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Abstract of the Dissertation

Braiding non-ribbon surfaces and constructing
broken fibrations on smooth 4-manifolds

by

Mark Clifford Hughes

Doctor of Philosophy

in

Mathematics

Stony Brook University

2014

In this thesis we study various notions of surface braidings in 4-

space, and their applications to the construction of singular fi-

brations on smooth oriented 4-manifolds. We define the notion of

braided link cobordisms in S3×[0, 1], which generalize Viro’s closed

2-braids in S4. We prove that via isotopy any properly embedded

oriented surface W ⊂ S3× [0, 1] can be brought to this special po-

sition, and that the isotopy can be taken rel boundary when ∂W

already consists of closed braids.

These surfaces are closely related to another notion of surface

braiding in D2×D2, called braided surfaces with caps, which gener-
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alize Rudolph’s braided surfaces. We use these to construct broken

Lefschetz fibrations on smooth 4-manifolds. We first consider the

case when the 4-manifold X has connected non-empty boundary,

and construct the desired fibration as the composition of a cover-

ing X → D2 ×D2 branched along a singular braided surface with

caps, with the projection map pr2 : D2 × D2 → D2. Proceeding

in this way gives us the ability to specify the behavior of our fi-

bration along ∂X. Broken Lefschetz fibrations on closed manifolds

are then obtained by combining this result with a construction of

Gay and Kirby. This allows us to reprove earlier existence results

due to Akbulut and Karakurt, Baykur, and Lekili, giving a more

concrete geometric approach to constructing these fibrations.
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Chapter 1

Introduction

Two of the most useful and foundational results in knot theory and low-

dimensional topology are the classical theorems of Alexander and Markov.

These theorems allow us to carry out the development of knot theory entirely

within the realm of braids and braid closures, where we can exploit either the

algebraic structure of the braid group, the special position of a closed braid

in S3, or the fact that braids with isotopic closures can be related by Markov

moves. These results have been used in numerous applications, examples of

which include the construction and categorification of quantum link invariants

[14, 25, 33], the construction of open book decompositions on 3-manifolds [2],

and studying the slice and ribbon genera of knots [41, 43].

1.1 Braiding surfaces in four dimensions

The notion of a closed braid as a specially positioned 1-dimensional submani-

fold of 3-dimensional space has been generalized by different authors to certain
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classes of surfaces in 4-space. One such generalization is due to Rudolph [41],

who considered surfaces S ⊂ D2 ×D2 on which the projection to the second

factor pr2 : D2 × D2 → D2 restrict as branched coverings. This general-

izes the classical notion of a (geometric) braid as a 1-dimensional submanifold

of D2 × [0, 1], on which the projection pr[0,1] : D2 × [0, 1] → [0, 1] restricts

as an ordinary covering. These surfaces are called braided surfaces, and are

closely related to a similar notion due to Viro [46]. Rudolph showed that every

orientable ribbon surface with boundary properly embedded in D2×D2 is iso-

topic to a braided surface. In this thesis we generalize these notions further,

by defining braided surfaces with caps, and use them to construct fibration

structures on smooth 4-manifolds.

Another approach to braiding surfaces is to try arranging the surface so

that its level sets (with respect to some height function) are closed braids

in some space. More precisely, we can consider properly embedded oriented

surfaces W ⊂ S3 × [0, 1], and try to isotope them so that the regular level

sets W ∩ (S3 × {t}) are all closed braids in S3 × {t}. We call these types of

surfaces braided link cobordisms, and study them below. They can be related to

braided surfaces with caps, by identifying S3×[0, 1] with a collar neighborhood

of ∂(D2 ×D2).

1.2 Braided surfaces and Lefschetz fibrations

Braided surfaces have found use in various applications, including finding ob-

structions to sliceness in knot theory [43], and the study of Stein fillings of

contact 3-manifolds [36]. Here we outline another such application, due to
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Loi and Piergallini, which uses Rudolph’s surface braiding algorithm in the

construction of Lefschetz fibrations on 4-dimensional 2-handlebodies (i.e. 4-

manifolds admitting handle decompositions with no 3 or 4-handles). Lefschetz

fibrations are closely related to symplectic 4-manifolds (see Section 4.4), and

have been studied extensively in recent years.

In particular, suppose X is an oriented 4-manifold with a fixed handle

decomposition that has no 3 or 4-handles. Then we can construct a covering

H : X → D2 × D2 branched simply along an orientable ribbon surface S,

which we can assume is a braided surface by Rudolph’s algorithm. Then the

composition X
H−→ D2 × D2 pr2−−→ D2 is an achiral Lefschetz fibration, with a

Lefschetz critical point (resp. anti-Lefschetz critical point) for each positive

(resp. negative) branch point of S → D2. Thus if S has only positive branch

points, we obtain a true Lefschetz fibration. In fact, Loi and Piergallini show

that any sufficiently nice Lefschetz fibration over D2 necessarily factors in this

way.

Using these constructions, Loi and Piergallini also prove that for an ori-

ented connected compact 4-manifold X with boundary, the existence of a Stein

structure is equivalent to the existence of a Lefschetz fibration over D2 with

all vanishing cycles non-separating in the fiber. By considering the associated

simple branched covering restricted to ∂X, it follows that a 3-manifold is Stein

fillable if and only if it admits a positive open book decomposition.

Now suppose we start instead with a handlebody description of a 4-manifold

X which has 3 and 4-handles. As noted above we can construct a branched

covering of the 0,1, and 2-handles over D2 × D2, branched along a ribbon

surface. Once we try to extend this covering to the 3 and 4-handles how-
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ever, the branch locus is no longer ribbon, and may additionally have cusp

and node singularities. Rudolph’s algorithm does not extend to such surfaces,

and hence any attempts to generalize the above branched covering methods

require techniques for braiding more general surfaces. Our study of braided

surfaces with caps, which we describe in Section 2.5, will provide an approach

for generalizing these constructions.

1.3 Braided cobordisms and the triply-graded

Khovanov-Rozansky homology

One potential application for braided cobordisms, and the author’s original

motivation for this study, involves extending the link homology theories of

Khovanov and Rozansky [32, 33] to surfaces. While we do not develop this

here in any depth, we include a brief discussion of it as additional motivation

for our study of braided cobordisms.

Starting with an oriented link diagram and integer n ≥ 2, Khovanov and

Rozansky [32] use matrix factorizations to construct a bigraded chain complex

whose chain homotopy equivalence type is an invariant of the underlying link

L. The homology of this complex is thus a link invariant, which we denote by

Hn(L). It is bigraded, and from the graded Euler characteristic we can recover

the sln-polynomial of L. The n = 2 case is equivalent [23] to Khovanov’s

original categorification of the Jones polynomial described in [31].

Given an oriented smooth properly embedded surface W ⊂ S3 × [0, 1]

with boundary links L0 = W ∩ (S3 × {0}) and L1 = W ∩ (S3 × {1}) (where
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the overline indicates that we are reversing the orientation induced as the

boundary of W ), Khovanov and Rozansky’s theory extends to give a map

ϕW : Hn(L0)→ Hn(L1). This map is an invariant of W up to isotopies fixing

∂W , and is defined as a composition of maps of the form Hn(Lt) → Hn(Lt′),

where Lt and Lt′ are nearby regular level sets of W .

Modifying the above approach, in [33] Khovanov and Rozansky defined a

triply-graded link homology theory, which yields a triply-graded vector space

H(L) for any oriented link L. This additional grading comes at some expense

unfortunately, as the complex associated to a diagram is no longer invariant

(up to chain homotopy equivalence) under all of the Reidemeister moves. This

problem can be avoided however, by exclusively computing H(L) using dia-

grams of closed braid representatives of L. Indeed, the complex they associate

to each link diagram is invariant (up to chain homotopy equivalence) under

the braid-like Reidemeister moves.

Because of this extra braid restriction however, any hopes of a similar

extension1 of the triply-graded theory to surfaces would require that we first

arrange W ⊂ S3× [0, 1] so that each regular level set W ∩(S3×{t}) is a closed

braid. Moreover, as above we would expect that the desired map would only

be invariant under isotopies of W rel ∂W . Hence if ∂W already consisted of

closed braids, we would need to be able to perform our braiding operations

rel ∂W . Theorem 1.4.1 below provides a first step towards developing this

approach.

1It is known that Khovanov and Rozansky’s triply-graded homology theory is not func-
torial. Indeed, H(U) is an infinite dimensional Q-vector space, and hence it does not admit
the structure of a Frobenius algebra. Thus we can expect at most a partial or restricted
extension of this homology theory to surfaces.
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1.4 Main results

We prove the following:

Theorem 1.4.1. Let W ⊂ S3× [0, 1] be a smooth oriented properly embedded

link cobordism. Then W is isotopic to a braided cobordism. If the boundary

links of ∂W are already closed braids, then this isotopy can be chosen rel ∂W .

Theorem 1.4.1 can be thought of as the cobordism analogue to the classical

Alexander’s theorem, and will be proven in Chapter 3. Our construction will

be similar to Kamada’s construction of the normal braid form of a surface link

[30], which implies our result in the case that W is a closed surface. The bulk of

the additional work here will be in carrying out the construction in a way that

allows us to keep ∂W fixed during the required ambient isotopies. To do this,

we make use of Morton’s diagram threading technique, which was introduced

in his proof of the Markov theorem [39]. Our proof utilizes enhanced versions

of the arguments contained in that proof. This boundary-fixing requirement is

considered with an eye toward potential applications (see e.g. Section 1.3 and

Chapter 5, as well as [24] which contains a construction that is not invariant

under general isotopies of W ).

Translating Theorem 1.4.1 to surfaces in D2 × D2 gives us the following

corollary:

Corollary 1.4.2. Let S be a smooth oriented properly embedded surface in

D2 ×D2. Then S is isotopic to a braided surface with caps. If ∂S is already

a closed braid in ∂(D2 ×D2), then the isotopy can be chosen rel ∂S.

The techniques described in Section 1.2 can be generalized using Corol-
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lary 1.4.2 along with results in the theory of 3-dimensional branched covers,

due to Piergallini [40] and Montesinos [37]. This yields the following exis-

tence result, which we prove in Chapter 5 (where all the relevant terms will

be defined):

Theorem 1.4.3. Let X be a smooth oriented 4-manifold with connected

nonempty boundary. Then we can construct a convex broken Lefschetz fi-

bration f : X → D2, so that the restriction f |∂X : ∂X → D2 matches any

specified open book decomposition with connected page and binding. Moreover,

the following properties hold:

1. the images of the broken singularities can be arranged as a set of con-

centric circles parallel to ∂D2, with all Lefschetz singularities inside the

innermost cirle,

2. all fibers are connected,

3. the fiber genus increases by one for every broken singularity we pass as

we move towards the center of D2,

4. all vanishing cycles are nontrivial in the homology of the fiber F over

0 ∈ D2, and

5. f factors as X
H−→ D2×D2 pr2−−→ D2, where H is a simple 4-fold covering

branched along a braided surface with caps, and possibly cusp and node

singularities.

Note that after stabilization any open book decomposition can be assumed

to have connected binding. We refer to a fibration as factorizable if it factors
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through a simple covering branched along a braided surface with caps in D2×

D2 with only cusp and node singularities as in Property 5 above.

By work of Auroux, Donaldson, and Katzarkov [4], broken Lefschetz fibra-

tions share a close relationship with near-symplectic structures on 4-manifolds

(see Section 4.4), and have been a subject of study in recent years. The lit-

erature contains a number of results proving the existence of various broken

fibration structures on closed 4-manifolds [1, 5, 13, 16, 35], which we outline in

Section 4.5. These techniques each involve either deep classification theorems

from contact topology, or the modification of generic smooth functions around

their critical points. Theorem 1.4.3 allows us to avoid the use of this machin-

ery, and provides a more concrete geometric approach to the construction of

broken Lefschetz fibrations. In particular, it allows us to prove the following

theorem:

Theorem 1.4.4. For any smooth oriented closed 4-manifold X, and any closed

oriented connected surface F ⊂ X with [F ]2 = 0, there exists a broken Lefschetz

fibration f : X → S2 with all fibers connected, and with fiber F above the north

pole. Furthermore,

1. all broken critical circles of f lie parallel to the equator,

2. all Lefschetz critical values of f lie in small neighborhood of south pole,

3. all vanishing cycles are nontrivial in the homology of the fiber over the

south pole, and

4. the fiber genus increases by +1 for every singular circle we pass traveling

south.
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Moreover, if there is an embedded sphere in X which intersects F transversely

in a single point, then f factors as X
H−→ S2×S2 pr2−−→ S2, where H is a simple

4-fold covering branched along a surface with cusp and node singularities.

Theorem 1.4.4 is a slight strengthening of an existence result of Lekili [35],

who proved the existence of a broken Lefschetz fibration satisfying properties 1-

4. The branch locus BH ⊂ S2 × S2 of the covering H in Theorem 1.4.4 has

the property that away from the cusp singularities, the critical points of the

restriction of pr2 : S2 × S2 → S2 are all either positive branch points, or lie

along the boundary of a cap of BH with respect to pr2|BH
(see Section 2.5).

It should be noted that constructions relating (broken) Lefschetz fibrations

to branched coverings of surface bundles have been studied previously. Indeed,

suppose that X admits a Lefschetz fibration whose vanishing cycles are non-

separating and whose monodromy lies in the hyperelliptic mapping class group

of the fiber. Then Fuller [15] and Siebert and Tian [45] proved independently

that X admits a 2-fold covering of an S2-bundle over S2, branched along a

surface. A similar result was proved by Hayano and Sato [20] for broken

Lefschetz fibrations with fiber genus g ≥ 3, and critical points which can

be arranged in a specific configuration (so-called simplified broken Lefschetz

fibrations introduced by Baykur [6]).

1.5 Summary

The remainder of this thesis will be organized as follows. In Chapter 2 we

define various notions of surface braidings in D2×D2 and S3× [0, 1], as well as

outline the relationships between them. In Chapter 3 we present diagrammatic
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methods for studying 1-dimensional braids and surfaces in 4-space, before

using them to prove Theorem 1.4.1. Chapter 4 contains a discussion of the

different fibration structures on 3 and 4-manifolds which we will be interested

in, as well as their connections to symplectic and near-symplectic topology.

We also present some examples and constructions which will be needed in

Chapter 5. Finally, in Chapter 5 we prove Theorem 1.4.3 by constructing a

branched covering of our 4-manifold over D2×D2 with suitably braided branch

locus. The proof of Theorem 1.4.4 is then obtained by combining this result

with the constructions described in Chapter 4. We finish by showing that our

construction applied to S4 recovers the broken Lefschetz fibration originally

described by Auroux, Donaldson, and Katzarkov [4].
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Chapter 2

Surface braidings in 4-space

In this chapter we give precise definitions for many of the objects alluded to

in Chapter 1, and set up much of the notation that will be needed in the rest

of this thesis. The related notions of braided surfaces, braided surfaces with

caps, and braided cobordisms will be defined, and we will explain how to pass

between them.

2.1 Links as braid closures

Let D2 ⊂ C be the unit disk, and S3 = {(z, w) : |z|2 + |w|2 = 1} ⊂ C2 the

unit 3-sphere. We set T1 = S3 ∩ {z ≤ 1√
2
} and T2 = S3 ∩ {w ≤ 1√

2
}, and let

U = S3 ∩ {w = 0} (i.e. the core of T2). We say that an oriented link L in S3

is a closed braid if L ⊂ S3\U , and arg(w) is strictly increasing as we traverse

the components of L in the positively oriented direction. We call U the axis

of the closed braid.

Note that T1 and T2 are both tori, and T1 admits a natural product struc-
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ture T1 ∼= D2 × S1 induced by the maps ρ : T1 → D2 given by ρ(z, w) =
√

2z,

and ρ′ : T1 → S1 given by ρ′(z, w) = arg(w). If we fix this induced product

structure T1 ∼= D2 × S1, then ρ and ρ′ are just projection onto the first and

second factors respectively, which we will write as pr1 and pr2. We fix a similar

product structure on T2 ∼= S1×D2. Then a link L ⊂ T1 is a closed braid if and

only if pr2|L : L → S1 is a covering map. We call the degree of the covering

map pr2|L the index of the closed braid L.

Alexander’s theorem then says that any oriented link in S3 is isotopic to

a closed braid. Markov’s theorem says that any two closed braids which are

isotopic as links can be joined by a sequence of isotopies through closed braids,

as well as stabilization and destabilizations moves which increase and decrease

the braid index respectively.

2.2 Braided surfaces in D2 ×D2

Rudolph defined a braided surface [41] to be a smooth properly embedded

oriented surface S ⊂ D2 × D2 on which the projection to the second factor

pr2 : D2 × D2 → D2 restricts as a simple branched covering1. Examples of

these braided surfaces can be obtained by taking intersections of non-singular

complex plane curves with 4-balls in C2, and they can be used to study the

links that arise as their boundaries in S3 = ∂D4 (see e.g. [42–44]).

Note that Rudolph’s original definition of braided surface did not require

the branched covering S → D2 to be simple. However, in the smooth category

1Notice that we are reusing the function notation pr2, an abuse we will repeat in what
follows. Indeed, we will be working with a number of spaces which admit some preferred
product structure, and on each such space we let pr2 denote projection to the second factor.
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any non-simple braided surface can be taken via an arbitrarily small isotopy

through braided surfaces to one whose branched covering S → D2 is simple.

Thus we are free to assume that all of the critical points of our braided surfaces

are indeed simple branch points. In a neighborhood of any such simple branch

point p ∈ S ⊂ D2×D2, there are local complex coordinates (z, w) on D2×D2

such that S is given by the equation z = w2. We say that p is a positive

branch point if these coordinates can be taken to be orientation preserving,

and a negative branch point otherwise.

The boundary of D2×D2 decomposes as ∂(D2×D2) = (D2×S1)∪(S1×D2)

in the obvious way, and we set ∂1 = D2 × S1 and ∂2 = S1 ×D2. We identify

∂(D2×D2) with S3, by matching the product structure of ∂1 with T1, and ∂2

with T2. Under this identification we can consider closed braids in ∂(D2×D2)

as links in ∂1 on which the projection pr2 : ∂1 → S1 restricts to a covering

map. Notice then that the boundary of a braided surface is a closed braid in

∂(D2 ×D2).

One feature of Rudolph’s braided surfaces are that they are all necessarily

ribbon. A properly embedded surface S in D4 = {(z, w) : |z|2 + |w|2 ≤ 1} is

said to be ribbon embedded if the function |z|2 + |w|2 restricts to S as a Morse

function with no local maximal points. A properly embedded surface is said

to be ribbon if it is isotopic to a surface which is ribbon embedded. By fixing

an identification of D2×D2 with D4, we can similarly consider ribbon surfaces

in D2 × D2 (the definition of ribbon embeddings in D2 × D2 will depend on

our choice of identification, though the resulting class of ribbon surfaces will

not).

Rudolph proved that any ribbon surface in D2×D2 is isotopic to a braided
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surface. His algorithm proceeds first by pushing the surface S to the bound-

ary of D2 × D2, so that it sits as a ribbon immersed surface in S3. A band

decomposition of S is then used as the surface is rearranged to the desired po-

sition. Note that even if ∂S is already a closed braid in ∂(D2×D2), Rudolph’s

algorithm does not in general allow us to keep ∂S fixed during the isotopies.

Viro defined a similar notion which he called a 2-braid, by requiring that

∂S ⊂ ∂1 = D2 × S1 be a trivial closed braid (i.e. ∂S = P × S1 for some finite

subset P ⊂ D2). 2-braids come equipped with a closure operation yielding

closed surfaces in S4, and Viro [46] proved a 4-dimensional Alexander theorem

by showing that every closed oriented surface in S4 is isotopic to the closure

of a 2-braid. These 2-braids were also studied extensively by Kamada [26–30],

who proved a 4-dimensional Markov theorem relating any two 2-braids with

isotopic closures.

2.3 Braided link cobordisms in S3 × [0, 1]

For much of what follows, it will be necessary to study a more general class of

braided surfaces. Suppose W ⊂ S3 × [0, 1] is an oriented surface, embedded

smoothly and properly. Let pr2 : S3 × [0, 1] → [0, 1] be the projection, and

let prW : W → [0, 1] be its restriction to W . If t is a regular value of prW ,

then Wt := pr−1W (t) will be a link in S3 × {t}, which for t < 1 we orient as the

boundary of W[t,1] := pr−1W ([t, 1]).

Now suppose that prW defines a Morse function on W , and that

1. Wt is a closed braid for each regular value t, and

14



2. Wt contains a single critical point for each critical value t.

Then we say thatW is a braided link cobordism (or simply a braided cobordism).

The regular level sets of a braided cobordism in S3× [0, 1] are all closed braids,

and passing any critical value changes this braid by either a saddle point

surgery, or the addition or deletion of a single component around the braid

axis.

2.4 Braided cobordisms from braided surfaces

Braided cobordisms are closely related to braided surfaces, a fact which we

illuminate here. We have already specified an identification of ∂(D2 × D2)

with S3 above. For 0 ≤ t ≤ 1, we can scale ∂(D2×D2) by a factor of 1
2
(t+ 1)

and identify it with S3 × {t}. In such a way we obtain an identification of

S3 × [0, 1] with a collar neighborhood of ∂(D2 ×D2) in D2 ×D2.

As any properly embedded surface S in D2 × D2 can easily be arranged

to lie in a collar neighborhood of ∂(D2 × D2), we see that after smoothing

corners any such surface gives rise to a smooth properly embedded surface in

S3 × [0, 1] whose boundary lies in S3 × {1}, and vice versa.

Suppose now that S ⊂ D2 × D2 is a braided surface. Recall that pr2 :

D2 ×D2 → D2 restricts to a branched covering on S, and that it restricts to

give projections ∂1 → S1 and ∂2 → D2. After an isotopy of S in D2 × D2

which preserves the fibers of the projection pr2, we can assume that all of the

branch points of S lie in ∂1 × [0, 1] (in the usual collar neighborhood product

structure). Then the S∩ (∂2× [0, 1]) will be a collection of disks, each of which

is mapped homeomorphically onto its image by pr2. After another isotopy
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we can also assume that each of these disks is of the form {p} ×D2 × {t} in

∂2 × [0, 1] = S1 ×D2 × [0, 1].

Consider now the surface W ⊂ S3 × [0, 1] associated to S by the above

identification. Let Wt = W ∩ (S3 × {t}) for some t. The projection pr2 :

T1 → S1 then induces a (possibly singular) covering of Wt ∩ (T1 × {t}) over

S1. Likewise pr2 : T2 → D2 induces a covering of Wt ∩ (T2 × {t}) over D2.

Thus Wt will consist of a (possibly singular) closed braid in T1 × {t}, and a

collection of disks in T2 × {t}. The singular points of the closed braid consist

of pairs of transversely intersecting strands, and correspond to branch points

of S. The disks each intersect the braid axis transversely in a single point,

and each one realizes a local minimum of W ⊂ S3 × [0, 1] with respect to the

[0, 1] coordinate.

Consider now how the sets Wt change as we let t range from 1 to 0. To

start, W1 will be a closed braid in ∂1 × {1}. As we let t decrease, we will see

a continuous family of closed braids, except at a finite collection of t-values.

As we pass a singular t-value corresponding to a branch point of S, we see a

pair of strands merge together at the branch point, then separate again with a

different crossing structure. As we approach a singular t-value t0 corresponding

to a disk, for t > t0 we see a closed loop in T1 × {t}, which approaches the

common boundary of T1 × {t} and T2 × {t} as t→ t0. When t = t0 this loop

is capped off with the disk in T2×{t0}, and hence it does not appear at levels

with t < t0.

After a small isotopy supported in the neighborhood of this disk, we can

arrange that instead of capping the loop off, as t → t0 it instead shrinks to a

point on the braid axis, and then vanishes. The path traced by this loop as
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it shrinks and vanishes gives a neighborhood in the new surface of an isolated

local minimal point.

After these local modifications it is not hard to see then, thatW is a braided

cobordism, which is ribbon embedded and has W ∩(S3×{0}) = ∅. Conversely,

any braided cobordism with these properties gives rise to a braided surface in

D2 ×D2. If the braided surfaces S and S ′ are isotopic via an isotopy passing

entirely through braided surfaces, then the corresponding braided cobordims

W and W ′ will be isotopic via an isotopy passing entirely through braided

cobordisms, and conversely.

2.5 Braided surfaces with caps

Now suppose thatW ⊂ S3×[0, 1] is a braided cobordism, withW∩(S3×{0}) =

∅, which is not ribbon (i.e. has local maximal points in S3× (0, 1)). Then the

corresponding surface S in D2 ×D2 will not be ribbon, and hence will not be

a braided surface. However, W can be isotoped to a braided surface with caps,

which we define below.

Let φ : F → Σ be a smooth map of oriented surfaces. Then a cap of F

with respect to φ is an embedded disk D ⊂ F , so that

1. φ restricts to embeddings on int D and on ∂D,

2. F and Σ both admit coordinate charts of the form S1 × [−1, 1] around

∂D = S1 × {0} and φ(∂D) = S1 × {0}, on which φ is given by (θ, t) 7→

(θ, t2),

3. in the above coordinate chart around φ(∂D), the curve S1 × {1} lies in
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pW

Figure 2.1: Braided surface with caps

φ(int D).

Now let S ⊂ D2 × D2, and let prS denote the restriction of pr2 to S.

We say that S is a braided surface with caps if the critical points of prS all

correspond either to isolated branch points or to boundaries of caps of S with

respect to prS. Moreover, we require that the critical values in D2 form a set

of embedded concentric circles (corresponding to the boundaries of caps), with

isolated critical values lying inside the innermost circle. See Figure 2.1 for a

cross sectional diagram of a braided surface with a single cap.

Arguing as before, it is not hard to see that under the above identification

of S3×[0, 1] with a collar neighborhood of ∂(D2×D2), each braided cobordism

disjoint from S3 × {0} gives rise to a braided surface with caps in D2 × D2,

which is unique up to isotopies through braided surfaces. Each local maximal

point in the braided cobordism gives rise to a cap in the braided surface.

Going the opposite direction, from a braided surface to a braided cobordism

as in Section 2.4, is more difficult in the presence of caps however, as the
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boundary of the cap might link non-trivially with other sheets of S. Such a

surface S, when thought of as sitting in S3 × [0, 1], can still be braided by

Theorem 1.4.1, though the procedure will be more complicated than outlined

above.

2.6 Summary of surface braidings

We summarize the previous discussion in the diagram below. All surfaces are

assumed to be oriented, smoothly and properly embedded in their respective

spaces.

 cobordisms

in S3 × (0, 1]

 ⊃

 braided cobordisms

in S3 × (0, 1]

 ⊃


ribbon embedded

braided cobordisms

in S3 × (0, 1]


~w� ww� ~w�

 surfaces

in D2 ×D2

 ⊃

 braided surfaces

with caps

 ⊃
{

braided surfaces

}

In what follows we will use cobordisms in S3×[0, 1] to prove the braiding results

we need, but use braided surfaces with caps in D2 ×D2 for our applications.

Hence we do not need to worry about passing from braided surfaces with caps

to braided cobordisms.
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Chapter 3

Braiding link cobordisms

This section is devoted to the proof of Theorem 1.4.1. After presenting a dia-

grammatic method for describing (braided) cobordisms, we begin the proof by

collecting all critical points (with respect to the t-coordinate) of like index to-

gether, and braiding W around these critical points. This reduces the problem

to braiding critical point free cobordisms, which we accomplish by applying a

strengthened version of Morton’s proof of the Markov theorem.

3.1 Movie presentations of braided cobordisms

For notational convenience during the proof of Theorem 1.4.1, we work with

cobordisms in R3 × [0, 1] instead of S3 × [0, 1]. More precisely, pick a point

p ∈ U ⊂ S3 and identify the complement of p in (S3, U) with (R3, z−axis).

Choose the identification so that arg(w) corresponds with the angular cylin-

drical coordinate on R3. Here we let (x, y, z) denote the usual coordinates on

R3, while t denotes the coordinate on [0, 1].
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We also must establish a diagrammatic method for describing braided

cobordisms. Let π : R3 → R2 denote the orthogonal projection to the xy-

plane. After perturbing W slightly if necessary, we can assume that π × id :

R3 × [0, 1] → R2 × [0, 1] restricts to a family of regular link projections on

Wt for all but finitely many t ∈ (0, 1). After decorating with over and un-

der crossing information, we obtain a continuous family of link diagrams with

finitely many singular diagrams. Passing any such singular still changes the

diagram by a Reidemeister move, adding or deleting a small circle, or the

projection of a saddle point surgery. We refer to this family of link diagrams

as the movie presentation of W . For each still which is a (nonsingular) link

diagram, we equip it with the orientation induced by Wt, yielding the oriented

movie presentation of W . Note that because we are not assuming W is in gen-

eral position with respect to the z and t-projections, our definition of movie

presentation differs slightly from that used by other authors (see e.g. [9]).

Now if W is a braided cobordism then the regular diagrams of its movie

presentation will all be diagrams of closed braids, while passing a singular still

will change the diagram by either:

1. addition or deletion of a single loop around 0 ∈ R2 disjoint from the rest

of the diagram,

2. addition or deletion of a single crossing between adjacent strands in the

braid diagram by a band surgery,

3. a single braid-like Reidemeister move of type II or III, where each strand

involved in the move is oriented in the positive direction.

We call such a movie presentation braided.
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Figure 3.1: Braided movie presentation of a braided cobordism between the
trefoil and the unknot

Thus if W is a braided cobordism its movie presentation is braided, and

conversely. In this case W can be described by taking a finite number of the

nonsingular stills, where each one differs from the previous still by a single

modification as described above, or by a planar isotopy preserving the closed

braid structure. We will often describe the movie presentation of a surface by

such a sequence of diagrams. Some caution is needed in using such descrip-

tions, as different choices of planar isotopies linking two adjacent diagrams can

result in non-isotopic embeddings (see e.g., [24]). See Figure 3.1 for a genus

1 example of a braided movie presentation between the trefoil and the empty

knot (the stills are read as lines of text, from left to right).
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3.2 Braiding around critical points

We begin with the proof of Theorem 1.4.1. Suppose that W ⊂ R3 × [0, 1]

is a properly embedded oriented link cobordism between closed braids B0 ⊂

R3 × {0} and B1 ⊂ R3 × {1}. For any such surface W ⊂ R3 × [0, 1] and any

[a, b] ⊂ [0, 1], let W[a,b] = W ∩ (R3 × [a, b]).

Lemma 3.2.1. There is an isotopy of W rel ∂W , taking W to a surface W ′

such that W ′
[a,b] is a braided cobordism for [a, b] ∈ {[0, 1

6
], [1

3
, 2
3
], [5

6
, 1]}, and is

free of critical points for [a, b] ∈ {[1
6
, 1
3
], [2

3
, 5
6
]}.

Proof. As both B0 and B1 are closed braids, Wt will also be a closed braid

for t close to 0 and 1, and so we can assume that Wt is a closed braid for

all t ∈
[
0, 1

6

]
∪
[
5
6
, 1
]
. Push all minimal points into R3 ×

[
0, 1

6

]
, all maximal

disks into R3×
[
5
6
, 1
]
, and all saddle points into R3×

{
1
2

}
(see [30] for details).

The maximal and minimal points can clearly be positioned in such a way that

W ′
[0, 1

6
]

and W ′
[ 5
6
,1]

remain braided.

Now passing each saddle point changes the level set Wt by surgery along a

2-dimensional 1-handle. After a small perturbation in a neighborhood of each

saddle point, we can assume that these 1-handles all lie in R3×
{

1
2

}
. By adding

a half-twist in each band, we can arrange that each segment of W 1
2
+ε and W 1

2
−ε

involved in the surgeries are oriented in the positive direction (see Figure 3.2,

where W 1
2

is shown). Keeping these bands in place, the remaining strands

of W 1
2

can be braided using the standard proof of the classical Alexander’s

theorem. Thus we can arrange W 1
2

so that it is a closed braid both before and

after the surgeries, and can extend the closed braid structure to the rest of

W ′
[ 1
3
, 2
3
]
.

23



Figure 3.2: Braiding saddle points

The above argument is due to Kamada [30]. To prove Theorem 1.4.1, it

thus suffices to prove it for critical point free cobordisms between closed braids.

3.3 Braiding critical point free cobordims

Any cobordism W which is free of critical points is topologically just a union

of cylinders, and is isotopic to a product cobordism. In general, however, the

isotopy taking W to a product cobordism cannot be chosen to fix the boundary.

Consider, for example, the movie presentation of the cobordism W depicted in

Figure 3.3. The middle still is meant to imply that the bottom strand is given

a non-zero number of full twists as we look at the level sets moving down.

The top and the bottom stills are the same closed braid L, and hence W is

isotopic to L× [0, 1]. It is not hard to verify that there are no boundary fixing

isotopies joining these two cobordisms, however. Indeed, we can think of W

and L× [0, 1] as sitting in S4 via the natural inclusion S3× [0, 1] ↪→ S4. Then

W and L× [0, 1] can be capped of in such a way that they yield a twist-spun

trefoil and spun trefoil respectively. These 2-knots are not isotopic in S4, as
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Figure 3.3: Critical point free cobordism not isotopic rel boundary to product
cobordism

can be seen by computing the fundamental groups of their complements (see

[9, 47], for example). In fact, if the bottom strand is given precisely one twist,

then the resulting twist-spun trefoil is just an unknotted sphere in S4.

The movie presentations of a critical point free cobordism is described

entirely via sequences of Reidemeister moves and planar isotopies. We will

complete the proof of Theorem 1.4.1 in two stages, first by proving it for

critical point free cobordisms whose movie presentation is described entirely

by a planar isotopy (i.e. no Reidemeister moves take place between nearby

stills) before proving it for the general case. Before doing this however, we

must first recall a geometric set of Markov moves for classical links used by

Morton in [39], as well as his diagram threading construction which gives a

diagrammatic approach to studying isotopies of closed braids.

3.4 Geometric Markov moves for closed braids

in R3

Morton’s geometric formulation of Markov’s theorem states that two closed

braids which are isotopic as links can be joined by a sequence of braid isotopies
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Figure 3.4: Simple Markov equivalence

and simple Markov equivalences. A braid isotopy between two closed braids

L0 and L1 in R3 is an isotopy φα of R3 (i.e. a continuous family of maps

φα : R3 → R3 parametrized by α ∈ [0, 1], with φ0 = idR3), such that φα(L0) is

a closed braid for all α, and φ1(L0) = L1.

The second move on closed braids is a geometric version of braid stabi-

lization. Let B and B′ be closed braids, and suppose there is an oriented

embedded disk D ⊂ R3 intersecting the z-axis transversely in a single point.

Suppose also that ∂D = c∪c′, where c = B∩D and c′ = B′∩D are connected

and where the boundary orientation of ∂D is winding clockwise along c, and

counterclockwise along c′. Suppose further that B\c = B′\c′. Then B and B′

are said to be simply Markov equivalent (see Figure 3.4).

The projections of such B and B′ to the xy-plane differ by a sequence of

Reidemeister moves which includes precisely one move of type I, creating an

extra loop around the origin (see Figure 3.4).

26



3.5 Threading construction

We now recall Morton’s diagram threading technique and use it to show that

any link isotopy can be deformed into one that passes through closed braids

everywhere except at a finite number of critical points we must necessarily

introduce. All this will be done while keeping the starting and ending links

fixed.

Let P = {xz-plane} and let ρ : R3 → P be the orthogonal projection.

Let h ⊂ P be the image of the z-axis (braid axis) under ρ. Suppose D is

the diagram in P of an oriented link L. Let C ⊂ D denote the double points

(crossings) of L under the projection ρ.

A choice of overpasses for D is a pair of disjoint finite subsets S, F ⊂ D\C,

so that each link component contains a points from S ∪ F , and so that points

of S alternate with points of F when traveling along any component. Further-

more when traveling in the positively oriented direction, each arc of the form

[s, f ] contains no undercrossings, and each arc [f, s] contain no overcrossings.

Now let P+ = {x > 0 (right) half-plane of P} and P− = {x < 0 (left) half-plane of P}

be the two regions of P separated by h. Although h is not a component of the

link L, we can enhance the diagram D by assigning crossing choices whenever

D intersects h transversely.

Given such an enhanced diagram, h is said to thread the diagram D for

some choice of overpasses (S, F ), if h intersects D in transverse double points,

S ⊂ P−, F ⊂ P+, and

1. when traveling from P− to P+, D crosses over h,

2. when traveling from P+ to P−, D crosses under h.
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Figure 3.5: Trefoil as a closed braid given by a threading

Threadings of link diagrams allow us to study closed braids on the level of link

diagrams. The following lemma is due to Morton (see [39]):

Lemma 3.5.1. Suppose D is a diagram that is threaded by h for some choice

of overpasses. Then there is a closed braid L with diagram D.

The idea behind the proof of the lemma is summarized in Figure 3.5.

Conversely, it is also easy to show that any closed braid is braid isotopic to

one whose diagram is threaded by h for some choice of overpasses.
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3.6 Braiding movie presentations without Rei-

demeister moves

Now suppose that W ⊂ R3×[0, 1] is a critical point free cobordism between two

closed braids, and consider the movie presentation of W , this time projecting

each Wt ⊂ R3 × {t} = R3 to the plane P via the projection ρ. We let Dt

denote the (possibly singular) diagram of Wt in P for each t ∈ [0, 1]. As W

is free of critical points, nearby diagrams will differ by either a planar isotopy

or Reidemeister move. If the movie presentation of W does not involve any

Reidemeister moves, then it can be described completely by specifying the

initial diagram D0 and a planar isotopy φα of P , with φt(D0) = Dt for all t. In

what follows it will be convenient to specify the movie presentations of such

surfaces in this way.

We prove Theorem 1.4.1 first in the special case when D0 and D1 are

threaded, and the movie presentation of W does not involve any Reidemeister

moves:

Proposition 3.6.1. Suppose W has no critical points, and that its movie

presentation does not involve any Reidemeister moves. Suppose further that

W0 and W1 are closed braids with diagrams D0 and D1 threaded by h for some

choices of overpasses. Then W is isotopic relative its boundary to a braided

cobordism.

In order to prove the above proposition we will need to lift the planar

isotopy joining D0 and D1 to a sequence of braid isotopies and simple Markov

equivalences in R3. For the rest of this section we assume W is as described
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in the statement of Proposition 3.6.1. The first lemma we will need is the

following:

Lemma 3.6.2. Let ψα be a planar isotopy of P taking D0 to D1 which fixes

h setwise. Suppose further that ψα ≡ ψ0, and ψ1−α ≡ ψ1 for α in small

neighborhoods of 0 and 1 respectively. Then there is a braid isotopy φα taking

W0 to W1, such that ρ ◦ φα(W0) = ψα(D0) for all α ∈ [0, 1].

Proof. For any p ∈ W0 and α ∈ [0, 1], the x and z-coordinate of φα(p) are

determined by ψα. The y-coordinate of φα(p) can then be chosen uniquely so

that the radial coordinate of φα(p) remains constant for all α. It thus suffices to

note that any two closed braids with the same diagram are also braid isotopic,

via a straight line isotopy.

Let (S0, F0), (S1, F1) ⊂ P denote the overpasses chosen for the threadings

of D0 and D1 respectively, and let ψα denote a planar isotopy of P associated

to the movie presentation of W , i.e. ψα(D0) = Dα for all α ∈ [0, 1]. We can

assume that

S0 ∩ ψ−11 (S1) = F0 ∩ ψ−11 (F1) = ∅.

The following lemma will allow us to assume that the choices of overpasses

for both D0 and D1 coincide, and that they can be assumed to be fixed by the

planar isotopy ψα.

Lemma 3.6.3. W is isotopic relative its boundary to a cobordism whose

movie presentation is determined by a planar isotopy ϕα, where ϕα(S0) = S0

and ϕα(F0) = F0 for 0 ≤ α ≤ 1/2, and where ϕα(ϕ−11
2

(S1)) = S1 and

ϕα(ϕ−11
2

(F1)) = F1 for 1/2 ≤ α ≤ 1.
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Proof. We can assume that for all q ∈ S1 ∪ F1, the sets {ψ−1α (q) | 0 ≤ α ≤ 1}

are disjoint embedded arcs in P which do not intersect S0∪F0 (see for example

Lemma 10.4 of [8]). For each q ∈ S1 ∪F1 choose a small regular neighborhood

Aq of {ψ−1α (q) | 0 ≤ α ≤ 1}, so that the Aq are pairwise disjoint and also do

not intersect S0 ∪ F0.

Now let ξα be a planar isotopy of P which restricts to the identity on the

complement of
⋃
Aq, and such that for all α ∈ [0, 1] and all p ∈ ψ−11 (S1 ∪ F1)

we have ξα(p) = ψ−11−α ◦ ψ1(p). Let Ξτ,α be the one parameter family of planar

isotopies of P defined by

Ξτ,α =


ξ2τα if 0 ≤ α ≤ 1/2

ξτ(2−2α) if 1/2 ≤ α ≤ 1.

After an isotopy of W which rescales the t-coordinate, we can arrange so

that the movie presentation of W is instead described by the planar isotopy

Φα =


id if 0 ≤ α ≤ 1/2

ψ2α−1 if 1/2 ≤ α ≤ 1.

Now consider the composition Φα ◦Ξτ,α. Letting τ range from 0 to 1 shows

that the surface W , which is described by the diagram D0 and the planar

isotopy Φα = Φα ◦Ξ0,α, is isotopic to a surface described by D0 and the planar

isotopy

ϕα := Φα ◦ Ξ1,α =


ξ2α if 0 ≤ α ≤ 1/2

ψ2α−1 ◦ ξ2−2α if 1/2 ≤ α ≤ 1.
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As the ξα is the identity outside of
⋃
Aq, for any p ∈ S0 ∪ F0 and any

α ∈ [0, 1/2] we have ϕα(p) = ξ2α(p) = p. Moreover, for α ∈ [1/2, 1] and

q ∈ ϕ−11
2

(S1 ∪ F1) = ψ−11 (S1 ∪ F1), we have

ϕα(q) = ψ2α−1 ◦ ξ2−2α(q) = ψ2α−1 ◦ ψ−11−(2−2α) ◦ ψ1(q) = ψ1(q) = ϕ 1
2
(q)

as required. Note that all the isotopies described above fix W0∪W1 = ∂W .

By the above lemma it is enough to prove Proposition 3.6.1 in the case

when S = S0 = S1, F = F0 = F1, and all points in S ∪ F are fixed by ψα.

Indeed, since the points in S0 ∪ F0 are stationary during the first half of the

planar isotopy ϕα, and since they form a choice of overpasses for which D0 is

threaded, they must also form a choice of overpasses which give a threading

of D1/2 . Likewise, D1/2 is also threaded by h with the choice of overpasses

(S1, F1), since they remain stationary for during the second half of ϕα and give

a threading of D1. By Lemma 3.5.1 we can arrange W locally near R3 × {1
2
}

so that W1/2 is a closed braid with diagram D1/2 threaded with either choice

of overpasses.

Suppose then that W is as above. Although the movie presentation of W

does not involve any Reidemeister moves, it will (after perturbing W slightly

away from the boundary) contain Reidemeister-like moves of type II and III

involving components of the diagrams and the z-axis h (see Figure 3.6). These

Reidemeister-like moves are like classical Reidemeister moves, but where no

crossing information is specified at double points of the projection involving

h. The absence of crossing information with h reflects the fact that the movie

presentation of W does not specify the relative position of the links Wt above
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Figure 3.6: Reidemeister-like moves involving h

or below the plane P , and that the components of the link are free to pass

through the z-axis during isotopies in R3.

We can thus break the planar isotopy ψα determining W into a sequence of

transformations that take into account the relative position of the diagrams Dt

with h. More precisely, we can divide the interval [0, 1] into smaller subintervals

[tj−1, tj], such that for each j there is either

1. a planar isotopy φjα of P , which fixes h setwise and has φjα(Dtj−1
) =

Dtj−1+α(tj−tj−1) for all α ∈ [0, 1], or

2. a Reidemeister-like move of type II or III taking Dtj−1
to Dtj involving

(but fixing) h.

We will simplify notation and write Dj and W j instead of Dtj and Wtj respec-

tively, for each j. Since we are assuming that the points of S ∪ F are fixed

throughout the planar isotopy ψα, we can fix (S, F ) as a choice of overpass for

each Dj. Furthermore for each diagram we fix the unique choice of h-crossing

information so that Dj is threaded by h.

Before proceeding, we need to eliminate any situations as in Figure 3.7.

Here we have a Reidemeister-like move of type III where the center crossing

cannot pass to the other side of h without first introducing crossing changes.
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Figure 3.7: Reidemeister-like move of type III which does not lift to a braid
isotopy

h h h h

Figure 3.8: Replacing bad Reidemeister-like moves of type III with sequence
of moves that lift to braid isotopies and simple Markov equivalences

These can be eliminated by making a local replacement as in Figure 3.8,

where the offending move has been replaced by a sequence consisting of three

Reidemeister-like moves, two of type II and one of type III (which lifts to

an isotopy avoiding the z-axis). This local replacement does not change the

isotopy class of W rel ∂W .

Lemma 3.6.4. Suppose that W j−1 is a closed braid. Then the transformation

Dj−1 → Dj lifts to R3 as a sequence of braid isotopies and simple Markov

equivalences on W j−1.

Proof. Note first that since W j−1 is a closed braid and Dj−1 is threaded, the

h-crossing information on Dj−1 will match that coming from the projection of

W j−1.

For transformations of type (1) above, Lemma 3.6.2 shows that the planar
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Figure 3.9: Reidemeister-like moves of type II

isotopy between Dj−1 and Dj can be lifted to a braid isotopy on W j−1.

Suppose now that Dj is obtained from Dj−1 by a Reidemeister-like move

of type II (or its inverse) as in Figure 3.6. Then as Dj−1 is threaded, locally it

must look like either the right or left-hand side of one of the transformations in

Figure 3.9. Note that by assumption no points of S or F can occur anywhere

in these local pictures. Clearly Dj can be lifted to a closed braid W j which

agrees with W j−1 away from the Reidmeister-like move of type II, so that

W j−1 and W j are simply Markov equivalent.

Now suppose that Dj is obtained from Dj−1 by a Reidemeister-like move of

type III. It is easy to verify that for most configurations of Dj−1 the move can

be lifted to a braid isotopy taking W j−1 to a closed braid W j with diagram

Dj. The only exceptions arise as in the Figure 3.7, but these were all replaced

previously by sequences of moves that can be lifted.

Starting with the closed braid W0 ⊂ R3 × {0}, we can construct a new
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surface W ′ by tracing the path of W0 in R3 × [0, 1] as we apply the sequence

of lifted braid isotopies and simple Markov equivalences obtained from the

previous lemma. Away from the simple Markov equivalences each level set

W ′
t will be a closed braid. By construction, the movie presentation of W ′

will be the same as that of W , hence it will be isotopic to W rel ∂W ′. To

prove Proposition 3.6.1 it thus remains only to show that W can be braided

in neighborhoods of the simple Markov equivalences.

Proof of Proposition 3.6.1. Suppose that for some s ∈ [0, 1] and ε > 0 the

closed braids Ws−ε and Ws+ε differ by a simple Markov equivalence joined by

a disk D. After a small isotopy in the neighborhood of the hyperplane R3×{s}

we can assume that D lies entirely in this hyperplane, and that the orthogonal

projection of ∂D to the xy-plane yields a figure eight.

DecomposeD as the boundary sum of two closed disksD′ andD′′ (equipped

with the orientation of W ), where D′ intersects the z-axis transversely in a

single point and where ∂D′ is a simple curve which is strictly monotone in

the angular direction (see Figure 3.10). Push D′ to either R3 × {s + ε} or

R3×{s− ε} (depending on whether ∂D′ is monotone increasing or decreasing

respectively) while keeping D′′ fixed. This gives rise to a new maximal disk

(resp. minimal disk) while D′′ yields a new saddle band. After a slight local

perturbation these new critical disks can be changed to isolated critical points,

completing the proof of Proposition 3.6.1.
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D′

D′′

Figure 3.10: Decomposing a simple Markov equivalence into a pair of critical
points

3.7 Braiding movie presentations with Reide-

meister moves

Now consider an arbitrary critical point free cobordism W between two closed

braids. The movie presentation of W under the projection to P will in general

include Reidemeister moves as well as planar isotopies. Recycling notation

from above, let Dt denote the diagram of Wt, and divide the interval [0, 1] into

smaller subintervals [tj−1, tj], such that for each j there is either

1. a planar isotopy φjα of P which has φjα(Dtj−1
) = Dtj−1+α(tj−tj−1) for all

α ∈ [0, 1], or

2. a Reidemeister move taking Dtj−1
to Dtj .

As above we will simplify notation and write Dj and W j instead of Dtj and

Wtj respectively, for each j. To complete the proof of Theorem 1.4.1 we need

the following lemma:
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Lemma 3.7.1. Suppose Dj is obtained from Dj−1 by a Reidemeister move

of any type. Then there is a planar isotopy ζα of P , such that ζ1(D
j−1) and

ζ1(D
j) are both threaded by h for some choices of overpasses, and if W j−1

is a closed braid with diagram ζ1(D
j−1), then the Reidemeister move taking

ζ1(D
j−1) to ζ1(D

j) lifts to a braid isotopy of W j−1.

To see that this completes the proof of Theorem 1.4.1, note first that by

Theorem 2 of [39] there are braid isotopies taking W0 and W1 to closed braids

whose diagrams in P are threaded by h for some choices of overpasses. Thus

we can assume that the diagrams D0 and D1 are both threaded. We also

assume that in the movie presentation of W the sequence involved alternates

between planar isotopies and Reidemeister moves, beginning and finishing with

planar isotopies. Suppose for some j that Dj is obtained from Dj−1 by a

Reidemeister move, and let φj−1α and φj+1
α be the planar isotopies taking Dj−2

to Dj−1 and Dj to Dj+1 respectively. Then we can replace Dj−1 and Dj

with ζ1(D
j−1) and ζ1(D

j) respectively, and φj−1α and φj+1
α with ζα ◦ φj−1α and

ζ1−α ◦ φj+1
α respectively, without changing the isotopy class of W rel ∂W .

Performing a similar replacement one by one around all Reidemeister moves

in the movie presentation, we see that W is isotopic relative its boundary to

a cobordism whose movie presentation involves only Reidemeister moves and

planar isotopies between threaded diagrams.

Thus we can assume that each of the Dj are threaded and that the W j

are all closed braids. By Proposition 3.6.1 the portions of W corresponding

to planar isotopies in the movie presentation are then isotopic relative their

boundaries to braided cobordisms, while by Lemma 3.7.1 we see that the same

38



is true for portions of W corresponding to Reidemeister moves. Thus W itself

is isotopic relative its boundary to a braided cobordism, completing the proof.

Proof of Lemma 3.7.1. Begin by making a choice of overpasses for Dj−1 and

Dj which agree outside some small neighborhood of the move in question.

In the small neighborhood of the move we choose points which give a valid

choice of overpasses both before and after the move. See examples of different

possible configurations in Figure 3.11, where incoming strands are labeled with

o if they are part of an overpass, or u if they are part of an underpass.

Now let ζα be a planar isotopy which repositions all of the S points to the

left (x < 0) half of the plane P , and all the F points on the right (x > 0) half

of P . Once positioned in this way, there is a unique way to assign over and

undercrossings of Dj−1 and Dj with h so that both diagrams are threaded by

h.

Note that in the case of moves of type I and II, we can choose S, F , and

ζα so that the Reidemeister move of interest happens away from h. It is then

easy to see that the Reidemeister move of interest lifts to a braid isotopy.

Moves of type III cannot be arranged to take place away from h however.

Of the three strands in this local picture, one strand will cross over the other

two, one will pass under the other two, while the third will pass over one and

under the other. Choose S and F away from this picture so that the top strand

is part of an overcrossing, the bottom strand is part of an undercrossing, and

place a single point from each of S and F on the third strand to create a valid

choice of overpasses.

Now we can arrange the diagrams so that h separates S and F , and so
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Figure 3.11: Overpass choices in a neighborhood of type I and II moves
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Figure 3.12: Threading near a Reidemeister move of type III
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that the uppermost strand crosses over h in a neighborhood of the move (the

orientation of this strand determines whether it will cross h at the top or

bottom of the local picture). Regardless then of the orientation on the other

two strands or their shared crossing, the uppermost strand is free to pass over

the crossing and both the nearby S and F points as in Figure 3.12, a move

which can clearly be lifted to a braid isotopy in R3. This completes the proof

of Lemma 3.7.1 and of Theorem 1.4.1.

Remark Suppose now that the cobordism W we start with is ribbon em-

bedded (i.e. has no local maximal points with respect to the t-coordinate).

Although we may hope to preserve this property during the braiding procedure

described above, this will not be possible in general. Indeed, Morton [38] gave

an example of a 4-strand braid β with closure the unknot which is irreducible

(i.e. any sequence of Markov moves used to simplify β necessarily begins with

a stabilization, raising the braid index to 5). As noted by Rudolph [42], it is

not difficult to see that any braided ribbon surface bounded by the closure of

β must then have genus ≥ 1, even though it clearly bounds a ribbon disk in

S3 × [0, 1].

41



Chapter 4

Singular fibrations on smooth

4-manifolds

This chapter contains descriptions of the fibration structures we will be con-

cerned with on 3 and 4-manifolds. Indeed, we present the definition of an

open book decomposition on a closed 3-manifold, as well as the definition of

a broken Lefschetz fibration (and its variants) on a smooth 4-manifold. We

outline connections between these objects and (near-)symplectic structures on

4-manifolds, explain features of their topology in terms of handle decomposi-

tions, and describe some examples and constructions which will be needed for

our proof of Theorem 1.4.4.

4.1 Open book decompositions of 3-manifolds

Let M be a closed oriented smooth 3-manifold. An open book decomposition

on M is a smooth map λ : M → D2 such that λ−1(∂D2) is a compact 3-
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dimensional submanifold on which λ restricts as a surface bundle over S1 =

∂D2. Furthermore, we require that the closure of λ−1(int D2) is the disjoint

union of solid tori D2 × S1, on which λ is the projection D2 × S1 → D2. We

say that λ−1(0) is the binding of the open book on M , and that for any p ∈ S1

the compact surface Σp = λ−1({α · p | 0 ≤ α ≤ 1}) is the page over p.

By a celebrated theorem of Giroux, open book decompositions on a closed

3-manifold M (up to a positive stabilization operation) are in one-to-one cor-

respondence with contact structures on M (up to isotopy). Thus open book

decompositions provide a useful topological setting in which to study contact

structures on a given closed 3-manifold.

4.2 Singular fibrations on 4-manifolds

Now let X be a smooth 4-manifold and Σ a compact surface, and let f : X → Σ

be a smooth map. A critical point of f is called a Lefschetz critical point if there

are orientation preserving local complex coordinates on which f : C2 → C is

modeled as f(u, v) = u2 +v2. If these coordinates around the critical point are

instead orientation reversing, then it is called an anti-Lefschetz critical point.

An embedded circle C ⊂ X of critical points of f is called a round 1-handle

singularity or broken singularity if f is modeled near points of C by the map

(θ, x, y, z) 7→ (θ, x2 + y2 − z2) from R×R3 → R×R, where C is given locally

by x = y = z = 0.

A surjective map f : X → Σ is called a Lefschetz fibration if all critical

points of f are in the interior of X and are Lefschetz critical points. It is called

an achiral Lefschetz fibration if we also allow anti-Lefschetz critical points.
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Finally, we add the adjective broken to either of these names to indicate that

we also allow round 1-handle singularities in the set of critical points of f .

When discussing these maps we will sometimes use the generic term fibration

to describe a map which can be any of the types defined above.

4.3 Boundary conditions on fibrations

Now suppose that ∂X 6= ∅ is connected, and that f : X → Σ is a Lefschetz

fibration (possibly broken, possibly achiral). Then we say that f is convex, if

• Σ = D2,

• f(∂X) = D2, and

• f |∂X : ∂X → D2 is an open book decomposition on ∂X.

We say that f is concave if there is a disk D ⊂ int Σ with

• f(∂X) = D, and

• f |∂X : ∂X → D is an open book decomposition on ∂X.

Finally, f is said to be flat if

• f(∂X) = ∂Σ, and

• f |∂X : ∂X → ∂Σ is a nonsingular fibration.

The fibers of a flat fibration are all closed surfaces, and the boundary ∂X

consists of the fibers above ∂Σ. The fibers of a convex fibration all have

boundary, and ∂X is comprised of the fibers above ∂Σ = ∂D2, along with
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the boundaries of the fibers above int D2. In contrast, concave fibrations will

have both closed fibers and fibers with boundary. Indeed, the fibers above

int D ⊂ Σ will have boundary, while all other fibers will be closed.

Suppose now that f1 : X1 → Σ is a concave fibration, f2 : X2 → D2 is

a convex fibration, and that there is an orientation-reversing diffeomorphism

φ : ∂X1 → ∂X2 which respects the induced open book decompositions. In

other words, there is a diffeomorphism φ0 : f1(∂X1) → f2(∂X2), such that

φ0 ◦ f1 = f2 ◦ φ. Then (X1, f1) and (X2, f2) can be glued together to give a

fibration f : X1 ∪φ X2 → Σ on the closed manifold X1 ∪φ X2.

This gives a very useful method for constructing fibrations on closed 4-

manifolds. Indeed, one effective strategy is to divide X into simpler pieces

X1 and X2, on which convex and concave fibrations can be constructed. In

general these maps will induce different open book decompositions along their

common boundary. If, however, these fibrations can be modified so that they

agree along ∂X1 = ∂X2, then they can be glued to give a fibration on all of X.

We will discuss approaches to the problem of matching these boundary open

book decompositions further in Section 4.5.

4.4 Near-symplectic manifolds and broken fi-

brations

Lefschetz fibrations are of great interest in 4-manifold topology, in large part

due to theorems of Donaldson [10] and Gompf [18] relating them to symplectic

4-manifolds. Indeed, Donaldson proved that any symplectic 4-manifold admits
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a Lefschetz pencil. That is, there is a finite set of points B ⊂ X and a Lefschetz

fibration F : X\B → CP1, such that around each point of B the map F is

locally modeled by the projectivization map C2\{0} → CP1. Blowing up at

the points in B gives an honest Lefschetz fibration, and thus Donaldson’s result

can be restated by saying that any symplectic 4-manifold admits a Lefschetz

fibration over CP1 after blow-ups. Gompf proved the converse to this, by

showing that any manifold which admits a Lefschetz pencil also admits a

symplectic structure.

A similar relationship exists between broken Lefschetz fibrations and near-

symplectic structures. Let ω be a smooth closed 2-form with ω2 ≥ 0, and set

Z = {ω = 0}. Then ω is called a near-symplectic structure on X if ω2 > 0

on the complement of Z, and for each point in Z there is a neighborhood U

such that the map U → Λ2(T ∗U) induced by ω has rank 3. This implies that

the zero locus Z is a family of embedded circles. Manifolds admitting near-

symplectic structures are quite common. Indeed, any closed oriented smooth

4-manifold with b+2 (X) > 0 admits a near-symplectic structure (see [22]).

Analogous to the relationship between Lefschetz pencils and symplectic

structures, Auroux, Donaldson, and Katzarkov [4] proved the following: a

smooth 4-manifold X admits a near-symplectic structure with zero locus Z if

and only if it admits a broken Lefschetz pencil f with round 1-handle singu-

larities along Z, and there is a class ω ∈ H2(X) that evaluates positively on

every component of every fiber of f . These structures can be chosen to be

compatible, in the sense that if we specify either a near-symplectic structure

or broken Lefschetz pencil, then the other object may be chosen so that the

regular fibers of the pencil are symplectic away from the singular locus.
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4.5 Constructions of fibrations on closed 4-

manifolds

Besides establishing a relationship between near-symplectic structures and bro-

ken Lefschetz fibrations, Auroux, Donaldson, and Katzarkov also constructed

a fibration on S4 with a single round 1-handle singularity, and no other critical

points. As S4 is clearly not near-symplectic, this raised the question of deter-

mining which smooth oriented 4-manifolds admit broken Lefschetz fibrations.

The literature contains a number of results establishing the existence of

different fibration structures on closed 4-manifolds, as various authors sought

to answer this and related questions. In [13] Etnyre and Fuller proved that

after surgery along an embedded circle every smooth closed 4-manifold admits

an achiral Lefschetz fibration. Gay and Kirby proved in [16] that every smooth

closed 4-manifold admits a broken achiral Lefschetz fibration, while Akbulut

and Karakurt strengthened this result in [1] by showing that every closed

smooth 4-manifold admits a broken Lefschetz fibration.

The proof of each of these results involves cutting X up into pieces and

constructing the desired fibrations on the pieces separately, before regluing.

The main differences in their approaches lie in the modifications they make

to the fibrations to match the induced open book decompositions. In each

approach however, the core argument is the same, relying on machinery from

contact topology to ensure that the open book decompositions match before

the pieces are reglued.

More precisely, the fibrations are first modified to ensure that both bound-

ary open book decompositions support overtwisted contact structures, and
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then to arrange that both of these contact structures are homotopic. By

Eliashberg’s classification of overtwisted contact structures [12] the two con-

tact structures must then be isotopic, and hence by Giroux’s theorem [17] the

boundary open book decompositions will agree after some number of positive

stabilizations (which can be realized by further modifications to the fibrations).

This process is, of course, non-constructive due to its reliance on these deep

classification results.

Note that the existence of broken Lefschetz fibrations on arbitrary 4-

manifolds had also been proven at the same time independently by both

Baykur [5] and Lekili [35], by studying deformations of generic maps near

their singularities.

In the case when b+2 (X) > 0 the near-symplectic structure can be used

to construct broken Lefschetz fibrations and pencils with additional desired

properties. For example, it can be shown that any near-symplectic structure

is cohomologous to a near-symplectic form which has connected zero locus,

and this can be used to show that in this case X admits a broken Lefschetz

pencil with connected fibers, at most one round 1-handle singularity, and that

the round 1-handle image is embedded.

Our approach to proving Theorem 1.4.4 will also involve splitting X into

pieces, though our convex fibration will be built from the boundary inwards,

allowing us to specify the boundary open book ahead of time. This in turn

allows us to avoid using deep classification results from contact topology or

making the choice of a generic map as in Baykur and Lekili’s approaches.

Furthermore, our method uses the handle structure of X directly, and hence

provides a more concrete geometric approach to the construction of these fi-
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brations.

4.6 The topology of broken Lefschetz fibra-

tions

The regular fibers of an (achiral) Lefschetz fibration f : X → Σ will all be sur-

faces of the same diffeomorphism type, which we call the genus of f . Lefschetz

fibrations of genus g ≥ 2 can be determined entirely by their monodromy repre-

sentations. Let Σ∗ ⊂ Σ denote the set of regular values of f , and let p ∈ Σ\Σ∗

be a critical value. If γ ⊂ Σ∗ is an oriented loop based at q ∈ Σ∗ which travels

counterclockwise around p and no other critical values, then a trivialization of

the bundle over γ induces a diffeomorphism of the fiber Fq above q. This diffeo-

morphism will be a right-handed (left-handed) Dehn twist if p corresponds to

a Lefschetz critical point (anti-Lefschetz critical point respectively). The cycle

along which this Dehn twist takes place is called the vanishing cycle associated

to the critical point. As we approach the critical fiber Fp, the corresponding

vanishing cycles in nearby regular fibers shrink down to a single transverse

intersection in Fp (see Figure 4.1 where the vanishing cycle is denoted with a

dashed line).

Now suppose that f : X → Σ is a broken fibration, with round 1-handle

singularity along an embedded circle C. Suppose that C ′ ⊂ Σ is the image of

C under f , and that C ′ is embedded. Let p and q be nearby regular points

sitting on opposite sides of C ′. Suppose for concreteness that p = (θ,−1) and

q = (θ, 1) for some θ ∈ S1 in the coordinate charts described above. Then
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Figure 4.1: Vanishing cycle of Lefschetz critical point

the fiber Fq above q can be obtained from Fp by 0-surgery along a pair of

points in Fp. Equivalently, Fp can be obtained from Fq by 1-surgery along a

simple closed curve (see Figure 4.2). Indeed, we can think of the coordinate

charts describing the round 1-handle singularity as defining an S1 family of

local Morse functions, each with a single index 1 critical point. In particular,

the genus of the fiber of a broken fibration changes by ±1 each time we cross

the image of a round 1-handle singularity in Σ.

Now suppose that f : X → D2 is a Lefschetz fibration, possibly achiral,

possibly broken. Let K be a framed knot in f−1(∂D2) ⊂ ∂X, which can be

isotoped so that it lies entirely on the interior of a single fiber. Then we can

attach a 2-handle along K to yield a new manifold with boundary X ′. If we

chose the framing along K so that it is one less than the induced fiber framing,

then f will extend to a fibration on X ′ with a new Lefschetz critical point in

the newly added 2-handle. If we instead choose K to have framing one greater

than the induced fiber framing, f will instead extend to a fibration on X ′ with
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Figure 4.2: Passing a round 1-handle singularity

an additional anti-Lefschetz critical point.

Example 4.6.1. (Achiral Lefschetz fibrations on 2-handlebodies) The first

general construction of achiral Lefschetz fibrations on 4-manifolds is due to

Harer [19], who showed that every 4-manifold which has a handlebody struc-

ture with handles of index ≤ 2 admits a flat achiral Lefschetz fibration over

D2. We briefly sketch this construction here. For more details see [13].

Fix a handle decomposition on X which has a single 0-handle, and no

handles of index ≥ 3, and let X1 denote the union of the 0 and 1-handles.

Then X1
∼= F × D2 for some surface F , which admits the obvious fibration

over D2 with fiber F . The first two figures in Figure 4.3 show handlebody

diagrams of X and X1, for such a space X. The third figure shows a fiber of

the fibration X1 → D2, which is understood to extend over the 1-handles.

In order to extend this fibration over the 2-handles, we must arrange so

that each attaching circle lies on a fiber, with framing ±1 the framing induced

by the fiber. Figure 4.4 indicates how this first task can be accomplished
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Figure 4.3: Fibration on handles of index 0 and 1

n± 1
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nn

Figure 4.4: Modifying fibration for fiberwise 2-handle attachment

(where we suppress the reference arcs for the 1-handles). Indeed, the double

point in the projection of the attaching circle of the 2-handle onto the fiber can

be eliminated by adding a band b to the fiber and rerouting the under crossing

strand along b as shown in the middle figure. To ensure that this modified

surface is the fiber of some map to D2, we add an additional 1 and 2-handle

canceling pair, and slide the band b over the new 1-handle. The attaching

circle of the canceling 2-handle can be isotoped to lie flat on a parallel fiber,

and if we chose it to have framing ±1 (so that the fibration extends over it),

then the original 2-handle framing will change as in the rightmost diagram

of Figure 4.4. By repeating this procedure, we can ensure that each of the

original 2-handles has framing ±1 the fiber framing, as required.

We now present a handle description for round 1-handle singularities. Sup-

pose again that f : X → D2 is a fibration as above, but that we have now

chosen two disjoint knots K1 and K2 in ∂X, each of which give a section of
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f restricted to f−1(∂D2) ⊂ ∂X. Then we obtain a new manifold X ′′ by at-

taching S1×D1×D2 to ∂X along K1 and K2, by identifying S1×{−1}×D2

and S1 × {1} × D2 with tubular neighborhoods of K1 and K2 respectively.

In this case the fibration f will extend to X ′′, with a single round 1-handle

singularity along S1 × {0} × {0}. Indeed, the knots K1 and K2 intersect

each of the boundary fibers in a pair of points, which specify the locations

of the 0-surgeries that take place as we pass the round 1-handle image. Note

that this also explains the choice of name for critical points of this type, as

S1 × D1 × D2 can be thought of as an S1-family of 3-dimensional 1-handles

D1×D2, which are attached to X fiberwise along the boundary. Alternatively,

we can split S1 × D1 × D2 into a 4-dimensional 1-handle and 2-handle pair,

where the 2-handle runs over the 1-handle twice geometrically, but zero times

algebraically.

The monodromy of the fibration outside this new round 1-handle singular-

ity will depend on the framings of the tubular neighborhoods of K1 and K2,

or alternatively, on the framing k of the 2-handle in the 4-dimensional handle

pair description. Indeed, suppose that F is the fiber of the fibration f before

attaching the round 1-handle, and that the monodromy around the boundary

∂D2 is given by a map ϕ : F → F . Then adding the new round 1-handle

changes the fibers along the boundary by replacing two disks D1 and D2 in F

with S1 × [0, 1]. The new monodromy will be given by the restriction of ϕ to

F\(D1 ∪D2), with k Dehn twists along the cycle S1 × {1
2
}.

We will also sometimes refer to round 2-handles, which are the product

of a 3-dimensional 2-handle with S1. These are, of course, just upside-down

round 1-handles, and will not warrant any further discussion.
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Example 4.6.2. The next example we consider will involve constructing a

concave broken fibration f : S2 × D2 → S2, which has a a single round 1-

handle singularity, and no other critical points. This construction is originally

due to Auroux, Donaldson, and Katzarkov [4], as part of their construction of

a broken Lefschetz fibration on S4. It can easily be generalized to construct

a similar fibration on F ×D2 for any closed orientable surface F , and will be

necessary for our proof of Theorem 1.4.4.

We begin by identifying the target of the projection pr2 : S2 × D2 → D2

with the northern polar cap in S2. This defines a fibration of S2×D2 with fiber

S2 over this region (see the bottom left diagram in Figure 4.5). Expressing

S2 × D2 with the usual handlebody diagram (top left Figure 4.5), we can

add a 1-handle and 0-framed 2-handle to this diagram, as in the top middle

diagram. Taken together, these two handles can be interpreted as a round

1-handle, which is attached to S2 × D2 along two sections of the existing

fibration restricted to the boundary. We can thus extend this fibration over

the round 1-handle, giving a fibration over the northern hemisphere with a

round 1-handle singularity over the arctic circle. Fibers between the equator

and arctic circle will be obtained from the polar fibers by 0-surgery, and hence

will be tori. Note that the fibration we have constructed so far is flat along its

boundary.

Finally, we add an additional 2-handle H2, and a 3-handle H3 to our di-

agram (top right, Figure 4.5). The attaching circle of H2 is a section over

the boundary, and hence the fibration can be extended over H2
∼= D2 × D2,

by projecting it to the southern hemisphere (with fiber D2). The resulting

fibration is concave. The page of the boundary open book decomposition is
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a torus with a single hole (which resulted from attaching the 2-handle H2),

while its binding will be the belt-sphere of H2.

The attaching sphere of the new 3-handle H3 is arranged so that it inter-

sects the binding at its north and south poles, and so that it intersects each

page in a properly embedded arc. The fibration can then be extended across

H3, resulting in no new critical points. This extension changes the D2 fibers

over the southern hemisphere by adding a 2-dimensional 1-handle, yielding an-

nular fibers. On the other hand, the pages of the boundary open book change

by the removal of a neighborhood of a properly embedded arc (the intersection

of the original page with the attaching sphere of H3), yielding disconnected

pages. Each of these pages consists of a D2 component and punctured torus

component.

The result of all these additions is thus a concave broken fibration as de-

picted in the bottom right diagram of Figure 4.5, with a single round 1-handle

singularity, and no Lefschetz or anti-Lefschetz critical points. Moreover, after

sliding the 0-framed 2-handle off of the 1-handle, we find that the added 1,2,

and 3-handles all form canceling pairs. Hence the total space of our fibration

is diffeomorphic to S2 ×D2.

4.7 Replacing anti-Lefschetz critical points

We end our general discussion of broken achiral Lefschetz fibrations by briefly

describing a method due to Lekili [35] for removing anti-Lefschetz critical

points from a given fibration. This move was introduced during his study of

wrinkled fibrations, which are a class of fibrations with certain cusp points
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S2 ×D2 ∪ round 1-handleS2 ×D2 ∪ round 1-handleS2 ×D2

0 0
0

0
0

−1

∪ 2,3-handles

∪ 3-handle

Figure 4.5: Concave broken fibration on S2 ×D2.

allowed along the round 1-handles singularities. The replacement can be de-

scribed as a local perturbation near the anti-Lefschetz point, resulting first

in a wrinkled fibration, then back to a broken fibration with a new round

1-handle singularity and three new Lefschetz critical points in place of the

original (anti-Lefschetz) critical point. Baykur also gave a description of this

replacement in terms of handle diagrams as an appendix to [35]. As both de-

scriptions are somewhat complicated, we will only discuss this move in terms

of the vanishing cycles of the affected critical points.

The replacement is outlined in Figure 4.6, where only a local picture of the

fibration is shown. On the left is a single anti-Lefschetz critical point, with

vanishing cycle indicated in the fiber. The fibration map can be modified in

a neighborhood of this critical point so that it is instead as depicted on the

right-hand side of Figure 4.6, with three Lefschetz critical points and a new

round 1-handle singularity. Here the fiber shown is assumed to be above a
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a

b

d

Figure 4.6: Replacing an anti-Lefschetz critical point

point interior to the triangle formed by the three isolated critical values. The

vanishing cycles of these Lefschetz critical points can be described in terms of

the three labeled cycles shown in the diagram. In counterclockwise order these

vanishing cycles are given by a−d, d− b, and b−a. Denote the corresponding

critical values by α, δ, and β, respectively, and let C denote the image of the

round 1-handle singularity.

Suppose now that we start at the center fiber shown in Figure 4.6 and,

moving outwards, cross over C. As we pass over this round 1-handle singularity

image, the fiber will change by a 1-surgery (corresponding to the addition of

a round 2-handle). The circle along which we perform the 1-surgery depends,

however, on which way we exit. For example, if we choose a path that only

crosses the edge βα before crossing C as in Figure 4.7, then the corresponding

1-surgery will take place along a. Exiting through the edge αδ will result in a

1-surgery along d, while exiting through δβ will yield surgery along the loop

b.
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α

δ

β

a

C

Figure 4.7: Surgery cycle in the fiber for Lekili’s replacement

We conclude this section with two observation which will be important in

what follows. First, note that the three vanishing cycles we introduced during

this local modification are nontrivial in the homology of the fiber, regardless

of whether the original anti-Lefschetz vanishing cycle was or not. Second,

suppose that E is the image of another Lefschetz or anti-Lefschetz critical

point, sitting outside of C. Suppose we choose a path µ from E to a point

on the round 1-handle image C. Crossing C along this path from the outside

results in a 0-surgery on the fiber, at a pair of points which can be assumed to

be disjoint from the vanishing cycle associated to E. We can thus modify the

fibration in a neighborhood of µ so that E is moved to the inside of C. By a

similar argument, if we have replaced a number of these anti-Lefschetz critical

points in this way, and hence have obtained multiple circles corresponding to

new round 1-handles, then they can all pass over each other to be arranged as

a sequence of nested circles.
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Chapter 5

Broken Lefschetz fibrations via

branched coverings

In this section we present the proofs of Theorems 1.4.3 and 1.4.4. The proof of

Theorem 1.4.3, which involves finding a convex broken Lefschetz fibration on

X with ∂X 6= ∅ connected, relies on the construction of a branched covering

H : X → D2 ×D2 one handle at a time, after which we use Theorem 1.4.1 to

arrange the branch locus of H as a braided surface with caps. When composed

with the projection to D2, this map will give the desired convex fibration on X.

We can then appeal to Lekili’s wrinkling move to eliminate any anti-Lefschetz

critical points we may be left with. Theorem 1.4.3 is then combined with

constructions of concave fibrations due to Gay and Kirby [16] (see also Ex-

ample 4.6.2), to build broken Lefschtez fibrations on arbitrary closed oriented

4-manifolds, thus proving Theorem 1.4.4.
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5.1 Singular branched coverings

We will need to consider two maps which will serve as local models of the

types of allowable singularities of branched coverings we consider. We define a

3-fold simple branched covering hT : ∂(D2×D2)→ ∂(D2×D2) as follows. Let

∂1∪∂2 and ∂′1∪∂′2 denote decompositions of the source and target ∂(D2×D2)

into solid tori as above. Let K ⊂ ∂′1 be the closure of the colored braid on

the far right of Figure 5.2 (which yields a trefoil). Then define hK on ∂1 as a

simple 3-fold irregular covering of ∂′1 branched along K, and on ∂2 as a 3-fold

unbranched covering of ∂′2. Here the fibrations are chosen to match smoothly

along the boundary, and to respect the natural product structures of the ∂i

and ∂′i.

Then define hC : D2 ×D2 → D2 ×D2 by setting

hC(x) = ‖x‖ · hK
(

x

‖x‖

)

for ‖x‖ 6= 0, and hC(0, 0) = (0, 0) (where we are viewing D2 as the unit disk

in C). Clearly hC is continuous and is a smooth 3-fold branched covering

away from the origin. Singularities of a branched covering locally modeled by

hC will be called cusp singularities. The branch locus of hC is the cone over

the trefoil T ⊂ ∂′1 with cone point at the origin (which we refer to as a cusp

singularity of the branch locus). Notice that pr2 ◦ hC = pr2.

Let hN : D4
∐
D4 → D4 be the simple 4-fold branched covering of D4,

where each component in the domain is mapped to the base as a 2-fold

branched covering branched over an unknotted disk. The branch loci are
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arranged so that they meet transversely in a single interior point (which we

refer to as a node singularity of the branch locus). Note that hN restricts on

the boundary to a 4-fold branched covering S3
∐
S3 → S3 with branch locus

the Hopf link. Points around which a branched covering is modeled by hN will

be called node singularities.

5.2 Constructing the branched coverings

Suppose now that we have a smooth 4-manifold X, and that a choice of open

book decomposition λ : ∂X → D2 with connected page and binding has been

fixed. We will construct a branched covering H : X → D2 ×D2 as described

above, so that the restriction of pr2 ◦H to ∂X equals λ.

Remark Since D2 × D2 is a manifold with corners, the map H will not be

a local diffeomorphism along the preimage of the corners. We can assume

however that H is smooth (away from all cusp singularities), with pr2 ◦ H

regular away from its branch locus. Indeed, we could proceed by constructing

a smooth branched covering H̃ : X → D4 handle-by-handle as explained

below, and then choosing a smooth homeomorphism η : D4 → D2 ×D2, with

pr2 ◦ η : D4 → D2 a regular map (such a η is not difficult to construct).

The map H would then be defined as H = η ◦ H̃. To simplify the discussion

in what follows, we will refrain from making any further mention of these

considerations.

Proposition 5.2.1. The open book decomposition λ : ∂X → D2 factors as

∂X
h−→ ∂(D2 × D2)

pr2−−→ D2, where h is an irregular simple 4-fold covering
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branched along a closed braid L ⊂ ∂1. Moreover, h can be assumed to have

been obtained by adding a single trivial sheet to a 3-fold branched covering

∂X → ∂(D2 ×D2).

Proof. Let Y1 = λ−1(∂D2) and Y2 = λ−1(int D2). We begin by constructing a

3-fold covering h0 : ∂X → S3 with the desired properties, after which we add

the trivial sheet. We construct h0 piecewise as

h1 : Y1 → ∂1 and h2 : Y2 → ∂2

which will match along ∂Y1 = ∂Y2.

Then there is a compact surface Σ with connected, non-empty boundary,

and a diffeomorphism φ : Σ→ Σ which is the identity near ∂Σ, so that Y1 can

be identified with the mapping torus Mφ = ([0, 1]×Σ)/(0, x) ∼ (1, φ(x)) of φ.

Note that Σ will be diffeomorphic to the page of λ, and the surface λ−1(s) is

identified with {s} × Σ ⊂Mφ for any s ∈ ∂D2 = R/Z.

Let g denote the genus of Σ, and let τ : Σ → D2 be the irregular 3-fold

covering shown in Figure 5.1, which is branched over 2g + 2 points. Here the

map τ is given by “folding” Σ along the two dotted lines in the figure (for a

more precise description see the covering constructed in [21], from which we

obtain τ by removing a disk).

By [34] the map φ : Σ→ Σ is isotopic to a sequence of Dehn twists along

the 2g + 1 curves bi in the figure. By [21] each of the Dehn twists along the

bi curves is isotopic to the lift of a diffeomorphism of D2. Thus there exist

diffeomorphisms φ0 : Σ → Σ and φ1 : D2 → D2 such that φ0 is isotopic to

φ, and τ ◦ φ0 = φ1 ◦ τ . We thus obtain a fiberwise branched covering map h1
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b2

b4

b1

b3

b2g

b2g+1

Figure 5.1: 3-fold branched cover Σ→ D2

from Mφ0
∼= Y1 to Mφ1

∼= ∂1 as required.

To define h2 : Y2 → ∂2, first set h2 ≡ h1 on ∂Y2 = ∂Y1, and extend as a

3-fold covering to the rest of Y2 in such a way that pr2 ◦ h2 = λ|Y2 .

Using the construction above it is easy to describe the required 4-fold cover

h. We can obtain a 4-fold cover Y1 → ∂1 from h1 at the cost of adding an

unknotted circle of branch points in ∂1, which is unlinked from the branch

locus of h1. A map Y2 → ∂2 can then be constructed as above to match

along the boundary. Gluing these two 4-fold covering maps (branched and

unbranched respectively) gives h.

Lemma 5.2.2. There is a simple 4-fold cover H : X → D2 × D2, possibly

with cusp or node singularities, such that H|∂X ≡ h as maps from ∂X to
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(j, k)

(i, k)
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(i, j)

(i, j) (i, k)N±

(k, l)(i, j)

(i, j) (k, l)

(k, l)(i, j)

Figure 5.2: N± and C± branched covering moves

∂(D2×D2), and so that away from the images of any cusp or node singularities

the branch locus of H is an embedded orientable surface.

Proof. Fixing a relative handle decomposition of (X, ∂X) with a single 4-

handle, let X0 denote the union of ∂X × [0, 1] with the 1 and 2-handles, and

X1 the union of the 3-handles and 4-handle. By taking the product of h with

the identity on [0, 1], we get a covering of H0 : ∂X× [0, 1]→ ∂(D2×D2)× [0, 1]

branched along the product of the branch locus of h with [0, 1]. After isotopy

near ∂X × {1}, we can assume that the single loop in the branch locus of

H0|∂X×{1} corresponding to the trivial sheet lies in a 3-ball which is disjoint

from the attaching regions of the 1 and 2-handles.

By Lemma 6.1 of [7] and Theorem 4.4 of [11], the branched covering H0 can

be extended across the 1 and 2-handles of X to give a 4-fold simple branched

covering H0 : X0 → ∂(D2×D2)× [0, 1]. For each 1 or 2-handle of X, we must

add a 0 or 1-handle respectively to the branch locus in ∂(D2 × D2) × [0, 1].

By applying the covering moves in [3] we can assume that the branch locus is

orientable.

Similarly, let H1 : D4 → D2 × D2 be a simple 4-fold covering branched

along three properly embedded unknotted disks. Identifying the unique 4-
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handle with D4, we assume that the boundaries of these disks lie in disjoint

3-balls which avoid the regions where the 1-handles (or upside-down 3-handles)

attach toD4. We can extendH1 to a 4-fold simple coveringH1 : X1 → D2×D2,

branched along a collection of properly embedded disks.

Now ∂X0 consists of two components, one of which corresponds to ∂X,

while the other is the result of performing surgeries to ∂X along the attaching

regions of the 1 and 2-handles. Denote this latter component by ∂+X0. Clearly

∂+X0
∼= ∂X1, while H0|∂+X0 and H1|∂X1 are simple 4-fold branched coverings

of ∂+X0
∼= ∂X1 over ∂(D2 × D2). By construction both of these coverings

arise from 3-fold branched coverings by the addition of a trivial sheet. By [40]

then there is a finite sequence of C± and N± moves to the branch locus in S3

(see Figure 5.2), which transforms the covering H0|∂+X0 to H1|∂X1 .

It is easy then to construct a branched covering ∂+X0× [0, 1]→ S3× [0, 1]

which restricts to H0|∂+X0 on ∂+X0 × {0} and H1|∂X1 on ∂+X0 × {1}, which

has one cusp singularity or node singularity respectively for each C± or N±

move performed. Indeed, each move is realized by boundary summing with

the local model of hC or hN in a neighborhood of the move, matching the maps

along the gluing region. The desired branched covering H is then obtained by

gluing the above constructions in the obvious way.

We will denote the branch locus of H as BH . It is an orientable surface

with cusp and node singularities.

5.3 Constructing the broken fibration

We now proceed to prove Theorems 1.4.3 and 1.4.4.
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Proof of Theorem 1.4.3. By Corollary 1.4.2, we can assume thatBH is a braided

surface with caps in D2×D2 (notice that the node and cusp singularities can

be treated exactly as the saddle points in the proof of Theorem 1.4.1). Away

from the preimages of the critical points of pr2|BH
, the composition f = pr2◦H

is a regular map. By [36] f has a Lefschetz (resp. anti-Lefschetz) critical point

for every positive (resp. negative) branch point of pr2|BH
.

To see that the fold lines of BH along the boundaries of the caps give round

1-handle singularities, note that along these fold lines BH is locally embedded

as R2 → R2×R2, by (s, r) 7→ (0, r, s, r2). Furthermore, near nonsingular points

of BH , H can be written in complex coordinates as (u, v) 7→ (u2, v), where BH

is given locally by u = 0. Combining these two local models yields a map of

the required local form. Furthermore, the folds of BH have been pushed out

so that they lie above a neighborhood of the boundary of D2, so that their

images form a collection of concentric circles which enclose the Lefschetz and

anti-Lefschetz critical values.

We now must deal with the cusp and node singularities in BH . Notice first

that since the two strands of BH involved in a node singularity correspond

to simple branching along disjoint pairs of sheets of the covering H, the node

singularities project to regular values of the map f . Near a cusp singularity,

we can assume that the map H is given by the 3-fold simple covering hC , with

an extra trivial sheet. Since pr2 ◦ hC = pr2, the map f will also be regular in

such a neighborhood.

Clearly Properties 1 and 5 of the theorem will hold, from our construction

of f and the corresponding property of braided surfaces with caps. To see that

Property 3 holds, note that as we move inwards from the boundary towards
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the center of the base D2, for every round 1-handle image we pass we will

change the fiber by 0-surgery on two points, which increases the genus of the

affected component by +1. This is due to the fact that as we pass each round

1-handle images, we increase the number of branch points in the fiber by +2.

Since the fibers over ∂D2 are assumed to be connected, every fiber of f will

likewise be connected.

We now show that all vanishing cycles are nontrivial in the homology of the

fiber F over 0 ∈ D2 (which we assume to be regular). Recall that restriction

of pr2 : D2×D2 → D2 to BH is a branched covering away from the fold lines.

If p ∈ X is a Lefschetz or anti-Lefschetz critical point of f , then pr2|BH
:

BH → D2 will have a simple branch point above f(p) (at H(p)). Then the

monodromy map around a small loop enclosing the point f(p) and no other

critical values will act on the set (pr2|BH
)−1(0) = {q1, . . . , qm} by swapping two

points, say q1 and q2, and fixing the other m− 2 points. Choose an embedded

arc γ in D2 × {0} connecting q1 and q2. Note that H restricts to a branched

covering H|F : F → D2 × {0}, and that γ will lift to a simple closed curve

γ̃ in the fiber F , which represents the vanishing cycle associated to p, along

with disjoint arcs γ1, γ2. Then the restriction of H to F\(γ̃ ∪ γ1 ∪ γ2) gives a

branched covering

F\(γ̃ ∪ γ1 ∪ γ2)→ (D2 × {0})\γ.

If γ̃ disconnected F , then each component of F\(γ̃ ∪ γ1 ∪ γ2) would also be

a branched cover of (D2 × {0})\γ, and would thus have nonempty boundary.

But by our assumption on the boundary open book decomposition, ∂F is

67



connected, and hence γ̃ does not separate F .

Finally, using Lekili’s wrinkling move (see Section 4.7) we can replace any

anti-Lefschetz critical points by new Lefschetz and round 1-handle singular-

ities. It remains only to show that the result of such a replacement factors

through a branched covering of D2 ×D2.

Let p ∈ X be an anti-Lefschetz critical point of f , and choose small disks

D,D′ (thought of as sitting in the first and second factor of D2 ×D2 respec-

tively), such that D ×D′ is a small neighborhood of H(p) ∈ D2 ×D2. Note

that H(p) will lie on BH , the branch locus of H, and will be a negative branch

point of the map pr2|BH
: BH → D2. The disks D and D′ can be chosen so

that BH ∩ (D×D′) is given by z = w2 for some orientation-reversing complex

coordinates (z, w) on D×D′ centered at H(p). Hence BH ∩ ∂(D×D′) will be

a closed braid in D × ∂D′ of index 2 with a single negative twist.

The preimage H−1(D×D′) will consist of three components, two of which

are mapped homeomorphically onto D × D′, while the third is mapped as a

2-to-1 covering of D ×D′ branched along (D ×D′) ∩ BH . Denote this latter

component by V .

Every disk of the form D×{q}, for q ∈ D′\{f(p)}, will intersect the branch

locus BH in precisely two points, and hence will lift to an annulus under the

degree 2 branched cover H|V : V → D ×D′. Thus f |V : V → D′ is an achiral

Lefschetz fibration, with regular fiber an annulus and a single critical point

which is anti-Lefschetz (see the left-hand side of Figure 4.6).

Lemma 5.3.1. There is a 2-fold branched covering map G : V → D × D′

whose branch locus is a braided surface with a single cap, and three positive
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δ

β
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C

Figure 5.3: Loops cα, cβ, and cδ around critical values in D′.

branch points. Moreover, the restrictions G|∂V and H|∂V agree.

Proof. Double covers of D ×D′ branched along embedded surfaces are deter-

mined by their branch loci, and hence it will suffice to describe G in terms

of its branch locus BG ⊂ D × D′. Choose four points α, β, δ and z in the

interior of D′, and choose loops cα, cβ, and cδ based at z which encircle the

other three points in the counterclockwise direction, as in Figure 5.3. Choose

a circle C ⊂ D′ which encircles the loops cα, cβ, and cδ, and which is parallel

to ∂D′.

We define BG by first describing its intersection with the torus D × cα.

Indeed, we define BG ∩ (D × cα) to be the closed braid in D × cα obtained as

the closure of the braid in Figure 5.4. Likewise, we define the intersection of

BG with D× cδ and D× cβ as the closures of the braids in Figures 5.5 and 5.6

respectively. In each figure, the braids are taken to both start and finish at

BG∩(D×{z}), and the bottom to top orientation is understood to correspond

with the counterclockwise orientation of the c curves.
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Figure 5.4: Braid monodromy around α, and associated braid twist arc

Figure 5.5: Braid monodromy around δ, and associated braid twist arc

Figure 5.6: Braid monodromy around β, and associated braid twist arc
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γ

γ

Figure 5.7: Positive braid twist along the arc γ, with dotted arc for reference

Now suppose that p1, . . . , pk are points in D. Then any braid in D ×

[0, 1] with endpoints at {p1, . . . , pk} × {0} and {p1, . . . , pk} × {1} induces a

homeomorphism of D which fixes {p1, . . . , pk} setwise. Note that in the case

of the braid BG ∩ (D× cα), the associated homeomorphism of D is given by a

single positive braid twist (see Figure 5.7). Hence, we can extend BG across

the disk bounded by cα as a braided surface with a positive branch point above

α ∈ D. Likewise, we can extend BG across the disks bounded by cβ and cδ, so

that it also has positive branch points above β and δ.

Now, suppose that around C ⊂ D′ we have embedded a tubular neighbor-

hood C × [−1, 1]. For each t ∈ [−1, 1], let Ct = C × {t}, and assume that

C−1 lies inside the disk bounded by C = C0. Then we can extend BG over

the entire disk bounded by C−1, so that it is a braided surface with (posi-

tive) branch points only over α, β, and δ ∈ D′. The boundary of this newly

extended surface braid BG will be a closed braid in D × C−1, which is the

product of the three braids in Figures 5.4-5.6 (traveling around cα, cδ, and cβ

in that order), and is depicted in the top of Figure 5.8. Notice that after taking

the closure, the two topmost strands (in starting and finishing position) will

bound an annulus A which is otherwise disjoint from the rest of the braid.

Then as we let t go from −1 to 0, we can define BG ∩ (D×Ct) by starting
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Figure 5.8: Braid whose closure yields BG ∩ (D × C−1)

with BG ∩ (D × C−1), and allowing these two strands to merge into a single

strand in BG ∩ (D × C0), before vanishing when t > 0 (see Figure 5.9, where

the annulus A is shaded in). Hence BG ∩ (D×Ct) will have index 4 for t < 0,

index 3 for t = 0, and index 2 for t > 0. This yields a fold circle (the boundary

of a cap) in the surface BG sitting above C ∈ D′. We then extend BG to

a braided surface with caps over all of D′, with no additional critical points.

Thus BG will have precisely one cap, and three positive branch points.

Now the surface BG ⊂ D×D′ defines a branched covering G : VG → D×D′,

with total space VG. Note that we can arrange BG so that along ∂(D × D′)

it agrees with BH ∩ ∂(D ×D′), and hence ∂VG is diffeomorphic to ∂V ∼= S3.

Furthermore, the composition fG = pr2 ◦ G is a broken Lefschetz fibration

with three Lefschetz critical points whose images lie inside the image of the

only round 1-handle singularity. By Lekili’s substitution, V also admits a

broken Lefschetz fibration with a similar configuration of critical points. If we

can show that in both fibrations the monodromy around the Lefschetz critical

points agree, and that the round 1-handles are attached in the same way, then

we will have that V ∼= VG.

Denote by Σz the preimage of the disk D × {z} under the map G. It

is a twice punctured torus, and will be a fiber of the fibration fG. By [7]
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t = −1 t = − 1
2 t = 0 t = 1

Figure 5.9: Merging strands to give fold line

we can assume that the restriction of G to the fiber Σz will be the covering

φ : Σz → D × {z} depicted in Figure 5.10, which is induced by 180◦ rotation

around the axis shown. The monodromy of fG around the curves cα, cδ, and cβ

will be lifts under φ of the homeomorphims of D×{z} induced by the braids in

Figures 5.4-5.6. The arc on the right-hand side of Figure 5.4 lifts to the cycle

a− d (see Figure 4.6 for the orientations), and a positive braid twist along it

lifts to a positive Dehn twist. Likewise the arcs in Figures 5.5 and 5.6 lift to

cycles d−b and b−a respectively, and the positive braid twist homeomorphisms

lift to positive Dehn twists along these cycles. Thus the monodromy around

the critical points of fG agrees with the monodromy in Lekili’s replacement

fibration in Section 4.7. Thus the total spaces of both fibrations restricted to

disks inside the round 1-handle images are diffeomorphic.
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a
b

d

Figure 5.10: Branched covering φ : Σz → D × {z}

Finally, if we lift the annulus A in D × C−1 (depicted on the right in

Figure 5.9) we obtain a family of cycles in the fibers above the circle C−1, one

cycle on each fiber. Looking at the fibers above Ct as t ranges from −1 to 0,

we see that as A shrinks to a single loop, these cycles each shrink to a point in

the fibers. Passing the circle C, we observe fiberwise 1-surgeries on each of the

fibers, corresponding to the attachment of a round 2-handle (an upside-down

round 1-handle). Thus, starting at z, if we cross C via a path passing between

α and β the corresponding 1-surgery will be along a. This agrees with Lekili’s

description, and hence the round 2-handles attachments are isotopic in both

fibrations. As the round handle framings are determined by the monodromy

inside C (which we verified matches Lekili’s description), we see that V ∼= VG.

Furthermore, it is not hard to see that the restriction of G to ∂V can be made

to agree with the restriction of H by matching them fiberwise, as required.

Then for each anti-Lefscetz critical point p, we replaceH on a neighborhood

of p with the local covering G. As noted above, all new vanishing cycles

74



0

−1

0

Figure 5.11: Neighborhood of F ⊂ X with an extra 2-handle and round 1-
handle added

introduced are non-separating, and all fibers are still connected. Furthermore,

we can push the boundary of the new cap over any Lefschetz or anti-Lefshcetz

critical points, so that its image is parallel with the boundary of the base

D2. Repeating this procedure for each anti-Lefschetz critical point yields the

required broken Lefschetz fibration.

Now suppose that X is an oriented closed 4-manifold, and that F ⊂ X is

an embedded surface with [F ]2 = 0.

Proof of Theorem 1.4.4. We first build a concave broken fibration on a neigh-

borhood of F ⊂ X, with no Lefschetz or anti-Lefschetz critical points. Starting

with the standard 2g 1-handle diagram of νF ∼= F ×D2, where g is the genus

of F , this could be accomplished by adding canceling handle pairs as in Ex-

ample 4.6.2. Notice, however, that the induced open book on the boundary

would then have disconnected binding, which would prevent us from applying

Theorem 1.4.3.
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0
0

−1

∪ two 3-handles
∪ 4-handle

Figure 5.12: Handlebody structure of a neighborhood of S2 in S4

We thus instead think of the lone canceling 3-handle as being attached as a

1-handle toX\νF , and construct a concave fibration f1 onX1 = νF\{3-handle},

whose boundary open book decomposition has connected page and binding

(see Figure 5.11). Theorem 1.4.3 then gives a convex f2 on the complement

X2 = X\X1, which matches f1 along the boundary. Gluing f1 and f2 gives

the desired fibration f , where Properties 1-4 all follow from the corresponding

properties in Theorem 1.4.3.

In the case when there is an embedded sphere transversely intersecting F in

a single point, we can start with the flat product fibration νF → D2, to which

we attach a 2-handle embedded in X along a trivial section of the boundary.

The desired branched covering can be constructed first along νF (fiberwise),

and then extended along this 2-handle. A matching branched covering over

the complement of νF ∪ {2-handle} is then constructed as in Section 5.2.

Example 5.3.2 (Broken Lefschetz fibration on S4 via branched coverings).

Consider the diagram of S4 in Figure 5.12. As in Figure 4.5, the union of all

0,1, and 2-handles in this decomposition gives a neighborhood of an unknotted

S2 ⊂ S4, together with an additional round 1-handle and (ordinary) 2-handle
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attached. Call the union of these handles X1, and set X2 = S4\X1. The

open book decomposition on ∂X1 = ∂X2 induced by the concave fibration

f1 : X1 → S2 from the above proof will have a punctured torus page with

trivial monodromy (see [16]). Hence it can be represented by a 4-fold simple

branched covering h : ∂X2 → S3 with two trivial sheets, and whose branch

locus in S3 is the closure of the trivial 5-strand braid (h can be described

fiberwise by adding a trivial sheet to the branched covering in Figure 5.1).

The branched covering h extends to a covering H : X2 → D4, which is

built by turning the handle decomposition from Figure 5.12 upside-down, and

viewing X2 as a 0-handle with two 1-handles attached. The 0-handle can be

expressed as a 4-fold covering of D4 branched over three properly embedded

unknotted disks. For each 1-handle we extend this covering over, a properly

embedded unknotted disk is added to the branch locus. Hence the branch locus

BH of H in D4 ∼= D2×D2 is isotopic to the braided surface {p1, . . . , p5}×D2,

for some collection of disjoint points {p1, . . . , p5} ⊂ D2. The only critical

points in the resulting broken Lefschetz fibration f : S4 → S2 will thus lie

along round 1-handle singularity in X1, and we recover Auroux, Donaldson,

and Katzarkov’s example in [4].

Given an arbitrary closed 4-manifold X, the above procedure can be re-

peated by adding the diagram in Figure 5.12 to any handle diagram for X.

Alternatively, instead of adding Figure 5.12 we could obtain a higher genus

fibration by adding the diagram in Figure 5.11 (along with two 3-handles, and

2g 0-framed 2-handles to cancel the 1-handles). When g > 0, the monodromy

of the induced boundary open book will not be trivial however (see [16]).
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