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Abstract of the Dissertation

Almost-Kähler Anti-Self-Dual Metrics

by

Inyoung Kim

Doctor of Philosophy

in

Mathematics

Stony Brook University

2014

We show the existence of strictly almost-Kähler anti-self-dual metrics on certain

4-manifolds by deforming a scalar-flat Kähler metric. On the other hand, we prove

the non-existence of such metrics on certain other 4-manifolds by means of Seiberg-

Witten theory. In the process, we provide a simple new proof of the fact that

any almost-Kähler anti-self-dual 4-manifold must have a non-trivial Seiberg-Witten

invariant.
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Chapter 1

Introduction

In this thesis, we study almost-Kähler anti-self-dual metrics on a 4-manifold M .

These metrics can be obtained by deforming a scalar-flat Kähler metric. Many exam-

ples of scalar-flat Kähler metrics have been constructed by Kim, LeBrun, Pontecorvo

[12], [15] and Rollin, Singer [30]. And the deformation theory of such metrics has

been studied [20].

In the opposite direction, we show that an almost-Kähler anti-self-dual 4-manifold

has a unique solution of the Seiberg-Witten equation for an explicit perturbation

form. Combining with Liu’s theorem [22], we get useful topological information

when we also assume M admits a positive scalar curvature metric. In particular, we

show that if a simply connected 4-manifold admits an almost-Kähler anti-self-dual

metric and also a metric with positive scalar curvature, then it is diffeomorphic to

one of CP 2#nCP 2 for n ≥ 10.
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Chapter 2

Geometry of almost-Kähler anti-self-dual Metrics

Let M be a compact, oriented smooth 4-dimensional manifold. A smooth fiber-

wise linear map J : TM → TM on M is called an almost-complex structure when

J satiesfies J2 = −1. If a smooth manifold M admits J , its structure group reduces

to GL(2,C) and we can think of TM as a complex vector bundle. Therefore, Chern

classes of (M,J) are well-defined. It is well-known that we have the following relation

between the Pontryagin and Chern classes [25]

p1(TM) = c2
1(TM)− 2c2(TM).

On the other hand, by the Hirzebruch signature theorem, we have

τ(M) =
1

3
〈p1(TM),M〉,

where τ(M) is the signature of the manifold. From this, we get

c2
1 = 2χ+ 3τ,

where χ is the Euler characteristic of M .

Let (M,ω) be a symplectic 4-manifold. The symplectic form ω is a closed and

nondegenerate 2-form. By this, we mean dω = 0, and for each x ∈ M and nonzero
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v ∈ TxM , there exists nonzero w ∈ TxM such that ω(v, w) 6= 0. We say ω are

compatible with J if

ω(Jv1, Jv2) = ω(v1, v2)

for each x ∈ M and v1, v2 ∈ TxM and ω(v, Jv) > 0 for all nonzero v ∈ TxM . It

is known that the space of almost-complex structures which is compatible with ω is

nonempty and contractible [24]. In this case, we can define an associated riemannian

metric by

g(v, w) = ω(v, Jw).

Then g is a positive symmetric bilinear form and J is compatible with g, that is,

g(v, w) = g(Jv, Jw).

Definition 1. An almost-Kähler structure on a symplectic 4-manifold (M,ω) is a

pair (g, J) such that J is compatible with ω and g is defined by g(v, w) = ω(v, Jw).

Suppose ei, 1 ≤ i ≤ 4, are orthonormal basis of 1-forms on an oriented riemannian

4-manifold. Then we define ei ∧ ej, i < j, as an orthonormal basis of 2-forms and

define the Hodge-star operator by

α ∧ ∗β = 〈α, β〉vol.

It can be checked directly ∗2 = 1 on 2-forms. According to this, the bundle of 2-forms

decomposes as self-dual and anti-self-dual 2-forms

Λ2 = Λ+ ⊕ Λ−, (1)
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where Λ+ is the +1 eigenspace of the Hodge-star operator ∗ and Λ− is the -1

eigenspace of ∗. The Hodge-star operator ∗ is conformally invariant, and there-

fore this decomposition depends only on the conformal structure of M . Note that a

2-form correspond to a skew-adjoint transformation of TxM using the metric. In this

respect, the decomposition (1) corresponds to the following decomposition of the Lie

algebra of SO(4)

Lie(SO(4)) = Lie(SO(3)⊕ SO(3)).

According to this, we have the decomposition of the curvature operator R : Λ2 → Λ2,

R =

 W+ + s
12

r̊

r̊ W− + s
12


where the first block represents a map from Λ+ to Λ+ and r̊ = r− s

4
g is the trace-free

part of the Ricci curvature r and s is the scalar curvature. We say g is anti-self-dual

(ASD) if W+ = 0. This condition depends only on the conformal structure since W+

invariant under the conformal change of the metric.

Here is one useful way to express an almost-Kähler structure.

Lemma 1. Let (M, g, ω, J) be an almost-Kähler structure. Then ω is a self-dual

harmonic 2-form ω with |ω| =
√

2.

Proof. The easiest way to see this is to use an orthonormal basis. Since J is or-

thogonal with respect to g, there exists an orthonormal basis of the form {e1, e2 =

J(e1), e3, e4 = J(e3)}. Then the corresponding 2-form ω is

e1 ∧ e2 + e3 ∧ e4.
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This is self-dual and |ω| =
√

2. Since ω is closed and self-dual, we get

d∗ω = − ∗ d ∗ ω = − ∗ dω = 0,

and therefore,

∆ω = (dd∗ + d∗d)ω = 0

Thus, we can conclude ω is a self-dual harmonic 2-form with |ω| =
√

2.

On an oriented riemannian 4-manifold, there is well-known Weitzenböck formula

[3] for self-dual 2-forms

∆ω = ∇∗∇ω − 2W+(ω, ·) +
s

3
ω. (2)

If we take an inner product with ω in (2), we get

< ∆ω, ω >=< ∇∗∇ω, ω > −2W+(ω, ω) +
s

3
|ω|2.

Using the fact |ω| =
√

2 and ω is harmonic, we get

0 =
1

2
∆|ω|2 + |∇ω|2 − 2W+(ω, ω) +

s

3
|ω|2

0 = |∇ω|2 − 2W+(ω, ω) +
2s

3
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Then, if g is an almost-Kähler ASD metric, then this simplifies to the following,

0 = |∇ω|2 +
2s

3
. (3)

This formula tells us that the scalar curvature of an almost-Kähler ASD metric

is always nonpositive. Moreover, we can identify the zero set of s with the zero set

of ∇ω = 0. Also, it tells us that the scalar curvature vanishes identically if and only

if (M, g, ω, J) is a Kähler manifold. Note that anti-self-dual metric is real analytic

in suitable coordinates. Thus, ∇ω is also real analytic and therefore, it does not

vanish on an open set. Moreover, it can only vanishes on the union of real analytic

subvarieties. Thus, we can conclude s 6= 0 on an open dense subset and therefore,

it’s not Kähler on this set.

When we have an almost-complex structure J on M , the complexified tangent

vector bundle decomposes as

TM ⊗ C = T 1,0 ⊕ T 0,1,

where

T 1,0 = {Z = X − iJ(X) ∈ TC|X ∈ TM}

T 0,1 = {Z = X + iJ(X) ∈ TC|X ∈ TM}.

We define v1,0 and v0,1 by

v1,0 =
1

2
(v − iJv), v0,1 =

1

2
(v + iJv).
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There is a natural almost-complex structure J∗ on TM∗ defined by

J∗f ∗(v) = f(J(v))

Using this, the complexified cotangent bundle decomposes as

T ∗C = Λ1,0 ⊕ Λ0,1,

where

Λ0,1 = {f ∈ Hom(TM,C) = f(J(X)) = −if(X)}

Λ1,0 = {f ∈ Hom(TM,C) = f(J(X)) = if(X)}.

When we have a metric g such that g(X, Y ) = g(JX, JY ), it induces a map

(TM, J)→ (TM∗, J∗),

where v∗ = g(v, ·). Then we can check this map is complex anti-linear. Then, it can

be shown there is a complex-isomorphism

T 1,0 ∼= Λ0,1.

One useful way to characterize Λ0,1 is that Λ0,1 is the annihilator of T 1,0. Suppose

f ∈ Λ0,1 and v − iJv ∈ T 1,0. Then if we evaluate complex linearly, we have

f(v − iJv) = f(v)− if(J(v)) = f(v) + i2f(v) = 0

7



When we evaluate 2-forms on complexified vectors, we extend it complex linearly on

both factors. Accordingly, we define extended metric on TC by

gC(iX, Y ) = igC(X, Y )

gC(X, iY ) = igC(X, Y ),

where X, Y ∈ TM . In this convention, we have

gC(T 1,0, T 1,0) = 0.

Recall ω is related to g by ω(X, Y ) = g(JX, Y ). This can be extended complex

bilinearly on both factors and therefore, we can think of ω as an element of Λ2
C. We

claim ω associated with metric gC is an element of Λ1,1.

Lemma 2. Suppose (M, g, ω, J) is an almost-Kähler 4-manifold. Then ω is a (1,1)-

form.

Proof. We use g = gC. It is enough to show that ω(X, Y ) = 0 for X, Y ∈ T 1,0. Since

JX ∈ T 1,0 when X ∈ T 1,0, the Lemma follows from the fact g(T 1,0, T 1,0) = 0. Or

since ω(JX, JY ) = ω(X, Y ), we can conclude ω ∈ Λ1,1.

Following the outline given in [32], we show that when dω = 0, the zero set of

Nijenhuis tensor N is equal to the zero set of ∇ω. Then by Armstrong’s theorem [1],

we can conclude that ∇ω should vanish somewhere, or equivalently, scalar curvature

s should vanish somewhere unless it satisfies 5χ+ 6τ = 0.
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Lemma 3. Suppose (M, g, ω, J) is an almost-Kähler 4-manifold. Then, we have

∇ω ∈ Λ2,0 ⊕ Λ0,2 ⊗ T ∗C.

Proof. It is enough to show that

∇Xω(Y, Z) = 0

for Y ∈ T 1,0 and Z ∈ T 0,1. Using this fact and torsion-free property of the metric,

we have

∇Xω(Y, Z) = Xω(Y, Z)− ω(∇XY, Z)− ω(Y,∇XZ)

= Xg(JY, Z) + g(JZ,∇XY )− g(JY,∇XZ)

= g(∇XJY, Z) + g(JY,∇XZ) + g(JZ,∇XY )− g(JY,∇XZ)

= ig(∇XY, Z)− ig(Z,∇XY ) = 0.

Lemma 4. Suppose (M, g, ω, J) is an almost-Kähler structure. For Y, Z ∈ T 1,0 and

X ∈ TC, we have

(∇Xω)(Y, Z) = 2ig(∇XY, Z).

And for Y, Z ∈ T 0,1, we have

(∇Xω)(Y, Z) = −2ig(∇XY, Z).
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Proof. According to the definition, we have

(∇Xω)(Y, Z) = Xω(Y, Z)− ω(∇XY, Z)− ω(Y,∇XZ)

= Xg(JY, Z) + g(JZ,∇XY )− g(JY,∇XZ)

= g(∇XJY, Z) + g(JZ,∇XY ).

For, Y, Z ∈ T 1,0, we have JY = iY and JZ = iZ. Thus, we have

(∇Xω)(Y, Z) = 2ig(∇XY, Z).

For, Y, Z ∈ T 0,1, we have JY = −iY and JZ = −iZ. Thus, we get

(∇Xω)(Y, Z) = −2ig(∇XY, Z).

Recall that the Nijenhuis tensor is a map

N : α→ (dα)0,2,

where α ∈ Λ1,0. Thus, we can think of N as a section of Λ2,0 ⊗ Λ1,0.

By the torsion-free property of the Levi-Civita connection and Lemma 4, for

X, Y, Z ∈ T 0,1, we have

g([X, Y ], Z) = g(∇XY, Z)− g(∇YX,Z)
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= − 1

2i
(∇Xω)(Y, Z) +

1

2i
(∇Y ω)(X,Z).

If the Nijenhuis tensor vanishes, then [X, Y ] ∈ T 0,1 and therefore, we have

g([X, Y ], Z) = 0. Thus, we get

(∇Xω)(Y, Z)− (∇Y ω)(X,Z) = 0

On the other hand, by definition we have

dω(X, Y, Z) = (∇Xω)(Y, Z)− (∇Y ω)(X,Z) + (∇Zω)(X, Y ).

Thus, if dω = 0 and N vanishes, we can conclude

(∇Zω)(X, Y ) = 0

forX, Y, Z ∈ T 0,1. Also, from Lemma 3, we have (∇Xω)(Y, Z) = 0 and (∇Y ω)(X,Z) =

0 for X, Y ∈ T 0,1 and Z ∈ T 1,0. Then from dω = 0, we get

(∇Zω)(X, Y ) = 0.

Combining these two, we can conclude (∇Zω)(X, Y ) = 0 for Z ∈ TC and X, Y ∈ T 0,1.

When N = 0, we also have [T 1,0, T 1,0] ∈ T 1,0 and therefore g([X, Y ], Z) = 0 holds

for X, Y, Z ∈ T 1,0. In the same way, we can show (∇Xω)(Y, Z) = 0 for for Z ∈ TC

and X, Y ∈ T 1,0. Combining with Lemma 3, we can conclude when dω = 0 holds,

the zero set of N is equal to the zero set of ∇ω.
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Armstrong showed a certain topological condition hold when the Nijenhuis tensor

is nowhere vanishing. We’ll see almost all of our examples do not satisfy this topo-

logical condition, and therefore, we can conclude ∇Xω should vanish somewhere.

Equivalently, the scalar curvature should vanish somewhere.

Theorem 1. (Armstrong) Let (M, g, J) be a compact smooth 4-manifold with an

almost-complex structure J . If the Nijenhuis tensor N is nowhere vanishing, then

we have 5χ+ 6τ = 0.

Proof. We saw N ∈ Λ1,0⊗Λ2,0. If there is a nowhere vanishing section of Λ1,0⊗Λ2,0,

then there is also such one of Λ0,1⊗Λ0,2. And the Euler characteristic of this bundle

is zero. Note that on a 4-dimensional manifold, Euler class = second Chern class c2.

Since Λ0,1 is a rank-2 vector bundle and Λ0,2 is a line bundle, the second Chern class

of the bundle Λ0,1 ⊗ Λ0,2 can be expressed by

c2(Λ0,1 ⊗ Λ0,2) = c1(Λ0,2)0c2(Λ0,1) + c1(Λ0,2)c1(Λ0,1) + c1(Λ0,2)2c0(Λ0,1) = 2c2
1 + c2.

Here we used the fact that c1(E) = c1(∧2E) for a rank 2 vector bundle and c1(M) :=

c1(T 1,0) = c1(Λ0,2) and c2(M) = c2(Λ0,1). Since we have c2
1 = 2χ + 3τ and c2(M) =

the Euler class, we can conclude that

c2(Λ0,1 ⊗ Λ0,2)(M) = 2c2
1 + c2 = 2(2χ+ 3τ) + χ = 5χ+ 6τ.

Thus, when there is a nowhere vanishing section of Λ0,1 ⊗ Λ0,2, we have

c2(Λ0,1 ⊗ Λ0,2)(M) = 5χ+ 6τ = 0.
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Example 1. In the next chapter, we show that the following examples admit almost-

Kähler anti-self-dual metrics for certain values n.

1) CP 2#nCP 2.

In this case, χ = 3 + n and τ = 1− n. Using this, we have

5χ+ 6τ = 5(3 + n) + 6(1− n) = 21− n

Thus, except n = 21, we can conclude the scalar curvature of an almost-Kähler ASD

metric should vanish somewhere.

2) S2 × T 2#nCP 2.

In this case, we have χ = n and τ = −n. Thus, we have

5χ+ 6τ = 5n− 6n = −n

Thus, for n ≥ 1, the scalar curvature should vanish somewhere.

3) S2 × Σg#nCP 2.

In this case, we have χ = −4(g − 1) + n and τ = −n. Thus, we have

5χ+ 6τ = −20g + 5n+ 20− 6n = −20g − n+ 20

Thus 5χ+ 6τ is always negative for n ≥ 0 and g ≥ 2.

Suppose a smooth 4-manifold M admits an almost-complex structure J and a
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compatible metric g. Then the complex-valued 2-forms decompose as

Λ2T ∗C = (Λ2.0 ⊕ Λ0,2)⊕ Λ1,1.

On the other hand, for self-dual 2-forms on an oriented riemannian manifold, we

have the following decomposition

Λ2T ∗C = Λ+
C ⊕ Λ−C .

As before, we define an associated 2-form ω by ω(v, w) = g(Jv, w). When it is not

required dω = 0, (M, g, ω, J) is called an almost-Hermitian manifold. In this case,

two decompositions are compatible in the following way.

Lemma 5. Let (M, g, ω, J) be an almost-Hermitian manifold. Then we have

Λ+
C = Cω ⊕ Λ2.0 ⊕ Λ0,2,

Λ−C = Λ1,1
0 ,

where Λ1,1
0 is the orthogonal complement of ω in the space of Λ1,1.
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Chapter 3

Deformation of scalar-flat Kähler metrics

Many examples of scalar-flat Kähler metrics are known [12], [15], [30] and their

deformation theory has been studied [20]. Deformation theory of ASD metrics has

been known in a purely differential geometric point of a view on a 4-manifold M

using Atiyah-Singer Index theorem.

In this chapter, we study them together at the twistor level using short exact

sequences of sheaves. This chapter mainly rely on [20].

In some sense scalar-flat Kähler metrics are special because they are one of ex-

tremal Kähler metrics, which is introduced by Calabi and moreover, this metric is

especially anti-self-dual [20]. Since this is a central fact in our discussion, we include

the proof.

Proposition 1. Let g be a Kähler metric on a complex surface. Then g is anti-self-

dual if and only if its scalar curvature s = 0.

Proof. Let us begin by considering the curvature tensor of a Kähler manifold. On a

Kähler manifold, we have ∇J = 0, where ∇ is the Levi-Civita Connection. We claim

that R(X, Y ) is a (1, 1)-form. Since ∇J = 0, we have R(X, Y )JZ = JR(X, Y )Z.

Using this, it follows that

< R(X, Y )JZ, JW >=< JR(X, Y )Z, JW >=< R(X, Y )Z,W >
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On the other hand, by the first Bianchi identity of the curvature operator, we have

< R(JX, JY )Z,W >=< R(Z,W )JX, JY >=< R(Z,W )X, Y >=< R(X, Y )Z,W > .

Thus, we can conclude that

R ∈ Λ1,1 ⊗ Λ1,1.

On the other hand, Λ1,1 decomposes as

Λ1,1 = Rω ⊕ Λ−.

Thus the curvature operator R|Λ+ : Λ+ → Λ+ is Rω → Rω. So the corresponding

matrix has only one component, which is the trace of this map. Note that W+

is the trace-free part of R|Λ+ and therefore the trace of W+ + s
12
I is s

4
. Thus,

R|Λ+ : Λ+ → Λ+ have the following form.

W+ +
s

12
I =


0 0 0

0 0 0

0 0 s
4


Therefore, we have

W+ =


− s

12
0 0

0 − s
12

0

0 0 s
6


Thus, s = 0 if and only if W+ = 0.
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Let us consider the geometry of scalar-flat Kähler metrics briefly. This will be

useful later when they are compared with almost-Kähler ASD metrics. We define

the Ricci form ρ by

ρ(X, Y ) = Ric(JX, Y ).

Then ρ are real closed (1,1) form. The important theorem on a Kähler manifold is

that the first Chern class of the manifold is represented by 1
2π
ρ

c1(M) := c1(K−1) = [
ρ

2π
].

We can decompose a (1, 1) form ϕ, by ϕ = 1
2
(Λϕ)ω + ϕ0, where Λϕ = 〈ϕ, ω〉 and

ϕ0 ∈ ∧1,1
0 . From this, we can write the Ricci from ρ as ρ = 1

4
sω + ρ0. Using the fact

[ρ] = 2πc1 and dµ = [ω]2

2
, we get

2πc1 · [ω] = [ρ] · [ω] =
1

4
[sω] · [ω] =

∫
M

1

2
s dµ

4πc1 · [ω] =

∫
M

sdµ.

This gives us the following proposition.

Proposition 2. Suppose (M,ω) is a Kähler manifold with the scalar curvature s.

Then we have the following identity

∫
M

sdµ = 4πc1 · [ω]. (4)

Yau proved that if c1 · [ω] ≥ 0, or equivalently if the total scalar curvature satisfies

17



∫
M
sdµ ≥ 0, then either Γ(M,O(Km)) = 0,∀m > 0 or c1 = 0, where c1 ∈ H2(M,R)

[35]. Suppose u ∈ Γ(M,O(Km)). Then Yau showed that

vol(D) = −m
∫
sdµ,

where D is the zero locus of the section u. If we assume c1 · [ω] ≥ 0, then we can

conclude vol(D) = 0. Thus, u is a nowhere-zero section. This implies Km is trivial

and therefore, c1 = 0. By the same argument, we can conclude if c1 · [ω] = 0, then

Γ(M,O(Km)) = 0,∀m 6= 0 or c1 = 0 [20].

Theorem 2. (Yau) Let (M,J) be a complex surface which admits a Kahler metric

ω such that c1 · [ω] = 0. If c1 6= 0, that is, if M is not covered by a complex torus or

K3 surface, then M is a ruled surface or its blown up.

For a scalar-flat Kähler metric, we have c1 · [ω] = 0 from Proposition 2. Therefore,

by Yau’s theorem, we can conclude that a scalar-flat Kähler surface is either covered

by K3 or T 4 or it is a ruled surface or its blown up.

There are well-known obstructions for the existence of constant scalar curvature

Kähler metrics. Namely, these are Matsushima-Lichnerowicz obstruction [21], [23]

and Futaki obstruction [8], [9]. Briefly, the M-L obstruction tells us that if the scalar

curvature of a Kähler manifold is constant, the Lie algebra of its holomorphic vector

fields is the same with the complexification of Killing fields up to parallel vector

fields.

Theorem 3. (Matsushima-Lichnerowicz ) Suppose (M,ω) is a compact Kähler man-

ifold with constant scalar curvature. Then the space of holomorphic vector fields is

18



direct sum of the space of parallel (1, 0) vector fields and the space of vector fields of

the form (∂̄gf)] where f is the solution of the following equation

∆2f + 2〈ddcf, ρ〉 = 0.

And the imaginary part of (∂̄gf)] correspond to a Killing field with a zero.

Let us explain this theorem briefly following [19]. Suppose gC be a complex-

bilinear extension of g. Then we define (∂̄gf)] by

gC(v, (∂̄gf)]) = (∂̄f)(v).

Note that (∂̄gf)] is a (1, 0)-vector field and it is a holomorphic vector field when it

satisfies ∂̄(∂̄gf)
]

= 0. When the scalar curvature s is constant, we have

∂̄(∂̄gf)
]

= 0 ⇐⇒ ∆2f + 2〈ddcf, ρ〉 = 0

and the latter equation is a real equation. Thus, when a complex-valued function f

is a solution of this equation, it’s real and imaginary parts are also solutions. And

it’s proved that when f is a real solution, the imaginary part of (∂̄gf)
]

is a Killing

field with zero and every such Killing filed arises in this way.

Another obstruction for constant scalar curvature Kähler metrics is the Futaki

obstruction [8], [9]. Suppose (M,J) is a complex manifold and H1,1(M,R)+ be the

cohomology classes of Käher forms on (M,J). By the Hodge theorem, every de-

Rham class of 2-forms has a unique harmonic representative. The difference between
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the ricci form ρ and it’s harmonic part ρH is expressed by the Ricci potential

ρ = ρH + ddcφω.

Then the Futaki character is defined by

F(Ξ, [ω]) =

∫
M

Ξ(φω)dµ,

where F : b(M)×H1,1(M,R)+ −→ C and b(M) is the space of holomorphic vector

fields on M . It is known that F depends on [ω] rather than ω.

By taking an inner product with ω in ρ = ρH + ddcφω, we can conclude that if s

is constant, then ∆φω = 0. Then we can conclude φω is constant since we have

∫
M

〈δdφω, φω〉dµ =

∫
M

〈dφω, dφω〉dµ = 0.

If we normalize φω further such that
∫
φω = 0, then we can conclude the ricci

potential φω = 0 and thus the Futaki character F is zero.

When our holomorphic vector field is given by 2(∂̄gf)] with
∫
M
fdµ = 0, the

Futaki character can be expressed by [20]

F(Ξ, [ω]) = −1

2

∫
M

fsdµ.

Proposition 3. [20] The differentiation of the Futaki character with respect to ω
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has the following formula,

d

dt
F(Ξ, [ω + tα])|t=0 = 2(fρ, αH),

where Ξ = 2(∂̄gf)] with
∫
M
fdµ = 0 and α is a closed (1, 1)-form and αH is its

harmonic part. Here we denote global L2 inner product as (, ).

Remark 1. If a compact smooth 4-manifold M admits a scalar-flat Kähler metric,

then we have c1 · [ω] = 0. Thus, by Yau’s theorem, either b+ = 1 or M is covered T 4

or K3. Suppose c1 6= 0. Since ω is a self-dual harmonic 2-form, we can conclude c1

belongs to H−. Thus, we have c2
1 < 0. Let us consider CP 2#nCP 2. Then we have

χ = 3 + n and τ = 1− n. Thus, we have

c2
1 = 2χ+ 3τ = 2(3 + n) + 3(1− n) = 9− n.

Thus, we can conclude that CP 2#nCP 2 with n ≤ 9 cannot admit scalar-flat Kähler

metrics.

For the existence part, LeBrun constructed explicit scalar-flat Kähler metrics on

a ruled surface and its blown up, S2 × Σg#nCP 2 for n ≥ 2 and g ≥ 2 [15] and

Kim, Pontercorvo extended this result for n ≥ 1 [13]. Kim, LeBrun and Pontecorvo

constructed scalar-flat Kähler metrics on CP 2#14CP 2 and S2×T 2#nCP 2 for n ≥ 6

[12] using the result of Donaldson-Friedman [5] . And Rollin and Singer improved this

result on CP 2#10CP 2 [30]. Note that from the above remark, 10 is the minimum

number for which scalar-flat Kähler metrics can exist on CP 2#nCP 2. Also Kim,
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Pontercorvo proved any one-point blow up of a non-minimal scalar-flat Kähler surface

also admits a scalar-flat Kähler metric [13]. Therefore, we get the following.

Theorem 4. [12] [13] [30] Suppose M is diffeomorphic to one of CP 2#nCP 2 for

n ≥ 10. Then M admits a scalar-flat Kähler metric.

We study deformation theory of a scalar-flat Kähler metric. We deform this

metric in two different categories, namely in scalar-flat Kähler metrics and ASD

metrics. The obstruction as ASD metrics lies in

CokerDW+
∼= H2(Z,ΘZ),

where Z is the twistor space of M . For a scalar-flat Kähler metric, Pontecorvo’s

result [29] gives us an additional structure on the twistor space. Before stating this

result, let us explain about the twistor space briefly.

A 4-dimensional riemannian manifold M with an ASD metric has its companion

complex 3-dimensional manifold Z. This Z is the total space of the sphere bundle of

self-dual 2-forms on M and so we have a bundle map π : Z → M . The Levi-Civita

connection on M induces the connection on TZ. Using this connection, we can split

TZ ∼= H ⊕ V , where H is the horizontal part which is isomorphic to π∗(TM) and

V is the vertical part. Since fibers are 2-spheres, V has a natural almost-complex

structure. Fiber over x ∈ M is a space of self-dual 2-forms with unit length at x.

Given a metric g on M , self-dual 2-forms and almost-complex structure correspond

via the map ω(v, w) = g(Jv, w). Thus, we can think of the fiber over x as the set of

all linear maps Jx : TMx → TMx such that J2
x = −1. Suppose z ∈ Z and π(z) = x.
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Then Hz = π∗(TMx) and since z itself represent a Jx in TMx, we can assign this

Jx on Hz. Thus, TZ admits an almost-complex structure. The remarkable fact is

that when g is ASD, this almost-complex structure on Z is integrable and therefore,

the twistor space Z becomes a complex manifold [2]. In addition to this, we have a

fiberwise antipodal map

ω → −ω

and this gives us a fixed-point free anti-holomorphic involution σ on the total space

Z.

Suppose M admits a scalar-flat Kähler metric g. In this case, we have the fol-

lowing Pontecorvo’s result [29]. An almost-complex structure J and its conjugate

−J give us embeddings of M into Z as complex hypersurfaces and we denote them

by Σ and Σ and their sum by D = Σ + Σ. Then the anti-holomorphic involution σ

interchanges Σ and Σ and so we have

σ(Σ + Σ) = Σ + Σ.

Thus, we get a real bundle D = [Σ + Σ]. The main result is the following,

[D] ∼= K
− 1

2
Z .

Conversely, let Z → M be a twistor fibration and suppose we have a complex hy-

persurface Σ ⊂ Z which meets every fiber at one point. Then Σ is diffeomorphic to

M and we can think of M as a complex surface induced from Σ. Suppose that we
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have [D] ∼= K
− 1

2
Z , where D = Σ + Σ. Then there is a metric g in the conformal class

[g] such that (M, g, J) is scalar-flat Kähler.

Using this result, we have the following, which is originally discovered by Boyer

[4] in a different way.

Theorem 5. [4], [29] Let M be a compact, smooth manifold with an ASD metric

g and assume the first Betti number b1(M) is even. Suppose there is a complex

structure J such that g(v, w) = g(Jv, Jw). Then the conformal class of g has a

unique scalar-flat Kähler metric.

From this theorem, we can conclude that deforming scalar-flat Kähler metrics is

equivalent to deforming ASD hermitian conformal structures. And the latter corre-

spond to the deformation of the pair (Z,D) preserving the real structure. Therefore,

when obstruction vanishes, the moduli space of the ASD hermitian conformal struc-

tures is the real slice of H1(Z,ΘZ,D).

Lemma 6. When obstruction vanishes, the deformation of scalar-flat Kähler metrics

corresponds to the real slice of H1(Z,ΘZ,D), where ΘZ,D is the sheaf of holomorphic

vector fields on Z which are tangent to D. And its obstruction lies in H2(Z,ΘZ,D).

Remark 2. Note that deformation of scalar-flat Kähler metrics with a fixed complex

structure corresponds to the sheaf ΘZ ⊗ ID.

Here we denote the ideal sheaf ofD by ID. LeBrun and Singer identifiesH i(Z,Θ⊗

ID) using the Penrose transform [20].

Theorem 6. (LeBrun and Singer) Let M be a compact, smooth 4-manifold with a
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scalar-flat Kähler metric. Let us consider the following elliptic operator.

0 −→ Λ−(M)
S−−−→ Λ+(M) −→ 0,

where

S(α) = d+δα− 1

2
〈ρ, α〉ω

for α ∈ Λ−. Then we have

H1(Z,Θ⊗ ID) ∼= KerS

and

H2(Z,Θ⊗ ID) ∼= CokerS.

The operator S is elliptic and the index of S is −τ(M).

Remarkably, this cokerS turns out to be closely related with the M-L obstruction

and the Futaki character.

Proposition 4. [20] Suppose (M,ω) is a compact Kähler manifold with a scalar-flat

Kähler metric. Assume also M is not Ricci flat. Then cokerS is identified with C∞

functions such that

∆2f = −2〈ddcf, ρ〉

and

(fρ, α)L2 = 0,

where α is any ASD harmonic 2-form and ρ is the Ricci form.
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In particular, if there is no holomorphic vector field, then cokerS = 0 and there-

fore, the obstruction vanishes.

Lemma 7. (Pontecorvo) Let M be a compact scalar-flat Kähler surface. Then, the

normal bundle of D ⊂ Z is given by

ND = K−1
D ,

where D ∼= Σ + Σ and Z is the twistor space of M .

Proof. Recall by Pontecorvo’s theorem, we have

[D] ∼= K
− 1

2
Z .

On the other hand, by the adjunction formula, the normal bundle and KD are given

by

ND = [D]|D,

KD = (KZ ⊗ [D])|D.

Since [D] ∼= K
− 1

2
Z , we have the following,

ND = K
− 1

2
Z |D

KD = (KZ ⊗K
− 1

2
Z )|D = K

1
2
Z |D.

Thus, we get

ND
∼= K−1

D
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Proposition 5. [20] Let (M,ω) be a compact scalar-flat Kähler surface and let Z

be its twistor space. Suppose c1 6= 0. If H2(Z,Θ ⊗ ID) = 0, then H2(Z,ΘZ,D) =

H2(Z,ΘZ) = 0.

Proof. By the Serre Duality, we have

H2(M,ΘM) ∼= H0(M,Ω(K)).

Note that the normal bundle of a rational curve on a ruled surface is trivial. Using

KP1 = O(−2) and the adjunction formula, we have

KM |P1 = O(−2)

Similarly, we have

ΩM |P1 = Ω|P1 ⊕ Id = O(−2)⊕ Id

Thus, we get

Ω(K)|P1 = (O(−2)⊕ Id)⊗O(−2) = O(−2)⊕O(−4)

Since M is a ruled surface and u ∈ H0(M,Ω(K)) is zero when restricted on the

rational curve, we can conclude that H0(M,Ω(K)) = 0. Thus, we get H2(D,ΘD) =

0, where D = Σ + Σ and Σ is a complex hypersurface in Z induced by a complex

structure on M .
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By Lemma 7, the normal bundle of D in Z is K−1
D . Also, by Yau’s theorem, we

have Γ(M,O(K l)) = 0,∀l 6= 0. Then, by the Serre duality we get

H2(D,ND) = H2(D,K−1
D ) ∼= H0(D,O(K2

D)) = 2H0(M,O(K2
M)) = 0.

Let us consider the following short exact sequences.

0 −→ ΘZ,D −→ ΘZ −→ ND −→ 0 (5)

0 −→ ΘZ ⊗ ID −→ ΘZ,D −→ ΘD −→ 0. (6)

From (6), we get the following long exact sequence,

· · · −→ H2(Z,ΘZ ⊗ ID) −→ H2(Z,ΘZ,D) −→ H2(D,ΘD) −→ · · ·

Thus, if we have H2(Z,ΘZ ⊗ ID) = 0, then we can conclude that

H2(Z,ΘZ,D) = 0.

Similarly, from (5), we get

· · · −→ H2(Z,ΘZ,D) −→ H2(Z,ΘZ) −→ H2(D,ND) −→ · · ·

Thus, when we have H2(Z,ΘZ,D) = 0, we get H2(Z,ΘZ) = 0.

Thus, if we can show CokerS vanishes, then we can easily conclude that obstruc-
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tions of deformation of scalar-flat Kähler metrics and ASD metrics vanish. From

the explicit formula of S, it’s possible to calculate CokerS in some cases and it’s

been shown that this actually vanishes for non-minimal scalar-flat Kähler surfaces

[12], [20]. Assuming obstruction vanishes, let us then count dimensions. First let us

consider the short exact sequence (6). Since D ∼= Σ + Σ, we have

χ(Z,ΘZ,D) = χ(Z,ΘZ ⊗ ID) + 2χ(M,ΘM).

When obstruction vanishes, we can think of −χ as the dimension of the moduli

space. We saw index S =−τ , which implies that

χ(Z,ΘZ ⊗ ID) = τ.

Thus, the dimension of scalar-flat Kähler metrics is given by

−χ(Z,ΘZ,D) = −τ − 2χ(M,ΘM).

By the index theorem, χ(M,ΘM) is given by

χ(M,ΘM) =

∫
M

(1 +
c1

2
+
c2

1 + c2

12
)(2 + c1 +

c2
1 − 2c2

2
)

= (
c2

1 + c2

6
+
c2

1

2
+
c2

1

2
− c2)(M) = (

7

6
c2

1 −
5

6
c2)(M)

=
7(2χ+ 3τ)− 5χ

6
=

9χ+ 21τ

6
=

3χ

2
+

7τ

2
.
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Therefore, the expected dimension of the moduli space of scalar-flat Kähler metrics

is

−χ(Z,ΘZ,D) = −τ − 2χ(M,ΘM) = −τ − (3χ+ 7τ) = −3χ− 8τ

Let us consider another short exact sequence (5). By Lemma 7, we have ND =

K−1
D . From this, we get

χ(Z,ΘZ) = χ(Z,ΘZ,D) + 2χ(M,K−1
M )

Let us calculate χ(M,K−1
M ). This is given by the Riemann-Roch formula,

χ(L) = χ(OM) +

∫
M

c1(L) (c1(L) + c1(K−1))

2
,

where L is any holomorphic line bundle on M . If L = K−1, we get

χ(K−1) = χ(OM) + c1(K−1) · c1(K−1) = χ(OM) + c2
1(M).

Since χ(OM) =
c21+c2

12
, we have

χ(K−1) =
c2

1 + c2

12
+ c2

1.

Using c2
1(M) = 2χ+ 3τ and c2(M) = χ, we get

χ(M,K−1
M ) =

2χ+ 3τ + χ

12
+ 2χ+ 3τ
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=
1

4
χ+

1

4
τ + 2χ+ 3τ.

Then we have

χ(Z,ΘZ) = χ(Z,ΘZ,D) + 2χ(M,K−1
M )

= 3χ+ 8τ +
1

2
χ+

1

2
τ + 4χ+ 6τ

=
1

2
(15χ+ 29τ).

Thus, when obstruction vanishes, we can conclude the dimension of the moduli space

of ASD metrics is given by

−1

2
(15χ+ 29τ).

Theorem 7. Suppose (M, g, J, ω) is a compact scalar-flat Kähler manifold. Assume

it is not Ricci-flat and obstruction of deformations vanish. Then the dimension of

the moduli of scalar-flat Kähler metrics is −3χ−8τ and the dimension of the moduli

of ASD metrics is −1
2
(15χ+ 29τ).

Remark 3. The dimension of the moduli of ASD metrics, −1
2
(15χ+ 29τ), is given

first by I. M. Singer from Atiyah-Singer Index theorem [7]. Also the dimension of

the moduli of scalar-flat Kähler metrics, (−3χ− 8τ), has been known to experts, for

example in another version of [13], but it seems it has not been written down in

detail.

In the following lemma, we show that there is a unique almost-Kähler ASD metric

in each conformal class which is close to one containing a scalar-flat Kähler metric.

Lemma 8. Let M be a compact, smooth 4-dimensional manifold with which admits
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a scalar-flat Kähler metric. Assume obstruction of deformation vanishes. If g is a

metric which is obtained from deformation of a scalar-flat Kähler metric, then there

is a unique almost-Kähler ASD metric in the conformal class of g.

Proof. We can find a unique metric in the conformal class of g such that the cor-

responding self-dual 2-form ω′ has |ω′| =
√

2. This ω′ is non-degenerate since it is

close to the Kähler form.

Example 2. Let us consider CP 2#nCP 2. It is non-minimal and therefore obstruc-

tion vanishes as proved in [20]. The dimension the moduli space of scalar-flat Kähler

metrics is given by

−3χ− 8τ = −3(3 + n) + 8(n− 1)

= −9− 3n+ 8n− 8 = −17 + 5n

On the other hand, the dimension of the moduli space of ASD metrics is given by

−(15χ+ 29τ)

2
= −(15(3 + n) + 29(1− n))

2

= −(45 + 15n+ 29− 29n)

2
= 7n− 37

Therefore, we have

7n− 37− (−17 + 5n) ≥ 0 ⇐⇒ n ≥ 10

and equality holds if and only if n = 10. This tells us that for CP 2#nCP 2, the

dimension of the moduli space of almost-Kähler ASD metrics is greater than or equal
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to the dimension of the moduli of scalar-flat Kähler metrics if and only if n ≥ 10 and

they are equal when n = 10. Thus, when n > 10, there exists a strictly almost-Kähler

ASD metric.

Example 3. Let us consider S2 × T 2#nCP 2. Using the fact that χ(S2 × T 2) =

χ(S2)χ(T 2) = 0 and χ(CP 2) = 3, we get

χ(S2 × T 2#nCP 2) = χ(S2 × T 2) + n(χ(CP 2)− 2) = n

Since τ = −n, the dimension of the moduli space of scalar-flat Kähler metrics is

given by

−3χ− 8τ = −3n+ 8n = 5n

and the dimension the moduli space of ASD metrics is equal to

−(15χ+ 29τ)

2
= −(15(n) + 29(−n))

2
= 7n

Thus, when n ≥ 1, we have a strictly almost-Kähler ASD metric from a deformation

if there is a scalar-flat Kähler metric. Note that LeBrun, Kim and Pontecorvo showed

the existence of a scalar-flat Kähler metric when n ≥ 6 [12].

By a similar calculation, we can show that the dimension of the moduli space of

almost-Kähler ASD metrics is greater than the one of scalar-flat Kähler metrics in

case of S2 × Σg#nCP 2 for g ≥ 2. And note that LeBrun showed the existence of

scalar-flat Kähler metric explicitly when n ≥ 2 [15] and Kim, Pontecorvo showed the

existence of such a metric for n ≥ 1 [13].
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Example 4. Let us consider M = S2 × Σg, where g ≥ 2.

When S2 ×Σg admits a standard product Kähler metric, there is a holomorphic

vector field. Let us consider proejctivization of a rank 2 holomorphic vector bundle V

over Σg. When V is a stable vector bundle over Σg, then it can be shown that there

is no holomorphic vector field on the ruled surface P (V)→ Σg [6]. By Narasimhan-

Seshadri theorem [27], there is a flat connection on P (V) and therefore, universal

cover of P (V) is S2×H2. Then locally, P (V) is S2×Σg, where the standard Kähler

metric is given. Therefore, P (V) admits a scalar-flat Kähler metric.

On the other hand, suppose P (V) admits a scalar-flat Kähler metric. It is shown

in [14] that P (V) is locally riemannian product S2 × Σg with the standard metric.

We briefly discuss the proof. Note that in this case, τ = 0, and therefore, we have

b+ = b− and W+ = W−. Thus, there is a self-dual harmonic 2-form ω and also an

anti-self-dual harmonic 2-form ϕ. From the equation (2), we can conclude ∇ω = 0.

For an anti-self-dual harmonic form ρ, we have

0 =< ∇∗∇ϕ, ϕ > −2W−(ϕ, ϕ) +
s

3
|ϕ|2.

Thus, we can conclude ∇ϕ = 0. Since there are two parallel 2-forms, the holonomy

is a subgroup of SO(2)× SO(2) and thus we get the conclusion.

In sum, we can conclude scalar-flat Kähler metrics on P (V) correspond to the

following representation up to conjugation.

ρ : π1(M)→ SO(3)× SO(2, 1).
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Note that π1(M) has 2g generators and has 1 relation. Fundamental group π1(M)

is expressed by

π1(M) =< a1.b1, ...ag, bg|a1b1a
−1
1 b−1

1 ...agbga
−1
g b−1

g = 1 > .

Thus, the dimension of this representation is

6(2g − 2) = 12g − 12.

We can also count the dimension of the moduli space of scalar-flat Kähler metrics

from 3χ−8τ . When the vector bundle is stable, there is no holomorphic vector field,

and so we can deform the scalar-flat Kähler metric on it. In this case, τ = 0, and

therefore, the dimension of the moduli space is −3χ. Since χ = −4(g − 1), we have

−3χ = 3× 4(g − 1) = 12g − 12.

Also, we saw the dimension of the moduli space of ASD metrics is given by

−1

2
(15χ+ 29τ).

Again, since τ = 0, it’s equal to

−1

2
15χ =

1

2
15× 4(g − 1) = 30(g − 1).

This also can be calculated by considering the corresponding representation. ASD
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metrics on S2 × Σg or S2×̃Σg, where S2×̃Σg is a twisted product, is conformally

flat since τ = 0. The conformal group acts on the universal covering space, S4 − S1.

Then the dimension of ASD metric is the same with the dimension of the following

representation space up to conjugation.

ρ : π1(M)→ SO(5, 1).

Since dimSO(5, 1) = 15, the dimension which comes from this representation is given

by 15(2g − 2), which is the same as before.
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Chapter 4

Seiberg-Witten invariants

In the previous section, we saw the existence of strictly almost Kähler metrics. In

this section, changing the direction, we show the Seiberg-Witten invariant can give

us useful topological information for manifolds which admit a strictly almost-Kähler

ASD metric and also a metric with positive scalar curvature.

We begin by explaining Seiberg-Witten theory briefly. Suppose a smooth, com-

pact 4-manifold admits an almost-complex structure J and a compatible metric g.

Then, the complexified tangent bundle TM ⊗ C decomposes as T 1,0 ⊕ T 0,1. From

the natural embedding U(2) ↪→ Spinc(4), we get the canonical Spinc-structure and

its positive and negative spinor bundles are given by

V+ = Λ0,0 ⊕ Λ0,2

V− = Λ0,1.

These spinor bundles inherits a hermitian inner product from g on M . Also this

bundles have Clifford action of Λp,q given by

v · (w1 ∧ · · · ∧ wk) =
√

2v0,1 ∧ w1 ∧ · · · ∧ wk −
√

2
k∑
i=1

〈wi, v1,0〉w1 ∧ · · ŵi · · ∧ wk,

where 〈, 〉 is the hermitian inner product which is complex linear on the first variable
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and anti linear on the second variable.

For this Spinc-structure, the determinant line bundle is the anti-canonical line

bundle Λ0,2. Suppose a U(1)-connection A on K−1 be given. Then A on K−1 and

Spin connection on S± which is induced by Levi-Civita connection determines a

connection on V± since on the contractible open set, we have [11]

V± ∼= S± ⊗ L
1
2 .

Then using this connection on V±, we define the Dirac operator

DA : C∞(V+)→ C∞(V−),

where DA is given by

DA : C∞(V+)
∇A−−−→ C∞(T ∗M ⊗ V+)

cl−−−→ C∞(V−).

Using orthonormal basis, it is given by DA(Φ) = Σei · (∇AΦ)(ei).

The perturbed Seiberg-Witten equation is defined by


F+
A = σ(Φ) + iε

DA(Φ) = 0

Here Φ is a section of C∞(V+) and F+
A is the self-dual part of the curvature form

of the connection A on K−1 and ε is a perturbation self-dual 2-form. Since the Lie

algebra of U(1) is iR, F+
A ∈ Λ2 ⊗ iR is a purely imaginary self-dual 2-form.
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The Seiberg-Witten equation is invariant under the action of the gauge group,

Map(M,S1). In order to get a well-defined invariant, we need to consider the gauge

group action. We call (A,Φ) a reducible solution if Φ ≡ 0. Otherwise, we call (A,Φ)

an irreducible solution. The gauge group does not act freely on reducible solutions,

and therefore, we only consider irreducible solutions.

Let us fix a unitary connection A0 on K−1. Then for any given unitary connection

A on K−1, there is a gauge transformation so that after the gauge transformation

on A, we have A = A0 + θ and d∗θ = 0. Thus, the moduli space

M∗
g = {(A,Φ) ∈ Lpk(Λ

1)× Lpk(V
+)|DAΦ = 0, F+

A = σ(Φ) + iε,Φ 6= 0}/Map(M,S1)

(7)

can be rewritten as follows,

M∗
g = {(A,Φ)|DAΦ = 0, F+

A = σ(Φ) + iε, d∗(A− A0) = 0,Φ 6= 0}/U1 oH1(M,Z),

where U1 o H1(M,Z) is a 1-dimensional group. In order to define a well-defined

map, we choose the space Lpk, where p > 4 and k ≥ 1. Here Lpk denote the Sobolev

space

Lpk(Ω) = {u ∈ Lp(Ω)|Dαu ∈ Lp(Ω),∀|α| ≤ k}.

Then for generic ε, M∗
g is a smooth manifold of dimension 0. We refer to [31] for

proofs in detail.
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Lemma 9. The space of irreducible solutions of the equations


DAΦ = 0

d∗(A− A0) = 0

in Lpk-topology is a Banach manifold Bpk.

Lemma 10. Let us consider the map

℘ : (A,Φ)→ F+ − σ(Φ), (8)

where (A,Φ) ∈ Bpk and F+
A − σ(Φ) ∈ Lpk−1(iΛ+). Then for generic ε ∈ Λ+,

℘−1(iε)/(U1 oH1(M,Z)) is a smooth manifold of dimension 0.

Proof. For index, we need to consider only highest order terms. The index of d℘ is

equal to the index of DA ⊕ d+ ⊕ d∗. It is known that

indexCDA =
c2

1(M)− τ
8

Thus, over the real, we have

indexDA =
c2

1(M)− τ
4

The index of d+ ⊕ d∗ is b1 − b+ − 1 = −(χ+τ
2

). Thus, the index of DA + d+ + d∗ is

given by

c2
1(M)− τ

4
− χ+ τ

2
=
c2

1(M)− (2χ+ 3τ)

4
,
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which is zero since c2
1 = 2χ+ 3τ . Note that we always have

∫
< d∗θ, c >= 0, where c

is constant. Thus, the image of d∗(A−A0) is perpendicular to constants. Thus, it is

codimension 1-subspace of Lpk−1. Therefore, we add 1 to this index. Then following

[31], it can be shown for generic ε, ℘−1(iε) is a 1-dimensional smooth manifold and

therefore ℘−1(iε)/(U1 oH1(M,Z)) is a smooth manifold of dimension 0.

In sum, we have shown that the dimension of moduli space (7) is zero. Using

the gauge-fixing Lemma, and the bound of a spinor field Φ which comes from the

Seiberg-Witten equation intrinsically, we get compactness of M∗ and we recover

regularity from elliptic bootstrapping. Since the dimension of the moduli space is

zero and the moduli space is compact, it consists of finite points.

If (A,Φ) is reducible, then F+
A = iε. If the orthogonal projection of ε onto the self

dual harmonic 2-forms is not equal to −2πc+
1 , then there is no such a solution. But

this is a closed condition, and therefore, we can conclude that for a generic 2-form,

there is no reducible solution.

Definition 2. [16] Let g be a smooth Riemannian metric on a 4-dimensional man-

ifold M which admits an almost-complex structure J and let ε ∈ Lpk−1(Λ+). If

[εH ] 6= −2πc+
1 , then we say (g, ε) is a good pair. Here, εH is a harmonic part of

ε and c+
1 means its projection to self-dual part.

Definition 3. [16] We call (g, ε) an excellent pair if iε is a regular value for the map

℘.

When b+ > 1, using standard cobordism argument, it can be shown that the
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number of solutions of the Seiberg-Witten equation up to gauge equivalence modulo

2 is independent of the choice of the excellent pair. We define this as a Seiberg-Witten

invariant. It depends only on the smooth structure of M .

When b+ = 1, it cannot be guaranteed that the SW-invariant is independent of

the metric and the perturbation form. The important fact is that there are exactly

two path components of the good pairs. By the same argument, the SW-invariant is

constant for the same path component. The following remark will be important in

our argument.

Lemma 11. [16] Suppose M is a smooth riemannian 4-manifold which admits an

almost-complex structure J and b+ = 1. Assume c1(K−1) 6= 0, and c2
1 ≥ 0, where

K−1 is the anti-canonical bundle. Then (g, 0) is a good pair for any metric g and

therefore, all the pairs (g, 0) belongs to the same path component.

We show that there is a non-trivial solution of the Seiberg-Wittten equation for

the pair (g, ε), where g is an almost-Kähler anti-self-dual metric and ε is an explicit

perturbation form, which will be given shortly. Using an almost-Kähler metric,

Taubes proved there is only one solution for a large perturbation form [34]. And

this unique solution consists of special connection A0 on the anti canonical bundle

K−1, which was discovered independently by Blair and Taubes, and a simple positive

spinor Φ0 = (r, 0) ∈ V+.

LeBurn calculated the curvature form of this connection.

Proposition 6. [18] Let M be a symplectic 4-manifold with almost-Kähler metric
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g. Then the curvature form of the Blair-Taubes connection A0 is given by

iFA0 = η +
s+ s∗

8
ω +

s− s∗

8
ω̂,

where s is the scalar curvature and s∗ is the star-scalar curvature and η = W+(ω)⊥ ∈

Λ2,0 ⊕ Λ0,2 is orthogonal to ω and ω̂ ∈ Λ−.

From this formula, we get simple expression of the self-dual part of iFA0 when

W+ = 0,

iF+
A0

=
s+ s∗

8
ω.

By definition, we have

s∗ = 2R(ω, ω)

Since ω ∈ Λ+, from the decomposition of the curvature operator, we get

R(ω, ω) = W+(ω, ω) +
s

12
|ω|2.

Since we have ASD metric, we get

s∗ = 2R(ω, ω) =
s

3

Thus, iF+
A0

is given in the following way when the metric is almost-Kähler anti-

self-dual.

iF+
A0

=
s+ s∗

8
ω =

s+ s
3

8
ω =

s

6
ω. (9)
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In the Kähler case, we saw that the following identity (4) holds

∫
M

sdµ = 4πc1 · [ω]

In the symplectic case, there is a corresponding formula which is discovered by Blair.

In this paper, we can prove this identity using the curvature formula of the Blair-

Taubes connection.

Lemma 12. [18] On symplectic 4-manifolds, we have the following identity

∫
M

s+ s∗

2
dµ = 4πc1 · [ω].

Proof. By Proposition 6, we have

iFA0 = η +
s+ s∗

8
ω +

s− s∗

8
ω̂

Since

iFA0 = 2πc1(K−1),

we get

4πc1 · ω = 2iFA0 ∧ ω =

∫
M

s+ s∗

4
ω ∧ ω =

∫
M

s+ s∗

2
dµ.

If the metric is almost-Kähler anti-self-dual, then s∗ is equal to s
3
. And therefore,

we get

4πc1 · [ω] =

∫
M

s+ s∗

2
dµ =

∫
M

s+ s
3

2
dµ =

∫
M

2

3
sdµ. (10)
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On the other hand, by the Weitzenböck formula (3) for a self dual 2-form, we have

0 = |∇ω|2 +
2

3
s.

Thus, the scalar curvature s is non-positive and moreover, s = 0 if and only if

∇ω = 0. Therefore, for a strictly almost-Kähler metric, we have

4πc1 · [ω] =

∫
M

2

3
sdµ < 0.

Lemma 13. Suppose we have an almost-Kähler ASD metric on a 4-manifold M .

Then we have c1 · [ω] ≤ 0. Moreover, c1 · [ω] = 0 if and only if g is a Kähler metric.

For an almost-Kähler metric, Taubes showed that the constant section u0 of Λ0,0

with unit length satisfies the Dirac equation. The connection A0 on K−1 induces a

covariant derivative ∇A0 on V+ and ∇A0u0 ∈ V+ ⊗ T ∗C. As it is shown by Taubes

[34], A0 can be chosen so that the following holds

∇A0u0|Λ0,0 = 0.

Lemma 14. [34] Let A0 be a connection on K−1 for which we have ∇A0u0 ∈ T ∗C⊗Λ0,2.

Then dω = 0 if and only if DA0u0 = 0, where DA0 is the Dirac operator on V+.

Proof. Since u0 ∈ Λ0,0, we have

ω · u0 = −2iu0,
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where · is Clifford multiplication. Taking the Dirac operator DA0 , we get

DA0(ω · u0) = −2iDA0u0

By the Leibniz rule, we have

DA0(ω · u0) = (DA0ω) · u0 +
4∑
i=1

ei · (ω · (∇A0u0)(ei)).

Since ω is a self-dual harmonic 2-form and DA0 = d + d∗ when restricted on the

forms, we have

DA0ω = dω + d∗ω = 0.

Since (∇A0u0)(ei) ∈ Λ0,2 and Λ0,2 is a 2i-eigenspace of ω, we have

2iDA0u0 = −2iDA0u0

4iDA0u0 = 0 =⇒ DA0u0 = 0.

Given Φ ∈ V+, we define σ(Φ) ∈ End(V+) [28] by

σ(Φ) : ρ→ 〈ρ,Φ〉Φ− 1

2
|Φ|2ρ

On the other hand, Λ2
+ ⊗ C induces an endomorphism of V+ by Clifford multi-

plication. Let us write Φ = (α, β), where α ∈ Λ0,0 and β ∈ Λ0,2. Then we claim the
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following self-dual 2-form induces σ(Φ),

i

4
(|α|2 − |β|2)ω +

1

2
(ᾱβ − αβ̄).

This can be checked directly. Here we use ei ∧ ej, i < j are orthonormal basis and

|dzi| = |dzi| =
√

2. Also note that above 2-form is a purely imaginary self-dual

2-form. Thus, the Seiberg-Witten equation can be written as


F+
A = i

4
(|α|2 − |β|2)ω + 1

2
(ᾱβ − αβ̄) + iε

DAΦ = 0

Recall we have the following curvature formula (9) for A0

iF+
A0

=
s+ s∗

8
ω =

s+ s
3

8
ω =

s

6
ω.

For the spinor solution Φ = (r, 0), the corresponding self-dual 2-form is given by

σ(Φ) =
ir2ω

4
.

Therefore, the ε corresponding to (A0, (r, 0)) in the Seiberg-Witten equation becomes

ε = −(
s

6
+
r2

4
)ω.

In the following, we show the Blair-Taubes connection A0 and positive spinor Φ0 =

(r, 0) is a unique solution with respect to the almost-Kähler ASD metric g and this
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particular ε.

Theorem 8. Let M be a symplectic 4-manifold with an almost-Kähler ASD metric

g. Then there is a unique non-trivial solution of the Seiberg-Witten equation for the

pair (g, ε) and for r ≥
√

4|s|
3

, where

ε = −(
s

6
+
r2

4
)ω.

Proof. Let us consider following perturbed Seiberg-Witten equation


DAΦ = 0

F+
A = σ(Φ) + iε.

A section of Φ ∈ V+ = Λ0,0 ⊕ Λ0,2 can be written as

Φ = (α, β).

The Weitzenböck formula for D∗ADA is given by

D∗ADAΦ = ∇∗A∇AΦ +
s

4
Φ +

FA
2
· Φ,

where · is Clifford multiplication. Since Φ ∈ V+, we have FA

2
·Φ =

F+
A

2
·Φ. From the

Seiberg Witten equation, we get

0 = ∇∗A∇AΦ +
s

4
Φ +

σ(Φ)

2
· Φ +

iε

2
· Φ. (11)
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The the self-dual 2-form ω acts on Φ ∈ V+ by

ω · Φ = ω · (α, β) = (−2iα, 2iβ) = −2i(α,−β).

We take an inner product with Φ in (11), and using the fact that

〈(α,−β), (α, β)〉 = |α|2 − |β|2,

we have

0 = 〈∇∗A∇AΦ,Φ〉+
s

4
|Φ|2 +

|Φ|4

4
− (

s

6
+
r2

4
)(|α|2 − |β|2)

Let us write

φ = σ(Φ).

Then φ is a self-dual 2-form, and φ and Φ are related in the following way [17].

|φ|2 =
1

8
|Φ|4,

|∇φ|2 ≤ 1

2
|Φ|2|∇Φ|2.

Since φ is a self-dual 2-form and we have an almost-Kähler ASD metric, using the

Weitzenböck formula for self-dual 2-form (2), we get

〈4φ, φ〉 = 〈∇∗∇φ, φ〉+
s

3
|φ|2 =

1

2
4 |φ|2 + |∇φ|2 +

s

3
|φ|2

Since
∫
M
〈4φ, φ〉dµ =

∫
M
〈(dδ+ δd)φ, φ〉dµ =

∫
M
〈dφ, dφ〉dµ+

∫
M
〈δφ, δφ〉dµ, which is
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non-negative and
∫
4|φ|2 = 0, we get

∫
M

(
|∇φ|2 +

s

3
|φ|2
)
dµ ≥ 0

Expressing this in terms of Φ, we have

∫
M

(
1

2
|Φ|2|∇Φ|2 +

s

24
|Φ|4

)
dµ ≥

∫
M

(
|∇φ|2 +

s

3
|φ|2
)
dµ ≥ 0

This means ∫
M

(
|Φ|2|∇Φ|2 +

s

12
|Φ|4

)
dµ ≥ 0

Note that we can rewrite the Weitzenböck formula in the following way.

0 =

∫
M

(
〈∇∗A∇AΦ,Φ〉+

s

4
|Φ|2 +

|Φ|4

4
+
iε

2
· Φ
)
dµ

=

∫
M

(
1

2
4 |Φ|2 + |∇Φ|2 +

s

4
|Φ|2 +

|Φ|4

4
− (

s

6
+
r2

4
)(|α|2 − |β|2)

)
dµ

=

∫
M

(
|∇Φ|2 +

s

12
|Φ|2 +

s

6
|Φ|2 +

|Φ|4

4
− (

s

6
+
r2

4
)(|α|2 − |β|2)

)
dµ

By multiplying |Φ|2, we can conclude

∫
M

|Φ|2
(
s

6
|Φ|2 +

|Φ|4

4
− (

s

6
+
r2

4
)(|α|2 − |β|2)

)
dµ ≤ 0

By expanding terms, we get

∫
M

|Φ|2
(
s

6
(|α|2 + |β|2) +

1

4
(|α|4 + |β|4 + 2|α|2|β|2)− s

6
|α|2 +

s

6
|β|2 − r2

4
|α|2 +

r2

4
|β|2
)
dµ ≤ 0
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∫
M

|Φ|2
(
s

3
|β|2 +

1

4
(|α|2 − r2)2 +

r2(|α|2 − r2)

4
+

1

4
|β|4 +

1

2
|α|2|β|2 +

r2

4
|β|2
)
dµ ≤ 0

By subtracting some positive terms, we have

∫
M

|Φ|2
(
s

3
|β|2 +

r2(|α|2 − r2)

4
+
r2

4
|β|2
)
dµ ≤ 0

If we choose r so that

s

3
+
r2

4
≥ 0,

namely, if

r ≥
√

4|s|
3
,

then we can conclude that

∫
M

|Φ|2r2(|α|2 − r2)

4
dµ ≤ 0

Since r is constant, we have

∫
M

|Φ|2(|α|2 − r2)

4
dµ ≤ 0 =⇒

∫
M

|Φ|2|α|2dµ ≤ r2

∫
M

|Φ|2dµ

Using that fact |Φ|2=|α|2 + |β|2, we have

∫
M

|α|2|α|2dµ ≤
∫
M

|Φ|2|α|2dµ ≤ r2

∫
M

(
|α|2 + |β|2

)
dµ.

Thus, we get ∫
M

(
|α|2|α|2 − r2|α|2

)
dµ ≤ r2

∫
M

|β|2dµ.
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On the other hand, |α|2 − |β|2 is given by

|α|2 − |β|2 = −2i〈FA, ω〉+ 4(
s

6
+
r2

4
).

Here we used the fact that F+
A = σ(Φ) + iε and 〈σ(Φ), ω〉 = i( |α|

2−|β|2
2

).

Since c1 is represented by [ iFA

2π
] for any connection A, we have iFA = iFA0 +dγ for

the Blair-Taubes connection A0 and for some 1-form γ. Since we know the curvature

of the Blair-Taubes connection, we have

|α|2 − |β|2 = −4s

6
− 2〈dγ, ω〉+ 4(

s

6
+
r2

4
).

Thus, we get

|α|2 − |β|2 − r2 = −2〈dγ, ω〉

Since ω is a self-dual harmonic 2-form, by integrating, we have

∫
M

(
|α|2 − r2

)
dµ =

∫
M

(
|β|2 − 2〈γ, d∗ω〉

)
dµ =

∫
M

|β|2dµ

Using this equality and
∫
M

(|α|2|α|2 − r2|α|2) dµ ≤ r2
∫
M
|β|2dµ, we have

∫
M

(
|α|4 − r2|α|2

)
dµ ≤ r2

∫
M

(
|α|2 − r2

)
dµ

This implies

∫
M

(|α|2 − r2)2dµ =

∫
M

(
|α|4 − r2|α|2 − r2|α|2 + r4

)
dµ ≤ 0.
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This means |α|2 = r2 and from the equality
∫
M

(|α|2 − r2) dµ =
∫
|Mβ|2dµ, we can

conclude that β = 0. Then up to gauge equivalence we have that α = r. Since the

Dirac equation is invariant under the gauge transformation, we have

DAΦ0 = 0,

where Φ0 = (r, 0). Since DAΦ0 = DA0Φ0 + 1
2
θ ·Φ0, where · is Clifford multiplication,

we get

θ · Φ0 = 0.

This implies that θ0,1 = 0. On the other hand, since θ is a purely-imaginary 1-form,

we can conclude θ = 0. Thus, up to gauge transformation , we get the standard

solution (A0, (r, 0)).

Lemma 15. Let g be an almost-Kähler ASD metric and assume

ε = −(
s

6
+
r2

4
)ω.

Then, (g, ε) is an excellent pair.

Proof. We already showed that for this pair, there is a unique solution (A0, (r, 0)) up

to gauge equivalence. We show that this solution is nondegenerate. This is equivalent

to showing the map ℘ in (8) is surjective. We saw the index of this map is 1. Let us

consider the linearization of the following equations ℘ at
(

(A0, (r, 0),−( s
6

+ r2

4
)ω
)

d∗(A− A0) = 0, DAΦ = 0, F+
A = σ(Φ) + iε.
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Linearization D℘ is onto if and only if dimension of the kernel of D℘ is 1. Suppose

(θ, (u, ψ)) ∈ kerD℘. We saw that any solution Φ = (α, β) of the equations DAΦ = 0

and F+
A = σ(Φ) + iε must be |α|2 = r2, β = 0. Thus (u, ψ) satisfies the linearization

of the pair of the equations |α|2 = r2 and β = 0. The linearization of these equations

evaluated at (r, 0) is the following

r(u+ ū) = 0, ψ = 0.

Note that u + ū = 0 implies that the real part of u is zero. Thus, u is purely

imaginary. Also note that from the linearization of the Dirac equation, we get

DA0(u) = −1

2
θ · (r, 0).

Since DA0(u) =
√

2∂̄u, we get

∂̄u = Cθ0,1,

where C is an explicit constant. This implies that du = θ. Since d∗θ = 0, we get

d∗du = 0. By taking an L2 inner product with u, we can conclude du = 0, and

therefore, u is constant and θ = 0. Since u is purely imaginary and constant, we get

the dimension of ker D℘=1.

Lemma 16. Let M be a smooth, compact 4-manifold with a strictly almost-Kähler

anti-self-dual metric g. Then (g, 0) and (g, ε) are good pairs respectively and they

can be path connected through good pairs, and therefore, they belong to the same path

component.
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Proof. We can use the Blair-Taubes connection A0 in order to get 2πc+
1 . Since b+ = 1,

we can think of ω√
2

as a basis for H+. Thus, the harmonic part of iF+
A is

(∫
M

〈sω
6
,
ω√
2
〉dµ
)

ω√
2

=
s0

6
ω,

where s0 =
∫
sdµ. Since g is a strictly almost-Kähler ASD metric, we have s0 < 0.

In particular, this means 2πc+
1 6= 0. Thus, (g, 0) is a good pair. We claim, for t such

that 0 ≤ t ≤ 1, (g, tε) is a good pair. Suppose not. Then there is t0 ∈ [0, 1] such

that the following holds

s0

6
ω = t0(

s0

6
+
r2

4
)ω.

Then we can rewrite this as

(1− t0)
s0

6
=
t0r

2

4
ω.

Since s0 < 0, we can easily check this does not hold.

From this, we can conclude that (g, 0) and (g, ε) belong to the same path com-

ponent. And therefore, for the chamber which contains (g, 0), where g is a strictly

almost-Kähler ASD metric, the SW invariant is non-zero. On the other hand, using

the Weitzecböck formula of the Seiberg-Witten equation, it’s well-known if M admits

a Riemannian metric g̃ with positive scalar curvature, then the SW invariant is zero

for the chamber which contains (g̃, 0).

Lemma 17. [16] Suppose g is a Riemannian metric on M with positive scalar cur-

vature. Then, for the chamber which contains (g, 0), the SW invariant is zero.
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Therefore, (g, 0) and (g̃, 0) belong to the different chambers. On the other hand,

by Lemma 11, if c1 6= 0 and c2
1 ≥ 0, all the pairs (g, 0) belong to the same chamber.

Thus, we can conclude if M admits a strictly almost-Kähler anti-self-dual metric and

also a metric with positive scalar curvature, then c2
1 < 0. Liu’s theorem [22] tells us

about symplectic manifolds which admits a positive scalar curvature metric.

Theorem 9. (Liu) Let M be a symplectic four manifold. If M admits a positive

scalar curvature metric, then M is diffeomorphic to either a rational, ruled surface

or its blown up.

Theorem 10. Suppose a symplectic 4-manifold (M,ω) admits an almost Kähler ASD

metric. If M also admits a metric of positive scalar curvature, then it is diffeomorphic

to one of the following,



CP 2#nCP 2 for n ≥ 10

S2 × Σg, S
2×̃Σg, where Σg is a Riemann surface with genus g ≥ 2

(S2 × Σg)#nCP 2 for n ≥ 1

(S2 × T 2)#nCP 2 for n ≥ 1

Proof. If a symplectic manifold (M,ω) admits a metric with positive scalar curvature,

then b+ = 1. By assumption, (M,ω) admits an almost-Kähler ASD metric g. Then

g is either strictly almost-Kähler ASD or scalar-flat Kähler one.

Suppose g is strictly almost-Kähler ASD metric. Then this implies scalar curva-

ture s should be negative somewhere. Then from (10), we can conclude c1 6= 0. From

the argument above, we can conclude c2
1 < 0. Applying this on the list of manifolds
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of Liu’s theorem, we get the conclusion in this case. Note that by Gromov-Lawson

[10], all of these examples admit a metric with positive scalar curvature.

Suppose g is a scalar-flat Kähler metric. Then by Yau’s theorem, M has either

c1 = 0, or it is a ruled surface or its blown up. Suppose c1 6= 0. Then, M is

differeomorphic to one of the following. S2×S2, S2×T 2, S2×Σg, where g ≥ 2, and

their twisted form, and their blown ups. Note that all of these has b+ = 1. Then,

from (4), we have c1 · [ω] = 0. Since c1 6= 0, and b+ = 1, we have c2
1 < 0. Thus, we

also get the conclusion in this case.

Suppose M admits a scalar-flat Kähler metric and c1 = 0. Then, universal cover

of M is to either T 4 or K3. If M admits a positive scalar curvature metric, then by

lifting this metric to T 4 or K3, we have a metric of positive scalar curvature on T 4

or K3. But it is known that T 4 does not admit such a metric by Schoen and Yau

[33], and K3 also does not admit such a metric by the Lichnerowicz formula of Dirac

operator. Thus, we can conclude c1 6= 0.

Proposition 7. Suppose CP 2#nCP 2 admits an almost-Kähler ASD metric. Then

n ≥ 10.

Proof. In this case, c1 6= 0. If n ≤ 9, then c2
1 ≥ 0 and therefore, all the pairs (g, 0)

belong to the same chamber. Since these manifolds admit a positive scalar curvature

metric, we can conclude any almost-Kähler anti-self-dual metric is scalar-flat Kähler.

Then, we have c2
1 < 0, which is a contradiction. Thus, we can conclude CP 2#nCP 2

for n ≤ 9 does not admit an almost-Kähler anti-self-dual metric.

Proposition 8. Let M be a K3 or T 4 as a smooth manifold. If M admits an

almost-Kähler anti-self-dual metric g, then g is hyperKähler.
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Proof. For an almost-Kähler anti-self-dual metric, we have s ≤ 0. Since c1 = 0 on

T 4 or K3, we can conclude s = 0 from the equation (10). Then this implies that g

is Kähler. On the other hand, we have

c2
1 = 2χ+ 3τ =

1

4π2

∫
M

(
|s|2

24
+ 2|W+|2 − |ric0|2

)
dµ.

Since g is scalar-flat anti-self-dual, we have W+ = s = 0, and therefore, ric0 = 0.

Thus, g is Ricci-flat Kähler.
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