 1]). This resolution
depends of the grading, and in our case it is induced by the weighted blow up
πw of Cn with respect the weights w which we will denoted as BlwCn. In this
case, πw amounts to blowing up Cn along the ideal(

x
d/w1

1 , . . . , xd/wnn

)
where d = lcm(w0, . . . , wn). The exceptional divisor associated to πw is Ew :=
P(w0, . . . , wn) and the exceptional divisor on the proper transform X̃ of X is
induced by X̃ ∩ Ew. On our applications, X ⊂ C4 is a smoothing of S0 with
an isolated singularity that has a C∗-action. By restricting πw to its central
fiber we have a weighted blow up of S0 ⊂ C3 with weights w̃ and exceptional
divisor Ew̃ = P(w0, w1, w2). The final configuration is given by (see Figure
3.2.0.1):

C := S1 ∩ Ew̃ ⊂ S1 + Ew̃ ⊂ Blw̃Ĉ3 //

πw̃
��

X̃ + Eπw ⊂ BlwĈ4

πw

��

S0 ⊂ Ĉ3 // X ⊂ Ĉ4

The central fiber X̃|0 decomposes as the union of two surfaces S1 and ST .
The surface S1 is the proper transform of S0 and ST ⊂ P(w0, w1, w2, w3) is the
exceptional surface contained in the proper transform of X̃. The exceptional
divisor Ew̃ is not contained in the threefold X̃, but rather it intersects X̃ along
the exceptional curve C ⊂ S1 which satisfies

C := S1 ∩ Eπw̃ = S1 ∩ ST .

The singularities on S1 are the ones on BS0 . The singularities on ST depend
of the weights w. Note that X̃ may have non isolated singularities. Our
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applications spring from the fact that, for the appropriate cases, the new one
dimensional family of surfaces X̃ → ∆ have at worst canonical singularities.

C

S1

πw̃ πw

Eπw̃

S0 X

X̃

ST

S1

Eπw

Figure 3.2.0.1: Weighted blow up setting

Lemma 3.2.1. The pair (S1, C) has at worst log canonical singularities and
KS1 + C is πw̃-ample.

Proof. It follows from either [31, Cor. 3.10]) or [66, 2.3.2].

The singularities of ST are determined by the singularities at Ẽw.

Lemma 3.2.2. Let ST ⊂ P(w0, w1, w2, w3) be a generic hypersurface (see Re-
mark 3.2.3), then its singular locus is obtained by intersecting ST with the edges
PiPj and with the vertex Pi. In the first case ST has bgcd(wj, wi) degw(f)/wjwic
cyclic quotient singularities of type

1

gcd(wi, wj)
(1, cij)

where cij is the solution of wl − wkcij ≡ 0 mod (gcd(wi, wj)), k < l. The
other singularities of ST are induced by the vertex Pi and they depend on the
intersection between ST and the vertex.

Proof. By hypothesis Ew is well formed, then its singular locus has codimen-
sion 2 and it is supported on the edges PiPj. By quasismoothness of X, the
proof reduces to describe the intersection of ST with Sing(Ew). This is a stan-
dard calculation on weighted projective spaces see for example [73, Lemma
4.1] or [16, I.7.1]; a useful Lemma for counting the points on ST ∩ PiPj is [16,
I.6.4].
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Remark 3.2.3. We suppose the associated equation to the singularity is non
degenerated with respect to the Newton polytope. Therefore, the log canonical,
canonical, and minimal model of our singularities can be constructed by a
subdivision of the dual fan of their respective Newton polytope (see [31]). We
will suppose the surface ST is quasismooth. Then, its singularities are induced
only by the cyclic quotient singularities of P(w0, w1, w2, w3) (see [16, I.5]). We
will also suppose that ST is well formed, so we can apply the adjunction formula
to find its canonical class (for details see [16, I.3.10]). Finally, we suppose that
S0 and X are generic enough with respect to their weights. So the singularities
of ST depend only on the weights w. In particular, for each i, the equation
contains a term of the form xni or xmi xk with a nonzero coefficient.

Example 3.2.4. (see [69, pg. 72]) Let E12 be a minimal elliptic surface
singularity with associated equation (x2+y3+z7 = 0). Consider the smoothing

x2 + y3 + z7 + a1t
42 + a2xyzt = 0 with [a1 : a2] ∈ P1.

If a1 6= 0, then ST ⊂ P(21, 14, 6, 1) is a K3 surface of weighted degree 42 with
A1+A2+A6 singularities. On other hand if a1 = 0, then the exceptional divisor
is a rational surface on P(21, 14, 6, 1) with a T2,3,7 singularity. We highlight
that this weighted blow up is the simultaneous canonical modification of these
singularities (see [30, Ex 3.4])

Remark 3.2.5 (Motivation, see Hassett [26]). Let C0 be the germ of an
isolated reduced plane curve singularity with the same topological type as
(f(x, y) = xp + yq = 0). Let S be the smoothing defined by

(f(x, y) + tlcm(p,q) = 0)→ Spec(C[[t]]),

and let πw be the induced weighted blow up with respect the weights

(w0, w1, w3) =

(
q

gcd(p, q)
,

p

gcd(p, q)
, 1

)
.

a similar setting to ours is (the symbol Ĉn is to indicate we are working locally).

C1 ∩ P(w0, w1) ⊂ C1 + P(w0, w1) ⊂ Blw̃Ĉ2 //

πw̃
��

S̃ + P(w0, w1, 1) ⊂ BlwĈ3

πw

��

C0 ⊂ Ĉ3 // S ⊂ Ĉ3

The central fiber S̃|0 decomposes as the union of two curves C1 and CT . The
curve C1 is the normalization of C0 and CT = S̃∩P(w0, w1, 1) is the exceptional

57



curve contained on the proper transform of S. The key point is that all the
fibers of S̃ are Deligne-Mumford stable [26, Thm 6.2] Therefore, this weighted
blow up give us the local stable reduction for those plane curve singularities.

3.3 Smoothing associated to the singularities

Let X0 → Spec (C[[τ ]]) be a generic one dimensional smoothing of S0, then its
analytical form is f(x, y, z) = t where f(x, y, z) is an equation defining S0. We
construct another smoothing X → ∆ of S0 by taking a base change tm → t.
Our base change is singled out by the monodromy theorem which implies a
smoothing X → ∆ with a semistable family Y dominating it, Y → X → ∆,
has unipotent local monodromy.

Definition 3.3.1. Let X0 → Spec(C[[τ ]]) as before. The unipotent base
change is the one given by τ → t := τm where m is the minimum integer
such that:

∆ := Spec (C[[t]])→ Spec(C[[τ ]])

induces a family X := X0 ×∆0 ∆ → ∆ with an unique quasihomogeneous
singularity and unipotent monodromy.

Varchenko proved that if S0 := (f(x, y, z) = 0)) is non degenerate with
respect to its Newton polyope, then the characteristic polynomial of the mon-
odromy of f(x, y, z) at the origin depends only on its associated weights.

Lemma 3.3.2. Let S0 be a quasihomogeneous non degenerated singularity,
then its unipotent base change is induced by its weighted degree degw̃(f).

Proof. Let ξi be the eigenvalues of the classical monodromy operator associated
to a smoothing of S0; this monodromy is unipotent if and only if ξmi = 1 for
all i. We must prove that if m = degw̃(f), then ξmi = 1, and that degw̃(f) is
the smallest possible integer with that property. Since ξi are also the roots of
the characteristic polynomial θS0(t) of the monodromy, our statement follows
directly from an expression, due to Ebeling [13, Thm 1]:

θS0(t) =
(1− td)2g−2+r

∏
wj |d(1− t

d/wj)

(1− t)
∏

αi|d(1− td/αi)

where d = degw̃(f), g is the genus of C, αi and r are as on Remark 3.1.4.
Another explicit expression of θS0(t) in terms of the weights is given on [70,
Prop. 2.2]
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Let X ⊂ C4 be a smoothing of S0 with an isolated quasihomogeneous
singularity, by taking the weighted blow up of X we obtain an one dimensional
family X̃ of surfaces degenerating to the union of S1 and ST . We are interested
whenever the surface ST has B̂S0 singularities.

Definition 3.3.3. Let X ⊂ C4 be a smoothing of S0 with a good C∗-action
and let B̂S0 be one of the dual sets of BS0. We say that X is a smoothing
associated to B̂S0 if the following conditions holds:

1. By taking the associated weighted blow up of X, we obtain a threefold
X̃ which central fiber decomposes as X̃|0 = S1 + ST where S1 is the
proper transform of S0 and ST is a well-formed, quasismooth surface in
a weighed projective space.

2. The singular locus of S1 is BS0

3. The singular locus of ST is B̂S0 and maybe some additional DuVal sin-
gularities.

We denote this smoothing as X(B̂S0)

Example 3.3.4. The set (B̂S0)2 described on Example 3.1.11 does not have an
associated smoothing X ⊂ C4 as defined above. Indeed, the possible weights
must be of the form w = (33, 22, 6, w3). A direct calculation shows that the
condition

(B̂S0)2 ⊂ Sing(P(33, 22, 6, w3)) ∩ ST
implies that w3 ≡ 49 mod (66). By taking a linear combination of monomials
quasihomogeneous with respect those weights, it is not possible to construct
a smoothing that satisfies the conditions of Definition 3.3.3.

3.4 Type I Quasihomogeneous Singularities

For this family of surface singularities the setting of Section 3.2 allows us to
create a family of surfaces X̃ degenerating to a central fiber with singularities
BS0 and B̂S0 .

Theorem 3.4.1. Let X be the unipotent smoothing of a quasihomogeneous
singularity S0 of type I; let X̃ be the proper transform of X under the weighted
blow up πw. Then it holds that:

1. X̃ has at worst terminal cyclic quotient singularities
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2. The central fiber X̃0 has orbifold double normal crossing singularities,
and it decomposes in two surfaces S1 + ST .

3. Let BS0 =
{

1
ri

(1, bi)
}

be the singular locus of S1. Then, the unipotent

smoothing is the one associated to the dual set B̂S0 :=
{

1
ri

(1,−bi)
}

Remark 3.4.2. An orbifold double normal crossing singularity is locally of
the form

(xy = 0) ⊂ 1

ri
(1,−1, ci), (ri, ci) = 1

Remark 3.4.3. In general for a surface singularity S0 the set BS0 have several
dual sets B̂S0 with different associated smoothings (see Section 3.7). Never-
theless, for unimodal singularities a sense of uniqueness is accomplished (see
Theorem 3.5.1).

Proof. This result follows from Ishii’s characterization of canonical modifica-
tions [30]. Next, we describe her approach. The notation is the standard one in
toric geometry. Let X be an isolated hypersurface singularity defined by a non
degenerated quasihomogeneous polynomial g :=

∑
a∈M cax

a. Oka proved that
we can obtain a resolution of X by making a subdivision Σ0 of the dual fan
of the Newton polytope Γ(g) ⊂ NR (see [54]). This subdivision Σ0 is induced
by primitive vectors pi on NR. From the fan associated to the subdivision Σ0,
we obtain a toric variety T (Σ0) such that the proper transform X(Σ0) of X is
smooth, intersects transversely each orbit and

KX(Σ0) = ϕ∗(KX) +
∑

pi∈Σ0(1)−σ(1)

a(pi, X)Epi |X(Σ0)

where Epi are the exceptional divisor associated to the primitive vector pi, the
vectors pi ∈ Σ0(1)− σ(1) are the new rays added to the fan, and

a(pi, X) =
∑
k

(pi)k −min

{
pi(a)

∣∣∣ a ∈M, g :=
∑
a∈M

cax
a, ca 6= 0

}
= pi(1)− pi(g)− 1

with p(a) =
∑

k pkak. From our purposes, it is enough to consider the primi-
tive vectors pi inside the essential cone of the singularity:

C1(g) := {s ∈ NR | − 1 ≥ a(s, X) and si ≥ 0}.

because if p /∈ C1(g), then a(p, X) ≥ 0. To prove that πw is the canonical
modification of X, we must show that w ∈ C1(g) and that for any s ∈ C1(g),
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s 6= w the discrepancy associated to Es is non negative. This translates into
a combinatorial condition between w and s (see [30, Thm 2.8]); the weighted
blow up πw is the canonical modification of X if and only if w ∈ C1(g) and
w is g-minimal in C1(g) ∩N \ {0}. The g-minimality of w means that for all
s ∈ C1(g) one of the two following inequalities holds for all i ∈ {1 . . . n}:

w ≤g s :=
wi

w(g)−w(1) + 1
≤ si

s(g)− s(1) + 1
(3.4.4)

w �g s :=
wi

w(g)
≤ si

s(g)
(3.4.5)

and s belongs to the interior of a (n + 1)-dimensional cone of σ(w). In our
case, the equation is given by

g(x, y, z, t) := xp0 + yp1 + zp2 + tdegw(S0) +
∑

ci0,i1,i2,i3x
i0yi1zi2ti3

with p0 ≥ p1 ≥ p2 ≥ 2, w = (w0, w1, w3, 1) where wi is as on Example 3.1.2 and
i0w0 + i1w1 + i2w2 + i3 = degw(S0). The claim that w ∈ C1(g) follows from an
inductive argument and by ruling out very low values of the exponents, such
as p0 = p1 = p2 = 2, which define log canonical surface singularities. By the
definition of unipotent smoothing

w

w(g)
=

(
1

p0

,
1

p1

,
1

p2

,
(p1p2, p0p2, p0p1)

p0p1p2

)
Therefore, g-minimality follows at once from the definition of weighted degree:

s(g) = min

{
s0p0, s1p1, s2p2, s3

p0p1p2

(p1p2, p0p2, p0p1)

}
Morever, for w and any s ∈ C1(g), it holds w � s. This implies the singulari-
ties at X̃ are terminal. Indeed, let Σ be a non singular subdivision of the fan
∆(w) associated to BlwCn, let φ be the proper birational morphism associated
to this subdivision.

X(Σ)
φ // X̃

πw // X

Let Ui ⊂ BlwCn be an open set associated to the subfan ∆i ⊂ ∆(w), and let
Σi ⊂ Σ be the preimage of ∆i on the non singular subdivision. We can take
the restriction Xi := X̃ ∩ Ui and its proper transform under the resolution
X(Σi) := φ−1

∗ (Xi) to obtain (see [30, Prop. 2.6])

KX(Σi) = φ∗(KUi +Xi)
∣∣
X(Σi)

+
∑

ms (Es ∩X(Σi))red
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where s 6= w and

ms =
si
wi

(w(f)−w(1) + 1)− (s(f)− s(1) + 1)

In the proof of Theorem 2.8 at [30] we found that:

1. If s ∈ C1(g) and w �g s, then Es ∩X(Σ0) = ∅

2. If s /∈ C1(g) then ms > 0.

In our case w �g s for all s ∈ C1(g), then for any s we have either ms > 0
or Es ∩X(Σ0) = ∅. This implies the singularities on X̃ are terminal, because
resolving a canonical singularity will induce an exceptional divisor Es with
ms = 0 and Es ∩X(Σ0) 6= ∅. Terminal singularities are of codimension three,
so they are isolated on X̃. By construction the singularities on X̃ are cyclic
quotient ones and caused solely by the C∗-action. Finally, X̃0 is reduced and it
decomposes into two surfaces S1 and ST . The singularities of S1 are the ones in
BS0 (see Example 3.1.5 for an explicit expression). The singularities of ST are
calculated in Lemma 3.2.2. Our statement follows from those expressions.

Example 3.4.6. TheW15 singularity (also known asA(1,−2,−2,−3,−3)) is a
Fuchsian bimodal singularity and its normal form is x2+y4+z6. The unipotent
base change t12 → t induces the 8th case on Yonemura’s classification [73]. The
set of singularities are:

BW15 =

{
2× 1

2
(1, 1), 2× 1

3
(1, 1)

}
B̂W15 =

{
2× 1

2
(1, 1), 2× 1

3
(1, 2)

}
This is the only dual set realized by a smoothing. In this case, the exceptional
surface is a K3 surface ST := S12 ⊂ P(6, 3, 2, 1)

3.5 Unimodal Singularities

We focus on unimodal non log canonical singularities. It is well known that
there are 14 of those singularities, and that they are all quasihomogeneous. For
more details about them, see Arnold [4, pg 247], Laufer [? ], and Dolgachev
[10].

Theorem 3.5.1. Let S0 be an unimodal surface singularity, then it holds:

1. From all the canonical dual sets associated to BS0, there is only one dual
set B̂S0 with an associated smoothing X(B̂S0)→ ∆ as on Definition 3.3.3.
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2. The smoothing X(B̂S0) coincides with the one induced by the unipotent
base change. Moreover, this threefold has an unique strictly log canonical
singularity.

3. The threefold X̃ has isolated terminal cyclic quotient singularities.

4. The central fiber X̃0 has orbifold double normal crossing singularities and
it decomposes in two surfaces S1 and ST intersecting along a rational
curve C = S1 ∩ ST which satisfies(

S1

∣∣
ST

)2

=
degw(f)

w0w1w2

5. S1 is the proper transform of S0 and it supports the singularities in BS0.

6. ST is a K3 surface and it supports the singularities in B̂S0.

7. The line bundles KX̃ |S1 and KX̃ |ST are ample.

Remark 3.5.2. Yonemura [73] classified all the hypersurface threefold sin-
gularities which exceptional surface is a normal K3 surface with canonical
singularities. There are 95 of those families and they are in bijection with
the list of 95 normal K3 surfaces that appear as a hypersurface in a weighted
projective space.

Remark 3.5.3. The relationship between monodromy and smoothings of sur-
faces with semi log canonical (slc) singularities is not straightforward. Indeed,
let S1∪ST be a surface with at worst slc singularities. Then, ST and S1 can have
cyclic quotient singularities away from their intersection. Any cyclic quotient
singularity is log terminal and they can induce arbitrary large monodromy to
a generic smoothing of these surfaces. On other hand, the hypothesis that
there is a semistable family dominating the smoothing is used in the proof of
important theorems related to slc surfaces (For example [39, Thm 5.1]). The
monodromy theorem implies that those families have unipotent smoothings.

Proof. Let S0 be an unimodal singularity with associated weights (w0, w1, w2),
the first statement claims that there is only one 1 ≤ w3 ≤ degw̃(S0) and one
dual set B̂S0 for which the singularities induced on ST ⊂ P(w0, w1, w2, w3) are
the ones in B̂S0 . The second and third statement means that such unique set of
weights is w = (w0, w1, w2, 1), and that the cyclic quotient singularities on our
B̂S0 are of type 1

αi
(1, αi − 1) (see Example 3.1.10). These statements follows

from an individual study of each singularity and their associated weighted
projective spaces; this is described on the rest of the section. In fact, we wrote
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a small computer program in Sage [63] to compute the singularities of ST ,
to compare them with the different B̂S0 , and to test the quasismoothness and
well formedness of our possible exceptional surfaces. The quasismothness of X
implies that X̃ has only cyclic quotient singularities (see [17, Lemma 8]) which
are terminal by the nature of BS0 and B̂S0 . Those terminal singularities are
induced by X̃ ∩ Sing (P(w0, w1, w2, 1)) and they are isolated. We can see that
ST is a K3 surface by the adjunction formula. We remark that the smoothing
X → ∆ and its partial resolution X̃ → X → ∆ has been studied by Yonemura
[73], Ishii, and Tomari in the context of simple K3 surface singularities. Several
of our claims follow by their work. In particular, they show that the weighted
blow up is the terminal modification of X, and that in fact it is unique if
X is defined by a generic polynomial (see [73, Thm. 3.1]). The relationship
between unimodal singularities and Yonemura’s classification is described, in
another context, by Prokhorov [57].

We find the value of
(
S1

∣∣
ST

)2

by using Lemmas 3.5.14 and 3.5.11. From

adjunction formula, the fact that ST is a normal K3 surface, and that the
fibers are numerically equivalent we have:

KX̃

∣∣
S1

= KS1 + ST
∣∣
S1

KX̃

∣∣
ST

= KST + S1

∣∣
ST

= S1

∣∣
ST

The surface ST holds Pic(ST ) ∼= Z. Therefore, KX̃

∣∣
ST

is ample because its

degree is positive. The ampleness of KX̃

∣∣
S1

follows from Lemma 3.2.1

Remark 3.5.4. The previous statements are not longer true for all higher
modal singularities. See Section 3.7 for details. Moreover, the weighted blow
up of an arbitrary quasihomogeneous smoothing does not necessarily yields a
threefold with canonical or terminal singularities (see Remark 3.5.6).

Next, we give an explicitly description of the central fiber X̃|0 for each
unimodal singularity. We describe the most details for the E12 singularity.
The other cases are similar.

3.5.1 The E12 singularity

It is also known as D2,3,7 or Cu(−1). Its normal form is x2+y3+z7, and its uni-
modal base change t42 → t induces the 20th case of Yonemura’s classification.
The surface S1 supports the cyclic quotient singularities:

BE12 =

{
1

2
(1, 1),

1

3
(1, 1),

1

7
(1, 1)

}
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The possible dual sets are

B̂1
E12

=

{
1

2
(1, 1),

1

3
(1, 2),

1

7
(1, 5)

}
B̂2
E12

=

{
1

2
(1, 1),

1

3
(1, 1),

1

7
(1, 5)

}
B̂3
E12

=

{
1

2
(1, 1),

1

3
(1, 1),

1

7
(1, 6)

}
B̂4
E12

=

{
1

2
(1, 1),

1

3
(1, 2),

1

7
(1, 6)

}
The singularities on B̂4

E12
are the only ones that can be realized by a weighed

blow up such that the induced surface S42 ⊂ P(21, 14, 6, w3) is quasismooth
and well-formed as on Definition 3.3.3. In that case w3 = 1, and ST is a
K3 surface. The surfaces in the central fiber intersect along a rational curve
C = ST ∩ S1. (see Figure 3.5.4.1)

g=0
A1 A2 A6

1
2

(1,1)
1
3

(1,1)
1
7

(1,1) E12

ST

S1

Figure 3.5.4.1: Analysis of the E12 singularity

3.5.2 The E13 singularity

It is also known as D2,4,5 or Ta(−2,−3). Its normal form is x2 + y3 + yz5,
and its unipotent smoothing t30 → t induces the 50th case on Yonemura’s
classification. The set of singularities are

BE13 =

{
1

2
(1, 1),

1

4
(1, 1),

1

5
(1, 1)

}
B̂E13 =

{
1

2
(1, 1),

1

4
(1, 3),

1

5
(1, 4)

}
The associated K3 surface is S30 ⊂ P(15, 10, 4, 1).

3.5.3 The E14 singularity

It is also known as D3,3,4 or Tr(−2,−2,−3). Its is normal form is x2 +y3 + z8,
and its unipotent base change t24 → t induces the 13th case on Yonemura’s
classification. The set of singularities are:

BE14 =

{
2× 1

3
(1, 1),

1

4
(1, 1)

}
B̂E14 =

{
2× 1

3
(1, 2),

1

4
(1, 3)

}
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The associated K3 surface is S24 ⊂ P(12, 8, 3, 1).

Remark 3.5.5. The set of weights v = (12, 8, 3, 13) seems to induce the
singularities of the set B̂E14 . However, in this case the surface S24 := (x2 +
y3+z8+yzt = 0) ⊂ P(12, 8, 3, 13) is not quasismooth. In fact, the surface has a
A1 singularity supported on the vertex P3 which itself supports the singularity
1
13

(1, 5, 10).

3.5.4 The U12 singularity

It is also known as D4,4,4 or Tr(−3,−3). Its normal form is x3 + y3 + z4,
and its unipotent base change t12 → t induces the 4th case on the Yonemura
classification. The set of singularities are:

BU12 =

{
3× 1

4
(1, 1)

}
B̂U12 =

{
3× 1

4
(1, 3)

}
The associated K3 surface is S12 ⊂ P(4, 4, 3, 1).

Remark 3.5.6. (see Remark 3.5.4) The smoothing induced by the weights
v = (4, 4, 3, 3) induces the exceptional surface

S12 := (x3 + y3 + z4 + t4 = 0) ⊂ P(4, 4, 3, 3)

supporting the singularities{
3× 1

4
(1, 1), 4× 1

3
(1, 1)

}
The threefold supports the singularities 1

4
(1, 1, 1). Next, we apply the Reid-

Tai criterion to the associated group generator ε4(x, y, z) → (ε4x, ε4y, ε4z).
The age of ε4 (see [38, 105]) is 3/4 < 1 which implies the singularity is not
canonical.

Remark 3.5.7. The set of weights v = (4, 4, 3, 9) induces the quasismooth
surface ST := (x3 + y3 + z4 + zt = 0) ⊂ P(4, 4, 3, 9). The induced singularities
on ST are {

3× 1

4
(1, 3),

1

3
(1, 1),

1

9
(1, 1)

}
the problem here is that we have additional non DuVal singularities on our
exceptional tail.
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g=0

1
9

(1,1)
1
3

(1,1)

A3 A3 A3

1
4

(1,1)
1
4

(1,1)
1
4

(1,1) U12

ST

S1

Figure 3.5.7.1: Remark 3.5.7 about the U12 singularity

3.5.5 The W12 singularity

It is also known as D2,5,5 or Ta(−3,−3). Its is normal form is x2 + y4 +
z5, its unipotent base change t20 → t induces the 9th case on Yonemura’s
classification. The set of singularities are:

BW12 =

{
1

2
(1, 1), 2× 1

5
(1, 1)

}
B̂W12 =

{
1

2
(1, 1), 2× 1

5
(1, 4)

}
where B̂W12 is supported on the K3 surface S20 ⊂ P(10, 5, 4, 1).

3.5.6 The W13 singularity

It is also known as D3,4,4, or Tr(−2,−3,−3). Its normal form is x2 + y4 + yz4,
and its unipotent smoothing t16 → t induces the 37th case on Yonemura’s
classification. The set of singularities are

BW13 =

{
1

3
(1, 1), 2× 1

4
(1, 1)

}
B̂W13 =

{
1

3
(1, 2), 2× 1

4
(1, 3)

}
The associated K3 surface is S16 ⊂ P(8, 4, 3, 1).

Remark 3.5.8. The smoothing obtained by taking linear combination of
monomials of degree 16 with respect the weights (8, 4, 3, 13) is associated to
the set of singularities {

1

3
(1, 2), 2× 1

4
(1, 3),

1

13
(1, 7)

}
Then we discard this smoothing because the presence of a non DuVal singu-
larity on the surface ST
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g=0

1
13

(1,7)

A4 A5 A5

1
3

(1,1)
1
4

(1,1)
1
4

(1,1)
W12

ST

S1

Figure 3.5.8.1: Remarl 3.5.8 about the W13 singularity

3.5.7 The Q10 singularity

It also known as D2,3,9 or Cu(−3). Its normal form is x2z+y3+z4, its unipotent
base change t24 → t induces the 20th case on Yonemura classification. The set
of singularities are

BQ10 =

{
1

2
(1, 1),

1

3
(1, 1),

1

9
(1, 1)

}
B̂Q10 =

{
1

2
(1, 1),

1

3
(1, 2),

1

9
(1, 8)

}
The associated K3 surface is S24 ⊂ P(9, 8, 6, 1).

Remark 3.5.9. Consider another smoothing constructed by taking linear
combination of monomials of degree 24 with respect the weights (9, 8, 6, 5).
The associated exceptional surface has singularities:{

1

2
(1, 1),

1

3
(1, 1),

1

9
(1, 4),

1

5
(1, 3)

}
after taking another base change t5 → t, we will induce the smoothing (x2z +
y3+z4+xt15 = 0) which a non generic smoothing on the Q10 versal deformation
space.

3.5.8 The Q11 singularity

also known as D2,4,7 or Ta(−2,−5). Its associated equation is x2z + y3x +
yz3, its unipotent base change t18 → t induces the 60th case on Yonemura
classification. The sets of singularities are

BQ11 =

{
1

2
(1, 1),

1

4
(1, 1),

1

7
(1, 1)

}
B̂Q11 =

{
1

2
(1, 1),

1

4
(1, 3),

1

7
(1, 6)

}
the associated K3 surface is S18 ⊂ P(7, 6, 4, 1).
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3.5.9 The Q12 singularity

It also known as D3,3,6 or Tr(−2,−2,−5). Its normal form is x2z + y3 + z5,
and its unipotent smoothing t15 → t induces the 22th case on Yonemura’s
classification. The set of singularities are:

BQ12 =

{
2× 1

3
(1, 1),

1

6
(1, 1)

}
B̂Q12 =

{
2× 1

3
(1, 2),

1

6
(1, 5)

}
the associated K3 surface is S15 ⊂ P(6, 5, 3, 1).

Remark 3.5.10. A general smoothing defined by a linear combination of
monomials of degree 15 with respect the weights (6, 5, 3, 2) is given by

x2z + y3 + xz3 + z5 + y2zt+ (xy + yz2)t2 + (xz + z3)t3 + yt5 + zt6

Therefore, the edge P0P3 given by (y = z = 0) is contained on ST . However,
this edge is a line of A1 singularities so the surface ST is not normal. Note
that the other singularities on ST are dual to the ones on BQ12

B̂Q12 =

{
2× 1

3
(1, 1),

1

6
(1, 4)

}
3.5.10 The S11 singularity

It is also known as D2,5,6 or Ta(−3,−4). Its normal form is x2z + y2x + z4,
and its unipotent base change t16 → t induces the 58th case on Yonemura
classification. The set of singularities are:

BS11 =

{
1

2
(1, 1),

1

5
(1, 1),

1

6
(1, 1)

}
B̂S11 =

{
1

2
(1, 1),

1

5
(1, 4),

1

6
(1, 5)

}
The associated K3 surface is given by S16 ⊂ P(6, 5, 4, 1)

3.5.11 The singularity S12

It is also known as D3,4,5 or Tr(−2,−3,−4). Its normal form is x2z+xy2 +yz3

and its unipotent base change t13 → t induces the 87th case on Yonemura
classification. The set of singularities are:

BS12 =

{
1

3
(1, 1),

1

4
(1, 1),

1

5
(1, 1)

}
B̂S12 =

{
1

3
(1, 2),

1

4
(1, 3),

1

5
(1, 4)

}
The associated K3 surface is S13 ⊂ P(5, 4, 3, 1)
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3.5.12 The singularity Z11

It is also known as D2,3,8 or Cu(−2). Its normal form is x2 + y3z + z5 and
its unipotent base change t30 → t induces the 38th case on the Yonemura
smoothing. The set of singularities are:

BZ11 =

{
1

2
(1, 1),

1

3
(1, 1),

1

8
(1, 1)

}
B̂Z11 =

{
1

2
(1, 1),

1

3
(1, 2),

1

8
(1, 7)

}
The associated K3 surface is S30 ⊂ P(15, 8, 6, 1)

3.5.13 The singularity Z12

It is also known as D2,4,6 or Ta(−2,−4). Its normal form is x2 + y3z + yz4,
and its unipotent base change t22 → t induces the 78th case of the Yonemura
classification. The set of singularities are:

BZ12 =

{
1

2
(1, 1),

1

4
(1, 1),

1

6
(1, 1)

}
B̂Z12 =

{
1

2
(1, 1),

1

4
(1, 3),

1

6
(1, 5)

}
The associated K3 surface is S22 ⊂ P(11, 6, 4, 1)

3.5.14 The singularity Z13

It is also known as D3,3,5 or Tr(−2,−2,−4). Its normal form is x2 + y3z + z6

and its unipotent base change t18 → t induces the 39th case on the Yonemura’s
classification.

BZ13 =

{
2× 1

3
(1, 1),

1

5
(1, 1)

}
B̂Z13 =

{
2× 1

3
(1, 2),

1

5
(1, 4)

}
The associated K3 surface is S18 ⊂ P(9, 5, 3, 1),

3.5.15 The line bundle of the exceptional surface

The following lemmas are used to prove the ampleness of the line bundle on
Theorems 3.5.1 and 3.6.1.

Lemma 3.5.11. Let S̃T be the smooth model of ST , let Ek be the exceptional
divisors associated to the resolution ϕ : S̃T → ST , and let C̃ be the proper
transform of C = S1

∣∣
ST

on S̃T . Then, it holds:

C2 = (ϕ∗(C))2 = C̃2 −
∑
j,k

(Ej.C̃)Djk(Ek.C̃)
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where Djk is the inverse of the intersection matrix EjEk. In particular, if all

the singularities on B̂S0 are of type {Ak1 , . . . Akm}, then

C2 = C̃2 +

j=m∑
j=1

kj
kj + 1

(3.5.12)

Proof. By the projection formula, we have ϕ∗(C).Ek = 0 for every exceptional
divisor Ek. This implies

C2 = ϕ∗(C).

(
C̃ +

∑
j

ajEj

)
= C̃2 +

∑
j

aj(Ej.C̃)

On other hand ϕ∗(C).Ek = 0 implies
∑

j ajEj.Ek = −C̃.Ek where Ej.Ek is
the intersection matrix. Then

aj =
∑
k

Djk(−C̃.Ek)

where Djk is the inverse of the intersection matrix EjEk. The previous ex-
pressions imply

C2 = C̃2 +
∑
j

(∑
k

Djk(−C̃.Ek)

)
Ej.C̃ = C̃2 −

∑
j,k

(Ej.C̃)Djk(Ek.C̃)

Let Ti be the cyclic quotient singularities of ST supported on the curve C; and
let E(Ti) be the intersection matrix of each singularities Ti. Then,

Dj,k =


E(T1)−1 · · · 0

0 E(T2)−1 0
...

...
...

0 · · · E(Tm)−1


In particular, the exceptional divisors associated to each Ti do not intersect.
Therefore, we can consider the contribution of each singularity Ti indepen-
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dently: ∑
j,k

(Ej.C̃)Djk(Ek.C̃) =
∑

Ej ,Ek∈R1

(Ej.C̃)(E(T1)−1)jk(Ek.C̃) + . . .

. . .+
∑

Ej ,Ek∈Rm

(Ej.C̃)(E(Tm)−1)jk(Ek.C̃)

where Ej ∈ Ri means that Ej is an exceptional divisor associated to Ti. Only
the first exceptional divisor of the resolution of Ti intersects the curve C̃ at a
point. Therefore,∑

Ej ,Ek∈Ri

(Ej.C̃)(E(Ti)
−1)jk(Ek.C̃) =

(
E(Ti)

−1
)

1,1

If Ti is an Ak singularity, then by the configuration of its exceptional curves
and by writing Djk in terms of the matrix of cofactors, we have:

(E(Ak)
−1)1,1 = − k

k + 1
.

From which our statement follows.

The following is a well known result on degeneration of surfaces.

Lemma 3.5.13. Let Y → ∆ be an one dimensional degeneration of surfaces
such that Yt is smooth and Y0 =

∑
i niVi. Denote by Cij the double curve

Vi|Vj ⊂ Vi, and the triple point intersection Tijk = Vi ∩ Vj ∩ Vk. Then, we have

Nni
Vi|Y = OVi

(
−
∑
j 6=i

njCij

)
V 2
i Vj = C2

ji

njC
2
ij + niC

2
ji = −

∑
k 6=i,j

nk|Tijk|

On the Expression 3.5.12, we need to find the value of C̃2. That is the
purpose of the following result.

Lemma 3.5.14. Let Y be a smooth model of the unipotent degeneration X →
∆, so its central fiber has reduced components Y |0 =

∑
Vi. Let S̃T be the proper

transform of ST on Y |0, and let C̃ be the proper transform of C = S1

∣∣
ST

on
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S̃T . Consider the set of singularities

BS0 =

{
1

αk
(1, βk)

}
Then, it holds

C̃2 =
degw̃(S0)

w0w1w2

+
∑
k

βk
αk
− np

where np is the number of cyclic quotient singularities supported on C. In
particular, for Fuchsian hypersurface singularities we have:

C̃2 =
degw̃(S0)

w0w1w2

+
∑
k

1

k + 1
− np

Proof. Let S̃1 be the proper transform of S1 on Y
∣∣
0

then it holds that S̃1 ∩ S̃T
support np triple points where the extra surfaces are exceptional divisors of the

cyclic quotient singularities supported on C. Let Ĉ be the proper transform
of C on S̃1, by Lemma 3.5.13, it holds that:

C̃2 + Ĉ2 = −
∑
k 6=i,j

|Tijk| = −np

By [55, Thm 3.6.1] we have that

−Ĉ2 =
degw(f)

w0w1w2

+
∑
k

βk
αk

so the statement follows from it. In the case of Fuchsian hypersurface singu-
larities βk = 1 (see Example 3.1.7).

3.6 Singularities with Higher modality

A common phenomenon in the case of unimodal singularities is that the
smoothing X of S0 has a strict log canonical threefold singularity. More-
over, the singularity at X belongs to a family called simple K3 singularities.
Yonemura [73] classified those singularities, and he showed that they are in
bijection with the list of 95 normal K3 surfaces that appear as a hypersurfaces
in a weighted projective space. These surfaces are all the families of weighted
projective Gorenstein K3 hypersurfaces and they were classifeid by M. Reid in
1979. By exploiting this relationship, we can expand the proofs from previous
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sections.

Theorem 3.6.1. Let S0 be one of the 53 quasihomogeneous surface singulari-
ties which unipotent smoothing X induces a simple K3 threefold singularity of
weight w. Let X̃ be the proper transform of X under the weighted blow up πw.
Then it holds that:

1. The threefold X̃ has isolated terminal cyclic quotient singularities.

2. The central fiber X̃0 has orbifold double normal crossing singularities
and it decomposes in two surfaces S1 and ST . The divisor S1

∣∣
ST
⊂ ST

satisfies: (
S1

∣∣
ST

)2

=
degw(f)

w0w1w2

3. S1 is the proper transform of S0 and it supports the singularities in BS0.

4. The line bundles KX̃ |S1 and KX̃ |ST are ample.

Proof. Let (w0, w1, w2) be the associated weights of S0. By construction, the
smoothing X has a simple K3 singularities with weights

w = (w0, w1, w2, 1)

The quasismothness of X implies that X̃ has only cyclic quotient singularities
(see [17, Lemma 8]). Moreover, the weighted blow up πw is the terminal
modification of X by [73, Thm 3.1].

By definition of a simple K3 singularity, ST is a normal K3 surface with
at worst Ak singularities [73, Thm 4.2]; and it is realized as a hypersurface of
degree degw(f) in P(w0, w1, w2, 1). From the Table [73, Table 4.6], there are
53 of those singularities. The fact that the central fiber X̃|0 has double normal
crossing singularities follows from the construction of X̃ through a weighted
blow up.

We find the value of
(
S1

∣∣
ST

)2

by using Lemmas 3.5.14 and 3.5.11 (using the

same argument than on the proof of Theorem 3.5.1). Indeed, from adjunction
formula, the fact that ST is a normal K3 surface, and that the fibers are
numerically equivalent we have:

KX̃

∣∣
S1

= KS1 + ST
∣∣
S1

KX̃

∣∣
ST

= KST + S1

∣∣
ST

= S1

∣∣
ST

The K3 surface holds Pic(ST ) ∼= Z. Therefore, KX̃

∣∣
ST

is ample because its

degree is positive. The ampleness of KX̃

∣∣
S1

follows from Lemma 3.2.1
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Remark 3.6.2. These 53 quasihomogeneous singularities where first described
in another context by Prokhorov [57].

The existence of a semistable resolution is settled for the following results.

Definition 3.6.3. A germ x ∈ X (resp. a variety X) admits a semistable
resolution if there is a resolution f : Z → X → ∆ such that it central fiber Z|0
is a reduced smooth normal crossing divisor (this means Z → ∆ is semistable)

Definition 3.6.4. ([7, Def 3.4]) Let X be a threefold, f : X → ∆ a not
necessarily projective morphism. Let t ∈ O be a parameter. We say that f has
moderate singularities if the analytic germ at every point x ∈ X is isomorphic
to one of the following germs

1. (xyz = t) ⊂ C4

2. (xy = t) ⊂ A where A = 1
r
(a, r − a, 1, 0) for some gcd(a, r) = 1.

3. (xy = zr + tn) ⊂ A for some n, with A as above.

Lemma 3.6.5. ([7, Lemma 5.2]) Let x ∈ X be a moderate 3-fold singularity.
Then x ∈ X admits a projective semistable resolution.

Proposition 3.6.6. The threefold X̃ obtained in Theorem 3.5.1 and 3.6.1
has moderate 3-fold singularities. Therefore, it admits a projective semistable
resolution.

Proof. The singularities of the threefold X̃ are induced solely by the weighted
blow up πw : X̃ → X and they correspond to the cyclic quotient singular-
ities associated to the set of surface singularities BS0 and B̂S0 . Our result
follows from boting that the singularities at X̃ correspond to the second case
of Definition 3.6.4.

3.7 Further Examples

Next, we discuss several examples of singularities which behaviour is different
to the unimodal ones. We draw our examples from minimal elliptic singulari-
ties.
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3.7.1 The V ′18 singularity

It is also known as 4A1,−2,o; this is a minimal elliptic singularity with Milnor
number 18 and modality 4. Its normal form is x3 +y4 +z4, and its set of cyclic
quotient singularities is BV ′18 = 4A2. There are two dual sets such that can be
realized by a weighted blow up:

B̂1
V ′18

= 4× 1

3
(1, 1) B̂2

V ′18
= 4× 1

3
(1, 2)

By Theorem 3.4.1, the smoothing associated to the dual set B̂1
V ′18

is realized by a

linear combination of the monomials of weight 12 with respect the weights v =
(4, 3, 3, 1). This is the unipotent smoothing, the threefold X̃ has singularities
1
3
(1, 1, 2), and the exceptional surface is S12 ⊂ P(4, 3, 3, 1).

On other hand, the smoothing associated to the dual set B̂2
V ′18

is realized by

a linear combination of the monomials of degree 12 with respect the weights
u = (4, 3, 3, 2). This threefold has a strictly log canonical singularity, and it
corresponds to 2nd case on Yonemura’s classification. The exceptional surface
is the normal K3 surface S12 ⊂ P(4, 3, 3, 2) with singularities 4A2 + 3A1.

3.7.2 The E20 singularity.

It is also known as E8,−3. It is a minimal elliptic singularity with Milnor
number 20 and modality 2. Its normal form is x2 +y3 +z11 and its set of cyclic
quotient singularities is

BE20 =

{
1

2
(1, 1),

1

3
(1, 2),

1

11
(1, 9)

}
This set has four sets of dual singularities. However, only two of them have
an associated smoothing (see Example 3.1.11).

1. The dual set:

B̂1
E20

=

{
1

2
(1, 1),

1

3
(1, 1),

1

11
(1, 10)

}
which associated smoothing X1 → ∆ is realized by a linear combina-
tion of the monomials of degree 66 with respect to the weights v =
(33, 22, 6, 5). The threefold X1 ⊂ C4 has a strictly log canonical singu-
larity and it correspond to 46th case of Yonemura’s classification. The
exceptional surface is the normal K3 surface S66 := (x2 +y3 +z11 +t12z =
0) ⊂ P(33, 22, 11, 5)
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2. The smoothing associated to the dual set

B̂E20 =

{
1

2
(1, 1),

1

3
(1, 1),

1

11
(1, 2)

}
is the unipotent one. In that case, the surface S66 ⊂ P(33, 22, 6, 1) is an
non minimal K3 surface (see also [28, Sec 3.3.3])

77



Chapter 4

Application to the moduli of
quintics

4.1 Preliminary

Kollár, Shepherd-Barron and Alexeev developed a geometric compactification
of surfaces of general type. They constructed a coarse moduli space for those
schemes S satisfying the following properties (see [39, 5.4]):

1. S is a reduced projective surface

2. S is connected with only semi log canonical singularities

3. Let j : S0 → S be the inclusion of the locus S0 of Gorenstein points of
S, the sheaf ω

[N ]
S defined by ω

[N ]
S = j∗

(
ω⊗NS0

)
is an ample line bundle.

4. The self intersection

K2
S :=

ω
[N ]
S · ω

[N ]
S

N2

is constant.

5. χ(OB) = pg − q + 1 is constant.

The moduli functor M : (Schemes) → (Sets) such that M(T ) is the set of
isomorphic classes of flat projective morphisms f : S → T such that all above
properties hold for every geometric fibre of f , and for every geometric point
t ∈ T the natural map

j∗

(
ω⊗NS0/T

)
⊗ k(t)→ ω

[N ]
St

is an isomorphism.
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This moduli functor has a coarse moduli space which is a projective scheme
of finite type over C [36]. We highlight that the appropriate definition of a
family of stable varieties of surfaces is very a delicate problem and is not
completely settled. However, there is an agreement on what sort of surfaces
should be allowed in the moduli functor (Definition 4.1.1); the contentious
topic is the right notion of families. We do not discuss the definition of families
in this thesis, we rather focus in constructing sets of numerical quintic stable
surfaces which are parametrized by a codimension one loci in the KSBA space.

Definition 4.1.1. A stable surface is a connected projective surface S such
that S has semi log canonical singularities and the dualizing sheaf ωX is ample.

We construct stable surfaces by taking the KSBA stable replacement of
quintic surface with distinguished singularities as in Chapter 3. For measuring
the codimension of the families of surfaces, we use the following invariants.

Definition 4.1.2. Let 0 ∈ S0 be an isolated surface singularity analytically
equivalent to (0, f(x, y, z) = 0). Then, its Milnor algebra is given by

A(f) =

(
C[[x, y, z]]

Jacobian(f)

)
The Tjurina number τ0(S0) and the Milnor number µ0(S0) are given by

τ0(S0) = dimC (A(f)) µ0(S0) = dimC

(
A(f)

(f)

)
The Milnor and Tjurina number are finite if and only if S0 has an isolated sin-
gularity. For a quasihomogeneous non degenerated isolated singularity τ0(S0) =
µ0(S0), but in general τ0(S0) ≤ µ0(S0). On other hand, the number of mono-
mials in a monomial base of A(f) with weighted degree larger than or equal to
w(f) is known as the the inner modality of f .

The Milnor number helps us to bound the dimension of the loci associated
to a quintic surface with a given singularity.

Proposition 4.1.3. ( [22, pg. 373], [4, pg 245]) The modality of the func-
tion f(x, y, z) with respect to right-equivalence is equal to the dimension of
the µ-constant stratum of f(x, y, z) in the semi-universal deformation of f .
Moreover, Kushnirenko and Gabrielov proved that for semi-quasihomogeneous
singularities the modality is equal to the inner modality ([4, pg 222]).

Remark 4.1.4. We are interested in the stratum with constant Milnor Num-
ber, because it is known by results of Teissier, Perron, Dung, et al, that for
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given a family of embedded hypersurfaces a necessary and sufficient condition
for them to be all homeomorphic, as embedded varieties, is to have constant
Milnor number. Indeed, we say that a deformation is upper if it can be written
as

f(x, y, x) +
∑

xiyjzk∈A(S0)

tijkx
iyjzk

where w(xiyjzk) ≥ w(f). Varchenko proved that for a quasihomogeneous
polynomial with an isolated singularity a deformation is µ-constant if and
only if it is an upper deformation [5, pg 292].

Example 4.1.5. The V15 singularity is a trimodal singularity, and its normal
form is x2y + y4 + z4. A monomial base of its versal deformation is

A(V15) = {y3z2, y2z2, yz2, xz2, z2, y3z, y2z, yz, xz, z, y3, y2, y, x, 1}C

The singularity V15 is quasihomogeneous with respect to the weights w(x) = 3,
w(y) = 2, w(z) = 2, and its weighted degree is w(f) = 8. We find that
m(f) = 3. Then, its upper deformations can be written as:

x2y + y4 + z4 + c1y
3z + c2y

2z2 + c3y
3z2,

Remark 4.1.6. The concept of equivalence between singularities is a delicate
one. We bypass many of the subtleties because we work with minimal elliptic
quasihomogeneous singularities. Indeed, right and contact equivalence are the
same in our case [22, Lemma 2.13], and the equations of the minimal elliptic
singularities are determined by their resolution graph and their topological
type [42]. In particular, we avoid the delicate issue of equisingular deformation
for surface singularities, by restricting ourselves to quasihomogeneous singular
ones.

Lemma 4.1.7. Let U(S0) ⊂MGIT

5 be the loci that generically parametrizes a
surface with a unique quasihomogeneous singularity S0. Then it holds that

dim(U(S0)) ≤ 40− µ0(S0) +m(S0)

and the equality holds if there are not local-to-global obstructions to the defor-
mation of S0.

Proof. We can bound the dimension of U(S0) by a local analysis of the sin-
gularity. The dimension of the versal deformation of the singularity at S0 is
equal to its Milnor Number µ0(S0). We also take into account the loci where
the singularity deforms into itself. By our previous discussion, this loci corre-
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sponds to the upper deformations of S0, and it dimension is the modality of
the singularity m(S0).

The following result from E. Shustin and I. Tyomkin implies that local
deformations of the singularity are realized by global deformations of the hy-
persurface S ⊂ P3 if the Milnor number of the singularity is smaller than 16.
This will be a key tool for counting moduli dimensions of our boundary loci.

Proposition 4.1.8. ([62, Thm 1]) Denote V n
d (S1, . . . Sr) the set of hypersur-

face of degree d in Pn having r isolated singular points of types S1, . . . , Sr
respectively with Tjurina numbers τ0(Si). If n ≥ 2 and

r∑
i=1

τ0(Si) < max{9, 4d− 4}

Then V n
d (S1, . . . , Sr) is a smooth variety of dimension(

d+ n

n

)
−
∑
i

τ0(Si)− 1

and the germ of the linear system |OPn(d)| at any F ∈ V n
d (S1, . . . Sr) is a joint

versal deformation of all singular points of F .

Remark 4.1.9. From the classification of quasihomogeneous singularities due
to Arnold [3] and Suzuki [76], we find that there are 14 exceptional unimodal, 5
bimodal, and one trimodal quasihomogeneous singularity with Milnor number
less than 16. These singularities are not log canonical ones, but they are GIT
stable (for a list see Theorem 4.2.4)

Example 4.1.10. The converse does not hold. Indeed, let S0 be a generic
quintic surface with a N16 singularity (N.B. the normal form of this singularity
is x2 + y5 + z5). The general equation of a quintic surface with a non DuVal
double point singularity is

FS0(x, y, z, 1) := x2(1 + f1(x, y, z) + h2(x, y, z) + h3(x, y, z))+

+ xg2(y, z) + xf3(y, z) + xh4(y, z) + f4(y, z) + f5(y, z)

The existence of a N16 singularity clearly implies that f4(y, z) = xg2(y, z) = 0,
while there is not restriction over the other terms. Let g ∈ Aut(P3) be an
automorphism that fixes the form of the equation. Then g ∗ p0 = p0 and it
acts on the variables as

g ∗ [x0 : x1 : x2 : x3]→ [x0 : g1(x0, x1, x2) : h1(x0, x1, x2) : x3]
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The generic form of the associated g ∈ SL(4, C) is such that:
a1,1 0 0 0

a2,1 a2,2 a2,3 0

a3,1 a3,2 a3,3 0

0 0 0 a4,4



x0

x1

x2

x3

 =


x0

g1(x0, x1, x2)

h1(x0, x1, x2)

x3


Counting parameters we find that FS0 is given by 35 parameters (N.B. a gen-
eral quintic surface depends of 56 parameters). The group of automorphism
that fixes the equation FS0 is 7 dimensional. Therefore, the loci UN16 that
generically parametrizes quintic surfaces with a N16 singularity is 27 dimen-
sional. The Milnor number of this singularity is µ0(N16) = 16, and its modality
is m(N16) = 3. Therefore UN16 has the expected dimension by Lemma 4.1.7.
We highlight that we can obtain the upper deformations of N16:

x2 + y5 + z5 + c1y
3z2 + c1y

2z3 + c3y
3z3

by considering the completion of the local ring of a singularity such as

x2 + y5 + z5 + c1y
3z2 + c1y

2z3 + c3x(y3 + z3)

For the case of curves, it holds the following result from Hassett

Theorem 4.1.11. ([26, Thm 2.11]) Let C0 be an isolated plane curve singular-
ity. Then the equisingular deformation of C0 is smooth. For the singularities
xp = yq it may be represented as

yp = xp +
∑

tijx
iyj

where 0 ≤ i ≤ p− 2, 0 ≤ j ≤ q − 2, and qi+ pj ≥ pq.

4.2 Boundary divisors

The description of the moduli space of numerical quintic surfaces, due to
Horikawa [27], implies the existence of at least one divisor at the boundary

of MKSBA

5 . This divisor parametrizes surfaces that are not realized as quintic
surfaces in P3. If we use our analogy with M3, see Section 1, this divisor
is similar to the one parametrizing hyperelliptic curves. Our purpose is to
describe other divisors that are similar to ∆1 ⊂M3.

Definition 4.2.1. Let S → ∆ be a family of quintic surfaces such that its
generic member is a smooth surface, but its central fiber S|0 = S0 has a non
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log canonical singularity which is GIT stable. The stable replacement of the
family is a procedure for obtaining a family of stable surfaces Sc → ∆ such
that over the puncture risk, the families Sc and S coincide, but the central fiber
Sc0 is a KSBA stable surface. In that case, we say that Sc0 is the KSBA stable
replacement of S0.

Suppose that S0 is a generic surface with a given non log canonical singu-
larity. We denote as

D5(S0) ⊂MKSBA

5

the loci parametrizing all the possible stable replacement obtained of S0.

Lemma 4.2.2. Suppose the generic stable replacement of S0 decomposes into
the union of two surfaces S1 and ST such that:

1. S1∩S0 is a curve of genus g supporting k ≥ 3 cyclic quotient singularities.

2. (ST , S1|ST ) is a marked K3 surface with at worst Ak singularities.

3. The Picard group of the smooth model S̃T of ST is Pic(S̃T ).

Then, it holds

Dd(S0) ≤ 63− µ0(S0) +m(S0)− rank(Pic(S̃T ))− 3g − k

Moreover, the equality is achieved whenever the quintic surfaces maps subjec-
tively onto the versal deformation of S0.

Proof. The moduli contribution from the surface S1 is described in Lemma
4.1.7. The moduli of marked K3 surfaces was calculated by Dolgachev [11,
Prop. 2.1], and it is given by:

dim(M(ST , C) = 20− r(Pic(S̃T ))

By construction, our K3 surfaces are hypersurfaces in a weighted projective
space (see Remark 3.5.2) with at worstk Ak singularities [73, Thm 4.2]. There-
fore, the Picard lattice of S̃T is generated by the exceptional curves on the
resolution of the Ak singularities in ST . (N.B. The Picard lattice associated to
those K3 surfaces were described by Belcastro [6, Table 3]). On other hand,
the intersection S1 ∩ ST is a marked curve of genus g. The k marked points
support cyclic quotient singularities on the threefold X̃. From this discussion,
we have that

Dd(S0) ≤ dim (U(S0)) + dim (M(ST , C)) + dim(Mg,k)

≤ (40− µ0(S0) +m(S0)) + (20− r(Pic(S̃T ))− (3g − 3 + k)
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from which the statement follows.

Example 4.2.3. We illustrate the previous lemma with an example. Let S0

be a surface with a N16 singularity (N.B its normal form is z2 +x5 + y5). This
is a trimodal singularity with Milnor number equal to 16. The surface ST is a
K3 surface whose smooth model S̃T has Picard rank equal to six (N.B Pic(S̃T )
is generated by the −2 curves). The intersection S1 ∩ ST is a rational curve
with 5 marked points (from supporting five A1 singularities on ST ). We have

g=0
A1 A1 A1 A1 A1

N16

ST

S1

Figure 4.2.3.1: N16 singularity (see Example 4.2.3)

D5(N16)=39, so it is expected to be a divisor in the KSBA space.

The main application of our result is the study of boundary divisors on the
KSBA compactification of surfaces of general type. The following result was
conjectured by J. Tevelev and J. Rana.

Theorem 4.2.4. There are at least 21 smooth boundary divisors on the KSBA
moduli space of numerical quintic surfaces associated to the stable replacement
of quasihomogeneous minimal elliptic singularities with Milnor number less
than 16. Among those singularities we find the unimodal or Dolgachev ones:

E12 E13 E14 Z11 Z12 Z13 S11

W12 W13 Q10 Q11 Q12 U12 S12

the following bimodal singularities:

Z15 Q14 U14 W15 S14

and the trimodal V15 and N16 singularities.

Remark 4.2.5. These singularities also belong to the family known as Fuch-
sian singularities.

Remark 4.2.6. There is a well known relationship between the mirror sym-
metry for K3 surfaces and the Arnold’s strange duality. This is reflected here:
let T1 and T2 be two unimodal exceptional singularities; let STi be the asso-
ciated K3 surfaces obtained from the KSBA stable replacement. Then T1 is
dual to T2 if and only if ST1 is the Mirror partner of ST2 .
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Proof. Let S0 be a generic surface of degree 5 with a unique isolated singu-
larity as the ones in the statement. By Theorems 3.5.1 and 3.6.1, the stable
replacement of S0 is found by taking the appropriate weighted blow up and
its unipotent smoothing (see Figure 3.2.0.1). In all our cases, the semistable
replacement of S0 is the union of a surface of general type S1 and a K3 surface
ST . Those surfaces intersect along a rational curve S1∩ST supporting k cyclic
quotient singularities. The number of marked points is k = 3 for unimodal sin-
gularities, k = 4 for bimodal singularities, and k = 5 for trimodal singularities.
Therefore, by Lemma 4.2.2, the result follows if

µ0(S0)−m(S0) + rank(Pic(S̃T )) + k = 24 (4.2.7)

because the expected dimension of D5(S0) is reached by Proposition 4.1.8
and Example 4.1.10. For the fourteen unimodal singularities, we use their
alternative Dp,q,r notation (see section 3.5). It is well known that on those
cases:

µ(Dp,q,r) = 24− p+ q + r (4.2.8)

rank(Pic(S̃T )) = p+ q + r − 2

k = 3

Therefore, if S0 is a Dp,q,r singularity, it holds that Dd(S0) = 39. For the
bimodal singularities, it holds k = 4 (see [14, Table 2.]. The moduli of the
marked K3 surfaces follows from Belcastro results [6, Table 3]: For Z15 and
W15 we have that rank(Pic(S̃T )) = 7. For Q14, S14, and U14, we have that
rank(Pic(S̃T )) = 8. Finally, for trimodal singularities it holds k = 5.: For V15

we have that rank(Pic(S̃T )) = 7. The N16 calculation is carried in Example
4.2.3.

Theorem 4.2.9. In the KSBA space, there are 31 other boundary loci parametriz-
ing stable surfaces that decompose as the union of a K3 surface and a surface
of general type.

Proof. Let S0 be a minimal elliptic singularity for which the unipotent smooth-
ing induces a simple K3 threefold singularity. There are 53 of those singular-
ities (see Table 4.6 at [73], and tables at [42]). By Theorem 3.6.1, the stable
replacement of S0 decomposes as the union of a surface of general type S1 and
a K3 surface ST .

Conjecture 4.2.10. All the quintic surfaces with minimal elliptic singularities
induce boundary loci which parametrizes a surface of general type and a K3
surface.
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Remark 4.2.11. A similar result for curves is part of the folklore: The only
plane curve singularities which stable replacement decomposes as the union
of the proper transform of the curve and an elliptic curve are the cusp, the
tacnode and the ordinary triple point. They have a smoothing with associated
unipotent monodromy that induces the only three simple elliptic surface singu-
larities Ẽr. It is well known that the only exceptional curve of their canonical
modification is an elliptic curve.

4.3 Birational Geometry of Quintic Surfaces

The Hilbert scheme of all quintic surfaces in P3 is isomorphic to P55, and it
contains a Zariski open subset parametrizing surfaces of general type with
invariants pg = 4, q = 0 and K2

X = 5. Umezu [65] proved that any surface of
general type birational to a quintic surface has irregularity zero. Let Vm,n ⊂
P55 be the set of quintic surfaces birational to a surface of general type with
invariants pg = m, q = 0 and K2

X = n. A detailed classification of the possible
Vm,n is due to Yang [71]. Next, we describe its main aspects:

1. The set V3,2 is irreducible, 48 dimensional, and its generic point parametrizes
quintic surfaces with a minimal elliptic triple point singularity ([71, Thm
9.4]).

2. The sets V3,4 and V3,3 are irreducible with 45 and 47 dimensions, respec-
tively. Their generic points parametrize quintic surfaces with a minimal
elliptic double point singularity ([71, Thm 10.1 and 10.2] and [78])

3. The sets V2,3, V1,2, V1,1 and V2,2 parametrize quintic surfaces which sin-
gular locus contains either a weakly elliptic double point singularity or
a combination of minimal elliptic double point singularities [71, Table
8.1].

4. The set V2,1 has two irreducible components of dimension 39. The generic
parametrized quintic surfaces have weakly elliptic singularities of multi-
plicity two or three ([71, Thm 10.5]).

Our GIT analysis implies that

Proposition 4.3.1. The loci V3,2, V3,4, V3,3 V2,3, V1,2, V1,1 and V2,2 are con-
tained in the stable loci.

Not every GIT semistable normal quintic surface is birational to a surface
of general type. For example the surfaces with a singularity of type V ∗24 as
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described in Theorem 2.2.1 are birational to a K3 surface. On other hand,
a non normal quintic surface is never birational to a surface of general type.
They are birational to either a K3 surfaces, a ruled surface, a fibration of
rational or elliptic curves, or a rational surface [71, Sec 7].
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