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Abstract of the Dissertation

Affine Stratifications and equivariant vector bundles

on the moduli of principally polarized abelian varieties

by

Anant Atyam

Doctor of Philosophy

in

Mathematics

Stony Brook University

2014

We explicitly construct a locally closed affine stratification of the coarse

moduli space of principally polarized complex abelian four folds A4 and using

[32], produce an upper bound for the coherent cohomological dimension and

the constructible cohomological dimension ofA4, and make a conjecture on the

cohomological dimension of Ag for any g. In the second part of the thesis we

study a subring of K0(Ag) and study the Chern character map from this ring to

the tautological ring of Ag which leads us to give a conjectural representation

theoretic interpretation of the tautological ring of Ag.
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Chapter 1

Summary of main results

We study the moduli space of principally polarized abelian varieties Ag

over the field of complex numbers C and discuss the question of the minimum

number of affine open subsets of Ag required to cover Ag as a coarse moduli

space and the related question of the minimum number of locally closed and

disjoint affine strata whose union gives us Ag.

If one manages to provide an upper bound for the minimum number of

affine open subsets or the minimal affine stratification number, as defined

by Roth and Vakil [32] required to cover a quasi projective variety X, the

relation between sheaf cohomology and Čech cohomology gives us a concrete

upper bound for the coherent cohomological dimension and the constructible

cohomological dimension of the variety X.

We now state our main results.

Theorem 1.0.1. There exists an affine stratification of A4 consisting of seven

strata.

As a corollary of the above theorem and the results of Roth and Vakil
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Corollary 1.0.2. The cohomological dimension cd(A4(C)) ≤ 6, while the

constructible cohomological dimension ccd(A4(C)) ≤ 16.

In another direction based on the study of the Tautological ring of Ag and

the work of Oort and van der Geer, we prove the following theorem.

Theorem 1.0.3. The minimum number of affine open sets required to cover

Ag is greater than or equal to g(g−1)
2

+ 1

Based on the above Theorem and the study of the tautological ring of Ag

we conjecture the following statement.

Conjecture 1.0.4. The cohomological dimension of Ag in all characteristics

is equal to g(g−1)
2

We make a departure from the study of the cohomological dimension of Ag

in the second part of the thesis and attempt to give an alternative conjectural

description of the tautological ring. In the second part of the thesis we relate

the ring of representations of the groups GL(g,C) and the groups Sp(g,C) and

make the following conjecture

Conjecture 1.0.5. There is a natural monomorphism from the representa-

tion ring i : R[Sp(g,C)] → R[GL(g,C)] and the tautological ring R∗(Ag)

can be described as a shifted quotient of R[GL(g,C)] by the representation ring

R[Sp(g,C)] and an extra explicit relation in the representation ring R[GL(g,C)].

We now proceed to give a brief exposition of the theory of principally

polarized abelian varieties and introduce the necessary prerequisites for this

thesis.
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Chapter 2

Introduction: abelian varieties

and their moduli

We provide a brief survey and introduction the the general theory of prin-

cipally polarized abelian varieties and recall necessary classical facts that will

be necessary for the remainder of the thesis

2.1 Principally polarized abelian varieties and

their moduli

The primary object of study in this dissertation is the moduli space of

principally polarized abelian varieties (abbreviated ppav) Ag and the closely

related moduli space of smooth curves of genus g, Mg.

Definition 2.1.1. A complex torus of dimension g is a group quotient Cg/Λ

where Λ ⊂ Cg is a lattice of full rank: that is a subgroup Λ ' Z2g such that
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Λ⊗Z R = Cg.

Definition 2.1.2. An abelian variety A is a projective algebraic group, i.e. A

is a projective variety that has the structure of a group such that the compo-

sition map and inverse map are algebraic morphisms.

Remark 2.1.3. It can be proven that over the complex numbers an abelian

variety is a complex torus and in fact conversely any complex torus that is a

projective variety is an abelian variety. It is a non-trivial fact that not every

complex torus is projective, we will shortly discuss the criteria for a complex

torus to be projective which is related to the notion of a polarization of an

abelian variety. The primary references for the material in this chapter are

[16] and [4].

We now state the definition of a principally polarized abelian variety.

Definition 2.1.4. A polarized abelian variety is a pair (A, c1(L)) with L being

an ample line bundle on the abelian variety A.

Definition 2.1.5. A principally polarized abelian variety (ppav) is a polarized

abelian variety (A, c1(L)) with h0(A,L) = 1.

Remark 2.1.6. It is a non trivial fact that the dimension of the space of

global sections of an ample line bundle on an abelian variety is dependent just

on the Chern class of the corresponding ample line bundle.

Definition 2.1.7. We define the Siegel upper half space to be the set of

complex symmetric matrices with positive definite imaginary part

Hg :=
{
τ ∈Matg×g(C)|τ = τ t, Im(τ) > 0

}
.
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We now state a result that allows us to describe ppav explicitly as complex

tori satisfying some conditions on the lattice defining the torus.

Theorem 2.1.8. A complex torus A is an abelian variety if and only if it

is biholomorphic to the complex torus Cg/∆Zg + τZg for some τ ∈ Hg and

some diagonal g × g matrix ∆ with positive integral diagonal entries δi such

that δi|δi+1. This is to say that we think of the lattice Λ as generated by the g

columns of ∆ (which are thus integer multiples of coordinate vectors) and the

columns of τ .[16]

Remark 2.1.9. The ∆ indicates a choice of a polarization c1(L) on our abelian

variety and moreover h0(A,L) = det(∆), thus (A, c1(L)) is a ppav if and only

if A can be described as A ' Cg/Zg + τZg, i.e ∆ = Id.

To prove this theorem, known as Riemann’s bilinear relations, we will need

the fundamental results of Hodge theory for Kähler manifolds, as well as Ko-

daira embedding and Lefschetz (1,1)-theorems, which we now recall in general,

and then apply to complex tori. [16]

Theorem 2.1.10. [16] The cohomology of a compact Kähler manifold X

admits a decomposition Hr(X,C) ' ⊕p+q=rHp,q(X,C) where Hp,q(X,C) '

Hq(X,Ωp) is the q’th cohomology of the bundle of holomorphic p-forms on

X. Moreover, this decomposition satisfies Hp,q(X,C) ' Hq,p(X,C) and in

particular for q = 0, we have H0,q(X,C) = H0(X,Ωq).

Theorem 2.1.11 (Kodaira’s embedding theorem). [16] A compact Kähler

manifold X is a projective variety — that is, can be embedded in a complex

projective space — if and only if there exists a non zero positive closed two

form ω ∈ H2(X,Q) ∩H1,1(X,C) i.e. ω(w,w) > 0 for any w ∈ TX .
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Theorem 2.1.12 (Lefschetz theorem on (1,1) classes). [16] Let X be a com-

pact Kähler manifold and let ω ∈ H1,1(X,C) ∩H2(X,Q), then ω = c1(L) for

some holomorphic line bundle L on X.

We now state the Künneth Formula which allows us to compute the coho-

mology of the cartesian product of two spaces

Theorem 2.1.13. If X and Y are two finite CW complexes, then the co-

homology Hk(X × Y,R) '
⊕

p+q=kH
p(X,R) ⊗ Hq(Y,R), if the cohomology

groups of X and Y are free R modules.

Since a complex torus X = Cg/Λ is just homeomorphic to (S1)2n one obtain

the following result as an application of Kunneth formula and the universal

coefficient theorem

Theorem 2.1.14. The cohomology ring H∗(X,R) of a complex torus X =

Cg/Λ is isomorphic to the al ∧∗H1(X,R) for any ring R and H1(X,Z) ' Λ∗.

We now apply this general machinery of Kähler geometry to the case of

complex tori. We first note that we can define a Kähler structure on complex

torus X = Cg/Λ by using the form ω =
∑g

i=1 dzi∧dzi, we see that this form is

defined on the universal cover of X i.e. Cg and it is invariant under translations

by elements of Λ and is hence well defined on X.

Since X = Cg/Λ is a Kähler manifold and a complex torus, we obtain the

following result as a consequence of the Hodge decomposition

Proposition 2.1.15. The cohomology ring of the complex torus X admits the
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following decomposition.

Hk(X,C) =
⊕
p+q=k

Hp,q(X,C) =
⊕
p+q=k

∧pH1,0(X,C)⊗ ∧qH0,1(X,C).

Remark 2.1.16. If X is a complex torus given as a quotient X = Cg/Λ and

z1, . . . , zg are coordinates on Cg then {dz1, dz2, ....dzg} gives a natural basis for

H1,0(X,C) and similarly
{
dz1, dz2, ....dzg

}
gives a basis of the conjugate space

H0,1(X,C) respectively.

We now use this general machinery to give a proof of Riemann’s bilinear

relations

Proof of theorem 2.1.8. Let X be a complex torus given as X = Cg/Λ, where

Λ ⊂ Cg is a full rank lattice. Then by theorem 2.1.14, H1(X,Z) = Λ∗ and

H2(X,Z) = ∧2Λ∗. By Kodaira’s embedding theorem X is an abelian variety if

and only if there exists a closed positive two form ω ∈ H2(X,Z)∩H1,1(A,C).

We first prove that if such ω exists, then X ' Cg/∆Zg+τZg for some diagonal

∆, and τ ∈ Hg.

Since by theorem 2.1.14 we know that H2(A,Z) = ∧2Λ∗, and that ω is

positive. Now using a standard fact about non degenerate quadratic forms

over Z we can represent ω as a skew symmetric matrix of the form
(

0 ∆
−∆ 0

)
with respect to some basis {λ1, . . . λ2g} of Λ where ∆ is a diagonal matrix

with δi|δi+1. Let {x1, . . . x2g} be the dual integral basis to {λ1, . . . λ2g}. Now

since Λ ⊗Z R = Cg, we know that {x1, . . . x2g} are real linear functionals on

Cg, thus we can choose linear complex coordinates {z1, . . . zg} on Cg such

that xi = 1
2δi

(zi + zi), for i = 1 . . . g and with respect to these coordinates
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xg+i =
∑g

j=1 τijzj +
∑g

j=1 τijzj. Now our two form ω can be rewritten as

ω =
∑g

i=1 δidxi ∧ dxg+i. Applying a change of basis from {dx1, dx2, . . . dx2g}

to
{
dz1, . . . dzg, dz1, . . . dzg

}
on (Λ⊗Z C)∗ we can rewrite ω as

ω =

g∑
i=1

δiδi
−1 1

2
(dzi + dzi) ∧ (

g∑
j=1

τijdzj + τijdzj).

=
∑
i,j

(τij − τji)dzi ∧ dzj +
∑
i,j

(τij − τji)dzi ∧ dzj +
∑
i,j

(τij − τji)dzi ∧ dzj).

Recall now that our positive form ω was supposed to lie in H1,1(A,C), while

the first summand in the formula above lies in H2,0(A,C), and the second lies

in H0,2(A,C) — thus these two summands must vanish, which is to say that for

any i, j we must have τij = τji. This simply says that τ is symmetric. Since ω

has to be positive, the last summand (where we note that τij − τji = 2i Im τij)

must give a positive-definite quadratic form, which is precisely to say that

Im(τ) is a positive definite matrix.

We have thus proven that X ' Cg/∆Zg + τZg with τ ∈ Hg for the choice

of some complex basis on Cg.

We now prove the reverse implication, that is, Suppose X = Cg/∆Zg+τZg

for τ ∈ Hg then X is an abelian variety. By Kodaira’s embedding theorem,

it is enough to construct a form ω ∈ H2(A,Z) ∩ H1,1(A,C) > 0. We choose

coordinates {z1, . . . , zg} on Cg so that
{
dz1, dz2, ....dzg, dz1, dz2, ....dzg

}
gives

a basis for H1(A,C). Since H1(A,Z) ' (∆Zg + τZg)∗ we see that the basis

{dx1, dx2, ...dx2g} of H1(X,C) defined by dxi = 1
δi

1
2
(dzi + dzi) for i = 1....g

and dxg+i =
∑g

j=1 τijdzj + τijdzj is also an integral basis for H1(X,Z) .

A simple computation using the above relation between the rational basis

8



given by the {dxi}2g
i=1 and the complex basis given by

{
dzi, dzi

}g
i=1

tells us

that the form ω =
∑g

i=1 δidxi ∧ dxg+i ∈ H2(A,Z) ∩ H1,1(A,C) is positive.

The positivity of the form follows from the positive definiteness of Im(τ) =

−i/2(τij − τij). and the fact that it lies in H1,1(A,C) follows from the fact

that τ = τ t.

Since our interest is describing the moduli space of abelian varieties, and

by Riemann bilinear relations any principally polarized abelian variety (which

means ∆ = Id) is isomorphic to Cg/(Zg + τZg) for some τ ∈ Hg, we will now

need to determine when two such abelian varieties are biholomorphic. Before

doing so we need the following preliminary definition.

Definition 2.1.17. There is a group action of Sp(g,Z) onHg given by M ◦τ =

(Aτ +B)(Cτ +D)−1 for M = ( A B
C D ) and τ ∈ Hg.

Remark 2.1.18. The fact that the above action is a group action is not

immediately obvious, but follows from a strightforward computation

Theorem 2.1.19. Two ppav A1 = Cg/Zg + τ1Zg and A2 = Cg/Zg + τ2Zg are

biholomorphic as ppav, i.e. by a biholomorphism that sends the polarization on

A1 to the polarization on A2 if and only if τ2 = M ◦ τ1 for some M = ( A B
C D ) ∈

Sp(g,Z).

Before proving the statement, we note that together with 2.1.8, 2.1.19 it

implies the following corollary

Corollary 2.1.20. The moduli space of ppav over C can be analytically de-

scribed as Hg/ Sp(g,Z).

9



Remark 2.1.21. The case of g = 1 corresponds to the case of the description

of the moduli space of pointed elliptic curves as H/ SL(2,Z). Every point on

this quotient is an orbifold point with a finite stabilizer.

Proof of theorem 2.1.19. Let f : Cg/Zg + τ1Zg → Cg/Zg + τ2Zg be a bi-

holomorphic map preserving polarization, which is to say that we must have

f ∗(c1(L2)) = c1(L1). Now consider the map f̃ : Cg → Cg denoting the associ-

ated holomorphic map between the universal covers. It can be shown that this

map is linear[4], for which we must have Now since f̃(Zg + τ1Zg) ⊂ Zg + τ2Zg

and f ∗(c1(L2)) = c1(L1). The map f̃ restricted to the lattices is a symplectic

linear transformation with integer coefficients as it has to preserve the symplec-

tic pairing on the lattice as it preserves the lattices., i.e. f̃ = ( A B
C D ) with respect

to the standard basis of the lattices, coming from the columns of the matrix[
Id τi

]
for i = 1, 2. Now the map f̃ : Cg → Cg is a complex linear transfor-

mation as f̃ can be naturally identified as the map between the associated lie

algebra of A1 and A2. Thus f̃(x) = Mx for some M ∈ GL(g,C). By our earlier

discussion on f̃ restricted to the lattice Zg+τ1Zg, we can say that the image of

the standard basis of Cg under f̃ is Cτ +D and f̃(τ1) = Aτ1 +B, since f̃ can

be represented in a matrix form by Cτ2 + D, we see that f̃−1 = (Cτ + D)−1.

Therefore f̃−1 ◦ f̃(τ1) = (Aτ2 +B)(Cτ2 +D)−1 = τ1.

Remark 2.1.22. We would like to point out that the moduli space of prin-

cipally polarized abelian varieties is an orbifold or algebraically speaking has

the structure of a stack. This is because an abelian variety with a polarization

has a natural automorphism of order two given by x 7→ −x for x ∈ A and

because could also have other automorphisms. It is not too hard to see that
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every principally polarized abelian variety has a finite stabilizer. This can be

seen because any element of the stabilizer of a point [τ ] ∈ Hg/ Sp(g,Z) is an

automorphism of the associated ppav Aτ = Cg/Zg + τZg. This automorphism

can be lifted to a linear automorphism of Cg to itself preserving the lattice

and having determinant one, because having a determinant larger than one

wouldn’t make it an automorphism of the torus, it would be a many to one

map of the torus to itself.

The universal family of ppav, i.e. a fibration over Hg/ Sp(g,Z) where

the fibers over [τ ] can be identified with the quotient of the abelian variety

Aτ = Cg/Zg + τZg by its automorphisms can be described analytically as

Hg × Cg/ Sp(g,Z) n Z2g where the action is given by

(τ, z)→ ((Aτ +B)(Cτ +D)−1, (Cτ +D)−1(z + γτ + δ)),

for ( A B
C D ) ∈ Sp(g,Z) and

γ
δ

 ∈ Z2g.

Remark 2.1.23. While the discussion above is only applicable over the field

of complex numbers C, we can define the notion of moduli space of principally

polarized abelian varieties over a field of characteristic p. We won’t be making

use of this moduli space explicitly, except to point out the differences in the

geometry of the moduli spaces in different characteristics.

11



2.2 Theta functions and line bundles on abelian

varieties

One natural question that arises is to describe a line bundle on a ppav

X = Cg/Zg + τZg whose Chern class is the principal polarization. We do so

by defining a holomorphic function, the theta function, on Cg that is quasi

periodic with respect to the lattice Zg + τZg and hence its zero locus descends

as a divisor to X and thus describes a line bundle whose Chern class turns out

to be the principal polarization on X.

Definition 2.2.1. Let τ ∈ Hg and m =

ε
δ

 ∈ (Z/2Z)2g, we define the theta

function θm : Cg → C with characteristic m as

θm(z, τ) :=
∑
n∈Zg

e(πi(n+ε/2)tτ(n+ε/2)+2πi(n+ε/2)t(z+δ/2)).

Remark 2.2.2. The positive definiteness of Im τ shows that θm(z, τ) converges

for all z and is hence a holomorphic function on Cg. By a direct calculation

one sees that for any a, b ∈ Zg

θm(z + a+ bτ, τ) = eπib
tτb−2πibtzθm(z, τ). (2.2.1)

Since the factor eπib
tτ−2πibtz 6= 0 the zero locus of θm(z, τ) is well defined as a

subset of on Aτ = Cg/Zg + τZg.

Remark 2.2.3. We denote θ(z, τ) the theta function with characteristic m =

0 ∈ (Z/2Z)2g.

12



Definition 2.2.4. The zero locus of θ(z, τ) is called the theta divisor Θ on

Aτ = Cg/Zg + τZg and similarly the zero locus of θm(z, τ) is called the Θm

divisor on Aτ for m ∈ (Z/2Z)2g.

We now state a theorem which relates the theta divisor to the principal

polarization.

Theorem 2.2.5. For any τ ∈ Hg the zero locus of θ(z, τ) defines on Aτ :=

Cg/Zg + τZg an ample line bundle Θ with one section, whose c1 defines a

principal polarization.

Remark 2.2.6. The above theorem really states two theorems, the first one

being that OAτ (Θ) is an ample line bundle since a polarization is the chern

class of an ample line bundle and ampleness of a line bundle is a numerical

property as the second one that states h0(Aτ ,OAτ (Θ)) = 1. The proofs of

both these theorems are non trivial and we do not indicate their proofs.

A natural question that arises is the following: given a line bundle L on a

ppav Aτ and if c1(L) = c1(OAτ (Θ)), what can we say about the divisor defined

by the non zero section of L. Recall that the dimension of the space of sections

of an ample bundle only depends on c1 in this case, so is equal to one

Theorem 2.2.7. For a ppav Aτ = Cg/Zg + τZg, let L be a line bundle such

that c1(L) = c1(OAτ (Θ)), then h0(Aτ , L) = 1 and if s ∈ H0(Aτ , L) 6= 0 then

the zero locus Z(s) = Z(θ(z + b, τ)) for some b ∈ Cg.

We now restate the above theorem as a consequence of the following theo-

rem
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Theorem 2.2.8. Let Pic0(Aτ ) denote the group of invertible sheaves of degree

0 on a ppav Aτ = Cg/Zg + τZg, i.e. the group of invertible sheaves numeri-

cally equivalent to the structure sheaf of Aτ . Then Pic0(Aτ ) is a ppav that is

naturally biholomorphic to Aτ as a ppav.

We will be using the above theorem and the definition below, to classify

all line bundles that give us a principal polarization.

Definition 2.2.9. Let x ∈ Aτ = Cg/Zg + τZg we define the translation map

τx : Aτ → Aτ by τx(z) := x+ z

Corollary 2.2.10. Let L be a line bundle on Aτ = Cg/Zg + τZg such that

c1(L) = c1(OAτ (Θ)) then L = τ ∗b (OAτ (Θ)) for some b ∈ Aτ , thus the zero locus

of a non zero section of L is the zero locus of θ(z+ b, τ) which descends to Aτ .

Moreover the map b→ τ ∗b (OAτ ) is an isomorphism between Aτ and Pic0(Aτ ).

Remark 2.2.11. The zero locus of θ(z+b, τ) is a priori defined on Cg but due

to 2.2.1, its zero locus descends to a well defined codimension one subvariety

of Aτ .

We indicated earlier that c1(OAτ (Θm)) is the principal polarization on Aτ ,

but we also stated a theorem that said that every principal polarization is the

chern class of the translate of the OAτ (Θ) line bundle. We therefore now state

a relation between θ(z + ετ+δ
2
, τ) and θm(z, τ) for m =

ε
δ

 ∈ (Z/2Z)2g, the

relation is as follows.

θ(z +
ετ + δ

2
, τ) = eπi(−ε

tτε/4−εtδ/2−εtz)θm(z, τ) (2.2.2)

14



We now define the notion of the parity of an element m ∈ (Z/2Z)2g and

then relate it to properties of the corresponding theta function with charac-

teristic m.

Definition 2.2.12. For m =

ε
δ

 ∈ (Z/2Z)2g we define the parity of m to be

e(m) := εtδ ∈ Z/2Z. We say that m is even if e(m) = 0 and odd otherwise

The following theorem relates the parity of a theta characteristic m ∈

(Z/2Z)2g with the corresponding theta function.

Proposition 2.2.13. The theta function with characteristic m, θm(z, τ) is an

even (resp. odd) function of z if and only if m is even (resp. odd).

The evenness or oddness of theta functions with characteristic indicates

that the standard involution on the abelian variety leaves the Θm divisor fixed.

We rephrase this as follows.

Consider the involution i : Aτ → Aτ defined by i(z) := −z, then i∗(OAτ (Θm)) =

OAτ (Θm), in fact 2.2.8 tells us that the only line bundles with the same chern

class as the principal polarization that will be invariant under the involution

will be OAτ (Θm) for m ∈ (Z/2Z)2g, we thus state the following result.

Proposition 2.2.14. Let L be a line bundle on a ppav Aτ = Cg/Zg+τZg such

that i∗(L) = L for the standard involution i on Aτ and such that c1(L) = c1(Θ).

Then L = OAτ (Θm) for some m ∈ (Z/2Z)2g.

We recall that θm(z, τ) can be identified with the section of a line bundle on

Aτ = Cg/Zg+τZg , now 2.1.19 tells us that that two ppav Aτ 1 = Cg/Zg+τ1Zg

and Aτ 2 = Cg/Zg+τ2Zg are isomorphic if and only if τ2 = (Aτ1+B)(Cτ1+D)−1

for ( A B
C D ) ∈ Sp(g,Z)
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This leads to the following question: if f : Aτ 1 → Aτ 2 is an isomorphism

of ppav then how does f ∗(OAτ 2(Θm)) behave or how does the theta function

θm(z, τ1) transform with respect to f?

To answer this question we first introduce an affine action of Sp(g,Z) on

the set of characteristics (Z/2Z)2g and some subgroups of Sp(g,Z). We first

define two subgroups Γ(n) ⊂ Sp(g,Z) and Γ(n, 2n) ⊂ Sp(g,Z)

Definition 2.2.15. The subgroup Γ(n) ⊂ Sp(g,Z) is defined by

Γ(n) := {γ ∈ Sp(g,Z)|γ ≡ Id2g mod n}

The subgroup Γ(n, 2n) ⊂ Sp(g,Z) is defined by

Γ(n, 2n) :=
{
γ = ( A B

C D ) ∈ Sp(g,Z)|γ ≡ Id2g modn,AtB = CtD = 0 mod 2n
}
.

We denote Hg/Γ(n) by Ag(n) and Hg/Γ(n, 2n) by Ag(n, 2n) — these are finite

(stack) covers of Ag.

We now define an affine action of Sp(g,Z) on (Z/2Z)2g, this action is not

the usual linear action of Sp(g,Z).

Definition 2.2.16. Let m = ( εδ ) ∈ (Z/2Z)2g and γ = ( A B
C D ) ∈ Sp(g,Z), then

γ.m := (D C
B A )( εδ ) + ( diagAtB

diagCtD
) mod 2.

We denote by ◦ the group action of Sp(g,Z) on Hg and now state the

transformation formula of theta functions w.r.t. the group Sp(g,Z)

Theorem 2.2.17. Let γ =

A B

C D

 and let (m ∈ Z/2Z)2g be a theta charac-

teristic, then the following transformation formula holds for all theta functions
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with characteristics

θm((Cτ +D)−1z, γ ◦ τ) = φ(ε, δ, γ, z, τ) det(Cτ +D)1/2θγ.m(z, τ)

Remark 2.2.18. The function φ is a complicated function of z, ε, δ, τ, γ with

the property that φ|z=0 is independent of τ and is an eigth root of unity and

γ.m = m if γ ∈ Γ(2) and φ|z=0 = 1 for γ ∈ Γ(4, 8)

One can easily see that the affine action of Sp(g,Z) is transitive on the set

of even characteristics, and in fact it is also doubly transitive. More specifically

we state a theorem of Igusa, that allows us to understand the orbits of sets of

theta characteristic under the affine action of Sp(g,Z).

Theorem 2.2.19 ([21], see also [33]). Given two p-tuples of even theta charac-

teristics I = (m1,m2, ...mp) and J = (n1, n2....np), they are in the same orbit

of the action of the deck group Sp(2g,Z\2Z) Use Sp(g,Z) for consistency on

the set of p-tuples of theta characteristics, then there exists an element mapping

one to the other, preserving the numbering if and only if all of the following

conditions hold:

1. Linear relations among even number of terms in I translate to corre-

sponding linear relations in J , i.e., mi1 + mi2 .... + mi2l = 0 if and only

if ni1 + ni2 ....+ ni2l = 0.

2. e(mi +mj +mk) = e(ni + nj + nk) ∀i, j, k.
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2.3 Modular Forms and equivariant vector bun-

dles

We define the notion of Siegel modular forms as certain holomorphic func-

tions on Hg satisfying some properties and interpret them as sections of vector

bundles on level covers of Ag.

Definition 2.3.1. A rational representation of an algebraic group, i.e. a group

that is also an algebraic variety is a representation ρ : G → GL(g,C) that is

also a rational map of algebraic varieties.

Definition 2.3.2. Let Γ ⊂ Sp(g,Z) be a subgroup and let ρ : GL(g,C) →

GL(k,C) be a rational representation, we say that F : Hg → Ck is a ρ-valued

modular form with respect of Γ ⊂ Sp(g,Z) if F is a holomorphic function

such that F ((Aτ +B)(Cτ +D)−1) = ρ(Cτ +D)F (τ) for all

A B

C D

 ∈ Γ. If

ρ(M) = det(M)n for n ∈ Q we say that F is a scalar modular form of weight

n with respect to Γ.

Remark 2.3.3. In general for a scalar modular form of weight n ∈ Q with

respect to a certain subgroup Γ, the n’th power is well defined, without any

discrepancy in the choice of a root of unity if the subgroup Γ is appropriately

chosen.

Remark 2.3.4. We observe that theorem 2.2.17, Remark 2.2.18 and Propo-

sition 2.2.13 tell us that for m ∈ (Z/2Z)2g with m even, θm(0, τ) is a scalar

modular form of weight 1
2

with respect to Γ(4, 8) and θm(0, τ)8 is a scalar mod-

ular form of weight 4 with respect to Γ(2) or this can be restated by saying that
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the theta constants with characteristic m, θm(0, τ) for m even are elements of

H0(Ag(4, 8), det(E)1/2)

The algebro geometric interpretation of Siegel modular forms is that they

represent sections of some vector bundles on level covers of Ag. We describe

these vector bundles on Ag, but before doing so we describe the Hodge bundle

on Ag from which many of the vector bundles associated to siegel modular

forms can be defined.

Definition 2.3.5. Consider the universal family π : Xg → Ag, recall this was

constructed at least analytically, and consider the sheaf of relative differentials,

ΩXg/Ag . The Hodge bundle E is the locally free sheaf of rank g on Ag defined

by π∗(Ω
1
Xg/Ag)

Remark 2.3.6. We should mention that the fine moduli space of principally

polarized abelian varieties is not a scheme but a Deligne-Mumford stack be-

cause ppav’s admit automorphisms, the generic ppav [Aτ ] ∈ Ag has the stan-

dard involution as an automorphism, but if we pass to an appropriate level

cover, e.g. to Ag(3), then this space is the moduli space of ppav’s with a level

structure and it turns out [] that this space is a smooth complex manifold or,

there are no automorphisms of ppav’s with a level 3 structure. Thus we see in

particular that Ag is a global quotient of a manifold by a non free finite group

action.

Remark 2.3.7. The definition of E indicates that E|[Aτ ] for a ppav is isomor-

phic to H1,0(Aτ ), thus (dz1, dz2, dz3...dzg) is in the sheaf of sections of E and it

can be shown by writing down the action of Sp(g,Z) on Hg explicitly that the

Hodge bundle corresponds to the identity representation of GL(g,C), i.e. if
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f : Aτ1 → Aτ2 is an isomorphism of ppav with τ2 = (Aτ1+B)(Cτ1+D)−1, then

consider the morphism from f ∗H1,0(Aτ2)→ H1,0(Aτ1) is given by (Cτ1 +D)−1

with respect to the standard dual basis of Cg. In this case it means that

the sections of E are Siegel modular forms for the identity representation of

GL(g,C)

We now state the following theorem of Borel which classify line bundles on

Ag up to their pullbacks on level covers.

Theorem 2.3.8. [5] The rational Picard group of the moduli space Ag is

Pic(Ag)⊗Q = Qλ1 where we denote λ1 := c1(E) 6= 0.

2.3.1 Satake Compactification

A natural question that arises is whether the determinant of the Hodge

bundle detE is ample on Ag and its level covers. Note that ampleness of pull

backs of line bundles is preserved under finite morphisms. Indeed this turns

out to be the case and can be seen from the following theorem

Theorem 2.3.9. [21] The map Thm : Ag(4, 8) → P2g−1(2g−1)−1 given by

Thm(τ) := [θm(0, τ)]m∈(Z/2Z)2geven
is an embedding

Corollary 2.3.10. The line bundle detE is very ample on Ag(4, 8) and thus

detE is ample on Ag

The above statement is a corollary because the positivity of curvature of

a line bundle is preserved under pullbacks of finite maps, hence ampleness is

preserved
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Definition 2.3.11. The compactification ofAg induced from the linear system

| detE|k is called the Satake-Baily-Borel compactification, Asatg .

The set theoretic description of Asatg is given by

Asatg = Ag t Ag−1 t Ag−2 . . . ....A0 = pt

The boundary of Asatg i.e. Asatg \ Ag is contained inside the singular locus

of Asatg and is highly singular and is of codimension g.

We describe a partial compactification of Ag, i.e. A∗g = Ag t Ag−1

2.4 Jacobians and Riemann singularity theo-

rem

One of the earliest studied examples of principally polarized abelian vari-

eties were the Jacobians of smooth curves. We discuss this example and the

associated principal polarizations and their connection to the geometry of the

underlying curve. The material here is by and large obtained from [16] and

[28].

Definition 2.4.1. Given a smooth curve C of genus g, the Jacobian of a curve

is the group of invertible sheaves of degree 0 on the curve.

Definition 2.4.2. Given a smooth curve C of genus g, a divisor D on C is an

element of the free abelian group generated by the points of X, thus a divisor

D can be represented as D =
∑

p∈C npp where np ∈ Z and np = 0 for all but

finitely many points p ∈ C. In particular a divisor of degree k on C is a divisor
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D =
∑l

i=1 nipi with
∑
ni = k. If ni ≥ 0 we say that the divisor D is effective

on C. The support of a divisor D =
∑

p∈C npp on C is defined to be the set

of points p ∈ C where np 6= 0.

Definition 2.4.3. Let f : C1 → C2 be a finite morphism between smooth

curves C1 and C2, if D is a divisor of the form D =
∑k

i=1 nipi then f ∗(D) =∑k
i=1 nif

∗(p), where f ∗(p) =
∑

q∈f−1({p}) multf (q). where multf (q) is the de-

gree of the ramification of f at q.

Definition 2.4.4. Two effective divisors D1 and D2 are called linearly equiv-

alent if there exists a morphism f : C → P1 such that f ∗(0) + S = D1 and

f ∗(∞) + S = D2 for some effective divisor S in C.

The major theorem we wish to prove is the following

Theorem 2.4.5. The Jacobian of a smooth curve C of genus g, denoted

Pic0(C) can be endowed with the structure of a principally polarized abelian

variety.

Remark 2.4.6. We will denote the set of invertible sheaves of degree k by

Pick(C). The endowment of the structure of a ppav above arises as there

is a natural polarization on the torsor Picg−1(C) of Pic0(C) and as they are

isomorphic as varieties, the chosen isomorphism gives a polarization on Pic0(C)

as well.

To prove the above theorem we first give a well known analytic description

of the Jacobian by recalling some standard facts regarding curves.

Fact 2.4.7. Given a closed oriented surface of genus g (C, p) we can view it as

a closed orientable surface and we can choose a standard set of representatives
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of π1(C, p) given by {a1, . . . ag, b1 . . . bg}, i.e. closed loops around p such that

we can cut C along the ai and bj to construct a 4g sided polygon P with sides

being identified with ai and bj and a−1
i and b−1

j .

Fact 2.4.8. Since C is an oriented closed surface of genus g the homology

H1(C,Z) has a symplectic basis {a1, a2, . . . ag, b1, b2, . . . bg} such that ai · aj =

bi · bj = 0 and ai · bj = −bj · ai = δij, where δij is the Krönecker delta. The

symplectic basis can be thought of as the representatives of the loops {ai, bi}gi=1

given above as standard generators of π1(C, p) viewed in H1(C,Z)

Fact 2.4.9. The following duality H1,0(C,C) = H0,1(C,C)∗ holds and it arises

from the non degeneracy of the mapping H1,0(C,C) × H0,1(C,C) → C given

by
∫
C
α ∧ β.

Fact 2.4.10. We also recall that the space of holomorphic one forms on C is

a g-dimensional vector space H0(C,Ω1
C) that can be identified with H1,0(C,C),

while for the de Rham cohomology we have H1(C,C) = H1,0(C,C)⊕H0,1(C,C)

with H0,1(C,C) = H1,0(C,C) = H0,1(C,C)∗.

The long exact sequence associated to the exponential sheaf sequence 0→

Z → OC → O∗C → 0 leads to the natural inclusion H1(C,Z) ↪→ H1(C,OC),

since Serre duality tells us that H1(C,OC) = H0(C,Ω1
C)∗, we can naturally

identify H1(C,OC) with H0,1(C,C). We recall that H1(C,Z) = H1(C,Z)∗ if C

is a smooth curve of genus g. Furthermore We can say that given an integral

symplectic basis {a1, a2 . . . ag, b1, . . . bg} of H1(C,Z), the inclusion H1(C,Z) ↪→

H1(C,OC) tells us that we can choose a basis {ω1 . . . ωg} of H0,1(C,C) such

that
∫
ai
ωj = δij. This is seen to be the case because the dual integral basis to

the linearly independent set {ai}gi=1 ⊂ H1(C,Z) given by {δi}gi=1 ⊂ H1(C,Z)
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can be interpreted as complex vector space basis for H0,1(C,C), due to the

inclusion H1(C,Z) ↪→ H0,1(C,C) as a rank 2g lattice inside a g dimensional

complex vector space. Thus we can identify δi ∈ H1(C,Z) = H1(C,Z)∗ as

one forms ωi ∈ H0,1(C,C) such that
∫
ai
ωj = δij. Now if {ωi}gi=1 is a complex

vector basis for H0,1(C,C) then it’s conjugate elements ωi ∈ H1,0(C,C) give

us a basis for H1,0(C,C), such that
∫
ai
ωj = δij.

We call the matrix τ = [
∫
bi
ωj] for the choice of ωj dual to the a′is as above

the period matrix of C.

Remark 2.4.11. Observe that the period matrix τ for the curve C depends

upon the choice of symplectic basis for H1(C,Z)

Theorem 2.4.12. Given p1, p2 ∈ C the g tuple (
∫ p2
p1
ω1, . . .

∫ p2
p1
ωg) is well

defined on Cg/Zg + τZg for our choice of ωi’s as chosen above and where τ is

the period matrix of C.

Proof. The statement of the theorem is true because if we choose two paths

γi : [0, 1] → C, i = 1, 2 such that γi(0) = p1 and γi(1) = p2, then the

concatenation of γ1(t) and γ2(1−t) given by γ is a closed loop in C hence
∫
γ
ω =∫

γ1
ω−

∫
γ2
ω for any ω ∈ H1,0(C,C), but since γ is a closed path in C it can be

identified with an element ofH1(C,Z) and thus γ =
∑g

i=1(αiai+βibi), therefore∫
γ
ω =

∑g
i=1(αi

∫
ai
ω + βi

∫
bi
ω) for αi, βi ∈ Z, since

∫
ai
ωj = δij and

∫
bi
ωj =

τij, we see that (
∫
γ1
ω1, . . .

∫
γ1
ωg) − (

∫
γ2
ω1, . . .

∫
γ2
ωg) = (

∑g
j=1(αj

∫
aj
ω1 +

βj
∫
bj
ω1), . . .

∑g
j=1(αj

∫
aj
ωg + βj

∫
bj
ωg) ∈ Zg + τZg

Definition 2.4.13. Let Divk(C) denote the set of effective divisors of degree k

on C. Given p ∈ C and denoting τ the period matrix constructed above, we de-
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fine µk : Divk(C)→ Cg/Zg+τZg by µk(
∑k

i=1 pi) = (
∑k

i=1

∫ pi
p
ω1, . . .

∑k
i=1

∫ pi
p
ωg),

and denote Wk := µk(Dk) its image.

We state Abel’s Theorem which will allow us to prove Theorem 2.4.5.

Theorem 2.4.14. (Abel’s Theorem) Two effective divisors D1, D2 ∈ Divk(C),

they are linearly equivalent if and only if µk(D1) = µk(D2).

We also state Jacobi Inversion theorem that states that µk is surjective for

k ≥ g.

Theorem 2.4.15. (Jacobi Inversion) The map µk : Divk(C)→ Cg/Zg + τZg

is surjective for k ≥ g.

Riemann Roch tells us that for k >> 0 and a divisor D of degree k(not

necessarily effective), h0(C,OC(D)) > 0., thus every element of Pick(C) can be

expressed as OC(D) for D being an effective divisor, thus the above discussion

gives us the following theorem.

Theorem 2.4.16. There is an isomorphism between f : Pick(C)→ Cg/Zg +

τZg where the isomorphism is given by f(OC(D)) = µk(D) for an effective

divisor D of degree k >> 0

There is an isomorphism between Pick(C) and Pic0(C), this can be seen

by tensoring any invertible sheaf L ∈ Pic0(C) with OC(k.p) for p ∈ C.

Thus if we manage to prove that τ = τ t and Im(τ) > 0 we will have

managed to prove Theorem 2.4.5. Before proving Theorem 2.4.5 we recall a

standard construction from Surface topology and state a lemma that will be

useful to us in our proof of Theorem 2.4.5
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Remark 2.4.17. Given a closed C∞ 1-form α on our smooth curve C we will

abuse notation and call q∗(α) as α on P for the natural quotient q : P → C

and since α is exact on P we will denote by fα(x) the integral
∫ x
p
α for a choice

of a base point p in the interior of P .

Lemma 2.4.18. Let α and β be closed C∞ one forms on C, then
∫
∂P fαβ =∑g

i=1

∫
ai
α
∫
bi
β −

∫
ai
β
∫
bi
α where ∂P can be viewed as a cycle of the form∑g

i=1 ai + bi + a−1
i + b−1

i

Proof. Let x ∈ ai be identified with x′ ∈ a−1
i , and let σx be a path between

x and x′ in P , then fα(x) − fα(x′) =
∫ x
p
α −

∫ x′
p
α = −

∫
σx
α, since integrals

of α are zero around closed paths. Now on C the path σx is homotopic to bi,

therefore since α is a closed form we end up with fα(x) − fα(x′) = −
∫
bi
α.

We can similarly show that for a point y ∈ bi and the corresponding y′ ∈ b−1
i ,

fα(y)− fα(y′) =
∫
ai
α. Note that for any one form α we have

∫
ai−1 α = −

∫
ai
α

and
∫
bi
−1 α = −

∫
bi
α, finally note that β is a one form on C thus, the values

of β along ai and a−1
i

−1
are the same. Based on this we see that

∫
∂P
fαβ =∑g

i=1(
∫
ai

+
∫
ai−1 +

∫
bi

+
∫
bi
−1)fαβ =

∑g
i=1(
∫
x∈ai [fα(x)−fα(x′)]β+

∫
y∈bi [fα(y)−

fα(y)]β =
∑g

i=1(
∫
x∈ai [

∫
bi
α]β =

∑g
i=1

∫
ai
α
∫
bi
β −

∫
ai
β
∫
bi
α.

Proof. (Proof of Theorem 2.4.5) We will view our smooth curve C of genus

g as a quotient of a polygon P as above and choose a basis of H0(C,Ω1
C) as

above. Thus we have Pic0(C) ' Cg/Zg+τZg and if we manage to prove τ = τ t

and Im(τ) > 0, then we are done.With the established notation Lemma 2.4.18

gives us the following
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g∑
i=1

∫
ai

ωk

∫
bi

ωj −
∫
ai

ωj

∫
bi

ωk =

∫
P
ωk ∧ ωj =

∫
C

ωk ∧ ωj = 0. (2.4.1)

Plugging in τij =
∫
bi
ωj and

∫
ai
ωj = δij we see that τ = τ t.

Similarly if we choose ω ∈ H0(C,Ω1
C) as ω =

∑g
i=1 ciωi 6= 0. Then we

know that −i
∫
C
ω ∧ ω > 0. Thus using Lemma 2.4.18 again we end up with

the identity
∫
C
ω ∧ ω =

∑
i,j cicj(

∫
bi
ωj −

∫
bi
ωj). This is precisely saying that

Im(τ) > 0.

2.4.1 Riemann Singularity Theorem

We wish to relate the subvariety Wg−1 ⊂ Pic0(C) = Cg/Zg + τZg with τ

defined as above, with the theta divisor Θτ ⊂ Cg/Zg+τZg thought of explicitly

as the zero locus of the theta function. Before doing so, let us denote byOC(D)

the invertible sheaf associated to a divisor D on C, we now state a theorem

that tells us something about h0(C,OC(D)) for a generic effective divisor D

of degree k.

We first state a result that is a simple corollary of the Riemann Roch

Theorem

Fact 2.4.19. Let D be a generic effective divisor of degree k ≤ g − 1 on C

then h0(C,OC(D)) = 1.

Corollary 2.4.20. The subvariety Wk ⊂ Pic0(C) is a subvariety of dimension

k for k ≤ g − 1 in particular Wg−1 is a divisor of Pic0(C).
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It turns out that Wg−1 is the divisor in Pic0(C) whose associate Chern class

is the principal polarization:

Theorem 2.4.21. (Riemann’s theorem) If Pic0(C) = Cg/Zg + τZg then there

exists κ such that Wg−1 = Θ + κ, where κ = µ(L) such that L⊗2 = KC.

Remark 2.4.22. The half canonical line bundles L obtained above depends

on our choice of p

Riemann’s theorem and the map µg−1 : Divg−1(C) → Wg−1 allow us to

specifically relate the singularities of the Theta function θm(z, τ) to the di-

mension of the space of sections of line bundles.

Theorem 2.4.23. The multiplicity of a point µg−1(D) on Wg−1 is h0(C,OC(D)).

Recall that θm(z, τ) is even if and only if m is even(2.2.13) then using 2.4.21

and 2.4.23 we obtain the following corollary

Corollary 2.4.24. If Pic0(C) = Cg/Zg + τZg then θm(0, τ) = 0 for even

m implies that there an invertible sheaf L on C such that L⊗2 = KC and

h0(C,L) ≥ 2 and h0(C,L) ≡ 0 mod 2.

2.5 Torelli theorem and the moduli of curves

In the previous section we observed that to any smooth curve C of genus

g we associated the principally polarized abelian variety (Pic0(C),Wg−1). A

fundamental question that arises is the following, if the jacobians of two curves

are isomorphic as ppav, is it necessarily true that the curves are isomorphic.

This is indeed the case and is shown in
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Theorem 2.5.1 (Torelli theorem). If (Pic0(C), [Wg−1]) ' (Pic0(C ′), [W ′
g−1]),

as ppav then C ' C ′.

Based on the above theorem we can define the coarse moduli space of curves

Mg as follows

Definition 2.5.2. The coarse moduli space of smooth curves of genus g Mg

can be defined as the subsetMg ⊂ Ag whose points correspond to principally

polarized abelian varieties that are jacobians of curves

We denote the moduli space of smooth curves of genus g with n ordered

marked distinct points by Mg,n

Remark 2.5.3. The moduli space of curves can be constructed independently

using Geometric Invariant Theory or via Teichmuller theory. Just like the

moduli space of ppav the moduli of smooth curves of genus g,Mg when viewed

as a fine moduli space is not a scheme but a Deligne Mumford stack, but the

associated coarse moduli space is a scheme. We won’t distinguish between

them unless we explicitly need to. In reality 2.5.1 gives a 2 : 1 morphism

J :Mg → Ag of fine moduli stacks ramified along the hyperelliptic locus

A well known modular compactification that was constructed forMg is the

Deligne Mumford compactification ofMg, denoted byMg. The advantage of

the Deligne Mumford Compactification is that it is a divisorial compactifica-

tion ofMg, i.e. it’s boundary components are of codimension one and it has an

interpretation as a moduli space of stable curves, more precisely the points of

Mg \Mg correspond parameterize isomorphism classes of stable nodal curves.
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Remark 2.5.4. The word stable nodal curves means curves that have finitely

many automorphisms and the only singularities they can have are nodes, i.e.

singularities of the form xy = 0.

In factMg \Mg is a reducible divisor with
⌊
g
2

⌋
+ 1 divisorial components,

denoted by δ0, δ2, ..... δb g2c. The generic point of δ0 corresponds to an irre-

ducible nodal curve of arithmetic genus g with a single node as a singularity.

While as the generic point of δi corresponds to a reducible curve of arithmetic

genus g with the irreducible components of the curve being smooth of genus

g and genus g − i and the intersection point of the two curves corresponds to

a nodal singularity.

More precisely a generic point [C] ∈ δi has a description given by [C] =

Ci t Cg−i/p ∼ q with p ∈ Ci and q ∈ Cg−i and p or equivalently q is a nodal

singularity on C where g(Ci) = g and g(Cg−i) = g − i.

For our purposes we will be working with a Zariski open subset of Mg

given by Mct
g =Mg \ δ0 called the moduli space of curves of compact type.

The reason we will be working with this space is because the Torelli em-

bedding J :Mg → Ag extends as a morphism J :Mct
g → Ag. Observe that

we specifically mention the word morphism, because the Torelli embedding is

no longer an embedding once extended to Mct
g .

To understand how the Torelli morphism extends toMct
g consider a generic

point of δi given by [C] where C = Ci t Cg−i/p ∼ q, with Ci being a curve of

genus i and Cg−i being a curve of genus g − i. It can be shown [] this is easy,

maybe explain why in the analytic picture where the holomorphic differentials

live on one of the two components that the image of [C] under the extended
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Torelli morphism is Pic0(Ci)× Pic0(Cg−i).

Observe that under the image of the Torelli morphism the point of attach-

ment p ∈ Ci is forgotten, indeed the fiber J−1([C]) = Ci × Cg−i. On a global

level, the statement changes to J−1(Mi ×Mg−i) =Mi,1 ×Mg−i,1.

2.6 Tautological Ring and Grothendieck Rie-

mann Roch Theorem

We now study a subring of the rational chow ring CH∗Q(Ag) called the

tautological ring and a corresponding subring of the rational chow ring of the

partial compactification A∗g = Ag t Ag−1 ⊂ Asatg .

Definition 2.6.1. The tautological ring R∗Q(Ag) ⊂ CH∗Q(Ag) is the ring gen-

erated by the Chern classes λk := ck(E) of the Hodge bundle

We denote by RH∗(Ag,Q) the image of the tautological ring in the coho-

mology ring H∗(Ag,Q) and indicate the relations that the λ classes satisfy.

These relations were proven in [34] and [8]

Theorem 2.6.2. The image of the tautological ring RH∗(Ag,Q) in the coho-

mology ring of Ag is described as follows

RH∗(Ag,Q) = Q[λ1, λ2, . . . λg]/((?), λg = 0),

where the relation (?) is

(?)(1 + λ1 + λ2 . . .+ λg)(1− λ1 + λ2 . . .+ (−1)gλg) = 1.
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Remark 2.6.3. The above discussion just gives us with the relation c(E)c(E∗) =

1 ∈ H∗(Ag,Q) The relation c(E)c(E∗) = 1 holds in the chow ring as well, we

will discuss this relation in the chow ring below in a later subsection.

We indicate an outline of the proof of relation (?) in cohomology first and

then later in Chow after introducing the Grothendieck Riemann Roch theorem.

Indeed, the tautological relation can be interpreted as the following relation

between the Chern classes of vector bundles

c(E)c(E∗) = 1

where c(V ) denotes the total Chern class of a vector bundle V . To prove this

relation, we notice that E ⊕ E∗ is a local system, i.e a vector bundle with a

flat connection

The Hodge bundle can stalk wise be naturally identified as H0,1(Aτ ,C)

for [τ ] ∈ Ag and the existence of a principal polarization ω ∈ H1,1(Aτ , τ) ∩

H2(Aτ ,Z) on our abelian variety Aτ allows us to identify H1,0(Aτ ,C) with

H0,1(Aτ ,C)∗. This is the case because the pairing defined by Q : H1,0(Aτ ,C)⊗

H0,1(Aτ ,C)→ C by Q(α, β) =
∫
Aτ
α∧ β ∧ ωg−2 is non degenerate []. The non

degeneracy follows from numerical criteria of ampleness of ω.

We know that H1,0(Aτ ,C) ⊕ H0,1(Aτ ,C) ' H1(Aτ ,C) by the Hodge de-

composition. At a global level this just says that E ⊕ E∗ is isomorphic to

the local system R1
π∗(C) where π denotes the universal family π : Xg → Ag.

This local system in particular is a flat vector bundle corresponding to the

tautological representation of the orbifold fundamental group of Ag given by

Sp(2g,Z). Thus we see that c(E)c(E∗) = 1 ∈ H∗(Ag,Q).
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Theorem 2.6.4. [34] The tautological ting of Ag, R∗Q(Ag) ⊂ CH∗Q(Ag) is

described as Q[λ1, λ1, ...λg]/((1 + λ1 + λ2....λg)(1 − λ1 + λ2 − λ3...(−1)gλg) =

1, λg = 0).

If one works over the partial compactificationA∗g, the Hodge bundle extends

as a coherent sheaf on A∗g and the following result is known.

Theorem 2.6.5. [34] The Tautological ring of A∗g described by the subring of

the chow ring of Ag is generated by the classes λi is described as Q[λ1, λ2, ....λg]/((1+

λ1 + λ2....λg)(1− λ1 + λ2 − λ3...(−1)gλg) = 1)

We now indicate the main ideas of the proof of relation (?) in the chow

ring which is really the Grothendieck Riemann Roch theorem, We recall this

theorem now and give some introductory definitions before stating the theorem

and reproducing the proof of (?) from [34]

2.6.1 Grothendieck Riemann Roch Theorem

Definition 2.6.6. [14] Let X denote a smooth quasi projective variety and let

Coh(X)/ ∼ denote the monoid of coherent sheaves on X with the following

relation [A] + [C] ∼ [B] where A,B,C are coherent sheaves on X and 0 →

A → B → C → 0 is an exact sequence of OX modules. The Grothendieck

group of bounded complexes of coherent sheaves on X, K0(X) is the group

associated to the monoid given by Coh(X)/ ∼

Definition 2.6.7. Let f : X [n] → Y [m] denote a proper morphism between

smooth quasi projective varieties X and Y . We define a group homomorphism

f! : K0(X)→ K0(Y ) as f! =
∑

(−1)iRif∗.
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Definition 2.6.8. The Chern character on a quasi projective variety X is a

homomorphism Ch : K0(X)→ A(X) satisfying the following conditions

• For a line bundle L on X, Ch(L) = ec1(L)

• For a vector bundle V =
⊕n

i=1 Li written as a direct sum of line bundles,

with Ch(
⊕n

i=1 Li) =
∑n

i=1Ch(Li)

• For two vector bundles V and W on X, Ch(V ⊗W ) = Ch(V )Ch(W )

• for a morphism f : Y → X of quasi projective varieties X and Y , the

following functorial property holds f ∗(Ch(V )) = Ch(f ∗(V ))

Definition 2.6.9. The Todd class Td on a quasi projective variety X is a mul-

tiplicative homomorphism Td : K0(X)→ A(X) characterized by the following

properties

• For a line bundle L, with c1(L) = x the Todd class Td(L) = x
1−e−x

• For a vector bundle V =
⊕n

i=1 Li, the Todd class of V given by Td(V ) =∏n
i=1 Td(Li)

We now state the Grothendieck-Riemann-Roch theorem

Theorem 2.6.10. [14] Let f : X → Y denote a proper morphism between

smooth quasi projective schemes and let Tf denote the relative tangent sheaf of

f , then for an element F ∈ K0(X) then the following formula holds in K0(Y )

Ch(f!F) = f∗(Ch(F)Td(Tf ))
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Remark 2.6.11. It should be mentioned that the universal family Xg and

Ag are Deligne Mumford stacks and their associated coarse moduli spaces

are singular but by the work of Mumford et. al [] we can treat them as

smooth varieties and can apply GRR to π : Xg → Ag, without worrying about

the stackiness. For the purposes of the proof of theorem 2.6.4 we will view

Ag as a stack defined over SpecZ, the advantage of this viewpoint for our

purposes is that CH∗Q(Ag ×SpecZ SpecFp) ' CH∗Q(Ag) ×SpecZ SpecC. This

allows us to move back and forth between sub varieties of Ag defined over

positive characteristics and characteristic 0.

2.6.2 Outline of Proof of Theorem 6.4

Recall that we have to prove relations (?) and λg = 0 in the Chow ring,

and then establish that there are no further relations.

Proof of relation (?) in the Chow ring, following van der Geer’s

original work [34]

Let π : Xg → Ag denote the universal family over Ag. We Recall that

ΩXg/Ag ' π∗(E) and consider the line bundle L corresponding to the universal

Θ divisor on Xg.

We apply Grothendieck Riemann Roch to π : Xg → Ag and L = O(Θ)

which gives us

Ch(π!L) = π∗(Ch(L)Td((π∗E)∗))

Now it is known that Ri
π∗(L) = 0 []. Thus π!(L) is a line bundle as L
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represents the principal polarization on the universal abelian variety. If we

denote c1(π!(L)) = θ. The above expression by the defining property of Ch of

a line bundle equates to.

∞∑
k=0

θk

k!
= π∗(

∞∑
k=0

Θg+k

(g + k)!
)Td(E∗)

Comparison of the terms of degree 1 give us that

θ = −λ1/2 + π∗(
Θg+1

(g + 1)!
)

Now if instead of using L on Xg we use Ln. It can be shown in [] that

Ch(π!(L
n)) = ngCh(π!(L))[]. This can be seen because of the fact that π!(L

n)

is a numerical function of degree ng, at the level of stalks, for a ppav Aτ ,

H0(Aτ , L
n) = ng, this follows from the fact that if a polarization c1(M) is of

the form

 0 ∆

−∆ 0

 then H0(Aτ ,M) = det(∆) . Applying GRR we end up

with the identity

ng
∞∑
k=0

θk

k!
= π∗(

∞∑
k=0

ng+kΘg+k

(g + k)!
).Td(E∗)

Comparing coefficients of powers of n we see π∗(
∑∞

k=0
Θg+k

(g+k)!
) = 1. This implies

that 2.6.2 gives us the relation

2θ = −λ1
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Further if we simplify 2.6.2 by rewriting Td(E∗) in terms of λ classes, we end

up with Td(E ⊕ E∗) = 1 ??. which by the general theory of characteristic

classes [34] imply that c(E)c(E∗) = 1 thus proving relation (?).

Proof of the relation λg = 0

We now indicate the proof of the relation λg = 0, which in fact is also

obtained by applying GRR, this time to the structure sheaf OXg obtaining

Ch(π!(OXg)) = π∗(Ch(OXg).Td(Ω∗1)) = π∗(1)Td(E∗) (2.6.1)

Now for a vector bundle B of rank n on a variety X we have the following

relation in general
∑n

i=0(−1)i ∧i B∗ = cn(B)Td(B)−1 [34]. as follows easily

from some of the defining properties of Td.

This gives the relation Ch(
∑g

i=0(−1)i ∧i E∗) = cg(E)Td(E)−1 = 0. Since

cg(E) = λg ∈ CH∗Q(E) and since Td(E∗) = Td(E)−1, we see that cg(E) =

π∗(1) = 0.

Proof that there are no further relations in R∗Q(Ag)

We first introduce the graded ring Rg := Q[u1, u2, u3...ug]/((1+u1 +u2...+

ug)(1−u1+u2+...(−1)gug) = 1), with the grading defined by deg uk = k. It can

be shown [8][36] that Rg is a gorenstein ring with socle in degree g(g + 1)/2.

This is the case because
∏
ueii is an additive basis for Rg.

It was shown in Ekedahl and Oort [] that Ag×SpecZ SpecFp has a complete

subvariety of dimension g(g−1)
2

. This results in the fact that λ
g(g−1)/2
1 6= 0. Now

the fact that λg = 0 ∈ CH∗Q(Ag) along with relation (?) tells us that there is
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a natural homomorphism from Rg−1 → R∗Q(Ag) and the fact that λ
g/(g−1)/2
1

coupled with the fact that Rg−1 is gorenstein tells us that the Rg−1 ' R∗Q(Ag).
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Chapter 3

Affine Covers and Stratifications

We study the notion of affine covers and stratifications on Ag andMg and

recall some constructions of stratifications on these spaces and prove Theorem

1.0.1. We also discuss how the study of the tautological ring of Ag and Mg

are related to these stratifications in general.

3.1 Stratifications and Complete Subvarieties

of Mg

Before discussing stratifications and the cohomological dimension of Ag we

give a brief survey on the affine covers and affine stratifications ofMg and the

tautological ring that serves as motivation for our work.

It can be shown that Mg for g ≥ 3 is not affine, as we can construct

a complete curve inside it. To construct such a curve, denote Msat
g the

closure of Mg ⊂ Asatg , which is a projective variety. Further note that

codim(Msat
g \ Mg) ⊂ Msat

g = 2. This is seen to be the case because there
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is a morphism J sat : Mg → Msat
g . For a generic point of δi, i > 0 given by

[C] = [Ci t Cg−i/p ∼ q] where Ci and Cg−i are smooth curves of genus i and

g− i respectively, we have J sat[C] = Pic0(Ci)×Pic0(Cg−i). Thus the fibers of

the morphism of J sat restricted to the generic point of δi are of dimension 2.

For i = 0, the generic point of δ0 is identified with [C, p, q]/ where the geomet-

ric genus g(C) = g−1 and there is a nodal singularity at p ∼ q on the quotient.

In this case the generic point [C, p, q] is mapped to Pic0(C) ∈ Asatg \Ag. Thus

the fibers of the morphism of J sat restricted to δ0 also has fibers of dimension

2.

Thus if we choose sufficiently general very ample divisors on Msat
g , we

can construct a complete curve inside Mg that does not intersect the bound-

ary. More precisely we choose general very ample divisors Di on Msat
g for

i = 1 . . . 3g − 4 such that ∩ki=1Di intersects Msat
g \ Mg in a subscheme of

codimension k. Thus we end up with ∩3g−4
i=1 Di ∩Msat

g \ Mg = ∅. But since

dim(Mg) = 3g − 3 we get that ∩3g−4
i=1 Di ∩Msat

g = ∩3g−4
i=1 Di ∩Mg 6= ∅. Thus

we can find a complete curve inside ∩3g−4
i=1 Di ∩Mg.

We note that Mg is known not to be projective, as it is not compact, and

it is natural to ask what is the maximal dimension of a complete subvariety,

we mention Diaz’s Theorem in this context.

Theorem 3.1.1. The dimension of any complete subvariety in Mg is less

than or equal to g − 2.

The motivation for Diaz’s theorem arises from the Weierstrass stratification

on Mg indicated by Arbarello[2]. Arbarello had conjectured that the stratifi-

cation was affine. It was recently proven by Arbarello and Mondello that the
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stratification is almost never affine [2], while Krichever recently proved that

the strata in fact do not contain complete curves [26] which implies the Diaz

theorem above.

Definition 3.1.2. The Weierstrass stratification on Mg is defined as

Mg = Wg ⊃ Wg−1.... ⊃ Wk... ⊃ W2

where Wα := {[C] ∈Mg | ∃p ∈ C, h0(C, αp) ≥ 2}.

The idea was to prove that Wk \ Wk−1 could not contain any complete

curves. If one exhibits such a stratification then any complete subvariety of

Mg of dimension d would intersect Wk in a complete subvariety of dimension

d−k+ 1 and thus intersect W2 in a subvariety of dimension at most d− g+ 2,

if we prove that W2 does not contain any complete curves, we would be done.

A simpler way of understanding the strata is by looking at curves that

admit a map to P1 that is completely ramified at p. One sees from the definition

of the Weierstrass stratification that W2 is just the hyperelliptic locus inMg.

It was further known that Wk is of codimension g − k in Mg and moreover

that Wk is irreducible and closed.

Before the work of Krichever on Arbarello’s conjecture, Diaz constructed

an alternative stratification ofMg, and showed that its strata did not contain

complete curves. Diaz considered the stratification of Mg by Mg = Dg ⊃

Dg−1 ⊃ .... ⊃ D2 where Dk consists of those curves C of genus g such that

there is a rational morphism π : C → P1 with #π−1 {0,∞} ≤ k. Diaz then

showed that for any k Dk \Dk−1 contains no complete curves It is then shown

that the stratification Dk \ Dk−1 does not contain complete curves. It is not
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known if Dk \Dk−1 are affine, but it is known that Dk is of pure codimension

k. Using this stratification Diaz proved his theorem

One does however know that W2 is affine, i.e. that the hyperelliptic locus

Hypg ⊂ Mg is affine. We indicate the proof below, as it will be needed for

some of the things we do in what follows.

Theorem 3.1.3 ([25]). The hyperelliptic locus or the moduli of hyperelliptic

curves Hypg ⊂Mg is affine.

Proof. Indeed, hyperelliptic curves of genus g are double covers of P1 branched

along 2g + 2 distinct points on P1. Thus a hyperelliptic curve is determined

by a choice of 2g+ 2 points on P1 up to an action of Aut(P1). Thus Hypg can

be naturally identified with a finite group quotient of M0,2g+2, here M0,2g+2

denotes the moduli space of ordered 2g + 2 points on P1. The space M0,2g+2

is known to be affine. This can be seen to be the case because it is a finite

quotient of (P1\{0, 1,∞})2g−1\∆ where ∆ is the union of all the big diagonals,

i.e. where two or more coordinates coincide in (P1 \ {0, 1,∞})2g−1.

3.2 Tautological Ring of Mg

One of the active areas of research has been understanding the cohomology

and Chow rings of Mg. The first result in this direction is

Theorem 3.2.1. [18] The rational Picard group PicQ(Mg) = Qλ.

The Chow ring and the cohomology of Mg is not known for all g and its

theory is quite complicated in general. That is why we study a subring of the

Chow ring of Mg called the tautological ring. The tautological ring of Mg is
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related to the tautological ring of Ag by the Torelli morphism, i.e. the pull-

backs of tautological classes by the Torelli morphism end up giving tautological

classes in the new ring, but the pullback homomorphism is not surjective for

g ≥ 6.

Definition 3.2.2. Let π :Mg,1 →Mg, denote the universal family overMg,

i.e. that sends π([C, p]) → [C] for C ∈ Mg and p ∈ C and now consider the

relative sheaf of differentials given by ωπ = Ω1
Mg,1/Mg

. Let ψ := c1(ωπ). The

kappa classes are defined as κn−1 := π∗(ψ
n) ∈ CHn−1(Mg).

Definition 3.2.3. The tautological ring of Mg, denoted R∗Q(Mg), is defined

to be the subring of the Chow ring generated by the kappa classes, i.e. R∗ :=

Q[κ1, κ2, ....κ3g−3].

Recall that the tautological ring R∗(Ag) was defined as the ring generated

by the Chern classes of the Hodge bundle E. Also recall that the Hodge bundle

was stalk wise seen to be H0(Aτ ,Ω
1) on [Aτ ] ∈ Ag. If Aτ is the jacobian of

a smooth curve C of genus g then construction of Pic0(C) allows us to view

H0(Aτ ,Ω
1) ' H0(C, ωC). Now we consider the pullback J : R∗Q(Ag) →

CH∗Q(Mg) with respect to the Torelli map. Thus we can consider the lambda

classes, i.e. the Chern classes of the Hodge bundle, in the Chow ring of Mg.

We also observe that if π :Mg,1 →Mg is the universal family, then π∗(ωπ) =

E|Mg . This suggests that we could apply the Grothendieck Riemann Roch

Theorem for π, and indeed this yields the following result of Mumford.

Theorem 3.2.4. If J : Mg → Ag denotes the Torelli embedding, then

J ∗(R∗Q(Ag)) ⊂ R∗Q(Mg).
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Proof. If we manage to prove that the restriction of λ classes to Mg can be

rewritten as polynomials in kappa classes we are done. For this purpose we

apply the Grothendieck Riemann Roch Theorem to π : Mg,1 → Mg and

the invertible sheaf ωπ i.e. sheaf of relative differentials with respect to π.

We observe that R0π∗(ωπ) = E and R1π∗(ωπ) = OMg . Thus Grothendieck

Riemann Roch gives us the following equality

ch(E−OMg) = π∗(e
ψ −ψ

1− eψ
).

On the left hand side we end up with g − 1 + p(λ1, λ2, . . . λg), on the right

hand side we end up with a polynomial in the kappa classes. and moreover

one can see that the k’th graded piece of p(λ1 . . . λg) will be a polynomial of

the form cλk + qk(λ1 . . . λg−1) where qk(λ1, . . . λg−1) ∈ Rk
Q(Mg) and c ∈ Q is

non-zero. Thus by induction one can see that the λ classes can be expressed

as polynomials in the kappa classes.

The inclusion is in fact an equality for g ≤ 5, for g ≥ 6, it is a proper

inclusion, i.e. all kappa classes cannot be expressed as lambda classes [11]. In

fact the recent work of Vakil-Penev [31] shows that CH∗Q(Mg) = R∗Q(Mg) for

g ≤ 6.

Unlike the case of the tautological ring of the moduli space of ppav, the

relations defining R∗Q(Mg) for all g are the current subject of intensive re-

search. There is a conjectural description of the tautological ring due to Faber

[10], where some of the conjectures have been proven. We state two of these

conjectures.

Conjecture 3.2.5. a. R∗(Mg) is a Gorenstein ring with socle in dimen-
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sion g − 2. i.e. Rg−2
Q (Mg) ' Q and there is a perfect pairing Rk

Q(Mg) ×

Rg−2−k
Q (Mg)→ Rg−2

Q (Mg).

b. The first
⌊
g
3

⌋
kappa classes

{
κ1, κ2....κb g3c

}
generate the ring with no

relations in degrees ≤
⌊
g
3

⌋
Theorem 3.2.6. 1. (Looijenga) It is known that Rg−2(Mg) = Qλg−2

1 with

λg−2
1 6= 0 and Ri(Mg) = 0 for i > g − 2

2. Part b of the above conjecture is true when the tautological classes are

viewed in cohomology instead of the Chow ring.

The one-dimensionality is a combination of the work of Looijenga[27], who

showed dimQ(Rg−2
Q (Mg)) ≤ 1, and the work of Faber, who showed non-

vanishing [9]. The vanishing in degree higher than g − 2 is due to Looijenga

[27].

The perfect pairing part of the conjecture is still open, in fact it is doubtful

if the conjecture holds because of the failure of the modifications of the con-

jecture for compactifications of Mg. The second part of the Theorem is the

culmination of the work of various topologists [30]

The theorem of Diaz follows easily from the vanishing statement above.

Indeed, if X is a complete subvariety of Mg of dimension k, then since λ1 is

ample on Mg (as the pullback of an ample line bundle from Ag), we must

have λk1 · [X] > 0. But λk1 = 0 for k > g− 2 by Loojienga’s Theorem, and thus

we must have k ≤ g − 2.

One of the primary reasons for people’s interest in the tautological ring

is that geometrically meaningful loci in Mg such as Brill Noether loci are

tautological [11].
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3.3 Affine covers, affine stratifications and co-

homological dimension

Given a quasi projective variety X, a fundamental question which one

wishes to ask is how far it is from being projective. To make the statement

precise we introduce the notions of affine covering number acn, affine stratifi-

cation number asn and the cohomological dimension cd of a variety X. The

results below are due to Vakil and Roth and are discussed in detail in [32].

Definition 3.3.1. [32] The affine covering number (acn) of a scheme X is

defined to be one less than the smallest number of open affine sets required to

cover X.

Definition 3.3.2. An affine stratification of a scheme X is a finite decom-

position X = tk∈Z≥0,iYk,i into locally closed affine subschemes Yk,i, where for

each Yk,i,

Y k,i \ Yk,i ⊆ ∪k′>k,jYk′,j.

The length of an affine stratification is the largest k such that ∪jYk,j is non-

empty.

The affine stratification number asnX of a scheme X is the minimum of

the lengths of all possible affine stratifications of X.

Definition 3.3.3. The coherent cohomological dimension cd(X) of a vari-

ety X is the smallest i such that Hj(X,F) = 0, for all j > i and for any

quasicoherent sheaf F on X.

Definition 3.3.4. The constructible cohomological dimension ccd(X) of a
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variety X is the smallest i such that Hj(X,F) = 0, for all j > i and for any

constructible sheaf F on X

The reason the above definitions measure how far a variety is away from

being projective is Grothendieck’s theorem.

Theorem 3.3.5. [20] A quasi projective variety X is projective if and only

if cd(X) = acn(X) = asn(X) = dim(X). Similarly X is affine if and only if

cd(X) = acn(X) = asn(X) = 0.

We now state a result of Roth and Vakil, which we will use to state some

of the main results in this Thesis.

Theorem 3.3.6. [32] The coherent cohomological dimension of a scheme X

is bounded above by the affine stratification number of the scheme X which in

turn is bounded above by the affine covering number of X:

cd(X) ≤ asn(X) ≤ acn(X).

Similarly the constructible cohomological dimension is bounded above by dimX+

asnX, i.e.

ccdX ≤ dimX + asnX.

3.4 Looijenga’s conjecture and affine covers

and stratification of Mg

Looijenga has made the following conjecture
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Conjecture 3.4.1. The moduli space of smooth curves of genus g, Mg has

an open covering by g − 1 open affine sets i.e. acn(Mg) ≤ g − 1.

We will now show that the bound g − 1 is definitely the optimal one, and

will also present a proof of the conjecture for g ≤ 5 due to Fontanari and

Pascolutti [13].

Lemma 3.4.2. If U is an open affine subset of X with X being a normal quasi

projective variety with PicQ(X) ' Q then U ⊂ X \D, where D is a divisor.

Proof. Let i : U → X be the inclusion map. Since X is normal, PicQ(U) = 0.

The only way for i∗ : PicQ(X)→ PicQ(U) to be the zero map is if the λ class

goes to zero and that can happen only if U is contained in the complement of

the divisor, as removing a higher codimension locus ofMg does not affect the

image of PicQ(X).

We apply the above lemma to the case when X =Mg and provide a proof

for the following result.

Theorem 3.4.3. We have the following inequality acn(Mg) ≥ g − 1.

Remark 3.4.4. As a consequence of this theorem Looijenga’s conjecture can

be restated as the equality acn(Mg) = g − 1.

Proof. Suppose that Mg = ∪ni=1Ui, where Ui are affine open subsets of Mg.

Then by lemma 3.4.2 we see that Ui ⊂ Mg \ Di where Di are divisors, this

implies that ∩ni=1Di = ∅. Theorem 3.2.1 tells us that Di is represented by a non

zero multiple of λ1 in PicQ(Mg), this implies that λn1 = 0 on Mg. Theorem

3.2.6 says that the smallest n for which λn1 = 0 is n = g− 1. Thus we see that

acn(Mg) ≥ g − 1.
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Looijenga’s conjecture has been proven by Fontanari and Pascolutti [13]

for g ≤ 5 and we indicate the outline of the proof.

Fontanari and Pascolutti constructed g − 1 modular forms for 3 ≤ g ≤ 5

such that the intersection of the zero loci of these modular forms onMg ⊂ Ag

is empty. We will indicate their construction below, but before doing so we

introduce some preliminary results on modular forms and their loci necessary

for the construction.

Theorem 3.4.5. [29] Let τ ∈ Hg; then τ is the period matrix of a hyperelliptic

curve if and only if exactly 2g−1(2g + 1)− 1
2

(
2g+2
g+1

)
suitable even theta constants

vanish at the point τ . Each suitable sequence of theta constants defines an

irreducible component of Hypg(2) = p−1(Hypg) for p : Ag(2) → Ag, and the

group Sp(2g,Z) acts transitively on the respective sequences of theta constants.

More specifically 2.2.19 tells us that each irreducible component of Hypg(2)

corresponds to the orbits of a particular 2g−1(2g + 1) − 1
2

(
2g+2
g+1

)
tuple of theta

characteristics satisfying suitable azygetic/syzygetic properties.

Let us denote by Eg the set of all even theta characteristics. Let us de-

note by Bg a sequence of even theta constants such that for [τ ] ∈ Hypg(2),

θm(0, τ) = 0 if and only if m ∈ Bg. Of course the number of such sequences

is non unique, but they are all orbits of each other under the affine action of

Sp(g,Z) on tuples. In the case above we just pick and fix a particular sequence.

For S ⊂ Eg we denote P (S) :=
∏

m∈S θm.

Remark 3.4.6. We have #B3 = 1, #B4 = 10, and #B5 = 66, i.e. the hy-

perelliptic locus Hypg is described by the vanishing of 1 theta constant, 10

theta constants and 66 theta constants in genera 3, 4 and 5 respectively. In
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the case of genus 3 if more than one theta constant vanishes, then the zero

locus described is the decomposable locus of A3.

The idea behind the proof of Fontanari and Pascolutti is to construct g−1

ample divisors {Di}g−1
i=1 onMg that are described as zero loci of scalar modular

forms onMg such that ∩Di = ∅ so that the complements of this divisors cover

Mg.

Remark 3.4.7. A quick word on notation, if F is a scalar modular form of

weight k with respect to Γ ⊂ Sp(g,Z) we denote the zero locus of F on Hg/Γ

by Z(F ).

Before reproducing the proof we state a lemma that will help us prove the

conjecture for M5.

Remark 3.4.8. We recall that a curve C carrying a grd means that there

exists a divisor D on C such that deg(D) = d and h0(C,OC(D)) = r + 1. In

particular a smooth curve C carrying a g1
2 is necessarily hyperelliptic.

Lemma 3.4.9. If a curve of genus 5 with a base point free g1
3 carries two half

canonical linear g1
4 then C is hyperelliptic.

The above lemma can be shown using standard algebro geometric tech-

niques from [1]

We now reproduce Fontanari and Pascolutti’s [12] proof of Looijenga’s

conjecture for 2 ≤ g ≤ 5:

Proof. g =2.

The moduli space of smooth curves of genus 2 is affine as every smooth

curve of genus 2 is hyperelliptic, this can be seen because of the following, if C
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is a curve of genus 2 then by Riemann Roch, h0(C,KC) = 2, but deg(KC) =

2(2)− 2 = 2, hence the canonical map is a 2 : 1 map of the curve to P1. Thus

we see that M2 = Hyp2 and by Theorem 10.2, M2 is affine.

g=3.

1. First Divisor D1. Let Θnull :=
∏

m∈Eg θm, this is a modular form of

weight 2g−1(2g − 1) on Ag, and moreover corollary 2.4.24 tells us that if Aτ =

Pic0(C) for a smooth curve of genus g such that Θnull(τ) = 0 then there exists

a g1
2 on the curve C. Therefore C is hyperelliptic.

2. Second Divisor D2. Let

FH :=
∑

γ.Bg ,γ∈Sp(2g,Z)

P (Eg \ γ.Bg),

where we recall that P(S) denotes the product
∏

m∈S θm(0, τ) for m ∈ S By

Theorem 3.4.5 we see that Z(F1)∩Hyp3 = ∅ thus we let D2 = Z(F1) therefore

U2 = Z(F1) and since D1 ∩D2 = ∅ we see that U1 ∪ U2 =M3.

g=4.

1. First Divisor D1. We choose our first divisor to be D1 := Z(Θnull),

Corollary 2.4.24 tells us that if τ is the period matrix for C such that θm(0, τ) =

0 then ∃L on C such that h0(C,L) ≥ 2 and L⊗2 = KC , in this case if C was

a canonical curve then let D1 6= D2 ∈ |L|, now since 2(D1 +D2) = 2D1 + 2D2

and since D1 + D2 ∈ |KC | and 2D1 and 2D2 ∈ |KC | tells us that C lies on a

quadric of the form x2 − yz in Pg−1 or a quadric of rank 3 in general. This

is seen to be the case because if i : C → P3 is the embedding given by the

canonical linear system, i.e. i∗(O(1)) = KC , and if y, z, x ∈ H0(P3,O(1)) such

that the divisors of y, z, x on C are 2D1 and 2D2 and D1 +D2 thus since the
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divisor associated to y2 is the same as the divisor associated to xz, hence by

an appropriate change of coordinates we end up with the fact that the curve

passes through a quadric of the form y2 − xz.

2. Second Divisor D2. Let

F1 :=
∑
m∈Eg

Θ8
null

θ8
m

and let D2 := Z(F1). The zero locus D1 ∩ D2 gives us the locus of curves

where at least two Theta constants vanish. A result of Igusa [22][21] tells us

that if C is a smooth genus 4 curve with period matrix τ such that θm1(0, τ) =

θm2(0, τ) = 0 for m1 6= m2 then C is hyperelliptic.

3. Third Divisor D3. We choose our third divisor D3 = Z(FH) by our

definition of FH we can see that Z(FH)∩Hyp3 = ∅, since D1 ∩D2 = Hyp3 we

end up with D1 ∩D2 ∩D3 = ∅, thus ∪3
i=1Ui = ∪3

i=1D
c
i =M4.

g=5.

1. First Divisor D1. In a paper of Grushevsky and Salvati Manni [17]

it was shown that the closure of the open locus of trigonal curves of genus 5

could be described as the zero locus of the Schottky-Igusa modular form

FT := 2g
∑
m∈Eg

θ16
m − (

∑
m∈Eg

θ8
m)2,

We thus choose D1 := Z(FT ), which is thus the locus of trigonal curves.

2. Second Divisor D2. We choose our second divisor D2 := Z(Θnull); by our

earlier discussion the generic point of this divisor represents canonical curves

that lie in a singular quadric of rank 3. Thus the generic point of D1 ∩ D2
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represents canonical curves that are trigonal and lie on a quadric of rank 3.

3. Third Divisor D3. The third divisor D3 is given by D3 = Z(F1), The

generic point of the zero locus D1 ∩ D2 ∩ D3 represents curves that have a

base point free g3
1 and two pencils of half canonical linear systems. We wish

to prove that if D1 ∩D2 ∩D3 = Hyp5. But this follows from Lemma 3.4.9.

4. Fourth Divisor D4. The fourth divisor D4 is given by D4 = Z(FH), by

the construction of FH , we see that D4∩Hyp5 = ∅, therefore D1∩D2∩D3∩D4

is empty hence M5 = ∪4
i=1Ui = ∪4

i=1D
c
i

3.5 Proof of Main Theorem

This result has appeared in our paper [3], that is slated to appear in the

Proceedings of the AMS and we reproduce the argument from the paper.

Before proceeding with the proof of the main theorem we would like to

make a few comments about notations,

The subvariety Ak×Ag−k ⊂ Ag denotes the subvariety whose points corre-

spond to products of k dimensional ppav’s and g−k dimensional ppav. Strictly

speaking this is an abuse of notation as Ak × Ag−k = Ag−k × Ak ⊂ Ag, thus

A2 × A2 = Sym2(A2) ⊂ A4 and A1 × A1 × A1 × A1 = Sym4(A1) ⊂ A4. We

denote the loci of ppav in Ag that are products of lower dimensional ppav by

Adecg

Salvati Manni in [33] characterized the loci Ak ×Ag−k by the vanishing of

theta constants, more precisely

For a given k, let nk be the number of theta characteristics in E of the

53



form

ε
δ

 = [ ε1 ε2δ1 δ2 ] with

ε1

δ1

 ∈ (Z/2Z)2k
odd and

ε2

δ2

 ∈ (Z/2Z)
2(g−k)
odd , i.e.

εt1δ1 = εt2δ2 = 1 ∈ Z /2Z.

Let I ∈ Enk be a nk tuple all of whose characteristics are of the form

described above. Then we have the following theorem.

Theorem 3.5.1 ([33]). Given τ ∈ Hg then [τ ] corresponds to a ppav that is a

product of a ppav of dimension k and g−k if and only iff ∃J = (m1,m2 . . .mnk) ∈

Enk in the Sp(g,Z /2Z) orbit of I with θm1(0, τ) = θm2(0, τ) = ..... = θmnk (0, τ) =

0 under the affine action of Sp(g,Z/2Z).

We will prove Theorem 1.0.1 by two steps, the first step will involve the

construction of an affine stratification by considering three divisors on A4 and

taking their intersections to define a stratification. The second step will involve

constructing four additional strata without the use of modular forms and by

geometric considerations and proving that the stratification is affine.

Step 1 (Strata induced by zero loci of modular forms):

1st Stratum: Consider the Schottky form defined by the following formula,

using the notation in [13]

FT := 16
∑
m∈E

θ16
m − (

∑
m∈E

θ8
m)2. (3.5.1)

Igusa [23] showed that the zero locus Z(FT ) of FT is equal to J4 ⊂ A4 here

J4 =M4 ⊂ A4 , We define our first stratum to be

X0 := A4 \ Z(FT ).
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2nd Stratum: Consider the Theta null form

Θnull :=
∏
m∈E

θm. (3.5.2)

From Riemann’s theta singularity theorem it easily follows that the modular

form Θnull does not vanish identically on Mg in any genus. We thus define

our second stratum to be

X1 := Z(FT ) \ Z(Θnull).

This stratum corresponds to Jacobians of canonical curves of genus four that

are given by a complete intersection of a smooth cubic and a smooth quadric

[6].

3rd Stratum: Consider the modular form F1 given by

F1 :=
∑
m∈E3

Θ8
null

θ8
m

. (3.5.3)

The Zariski closed subset given by Z(Θnull)∩Z(F1)∩Z(FT ) can be inter-

preted as the closed subset of J4 where some two theta constants vanish. Igusa

[22] proved that a curve [C] ∈M4 ⊂ A4 is hyperelliptic if and only if two theta

constants vanish on the Jacobian of C. On the other hand Theorems 2.2.19 and

and our interpretation of Z(FT ) tells us that Adec4 ⊂ Z(FT )∩Z(Θnull)∩Z(F1).

Hence we see Z(FT ) ∩ Z(Θnull) ∩ Z(F1) = Hyp4 ∪ Adec4 . We thus define our

third stratum to be

X2 := (Z(FT ) ∩ Z(Θnull)) \ Z(F1).
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This stratum corresponds to Jacobians of canonical curves of genus four

that are a complete intersection of a smooth cubic and a singular quadric of

rank three [6].

Remark 3.5.2. The group action of Sp(g,Z\2Z) on theta characteristics be-

comes important from the third stratum onwards. The reason for its impor-

tance is because we are unable to continue the strategy of allowing a successive

number of theta constants to vanish on Ag or on a level cover Ag(2) i

In general, it follows from the transformation formula (??) of theta con-

stants, that if mi’s and ni’s satisfy the conditions of Theorem 2.2.19, then the

Galois group Sp(2g,Z/2Z) of the coverAg(2)→ Ag conjugates Z(θ8
m1
, θ8
m2
, ....θ8

mk
) ⊂

Ag(2) to Z(θ8
n1
, θ8
n2
....θ8

nk
) ⊂ Ag(2) .

A concrete example of different orbits of 10 theta characteristics describing

different loci is as follows: R. Varley constructed an example of a set of 10

theta constants vanishing on a level cover of A4 that describes a single ppav,

which corresponds to the Segre cubic threefold with an even point of order

two; i.e., a cubic threefold with 10 nodes [37]. The correspondence between

cubic threefolds and A4 arises due to the work of Donagi and Smith [7], further

explored by Izadi [24], which establishes a birational map between A4 and a

level cover of the moduli of cubic three folds C. By contrast, the vanishing of a

different 10-tuple of theta constants describes the hyperelliptic locus Hyp4 ⊂

A4.

Remark 3.5.3. The two modular forms given by F1 and Θnull were used by

Fontanari and Pascolutti in proving Looijenga’s conjecture forM4 [13]. They

then use another modular form FH again constructed as a sum of products of
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theta constants. They then go on to show that this modular form does not

intersect Hyp4 ⊂ M4. We will not be able to use FH to construct our 4th

stratum as Z(FT , F1,Θnull, FH) = Adec4 (see Theorems 2.2.19 and 3.5.1), since

the codimension of Adec4 ⊂ A4 equals to 3, we see that the stratification using

FH is not optimal as we will be using four forms to describe a geometric locus

of codimension 3.

Step 2 (Affine stratification constructed by identifying appropri-

ate closed subvarieties)

4th Stratum: Consider the boundary of the previous stratum, which is

X2 \X2 = Hyp4∪Adec4 . We know that Hypg is affine for all g. The boundary

of Hyp4 is equal to (A1×Hyp3) ∪ (A2×A2) [19]. It is known classically that

in A3, Jacobians of hyperelliptic curves are characterized by the vanishing of a

single theta constant. More precisely Hyp3 = Z(Θnull). Since moreover A1 is

affine, the product A1 × (A3 \Hyp3) is affine, as a product of affine varieties.

We thus define our fourth stratum to be

X3 := Hyp4 t
(
A1 × (A3 \Hyp3)

)
.

Since X3 is a disjoint union of two affine varieties of the same dimension such

that Hyp4 and A1 × (A3 \Hyp3) are closed in the subspace Zariski topology

on X3 we see that X3 is affine.

5th Stratum: Consider the boundary of the previous stratum

X3 \X3 = (A2 ×A2) ∪ (A1 ×Hyp3).
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Now recall that that any indecomposable abelian threefold is a Jacobian of

a smooth curve [19]; it thus follows that Hyp3 \ Hyp3 = A1 × Hyp2, while

A2 ×A2 =Mct
2 ×Mct

2 . Thus we see that

(A2 ×A2) \ (A1 ×A1 ×A2) =M2 ×M2.

We know M2 to be affine as M2 = Hyp2. On the other hand, we have

(A2 ×A2) ∩
(
A1 ×Hyp3

)
= A1 ×A1 ×A2.

We thus define our fifth stratum to be

X4 := (A1 ×Hyp3) t (M2 ×M2) .

This stratum is seen to be affine asM2×M2 and A1×Hyp3 are affine, disjoint

and closed in the subspace Zariski topology of X4.

6th Stratum: Consider the boundary of the previous stratum X4 \ X4 =

A1×A1×A2. Since A1 is known to be affine we just need to stratify A2. But

A2 =Mct
2 , andMct

2 =M2tA1×A1. Thus we define our sixth stratum to be

X5 := (A1 ×A1 ×A2) \ (A1 ×A1 ×A1 ×A1) .

This stratum is affine as it is simply equal to A1 ×A1 ×M2.

7th Stratum: We finally define our seventh stratum to be

X6 := A1 ×A1 ×A1 ×A1.
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We then see that A1 is affine as A1 = Hyp1, and the theorem is thus proven.

3.6 Cohomological dimension of Ag

Looijenga’s conjecture rests upon two observations, the first one being that

λg−2
1 6= 0 ∈ R∗Q(Mg) and λg−1

1 = 0, this piece of information along with

Theorem 3.2.6 and Lemma 3.4.2 tells us that there does not exist a collection

of open affine sets of Mg, {Ui}g−2
i=1 such that ∪g−2

i=1Ui =Mg.

We make analogous observations for Ag, the first one being that λ
g(g−1)/2
1 6=

0 ∈ R∗Q(Ag) while λ
g(g−1)/2+1
1 = 0. These can be seen due to the fact that

R∗Q(Ag) is a Gorenstein ring with socle in degree g(g−1)
2

, thus due to Theorem

2.6.4 and Lemma 3.4.2 we arrive at the conclusion that there does not exist a

collection of open affine sets of Ag, {Ui}g(g−1)/2
i=1 such that ∪g(g−1)/2

i=1 Ui = Ag.

We have thus proven the following

Theorem 3.6.1. The affine covering number acn(Ag) ≥ g(g − 1)/2.

Theorem 1.0.1 and Theorem 3.6.1 lead us to make the following conjecture

Conjecture 3.6.2. The cohomological dimension cd(Ag) = g(g − 1)/2 in all

characteristics.

As a corollary of Theorem 1.0.1 and Theorem 3.3.6 we have the following

Corollary 3.6.3. The cohomological dimension cd(A4(C)) ≤ asn(A4(C)) ≤

6, while the constructible cohomological dimension ccd(A4(C)) ≤ 16.

We now state an important theorem of Keel and Sadun that highlights the

differences between the geometry of Ag in finite characteristic and over C.
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Theorem 3.6.4. Let X be a compact subvariety of Ag ×SpecZ SpecC such

that ci(E)|X = 0 in H2i(X,R) for g ≥ i ≥ 0 then dim(X) ≤ i(i−1)
2

with strict

inequality if i ≥ 3.

As a corollary they obtained Oort’s conjecture.

Corollary 3.6.5. There is no compact codimension g subvariety of Ag×SpecZ

SpecC for g ≥ 3.

Remark 3.6.6. Unlike Diaz’s Theorem, Oort’s conjecture does not follow

from the study of the tautological ring of Ag because by theorem 6.4 R∗(Ag)

is isomorphic to Rg−1 with socle in degree g(g−1)
2

which is codimension g in

Ag. In fact Oort’s conjecture fails in characteristic p, as there exists a com-

plete codimension g subvariety Yo of Ag ×SpecZ SpecFp of codimension g, the

locus of ppav the scheme of whose p-torsion points is supported at the origin

(completeness follows from the fact that Gm always has non-trivial p-torsion,

so that no semiabelic variety can lie in the closure). Since Yp is complete, we

have cd(Yp) = g(g − 1)/2, and thus since Yp is a closed subvariety of Ag(Fp),

it follows that cd(Ag(Fp)) ≥ cd(Yp) = g(g − 1)/2. In particular we have

cd(A4(Fp)) ≥ 6.
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Chapter 4

Representation Theory and the

tautological ring of Ag

We introduce the necessary background in representation theory to state

Conjecture 1.0.5 in a precise manner and prove it for g ≤ 5 and give empirical

evidence for the conjecture in general.

4.1 Representation Theory

We observed earlier that the equivariant vector bundles onAg corresponded

to the representations of GL(g,C). We will recall some of the basics of rep-

resentation theory of GL(g,C) and Sp(2g,Z) and Sp(2g,C) in order to study

equivariant vector bundles on Ag in further detail. The material in this section

is mostly reproduced from [15] and [35]

We state a Theorem that classifies irreducible representations of GL(g,C):

Theorem 4.1.1. Let V be a g-dimensional complex vector space; then the
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irreducible representations of GL(V ) are in one-to-one correspondence with

non-decreasing g-tuples of integers µ = (µ1, µ2, . . . µg), i.e. µ1 ≥ µ2 . . . ≥ µg.

We denote this irreducible representation by Sµ(V ).

Remark 4.1.2. The representation of GL(V ) on Symk(V ) is given by the

tuple (k, 0, 0, . . . 0), while the representation on ∧k(V ) is given by the tuple

(1, 1, . . . 1︸ ︷︷ ︸
k

, 0, 0 . . . 0). We should mention that the representation associated to

∧g(V )∗ is given by the tuple (−1,−1,−1 . . .− 1) and that ∧k(V )∗ ' ∧g−kV ⊗

∧g(V )∗. Note also that the representations Sµ(V )⊗ (det(V ))⊗k is given by the

tuple (µ1 + k, µ2 + k, µ3 + k, . . . , µg + k).

We recall that every finite dimensional representation of GL(V ) is deter-

mined up to conjugacy by its character. Based on this we define the Schur

functions associated to irreducible representations as their characters as fol-

lows:

Definition 4.1.3. Let x ∈ GL(V ) and let x1, x2 . . . xg be its eigenvalues x

acting on Sµ. Then the Schur function corresponding to x and Sµ is defined to

be Sµ(x1, x2 . . . xg) := trSµ(x), i.e. the trace of the image of the element in the

appropriate representation. This function Sµ(x) is invariant under conjugation

of x hence just depends on the eigenvalues of x counted with multiplicities

occuring in the characteristic polynomial of x.

Theorem 4.1.4. [15]

For a g-tuple µ = (µ1, µ2, µ3, . . . µg) with all µi non-negative and µ1 ≥

µ2 ≥ . . . ≥ µg the associated Schur function Sµ(x1, x2, . . . xg) is a symmetric

polynomial of degree
∑g

i=1 µi.

62



We won’t prove the above theorem because it will lead us too far afield into

the combinatorics of young diagrams and partitions. But it is an important

statement for our purposes to understand the structure of the representation

ring of GL(V )

Remark 4.1.5. The fact that the Schur function is a symmetric function can

be easily seen as the character of a representation is invariant under conju-

gation, hence under permutation of eigenvalues in particular. The fact that

the Schur function is a polynomial for g tuples with non negative entries uses

the machinery of Schur Weyl Duality. For the representation ∧k(V ) the asso-

ciated Schur polynomial is S(1, 1, . . . 1︸ ︷︷ ︸
k times

,0,0...0)

∑
i1<i2<...<ik

xi1xi2 . . . xik is simply

the k’th elementary symmetric polynomials in g variables.

Now Remark 4.1.2 tells us that every irreducible representation Sµ(V ) can

be tensored with a power of det(V ) so that its associated Schur function is a

polynomial.

We recall that if ρ1 and ρ2 are representations associated to a group G then

the character functions satisfy χρ1⊗ρ2 = χρ1χρ2 and χρ1⊕ρ2 = χρ1 + χρ2 .

Based on the above we make a definition

Definition 4.1.6. The representation ring of GL(V ) denoted R[GL(V)] is the

ring generated as a Z algebra by the characters of finite dimensional complex

representations of GL(V ).

We then have the following

Theorem 4.1.7. The ring R[GL(V )] is a finitely generated algebra Z[χV , . . . χ∧g(V ), χ∧g(V )−1 ]

and thus can be identified with Z[e1, e2, . . . eg, e
−1
g ]where ek is the k’th elemen-
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tary symmetric polynomial in g variables. In particular, it is a free polynomial

ring generated by the ek and the only relation is ege
−1
g = 1.

Proof. Every finite dimensional representation ρ of GL(V ) is a direct sum of ir-

reducible representations ρ ' ⊕nj=1Sµj(V ). For sufficiently large n the weights

of the tensor product ρ⊗detV ⊗n are all non-negative, and thus the correspond-

ing Schur functions are symmetric polynomials. The character of ρ⊗det(V )⊗n

is χρ times the n’th power of eg, and is a symmetric polynomial. Since the

elementary symmetric polynomials form a polynomial basis for the ring of

symmetric polynomials and moreover since Z[e1, e2, . . . eg] ' Z[y1y2, . . . yg] i.e.

the ring of symmetric polynomials is isomorphic to the standard polynomial

ring in g variables.. Thus we have χρ(V )⊗det(V )k = χρ(V )χdet(V )k = χρ(V )e
k
g =

p(e1, e2, . . . eg), so that χρ(V ) = p(e1, e2, . . . eg)e
−k
g .

Remark 4.1.8. As a matter of convention we set e0 to be equal to 1, which

will simplify some formulas.

Theorem 4.1.9. The representation ring of Sp(2g,C), R[Sp(g,C)] is isomor-

phic to Z[y1, y2, . . . yg] where yk is the character associated to the representation

∧kC2g with the standard symplectic pairing on C2g.

We will not provide the proof of the above theorem, it can be found in [15]

and uses many of the same tools as the proof for GL(g,C).

We will need the description of these rings to motivate and provide evidence

for Conjecture 1.0.5 and state it more precisely.
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4.2 Chern Character map

Definition 4.2.1. A fundamental domain of Ag is a connected open set U ⊂

Hg, i.e. the Siegel upper half space with non empty interior, such that the

quotient map p : Hg → Ag is injective on U and surjective on U

Remark 4.2.2. Ag can be geometrically constructed by identifying the faces

of U and therefore is a quotient U/ ∼

Recall that given a vector bundle V on Ag the pullback of the vector

bundle π∗(V ) where π : Hg → Ag is the quotient map is a trivial vector

bundle as Hg is contractible. Thus the above definition tells us that if we pick

an element τ of U \ U◦ if we can write down the gluing maps of the vector

bundle in a neighborhood of τ we will have characterized the vector bundle on

Ag completely

Definition 4.2.3. Given a representation ρ : GL(g,C)→ GL(k,C), the vector

bundle ρ(E) is the rank k vector bundle on Ag such that if U and V are

two fundamental domains of ρ(E) such that τ ∈ U ∩ V , recall there exists

γ = ( A B
C D ) such that γ(U) = V , then the transition map of π∗(ρ(E)) for

the induced trivializations on the fundamental domains under the action of

Sp(g,Z) is given by γ(τ, v) = ((Aτ +B)(Cτ +D)−1, ρ(Cτ +D)v).

Definition 4.2.4. The homomorphism j : R[GL(g,C)] → K0(Ag,Q) is de-

fined by applying the above construction to any representation, and then send-

ing addition to direct sums and product to tensor products, more specifically

j(χρ1 + χρ2) := ρ1(E)⊕ ρ2(E) and j(χρ1χρ2) := ρ1(E)⊗ ρ2(E).
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Recall that we also have the Chern character morphism Ch : K0(Ag,Q)→

CH∗Q(Ag), and we will now consider the composition

ch := Ch ◦ j : R[GL(g,C)]⊗Q→ CH∗Q(Ag).

We now state another result which allows us to give a conjectural repre-

sentation theoretic interpretation of the kernel of ch.

Proposition 4.2.5. There is a natural ring homomorphism i : R[Sp(2g,C)]→

R[GL(g,C)] given by i(yk) :=
∑

p+q=k epeg−qe
−1
g .

Proof. Strictly speaking this is not a proposition, because we can define an

arbitrary homomorphism from a free polynomial ring in n variables to another

polynomial ring by defining the image of the generators. We want to justify the

usage of the word natural. In this case, we recall that every representation of

Sp(g,C) can be completely determined by its restriction to the maximal torus

and hence the block diagonal matrices of the form
[
A 0
0 At

−1

]
. Thus the standard

or tautological representation of Sp(g,C) naturally corresponds to the direct

sum of the standard representation of GL(g,C) and its dual representation.

Since the dual representation of GL(g,C) can be identified with eg−1e
−1
g , we

thus see that there is a natural correspondence between y1 and e1 + eg−1e
−1
g .

Similarly taking exterior products of the standard representation of Sp(g,C)

we see that the correspondence in general can be seen to be between yk and∑
p+q=k epeg−qe

−1
g . Thus we can define a ’natural’ homomorphism i as above.

We now state a result that gives us a conjectural description of the tauto-
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logical ring

Theorem 4.2.6. For g ≤ 5 the homomorphism ch : R[GL(g,C)] ⊗ Q →

RQ(Ag) is surjective and its kernel is the ideal generated by

(i(yk)−
(

2g

k

)
,

g∑
k=0

(−1)keg−ke
−1
g )

where i : R[Sp(2g,C)]→ R[GL(g,C)] is the monomorphism defined above.

Conjecture 4.2.7. The above theorem holds true for all g.

Part of the Theorem states that the image of ch is contained in the tau-

tological ring of Ag. Indeed, if one views λk = ck(E) as the k’th elementary

symmetric polynomial in the g virtual chern roots, then using the fact that the

k’th graded piece chk(∧nE) is a symmetric polynomial in the g virtual chern

roots of E and also using Theorem 4.1.7 gives ch(R[GL(g,C)]) ⊂ R∗Q(Ag). As

of now we cannot prove the conjecture in its entirety, but it may be approach-

able via appropriate invariant theory and commutative algebra. We can prove

one direction of the statement for arbitrary g.

Theorem 4.2.8. The ideal generated by (i(yk) −
(

2g
k

)
,
∑g

k=0(−1)keg−ke
−1
g ) is

contained in the kernel of ch for all g.

Proof. We prove that the polynomial i(yk)−
(

2g
k

)
is in the kernel of ch. Recall

that yk is the representation associated to ∧kC2g for a 2g dimensional vector

space, it can also be identified with the flat vector bundle on Ag whose stalks

are identified with Hk(Aτ ,C) on [Aτ ] ∈ Ag. Since Ch(W ) = rank(W ) for a

vector bundle W with a flat connection, we can say that ch(i(yk)) =
(

2g
k

)
. We
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recall from 2.6.2 that ch(
∑g

k=0(−1)keg−ke
−1
g ) = Td(E)−1 · λg. Since 2.6.2 tells

us that λg = 0, we end up with our desired result.

We now give the proof of Theorem 4.2.6

Proof. We have proven the above theorem by programming it in macaulay by

working with Chern classes in terms of virtual Chern roots. More specifically,

we identified the representation ring of GL(g,C) with Q[x1, x2, . . . , xg, x
−1
g ]

and defined ch : Q[x1, . . . , xg, x
−1
g ] → Q[X1, X2, . . . , Xg]

Sg by the expression∑ g(g+1)
2

i1<i2<i3<...<ik l=1

(Xi1+Xi2 ...+Xik )l

l!
.

After defining the above homomorphism we define a monomorphism h :

Q[y1, y2, . . . , yg] → Q[X1, X2, . . . , Xg] by h(yk) := ek(X1, . . . , Xg) where ek is

the k’th elementary symmetric polynomial and verify that im(ch) ⊂ im(h) and

we consider the map h−1 ◦ch. Once we define this map we take the quotient of

Q[y1, . . . , yg] by the relations obtained in each graded piece by the tautological

relation, i.e. (1 + y1 + . . . + yg)(1 − y1 + . . . + (−1)gyg) = 1. Thus we just

have to check for the surjectiveness of the map h−1 ◦ ch : Q[x1, . . . , xg, x
−1
g ]→

Q[y1, . . . , yg]/T where T is the ideal generated by the tautological relations

and check if the kernel of this homomorphism is what we defined it to be.
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