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Abstract of the Dissertation

Limits of Real-Normalized Differentials on
Stable Curves

by

Chaya Rifka Norton

Doctor of Philosophy

in

Mathematics

Stony Brook University

2014

A recent approach proposed by Grushevsky and Krichever uses
real-normalized differentials, meromorphic differentials with all pe-
riods real, to study the geometry of the moduli space of curves. We
describe the behavior of real-normalized differentials under degen-
eration of the Riemann surface, and this analysis allows us to study
the limits of zeros of these differentials near the boundary of the
Deligne-Mumford compactification of the moduli space of curves.
Our explicit description of the behavior of real-normalized differen-
tials near nodal curves provides a tool for understanding common
zeros of such differentials which has applications for the study of
plane curves. This analysis should have further applications to
degenerations of holomorphic differentials which is of interest in
Teichmüller dynamics.
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Chapter 1

Introduction

Our approach toward the study of the moduli space of Riemann surfaces

uses local coordinates and a foliation introduced originally in the context of

Whitham theory. Here we use a uniquely chosen meromorphic differential with

real periods, called a real-normalized differential, on each curve in the moduli

space. This thesis provides a complete description of the behavior of real-

normalized differentials of the second kind under degeneration of the Riemann

surface.

In the thesis we overcome one main difficulty in understanding how real-

normalized differentials behave under degenerations. The difficulty is due to

the fact that depending on location of the prescribed singular points, the

differential may vanish identically on some components of a nodal curve, and

thus one initially loses all information on limits of zeros as well as absolute

and relative periods. This same issue arises when studying how holomorphic

differentials degenerate, as is of interest in Teichmüller dynamics.

From the point of Algebraic Geometry this difficulty can be thought of as
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an issue understanding limit linear series, namely understanding the behavior

of sections of a line bundle under degeneration of the Riemann surface. To

understand all possible limits when studying sections on a family of smooth

curves which degenerates to a nodal curve, it may be necessary to tensor the

line bundle with some irreducible components of the nodal fiber. This is well-

understood for curves of compact type, but further issues arise when one would

like to consider a general nodal curve with two irreducible components, and

limit linear has not been fully understood in general.

Our construction describes explicitly the real-normalized differential on all

smooth or less singular curves in the neighborhood of a nodal curve. Specifi-

cally we construct the real-normalized differentials on curves in the neighbor-

hood of a singular curve by prescribing singularities of a bounded order at

the nodes which satisfy a matching condition, which will thus provide a well-

defined meromorphic differential on smooth curves where the neighborhood of

the node has been altered by the plumbing deformation. We further define

holomorophic differentials whose absolute periods are understood, such that

there exists a symplectic basis on smooth curves where one can identify one

cycle with a non-real period. The real-normalized differential is then given

by the meromorphic differential which satisfies the matching condition at the

nodes and a linear combination of these holomorphic differentials scaled by

factors which are sector real-analytic in plumbing parameters.

One can describe the location of zeros as a corollary of our construction, and

these are parameterized by the choice of the singular parts of the matching

differential at the nodes. Alternatively one can view the limits of zeros as

parametrized by the plumbing parameters, and in the case where there is a
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zero of some real-normalized differential of order m at a node, the limits of

zeros is additionally parameterized by the behavior of m zero on curves in the

neighborhood of the nodal curve.

Thus our degeneration analysis which provides information for locating

zeros is a tool which can be further used to study common zeros of real-

normalized differential. The study of the zeros of real-normalized differentials

play a crucial role, while the common zeros of a pair of real-normalized dif-

ferentials are even more important (with specific applications to tautological

classes) as suggested in [14] and future work toward the geometry of plane

curves [16].

In the thesis we restrict ourselves to studying real-normalized differentials

of the second kind which have no residues at the singular points of the differen-

tial. There are few new complication if one would like to describe degenerations

of real-normalized differentials with non-zero residues, and our analysis can be

applied almost directly, but we leave this description for possible future work.

The structure of this document is as follows: In the second chapter we

provide a quick and incomplete introduction to the moduli space of Riemann

surfaces where we focus on the ideas important to the thesis. In addition

we discuss briefly the situation in Teichmüller dynamics given by studying

holomorphic differentials on a Riemann surface. This is included in order to

highlight the many similarities to our study of real-normalized differential, and

the hope that our tools can be further used for degenerations of holomorphic

differentials.

In the second chapter we begin to discuss real-normalized differentials and

the moduli space of curves with m-jets at labeled marked points. Here we
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include a description of local coordinates on moduli space originally proven in

the more general context of Whitham theory, and we define a foliation on the

moduli space.

We then proceed to outline previous work in chapter 4, specifically focus-

ing on real-normalized differentials with one double pole. In this chapter we

intended to motivate further use of real-normalized differentials by record-

ing some of its application towards studying the geometry of moduli space.

Specifically we include a new and innovative proof of Diaz’s theorem given

in [14]. The last section includes an initial result describing degenerations of

real-normalized differentials proven in [14].

The final chapter is dedicated to presenting our new results. The chapter

is structure such that we present successively more complicated nodal curves

beginning with curves of compact type. As we will see, the constructions used

to describe the real-normalized differentials on curves in a small neighborhood

of curves of compact type and irreducible nodal curves is sufficient for under-

standing real-normalized differentials near a general nodal curve. In the later

sections, we provide the details needed to verify that no new complications

arise.
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Chapter 2

Overview of Mg

In this chapter we present a brief overview of the moduli space of Riemann

surfaces where we attempt to give a quick outline of the various facts which are

relevant to our study of the moduli space. Many of the important theorems

will be stated without proof as the proofs are very involved and take us too

far afield. For all the details we refer to for example [13] and [2], which were

used by the author throughout the writing of this chapter.

2.1 Properties of Algebraic Curves

We begin by summarizing some basic properties of algebraic curves which

are the main objects in this thesis. This section is comprised of various relevant

definitions and statements which will be used later in this thesis. We include

very little discussion outside of the definitions and theorems.

Definition 2.1.1. A Riemann surface is a one dimensional smooth, compact

complex manifold. Equivalently an algebraic curve is a complete reduced pro-

5



jective algebraic variety of dimension one over C.

The language of Riemann surfaces from complex analysis and of algebraic

curves from algebraic geometry will be used in this thesis interchangeably.

Denote the space of homology classes of closed cycles on C as H1(C,Z),

and for smooth curves the genus of C is half the dimension of H1(C,Z). There

is a natural intersection pairing on the space of cycles on C, and under this

pairing H1(C,Z) is a symplectic space. A basis {Ai, Bi}gi=1 of H1(C,Z) is

called a symplectic basis if Ai · Bj = δi,j, Ai · Aj=Bi · Bj = 0 if i 6= j. For a

given choice, we call these the A- and B-cycles correspondingly, noting that the

A-cycles span a Lagrangian subspace disjoint from the Lagrangian subspace

spanned by the B-cycles.

Recall that as a topological manifold, a Riemann surface of genus g is a

sphere with g handles, and for any s0 ∈ C the fundamental group π1(C, s0)

has a presentation

π1(C, s0) = 〈Â1, . . . , Âg, B̂1, . . . , B̂g〉/
∏

ÂiB̂iÂ
−1
i B̂−1

i = 1.

We call a set of generators Âi, B̂i of π1(C, s0) a standard generating set if they

generate π1(C, s0) with the only relation being the one above. Thinking of C

as a sphere with g handles, we can think of Âi as a path going to the handle

number ai, and then around it lengthwise, and back while B̂i also goes to i’th

handle, but then circles around it in the other direction. In particular, we

note that the paths representing the classes of a standard generating set can

be chosen not to intersect outside of s0.

If we cut C along such paths, we get a contractible region, which turns
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out to be a polygon with 4g sides, that can then be identified pairwise with

opposite orientation to glue it back into a surface.

Definition 2.1.2. We call a marked surface a Riemann surface C together

with a standard generating set for π1(C).

The result of cutting up a Riemann surface C along a standard generating

set of paths is a contractible polygon, which can be mapped to any other such

polygon. Therefore any marking on C can be mapped to any other marking

on C by a homeomorphism. Obviously the set of homeomorphisms of C acts

on the set of markings on C, and we call two markings equivalent if one of

them can be mapped to another by a homeomorphism isotopic to the identity

map of C to itself.

We recall further that the natural map π1(C) → H1(C,Z) is the abelian-

ization of the group π1(C), and under it the image of a standard generating

set of π1(C) must be a symplectic basis of H1(C,Z).

We now return to the complex analytic structure on a Riemann surface,

and in a neighborhood U of any point in C, we denote a local holomorphic

coordinate as z : U → C. A holomorphic 1-form is locally of the form f(z)dz

where f(z) is a holomorphic function, and the 1-form transforms under coor-

dinate change z = z(z′) as f(z)dz = f(z′)dz′ · ( dz
dz′

).

Definition 2.1.3. On a smooth curve C the line bundle of holomorphic 1-

forms is called the canonical bundle and denoted KC .

Proposition 2.1.4. The dimension of the space of sections of KC is equal to

the genus of the (smooth) curve C.
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To see this, recall that if Hp,q(C) denotes the space of (p, q)-forms, H1,0(C)

is the space of holomorphic one forms, and by Hodge decompositionH1(C,C) =

H0,1(C,C) ⊕ H1,0(C,C), while H0,1(C) = H1,0(C) is the complex conjugate.

Thus dimCH
1,0(C,C) = 1

2
dimCH

1(C,C) = g.

This proposition can be used to prove the fundamental theorem of Riemann-

Roch on the dimensions of sections of line bundles (note that we use the addi-

tive notation for line bundles throughout this thesis, so plus denotes the tensor

product, and minus denotes the dual line bundle).

Theorem 2.1.5 (Riemann-Roch theorem). For any line bundle L on a smooth

curve C,

dimH0(C,L) = dimH0(C,KC − L) + deg(L)− g + 1.

Definition 2.1.6. A basis ω1, . . . , ωg of H0(C,KC) is called dual to a sym-

plectic basis A1, . . . , Ag, B1, . . . , Bg of H1(C,Z) if
∫
Ai
ωj = δi,j.

Definition 2.1.7. Given a symplectic basis of H1(C,Z) and a dual basis of

H0(C,KC), the period matrix of C is the matrix whose i, j’th entry is
∫
Bi
ωj.

The period matrix is denoted τ(C).

The following theorem is the main result in this section, and it is essential

for the constructions in this thesis.

Theorem 2.1.8 (Riemann’s bilinear relations). The period matrix τ(C) of a

smooth curve C is symmetric, and its imaginary part is positive definite.
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2.2 Moduli Spaces

In this thesis we study the geometry of the moduli space of genus g smooth

curves, and thus recall various facts about this moduli space. We do not discuss

the details of the definition of a stack. We outline the basics of constructing

Mg as the quotient of the simply connected Teichmüller space which is a

complex manifold, where all of our local constructions take place — so that

we do not have to deal with the stack structure. Thus we view Mg,n as an

orbifold, which is a complex manifold with orbifold loci which are subvarieties

where Mg,n is locally isomorphic to Cm quotient by a finite group G. From

our point of view, in small analytic neighborhoods of orbifold points it will be

sufficient to work on the manifold cover of moduli space, in other words on

Teichmüller space.

Definition 2.2.1. The moduli spaceMg is the space of equivalence classes up

to biholomorphism of smooth projective connected algebraic curves of genus g.

The moduli spaceMg,n is the moduli space of smooth curves with n ordered,

distinct, marked points up to biholomorphisms which map the marked points

to marked points, preserving the numbering.

Let Cg, which is equal to Mg,1, be the moduli space of pairs (C, p) where

C ∈ Mg and p ∈ C, which we call the universal family over Mg. As a

stack, the fiber of Cg over a curve C with automorphisms is the quotient of

C by its group of automorphisms. Let Cg,n denote the moduli space of pairs

(C, p1, . . . , pn; p) where C, p1, . . . , pn ∈ Mg,n and p is any additional point

in C which may be one of the marked points points p1, . . . , pn. There is a

natural forgetful map Cg,n →Mg,n forgetting the point p, and again the fiber
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is C/Aut(C).

Every Riemann surface C ∈Mg has the same underlying topological struc-

ture, and therefore choosing a marking on a fixed base topological surface S

and a homeomorphism f : S → C defines a marking on the Riemann surface

C. By the definition of equivalence for markings, the pair (C, f) and (C ′, f ′)

define the same marked Riemann surface if there exists a biholomorphism

h : C → C ′ which is homotopic to f ′ ◦ f sending the marking on C to the

marking on C ′.

Definition 2.2.2. Given a fixed oriented genus g topological surface S, the

Teichmüller space, Tg(S), is the space of all marked Riemann surfaces (C, f)

of genus g where two marked surfaces are equivalent if they are the same

Riemann surface and the markings are equivalent.

There is a forgetful map Π : Tg → Mg defined by forgetting the marking

Π(C, f) = C.

Remark 2.2.3. In fact any homeomorphism h : S ′ → S of Riemann surfaces

induces a map T (S)→ T (S ′) by sending (C, f) to (C, f ◦ h), which is clearly

bijective. It will turn out that the Teichmüller spaces are actually complex

manifolds and that this bijective map is in fact a biholomorphism, and thus

we’ll denote Tg the Teichmüller space of any Riemann surface of genus g.

We introduce a topology on the Teichmüller space using the Teichmüller

metric.

Definition 2.2.4. The Teichmüller metric is given as follows,

d((C, f), (C ′, [f ′])) := 1
2

inf{lnK(h)|h : C → C ′ for all h homotopic to f ′◦f−1}

where K(h) is the supremum over all points in C of |∂zh|+|∂zh|
|∂zh|−|∂zh| ≥ 1.
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Remark 2.2.5. Two genus g surfaces are diffeomorphic which implies there

exists a map h : C → C ′ such that K(h) is finite. Such a map is called a

qausiconformal mapping from C to C ′.

Note K(h) = 0 if h is holomorphic, and therefore equivalent marked sur-

faces have distance zero in the Teichmüller metric, and this metric is well

defined on Tg.

One can constructMg as a quotient of Tg by the finitely generated modular

group denoted Γg, which acts properly discontinuously on Tg. As we will show

Tg is simply connected and therefore the Teichmüller space is then the universal

orbifold covering space of Mg.

Definition 2.2.6. The Teichmüller modular group, also called the mapping

class group, and denoted Γg, is the group of isotopy (in fact equivalently ho-

motopy) classes of orientation preserving homeomorphism from S to its self.

The modular group acts on Tg as follows: Let γ ∈ Γg, γ · (C, f) = (C, f ◦

γ−1). In addition the Teichmüller metric is preserved under the action of the

modular group.

All markings on S can be obtained by acting on the surface by a home-

omorphism, thus the set of points {(C, f ◦ γ−1)|(C, f) ∈ Tg, γ ∈ Γg} are the

set of all markings on the surface C. Therefore the fibers of the forgetful map

Π from Teichmüller space to moduli space are the orbits of the action by the

modular group. This implies that as a set,

Mg = Tg/Γg.
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The action of the modular group on Tg is not free; The stabilizer of any

point (C, f) ∈ Tg is isomorphic to the group of automorphisms on C. We will

now outline some steps used to define a complex structure on Tg, and therefore

we construct that moduli space is an orbifold whose complex structure is given

by the map Π : Tg → Tg.

We now state Teichmüller’s theorem which then implies that Tg is home-

omorphic to an open unit ball in C3g−3, and thus has real dimension 6g − 6.

This follows by defining a global homeomorphism from the space of quadratic

differentials onto Tg.

A quadratic differential, denoted q, on a smooth curve C is a section of

the square of the canonical bundle, q ∈ H0(C, 2KC). Locally q is of the

form f(z)(dz)2 where f(z) is holomorphic. This is to say that under a local

change of coordinates z = z(z′), we must have f(z)(dz)2 = f(z(z′))( dz
dz′

)2(dz′)2.

It follows directly from the Riemann-Roch theorem (since the line bundle

KC − 2KC = −KC is negative and does not have any holomorphic sections)

that the dimension of the space of quadratic differentials is dimH0(C, 2KC) =

3g − 3.

We define an L1 norm on the space of quadratic differentials by taking

||q|| :=
∫
C
i/2|f |dz∧dz, and q is said to be integrable if ||q|| :=

∫
C
i/2|f |dz∧dz

is finite. Let Q(C) denote the space of all integrable quadratic differentials on

C which is a Banach space with the L1-norm given by ||q||, and let Q1(C)

denote the space of quadratic differentials with norm less than one.

A map h : (C, f) → (C ′, f ′) is called a Teichmüller mapping if ∂zh
∂zh

= k q
|q|

for some k < 1 and q ∈ Q(S), and Teichmüller showed that such a map it is the

unique map in its homotopy class which minimizes the Teichmüller distance.
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Define a map π from Q(C)1 to Tg as follows, π(q) = (C ′, f ′) where f ′ is the

Teichmüller mapping associated to the quadratic differential q with k = ||q||

and one can show that C ′ exists such that C ′ := f ′(C). The map π is injective

by construction as the Teichmüller map is the unique extremal mapping be-

tween (C, f) and (C ′, f ′). One can further show π is a continuous, surjection

between spaces of equal dimension which implies π is a global homeomorphism.

Theorem 2.2.7. For any smooth curve of genus g, there exists a global (bi-

jective) homeomorphism π : Q1(C)→ Tg, and therefore the Teichmüller space

is contractible of real dimension 6g − 6.

In addition the space of quadratic differentials is isomorphic to the cotan-

gent space a point. This follows from a result in deformation theory which

states that the space of infinitesimal deformations of C are given by the

first cohomology group of C with coefficients in the tangent sheaf. By Ko-

dairaSerre duality there is an isomorphism between H1(C, TC) = H1(C,−KC)

and H0(C, 2KC), and the theorem follows.

Theorem 2.2.8. [2] The cotangent space of Tg at C is isomorphic to Q(C).

The Bers embedding endows the Teichmüller space the structure of a com-

plex manifold by defining a map which realizes Tg as a bounded domain in

C3g−3. For the details involved in defining this embedding which maps Tg to

the space of holomorphic quadratic differentials on the lower half plane modulo

the Fuchsian group of C.The mapping class group is a group of biholomorphism

from Tg to itself with this complex structure.

In order to understand the moduli spaceMg further, we turn our attention
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to the mapping class group. As we will see this group is generated by a finite

number of homeomorphisms called Dehn twists which we now define.

Let c be a smooth, homotopically non-trivial, simple closed path on the

smooth oriented surface S. A collar containing the path c is an annulus c×[0, 1]

where the curve c itself is embedded as c×{1/2}. The twist map of the annulus

to itself is defined as follows, T : (r, θ)→ (r, θ+2πr), which fixes the boundary

of the annulus. The image of the curve η := {(r, 0)} which intersects the waist

curve c at one point in the annulus is sent via T to a curve which wraps around

waist of the annulus before exiting the annulus at the same point.

Definition 2.2.9. For a simple closed path c on S the Dehn twist around c,

denoted δc, is the homeomorphism of S to itself obtained by applying the twist

map in a collar around c and the identity outside of the collar.

The Dehn twist depends only on the isotopy class of the cycle c. As an

example of a Dehn twist, let Âi be an element in a standard generating set

for π1(C), then the Dehn twist around the cycle Âi results in a marking of

S which leaves all elements of standard generating set fixed except B̂i is now

sent to B̂iÂi.

We then have the following,

Theorem 2.2.10 (Dehn, Lickorish). The mapping class group Γg is generated

by the isotopy classes of Dehn twists δc for a finite set of non-separating cycles

c in π1(S).

In summary we have shown that Mg is a K(π, 1), and the cohomology of

Mg with coefficients in Q is the group cohomology of the mapping class group.

The Teichmüller space is the universal covering space of the moduli space.
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In order to further understand the geometry of the moduli space of genus g

curves, we now turn out attention to constructing cohomology classes, specifi-

cally tautological classes, onMg by using the characteristic classes of natural

bundles on moduli space. For the following relevant line bundles which we now

define, the automorphisms of a curve C ∈ Mg acts non-trivial on the fibers

of the line bundle, and thus to correctly define these line bundles, one must

work on the moduli stack. On the other hand if g ≥ 4, the set of curves with

non-trivial automorphism has codimension greater than or equal to 2, and the

characteristic classes which we define in H2(Mg,Q) don’t see these curves,

thus we continue to avoid discussing the correct definition of a line bundle on

a stack.

Consider the universal family π : Cg →Mg on which we have the relative

dualizing sheaf ωπ := KCg ⊗ π∗K
∨

Mg
, which is a line bundle on the universal

family. On any flat family of smooth curves (π : X → S), ωπ is the line bundle

whose fibers are the cotangent bundle on each curve π−1(s), s ∈ S.

The Hodge bundle E is defined to be the direct image of the relative du-

alizing sheaf, i.e. E := π∗(ωπ), which is to say that its fiber over some curve

C ∈ Mg is H0(C,KC). We denote L := ∧gE the Hodge line bundle, the de-

terminant line bundle of the Hodge bundle. Let ψ := c1(ωπ) ∈ H2(Cg,Q) be

the first Chern class of ωπ.

Definition 2.2.11. The kappa classes are defined as the pushforwards of the

i + 1’st power of the chern class of the relative cotangent sheaf, i.e. κi :=

π∗(ψ
i+1) ∈ H2i(Mg,Q).

The lambda classes are the characteristic classes of the Hodge bundle, λi =
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ci(E) ∈ H2i(Mg,Q).

When n > 0 there are other natural line bundles to consider, Li whose fiber

at an n-pointed curve (C; p1, . . . , pn) is the cotangent space to C at pi. The

marked points provide a section fromMg,n to Cg,n, defined by σi(C; p1, . . . , pn) :=

((C; p1, . . . , pn), pi), and we can pull back the relative dualizing sheaf by this

section.

Definition 2.2.12. The psi classes are the chern classes c1(Li) ∈ H2(Mg,n,Q),

which are denoted as ψi.

Definition 2.2.13. The tautological ring is the subring of H∗(Mg,n,Q) gen-

erated by all the kappa classes and all the psi classes.

Remark 2.2.14. One can define the tautological ring, usually denoted R∗,

as the subring of the rational Chow ring generated by all the natural classes

above. The usual notation for the tautological subring in homology is RH∗.

All classes in the tautological ring are even, and the grading (as in Chow) is

such that RH∗ ⊂ H2∗, and the ψ classes which are in H2 are in RH1.

Mummford showed that λ1, . . . , λg are polynomial in the kappa classes, and

thus lie in the tautological ring. In addition he showed that κi for i > g−1 are

polynomial in κ1, . . . , κg−1, and therefore the tautological ring in generated by

the psi classes and the first g − 1 kappa classes [27].

The following conjecture due to Faber roughly states that the tautological

ring R∗ looks like the cohomology ring of a compact (g − 2 + n)-dimensional

real manifold. More precisely it says that R∗ is a Gorenstein (sometimes called

Poincaré duality) graded ring with a socle in dimension g − 2 + n:
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Conjecture 2.2.15. [10] The tautological ring ofMg,n has the following prop-

erties:

1. Ri(Mg,n) = 0 for i > g − 2 + n

2. Rg−2+n(Mg,n) ∼= Q

3. The map Rs(Mg,n)×Rg−2+n−s(Mg,n)→ Rg−2+n(Mg,n) = Q is a perfect

pairing.

The first two parts of the conjecture are known to hold.

Theorem 2.2.16 (Looijenga [25]). Ri(Mg,n) = 0 for i > g − 2 + n, i.e. part

1 of the conjecture holds.

This and the statement that λ1 is ample on Mg immediately implies a

theorem of Diaz which bounds the dimension of a compact subvariety ofMg.

Indeed, the ampleness of λ1 implies that for any d-dimensional complete sub-

variety X ⊂Mg, the intersection number λd1 ·X is positive, but we know that

λg−1
1 = 0. Therefore for any compact subvariety X ⊂ Mg, the dimension of

X is at most g − 2.

In addition Faber and Looijenga have proven the second statement in the

conjecture.

Theorem 2.2.17 (Faber [9], Looijenga [25]). Rg−2+n(Mg,n) ∼= Q.

Remark 2.2.18. Faber made a similar conjecture about the tautological ring

of Mg,n which we have not defined, but whose restriction to Mg,n gives the

tautological ring defined above. In recent work of Petersen and Tommasi

[29], it was shown that the perfect pairing statement (3) does not hold for
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R3+n(M2,n), for some 20 ≤ n ≤ 22, and further Petersen [28] showed that the

perfect pairing also fails on the moduli space of curves of genus 2 of compact

type for n ≥ 8.

These curious vanishing properties of the tautological ring have led to the

following further ambitious conjectures. Harer’s bound on the homotopical

dimension of Mg further supports these conjectures [18].

Conjecture 2.2.19 (Hain - Looijenga [17]). The moduli space Mg has an

affine cover with exactly g − 1 open sets.

There is a weaker conjecture which would similarly explain vanishing prop-

erties.

Conjecture 2.2.20 (Roth - Vakil [30]). There exists an affine stratification

(in the sense they define it) of Mg,n by g − δn,0 locally closed strata Si where

Sj = ∪i≤Si.

Remark 2.2.21. An affine stratification and cover for Mg when g = 3, 4, 5

are constructed in [11][12], while there are no conjectural candidates for either

an affine cover or stratification of Mg for g > 5.

In the thesis we work with a foliation onMg which is tangentially complex

and was introduced in [14]. A foliation of a manifold is a decomposition into

equidimensional leaves which are locally immersed submanifolds. The exis-

tence of such a foliation is certainly weaker than the existence of a conjectural

stratification. Some evidence [14] [15] has been presented suggesting that this

foliation explains various vanishing properties, specifically it provides a proof

of Diaz’s Theorem.
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2.3 Compactifying the Moduli Spaces Mg,n

The moduli space Mg is not compact, and it is natural to look for a

compactification which parameterizes natural geometric objects and whose

boundary is divisorial with simple normal crossings. In this section we intro-

duce the Deligne-Mumford compactification Mg of Mg which is a projective

variety and parameterizes stable nodal curves. We begin the section with the

definition and basic properties of nodal curves.

Definition 2.3.1. A complete algebraic, possibly singular, complex projective

curve C is called a nodal curve if any point p ∈ C is either a smooth point

of C or is locally complex analytically isomorphic to a neighborhood of the

origin given by the equation {xy = 0} ⊂ C2.

The normalization of a nodal curve is a smooth Riemann surface with pos-

sibly more than one irreducible components, denoted C̃ := ∪iCi obtained by

disconnecting the nodes. The normalization map n : C̃ → C is an isomor-

phism away from the nodes of C, and for p a node and U a sufficiently small

neighborhood of p, n−1(U) is two disjoint coordinate neighborhoods of q1 and

q2 where n−1(p) = {q1, q2}. An irreducible nodal curve is a nodal curve with

one irreducible component or equivalently C̃ is connected.

If C is a nodal curve with δ nodes and m irreducible components denoted

C1, . . . , Cm, then the arithmetic genus of C is g(C) =
∑

i g(Ci) + δ −m + 1

where g(Ci) is the geometric genus of the normalization of each component

Ci.

Definition 2.3.2. The dual graph of a nodal curve C is a graph whose vertices

vi correspond to irreducible components and such that for each node in C
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whose preimage under the normalization map lies on irreducible components

Ci and Cj, there in an edge in the dual graph joining vertices vi and vj (note: i

may equal j). The dual graph of a marked nodal curve with mi marked points

on Ci has mi legs (by which we mean half-edges starting from it) on the vertex

vi.

We now introduce the simplest type of nodal curve whose genus is exactly

the sum of the genera of its irreducible components.

Definition 2.3.3. A nodal curve is a curve of compact type if its dual graph

is a tree, i.e. its dual graph does not have any non-trivial closed cycles.

We now define the curves which will be parameterized in Mg.

Definition 2.3.4. A stable nodal curve (C, p1, . . . , pn) is a nodal curve whose

group of automorphisms which fix the marked points is finite.

In fact all smooth curves of genus greater than one are stable and the size

of the group of automorphisms is bounded by 84(g − 1). Requiring a nodal

curve to be stable amounts to requiring that any irreducible component Ci

whose normalization is genus 0 has at least 3 marked points and (preimages

of) nodes, in total, and excluding the case of smooth elliptic curves.

The dualizing sheaf on a nodal curve C, which plays the role of the canon-

ical line bundle on a smooth curve (and satisfies the properties outlined in

Serre’s duality theorem), is the space of meromorphic differentials on the nor-

malization C̃ which are holomorphic away from the node and may have simple

poles with residues of opposite sign at the preimage of each node under the

normalization map. Clearly if C is smooth, the dualizing sheaf is the sheaf of

holomorphic differentials and is exactly the canonical bundle.
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Curves with at worst nodal singularities are locally complete intersections,

and by the residue condition the dualizing sheaf is invertible. In addition

the dualizing sheaf is ample on each irreducible component of a stable curve

precisely because of the stability condition, and alternatively one can define a

curve as stable if the dualizing sheaf is ample on this curve.

The dualizing sheaf for nodal curves can be defined in families, and in fact

the dualizing sheaf on a nodal curve is the unique extension in families of

canonical bundle for smooth curves. One can show that if X∗ is the set of

smooth fibers of π, then to extend the relative canonical bundle over X∗ → S∗

one must allow simple poles at the nodes of the singular curve.

We now proceed to define the Deligne-Mumford compactification of Mg.

Definition 2.3.5. The Deligne-Mumford compactification of Mg,n, denoted

Mg,n, is the moduli space of stable nodal curves up to biholomorphism.

It is a non-trivial statement to show that this is a compactification, and this

follows from the stable reduction theorem which asserts that any flat family of

smooth curves over a non complete base can be completed up to base change

by allowing fibers which are stable nodal curves [5]. It is indeed surprising

that one does not need to allow worse singularities.

Theorem 2.3.6 (Deligne-Mumford). The Deligne-Mumford compactification

Mg,n is a projective variety, and the boundary ∂Mg,n is a divisor inMg,n with

simple normal crossing singularities.

In order to understand a neighborhood of nodal curves, we remark that in

fact for stable nodal curves there exist a universal deformation space (given
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by the Kuranishi family) which satisfies the property that given any other

deformation and a sufficiently small neighborhood of the nodal curve, there

exists a unique morphism of deformations to the Kuranishi family.

We do not discuss all the details here and refer to [2] for the details, and

instead focus on constructing a specific deformation of nodal curves given by

altering a neighborhood of each node which will provide local coordinates near

the boundary of Mg. Given a nodal curve C with δ nodes, one can define a

family C → ∆ where ∆ ⊂ Cδ which smooths each node individually with a

complex parameter.

This is accomplished by a direct generalization of the one-parameter family

of smooth curves degenerating to a nodal curve with one node called the

plumbing deformation. Specifically we will describe a deformation of C with

one node at p, over the disk ∆ := {s ∈ C : |s| < ε} for ε sufficiently small,

such that each fiber φ−1(s) is a smooth curve for s 6= 0, while C0 = C.

Let U be a neighborhood of the node p in C which is given by V := {z ∈

C : |z| < ε} union W := {w ∈ C : |w| < ε} with the origins identified.

This description of a neighborhood of the node can be thought of as choosing

coordinate neighborhoods of the points q1 and q2 in the preimage of p under

the normalization map n : C̃ → C, with the node given by identifying q1 ∼ q2.

Let Us := {z ∈ C : |z| <
√
|s|} ∪ {w :∈ C : |w| <

√
|s|} for s ∈ ∆ which

is an open neighborhood of the node and denote the curve with boundary

Cs
0 := C − Us. In addition let γz := {z ∈ C : |z| =

√
|s|} and similarly

γw := {w ∈ C : |w| =
√
|s|} which are simple closed paths in V and W .

Definition 2.3.7. For any s ∈ ∆, identify points z′ ∈ γz and w′ ∈ γw in the
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boundary of C0
s by the relation z′ ∼ w′ if z′w′ = s, and denote the resulting

smooth curve by Cs.

The family φ : C → ∆ with fibers φ−1(s) = Cs is a one parameter deforma-

tion of C called plumbing deformation of C with complex parameter s. The

path γs := γz ∼ γw on Cs is called the seam, and its homology classes is called

the vanishing cycles.

If C has marked points, one can choose a neighborhood of the node which

does not contain any marked points, and proceed in exactly the same way to

define a deformation of (C, p1, . . . , pn) which smooths the node.

Let (C, p1, . . . , pn) ∈ Mg,n, have δ nodes, and let n : C̃ → C be the

normalization of C whose irreducible components are ∪jCj and the preimage

of each node qi is given by q1
i and q2

i .

Theorem 2.3.8. [3],[2][20] Any choice of local coordinates in a neighborhood

of the smooth marked curves (∪jCj, p1, . . . , pn, q
1
1, q

2
1, . . . , q

1
δ , q

2
δ ) on the moduli

spaces to which they belong, and complex plumbing parameters (s1, . . . , sδ) in

the neighborhood of each node qi defines a local coordinate system in a neigh-

borhood of (C, p1, . . . , pn) ∈ ∂Mg,n.

Thus if C ∈ Mg,n is a nodal curve, then the union of any set of local

coordinates on the moduli space (or product of moduli spaces) where the

normalization C̃ lives, together with a complex plumbing coordinate for every

node of C, gives local coordinates near C.

In the thesis we will be working in a small neighborhood of nodal curves,

and one can consider our local computations as taking place on the Teichmüller

space (in many instances the Torelli space will be enough). The very techni-
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cal issue of constructing a bordification of the Teichmüller space to which the

action of the mapping class group extends is considered in [1][2][20]. In the

thesis, all we need is local plumbing coordinates and coordinates on the var-

ious moduli spaces which are local coordinates near the boundary given by

plumbing coordinates, and all the details for this situation are given in [33].

2.4 Holomorphic Differentials

Recently there has been a lot of progress in Teichmüller dynamics, starting

with the groundbreaking work of Kontsevich and Zorich [22]. In that context,

many methods were developed for dealing with the moduli space of Riemann

surfaces together with a holomorphic differentials, and the constructions used

in the thesis are somewhat parallel, by generalizing to the case of meromorphic

differentials, and then restricting to the real-normalized case (which excludes

all holomorphic differentials). To motivate the real-normalized case and to

explain the geometry of our situation, in this section we briefly summarize

some of the constructions and results with holomorphic differentials.

Let Hg be the total space of the Hodge bundle E → Mg, with the zero

section removed, that is to say, a point X ∈ Hg is a Riemann surface C ∈Mg

together with a holomorphic differential ω on C. The fiber of the map E→Mg

over C is H0(C,KC), and thus Hg has complex dimension 4g − 3.

Given a point in Hg, we can either view it complex analytically as a pair

(C, ω), with ω ∈ H0(C,KC), or as a structure of a flat surface on C — the

notion we now recall.

Given a holomorphic one-form on a compact Riemann surface, near a point
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that is not a zero of ω, the abelian integral
∫
ω naturally gives a local coor-

dinate on the Riemann surface, defined up to translation. This provides C

with a flat metric away from the zeros of ω. If q is a zero of order n, then

locally near q the differential ω = (n + 1)zndz is the pullback f ∗(dz) where

f(z) = zn+1 is the ramified covering of the disc of degree n+ 1. Therefore
∫
ω

defines a metric which has a conical singularity of angle 2π(n+ 1) near a zero

of order n.

Therefore the pair (C, ω) defines a flat structures which realizes C as a

polygon in the complex plane such that a pair of sides of the polygon are

identified by translations (where we cut along geodesics in the flat metric

which contain zeros of ω).

Definition 2.4.1. A collection of polygons oriented to the left in the real

plane with edges appearing in pairs which are parallel and of equal length

with opposite orientation is called a flat surface if gluing pairs of edges results

in a connected surface.

Actually this definition of a flat surface given by polygons which are em-

bedded in the real plane comes with a chosen direction to the “north”. In

general one would like to consider two flat surfaces as the same if one is simply

given by rotating the other flat surface, and we can quotient by all rotations

in the plane.

We have just constructed a map from Hg into the space of flat surfaces

by describing how a curve equipt with a holomorphic differential prescribes a

flat structure where the zeros of the differential map to the vertices. In fact

we can also describe a map from the space of flat structures into Hg, and this
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provides a bijection, and thus there is a dictionary between the language of

complex analysis and geometry of flat structures.

Given a polygon in the plane where sides are identified by translation, the

global differential dz on C defines a holomorphic one form on the glued surface

whose abelian integral clearly gives rise to the flat structure one started with.

Local coordinates in the plane near identified points are given by translation,

i.e. z = z′+ constant, which implies dz = dz′, so the global differential indeed

descends to define a holomorphic differential on the glued surface. The pair of

flat surface and the image of dz under the gluing is therefore a point in Hg.

Notice that near any point in a flat surface which is not a vertex of the

polygon, a local coordinate chart has angle 2π (use the chosen direction to

define angles), while the vertices of the polygon have total angle an integer

multiple of 2π. Near a vertex with angle 2π(n + 1), w provides a local co-

ordinate chart of the glued surface where z = wn+1 for z global coordinate

in the plane, and therefore the global differential dz in the plane descends to

(n+ 1)wndw on the glued surface, and thus has a zero of order n.

We have thus outlined the steps in the following correspondence.

Proposition 2.4.2. We can equivalently study the a pair (C, ω) where ω is

a holomorphic differential or the corresponding flat surface of polygons in the

real plane such that the global differential dz descends to ω on the glued surface.

A holomorphic differential ω on a smooth, genus g surface has 2g− 2 zeros

counted with multiplicity, and we stratify Hg by the multiplicities of the zeros

of ω.

Definition 2.4.3. The stratum Hg(d1, . . . , dm) ⊂ Hg, is defined to be the
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locus of (C, ω) ∈ Hg where ω has m zeros with multiplicities prescribed by

d1, . . . , dm.

In general a holomorphic one-form has simple zeros, which implies that

Hg(1, . . . , 1) is open in Hg, and thus has dimension 2g − 1 + (2g − 2). More

generally, the dimension of the stratumHg(d1, . . . , dm) is 4g−3−(2g−2−m) =

2g − 1 +m as we would expect having fixed the location of 2g − 2−m zeros.

Denote each edge of the polygon as a vector vj with vertices qj and qj+1.

Intuitively to describe a flat structure, one needs to prescribe the length of the

vectors vj, i.e.
∫ qj+1

qj
ω, and distance between identified sides of the polygon.

The combinatorics of the flat structure prescribes the number of singular points

and their corresponding cone angles at each of the vertex in the resulting glued

surface. In fact given one flat surface in Hg(1, . . . , 1) one can get almost all

flat surfaces in Hg(1, . . . , 1) by varying these parameters, namely the length

of vj and distance between identified vectors.

Indeed we will now show that these parameters define a local coordinate

system in Hg(d1, . . . , dm).

Let γ1, . . . , γ2g be a basis of H1(C,Z) which can be realized in the polygon

by choosing paths inside the polygon joining two identified points. Choose a

set of path, γ2g+1, . . . , γ2g+(m−1), between the zeros qj and qj+1, which can be

chosen to be some number of edges in the polygon. The collection of cycles

γ1, . . . , γ2g+(m−1) is a basis of the first homology of C relative to the zeros of

ω, i.e. of H1(C; {q1, . . . , qm},Z).

Definition 2.4.4. We call the periods
∫
γi
ω for i ∈ {1, . . . , 2g} the absolute

periods of ω, and the periods
∫
γj
ω for j ∈ {2g + 1, . . . , 2g + 1−m} are called
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the relative periods of ω.

Theorem 2.4.5 ([22]). The absolute and relative periods of ω over a basis of

the relative homology group H1(C; {q1, . . . , qm},Z) gives local coordinates on

the stratum Hg(d1, . . . , dm).

There is a natural action of SL(2,R) on Hg given by transforming the flat

structure in the plane by the matrix action on the real plane. The new surface

still glues to define a flat surface (parallel lines are sent to parallel lines), and

the number and angle of vetrices is unchanged by this action. In order to

verify that this action is well-defined one can check that it does not depend

on the polygon representation of (C, ω), namely the choice of geodesic of the

flat metric
∫
ω used to unwrap C.

Definition 2.4.6. For any A ∈ SL(2,R) and (C, ω) ∈ Hg, A ·(C, ω) is the flat

surface given by acting on the polygon representation of (C, ω) in the plane.

If (C, ω) ∈ Hg(d1, . . . , dm), then A · (C, ω) ∈ Hg(d1, . . . , dm).

We note that one can consider an action by GL+(2,R) on Hg, but the

SL-action preserves the area of the surface in the flat metric, and thus is

well-defined on Hg(d1, . . . , dm)1 of flat surfaces with unit area.

The action by SL(2,R) or GL+(2,R) on Hg naturally leads to interesting

questions regarding orbit closures and invariant subvarieties under this action

or under the action by Borel subgroups. Of course the simplest case of a

subvariety preserved by the action are the strata Hg(d1, . . . , dm).

The general philosophy (which is further outlined in [35]) is that one can un-

derstand some numerical characteristics of (C, ω) ∈ Hg(d1, . . . , dm) by study-

ing the orbit closure of (C, ω) under the action of GL+(2,R). In this direction
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we state a theorem of Kontsevich and a very important breakthrough devel-

opment by Eskin-Mirzkhani-Mohammadi.

Theorem 2.4.7 (Kontsevich[21]). If the orbit closure of GL+(2,R) · (C, ω) ⊂

Hg(d1, . . . , dm) is a complex analytic subvariety then it is an affine variety in

coordinates given by absolute and relative periods, i.e. H1(C; {q1, . . . , qm},Z).

Theorem 2.4.8 (Eskin-Mirzkhani-Mohammadi[8]). Every SL(2,R) obit clo-

sure is an affine invariant subvariety in the stratum, which is a subvariety

defined by real linear equations in local period coordinates.

One can define a natural holomorphic foliation in any stratumHg(d1, . . . , dm)

called the kernel, period, or isoperiodic foliation [35][26]. The foliation is de-

fined by fixing all absolute periods and varying the relative periods, and a leaf

of this foliation is an affine subvariety in period coordinates.

Definition 2.4.9. The stratumHg(d1, . . . , dm) is foliated bym−1 dimensional

leaves defined by fixing all absolute periods and varying the relative periods.

Local holomorphic coordinates on the leaves are given by the relative peri-

ods, and the leaves are immersed submanifolds. Geometrically this foliation is

given by moving the edges of the polygons in the plane relative to each other

keeping the distance between the identified edges fixed. One can ask questions

regarding the distribution of these leaves in Hg(d1, . . . , dm), namely is there a

dense leaf and does there exist a leaf which is an embedded complex manifold.

Remark 2.4.10. The study of flat surfaces and Teichmüller dynamics is a

rich area with connections to many areas of mathematics. What has been

summarized in this section is only a small subset of the current work with flat
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surfaces. We have focused our summary almost exclusively on areas which

will be generalized to the set-up in the thesis. Namely the local coordinates in

each stratum Hg(d1, . . . , dm) as well as the period foliation can be defined for

the case of meromorphic differentials with real periods, and this will be done

carefully in the next chapter.

We would like to note that many questions which have been studied for

holomorphic differentials regarding ergodicity question such as studying the

Teichmüller flow in each leaf of the period foliation may be generalized to the

set-up used in the thesis, and these questions may be worth further study. We

would like to point out recent work in this direction [4] for general meromorphic

differentials which may be further applied to real-normalized differentials, a

subset in the space of all meromorphic differentials.

Meromorphic differentials naturally appear on the boundary ofHg, and our

techniques used to understand degenerations of real-normalized differentials

may shed light on analogous question in Teichmüller dynamics regarding a

correct compactification of Hg.
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Chapter 3

Real-Normalized Meromorphic

Differentials

In this chapter we introduce the notion of a real-normalized differential and

review previous work specifically of Grushevsky and Krichever suggesting that

real-normalized differentials provide a useful approach toward understanding

the geometry of Mg. Using real-normalized differentials one can define lo-

cal coordinates, a foliation, and globally well-defined continuous real-analytic

functions on the moduli space of curves endowed with some extra data. This

material relates directly to the thesis, and therefore we attempt to address all

issues carefully.

Definition 3.0.11. A meromorphic differential ω on a smooth curve C is

called real-normalized if the periods of ω over any cycle on C are real, i.e.∫
γ
ω ∈ R for all γ ∈ H1(C,Z).
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3.1 Local Coordinates

We begin by introducing notations for the various bundles and the moduli

spaces we will consider, as well as forgetful maps between these spaces. In

addition we define local coordinates on each of these spaces– recall that by local

coordinates we are constructing local coordinates on the cover near orbifold

points.

Let m := (m1, . . . ,mn) be any set of positive integers and let |m| :=∑n
i=1(mi + 1). Recall σi :Mg,n → Cg,n is the section given by the i’th marked

point, and we define the following bundle on Mg,n.

Definition 3.1.1. The direct image of the relative dualizing sheaf ωπ twisted

by
∑

(mi + 1)σi is denoted ΩM≤m
g,n .

The fibers of ΩM≤m
g,n over each curve with marked points (C, p1, . . . , pn) ∈

Mg,n is H0(C,KC +
∑

i(mi + 1)pi), and thus a section of the bundle ΩM≤m
g,n

over each point (C, p1, . . . , pn) is (C, ω) where ω is a meromorphic differential

with at worst poles of order mi + 1 at pi.

We consider the open subset of this bundle where the order of singularities

is fixed to be exactly ki + 1:

Definition 3.1.2. Define ΩMm
g,n := {(C, p1, . . . , pn) ∈ Mg,n, ω ∈ H0(KC +∑

i(mi+1)pi)−∪nj=1H
0(KC +

∑
i(mi+1)pi−pj)}, the moduli space of smooth

curves with n marked points and a meromorphic differential with singularities

of order exactly mi + 1 at pi which are holomorphic elsewhere.

By Riemann-Roch it easily follows that for any C we have dimH0(C,KC +∑n
i=1(mi + 1)pi) = g − 1 + |m|. Therefore the complex dimension of ΩMm

g,n,
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which is an open subset of ΩM≤m
g,n , is 4g−4+n+ |m|, and for each point X in

ΩMm
g,n, the set of zeros of ω counted with multiplicity is of degree 2g−2+ |m|

and denoted
∑2g−2+|m|

s=1 qs where qs are not necessarily distinct.

The abelian integral,
∫
ω, which is defined locally on C, has critical points

at the zeros of ω, and thus the critical values of
∫
ω are

∫ qs ω. On X =

(C, p1, . . . , pn, ω) ∈ ΩMm
g,n, choose a symplectic basis for H1(C,Z), an ordering

of the zeros, and paths between q1 and qs which do not intersect marked points

p1, . . . , pn.

The following definition is an exact replica of the absolute and relative

periods defined for a holomorphic differential:

Definition 3.1.3. The absolute periods of a meromorphic differential ω (with

no residues) on a smooth curve C are given by αi(ω) :=
∫
Ai
ω and βi(ω) :=∫

Bi
ω where {Ai, Bi}gi=1 is a symplectic basis of H1(C,Z) that does not pass

through any of the marked points.

The relative periods of a meromorphic differential ω are defined to be

φs(ω) :=
∫ qs
q1
ω for some ordering of the zeros and a choice of path between q1

and qs which avoids the poles.

Remark 3.1.4. If ω has non-zero residues, the absolute periods are given by

integrating ω over a basis of H1(C \ {pi},Z) which we denote as {Ai, Bi}gi=1

and γ1, . . . , γn where {Ai, Bi} are 2g nontrivial cycles on C \ {p1, . . . , pn} with

Ai ·Aj = Bi ·Bj = 0 and Ai ·Bj = δi,j and each γi is a small loop around the

marked point pi.

The absolute and relative periods will describe local holomorphic coor-

dinates on ΩMm
g,n, and thus we must define how to vary the relative peri-
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ods in the case where some of the zeros of ΨX occur with multiplicity, i.e. if

qs1 = . . . = qsr . The zeros may cease to be multiple under a small perturba-

tion, and thus in order to define local coordinates which vary holomorphically

in a neighborhood of X, we consider the symmetric polynomials of the φs’s

corresponding to each of the multiple zeros.

Let s` denote the symmetric polynomial of degree ` in r variables for

` ∈ {1, . . . , r}, then σ`(ω) := s`(φ2, . . . , φr) deforms holomorphically in the

neighborhood of the point with a zero of multiplicity r. For each point

X ∈ ΩMm
g,n, and for each zero with corresponding multiplicity ri, the col-

lection of symmetric polynomials in ri variables of the critical values for all

zeros denote collectively as σ1(ω), . . . , σ2g−3+|m|(ω). These deforms holomor-

phically in the neighborhood of X ∈ ΩMm
g,n.

A basis of cycles of H1(C \{pi},Z) and paths between ordered zeros which

do not intersect marked points can be chosen to vary continuously on curves

Xt in a small neighborhood of X.

Let ρi(ω) := respi
ω = 2π

√
−1

∫
γi
ω, the residue of the meromorphic differ-

ential near the singular points of the differential ω.

Theorem 3.1.5. [14] In a small neighborhood of any point X ∈ ΩMm
g,n

the absolute periods, α(t) = (α1(ωt), . . . , αg(ωt)), β(t) = (β1(ωt), . . . , βg(ωt)),

the relative periods, σ(t) = (σ1(ωt), . . . , σ2g−3+|m|(ωt)) and residues ρ(t) =

(ρ1(ωt), . . . , ρn(ωt)) have linearly independent gradients, and thus they define

a holomorphic local coordinate system in a neighborhood of X in Mg,n(m).

Remark 3.1.6. Recall from the holomorphic case, the neighborhood of a

point inHg(d1, . . . , dm) local coordinates are given by the relative and absolute
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periods of the holomorphic differential with fixed order of zeros. In our case of

real-normalized meromorphic differentials, where the multiplicity of zeros is no

longer fixed, we need to introduce symmetric functions in order to define local

functions which deform holomorphically. In addition, because the differential

is meromorphic, we will need to include the globally defined functions given

by the residues.

The following proof of 3.1.5, which we outline, originally appears in [24]

with only small modifications to prove the statement above. The ideas in

this proof will be used for a number of statements below with few changes,

and thus we record it here and later indicate how is will be used to prove

other statements. The following proof uses a choice of π1 on curves in a small

neighborhood of C0, and thus we are working on the the cover of moduli space

near orbifold points. If one traces the steps of the following proof, we actually

define a differential on the curve C0 though it was initially only defined on the

cut curve.

Proof. The residues are clearly independent, and we show that the assumption

that relative periods and absolute periods are linearly dependent leads to a

contradiction.

Assume for contradiction that these functions are linearly dependent at

X0 which implies there exists a one dimensional deformation of X0, i.e. a

one-dimensional family Xt = (Ct, ω(t)), such that the derivative with respect

to t of the absolute and relative periods of ω(t) are zero at t = 0. Therefore

we assume for contradiction that there is a one-dimensional family Xt with

∂
∂t
|t=0α(t) = ∂

∂t
|t=0β(t) = ∂

∂t
|t=0σ(t) = 0.
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Locally choose a continuously varying symplectic basis of H1(Ct,Z), and

let ωj(t), j ∈ {1, . . . , g} be a basis of H0(Ct, KCt) dual to the cycles A cycles.

Let Γt be the family of cut curves, which is the family of Ct cut along the

chosen paths which define a basis of H1(Ct,Z). Consider the abelian integral

ft(p) :=
∫ p

q1(t)
ωt which is well-define on the the cut curve, and in order to fix

a point on Ct, use the level sets of ft. In other words if x = f0(p) for p ∈ C0,

let pt = f−1
t (x) which is a marked point in Ct. Now let Ft,j(p) be the abelian

integral
∫ p

q1(t)
ωj(t) which depends on the path chosen in Ct but is well-defined

on the cut curve Γt.

We define the following differential which is initially defined on the cut

curve Γ0 and may have simple poles:

∂

∂t
Ft,j(f

−1
t (x))|t=0

In fact, as we will show, ∂
∂t
Ft,j(f

−1
t (x))|t=0 is a holomorphic differential

on C0 with zero periods around the cycles Ai. This in turn implies that the

differential ∂
∂t
Ft,j(f

−1
t (x))|t=0 is identically zero, and thus has zero periods

around the cycles Bi. Therefore ∂
∂t

∫
Bj
ωj(t) = 0 for all i and j, and thus the

torelli map τ : Mg → Ag, τ(C)=period matrix of C, is not an embedding

near C0. By the infitesimal Torelli theorem, C0 must be hyperelliptic and the

family Ct is transverse to the hyperelliptic locus (the kernel of dτ near C0 is

one dimensional).

Clearly the differential ∂
∂t
Ft,j(f

−1
t (x))|t=0 is holomorphic on C0 as long as

f−1
t (x) is non-singular. The singularity of f−1

t (x) occur when p = f−1
0 (x) is a

zero of ω. By assumption ∂
∂t

∫ p

q1(t)
ω|t=0 = 0 because the critical values do not
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change with respect to t. One can show that the coefficient of the singular

part of ∂
∂t
Ft,j(f

−1
t (x))|t=0 is zero because it involves the term ∂

∂t

∫ p

q1(t)
ω|t=0 = 0

which is zero.

By the same argument the jumps of Ft,j(f
−1
t (x))|t=0 along the edges of the

cut surface Γt are fixed with respect to t because ∂
∂t
|t=0α(t) = ∂

∂t
|t=0β(t) = 0.

Therefore ∂
∂t
Ft,j(f

−1
t (x))|t=0 has no jumps along the edges of Γ0, and it defines

a holomorphic differential on C0.

To finish the argument one must show that if C0 is hyperelliptic then ∂
∂t
|t=0

is tangent to the hyperelliptic locus. Thus providing a contradiction with the

infinitesimal Torelli theorem. This is done carefully in [24] by showing that if

C0 is hyperelliptic, then up to O(t2) the curves Ct are also hyperelliptic.

We will now define the bundle over Mg,n of curves with jets on which we

will work directly in the thesis.

Definition 3.1.7. An m-jet of a local coordinate for m ≥ 1 at a marked point

p ∈ C is an equivalence class of local coordinates at p such that z ∼ z′ if

z′ = z +O(zm+1).

In particular, a 1-jet of a local coordinate at p is equivalent to the choice

of a non-zero tangent vector at p.

In general, if z′ = z + azm+1, then dz′

z′m+1 = 1+a(m+1)zm

zm+1(1+azm)m+1dz = 1
zm+1dz +

O(1)dz because 1
(1+azm)m+1 is regular at p where z(p) = 0. Therefore if z ∼ z′

as an m-jet then dz′

z′m+1 = dz
zm+1 + O(1)dz. This implies the following simple

lemma.

Lemma 3.1.8. If m > 1, prescribing an m-jet of local coordinates near p is
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equivalent to fixing the singular part of a meromorphic differential with a pole

of order m+ 1 at p.

In order to fix the singular part of a differential with a simple pole, no jet

is needed because the residue is globally well-defined and does not depend on

the choice of coordinate system near p. In all the following constructions we

will only consider differentials with purely imaginary residues, and define a

zero jet to be no extra data at the marked point. To describe a differential

with residue, we will specify the choices of a ∈ iR with the condition that the

sum of residues is zero.

In order to fix the singular part of a meromorphic differential with a double

pole at p one is required to choose a 1-jet.

Definition 3.1.9. Let Mm
g,n be the moduli space of smooth genus g curves

C with n marked points p1, . . . , pn and a choice of mi-jet of local coordinate

denoted zi near each marked point pi.

There is naturally a forgetful map from Mm
g,n to Mg,n by forgetting the

jets which exhibits Mm
g,n as

∏
(Cmi \ Cmi−1) bundle over Mg,n. Thus Mm

g,n

naturally has a complex structure as the total space of a bundle over Mg,n.

For example M(1)
g,1 is a C∗ bundle over Mg,1 or alternatively it is the total

space of the bundle whose fiber over (C, p) is the tangent space to C at the

marked point p (i.e. the dual of L1) with the zero section removed.

The following result is a straightforward application of Riemann’s bilinear

relations, and it will be used to define a real-analytic section from Mm
g,n to

ΩMm
g,n.
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Theorem 3.1.10. Given any point X ∈ Mm
g,n and any complex polynomials

Ri =
∑mi

α=0 ri,αz
−α−1
i , for each i ∈ {1, . . . , n} with ri,0 ∈ iR and

∑
i ri,0 = 0,

there exists a unique real normalized differential on C which is holomorphic

away from the marked points and has singular part at the marked points pi of

the form Ridzi +O(1)dzi in the the local mi-jet zi.

Proof. Assume for contradiction ω and ω′ were both real-normalized differen-

tials with singularities at the marked points prescribed by Ri. The difference

ω−ω′ is holomorphic and real-normalized, and thus because the period matrix

is non-degenerate, ω − ω′ is identically zero which proves uniqueness.

To prove existence, we construct a real-normalized differential with pre-

scribed singularities explicitly starting with φ, any differential with prescribed

singularities. If {ω1, . . . , ωg} is a normalized basis of holomorphic differen-

tials on C with respect to a symplectic basis Ai, Bi of H1(C,Z), then φ̃ :=

φ−
∑g

i=1(
∫
Ai
φ)ωi has zero periods around the cycles Ai.

Let c := (c1, . . . , cg) where ci = Im
∫
Bi
φ̃, i ∈ {1, . . . , g} and Im τ be the

imaginary part of the period matrix. By Riemann’s bilinear relations, specifi-

cally the positive definiteness of the imaginary part of the period matrix, there

exists a vector b = (b1, . . . , bg) such that Im τb = c.

Clearly φ̃ −
∑g

i=1 biωi is a real-normalized differential with the prescribed

singularities.

It follows that if all mi > 0 then for each point X ∈ Mm
g,n, there exists a

unique real-normalized differential with singularities dzi

z
mi+1
i

.

Definition 3.1.11. Assume all mi > 0 and X ∈ Mm
g,n, let ΨX be the unique

real-normalized differential on X with singularities dzi

z
mi+1
i

near marked points
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pi. This defines a real-analytic section from Mm
g,n to ΩM≤m

g,n which by abuse

of notation will be denoted Ψ as well.

Remark 3.1.12. In previous work [14] [15] two key examples were considered.

A dipole differential is a differential with two simple poles. It follows from the

previous theorem that given a point (C, p−, p+) ∈Mg,2, there exists a unique

real-normalized differential with simple poles of residue ±i at marked points

p±. In the case of a dipole differential, we can work directly on the moduli

space, and the situation is completely algebraic.

Another example of importance isM(1)
g,1. For each point X ∈M(1)

g,1 there is

a unique real-normalized differential Ψ1 with one double pole whose singular

part in the local 1-jet is dz
z2

. In addition, there is a unique real-normalized

differential Ψ2 whose singular part is given by idz
z2

.

Using the section Ψ fromMm
g,n to ΩMm

g,n and exact replica of the proof of

theorem 3.1.5 where the connection on the universal cut curve is given by the

real-normalized differentials, as opposed to a general meromorphic differential,

one can prove that relative and absolute periods are local coordinates onMm
g,n.

The proof of theorem 3.1.5 concludes by showing a that if such function are

not local coordinates on the moduli of curves with a prescribed real-normalized

differentials (the locus under Ψ ofMm
g,n in ΩMm

g,n), there is a family of curves

along which the Torelli theorem is contradicted, therefore this provides local

coordinates on the moduli of curves with jets as well.

Theorem 3.1.13. For any X ∈Mm
g,n, the absolute and relative periods of the

real-normalized differentials ΨXt give a local real-analytic coordinate system in

a neighborhood of X ∈Mm
g,n.
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Proof. The proof follows exactly along the lines of the proof 3.1.5. The only

change required is to replace the connection defining points on nearby curves

to be given by Ψ, the real-normalized differential, instead of a general mero-

morphic differential ω with fixed singularities.

The coordinates are no longer holomorphic in a neighborhood of X ∈Mm
g,n

because the absolute periods are all real, and Ψ is a real-analytic section.

3.2 Foliation

In this section we introduce a foliation on the moduli spaceMm
g,n by fixing

all absolute periods of Ψ. There is certainly a well-defined foliation on the

Torelli space (or alternatively the Teichmüller space) where there is a chosen

symplectic basis of H1(C,Z) on each curve. As we will verify this descends to

define a foliation on ΩMm
g,n which in turn restricts to a well-defined foliation

of Mm
g,n.

A foliation of a manifold M is a set of equi-dimensional leaves such that

through any point x in M there exist a unique leaf containing x.

Let ΩT mg,n be the moduli space of points in ΩMm
g,n with additionally a

chosen basis of H1(C \{p1, . . . , pn},Z). One can foliate the moduli space ΩT mg,n

by embedded submanifolds defining each leaf to be the locus where absolute

periods and residues are fixed.

Let r := (r1, . . . , rn), a := (a1, . . . , ag), b := (b1, . . . , bg) be any set of fixed

complex numbers.

Definition 3.2.1. A leaf of the foliation on the space ΩT mg,n is given by the

41



locus, Lr,a,b on which the residues and absolute periods around the chosen

basis of H1(C \ {p1, . . . , pn},Z) are fixed to be r, a, b respectively.

We now verify that this descends to define a foliation on ΩMm
g,n although

we no longer have a chosen basis of H1(C \ {p1, . . . , pn},Z).

Lemma 3.2.2. The moduli space ΩMm
g,n is foliated by locally immersed leaves

Lr,a,b defined by fixing residues and fixing all absolute periods to be locally

constant.

Proof. Two symplectic bases of H1(C,Z) differ by an element in the symplectic

group Sp(2g,Z), and if all absolute periods are locally constant in one basis

then they are locally constant in another basis as well. The action of Sp(2g,Z)

permutes the leaves of the foliation on ΩT mg,n, and thus we have a well-defined

leaf on ΩMm
g,n defined by fixing absolute periods locally.

Local holomorphic coordinates on L are given by relative periods, and the

absolute periods and residues define holomorphic coordinates in the direction

transverse to the leaves.

The notation above is deceiving because a symplectic basis on a fixed curve

is only determined up to an action of Sp(2g,Z), and thus one can not actually

determine the complex values a, b on a fixed leaf. The exception is the leaf of

exact differentials, Lr,0,0, where all periods are zero as the action of Sp(2g,Z)

fixes the periods 0, 0.

Each leaf has codimension 2g + n − 1 in ΩMm
g,n as it is defined by fixing

2g + n− 1 independent holomorphic functions.

Now it is clear that there is in fact a well-defined foliation of the moduli

space Mm
g,n by leaves with all absolute periods real (the residues are purely
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imaginary and fixed). We can consider the subset of points in ΩMm
g,n where ω

is real-normalized. Any leaf L defined by fixing all absolute periods to be real

and residues purely imaginary which intersects this locus of real-normalized

differentials in ΩMm
g,n is in fact by definition contained in this locus. Recall

that onMm
g,n the residues are automatically fixed as we defined it, the section

Ψ mapsMm
g,n into this space of real-normalized differentials, and the leaves L

provided a foliation on the space Mm
g,n.

Definition 3.2.3. The moduli spaceMm
g,n is foliated by locally complex leaves

L defined fixing the all absolute periods La,b.

Each leaves of the foliation La,b ⊂ Mm
g,n are locally smooth embedded

complex submanifold with local coordinates give by relative periods of Ψ. On

the other hand, the foliation is real-analytic in the direction transverse to the

leaves, given by absolute periods which are all real. Thus L is an foliation of

Mm
g,n with complex leaves which is real-analytic in the transverse direction.

Remark 3.2.4. In fact we can now view the theorem providing local coordi-

nates as a generalization of the Lyashko-Looijenga coordinates on the Hurwitz

space. When n > 1 or n = 1 but m > 1 there is a leaf L0 where all absolute

periods are zero. This is the leaf of exact differentials Ψ = df for a meromor-

phic function f unbranched as a map to P1 except over ∞ where fixing the

singularities of Ψ is equivalent to fixing the branching behavior of points over

∞.

Therefore a point X ∈ L0 is a curve with an exact differential df such that

the map f : C → P1 has prescribed branching over one point in P1, and this

realizes L0 as a C∗ bundle over the Hurwitz space. The Lyashko-Looijenga
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mapping, defined as the critical values of f corresponds exactly to the relative

periods of df .

The benefit of working with real-normalized differentials and viewing the

Hurwitz space as one leaf is the ability to locally perturb the value of an

absolute period [15].

Remark 3.2.5. Recall an equivalently defined foliation of Hg(m1, . . . ,mn) by

fixing the absolute periods of the holomorphic abelian differential.

It may be surprising that one can now easily define global continuous func-

tions onMm
g,n which are harmonic when restricted to a leaf of our foliation L.

Choose the base point of integration q0 to be a zero of Ψ such that
∫ qs
q0

Ψ ≥ 0

for all s, or alternatively a base point can be chosen so that
∑

i Im
∫ qi Ψ = 0.

Lemma 3.2.6. The imaginary part of the relative periods, fs(X) := Im
∫ qs ΨX

is a well-defined continuous function from Mm
g,n → R for s ∈ {1, . . . , 2g − 2 +

|m|}. Clearly fi|L is harmonic on any leave L as it is the imaginary part of a

holomorphic function.

The proof is extremely simple, but we highlight this fact as it provides a

powerful new tool (not available in the holomorphic case of Hg(d1, . . . , dm)) for

understanding the geometry ofMg,n. These functions are the main ingredient

in a simple and straightforward new proof of Diaz’s theorem bounding the

dimension of compact subvarities of Mg,n.

Proof. Let γ1 and γ2 denote two paths between the base point and qs. The

integral of Ψ over any closed cycle is real,
∫
γ1

Ψ =
∫
γ2

Ψ + c for c =
∫
γ1∪γ−2

Ψ ∈

R, and thus Im
∫ qs Ψ is well-define independent of the choice of path between

end points.
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Certainly having an foliation on the moduli space Mm
g,n is a lot weaker

than having an affine stratification with g − 1 strata on Mg,n as conjectured

by Roth and Vakil. The current work using this affine foliation suggests that

having an affine foliation is in fact useful toward understanding the geometry

of Mg,n.

In fact one can directly prove various known vanishing properties using

this foliation. For example Diaz’s theorem is a basic application of this setup.

In future work we suggest that new vanishing results may be proven using the

real-normalized perspective on Mg,n.
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Chapter 4

Meromorphic Differentials with

One Double Pole: M(1)
g,1

In the thesis we focus on the case where the unique real-normalized differ-

ential is of the second kind, and from now on we assume all residues are zero

unless it is explicitly stated otherwise. In this chapter we recall here previous

work of Grushevsky and Krichever on M(1)
g,1 which motivated our interest in

real-normalized differentials.

Throughout this chapter X = (C, p, z) is a point in M(1)
g,1, and recall no-

tation for two real-analytic sections from M(1)
g,1 to ΩM(1)

g,1 which were defined

earlier.

Definition 4.0.7. For X ∈ M(1)
g,1, let Ψ1(X) be the unique real-normalized

differential on C with one double pole at p locally of the from dz/z2, and

Ψ2(X) denotes the unique real-normalized differential locally near p of the

form idz/z2.
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Remark 4.0.8. Alternatively the second differential, Ψ2(X), can be viewed

as an imaginary-normalized differential with one double pole locally of the

form dz
z2

. An imaginary-normalized differential is a differential with prescribed

singularities and all absolute periods purely imaginary.

Any real-normalized differential Ψ with one double pole at p is a R-linear

combination of Ψ1 and Ψ2. If Ψ is locally of the form (a + ib)dz
z2

in the jet z,

then Ψ = aΨ1 + bΨ2. It follows therefore if q is a zero of both Ψ1 and Ψ1, it

is also a zero of any real-normalized differential on C with a double pole at p,

and one can define a locus of common zeros of Ψ1 and Ψ2 which is no longer

dependent on the 1-jet.

For any divisor E =
∑n

i=1 diqi on the curve C, Ψ ∈ H0(C,KC + 2p−E) if

Ψ has zeros of order at least di at qi.

Definition 4.0.9. Let D̂n ⊂M(1,0...,0)
g,1+n be the locus of points (C, p, q1, . . . , qn, z),

such that the n marked points (q1, . . . , qn) are zeros of both Ψ1(C, p, z) and

Ψ2(C, p, z) for z a 1-jet, i.e. Ψj(C, p, z) ∈ H0(C,Kc −
∑
qi) for j ∈ {1, 2}.

We consider the two forgetful maps, π1 : M(1,0,...,0)
g,1+n → M(1)

g,1 and π2 :

M(1,0,...,0)
g,1+n → Mg,1+n. The first map forgets the n marked points, and the

second map forgets the 1-jet at the first marked point.

The image of D̂n under π1 is denoted D̂ which is the locus of curves

X ∈ M(1)
g,1 such that Ψ1(X) and Ψ2(X) have at least n distinct common

zeros. The image of D̂n under π2 is denoted Dn and is the locus of curves

(C, p, q1, . . . , qn) ∈ Mg,1+n such that any real-normalized differential with a

double pole at the first marked point, has a zeros at each one of the other

marked points (q1, . . . , qn). Equivalently this is the locus such that for any jet,
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z, Ψ1(C, p, z) and Ψ2(C, p, z) with double poles at the first marked point both

have zeros at each one of the other marked points.

Remark 4.0.10. In was shown in [15] that the cohomology class of the locus

Dn ∈ Mg,1+n is tautological. A zero of Ψi at qi is a section of Li (viewed as

a bundle over M(1,0,...,0)
g,1+n ), in other words this is ψi, and a common zero is ψ2

i

which is the section squared. Therefore it is clear that the locus of common

zeros D̂n in M(1,0,...,0)
g,1+n is

∏n
i=1 ψ

2
i which is tautological. In addition this locus

is independent of the chosen jet at the first marked point, and one can further

verify that Dn is tautological.

4.1 Map on the Tangent Space at a point X

in M(1)
g,1

In order to achieve our goal of recording some of the previous work on

M(1)
g,1, this section will contain a very brief and incomplete outline of some

results obtained in [15]. The following map on the tangent space TX(M(1)
g,1)

originally appeared in [? ] where is was shown to be an isomorphism of the

tangent space at points where Ψ1(X) and Ψ2(X) have no common zeros on

C and a space of differentials on a cut surface with one simple pole at the

marked point. In [15] it was further shown that the loci of common zeros, D̂n,

can be viewed as degeneracy loci of this map on TX(M(1)
g,1).

For X = (C, p, z) ∈ M(1)
g,1 and the curve C, choose a standard generating

set for π1(C) and denote the cut curve C∗ obtain by removing this set of path

which is a polygon with 2g sides. Such a generating set for π1(C) can be chosen
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consistently in neighborhood of C ∈Mg, and locally we can consider the uni-

versal cut curve, which is given by cutting each curve in a small neighborhood

of C along a chosen generating set of π1 which varies smoothly.

Definition 4.1.1. Let T̂ (X) be the space of differentials with are holomorphic

inside the 2g-gon C∗ \ {p}, continuous on C∗ with at worst a simple pole at

p and jumps along the identified sides of the polygon given by an R-linear

combination of the absolute periods of Ψ1(X) and Ψ1(X) along these cycles.

Let v be a tangent vector in TX(M(1)
g,1) and Xtv = (Ctv,Ψ1(Xtv)) denote

a corresponding family of points in a neighborhood of X whose tangent di-

rection is v. Choose a generating set for π1(Ctv) consistently and denote the

corresponding cut curves as C∗tv. Following a very similar idea to the one used

in the proof of 3.1.5, and using similar notation, we denote the abelian integral

Ftv,1(q) :=
∫ q

Ψ1(Xtv) on C∗tv, and use F1(q) =
∫ q

Ψ1(X) to define a connection

on the universal cut curve. Equivalently fixing the value of Ftv,1(q) to be F1(q)

defines a way to vary points on the cut curves C∗tv in a small neighborhood of

C∗.

In fact to correctly define Ftv,1, a 2-jet is needed to fix the constant of

integration, and we will not address this issue and remark here that everything

done here can be lifted to M(2)
g,1 where this map is actually well-defined.

Consider the partial derivative of
∫

Ψ2 in the direction of v where
∫

Ψ1 is

fixed. For each v, let Ftv,2(F−1
tv,1(x)) :=

∫ F−1
tv,1(x)

Ψ2(Xtv) with x :=
∫ q

Ψ1(X),

and the partial derivative ∂vFtv,2(F−1
tv,1(x)) defines a differential at each point

q ∈ C∗.

Definition 4.1.2. Let τ be the R-linear homomorphism from TX(M(1)
g,1) to
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T̂ (X) defined as follows:

τ(v) = ∂vFtv,2(F−1
tv,1(x))Ψ1(X).

As in 3.1.5, ∂vF2(F−1
1 (x)) may have simple poles at the zeros of Ψ1(X),

and as shown there ∂vF2(F−1
1 (x))Ψ1(X) is actually holomorphic on C∗ except

possibly at p, the singular point of the differential Ψ. Additionally the jumps

are a R-linear combination of Ψ1(X) and Ψ2(X). If v ∈ TX(L), where L is

the foliation by fixing the absolute periods of Ψ1, then τ(v) is a multiple of

the absolute periods of Ψ2 only.

For (C, p, q1, . . . , qn) ∈ Dn\Dn+1 the real-normalized differential Ψ1(C, p, z)

and Ψ2(C, p, z) have exactly n common simple zeros at (q1, . . . , qn) where z is

any 1-jet at p.

Definition 4.1.3. For any (C, p, z) ∈ M(1)
g,1 such that there exists n marked

points (q1, . . . , qn) and (C, p, q1, . . . , qn) ∈ Dn \ Dn+1 define,

T̂n := {Ω ∈ T̂ |Ω(q1) = . . . = Ω(qn) = 0}.

The following theorem is a generalization of the statement: For points

X ∈ M(1)
g,1 such that Ψ1(X) and Ψ2(X) have no common zeros, the map τ is

an isomorphism between TX(M(1)
g,1) and T̂ .

Theorem 4.1.4. [15] There is an open subset D∗n ⊂ Dn, such that for any jet

z and X := (C, p, z), τ is an isomorphism between the tangent space TX(M(1)
g,1)

and T̂n.

Remark 4.1.5. This generalization is the main tool used to calculate the real
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dimensions of the loci Dn ⊂ Mg,1+n, and the theorem can be used to further

prove that the relative periods of the non-common zeros of Ψ1 or Ψ2 define

local coordinates on these loci.

4.2 Dual Periods

A meromorphic differential with one double pole has 2g zeros counted with

multiplicity, and in this section we introduce a set of cycle, cycles dual to the

zeros of Ψ, which spans H1(C,Z). For a general point inM(1)
g,1 the dual cycles

canonically define a basis of H1(C,Z).

The abelian integral of Ψ on C, denoted F (q) :=
∫ q

Ψ, depends on a choice

of path between the base point and q, but ImF (q) is a well-defined harmonic

function on C \ {p} which by 3.2.6 does not depend on a choice of path.

The real part of the abelian integral, ReF (q), is locally well-defined and

multi-valued on C changing when one goes around a cycle in H1(C,Z). On

the other hand, near every point in C \ {p} aside from the zeros of Ψ, the

direction along which ReF (q) remains locally constant is well-defined.

In a neighborhood of a zero qs of Ψ with multiplicity m, there are m + 1

directions along which ReF (q) remains locally constant.

Definition 4.2.1. Define a foliation on the Riemann surface C\{p} by defining

each leaf to be the integral lines of the directions along which Re
∫

Ψ remains

locally constant and oriented such that Im
∫

Ψ is increasing in a positively

oriented direction. The singularities of this foliation are the zeros of Ψ.

Definition 4.2.2. For any point q ∈ C \ {p}, an imaginary ray beginning at

q is a ray of the foliation beginning at q and ending at p.
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The next lemma will show that the closure in C of every leaf of the foliation

on the Riemann surface C \ {p} includes the singular point p of Ψ. In other

words the integral directions of Re
∫

Ψ tend to the pole of Ψ.

Lemma 4.2.3. For any point q ∈ C \ {p}, the closure in C of the leaf though

q contains the marked point p.

Proof. Let η be an imaginary ray beginning q along which Im Ψ is increasing.

By definition η can not close up to define a closed cycle (the imaginary part is

uniquely defined and is increasing along η). Assume η does not tend toward

the pole, which implies there is a small neighborhood U in C, not containing

any zeros or poles, such that η returns to U twice. Let η̃ be the segment of η

from the first point where η enters U until it returns a second time.

The lines along which Re Ψ is fixed locally in U are orthogonal to the

directions which fix Im Ψ. Let γ be a closed cycle given by the imaginary ray

η̃ and part of the orthogonal trajectory. The period Im
∫
γ

Ψ =
∫
η̃

Ψ which is

non-zero and thus contradicts the assumption that Ψ is real-normalized.

Definition 4.2.4. Let Σ ⊂ C be a graph on C given by the union of all

imaginary rays which begin at some zero of Ψ.

For a general curve, the imaginary rays emanating from one zero are not

contained in an imaginary ray emanating from another zero. In this case, if q

is a simple zero of Ψ, then there are four imaginary rays beginning at q and

ending at p. Two of them are oriented positively from q to p, or in other words

Im
∫

Ψ increases from Im
∫ q

∗ Ψ to +∞ along two rays, while two are oriented

negatively.
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Similarly at a zero q of order m, there are m+ 1 imaginary rays beginning

at the zero and ending at p with positive orientation. Denote these rays γiq,

i ∈ {1, . . . ,m+ 1}.

Remark 4.2.5. If a zeros of Ψ lies on the imaginary ray emanating from

another zero, i.e. qi ∈ γlqj and i 6= j, there is at least one more imaginary ray

emanating from qj than the general case. To illustrate why there are extra

imaginary rays, assume for simplicity that qi and qj are simple zeros and let qiqj

denote a segment of γ1
qj

between the points qi and qj. There are at least three

imaginary rays oriented positively emanating from qj which include qiqj ∪ γ1
qi

and qiqj ∪ γ2
qi

, as well as at least one other imaginary ray emanating from qj

which may or may not contain qi.

There are a finite number of imaginary rays oriented positive on any Rie-

mann surface.

Definition 4.2.6. A dual period for the zero q is the union of two imaginary

rays γiq and γjq beginning at q and ending at p with positive orientation. The

dual period is oriented by reversing the orientation along one of the rays, and

an oriented dual period is thus γiq ∪ −γjq which will be denoted σi,jq .

Remark 4.2.7. In general there are exactly 2g dual periods on C; each zero

defines one period. In specific cases, when the zeros are in a special configura-

tion relative to each other, there may be more than 2g dual cycles, and thus

the set of dual periods is no longer a basis.

The differential Ψ has zero residue, therefore the absolute period
∫
σq

Ψ is

well-defined as we can consider cycles homologous to σq which do not contain
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the singular point p. Let riq be the value of Re
∫

Ψ defined (up to an additive

constant) along the imaginary ray γiq. The absolute period over the cycle σi,jq

is denoted as follows, πi,jq :=
∫
σi,j

q
Ψ = riq − rjq.

Theorem 4.2.8. [23] For any X ∈M(1)
g,1 and for all zeros qs of Ψ, the homol-

ogy classes of all dual periods σi,jqs spans H1(C,Z).

Proof. The proof of this theorem is an almost exact replica of the proof of

3.1.5. If dual periods do not span H1(C,Z), there exists a one parameter

family (Ct,Ψt) such that the derivative of all absolute periods around the dual

cycles and relative periods vanish at (C0,Ψ0).

Locally in a neighborhood of C0, one can choose a fixed basis of cycles,

and choose a dual basis of holomorphic one forms ω1(t), . . . , ωg(t). Then the

abelian integrals Fi,t(p) :=
∫ p
ωi(t) is well-defined on Ct/Σt by defining it

continuously along imaginary rays which by definition of Σt do not contain

zeros of Ψt. Certainly it may have jumps along the edges of Σt, and these

jumps are linear combinations of the absolute periods of ωi(t) around the dual

cycles.

Then one can show for all i, the differential ∂
∂t
Fi,t(x)|t=0 for Ct 3 x :=

∫ p
Ψ0

is a holomorphic differential on C0 with zero A-periods. The proof follows all

the remaining steps in 3.1.5 without any change.

Remark 4.2.9. The construction above can be used to define dual periods

in the more general case where the real-normalized differential has one pole

of order k > 1 [23], and again the dual periods span H1(C,Z) in this case as

well.

54



4.3 Diaz’s Theorem

Following an innovative proof originally appearing in [14] which was mod-

ified very slightly in [23], we now use the set-up provided by real-normalized

differentials to give a simple proof of Diaz’s theorem. The key feature of this

proof is the continuous functions defined in 3.2.6.

Theorem 4.3.1 (Diaz). [6] Given a compact subvariety X inMg, the dimen-

sion of X is at most g − 2.

This proof for Diaz’s theorem follows by pulling X ⊂Mg a compact subva-

riety of dimension g− 1 back to a moduli space of curves with real-normalized

differentials Z ⊂M(1)
g,1, showing that Z must have dimension zero intersection

with the leaves of L which implies dimZ < g + 1. The fibers of the forgetful

map π :M(1)
g,1 →Mg are not compact, and therefore Z is not a compact sub-

variety of M(1)
g,1, and the main technical part of this proof of Diaz’s Theorem

is defining an appropriate way to compactify.

There is an action of R+ on the space M(1)
g,1, acting on the jet by multipli-

cation of a real number. Notice that altering the jet with multiplication by an

element r ∈ R+, changes the real-normalized differential by a real number.

Definition 4.3.2. Let P(1)
g,1 be the factor spaceM(1)

g,1/R+. Let [L] ⊂ P(1)
g,1 be a

foliation of P(1)
g,1 defined by fixing the ratio of any two absolute periods to be

locally constant.

The fiber of the projection map p : P(1)
g,1 →Mg,1 is C∗/R+ = S1, and thus

Ẑ := p(Z) in P(1)
g,1 is compact. In addition the foliation [L] is the image of the

foliation L on M(1)
g,1 under the factor map M(1)

g,1 → P
(1)
g,1 .
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Lemma 4.3.3. The preimage of any leaf [L] in P(1)
g,1 is a collection of disjoint

leaves L ⊂M(1)
g,1, any two related by multiplication by a real number.

Proof. There is no leaf of exact differentials L0 for real-normalized differentials

with one double pole,and thus the action of R+ onM(1)
g,1 permutes the leaves of

L by sending one leaf to another. Therefore each leaf [L] is locally isomorphic

to any one of the leaves in the preimage under the action by multiplication

with real numbers. Notice if Ψ′ = rΨ then the absolute periods of Ψ′ and Ψ

are proportional to each other up the real number r, and thus the foliation on

P(1)
g,1 is correctly defined as the locus where the ratio of absolute periods are

locally constant.

The imaginary parts of the relative periods are globally well-defined on

M(1)
g,1, see 3.2.6, and using the dual periods one can construct homogeneous

functions on M(1)
g,1, i.e. a function which is fixed by the action of R+, which

thus descends to a function on P(1)
g,1 .

Recall notation introduction in 3.2.6, fs(X) := Im
∫ qs
∗ ΨX where the base

point ∗ is chosen such that
∑

s fs = 0 as well as notation πi,jq (X) :=
∫

[σi,j
q ]

Ψ =

riq − rjq which is the absolute period of ΨX over the dual cycle [σi,jq ].

Definition 4.3.4. For each zero qs, let φ̂s(X) := fs(X)
πs(X)

where πs(X) :=

mini,j{πi,jqs (X) 6= 0}.

For any two points X = (C,Ψ) and X ′ = (C, rΨ) in the same orbit under

the R+ action onM(1)
g,1, fs(X

′) = rfs(X) and πqs(X
′) = rπqs(X), thus φ̂s(X) =

φ̂s(X
′). Therefore φ̂s(X) is a homogeneous function which descends to define

a function on P(1)
g,1 which we denote φ̂s as well.

56



The absolute periods of the dual cycles πi,jqs have finite jump discontinuities,

and πqs are by definition less than or equal to πqs at all nearby points. Therefore

πqs is a lower semi-continuous function where the discontinuities occur when

the number of imaginary rays change, i.e. when one varies the location of a

zero which lies on an imaginary ray emanating from another zero. On an open

set denoted K ⊂ M(1)
g,1, where the zeros are in general position and do not lie

on an imaginary rays emanating from other zeros, πi,jqs are continuous.

Let’s order the critical values g1 := maxs{φ̂s} and gk := maxs{φ̂s −

{g1, . . . , gk−1}}, so that we have

g1 ≥ g2 . . . ≥ g2g.

The functions gs are positive, continuous functions on K and g1 is subhar-

monic on K when restricted to any leaf L. They are upper semi-continuous on

P(1)
g,1 , and therefore must achieve a maximum on any compact subset of P(1)

g,1 .

We now show that g1 restricted to the leaves L satisfies the maximum

principle.

Lemma 4.3.5. If g1 achieves a local maximum on a subvariety of L, then g1

in constant on this subvariety.

Proof. The function q1 is subharmonic at points in L ∩ K, and therefore if g1

achieves a maximum here, it is constant. Locally in a neighborhood of a dis-

continuities of g1, the real part of the relative periods are varying, and f1 does

not have local maximum (subharmonic) must vary locally in the transverse

direction. This implies that the maximum occurs at a point in K∩L which is

a contradiction.
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Notice if g1 is constant on any subvariety contained in a leaf of the foliation,

then g2 is subharmonic on K∩L, and thus the lemma applies to show g2 also

satisfies the maximum principle.

Diaz’s Theorem. Let Ẑ be the image of Z in P(1)
g,1 , which is compact, and

therefore there exist a nonempty set of points, denoted Ẑ1, on which g1 achieves

a maximum. By construction at any point in the pre-image of Ẑ1 inM(1)
g,1 the

function g1 also achieves a maximum. We denoted the pre-image of Ẑ1 inM(1)
g,1

as Z1.

For the leaf L which passes through a point (C,Ψ) ∈ Z1, because g1

achieves its supremum at points in Z1, the lemma implies that g1 is there-

fore constant and any point in a connected component of Z ∩ L contain-

ing (C,Ψ) is contained in Z1, and the leaves of L foliate Z1 which implies

dimC Z ∩ L = dimC Z1 ∩ L.

We can apply the same argument to show that g2 achieves a maximum on a

compact subset Ẑ2 ⊂ Ẑ1, and thus there is a nonempty subset Z2 ⊂ Z1 ⊂M(1)
g,1

whose connected components are foliated by leaves of L which in turn implies

dimC Z ∩ L = dimC Z2 ∩ L.

By continuing the argument, there is a nonempty subset of points Z2g−1

on which all the function g1, . . . , g2g−1, g2g (by the normalization condition

g2g is constant as well) achieves a maximum, and are therefore all constant on

Z2g−1∩L for any leaf L. This in turn implies that all the Re
∫ qs Ψ are constant

as they are the real parts of a holomorphic function with constant imaginary

part.

Therefore local coordinate φs are all constant on Z2g1 ∩ L which in turn
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implies that dimC Z2g−1 ∩L = 0. By assumption dimZ = g + 1 which implies

dimC Z2g−1 ∩ L ≥ 1, and we have a contradiction.

4.4 Degenerations: Starting Point

In this section we begin to discuss how real-normalized differentials degen-

erate on families of curves which develop nodal singularities. The results in

this section appeared in [14] for the case of one marked point and the result

there immediately generalize to describe how real-normalized differentials with

multiple singular points degenerate as long as one assumes all residues are zero.

The following proposition is the starting point for the complete analysis which

is carried out in the thesis (where we will in fact reprove it).

The moduli space of smooth curves with marked points admits the Deligne-

Mumford compactificationMg,n, and since in the Deligne-Mumford compact-

ification the marked points are not allowed to coincide with the nodes, the

bundle of 1-jets (i.e. the relative tangent bundle to the curve) extends to a

bundle M1,...,1

g,n →Mg,n.

Definition 4.4.1. We denoteM1,...,1

g,n and call the Deligne-Mumford compact-

ification of the moduli space of curves with points and jets the total space of

the Cartesian product overMg,n of the relative cotangent line bundles at each

of the marked points, with zero sections removed. We then have the forgetful

map M1,...,1

g,n →Mg,n with fibers (C∗)n.

The following result states that the section given by real-normalized dif-

ferentials Ψ overMm
g,n extends to a continuous section of the sheaf ωC(

∑
2pi)
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over Mm

g,n, where ωC is the relative dualizing sheaf. Moreover, it was shown,

very surprisingly, that the section Ψ does not develop poles at the nodes of

stable curves, so that Ψ can in fact be extended to a section of ΩC(
∑

2pi),

where ΩC denotes the sheaf of relative Kähler differentials overMm

g,n (we note

that this sheaf is a pullback from Mg,n, but the section depends on the jet).

Proposition 4.4.2. The real-normalized differential Ψ extends to a contin-

uous section of the twisted relative dualizing sheaf ωC + 2
∑
p over M(1,...,1)

g,1 .

For a nodal curve C = ∪Cj, where Cj are the connected components of the

normalization of C, the continuous limit ΨC |Cj
is the unique real-normalized

differential on Cj with the prescribed double poles at those marked points that

lie in Cj.

The argument in [14] for n = 1 applies verbatim for the case n > 1, as

only the local structure near the nodes is relevant, and we now recap the proof

present there.

Proof. Choose a base point for integration, and let f(p) := Im
∫ p

∗ Ψ which is

a well-defined harmonic function on C \ {p} which blows up at the singular

point of Ψ.

On any family (Ct, pt, zt) ∈M(1)
g,1 of smooth curves degenerating to (C0, p0, zt)

where C0 is a nodal curve, choose a small neighborhood pt ∈ Dε of size εzt

which does not contain any nodes (which is possible by the definition of the

Deligne-Mumford compactification).

By the maximum principle for harmonic functions ft(p) :=
∫ p

∗ Ψt on Ct\Dε

achieve it maximum and minimum on the boundary of Dε. On the other hand,
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the value of Ψt in ∂Dε is prescribed and equal to dzt

z2t
and is thus bounded

independent of t which implies limt→0 ft(p) :=
∫ p

Ψ0 is bounded on C0 \Dε.

Let Φ be the real-normalized differential on C̃0 with one double pole at

p0 which is holomorphic at the preimage of any node in C0. The difference∫ q
(Φ−Ψ0) is bounded on C0\Dε by the above argument, and in addition, it is

bounded in Dε because it is holomorphic inside the disk. Therefore
∫ q

(Φ−Ψ0)

is a bounded harmonic function on C0 which implies Φ = Ψ0.

Notice that on an irreducible component Cj which does not contain any

marked point, the differential is real-normalized and holomorphic, thus it is

identically zero.

Definition 4.4.3. For a stable curve (C, p1, . . . , pn) ∈ Mg,n we call an irre-

ducible component Cj of C a null component if it contains no marked points;

otherwise we call such a component non-null.

The proposition above does not provide sufficient information about the

behavior of real-normalized differentials near nodal curves in the boundary.

For many applications we will want to locate the limits of the zeros of a (or a

pair of) real-normalized differentials in a family of smooth curves degenerating

to a nodal curves. The results in this thesis provides further information on

the behavior of the real-normalized differentials near the boundary ofM1,...,1

g,n .

In particular, we will explicitly describe Ψ near nodal curves and can thus

investigate the limits of the zeros of the real-normalized differential — this is

a non-trivial question when there is a component in the normalization of C

with no marked points.
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Remark 4.4.4. This proposition stating that new poles do not form at the

nodes is a priori very surprising, as limits of abelian differentials (holomorphic

1-forms) on stable curves can develop poles at the nodes (this is what is allowed

for the relative dualizing sheaf). The fact that real normalization prevents the

development of the residues is crucial for this entire study. We note that the

limiting real-normalized differential on a stable nodal curve is not in fact real-

normalized in the sense that its integrals over cycles passing through the nodes

may not be real — the simplest example of this would be a “banana” curve

that has two irreducible components, one without any marked points. Then

in the limit the real-normalized differential becomes identically zero on that

component and its integral on the cycle intersecting the nodes is equal to its

integral from one node to the other on the non-null component — which does

not have to be real.
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Chapter 5

Degenerations of

Real-Normalized Differentials of

the Second Kind

In this chapter we will provide much more information about the degenera-

tions of real-normalized differentials with no residues. Given an arbitrary sta-

ble curve, we construct explicitly the real-normalized differentials everywhere

in its neighborhood, from which it is easy to see that the limit is continuous

and does not develop poles at the node. In fact we reprove here that real-

normalized differentials of the second kind do not develop poles at the nodes

in a family of smooth curves degenerating to a nodal curve.

We will construct the real-normalized differentials near a nodal curve ex-

plicitly by taking the difference of a meromorphic differential with prescribe

singularities and a linear combination of some holomorphic differentials which

have a non-real period over one cycle in some symplectic basis of H1(C,Z).
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These differentials are obtained from inverting and manipulating the real and

imaginary parts of the period matrix. By the work of Taniguchi [31], Ya-

mada [34], the period matrix is analytic in plumbing coordinates and their

logarithms, therefore our construction will be real analytic in s, ln s and their

inverses. Such functions were called sector real-analytic by Wolf and Wolpert

[32], and thus we see a priori that the real-normalized differential extends to

a sector real-analytic section over Mm

g,n in terms of plumbing coordinates.

Throughout this chapter we work with X0 ∈ M
1,...,1

g,n in order to simplify

the notation. One can check directly that these results immediately extend

to the more general situation describing how real-normalized differentials of

the second kind degenerate in the neighborhood of a nodal curve X0 ∈ M
m

g,n

where each mi > 0.

The results in this chapter will constitute a paper with S. Grushevsky and

I. Krichever.

5.1 General setup for analyzing the degener-

ation of real-normalized differentials

In the following sections, we will analyze in more detail the behavior of real-

normalized differentials near various points of the boundary ofMg,n, starting

with the generic points of boundary divisors, proceeding to some standard

more complicated examples, and then in general. In this section we introduce

the general notation and the setup for such an analysis.
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We start with a nodal curve

X0 := (C0, p1, . . . , pn, z1, . . . , zn) ∈ ∂M1,...,1

g,n ,

where (C0, p1, . . . , pn) ∈ ∂Mg,n, and let (C̃0, p1, . . . , pn) by abuse of notation

be its possibly disconnected normalization. Let r1, . . . , rk be all the nodes of

C0, and let then qi1, q
i
2 ∈ C̃0 be the preimages of ri. Let s := (s1, . . . , sk) be

the k-tuple of complex numbers that give plumbing parameters. Further, let v

be any system of local coordinates on the moduli space for (C̃0, p1, . . . , pn), so

that (s, v) gives local coordinates on Mg,n near (C0, p1, . . . , pn). Since M1,...,1

g,n

is the total space of a locally trivial (C∗)n fibration, it follows that t := (s, v, z),

where z := (z1, . . . , zn), gives local complex coordinates on M1,...,1

g,n near X0,

and we denote by Xt the point with corresponding coordinates.

For further use we will denote by Cv := C0,v the curve in a neighborhood of

C0 whose nodes correspond 1-to-1 to the nodes of C0 (which is recorded by the

fact that the plumbing coordinates are zero), and let C̃v be its normalization.

In addition, the plumbing deformation of C̃v at every node except ri is denoted

Csi=0,s := C1,...,si−1,0,si,...,sk,v (or more generally if a number of sj are zero).

Note that in general the cohomology group H1(C̃0) may not be equal to

H1(Cs,v), as thinking of the family as s → 0 as a degeneration, some of the

cycles on the smooth Riemann surface get pinched to nodes (are vanishing

cycles). Indeed, the cohomology is the same if and only if C0 is a nodal

curve of compact type — which will be the simplest situation for our analysis.

Otherwise we will need to ensure the reality of periods of the meromorphic

differential that we construct over the vanishing cycles on Cs,v by a separate
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argument.

In order to simplify the language later and in light of 4.4.2, we make the

following definition.

Definition 5.1.1. A differential on a nodal curve is called real-normalized if

it is real-normalized on the normalization of the nodal curve.

Therefore a differential describes the real-normalized differential in a neigh-

borhood of C0 implies that on any nodal curve in a neighborhood of C0, this

differential is a real-normalized differential on its normalization.

5.2 Gluing Differentials

We will construct the real-normalized differentials in a neighborhood of a

nodal curve by explicitly patching them together in the plumbing construction,

that is to say by gluing a differential on Cs from the differential(s) on the

connected component(s) of C̃0.

Definition 5.2.1. We say that the values of a meromorphic differential Φ

match locally near q1, q2 ∈ C (where C is possibly disconnected) with respect

to plumbing with parameter s in chosen local coordinates zi around qi if Φ(z1) =

Φ(z2) for any |z1| =
√
|s| and z2 = s/z1 — that is to say, if the values of Φ̃

match on the glued points of the seams γ1,s and γ2,s.

Remark 5.2.2. This notion is a generalization of matching residues: If Φ has

a simple pole at q1 with residue c, so that locally near q1 we have Φ(z1) =
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c dz1/z1, then we must have

Φ(z2) = Φ(s z−1
2 ) = c d(s z−1

2 )/(s z−1
2 ) = c z2d(z−1

2 ) = −c dz2/z2

so the matching condition is that Φ has a simple pole at q2 with residue −c.

More generally, if Φ has a pole of order m > 1 at q1, then the matching

condition is for Φ to have a zero of order m− 2 at q2, of the form prescribed

by Φ at q1.

Remark 5.2.3. We note that for any fixed s and a choice of local coordinates

near q1, a meromorphic differential Φ given locally in a neighborhood of q1 in

the chosen local coordinates defines uniquely the matching local behavior of

a meromorphic differential in a neighborhood of q2. Indeed, let z1 be a local

coordinate on near q1 such that Φ = zm1 dz1, and z2 any local coordinates near

q2 such that a neighborhood of the node is described by the locus z1z2 = 0.

The values of Φ on γ1,s defines the matching values of Φ, with respect to

parameter s, to be −s sm

zm
2

dz2
z22

on γ2,s, and the meromorphic differential on a

disk with prescribed pole order at zero is determined uniquely by its boundary

values. Thus if q1 ∈ C1 and q2 ∈ C2, with C1 6= C2, then a differential Ψ on

C1 holomorphic at q1 in a chosen local coordinate defines a unique matching

singular part of a meromorphic differential on C2 at q2 with finite laurent

expansion.

The reason for the definition of matching is of course the following:

Lemma 5.2.4. In the situation as above, if Ui,s are small neighborhoods of qi

as in the plumbing construction, the differential Φ|C\(U1,stU2,s) extends across
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the seam γs to define a meromorphic differential Φ on Cs holomorphic on the

seam if and only if the values of Φ near q1, q2 in local coordinates z1, z2 match

for plumbing parameter s.

Proof. The fact that the resulting differential on Cs is meromorphic away

from the seam is automatic. By definition of complex structure on Cs, it is

meromorphic on Cs if and only if it is continuous on the seams — which is

exactly when Φ(z1) = Φ(z2) for any points z1 ∈ γ1,s and z2 ∈ γ2,s glued to

each other. By definition in coordinate z1 it has no poles on γ1,s and is thus

holomorphic in the neighborhood of the seam.

Since away from the seams Ψ and Ψ̃ are the same differential, in particular

we get the following important

Corollary 5.2.5. If the meromorphic differential Ψ̃ is real-normalized on (ev-

ery component of) C̃v and satisfies the matching condition at each node qi1 ∼ qi2

with respect to the plumbing parameter si, then the glued differential Ψ on Cs,v

has a real period on any cycle that does not intersect any seams.

In what follows we will describe differentials which satisfy the matching

condition with respect to a plumbing parameter on curves in a full neighbor-

hood of a nodal curve with respect to local coordinates on moduli space given

by the plumbing deformation, and thus must verify that choosing a local co-

ordinate neighborhood z1 of q1 such that a real-normalized differential Ψ is

locally of the form zm1 dz1 can be done consistently on all curves in a neighbor-

hood, i.e. allowing the coordinates u and z to vary. The differential Ψ defines

a real-analytic section on the moduli space, so certainly if q1 is not a zero of Ψ,

the local coordinate z1 such that Ψ = dz1 varies real-analytically in a family.

68



Assume q1 is a zero of Ψ of order m, on nearby curves there is no guarantee

that q1 continues to be a zero of order m. Therefore for local coordinate z1

such that Ψ = zm1 dz1, we may not be able to fix local coordinates at q1 on

nearby curves so that Ψ is exactly z(m′)dz (where m′ is the order of the zero on

nearby curves), but certainly a local coordinate z1 can be chosen consistently

such that Ψ =
∏m

i=1(z1 − yi)dz1 where yi := yi((u, z) records the location

of the m zeros on nearby curves. The matching differential with respect to a

plumbing parameter s on curves in a neighborhood C0 is given by s(yiz2−s)dz2zm
2

on the seam γ2,s which therefore depends on the plumbing parameter as well

as the behavior of the zeros at q1.

In other words, if Ψ has a zero of order m at q1, we can choose local co-

ordinates near q1 consistently such that the matching differential with respect

to a plumbing parameter has finite laurent expansion near q2 with a pole of

order m+ 2.

5.3 Stable curves of compact type

In this section we investigate the behavior of real-normalized differentials

in a neighborhood of a stable curve of compact type. A priori we expect this

situation to be easier than the case of a general stable curve, as the theory of

limit linear series is much better behaved in this case (see [19],[2]). As limit

linear series are not available (though seemingly doable, and perhaps worth

developing) for real-analytic families, we proceed by explicitly gluing the real-

normalized differential. For concreteness, we do the case of curves with two

irreducible components in detail, and the general case then follows once the
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irreducible components are ordered properly and the general notation is set

up. In this situation we already see that the limits of zeros of real-normalized

differentials depend on the degenerating family, and not just on the limit stable

nodal curve.

5.3.1 Stable curve of compact type with one node

Suppose C̃0 = C1 t C2, with C1 and C2 connected, of genera h and g −

h respectively (where we may have h = 0 or h = g if the corresponding

component contains at least two pi’s). Let qi ∈ Ci be the two preimages of

the node r ∈ C0, and denote the plumbing parameter s := s1. Our goal is

to construct the real-normalized meromorphic differential on Xt = Xs,v,z in a

neighborhood of X0. We denote Cv = C1(v) ∪ C2(v) the nodal stable curves

in this neighborhood C0, with marked points pi(v) ∈ Cv.

We have two different cases to consider depending on whether one com-

ponent is null (contains no marked points) — and the gluing construction is

slightly different for them.

We first deal with the case when one component is null — that is, without

loss of generality we assume p1, . . . , pn ∈ C1, so that C2 is a null component.

In this case in a neighborhood let Ψ1(t) = Ψ1(v, z) be the real-normalized dif-

ferential on (C1(v), p1(v), . . . , pn(v), z) with prescribed singularities — notice

that it is holomorphic at q1 as q1 6= pi(v). By remark 5.2.3 the local behavior

of Ψ1 near q1 in a chosen local coordinate and for any plumbing parameter

s, one can define uniquely the local behavior of a meromorphic differential

defined locally near q2 (and with a pole at q2 of order equal to two plus the
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vanishing order of Ψ1 at q1) matching Ψ1. We then let Ψ2(t) = Ψ2(s, v, z) be

the real-normalized differential on C2(v) with this local singularity at q2 and

holomorphic elsewhere.

Proposition 5.3.1. The differential Ψ1(v, z) t Ψ2(t) on C1(v) t C2(v) glues

to define a real-normalized differential Ψt on Xt with prescribed singularities.

Proof. Indeed, this is a special case of corollary 5.2.5: since the only node on

Cv is separating, there are no vanishing cycles in homology, and thus the glued

differential Ψt ends up being real-normalized.

For applications to cohomology of the moduli space of curves or to studying

cusps of plane curves in [16], it is important to be able to determine the limits of

zeroes of real-normalized differentials as a curve degenerates to a stable curve

— here the difficulty is determining which points on a null component are limits

of zeroes. From the results above, and from the more general constructions

below in the neighborhood of an arbitrary stable curve, we will be able to

track zeroes in any family suitably given in plumbing coordinates, but for now

to show that the issue is essential we give an example to show that the limits

of zeroes indeed depend on the degenerating family and not only on the limit

stable curve. This is in accordance with the ideas of limit linear series, but we

see this explicitly for our situation. Indeed, suppose in the situation above the

point q1 ∈ C1 is simple zero of the real-normalized differential Ψ1 on C1, and

we construct two families of smooth curves converging to this point, essentially

one where the zero moves, and the other where it does not.

Example 5.3.2. The first family Xt degenerating to X0 will be given simply

by the plumbing deformation: t := (s, 0, 0), i.e. we plumb C0 with parameter
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s, and do nothing else, so that q1(t) := q1. The differential Ψ1 has 2h zeroes on

C1; we choose ε sufficiently small so that q1 is the unique zero of Ψ1 that lies

in the plumbing neighborhood (note that (C1, p1, . . . , pn) and Ψ1 are fixed).

Then the remaining 2h−1 zeroes of Ψ1 lie outside the plumbing neighborhood

and thus are zeroes of the glued differential Ψ(t). Since they do not depend

on t, they are limits of the zeroes of Ψt under degeneration. On C2, the real-

normalized differential Ψ2 with behavior near q2 matching with respect to s

that of Ψ1 near q1 has a triple pole at q2 for any s 6= 0, and thus has 2(g−h)+1

zeroes on C2, all of which are outside of the plumbing neighborhood, and tend

to some points on C2 in the limit, distinct from q2.

Example 5.3.3. The second family Xt degenerating to X0 we consider is

where in addition to plumbing we also vary the point of attachment of C2

along C1, letting in fact q1(t) := 2
√
|s| in the local coordinate centered at

q1 (so that q1 = q1(0) is the origin). In this family locally Ψ1 is of the form

(z−2
√
|s|)dz, so that for s 6= 0 the differential Ψ1 is regular at q1(t) 6= q1, and

all of its 2h zeroes on C1, including q1, lie outside the plumbing neighborhood,

and are thus zeroes of Ψ(t). On the other hand, for s 6= 0 the matching real-

normalized differential Ψ2 with respect to s on C2 has a double pole at q2, and

thus has 2(g − h) zeroes, all outside the plumbing neighborhood. Thus of the

zeroes of Ψ(t) in the limit 2h of them lie on C1 (including q1), and 2(g − h)

limits of zeroes lie on C2.

We note that in the above examples, while the limits of the zeroes are

different, by taking more general degenerating families one situation deforms

to the other, as one of the limits of the zeroes on C2 can approach q2 (which is
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the same as q1) as we vary the family. By tracing through the construction we

can see precisely what happens in this case, and give the following description

of the space of possible limits of zeroes of differentials (this is the first case

of the general picture described in full generality by our main result, theorem

5.7.3).

Theorem 5.3.4. The set of all possible limits of zeroes of real-normalized

differentials on families of smooth curves Xt ⊂ M1,...,1
g,n converging as t → 0

is the stable curve of compact type X0 as above, where the real-normalized

differential Ψ1 on C1 has a zero of order m at q1, is parameterized by the

real projective space RP2m+1, which is the set of parameters for the singular

part of order at most m + 2 of a real-normalized differential on C2, modulo

multiplication by a real number.

Remark 5.3.5. In other words, for any family of stable curves degenerating

to X0, the limits of zeros are the zeros of Ψ1 that are distinct from q1, the point

q1 with multiplicity m′ ≤ m, and the zeros of some real-normalized differential

on C2 with pole of order (m−m′ + 2) at q2, with no residue.

Proof. The theorem is basically a restatement of the construction of the real-

normalized differential we gave above on stable curves of compact type with

two components, as also seen in the examples. Indeed, in a sufficiently small

neighborhood of X0 the multiplicity of the zero of Ψ1(v, z) at the node q1(v, z)

of C0,v,z is at most equal to m — the multiplicity of zero is a semicontinous

function. Thus for any non-zero s the differential Ψ2(t) = Ψ2(s, v, z) on the

null component of Cs,v,z before gluing will have the pole of order at most m+2

at q2. The differential Ψ2(t) is then the unique real-normalized differential with
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this prescribed singular part, and the data of such a singular part is exactly a

non-zero point in Cm+1 (recall that there is no residue). Further noting that

rescaling s by a non-zero real number leads to rescaling the singular part by this

real number, thus rescaling Ψ2(t) by a real number — without changing the

location of its zeroes — we see that the locations of zeroes are parameterized

by Cm+1 \ {0}/R∗ = RP2m+1 as claimed.

Remark 5.3.6. The theorem above indicates that if one were to try to con-

struct a compactification ofM1,...,1
g,n on which the real-normalized meromorphic

differentials would extend without becoming identically zero, then along the

open part of the boundary stratum δh of Mg one should take a real-analytic

blowup corresponding to the vanishing order of the real-normalized differential

at the node. Defining this rigorously (and more generally) presents additional

challenges that we will not deal with here — but which may be of interest for

further use in dealing especially with holomorphic differentials.

The case of a stable curve with two irreducible components neither of

which is null turns out to be very similar. Here we automatically have the

non-zero real-normalized differentials on the two components C1 and C2 with

prescribed singularities at those pi that lie on that component. However, these

differentials would be regular at q1 and q2, and thus do not glue to a differential

on the plumbed curve Cs,v. One may be tempted to glue by allowing simple

poles at q1 and q2, but this is of course impossible as the sum of residues on

both C1 and on C2 has to be zero. We thus break the symmetry of the two

components, and while letting Ψ1(t) = Ψ1(v, z) still be the real-normalized

differential on Cv with prescribed singularities at the marked points pi that lie
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on C1, we now choose Ψ2(t) = Ψ2(s, v, z) to be the real-normalized differential

on C2(v) with prescribed singularities at those pi that lie on C2 and with a

pole at q2, matching with respect to a plumbing parameter, the values of Ψ1 at

q1.

Then, as above, these differentials glue:

Proposition 5.3.7. The differential Ψ1(v, z) t Ψ2(t) on C1(v) t C2(v) glues

to define a real-normalized differential on Xt with prescribed singularities.

Remark 5.3.8. The construction above appears to be manifestly non-symmetric

in that we have taken the real-normalized differential on C1(v), and then mod-

ified the differential on C2(v) to match it. Notice, however, that the resulting

differential on Cs,v does not depend on this choice. Indeed, we have shown the

resulting differential is real-normalized regardless of how we match and thus

is unique. The values of the differentials dw and d(s/w) agree on the circle

|w| =
√
|s|, namely at points w1 and w2 where w1 ·w2 = s then dw1 = d(s/w2).

5.3.2 Ordering the irreducible components of C0 for a

general stable curve

To describe the limits of real-normalized differentials on stable curves of

compact type, we apply the construction as above step by step starting from

the non-null components. This is straightforward except that we need to

introduce terminology for ordering the irreducible components of the stable

curve, which will also be used for the general statement of our main theorem.

This ordering is in a sense by the order of the vanishing of the real-normalized

differential on the component (and is parallel to the understanding of the
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degenerations of flat structures in Teichmüller dynamics, see [7]), though we

define it more directly.

Definition 5.3.9. We order the irreducible components of C0 inductively. A

component is called of order 0 (we call it order zero, not one, as the real-

normalized generically does not vanish) if it is non-null; that is an irreducible

component is called of order 0 if and only if it contains at least one marked

point pi. Then we inductively call a component of order i + 1 if and only if

is attached via a node to some component of order i. Since C0 is connected,

all its irreducible components have finite order. Explicitly, the order of an

irreducible component is the shortest distance from the corresponding vertex

of the dual graph to a vertex corresponding to a non-null component (that is,

to a vertex having a marked point, aka a “leg” on the dual graph). We denote

by Ci := ∪jCi
j the union of all irreducible components of C0 of order i.

5.3.3 Real-normalized differentials near general stable

curves of compact type

The only complication here is that the dual graph of such a curve is more

complicated, which is really just a notational issue taken care of by the defi-

nition above.

Indeed, we start with the possibly disconnected C0(v), the union of non-

null irreducible components C0
j (v). Whenever two components C0

j and C0
i are

connected by a node C0
j 3 qj ∼ qi ∈ C0

i , as above in the construction for propo-

sition 5.3.7 we need to choose on which component we would allow an extra

pole, matching the value at the other glued point. More precisely, we take
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the real-normalized differential Ψ0
1(v, z) on C0

1 to have prescribed singularities

at those p` that lie on it. Then inductively on C0
i+1(v) we define the real-

normalized differential Ψ0
i+1(t) = Ψ0

i+1(s, v, z) that has prescribed singularities

at all the point p` that lie on C0
i+1(v), and also at any node where C0

i+1(v)

intersects some C0
j (v) with j ≤ i has a singularity matching with respect to a

plumbing parameter the singularity of the already defined Ψ0
j(t) at the point

glued to the node, with the given plumbing parameter at that node. In partic-

ular if C0
i+1(v) is disjoint from ∪ij=1C

0
j (v), we simply get the real-normalized

differential on it with singularities only at p`. Then similarly to proposition

5.3.7 the differentials Ψ0
i (t) glue to define a real-normalized meromorphic dif-

ferential Ψ0(t) on C0(s, v) with prescribed singularities at all the p` that lie on

it, and no further singularities. Also, as before, Ψ0(t) does not depend on the

arbitrary choice of the numbering of the components of C0(v). We then use

the gluing as for the case for the null components to deal with C1(v), by defin-

ing the real-normalized differential Ψ1(t) on C1(v) (which, recall, is a union of

null components, and contains no points p`) , by requiring it to have poles at

all nodes that connect C1(v) to C0(v), and matching the values of Ψ0(t) with

respect to the corresponding plumbing parameters. Proceeding inductively in

this way, we define the differentials Ψ2(t), . . . and finally get

Proposition 5.3.10. Let X0 = (C0, p1, . . . , pn, z1, . . . , zn) ∈ M1,...,1

g,n , with C0

a curve of compact type. Then the differential ∪jΨj(t) glues to define the

real-normalized differential for any curve in a neighborhood of X0 ∈M
1,...,1

g,n in

plumbing coordinates.

Remark 5.3.11. By tracing through the construction above, we can see what
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the singularities of the real-normalized differentials on each component of Cv

taken for gluing depend on, and thus what data is needed to determine the

location of the limits of the zeroes. The full statement is as complicated as

the general one given in our main theorem 5.7.3 as for example a component

of order 1 can intersect multiple components of order zero, and thus we would

need prescribed information of singularities at many points, etc.

5.4 Irreducible stable curves

Next we consider the situation of an irreducible stable curve, when there

is still no issue with limit linear series in algebraic geometry. We will again

construct the differential explicitly in plumbing coordinates, though in this

case we will need to glue differentials with simple poles, which automatically

match. This is a minor modification of the construction, while the main new

issue to be dealt with is that the differential thus glued may no longer be real-

normalized, as its period over a cycle intersecting the seam may not be real.

We will thus need to subtract from it a suitable holomorphic differential, for

which this is the only non-real period, which we call an almost real-normalized

differential. Determining the limits of zeroes of the difference of these two

differentials will thus involve studying which of them goes to zero faster as

the plumbing parameters go to zero. We thus define the main player of this

section.

Definition 5.4.1. Given any stable nodal curve C0 ∈ ∂Mg and a non-

separating node ri on it, let Csi=0,s,v where sj > 0 for all j 6= i as before be

the plumbing deformation of Cv at the other nodes, and let q1, q2 ∈ C̃si=0,s,v
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be the two preimages of ri on its normalization. Now q1 and q2 lie on the same

irreducible component of C̃si=0,s,v, and we let ω̃ be the unique real-normalized

meromorphic differential on C̃si=0,s,v whose only singularities are simple poles

at q1, q2 of residue ±
√
−1.

Then the almost real-normalized holomorphic differential ωri(s, v) on Cs,v

is defined to be the result of gluing ω̃ at q1, q2 with plumbing parameter si.

We note that it is a holomorphic differential defined up to sign given by the

choice of signs of the residues of ω̃, and when no confusion is possible we will

denote it ωi(s, v).

Remark 5.4.2. The motivation for calling this the almost real-normalized

differential is the easy observation that the integral of ωi over any loop in

H1(Cs,v) that does not intersect the seam γsi
is real, being the integral of the

real-normalized ω̃ over it. Moreover, the integral
∫
γsi
ωr = ±2π, and thus the

integral of ωi may not be real only over cycles with a non-zero intersection

number with γsi
. While it would be just as natural to define the notion of an

almost real-normalized holomorphic differential to say that given a choice of a

basis of H1(Cs,v), its only non-real period is over the first of the basis elements,

the above construction has the great advantage of canonically associating an

almost real-normalized differential to a node of a stable curve, avoiding the

issue of choosing a basis of homology in a neighborhood of a nodal curve.

In what follows we will have to consider what happens to the almost real-

normalized differential when some nodes form, and understand how ωi(s, v)

behaves on nodal curves Cs,v where si > 0, but various other plumbing param-

eters degenerate to zero. Notice that if C0 is an irreducible nodal curve then
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C̃s,v is connected for any set of plumbing parameters equal to zero.

Proposition 5.4.3. For any sj = 0 such that C̃si=0,sj=0,s,v is connected, the

almost real-normalized differential ωi(s, v) on Csj=0,s,v where si > 0 does not

have poles at any of the nodes.

Proof. Let B be any cycle which intersects the seam γsj
and does not enter a

neighborhood of the node ri. By construction of the almost real-normalized

differential, the imaginary part of the absolute period Im
∫
B
ωi(s, v) is zero for

any curve on which sj > 0.

Again by construction Im
∫
γsj
ωi(s, v) is also zero for all sj > 0, therefore

if ωi(s, v) develops a simple pole at the node rj the residue must be purely

imaginary. On the other hand, if ωi(s, v) develops a singularity at the node

with purely imaginary residue,
√
−1r, this would imply Im

∫
B
ωi(s, v) blows

up like r ln(|sj|) where on computes Im
∫ √
−1r dz

z
in an ε-neighborhood of

the seam γsj
. By assumption Im

∫
B
ωi(s, v) vanishes throughout and thus

r = 0.

This will be important throughout the paper whenever we use a linear

combination of almost real-normalized differentials; In specific it will allow us

to claim that new poles do not form at the nodes.

For concreteness, and to explain the geometry with simpler notation (where

don’t have to deal with less singular curves in the neighborhood of this curve–

thus no need for 5.4.3), we first discuss the case of irreducible curves with

one node (so we drop the index i = 1) in detail, showing how the almost

real-normalized holomorphic differential is used.
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5.4.1 An irreducible stable curve with one node

Let C0 be an irreducible stable curve with one node q1 ∼ q2. We then let

Ψ̃′(t) = Ψ′(s, v, z) be the meromorphic differential on the normalization C̃v

that has singularities prescribed by z at the marked points pi, and also has

simple poles at q1, q2 with residues
√
−1 |s| respectively. Since simple poles

with opposite residues match, Ψ̃′(t) glues to define a meromorphic differential

Ψ′(t) on Cs,v whose only singularities are at the points pi.

Let B be any cycle on Cs,v such that its intersection number with the seam

γ is equal to one. We introduce the following notion:

Definition 5.4.4. We call the ratio β(t) :=
Im

∫
B Ψ′(t)

Im
∫

B ω(s,v)
the (real) normalizing

factor associated to the node.

Remark 5.4.5. We note that the integral of a differential over a cycle only

depends on the homology class of such a cycle. The symplectic pairing on the

first homology of any smooth curve is non-degenerate, and thus identifies H1

with its dual space. As noted above, the periods of ω may not be real only

over the loops intersecting the seam, and are completely determined by the

intersection number of class in H1 with the class in H1 of the seam. Thus

the normalizing factor above is well-defined. More generally, to define the

normalizing factor we will need to take a class in H1(C̃si=0,s,v,Z) such that its

intersection number with the seam γsi
is equal to one

To construct the real-normalized differential on Xt, we combine these two

differentials:

Proposition 5.4.6. The differential given by Ψ(t) := Ψ′(t) − β(t)ω(s, v) is

real-normalized on Xt.
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Proof. Indeed, the periods of Ψ′(t) over all cycles which do not intersect the

seam are real by construction, as are the periods of ω(s, v) over them. Similarly

the periods of both summands over γs are real, while finally the coefficient β(t)

is precisely to ensure that the linear combination above has a purely real period

over B.

Remark 5.4.7. Note that we have prescribed the residues of Ψ̃′ in an ad hoc

manner — this choice will in fact make it easier to analyze the behavior of

the linear combination in general, as some other node is pinched. However,

the resulting Ψ is independent of this choice, as it can also be thought of

as a differential glued from a differential with matching residues, where the

residues are chosen precisely to ensure real normalization — and thus no choice

is involved. For determining the behavior of the real-normalized differential

as the curve degenerates it turns out to be much simpler to separate the two

summands as we did, and then to determine the behavior of the normalizing

factor explicitly by a direct computation.

We also note that we cannot choose any other pole orders for Ψ̃′ at q1, q2,

as then the differential would be regular at one of these two points, and its

value there would depend on the singularity at the other point, so that we

could not prescribe it a priori.

In order to verify that no new poles appear at the node as it develops,

reproving proposition 4.4.2 for the case of an irreducible curve with one node,

and for future use, we compute β(t) explicitly in the plumbing parameter s.

Lemma 5.4.8. The limit of the normalizing factor β(t) is non-zero exactly

when Ψ′(t) is not real-normalized. In addition the normalizing factor vanishes
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when s→ 0 and therefore Ψ(0, v, z) = Ψ′(0, v, s).

More precisely, we will show that when Im
∫
B

Ψ′(t) is not zero throughout

we have the following,

β(t) =
|s| ln(

√
|s|)− 2 |s| ln(ε) +O(1)

ln(|s|)− 2 ln(ε) +O(1)

as s→ 0.

Proof. We first note that if Im
∫
B

Ψ′(t) = 0, then the normalizing factor β is

zero, and so we only have to deal with the case when Im
∫
B

Ψ′(t) is non-zero.

Let B be a cycle which intersects the ε-neighborhood of the node as the

real segments [
√
|s|, ε] ⊂ C on both U1 and U2. We denote the part of B

outside of U1 and U2 by Bo and compute

Im

∫
B

Ψ′(t) = 2

∫ √|s|
ε

|s| dz
z

+

∫
Bo

Ψs(t) = |s| ln(
√
|s|)− 2 |s| ln(ε) +

∫
Bo

Ψ′(t).

We similarly compute

Im

∫
B

ω(s, v) = 2

∫ √|s|
ε

dz

z
+

∫
Bo

ω(s, v) = ln(|s|)− 2 ln(ε) +

∫
Bo

ω(s, v).

and dividing one by the other yields the desired formula for the normalizing

factor β.

5.4.2 A general irreducible curve

The construction above can be easily generalized to the case of an ir-

reducible curve with multiple nodes, for which we use many almost real-
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normalized differentials and normalizing factors, indexed by the nodes. Indeed,

let X0 ∈ M
1,...,1

g,n with C0 being an irreducible curve with k nodes r1, . . . , rk,

obtained by gluing its normalization C̃0 at k pairs of points qi1, q
i
2. In order to

reprove 4.4.2 one must verify that the various almost real-normalized differ-

entials do not develop poles when any number of plumbing parameters vanish

and this follows directly from 5.4.3.

Similarly to the case of one node, let Ψ̃′(t) be the real-normalized differen-

tial on C̃v which has prescribed singularities at {p1, . . . , pn}, and simple poles

with residues ±
√
−1 |si| at qi1, q

i
2 for all i (as per the remark above, this is an

ad hoc choice that does not influence the resulting Ψ, but is more convenient

for computations). For any i ∈ [1, . . . , k] let Bi ∈ H1(Cs,v) be a cycle with

intersection number one with γsi
, and not intersecting any other seam γsj

. Let

ωi(s, v) be the almost real-normalized differential associated to the node ri,

and let βi(t) :=
Im

∫
Bi

(Ψ′(t))

Im
∫

Bi
(ωi(s,v))

be the corresponding normalizing factor — which

does not depend on the choice of Bi.

Similarly to the above, we have

Proposition 5.4.9. For any smooth curve in a neighborhood of X0, the for-

mula

Ψ(t) := Ψ′(t)−
∑
i

βi(t)ωi(s, v) (5.1)

defines the real-normalized differential on Cs,v with prescribed singularities.

We will now verify that the formula above also works when any number of

the si is zero, i.e. that it can be used to define the limits of real-normalized

differentials on all stable curves in the neighborhood of X0 as well. This

amounts to showing that for each normalizing factor which is not zero in

84



the whole neighborhood (i.e. when Im
∫
Bi

Ψ′(t) is not zero throughout-which

would amount to the matching differential being already real-normalized over

this new cycle.) vanishes exactly when si = 0. This is basically clear by our

construction, and is given by almost an exact replica of the proof for one node

with few new details here.

Lemma 5.4.10. As si → 0, the normalizing factor (if it does not vanish

identically) has the following asymptotics:

βj(t) =
|si| ln(|si|)− 2 |si| ln(ε) +O(1)

ln(|si|) +O(1)
.

If Im
∫
Bi

Ψ′(t) is non-zero, then the limit limsj→0 βi(t) = 0 if and only if j = i.

Proof. The formula for βi(t) as stated in the lemma follows exactly from our

computation done in the one node case where we compute with Bi intersecting

an ε-neighborhood of the node ri in positive real-rays. Let Bo
i denote the part

of Bi outside of the neighborhood of the node ri, which by definition does

not enter a neighborhood of any other node rj. Therefore Im
∫
Bo

i
Ψ′(s, v) and

Im
∫
Bo

i
ωi(s, v) have finite limits as sj → 0. In specific the denominator blows

up precisely when si = 0 and is finite otherwise, and the asymptotics of βi(t)

follows.

Corollary 5.4.11. The formula (5.1) defines the real-normalized differentials

on all smooth curves in a neighborhood of X0, and the limits of real-normalized

differentials on all nodal curves (i.e. the real-normalized differentials on the

normalizations) in the neighborhood of X0 in M1,...,1

g,n .

The above description allows us to determine the limits of zeros of real-
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normalized differentials under degenerations to irreducible stable curves. We

note, that unlike the compact type case, here there are no null components,

and the limits of the zeroes are unique, depending only on the limiting nodal

curve, and independent of the degenerating family.

Proposition 5.4.12. For any family Xt degenerating to an irreducible sta-

ble curve X0 ∈ M
1,...,1

g,n , the zeros of the real-normalized differentials on Xt in

the limit tend to the zeroes of the real-normalized differential Ψ′0 on the nor-

malization C̃0, together with the nodes, with a pair of zeros tending to each

node.

Proof. Because the normalizing factor vanishes as s → 0 (or if it is zero

throughout), the zeros of Ψ(t) tend the zeros of Ψ′(t). Recall Ψ′(t) has

2(g − k − 1) + 2n + 2k zeros on C̃v. The expansion of Ψ̃′(t) near each node

is i |si| dzz , and thus as si → 0, two zeros approach the node (this is one more

reason why our choice of the residues of Ψ′ is convenient).

5.5 Further cases: the banana and triangle

curves

We now consider the more complicated cases, where the theory of limit

linear series is very complicated (banana) or unavailable (triangle). As we will

see, the situation is rather straightforward for real-normalized differentials —

in fact the techniques already introduced above suffice to construct the real-

normalized differentials.

To set notation, the banana curve is the nodal curve has two nodes and
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two irreducible components, so that C̃0 = C1∪C2, with nodes given by q2
1 ∼ q1

2

and q1
1 ∼ q2

2, where q1
1, q

2
1 ∈ C1 and q1

2, q
2
2 ∈ C2. Similarly, the triangle curve is

the stable curve with three nodes and three irreducible components, so that

C̃0 = C1 ∪ C2 ∪ C3, with nodes given by q1
1 ∼ q2

2, q1
2 ∼ q2

3, and q1
3 ∼ q2

1

where q1
i ∈ Ci. We note that in a sense a banana curve is a “2-gon” curve, to

emphasize which we chose the different notation for the nodes than in general;

note also that the “k-gon” curve will be completely analogous to what we

do in this section. For both the banana and the triangle curve, we note that

plumbing all but one nodes gives an irreducible stable curve, while normalizing

all but one nodes gives a stable curve of compact type — thus it is natural

to expect here the behavior that somehow generalizes both cases considered

above and can specialize to either one under a suitable degeneration.

In contrast to 5.4.3 (where the degenerate curve was connected), if C̃s,v is

disconnected for some sj = 0 and si = 0 the almost real-normalized differential

does develop poles at the node which by the sum of residues is zero, it must

have residue ±
√
−1. Therefore ωi(s, v) is alternatively given by gluing the

unique real-normalized differentials on C̃si=0,sj=0,s,v with simple poles of residue

±
√
−1 at each node.

Proposition 5.5.1. If C̃si=0,sj=0,s,v is disconnected where ri and rj are each

non-separating nodes, the almost real-normalized differential ωi(s, v) on on the

curve Csj=0,s,v has simple poles of residue ±
√
−1 at the node rj .

Proof. This follows from simply noting the sum of the residues on any irre-

ducible component must be non-zero. Assume for contradiction that ωi(s, v)

does not have simple poles when sj = 0 and si > 0. Therefore ωi(s, v) is
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holomorphic on a family Csi>0,sj=0,s,v where s1 → 0. By construction ωi(s, v)

has simple poles at ri when si = 0, and thus ωi(s, v) on Cs1=0,s2=0,s,v has two

irreducible components with one simple at the preimages of ri which lie on

separate components. This is impossible because the sum of residues must

equal zero on any irreducible component which implies we must have poles at

rj when sj = 0. Therefore ωi(s, v) can equivalently be constructed by gluing

the real-normalized differential on Csi=0,sj=0,s,v with simple poles at the node

ri and rj.

Notice that in the case of a banana (resp. triangle) we have initially two

(resp. three) different constructions of the almost real-normalized differentials,

corresponding to each of the nodes. By the proposition on the banana curve

ω1(s, v) = ω2(s, v) (also equal to ω3(s, v) for the triangle), and this differential

ω1(s, v) is equal to the result of gluing real-normalized differentials on Cv (here

all si = 0) with simple poles of residue ±
√
−1 at each of the two (resp. three)

nodes. We will thus denote it as ω(s, v) where we drop the index.

5.5.1 The banana curve

We have two possibilities depending on whether one of the components is

null. Similarly to the compact type case, even if neither component is null,

we will choose one component to determine by matching the condition on the

other.

Indeed, let Ψ1(t) be the real-normalized differential on C1,v with the re-

quired singularities as determined by local coordinates z corresponding to

those pi that lie on C1. If C2 is a null component, we then let Ψ2(t) be the
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real-normalized differential whose only singularities are at q1
2 and q2

2, deter-

mined by the matching condition from q1
1 and q2

1, for the plumbing parameters

s1 and s2, respectively. If C2 is a non-null component, we let Ψ2(t) be the

real-normalized differential on C2,v whose singularities at q1
2 and q2

2 are deter-

mined by matching, and which in addition has prescribed singularities at all

the points pi that lie on C2.

Similarly to the case of stable curves of compact type, in either case the

differentials Ψ1(t) and Ψ2(t) glue to define a meromorphic differential Ψ′(t)

on Cs,v with prescribed singularities at all the points pi, and no other poles.

However, similarly to the case of irreducible stable curves, this differential

Ψ′(t) may not be real-normalized, as its period may not be real over a cycle

that intersects both seams.

Let B be a non-trivial cycle on Cs,v with intersection pairing B · γs1 = 1

(and since the two seams are homologous, also B · γs2 = 1), and define the

normalizing factor β(t) :=
Im

∫
B Ψ′(t)

Im
∫

B ω(s,v)
. As before, we have

Proposition 5.5.2. The meromorphic differential

Ψ(t) := Ψ′(t)− β(t)ω(s, v) (5.2)

is the real-normalized differential with prescribed singularities on any smooth

Xt in a neighborhood of the banana curve.

Here we encounter the new feature of the situation: the locus of banana

curves is of complex codimension two in Mg,n, and a neighborhood of C0

contains nodal stable curves that are not bananas but irreducible curves with

one node, corresponding to the case when exactly one of the two plumbing
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parameters s1 and s2 is zero. While the above proposition describes Ψ on any

smooth curve in the neighborhood of C0, proposition 4.4.2 states that Ψ on

C0 is also the continuous limit of real-normalized differentials on irreducible

one-nodal curves in the neighborhood. To reprove this and obtain further

information about the geometry of the situation and in particularly about

the zeroes, we study the behavior of the normalizing factor as one or both

plumbing coordinates go to zero.

Lemma 5.5.3. We have limsi→0 β(s1, s2, u, z) = 0 for i = 1, 2.

Remark 5.5.4. By this lemma, we can interpret the construction for the

banana as a combination of the cases of curves of compact type and of ir-

reducible nodal curves. Indeed, if we consider a family Xt for which si is

identically zero, then in this family the limits of real-normalized differentials

are real-normalized differentials on the partial normalization of the curves at

si, and the degeneration when sj → 0 then corresponds to the normalization

degeneration to a stable curve of compact type. In this family indeed the nor-

malizing factor is identically zero, and the real-normalized differential on the

normalization is simply Ψ′, which we note is constructed the same way as in

the compact type case.

On the other hand, if si is non-zero and fixed, while sj → 0, we have a

family of smooth curves degenerating to an irreducible stable curve with one

node, and the construction is identical to the one we had for that case.

Proof. The computation of the normalizing factor is very similar to the case

of irreducible curves, the only modification being that B now intersects both

seams and by 5.5.1 the almost real-normalized differential develops poles at
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both node. Here we need to be careful to integrate in both of the plumbing

neighborhoods. Let B be any cycle on Cs,v which intersects each seam γsi

in one point and which contains the four real segments
[√
|si|, ε

]
⊂ C on

each neighborhood of each qji ; as before, let Bo be the part of B outside the

plumbing neighborhoods. We then compute, noticing that Ψ′ is regular on C1,

∫
B

Ψ′(t) = Im
2∑
i=1

smi+1
i√
|si|
− Im

2∑
i=1

smi+1
i

εmi+1
+ Im

∫
Bo

Ψ′(t).

We similarly calculate (though noticing that now ω has simple poles on both

C1 and C2)

β(ω(s, v)) = 2
2∑
i=1

(ln(|si|))− 4 ln(ε) +

∫
Bo

ω(s, v).

Therefore as the numerator is exactly zero when Ψ′(t) is real-normalized

and the denominator blows up for either node forming, the limit of β(t) as

either si approaches zero is zero.

Corollary 5.5.5. Formula (5.2) defines the real-normalized differential on

any smooth curve in the neighborhood of a banana, and also gives the limit of

real-normalized differentials (i.e. the real-normalized differential on the nor-

malization) on any irreducible curve with one node in the neighborhood of the

banana.

We now determine the limits of the zeros of real-normalized differentials

on families degenerating to the banana curve. The case when C2 is non-null is

clear: then the limits of the zeros are the zeros of Ψ1(t), Ψ2(t), and the nodes,

to each of which two zeros tend in the limit.
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The main new and interesting feature of the case of the banana is that if C2

is a null component, then Ψ2(t) and the normalizing factor β(t) both vanish

as si → 0, and the limit of the zeros of their linear combination on C2 depends

on which term vanishes faster as si → 0.

Proposition 5.5.6. The set of all possible limits of zeros of real-normalized

differentials on families of smooth curves Xt ⊂M1,...,1
g,n converging as t→ 0 is

the banana curve X0 as above, where the real-normalized differential Ψ1 on C1

has zeros at q1
1 and q2

1 of orders m1 and m2 respectively, is parameterized by

the real projective space RP2m1+2m2+4, which is the set of parameters for the

singular parts at q1
2 and q2

2 of orders at most m1 + 2 and m2 + 2, respectively,

not both simultaneously zero, and allowed to have purely imaginary residues,

of a real-normalized differential on C2, modulo multiplication by a real number.

Remark 5.5.7. In other words, for any family of stable curves degenerating

to X0, the limits of zeros are the zeros of Ψ1 that are distinct from q1
1 and q2

1,

the points q1
1 and q2

1 with multiplicities m′1 ≤ m1 and m′2 ≤ m2 respectively,

and the zeros of some real-normalized differential on C2 with poles of order

(mi−m′i + 2) at qi2, which is allowed to have purely residues equal in value but

opposite in sign at q1
2 and q2

2. Still more explicitly, we see that the limits of the

zeros are the limits of the zeros of the linear combination Ψ′(t) + β(t)ω(s, v),

where both summands go to zero as si goes to zero, but one of the following

could happen: if Im
∫ q21
q11

Ψ1 6= 0, then β(t) 6= 0, and goes to zero slower than

Ψ′(t), so that the limit of the zeros are the zeros of ω, or it could be that

Im
∫ q21
q11

Ψ1 = 0, so that β(t) is identically zero, so that the limit of the zeros

are the zeros of Ψ′(t) on C2, or it could be that s1 and s2 are chosen to go
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to zero at such speeds (roughly as s1 = e1/s2) that Ψ′(t) ∼ lowest order and

β(t) ∼ lowest order go to zero at the same rate, and the limit of the zeros

are the zeros of this non-trivial linear combination. We note that this set of

zeros is precisely the fiber of the mapM≤m1+1,≤m2+1
g2,2

×R→Mg2,2 (where we

multiplied by R to allow purely imaginary residues) over (C2, q
1
2, q

2
2), with the

zero section removed, modulo multiplication by a real number.

5.5.2 “Triangle” curves

We now deal with the triangle curve that has three irreducible components.

This is in fact completely analogous to the case of the banana, and this subsec-

tion just serves to confirm that we encounter no further difficulties in dealing

these stable curves where the theory of limit linear series in unavailable.

To start, we order the irreducible components of C0 as described in section

5.3.2. There are now three possible situations: all of order zero (no null

components), two components of order zero and one component of order one

(one null component), or one component of order zero and two null components

(automatically both of order one). Regardless of the case, we choose Ψi(t) to

be the real-normalized differential on Ci,v with prescribed singularities which

satisfies the matching condition at the nodes with respect to the plumbing

parameters s and the ordering on the components. If two irreducible curves

of the same order share a node, there is a choice which we prescribe to match

with the other, and the result is independent of this choice.

Let Ψ′(t) be the result of gluing Ψ1(t), Ψ2(t),Ψ3(t) on Cs,v with respect to

plumbing parameters at each node, which as before will have real periods on
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all cycles contained in one irreducible component of C0, but not necessarily

over the cycle which is represented in the dual graph, intersecting each of the

seams. As discussed in the previous subsection on the banana, the three almost

real-normalized differentials associated to the three nodes are equal, and we

denote them ω(s, v) = ω1(s, v). Choosing the cycle B to have intersection one

with each of the three seams, we have the usual normalizing factor: β(t) :=

Im
∫

B Ψ′(t)

Im
∫

B ω(s,v)
, so that again the differential Ψ(t) := Ψ′(t) − β(t)ω(s, v) is real-

normalized on any smooth curve in the neighborhood of the triangle curves.

The asymptotics of β(t) as some si go to zero are computed exactly the same

way as for the banana curve (and 5.5.1), and we see that β(t) vanishes whenever

any si = 0. More precisely, we have

β(t) =

Im
s
m1+1
1√
|s1|

m1+1 + Im
s
m2+1
2√
|s2|

m2+1 + Im
s
m3+1
3√
|s3|

m3+1 + Im
∫
Bo Ψ′(t)

ln |s1|+ ln |s2|+ ln |s3|+ Im
∫
Bo ω(s, v)

.

and it thus follows that the formula for Ψ(t) describes the limits of real-

normalized differentials on all stable curves in the neighborhood of the triangle

curve — which now includes the banana curves for the case when precisely one

si vanishes.

For the zeros we then have the statements analogous to and generalizing

the previous situations. Indeed, if all of the components of the triangle are non-

zero, then the limits of the zeros are simply the zeros of the real-normalized

differentials on each of the components, together with two nodes approaching

each of the nodes. If two components are non-null, then on them the limits of

zeros are the zeros of the corresponding real-normalized differentials, together

with two zeros approaching the node between them (we note for this and other
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cases like it that though when gluing two components of the same order, in

particular two non-null components, the singular part of the pole arising there

vanishes for s = 0, and thus does not matter for the limit on the non-null

component), while on the null component we have in the limit the zeros of a

real-normalized differential with poles of orders at most m1 + 2 and m2 + 2 at

q1
3 and q2

3, where m1 is the vanishing order of Ψ1 at q2
1, and m2 is the vanishing

order of Ψ2 at q1
2. Finally, if C2 and C3 are null components, then the limits

of the zeros are the zeros of Ψ1 on C1, together with the zeros of the real-

normalized differentials on C2 and C3 with poles at their nodes connecting

to C1 of orders and expansion matching the values on C1, and where at the

node between C2 and C3 we glue a regular value to a double pole with small

singularity proportional to |s| as before.

5.6 The dollar curve: more than one cycle in

the dual graph

We now deal with the “dollar curve” — the nodal curve that has two

irreducible components joined at three nodes. Again, it turns out that the

techniques already developed suffice to obtain a complete description of real-

normalized differentials in the neighborhood of such a curve, and this section of

the text just serves to verify this. The main complication here is that the dual

graph of the stable curve has more than one cycle (the first homology of the

dual graph is two-dimensional); if we were associating holomorphic almost real-

normalized differentials to homology bases on smooth curves, this would cause
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complications. However, as our construction of an almost real-normalized

differential is associated to nodes, we do not encounter this problem.

To fix notation, we denote the dollar curve C0 = C1 t C2/(q
1
1 ∼ q1

2, q
2
1 ∼

q2
2, q

3
1 ∼ q3

2). As usual, we denote Ψ1(t) the real-normalized differential on C1,v

with required singularities at pi, and let Ψ2(t) have prescribed singularities

(or with no singularities if C2 is a null component) and three new poles at

qi2 matching, with respect to plumbing parameters s1, s2, s3 at each node, the

values of Ψ1(t) at qi1; as always Ψ1(t) and Ψ2(t) glue to define a meromorphic

differential Ψ′(t) on Cs,v with singularities only at pi as prescribed, which again

may not be real-normalized.

We can then follow the same approach used for the banana and triangle

curves above (where the dual graph had one non-trivial cycle in the dual

graph and we used one almost real-normalized differential)— thus we choose

two almost real-normalized differentials.

Initially there are three almost real-normalized ω1(s, v), ω2(s, v), ω3(s, v)

associated to the three nodes of the dollar curve. In the triangle curve case

these were all equal corresponding to the fact that there is one non-trivial cycle

in the dual graph.

In the case of the dollar curve their linear span will be two-dimensional,

which corresponds to the fact that there are two independent cycles in the dual

graph of the curve (i.e. that the geometric genus of C0 is equal to g−2). This is

to say that there exists one linear relation among ωi(s, v) on Ct. Therefore we

continue to carefully state all the details of this case where one may initially

be concerned that this will present a problem.

Let η1 and η2 be a basis for cycles in the dual graph of C0, where η1
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intersects the nodes r1 and r3 and η2 intersects the nodes r2 and r3. On any

smooth curve Cs,v, let Bi be any cycle which intersects the seam γsi
in one

point. In addition let Bi,j be a cycle which has intersects the seams γsi
and γsj

in one point and does not intersect the third seam. Note that B1,2 and B2,3

degenerate to η1 and η2 respectively on the dollar curve Cv.

Define the following normalizing factors (where by construction of the al-

most real-normalized differentials, we only have to fix the pairing with one

seams as denoted in the notation): β1(t) :=
Im

∫
B1,3

Ψ′(t)

Im
∫

B1
ω1(s,v)

and β2(t) :=
Im

∫
B2,3

Ψ′(t)

Im
∫

B2
ω2(s,v)

.

The following proposition is in fact simple to verify, and for reference we

record the details here.

Lemma 5.6.1. The differential Ψ(t) := Ψ′(t)−
∑
βi(t)ωi(s, v) is real-normalized

on any smooth curve in the neighborhood of the dollar curve.

Proof. Notice Im
∫
Bj,3

ωi(s, v) = 0 for i 6= j by definition of ωi(s, v) which

is real-normalized over any cycle not intersecting the corresponding seam γsi

and in addition Im
∫
Bj
ωj(s, v) = Im

∫
Bj,3

ωj(s, v). Therefore, Im
∫
Bj,3

Ψ(t) =

Im
∫
Bj,3

Ψ′(t)−
Im

∫
Bj,3

Ψ′(t)

Im
∫

Bj
ωj(s,v)

Im
∫
Bj,3

ωj(s, v) = Im
∫
Bj,3

Ψ′(t)− Im
∫
Bj,3

Ψ′(t) = 0

for j ∈ {1, 2}. Any cycle B1,2 which intersects the first two seams is homolo-

gous B1,3 + B2,3, and thus clearly Im
∫
B1,2

Ψ(t) = 0 by the above calculation.

Thus we have verified that Ψ(t) is real-normalized on smooth curves over any

new cycle, and there are no issues with this choice of almost real-normalized

differentials.

In order to ascertain that this formula also works for nodal curves near

the dollar, we need to determine the behavior of the normalizing factors βj as
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some nodes are formed, i.e. as some si → 0, for arbitrary i and j. Here we will

crucially use 5.4.3 and 5.5.1 to understand how ωi(s, v) behave.

Let Cs,v be a family of where all si > 0 and one node sj → 0 forms. It

follows from 5.4.3, the differential ωi(s, v) does not develop poles at the node

when sj → 0 for one node j 6= i while all other plumbing parameters remain

non-zero.

Lemma 5.6.2. On any family Cs,v where sj → 0 for j ∈ {1, 2, 3} and si > 0

for all other nodes, the differential Ψ(t) is real-normalized.

Proof. If j ∈ {1, 2} by construction ωj(s, v) has a poles at the forming node

sj → 0 and following a computation exactly as in the n-gon case, the de-

nominator of βj(t) has a term ln(|sj|) which implies the normalizing factor

vanishes when sj = 0 and the differential becomes Ψ(t) = Ψ′(t)− βi(t)ωi(s, v)

(i ∈ {1, 2} and 6= j) which is clearly real-normalized and is exactly the formula

given for the banana curve.

If j = 3, both normalizing factors survive as s3 → 0 because both almost

real-normalized differentials ω1 and ω2 do not has singularities at the node

r3 = 0. In addition ω1(s3 = 0, s, v) and ω2(s3 = 0, s, v) are equal up to a real

constant. In order to show that Ψ′(t) = Ψ′(t) −
Im

∫
B2,3

Ψ′(t)

Im
∫

B2
ω2(s,v)

Im
∫
B1,2

ω2(s, v)

is real-normalized for s3 = 0, we must integrate over the cycle B1,2, but this

is clearly real by noticing B1,2 is homologous to the sum of paths B1,3 + B2,3

(here Bi,3 are no longer close on C̃s3=0,s,v–when working on nodal curves, we are

always verifying that the differential is real-normalized on the normalization

as per our earlier definition regarding real-normalized differentials on nodal

curves).

98



For a family where two nodes rj and rj′ form (we are in the case of compact

type), recall by 5.5.1 both normalizing factors vanish and Ψ(t) = Ψ′(t) which

is automatically real-normalized on Csj=0,sj′=0,s,v.

We have thus finally proved the following,

Proposition 5.6.3. The formula

Ψ(t) := Ψ′(t)− β1(t)ω1(s, v)− β2(t)ω2(s, v)

defines the real-normalized differential on any stable curve Xt (including nodal

curves) in the neighborhood of the dollar curve.

5.7 General stable curves

The methods we have developed so far apply to deal with an arbitrary

stable curve C0. Recall that in section 5.3.2 we have defined an ordering of

irreducible components of an arbitrary stable curves, by denoting C0 := ∪C0
j

the union of non-null components (which contain points p`), and then denoting

Ck = ∪Ck
j the union of all irreducible components distance k away from a non-

null component in the dual graph. Similarly to how we used this to deal with

a general stable curve of compact type, we will now explain how to use the

techniques developed above to construct a real-normalized differential in a

small plumbing neighborhood of any stable curve, by inductively constructing

the differentials on Ck that glue, and then arguing as for the dollar case that we

can then add a suitable holomorphic differential, glued from real-normalized

differentials with simple poles, to ensure the reality of all periods.
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We start by constructing a meromorphic differential on each component

Ck
j with prescribed singularities. In other words we choose the differential on

Ck
j to be the unique real-normalized differential which satisfies the matching

condition with all curves of order i− 1 to which its identified via a node and

at any node where Ck
j intersects curves Ck

1 , . . . , C
k
j−1 of the same order with

respect to the corresponding plumbing parameter. For curve of order zero,

C0
j , we additionally require the differential to have prescribed singularities at

pi. Each curve Ck
j is irreducible by definition and if C0 has any nodes formed

by identifying points two points in Ck
j we also require the differential to be

the real-normalized differential on C̃k
j with prescribed singularities as above

and simple poles of residue ±
√
−1 |s| where s is the corresponding plumbing

parameter at this node. Thus we have just described how to choose differential

Ψk
j (t) on each irreducible components which have prescribed singularities and

satisfy the matching condition at each node.

By construction, the differential Ψ′(t) := ∪j,kΨk
j (t) satisfies the gluing con-

dition at every node and defines a meromorphic differential on Cs,v with poles

exactly as prescribed at the marked points pi and no new poles. To make it

real-normalized, we proceed as by generalizing all previous constructions.

Let V be the space of real-normalized differentials on the normalization

C̃0,v with purely imaginary matching residues at each of the nodes. Such a

differential is completely described by the residues, and thus the dimension of

the real vector space V is equal to the number of nodes — at each we can take a

residue — minus the number of connected components of C̃0, on each of which

the residues must sum to zero. Clearly these conditions are independent, and

thus the dimension of V is equal to the number of edges of the dual graph

100



of C0 minus the number of vertices of the dual graph of C0, which by Euler’s

formula is imply equal to the dimension of H1 of the dual graph of C0, i.e. the

number of independent cycles in it (which for the case of the dollar curve was

two, and which in general is the dimension of the space of vanishing cycles in

homology).

Given a basis for cycles in the dual graph of C0, we will proceed by making

our choice of almost real-normalized differential and corresponding normaliz-

ing factors explicit. The corresponding degeneration arguments regarding the

normalizing factors simply follow from 5.4.3 and 5.5.1 (where in addition once

β(t) = 0 for some number of nodes formed it is defined to be zero under any

further degenerations of the curve).

Let r1, . . . , r` be all nodes which are irreducible nodes on the curves Ck
j

and let J := {1, . . . , `}. For each node rj where j ∈ J , let ωj(s, v) be the

corresponding almost real-normalized differential given by the gluing the real-

normalized differential with simple poles of residue ±
√
−1 on Csj=0,s,v. The

corresponding normalizng factor βj(t) is define by integrating over any cycle

Bj is such that Bj · γsj
= 1 and which has zero intersection with all other

seams. We have verified how this degenerates in the irreducible nodal curve

section, and it is exactly the same here.

Choose any basis of m simple cycles which span the space of cycles in

the dual graph of C0 normalized at each node in J and for simplicity we

additionally normalize at every separating node. Let I := {1, . . . ,m} and for

each cycle i ∈ I, denote the nodes which lie on the cycle as ri(1), . . . , ri(n). For

different cycles i and i′ the corresponding list of nodes may not be disjoint,

but we claim that there is at least one node distinct to each cycle which we
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choose and denote as ri, i ∈ I. (Note: As we saw in n-gon case the result won’t

depend on this choice.)

For each i ∈ I, let ωi(s, v) be the result of gluing the real-normalized

differential with simple poles of residue ±i at preimages of the node ri on

C̃si=0,s,v where we assume all other nodes are smooth. In addition for each i ∈

I, let Bi(1),...,i(n) be any cycle on Cs,v which intersects each seam γi(1), . . . , γi(n)

in one point and has zero intersection with the other seams. This cycle is any

cycle which degenerates to the chosen loop in the dual graph. In addition, let

Bi be any non-trivial cycle on Cs,v which intersects the seam γi in one point

(where γi is the seam at the node ri for i ∈ I).

Now define βi(t) :=
Im

∫
Bi(1),...,i(n)

Ψ′(t)

Im
∫

Bi
ωi(s,v)

our corresponding normalizing factors,

and again one can check that by construction the real values in the normalizing

factor do not depend any further on the choice of cycles Bi(1),...,i(n) for Ψ′(t)

and Bi for ωi(s, v).

Theorem 5.7.1. The formula

Ψ(t) := Ψ′(t)−
∑
j∈J

βj(t)ωj(s, v)−
m∑
i=1

βi(t)ωi(s, v)

defines the real-normalized differential on any stable curve Xt (including nodal

curves) in the neighborhood of the a general nodal curve C0.

Remark 5.7.2. Clearly the differential Ψ(t) := Ψ′(t) −
∑

j∈J βj(t)ωj(s, v) −∑m
i=1 βi(t)ωi(s, v) is real-normalized for smooth curves. In fact one can now

check this very explicitly by integrating over any cycle Bi(1),...,i(n) for i ∈

{1, . . . ,m} and also over cycles Bj for j ∈ J . In addition one can verify

using 5.4.3 and 5.5.1 that the normalizing factors β`(t) vanish when s` = 0 for
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` ∈ J or ` ∈ J , and we now claim that Ψ(t) is real-normalized on any nodal

curve in the neighborhood of C0.

Theorem 5.7.3. The set of all possible limits of zeros of real-normalized dif-

ferentials on families of smooth curves Xt ⊂ M1,...,1
g,n converging as t → 0 to

a fixed arbitrary stable curve X0 is parameterized by a suitable product of real

projective spaces, which is the set of parameters for the singular parts of mero-

morphic differentials at the nodes where irreducible components of C0 of order

i + 1 meet components of order i (in the ordering given by definition 5.3.9,

i.e. if one component is further in the dual graph from the marked points than

the other). At each such node, the order of the pole of the meromorphic real-

normalized differential on the component of order i+ 1 is at most two greater

than the vanishing order of the (inductively constructed) real-normalized differ-

ential on the component of order i, including the possibility of the differential

having a non-trivial purely imaginary residue there — so the set of parameters

for the singular part is R × Cm+1. For each irreducible component of order

i+ 1, the real-normalized differential constructed on it must be non-identically

zero, i.e. must have at least one non-zero singular part, and the sum of its

residues must be equal to zero (so the set of parameters is the product of the

above, subject to one linear condition on the residues lying in R, and taking out

the point zero of the product). Finally, the real-normalized differential on each

irreducible component is taken up to multiplication by a non-zero real number

(so we take the quotient of the above by R∗).

Remark 5.7.4. We note that for applications in [16] it will be necessary to

consider for X ∈ M1,...,1
g,n a pair of real-normalized differentials ΨX and Ψ′X ,
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where for some fixed (a1, . . . , an) ∈ Cn the differential Ψ′X has double poles

of the form Ψ′X = (aiz
−2
i + O(1))dzi. In the current paper we describe the

behavior of ΨX near the boundary of the moduli space. The degeneration

of Ψ′X would then of course be described similarly, and in [16] we will study

the behavior of common zeroes of ΨX and Ψ′X under degeneration — which

requires a detailed investigation in the case some irreducible component of the

stable curve is null for both ΨX and Ψ′X .

Remark 5.7.5. All our results apply to degenerations of real-normalized dif-

ferentials onMm

g,n in full generality as long as residues are zero. If one attempts

to perform similar analysis for differentials of the third kind, with non-zero

residues, then the main problem is determining the residues of the limit of Ψ

on a stable curve. While at any separating node the residue is determined

from the sum of the residues on any irreducible component being zero, we

have no analog of proposition 4.4.2 in this case, and there may arise arbitrary

residues at non-separating nodes. Once the residues are determined, an analy-

sis similar to the above can be attempted, but we leave the details for a future

investigation.
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