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Abstract of the Dissertation

Gluing Techniques in Calibrated Geometry

by

Yongsheng Zhang

Doctor of Philosophy

in

Mathematics

Stony Brook University

2013

This thesis is concerned with the question: given a submanifold

(perhaps with singularities), when is it possible to change the met-

ric in some specific way so that the submanifold becomes homo-

logically mass-minimizing?

We studied this question for “horizontal” change of metrics and

conformal change of metrics for both compact and non-compact

submanifolds. We also explored cases with singularities or bound-

aries. The main idea is to use the theory of calibrated geometry

and gluing techniques.

As a special case, we confirm that any given oriented compact
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connected submanifold which is not R-homologous to zero in a

Riemannian manifold can be calibrated after a highly controlled

conformal change of the given metric. The statement remains true

for any non-connected submanifold as well provided the convex

hull of R-homology classes represented by its oriented connected

components does not contain zero.
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Chapter 1

Introduction

Plateau’s problem was raised by Joseph-Louis Lagrange in 1760 and later

named after Joseph Plateau who did many interesting experiments using soap

films. Over the past 90 years, much work has been devoted to the mathematical

study of the Plateau problem (and its higher dimensional generalizations) by

many people including Douglas, Rado, de Giorgi, Federer, Fleming and many

more. As part of this development, in 1982 Reese Harvey and Blaine Lawson

introduced the theory of calibrated geometries [8], which grew to be important

because of its many applications, for example, to gauge theory and mirror

symmetry, i.e., the compactication of Moduli space of Yang-Mills connections,

and the SYZ conjecture.

One area where calibrated geometry applies is the theory of foliations. The

story started with an interesting question raised by Gluck in [5]. It was ask-

ing: given a one-dimensional foliation on a compact manifold, when can one

find a Riemannian metric so that every leaf of the foliation is geodesic, i.e.,

minimal? It was Sullivan who first discovered the complete answer in [23]: an

oriented foliation by curves on a compact manifold is geometric taut if and

only if it is homologically taut. Later he generalized his results to foliations
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of arbitrary dimension in [24]. Around the same time, Harvey and Lawson

observed that the theory of calibration is naturally adapted to foliations, and

gave an intrinsic characterization of those foliations which can be calibrated

in [7]: an oriented foliation on a compact manifold is geometric tight if and

only if it is homologically tight (and in fact, both cases here are equivalent to

the foliation’s being calibrated). They meanwhile analyzed relations between

tautness and tightness, and several important results were given for construct-

ing metrics, e.g. Lemma 2.12 and 2.14 (cited below in the proof of Theorem

5.0.3).

However, still, one piece of the entire story was missing. That is the ques-

tion when a submanifold can be realized minimal or calibrated with respect

to some metric. Since not all submanfolds can be realized as a leaf of a foli-

ation, for example any smooth perturbation of CP 1 in CP 2 (because no C∞

two-dimensional plane fields exist on CP 2), generally it has few relations to

the foliation case. (It may also be interesting to ask when a submanifold can

be realized as a leaf of some foliation and, if it can, when the foliation can be

chosen taut or tight.) To be minimal is not hard. (See Corollary 4.1.8 and

more generally also §4.2.) In order to be calibrated, for simplicity, an oriented

compact connected submanifold has to be non-zero in the R-coefficient homol-

ogy of the ambient space. In 1991, by methods developed in [22], [23] and [8],

Tasaki [25] proved the existence theorem of metrics for its inverse direction

− (?)

“Let M be a compact oriented submanifold embedded in a manifold X. If

the real homology class represented by M in X is not equal to 0, then there

exists a Riemannian metric g on X such that M is mass minimizing in its

real homology class with respect to g.”
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In fact, his proof proves that M can be calibrated in (X, g). However, the

argument depends much on the connectness of M (to have a potential cali-

bration form, see the first line of p. 83) and no other properties can be said

about the result metric.

In this paper, we concentrate as well on the reverse question and, by dif-

ferent methods (to construct “better”, in the sense of local behaviors near the

given submanifolds, potential calibration forms directly by algebraic topology

methods instead of functional analysis ones), obtain more and nicer results in

mainly three directions and this paper is organized correspondingly as follows.

We first introduce preliminary ingredients for this paper in §2. In the

following §3, we provide full details in the first direction: horizontal change

of metrics. It shows that, when the ambient space is compact, sufficiently

many new metric satisfying (?) can be constructed by horizontal change of

any a priori given metric. This can be extended to non-connnect case of

(suitable) several connect components possibly of different dimensions.

In §4, the second direction of conformal change of metrics is studied. We

discover the fact that, in any conformal class of metrics (no matter whether the

ambient space is compact or not), there are alway many metrics to fulfill (?)

and the same conclusion still holds for non-connnect case of (suitable) several

connect components possibly of different dimensions. (Compare theorems 3.5.1

and 3.5.5 with 4.1.5 and 4.1.6.) In the second part of §4, we consider non-

compact submanifolds. Particularly in §4.3, Global P lateau Property can be

obtained in Theorem 4.3.5, due to the exactness of the calibration form.

In the third direction §5, cases with singularities are explored. Theorem

5.0.3 confirms the existence of metrics in (?) for submanifolds with mild sin-

gularities (not necessarily of dimension zero). In the section §6, we strengthen
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and generalize “equivariant” results of Tasaki [25].

One may also think that it seems easy to construct a new metric, by con-

formal change of metric, to force a priori given connected submanifold (of

non-zero R-homology class of ambient space) homologically minimal. How-

ever, even if this can be achieved, according to the author’s knowledge, it is

still unknown whether such submanifolds can be calibrated with respect to the

new metric. The question here is essentially asking whether there are obstruc-

tions for a submanifold (or a rectifiable current) to be calibratable other than

being mass minimizing in its current homology class (for a fixed metric). In

fact, Federer considered similar questions and in [3] he established a duality

in general context between homologically Ψ minimizing real flat chains and

locally flat cocycles.

In the Acta Mathematica paper [8], for simplicity, Harvey and Lawson

did not include boundary case or relative calibrated geometry in their original

paper. However due to subsequent developments in pseudo-holomorphic curves

in symplectic geometry and manifolds with special holonomy, these two cases

become more and more important. Although it may be well known among

some experts, it never appears on paper according to the author’s knowledge.

In section §7, we theoretically introduce the last direction, calibrations with

boundary and relative calibrations. Thereafter, we successfully extend the

previous results on conformal change of metrics to this setting.
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Chapter 2

Preliminaries

2.1 From Calibrated Geometry

Let us briefly review some fundamental concepts and results that we will

need from calibrated geometry. For a further understanding on calibrated

geometry, readers are referred to its birth [8].

Definition 2.1.1 Let φ be a smooth m-form on a Riemannian manifold (X, g).

Then at each x ∈ X, we define the comass of φx to be

‖φ‖∗x,g = sup {< φx,
−→
V x >g :

−→
V x is a unit simple m-vector at x},

where simple means there exists an orthonormal basis {ei} of TxX such that
−→
V x is a multiple of e1 ∧ e2 · · · ∧ em. Furthermore, if A is a subset of X, the

comass of φ on A is defined as

‖φ‖∗A,g = sup
x∈A
‖φ‖∗x,g.

When A is the entire space, the first subscript will be omitted conventionally.
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Remark 2.1.2 For any continuous form φ and a smooth metric g, ‖φ‖∗g can

be considered as a pointwisely continuous function. Note that even when φ is

smooth, generally ‖φ‖∗g is only a continuous function. Moreover, by definition,

at any point x,

‖φ‖∗x,g = max{φ(
−→
V x) :

−→
V x is a simple m-vector at x with ‖−→V x‖g = 1}

= max{1/‖−→V x‖g :
−→
V x is a simple m-vector at x with φ(

−→
V x) = 1}

= 1/min{‖−→V x‖g :
−→
V x is a simple m-vector at x with φ(

−→
V x) = 1}.

Definition 2.1.3 A smooth m-form φ on a Riemannian manifold (X, g) is

said to be a calibration if φ is of comass one on X and dφ = 0. A Riemannian

manifold together with a calibration is called a calibrated manifold.

Definition 2.1.4 In a calibrated manifold (X, g, φ), if the restriction of φ to

an oriented submanifold Y equals the induced volume form, we say that φ

calibrates Y in (X, g).

Suppose φ calibrates a compact submanifold M in (X, g, φ). Let M ′ be

another compact submaniold in the same R-homology class of X. Then

VolgM =

∫
M

i∗Mφ =

∫
M ′
iM ′
∗φ ≤ VolgM

′,

namely M is volume-minimizing in its “smooth” homology class. Actually this

can be naturally generalized to the topological dual space of smooth forms,

whose elements are called de Rham currents (cf. [2]).

Definition 2.1.5 Let T be an arbitrary de Rham m-current with compact

support on (X, g). The mass of T is defined to be

M(T ) = sup{T (ψ) : ‖ψ‖∗X,g < 1}.
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When M(T ) <∞, T determines a Radon measure ‖T‖ characterized by

∫
X

f · d‖T‖ = sup{T (ψ) : ‖ψ‖∗x,g ≤ f(x)},

for any non-negative function f on X. Therefore M(T ) turns out to be the

total measure of X for ‖T‖. Moreover, the Radon-Nikodym Theorem asserts

the existence of a ‖T‖ measurable tangent m-vector field
−→
T a.e. with vectors

−→
T x ∈ ΛpTxX of unit length in the dual norm of the comass norm in Definition

2.1.1, satisfying

T (ψ) =

∫
X

ψx(
−→
Tx) d‖T‖(x), (2.1.1)

or briefly,

T =
−→
T · ‖T‖ a.e. ‖T‖.

If T stands for integration over an oriented m-dimensional submanifold S of

X, then M(T ) = vol(S). Note that in order to have the Radon measure and

decomposition (2.1.1), one sufficient condition is that T has local finite mass.

Definition 2.1.6 In a calibrated manifold (X, g, φ), define

G (φ) = {−→V x : < φx,
−→
V x >g= 1, where

−→
V x is a unit simple m-vector at x}.

A current T of local finite comass is called a positive φ-current, if
−→
Tx ∈

G (φ) a.a. x ∈ X for ‖T‖.

Lemma 2.1.7 (Harvey and Lawson) In a Riemannian manifold (X, g), sup-

pose that φ is a smooth m-form with comass one and that T is an arbitrary

m-current with compact support. Then

T (φ) ≤M(T )
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with equality if and only if T is a positive φ-current.

In particular, if S is a compact oriented m-dimensional submanifold (with

possible boundary) in X, then

∫
S

φ ≤ vol(S)

with equality if and only if S is a φ-submanifold.

Proof. Without loss of generality, we assume M(T ) <∞. Then T =
−→
T · ‖T‖

a.e. for ‖T‖. Thus T (φ) =
∫
φ(
−→
T ) · d‖T‖ ≤

∫
d‖T‖ = M(T ) and equality

holds if and only if φ(
−→
T ) = 1 a.e. for ‖T‖, i.e., if and only if T is a positive

φ-crruent.

If T stands for an oriented submanifold S, then ‖T‖ is Hausdorffm-measure

restricted to S and
−→
T is the field of oriented unite tangent m-vectors to S.

It is easy to see that the second statement follows as a special case of the first.

It was also pointed out in [8], that, by the nature isomorphism between

homology of the complex of de Rham currents with compact support and

H∗(X;R), we have the following fundamental lemma in calibrated geometry.

Theorem 2.1.8 (Harvey and Lawson) Suppose that X is a calibrated man-

ifold with calibration φ, and that T is a positive φ-current with compact support.

Let T ′ be any compactly supported current homologous to T (i.e., T − T ′ is a

boundary and in particular dT = dT ′). Then

M(T ) ≤M(T ′)

with equality if and only if T ′ is a positive φ-current.
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Proof. Since T − T ′ = dS, for some compactly supported (m + 1)-current

S, we have T (φ) − T ′(φ) = (T − T ′)(φ) = dS(φ) = S(dφ) = 0. Combining

Lemma 2.1.7, we have

M(T ) = T (φ) = T ′(φ) ≤M(T ′)

with equality if and only if T ′ is also a positive φ-current.

The above theorem shows that a calibrated submanifold (or current) is in

fact mass minimizing in its current homology class. Moreover, in the same

current homology class, other mass minimizing elements must be calibrated as

well.

In the rest part of this paper, we will repeatedly use certain properties of

comass. Among which, the elementary Lemma 2.1.11 and 2.1.12 below are

crucial to our methods.

Lemma 2.1.9 For any metric g, an m-form φ and a positive function f on

X. We have

‖φ‖∗f ·g = f−
m
2 · ‖φ‖∗g,

as pointwise functions.

Proof. By the formula in Remark 2.1.2.

Lemma 2.1.10 For any m-form φ. For metrics, if g′ ≥ g on X, then

‖φ‖∗g′ ≤ ‖φ‖∗g,

as pointwise functions.

9



Proof. By the definition of comass or the formula in Remark 2.1.2.

Lemma 2.1.11 (Comass Control for Gluing Procedure) For any smooth

m-form φ, positive smooth functions a and b, and smooth metrics g1 and g2,

the following control inequality holds pointwisely,

‖φ‖∗ag1+bg2
≤ 1√

am · 1
‖φ‖∗2g1

+ bm · 1
‖φ‖∗2g2

, (2.1.2)

where 1
0

and 1
+∞ are identified with +∞ and 0 separately.

Proof. Let us fix a point x. Then for the subspace spanned by any simple

m-vector
−→
V x, there exists an orthonormal basis (e1, e2, ..., em) under g1, to

which g2 is diagonalized as diag(λ1, ..., λm) where λi > 0 for i = 1, 2, · · · ,m.

Suppose
−→
V x = te1 ∧ ... ∧ em, then

‖−→V x‖2
ag1+bg2

= t2(a+ bλ1)...(a+ bλm)

= t2[am + ....+ bmΠλi]

≥ t2am + t2bmΠλi

= am‖−→V x‖2
g1

+ bm‖−→V x‖2
g2
.

(2.1.3)

Together with Remark 2.1.2, it is not hard to see that (2.1.3) implies conclusion

(2.1.2).

Lemma 2.1.12 Suppose that (E, π) is a smooth disc (or other) bundle over

M and that g is a Riemannian metric defined on E, then each fiber is per-

pendicular to M (considered as the zero section) if and only if π∗volg|M has

comass one pointwisely along M , where volg|M stands for the volume form of

M induced by the restriction metric g|M .

10



Remark 2.1.13 Note that if the orthogonal condition is unsatisfied, the pull-

back of the volume form will have strictly larger comass at dissatisfactory

points. One simple example is to consider the slope-one diagonal line L in

Euclidean xy-plane with fibers of parallel lines to x-axis. Then the volume

form ω of L is 1√
2
(dx+ dy)|L but π∗ω is

√
2dy of comass

√
2.

Proof. Fix a point x on M . Take e1, e2, · · · , em an oriented orthonormal

basis of TxM . Then we have decomposition

ei = sin θi · ai + cos θi · bi,

where ai is a unit vector perpendicular to the fiber through x, bi is a unit

fiber vector, and θi is the angle between ei and the fiber through x for i =

1, 2, · · · ,m.

Denote volg|M by ω. By the choice of {ei}, it follows that

1 = ω(e1 ∧ e2 · · · ∧ em)

= π∗ω(e1 ∧ e2 · · · ∧ em)

= π∗ω(sin θ1 · a1 ∧ sin θ2 · a2 · · · ∧ sin θm · am)

= Π sin θi · π∗ω(a1 ∧ a2 · · · ∧ am).

(2.1.4)

The third equality is from the fact that fiber directions are annihilators of π∗ω.

Since {ai}m1 are of unit length, when ‖π∗ω‖∗x equals one, we have θi = π/2

for i = 1, 2, · · · ,m, i.e., the fiber of x is perpendicular to TxM .

Conversely, suppose fibers are perpendicular to M . We know that the only

simple m-vector which ealizes the minimal in Remark 2.1.2 is tangent to M ,

since all fiber-direction-involving part will contribute zero when paired with

π∗ω. Therefore the comass of π∗ω is one due to the fact that ω is the volume
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form and the first two equalities of (2.1.4).

2.2 A Basic Fact about Forms

Lemma 2.2.1 Suppose that X is an orientable or non-orientable, compact or

non-compact, of finite type or not, manifold without boundary. If M is an m-

dimensional oriented connected compact submanifold representing a non-zero

homology class [M ] in Hm(X;R), then for any positive number s, there exists

a closed m-form φ on X such that

∫
M

i∗Mφ = s.

Remark 2.2.2 When X is compact and orientable, it follows directly from

Poincaré duality. For general case, it can be derived from de Rham Theorem.

Proof. In singular homology theory, we have Kronecker product < ·, · >
between cochains and chains, which induces a homomorphism

κ : Hq(X;G)→ HomZ(Hq(X;Z), G), (2.2.1)

κ ([zq])([zq]) ,< [zq], [zq] >,

where G is any Abellian group.

Let us recall a classical result.

12



Lemma 2.2.3 κ is surjective. Moreover, there exists a homomorphism

ι : HomZ(Hq(X;Z), G)→ Hq(X;G),

such that κ ◦ ι = id, i.e., Hom(Hq(X;Z), G) is a splitting term of Hq(X;G).

We just take the advantage of surjectivity of κ. When G is R, by the de

Rham Theorem, κ maps Hq
dR(X) to HomZ(Hq(X;Z),R), which can be iden-

tified with HomR(Hq(X;R),R). Since [M ] is non-zero in Hm(X;R) by our

assumption, by Lemma 2.2.3 and de Rham Theorem, there exists a homo-

morphism z ∈ HomR(Hq(X;R),R) sending [M ] to any a priori given positive

number s and a chosen complement of their span in Hq(X;R) to zero. There-

fore, by the surjectivity of κ, we have at least one closed m-form defined on X

with integral s on M (or a unique form for a fixed choice of ι).

Proof of the surjectivity in Lemma 2.2.3. Denote the Z-coefficient singu-

lar q-chain group, closed q-chain group, boundary q-chain group and the q-th

homology group by Sq, Zq, Bq and Hq respectively.

For any φ ∈ Hom(Hq, G), it produces a homomorphism

φ′ : Zq → G,

by < φ′, zq >=< φ, [zq] > .

Since we have the short exact sequence

0 // Zq // Sq
∂ // Bq−1

// 0

13



and Bq−1 is Abelian, the sequence splits. Therefore, φ′ can extend to a homo-

morphism φ̄ from Sq to G.

(1) φ̄ is a closed cochain. For any chain cq+1 ∈ Sq+1,

< δφ̄, cq+1 >=< φ̄, ∂cq+1 >=< φ′, ∂cq+1 >=< φ, [0] >= 0,

so it determines a class [φ̄] ∈ Hq(X;G).

(2) κ([φ̄]) = φ ∈ Hom(Hq, G). For any closed zq ∈ Zq,

κ([φ̄])([zq]) =< [φ̄], [zq] >=< φ̄, zq >=< φ′, zq >=< φ, [zq] >= φ([zq]).

Note that if we are given mutually disjoint m-dimensional oriented con-

nected compact submanifolds M1, · · · ,Mr with their homology convex hull

C , {
r∑
i=1

ti[Mi] :
r∑
i=1

ti = 1 and ti ≥ 0} in Hm(X;R)

not containing the zero class. Then we can assign positive numbers sj to each

[Mi] such that combinatorial relations between {[Mi]} are faithfully inherited

by {sj} as follows. Start from [M1] with arbitrary positive s1. Suppose we

are done for first k terms. If [Mk+1] can not be spanned by first k terms, then

assign arbitrary positive number sk+1 to it. Otherwise, [Mk+1] can be written

as t1[M1] + · · ·+ tk[Mk], where {ti} are some non-negative numbers with sum

positive. Then let sk+1 = t1 ·s1 + · · ·+ tk ·sk. Similar as in the proof of Lemma

2.2.1, there exists a homomorphism z ∈ HomR(Hq(X;R),R) sending [Mi] to

14



these si and a chosen complement of their span to zero. Correspondingly,

there is at least one closed m-form with integral si on Mi. Thus we obtain the

following general result.

Lemma 2.2.4 Suppose that X a manifold without boundary, and that Mi are

disjoint m-dimensional oriented connected compact submanifolds with their

convex hull not containing the zero class in Hm(X;R). Then there exists a

closed m-form φ on X such that

∫
Mi

i∗Mi
φ > 0.

Remark 2.2.5 Since our analysis above is also valid for the case of count-

able components (to occur in §3.5 and §4), the same statement holds with no

essential differences for that case as well.

2.3 Bundle Structure around Submanifolds

Given a compact submanifold M in (X, g), consider its ε-neighborhood,

Uε , {x ∈ X : distg(x,M) ≤ ε}. When ε is small enough, there are no focal

points in Uε and the metric induces a disc-fibered bundle structure of Uε, whose

fiber is given by the exponential map restricted to normal directions along M .

It is clear that the fibers are foliated by the distance function from M . We call

the orthogonal complement (in TUε) to fiber directions horizontal directions

and horizontal change of a metric means smoothly varying modifications on

metrics along horizontal directions.

Since M is a retract of Uε,

Hm(Uε;R) ∼= Hm(M ;R).
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This implies that, for [φ1], [φ2] ∈ Hm(Uε;R),

[φ1] = [φ2] ⇔
∫
M

i∗Mφ1 =

∫
M

i∗Mφ2. (2.3.1)

In future, we will use ε with U3ε enjoying the above bundle structure such

that, for the case of several components, their ε-neighborhoods are mutually

disjoint.

2.4 Gluing of Forms

Let us focus on simple case first. For an oriented compact connected m-

dimensional submanifold M in (X, g). If [M ] 6= 0 in Hm(X;R), then by §2.2,

there exists a closed m-form φ defined on X with
∫
M
i∗Mφ = s > 0. From §2.3,

we have a bundle structure:

Dn−m
ε

i // Uε

πg

��
M

Define ω̃ , π∗gωM . It is a closed m-form defined on Uε with

∫
M

i∗M ω̃ =

∫
M

ωM = V (, VolgM).

Therefore, ∫
M

i∗M
sω̃

V
= s =

∫
M

i∗Mφ.

Set ω∗ , s ω̃
V

. By (2.3.1), [ω∗] equals [φ] in Hm(Uε;R), which indicates

φ = ω∗ + dψ

16



for some smooth (m− 1)-form ψ on Uε. So we can glue forms by taking

Φ = ω∗ + d((1− ρ(d))ψ),

where ρ is a function of d (the distance function to M with respect to g) and

it looks like:

0 1
5ε

2
5ε

3
5ε

4
5ε

ε
d

1

ρ

Figure 2.1: Graph of ρ.

Hence

Φ =


ω∗ 0 ≤ d ≤ 3

5
ε

ω∗ + d(1− ρ(d))ψ 3
5
ε < d ≤ 4

5
ε

φ 4
5
ε < d

(2.4.1)

Remark 2.4.1 d is not smooth along M but the composition ρ(d) is smooth

on the entire Uε.

Following Lemma 2.1.12, we have

• Property 1: Pointwisely, ‖Φ‖∗g = ‖ω∗‖∗g = s
V

on M .
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Chapter 3

Horizontal Change of Metric

3.1 Gluing of Metrics

Now let us consider the gluing of metrics.

According to the bundle structure described in §2.3, define

ḡ = (
s

V
)

2
mπ∗g(g|hM)⊕ gF (3.1.1)

in Uε, where gF is an arbitrary smooth metric for fiber (vertical) directions and

π∗g(g|hM)(vq, v
′
q) , g|hM(πg∗(vq), π

g
∗(v
′
q)), where πg∗ is the push-forwarding map of

πg. Note that ḡ preserves horizontal directions of g and the following is a

nature extension of Lemma 2.1.12.

• Property 2: Pointwisely, ‖ω∗‖∗ḡ = 1 on Uε.

Proof. For any point q on Uε. By the formula in Remark 2.1.2, we only need

to prove that, the denominator,

min{‖W‖ḡ : W is a simple m-vector at q with ω∗(W ) = 1} (3.1.2)
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equals one. Suppose W̃ ∈ Tq(Uε) with ω∗(W̃ ) = 1 but W̃ not a purely horizon-

talm-vector. Say W̃ = W̃ h+W̃ ν is the decomposition to purely horizontal part

and fiber-involving part. By the definition of π∗g(g|hM), we have ω∗(W̃ ν) = 0,

so ω∗(W̃ h) = ω∗(W̃ ) = 1 with ‖W̃ h‖ḡ < ‖W̃‖ḡ. Therefore simple m-vectors

realizing (3.1.2) must be purely horizontal. Furthermore it is unique by the

reason of dimension. Name it W̄ . Then

1 = ω∗(W̄ ) =
sω̃(W̄ )

V
=
sω(πg∗W̄ )

V
=
s‖πg∗W̄‖g|hM

V
= ‖πg∗W̄‖( s

V
)
2
m g|hM

= ‖W̄‖ḡ.

Hence the claim follows.

Remark 3.1.1 From the proof, we notice that, it is sufficient to consider the

unique horizontal m-vector W̄ , when one computes the comass of a multiple

of the pull-back volume form of M via π∗g . This is actually valid for any

metric, which preserves horizontal directions of g. In particular, it works for

the conformal change of metrics in §4.

Let us take g̃ = g̃h ⊕ g̃ν by gluing horizontal and vertical metrics respec-

tively:

g̃h = σ
1
m ((

s

V
)

2
m + d2)π∗g(g|hM) + (1− σ)

1
mαgh, (3.1.3)

g̃v = σgF + (1− σ)αgv, (3.1.4)

where d is the distance function to M with respect to g, where α is a positive

function (to be determined) defined on X, and where σ = σ(d) is given as

below: If we set gF to be αgv, then

g̃v = αgv. (3.1.5)
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Figure 3.1: Graph of σ.

Choose appropriate α with following properties pointwisely:

‖Φ‖∗αg < 1 on X, and (3.1.6)

αm‖W̄‖2
g > 1 on Uε. (3.1.7)

‖Φ‖∗g̃ =



1 0 = d

‖ω∗‖∗g̃ = 1
‖W̄‖g̃

= 1
‖W̄‖

(( s
V

)
2
m +d2)π∗g (g|hM )

< 1 0 < d ≤ 1
5
ε

‖ω∗‖∗g̃ = ‖ω∗‖∗
[σ

1
m (( s

V
)
2
m+d2)π∗g(g|hM )+α(1−σ)

1
mgh ]⊕g̃v

≤ 1√
σ‖W̄‖2

(( s
V

)
2
m +d2)π∗g (g|hM )

+αm(1−σ)‖W̄‖2
gh

< 1

1
5
ε ≤ d ≤ 2

5
ε

‖Φ‖∗αg < 1 2
5
ε ≤ d

The second inequality is due to Lemma 2.1.11, the third by Property 2 and

(3.1.7), and the last by (3.1.6). In summary, we construct a closed m-form Φ

and a metric g̃ satisfying

1. ‖Φ‖∗g̃ ≤ 1, and
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2. as a pointwise function, ‖Φ‖∗g̃ = 1 exactly on M.

Remark 3.1.2 If X is compact, then α can be chosen as a sufficiently large

constant which guarantees (3.1.6) and (3.1.7). It is clear that the same con-

stant α still works if one shrinks the gluing neighborhood Uε.

3.2 X Compact and M Connected

Definition 3.2.1 We say that a submanifold M is tamed in a calibrated

manifold (X,φ, g), if each connected component of M is calibrated by either φ

or −φ and as a pointwise function ‖φ‖∗g equals one exactly on M .

Remark 3.2.2 Note that mass has nothing to do with orientations of sub-

manifolds. By theorem 2.1.8, each component of a tamed submanifold is mass

minimizing in its current homology class. In particular, M is minimal in the

sense of Riemannian Geometry.

Theorem 3.2.3 Suppose that (X, g) is a compact Riemannian manifold and

that M is an oriented compact connected m-dimensional submanifold with [M ]

non-zero in Hm(X;R). Then for any open neighborhood U of M , a new metric

ĝ can be constructed by a horizontal change of g in U together with a closed

m-form Φ̂ on X, such that M is tamed by (X, Φ̂, ĝ).

Proof. By the compactness of M , there exists a small positive number ε which

guarantees both the disc bundle structure of Uε stated in §2.3 and Uε ⊂ U .

According to §2.2 and §2.4, there exists a closed m-form Φ in (2.4.1). By

§3.1 and Remark 3.1.2, a new metric g̃ can be constructed by the horizontal

change (3.1.3) and (3.1.4) of g on Uε with g̃ = αg on X − Uε, where α is a
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large constant satisfying (3.1.6) and (3.1.7). Define ĝ , α−1g̃ and Φ̂ , α−
m
2 Φ.

Lemma 2.1.9, gluing of metrics (3.1.3) and (3.1.4) imply that M is strongly

calibrated by (Φ̂, ĝ) and that ĝ equals g on X − Uε.

Remark 3.2.4 It is clear that ĝ is far away from being unique. By the con-

struction of (3.1.1), (3.1.3) and (3.1.4), the volume of M with respect to g̃ (no

matter which initial metric we use) is always
∫
M

Φ.

With respect to each metric produced by our method, locally M is stronger

than being minimal.

Proposition 3.2.5 M is totally geodesic under the constructed ĝ in the proof

of Theorem 3.2.3.

Proof. The only thing that we need to check is for any sufficiently close pair

of points (p, q) on M , the shortest geodesic connecting them in (X, ĝ) stays in

M . Here we assume that p and q are close enough to each other such that:

1. p lies in the strongly convex neighborhood of q, and

2. distĝ(p, q) <
2
5
ε (the same ε in previous constructions).

Then there exists a unique shortest geodesic segment γ between them con-

tained in U 1
5
ε(M) (under either g or ĝ because their ε-neighborhoods coincide

by Appedix .3).

Our strategy is to prove it by contradiction. Suppose γ is not entirely in M

as illustrated in the picture, then we can use projection πg mapping γ down to

a curve γ̄ in M . For any point x on γ, we have a tangent vector w of γ at x with

decomposition w = wh + wν . Since in U 1
5
ε(M), ĝh = α−1(( s

V
)

2
m + d2)π∗g(g|hM),
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Figure 3.2: Graph for being totally geodesic.

we have

|w|ĝ ≥ |wh|ĝh ≥ |wh|α−1( s
V

)
2
m π∗g(g|hM )

= |πg∗(w)|ĝ|hM .

So πg∗ is a length shrinking projection and γ̄ will not be longer than γ. This is

a contradiction with the fact that γ is the unique shortest curve connecting p

and q. Hence we are done.

Remark 3.2.6 Since being minimal (or totally geodesic) in the sense of Rie-

mannian Geometry is a local problem, from our argument, it is clear that any

oriented compact submanifold can be realized minimal (or totally geodesic) with

respect to some metric on the ambient manifold. In other words, there are no

topological obstructions for an oriented compact submanifold to be minimal

(or totally geodesic), if the ambient metric is allowed to vary. More gener-

ally, it also holds for a neat collection of countably many disjoint submanifolds

(defined in §3.5), which means that all components of a neat countable col-

lection will be minimal (or totally geodesic) simultaneously with respect to a

common metric. Similar results for conformal change will be obtained in §4
for minimality.
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3.3 X Compact and M Non-Connected

Definition 3.3.1 A family M of disjoint connected oriented compact subman-

ifolds of a manifold X (not necessarily compact) is called a collection and an

element of M is a component. The subset Mk of all components of dimension

k is its k-level. When it consists of finitely (or countably) many components,

we call M a finite (or countable) collection. If M has only one level in

dimension m, then it is called an m-collection. We will let M denote the

union of the components of M.

From now on, we assume that X is compact in this section.

Theorem 3.3.2 Suppose that M is a finite m-collection in (X, g). If the

convex hull C = {∑s
i=1 ti[Mi] :

∑s
i=1 ti = 1 and ti ≥ 0} in Hm(X;R) does

not contain zero, then for any open neighborhood U of M , a new metric ĝ can

be constructed by a horizontal change of g in U together with a smooth closed

m-form Φ̂ on X, such that every current of the form T =
∑s

i=1 tiMi, where ti

is non-negative with
∑s

i=1 ti > 0, is calibrated in (X, Φ̂, ĝ) and consequently is

mass minimizing in [T ] with M(T ) =
∑s

i=1 ti · Volĝ(Mi).

If we drop the convex hull condition but still require that each component

class is non-zero in the R-homology of X , we can choose a hyperplane Pm
through zero in Hm(X;R), which avoids all the component classes {[Mi]}s1.

Pm gives us two open chambers in Hm(X;R). If we reverse orientations for

components of M in one chamber, then they are flipped into the other chamber

through zero. Now all components of M, probably some of which are equipped

with different orientation, satisfy the convex hull condition.

Corollary 3.3.3 Let M be a finite collection in a compact Riemannian mani-

fold (X, g) with each component class non-zero in the R-homology of X. Then
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for any open neighborhood U of M , a new metric ĝ can be constructed by a

horizontal change of g in U , such that M is tamable in (X, ĝ).

Proof of Theorem 3.3.2. By §2.2, the convex hull condition implies that

there exists a smooth closed m-form φ on X such that
∫
Mi
φ > 0 for ev-

ery Mi. Since M is a finite collection, we can choose a small positive ε (as

described in §2.3) such that {Uε(Mi)} are disjoint and contained in U . Now

we use (2.4.1), the previous gluing procedure for forms in Uε ⊂ U , to obtain Φ.

For the metric gluing, we need pay attention to those constants αi , α(Mi)

(see Remark 3.1.2) for each component. Although generally {αi} are different,

we can simply take α to be the maximal one to construct a new metric gα by

the method in §3.1., i.e., to glue local metrics of with αg. Easy to see that gα

makes Φ a calibration form. Let ĝ , α−1gα and Φ̂ , α−
m
2 Φ, then each Mi is

calibrated by Φ̂ in (X, ĝ).

Since {Mi} are submanifolds, the measure ‖Mi‖ induced by Mi is H|Mi
, where

H is the Hausdorff m-measure of (X, ĝ). Suppose T =
∑s

i=1 tiMi with ti ≥ 0,

then ‖T‖ =
∑s

i tiH|Mi
and

M(T ) =

∫
|−→T |ĝ d‖T‖ =

∑
ti ·
∫
Mi

|−→M i|ĝ d‖Mi‖

=
∑

ti ·
∫
Mi

d volĝ =
∑

ti · Volĝ(Mi).

Remark 3.3.4 By Remark 3.2.4, the volume of Mi with respect to gα (of any
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initial metric) is always
∫
M

Φ. If [Mi] = [Mj], it follows automatically that

Volgα(Mi) =Volgα(Mj). Therefore, Volĝ(Mi) =Volĝ(Mj).

Proposition 3.3.5 For the metric ĝ constructed in the proof of Theorem

(3.3.2) or Corollary (3.3.3), we have distĝ(Mi,Mj) = distg(Mi,Mj).

ε
5

ε
5

p q

M

X

Figure 3.3: Graph for same distance.

Proof. Suppose that we do the horizontal change of g in Uε and that γ

(in the above picture) is one geodesic segment from p to q which realizes

the distance between Mi and Mj with respect to g. According to §2.3, we

know that γ ∩ Uε(Mi) is contained in a single fiber and it is {expp(tv) : v =

γ′p/‖γ′p‖ and t ∈ [0, ε)}. The same phenomenon also happens around Mj. Since

the fiber (vertical) part of g is unchanged,

distĝ(Mi,Mj) ≤ lĝ(γ) = lg(γ) = distg(Mi,Mj). (3.3.1)

From Appendix .3, we understand that the bundle structure will not change,

namely the disc fiber with respect to g is exactly the disc fiber with respect to

ĝ. By the same argument, we can prove the opposite inequality of (3.3.1) and

the proof is complete.
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3.4 X Compact and M of Different Dimen-

sions

In this section, M will be assumed to be a finite collection (not necessarily

of a single level) in a compact Remannian manifold (X, g). Then similar

conclusions as in Theorem 3.3.2 and Corollary 3.3.3 can be proved.

Theorem 3.4.1 Suppose that M is a finite collection in a compact Rieman-

nian manifold (X, g). For each k, let Ck ⊂ Hk(X;R) denote the convex hull

of homology classes represented by components in k-level. Suppose Ck does not

contain zero for each k. Then for any open neighborhood U of M , a new met-

ric ĝ can be constructed by a horizontal change of g supported in U , such that

there exist a family of calibration forms {Φ̂k} in (X, ĝ), and every current of

the form T =
∑sk

i=1 tiMi, with Mi ∈Mk, ti ≥ 0 and
∑sk

i=1 ti > 0, is calibrated

by Φ̂k. Consequently, each T is mass minimizing in its current homology class

[T ] with mass M(T ) =
∑s

i=1 tiVolĝ(Mi).

The same reason for Corollary 3.3.3 leads to the following analog.

Corollary 3.4.2 Let M be a finite collection in a compact Riemannian mani-

fold (X, g) with each component class non-zero in the R-homology of X. Then

for any open neighborhood U of M , a new metric ĝ can be constructed by a

horizontal change of g in U , such that each level Mk is tamable in (X, ĝ).

Proof of Theorem 3.4.1. Without loss of generality, consider the case of

two levels with a single component in each. Denote these two components by

Aa and Bb, where a > b. Then there exist an a-form φ and a b-form ψ with∫
A
φ > 0 and

∫
B
ψ > 0. Hence we can construct Φ and Ψ as in §2.4 for A and

B respectively by gluing method in Uε(A) and Uε(B) (for sufficiently small
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ε with the bundle structure described in §2.3 such that Uε(A) ∩ Uε(B) = φ,

Uε(A ∪ B) ⊂ U). By the difference of dimensions, Φ = dθ in Uε(B). Take Φ̃

to be Φ− d(ρ̃(d)θ), where ρ̃ is given as:

0 1
5ε

2
5ε

3
5ε

4
5ε ε

d

1

ρ̃

Figure 3.4: Graph for ρ̃.

Then Φ̃ is zero on U 4
5
ε(B). Based on the pair (Φ̃, g), we can get a new

metric by gluing method in §3.1 such that A is calibrated by (Φ̃, g̃). The same

procedure leads us from (Ψ, g̃) to (Ψ, g′) and the latter calibrates B.

Furthermore, we can obtain a triple (Φ̂, Ψ̂, ĝ) as follows. By our construc-

tion, there exist constants λ and µ with g̃ = λg away from U 2
5
ε(A) and

g′ = µg̃ away from U 2
5
ε(B) (see §3.1). Let Φ̂ = λ−

a
2 Φ̃, Ψ̂ = (λµ)−

b
2 Ψ and

ĝ = (λµ)−1g′. Therefore, ĝ = g away from Uε(A ∪ B). The punch line here

‖Φ̂‖∗ĝ = ‖Φ̃‖∗µ−1g′ = ‖Φ̃‖∗g̃ < 1 in (U 2
5
ε(B))c and meanwhile ‖Φ̂‖∗ĝ = ‖0‖∗ĝ = 0 in

U 4
5
ε(B). So (Φ̂, ĝ) and (Ψ̂, ĝ) calibrate A and B respectively.

Remark 3.4.3 Another proof is to use the difference in dimensions and choose

a proper constant factor α for each level without changing potential calibration

forms. However it is a little lengthy and tricky but invalid for the conformal

change in §4. So we omit it and prefer the above proof.

Proposition 3.4.4 For the metric ĝ constructed in the proof of Theorem 3.4.1

or Corollary 3.4.2, any two components have the same distance as that with
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respect to g.

Proof. Exactly the same argument as in Proposition 3.3.5.

3.5 X Non-Compact with No Boundaries

We are able to extend our gluing methods to the case of non-compact

ambient manifolds. However, due to the lack of compactness, some necessary

modification has to be made correspondingly. In contrast to Remark 3.1.2

for compact case, generally speaking, a constant function α can not meet the

need of (3.1.6). For example, consider the surface X, obtained by rotating the

graph of y = ex around the x-axis, with the induced metric from Euclidean R3.

Take γ as the circle corresponding to x = 0. Then it is obvious that, without

a global change of metric, there is no way to make γ homologically minimal.

This dissimilarity forces us to search a globally defined function α satisfying

(3.1.6) and (3.1.7) for each component. After this necessary modification,

similar results can be proved for the case of X non-compact and M a finite

collection. The proof of Theorem 3.5.1 given below also works for Theorem

3.4.1.

Theorem 3.5.1 Suppose that M is a finite collection in (X, g) with each com-

ponent class non-zero in the R-homology of X. Then for any open neighborhood

U of M , a new metric ĝ can be constructed by a horizontal change of g in U

and a conformal change in X − U , such that each Mk is tamable in (X, ĝ).

Proof. Similar to the previous, for a fixed level k of M, we can choose

a hyperplane Pk in Hk(X;R) avoiding the corresponding classes of k-level,

and then change orientations for components in one chamber. Then there
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exists a closed smooth k-form φk with positive integral over each k-dimensional

component.

Without loss of generality, consider the case of two levels, each of which

contains only one component. Let M = Mk1
1

∐
Mk2

2 with k1 > k2. There exist

{εi} such that each Uεi(M
ki
i ) has the bundle structure mentioned in §2.3 and

that the closures of Uεi(M
ki
i ) are disjoint compact sets. Then for level ki, we

can obtain forms Φki by gluing φki with local forms as in §2.4 on Uεi(M
ki
i )

respectively.

Eliminate Φk1 on U 4
5
ε2

(Mk2
2 ) to Φ̃k1 as in the proof of Theorem 3.4.1. There

exists a function αk1 equal to one on U 4
5
ε2

(Mk2
2 ) and satisfying (3.1.6) and

(3.1.7) for g and Φ̃k1 . Using αk1 , apply the horizontal change for g and Φ̃k1

on level k1 and denote the result metric g̃. Again, there exists a function αk2

satisfying (3.1.6) and (3.1.7) for g̃ and Φk2 . Set

C = max{αk2 on the closure of Uε1(M
k1
1 )}

and define Φ̃k2 , C−
k2
2 · Φk2 . Since

‖Φk2‖∗αk2 g̃| < 1 on Uε1(M
k1
1 ) ⊂ X,

by Lemma 2.1.9 and 2.1.10, we have

‖Φ̃k2‖∗g̃ < 1 pointwisely on Uε1(M
k1
1 ).

This means that, there exists a positive function α̃(≥ 1), which equals to one

on Uε1(M
k1
1 ), and satisfies (3.1.6) and (3.1.7) for g̃ and Φ̃k2 .

Now apply the horizontal change for g̃ and Φ̃k2 on level k2 and denote the

result metric by ĝ. It is not hard to see that Mk1
1 and Mk2

2 are calibrated by
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Φ̃k1 and Φ̃k2 respectively in (X, ĝ). By our construction, it is clear that the

metric change is horizontal on U and conformal on its complement.

Actually we can get the same conclusion (see Theorem 3.5.5 below), when

M is a suitable countable m-collection. In order to use gluing techniques, we

introduce the following definitions.

Definition 3.5.2 Let M = {Mi}i=1,2,··· be a countable collection in X. If for

any positive integer j, the set ∪i 6=jMi is closed, then we call M a neat collection.

Remark 3.5.3 The neatness implies that

M = M, and

M −Mj ∩Mj = Ø.

These can guarantee that the modified metrics via horizontal change (or con-

formal change in §4) will be smooth.

Remark 3.5.4 Since each Mi is compact, the neatness implies that di ,

distg(Mi,M −Mi) > 0. Let εi = 1
3
di, then {Uεi(Mi)} are disjoint and of

positive distance from each other.

For instance, on X = R2−Z2 where Z2 is the lattice of points with integer

coordinates. Let M = {(x, y) : ∃ k, l ∈ Z with (x− k)2 + (y − l)2 = 0.1}.

Figure 3.5: A neat collection.
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Theorem 3.5.5 Suppose that M is a neat collection in (X, g) with each com-

ponent class non-zero in the R-homology of X. In addition, assume that every

level of M consists of finite components except the lowest level. Then for any

open neighborhood U of M , a new metric ĝ can be constructed by a horizontal

change of g in U and a conformal change in X − U , such that each Mk is

tamable in (X, ĝ).

Proof. It follows by the proof of Theorem 3.5.1. Note that the neatness guar-

antees the smoothness of the result metric. Also note that our method fails to

descend from a level of infinitely many components.
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Chapter 4

Conformal Change of Metrics

4.1 Parallel Results to Chapter 3

Let us move to, in some sense, more interesting and clean case − change

metrics in a fixed conformal class. In order to understand how our previous

gluing techniques work for this kind of change, it is worth a glance at the

simplest case first.

Theorem 4.1.1 Suppose that (X, g) is a compact Riemannian manifold and

M is an oriented compact connected m-dimensional submanifold with [M ] non-

zero in Hm(X;R). Then for any open neighborhood U of M , a new metric ĝ

can be constructed by a conformal change of g supported in U , such that there

exists a closed smooth m-form Φ̂ defined on X, and M is tamed in (X, Φ̂, ĝ).

Proof. By discussions in §2.2, we can find some closed m-form φ of X with

positive integral over M . Based on φ, we can construct an m-form Φ described

in §2.4 with an appropriate choice of ε. A key point here is that Φ is a multiple

of π∗gω in U 3
5
ε(M), namely a simple m-form. Therefore, its comass is smooth

as a pointwise function in U 3
5
ε(M). In particular, the comass is realized by the
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reciprocal of the norm of the unique oriented horizontal simple m-vector (see

Remark 3.1.1). Take

g′ = (‖Φ‖∗g)
2
m g,

then

‖Φ‖∗g′ = 1 in U 3
5
ε(M).

Now we can play similar gluing tricks. Let

g̃ = σ
1
m (1 + d2)g′ + α(1− σ)

1
m g,

where σ,d and α are the same as given in §3.1. Then choose a constant α such

that (3.1.6) and (3.1.7) hold. Set ĝ , α−1g̃ and Φ̂ , α−
m
2 Φ. It is easy to see

by Lemma 2.1.9 that M is tamed by (Φ̂, ĝ) and that ĝ is in the conformal class

of g with ĝ = g in X−Uε(M). (In fact, ĝ and g are the same on X−U 2
5
ε(M).)

Remark 4.1.2 For a curve, to be minimal and to be totally geodesic are equiv-

alent. However this is not true for higher dimensional cases. In contrary to

Proposition 3.3.5, one can not always make a submanifold totally geodesic by

a conformal change of metric. Due to Appendix .1, M can be realized totally

geodesic by a conformal change if and only if M is totally umbilical.

The same local gluing ideas and elimination tricks for calibrations lead to

the following results.

Theorem 4.1.3 Suppose that M is a finite collection in a compact Rieman-

nian manifold (X, g). For each k, let Ck ⊂ Hk(X;R) denote the convex hull

of all the components in k-level. If [0] /∈ Ck for all k, then for any open neigh-

borhood U of M , a new metric ĝ can be constructed by a conformal change
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of g supported in U , such that there exists a family of smooth closed forms

{Φ̂k}sj=1, and each Mk is strongly calibrated in (X, Φ̂k, ĝ). Moreover, for each

k-level, every current of the form T =
∑rk

i=1 tiMi, where Mi belongs to k-

level and each ti is non-negative with
∑rk

i=1 ti > 0, is calibrated by (Φ̂k, ĝ)

and consequently is mass minimizing in the current homology class [T ] with

M(T ) =
∑s

i=1 ti · Volĝ(Mi).

Corollary 4.1.4 Suppose that M is a finite collection in a compact Rieman-

nian manifold (X, g) with each component class non-zero in the R-homology

class of X. Then for any open neighborhood U of M , a new metric ĝ can be

constructed by a conformal change of g supported in U , such that each level is

tamable in (X, ĝ).

When X is non-compact (without boundary), we can prove the following

nicer results compared with Theorem 3.5.1 and Theorem 3.5.5.

Theorem 4.1.5 Suppose that M is a finite collection in (X, g) with each com-

ponent class non-zero in the R-homology of X. Then a new metric ĝ can be

constructed by a conformal change of g, such that each level is tamable in

(X, ĝ).

Theorem 4.1.6 Suppose that M is a neat collection in (X, g) with each com-

ponent class non-zero in the R-homology of X. In addition, assume that each

level of M consists of finite components except the lowest level. Then a new

metric ĝ can be constructed by a conformal change of g, such that each level

is tamable in (X, ĝ).

Remark 4.1.7 Suppose that (X, g) is hermitian with J as initial setups. Then

the metric ĝ in the above theorems and corollary is hermitian with respect to

J as well. However due to the gluing process, generally speaking, no better
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regularity beyond C∞ can be guaranteed. If we start with an non-analytic

connected submanifold M in an analytic Kähler manifold (X, J, g), then M can

not be calibrated in X with respect to an analytic ĝ. Because a regularity result

of Morrey [17] says that if M is a C2-differentiable minimal submanifold in a

Cr (r ≥ or ω) Riemannian manifold (X, g), then M must has Cr-regularity.

Corollary 4.1.8 Suppose that M is an oriented compact submanifold in a

Riemannian manifold (X, g). Then there exists ĝ in the conformal class of g,

such that M is minimal in (X, ĝ).

Proof. By local calibrations.

4.2 On Mean Curvature Vector Field

Let us take a short digression, which, in some sense, is a generalization of

Remark 4.1.2 and Remark 4.1.7 by considering the following question:

Logically, since conformal change of metric can eliminate any initial mean

curvature vector field of an oriented submanifold, it should be true that certain

conformal change of metric can generate any expected smooth mean curvature

vector field along the submanifold.

Theorem 4.2.1 For an oriented compact submanifold M in (X, g) and ar-

bitrary smooth section ξ in the normal bundle over M , one can conformally

change g to ǧ such that the mean curvature vector field alomg M with respect

to ǧ is ξ.

Proof. First of all, by Corollary 4.1.8, one can conformally change g to ĝ such

that M is minimal in (X, ĝ). Since the ε-neighborhood is identified with the
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normal ε-disc bundle of M via exponential map restricted to normal directions,

we can define a smooth function on Uε by constructing a smooth function on

T⊥M :

fx(y) = 1− 2

m
< ξx, y >,

where x is a point on M and y lies in ε-disc fiber of M ⊂ T⊥x M . Then fx(0) = 1

and grad⊥g (fx)(0) = − 2
m
ξx (since d exp(·) is identity along M). Take ǧ = f · ĝ.

By Appendix .1,

Hǧ = Hĝ − m
2
· grad⊥g f

= 0 + m
2
· 2
m
· ξx

= ξx.

Remark 4.2.2 In fact, one can prove the theorem directly by Appendix .1

without bothering Corollary 4.1.8. The orientability and compactness can be

removed and the theorem is also valid for a neat collection.

4.3 M Non-Compact

It is natural, at this point, to ask questions like − How about the case

when M is non-compact? Can we generalize our results to this case? One

difficulty is that Mass(M) is usually infinity because of the non-compactness.

Although we could, sometimes, rescale it to be finite in some sense, it seems

not quite natural. We would like to start with the simple case of dimension

one.

Definition 4.3.1 An infinite line in a Riemannian manifold is a connected

properly embedded curve with infinite length for both directions. (Equivalently,
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it is complete with respect to the induced metric.)

Definition 4.3.2 A geometric line in a Riemannian manifold is an infinite

line such that the length of any connected segment on it realizes the distance

between the ending points in the ambient manifold.

An interesting question is that suppose we have an infinite line in an non-

compact Riemannian manifold (X, g) without boundary (no matter whether

X is complete or not), can we make this infinite line a geometric line by a

conformal change of metric? The answer can be asserted affirmatively.

Theorem 4.3.3 Suppose that L is an infinite line in (X, g). Then for any

open neighborhood U of L, a new metric ĝ can be constructed by a conformal

change of g supported in U , such that L is a geometric line with respect to ĝ.

Moreover, if the initially metric g is complete, so is ĝ.

Remark 4.3.4 By a theorem of Nomizu and Ozeki in [19], every metric is

conformal to a complete metric, so it is not very important to require that g

is complete.

Proof. By Appendix .2, after a conformal change from g to g′, we have a good

region U1(L; g′), the set of points within distance one to L with respect to g′,

contained in U . Note that there is a fibration structure induced by g. The set

within distance one under g′ to L along the fibers is in U1(L; g′).

L

U1(L; g
′)

1

0

1

Figure 4.1: A good region.
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Since L is not compact, its volume form induced by g is exact, i.e., df for

some smooth function f defined on L. Set

φ , d(τ(dg
′
)π∗gf),

where dg
′

is the distance function along fibers to L with respect to g′ and τ

looks like:

0 1
5

2
5

3
5

4
5 1

dg
′

1

τ

Figure 4.2: Graph of τ .

So φ is closed and it is the pull back of volume form of L by π∗g , when dg
′
is

no bigger than 3
5
. Then ‖φ‖∗g′ is smooth on U 3

5
(L; g′). Take ḡ = (‖φ‖∗g′)2g′. We

have ‖φ‖∗ḡ = 1 on U 3
5
(L; g′). Therefore we can continue our gluing procedures

as before. Let

g̃ = σ̄
1
m (1 + (dg

′
)2)ḡ + α(1− σ̄)

1
m g,

where α is a smooth function to be determined such that ‖φ‖∗g̃ ≤ 1 on U1(L; g′),

and σ̄ is chosen as: One construction of α is this. Set h = ‖φ‖∗g′ + 2 and

0 1
5

2
5

3
5

4
5 1

dg
′

1

σ̄

Figure 4.3: Graph of σ̄.

smoothen it to h̃ with ‖h − h̃‖ no bigger than one in the C0-norm (see [12]).
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Then h̃ is a smooth function bigger than ‖φ‖∗g′ on U1(L; g′). Now choose h̃2

to be α. By Theorem 2.1.2 for m = 1, φ tames L in (X, g̃) with the following

properties.

(1). ‖φ‖∗g̃ ≤ 1 and the equality holds exactly on L,

(2). φ = 0 in X − U 4
5
(L; g′), and

(3). By Stokes’ Theorem,
∫
γ̃
φ = 0, where γ̃ is any curve with ending points

on ∂U1(L; g′).

For a pair of points p and q on L, we have a segment [p, q] of L connecting

them. Suppose that another different (not a reparametrized) curve γ also have

the ending points p and q, then there are two possibilities.

The first is that the whole curve γ stays in U1(L; g′), which implies [p, q]

and γ are homologous and by calibration φ,

lg̃(γ) > |
∫
γ

φ| = |
∫

[p,q]

φ| = lg̃([p, q]),

where lg̃ means the length with respect to g̃.

The other is that γ leaves U1(L; g′). Denote p′ (or q′) to be the nearest

intersection point of γ with ∂U1(L; g′) from p (or q). Then we can replace γp′q′ ,

the part between p′ and q′ of γ, by any curve c in U1(L; g′) connecting them

(with a right choice of orientation). Call the new curve c̃, then it is obvious
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that c̃ is homologous to [p, q]. Because of properties listed above, we have

lg̃(γ) > |
∫
γpp′∪γp′q′∪γq′q

φ|
= |

∫
γpp′∪γq′q

φ|
= |

∫
γpp′∪ c ∪γq′q

φ|
= |

∫
c̃
φ|

= |
∫

[p,q]
φ|

= lg̃([p, q])

Hence we finish the proof.

By the same idea, we can get results with strong Global Plateau Property

for higher dimensional cases. Here (strong) Global Plateau Property of a

submanifold M in a Riemannian manifold means that any oriented bounded

domain Ω on M , with ∂Ω of finite mass, is (the unique) mass minimizer among

all m-dimensional rectifiable current chains with the oriented boundary ∂Ω.

Here we exclude the cases of ∂Ω being the curve Koch snowflake and etc., but

see Remark 4.3.7. If a current K(6= Ω) shares the same boundary ∂Ω and

K−Ω is a boundary of some rectifiable, compactly supported (m+1)-current,

then this assertion follows whenever M can be (strongly) calibrated under the

given metric. The difficulty here is the case when [K−Ω] is not zero in the R-

homology of the ambient manifold. However, the difficulty can be conquered

by the exactness of calibration form.

Theorem 4.3.5 Suppose that M is an embedded connected submanifold with

a complete metric gM induced from (X, g). If M is unbounded with respect to

gM , then for any open neighborhood U of M , a new metric ĝ can be constructed

by a conformal change of g supported in U , such that M can be tamed with
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strong Global Plateau Property in (X, ĝ).

Proof. Similarly, by the completeness of (M, gM), we can obtain g′ and good

region U1(M ; g′) ⊂ U from Appendix .2. Construct a calibration form φ

= d(τ(dg
′
)π∗g(ψ)), where dψ is the volume form on M . Then construct ĝ,

following the gluing method, in the same conformal class of g such that φ

tames M in (X, ĝ).

For the Global Plateau Property of M in (X, ĝ). Take any oriented bounded

domain Ω on M , with ∂Ω of finite mass. Suppose that a current K(6= Ω)

shares the same boundary ∂Ω and K −Ω is a compactly supported rectifiable

current. Then

M(Ω) = Vol(Ω) =

∫
Ω

i∗Mφ =

∫
∂Ω

ψ

= (dK)(τ(dg
′
)π∗g(ψ))

= K(φ)

≤M(K).

Since K 6= Ω and φ strongly calibrates M , the inequality is strict by Theorem

2.1.8.

Remark 4.3.6 As showed in the proof, any current calibrated by an exact

calibration form will automatically have Global Plateau Property.

Remark 4.3.7 Although, in the definition of strong Global Plateau Property,

we require the ∂Ω has finite mass, it turns out that dropping this restriction

does not make any difference.
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4.4 Global Plateau Property for M Compact

After discussing non-compact cases, one may ask whether we construct

metrics with Global Plateau Property for M compact case. Here we have to

modify the definition to be either (both) the domain Ω or (and) its complement

Ω−M is (are) the unique (two) mass minimizer(s) with boundary ∂Ω.

Theorem 4.4.1 Suppose that (X, g) is a Riemannian manifold and M is an

oriented compact connected m-dimensional submanifold with [M ] non-zero in

Hm(X;R). Then a new metric ĝ can be constructed by a conformal change of

g, such that there exists a closed smooth m-form Φ̂ defined on X, and M is

strongly calibrated in (X, Φ̂, ĝ) with strong Global Plateau Property.

Proof. Suppose we take global form φ′ to glue forms and use α satisfying

(3.1.6) and (3.1.7) for the metric gluing. Denote the new metric by ǧ.

For a domain Ω on M (suppose M(Ω) ≤ Vol(M)/2) and a rectifiable

competitor K with the same boundary, if the connected part of K to ∂Ω,

denoted by K ′, is supported in Uε, then [Ω−K ′] is homologous to a positive

integer multiple of [M ]. Therefore, the mass of Ω is smaller than K’s. If K ′ is

not supported in Uε, by Slicing theorem, since d is Lipschitz, there exists very

small δ < ε
30

such that S , K ′ ∩ ∂Uε−δ is rectifiable with finite mass. Then

take a sequence Ki with ∂Ki = ∂Ω− S to approach the minimal mass among

rectifiable currents with the same boundary. By the compactness theorem [4],

we have a subsequence with a minimal rectifiable limit K̃. If it has no points

on Uε−δ − Uε−2δ, then by the above argument, M(Ω) < M(K). Suppose K̃

has a point ã ∈ Uε−δ − Uε−2δ.

Claim: In (X, ǧ), suppose K̃ is a minimal rectifiable current K̄ , K̃|Uε−δ−U 4ε
5

,

then it has a positive lower bound mass β depending on ǧ only.
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Now we can change φ′ to φ , φ′

N
for sufficient large N such that

∫
M

φ < β.

Then we can use φ and α′ which is same as α on X−U 4ε
5

to do gluing. Clearly,

the new metric ĝ is ǧ on X − U 4ε
5

makes M strongly calibrated with strong

Global Plateau Property in (X, Φ̂, ĝ).

Proof of Claim. By Nash’s embedding theorem [18], we can isometrically

embed (X, ǧ) in to an Euclidean space (Rs, gE) for a large s. Note that K̄

induces a varifold. Since the norm of δK̄ in Rs is bounded, we can apply

Corollary (3) on page 446 in Allard [1].

Theorem 4.4.2 (Allard) Suppose 0 ≤ A < ∞, a ∈ support of ‖V ‖, V ∈
Vk(U), where U is an open region of Rs. If 0 < R < distance(a,Rs − U) and

‖δV ‖B(a, r) ≤ A‖V ‖B(a, r) whenever 0 < r < R,

then r−k‖V ‖B(a, r) expAr is nondecreasing in r, 0 < r < R, in particular,

Θk(‖V ‖, a) ∈ R.

Since the density of a rectifiable current is a.e. at least one, by taking a good

point a on the current near a′ with |a− a′| < ε
60

and seting r = ε
60

, we have a

lower bound as claimed.
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Chapter 5

Case with Singularities

Beyond the case of smooth submanifolds, singular situation plays an at-

tractive role in current research and we explore this direction in this chapter.

For simplicity, we first consider the case of singularity of a single point.

Theorem 5.0.3 Suppose that S is an oriented compact submanifold with one

singular point o in (X, g). Assume [S] is non-zero in the R-homology of X. If

a local part Sε , Bε(o; g) ∩ S for some ε > 0 can be calibrated in (Bε(o; g), g),

then there exists a metric ĝ coinciding with g in B ε
2
(o; g) such that S can be

calibrated in (X, ĝ).

o

S

X

Bε(o; g)

Figure 5.1: A picture for the case with a singular point.
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Remark 5.0.4 In the theorem, ε
2

can be replaced by κε for any 0 < κ < 1.

Proof. Suppose that ε in the assumption is sufficiently small so that the open

disc D = Bε(o; g) corresponds to an open disc in some local chart. Let φ be

the local calibration form. Then φ = dψ where ψ is some smooth (m−1)-form

defined on D. Suppose the following compact region Γ1 ∪Ω∪ Γ2 (constructed

by the fiber structure over the set (Γ1∪Ω∪Γ2)∩S when h is small) is included

in D −B 2ε
3

(o; g).

A B

Γ1 Ω Γ2

S

h

o

τδ̂1 δ̂2

δ σ̃

Figure 5.2: The gluing region.

Define π∗gω , d(π∗g(ψ|S)) in Γ1 ∪ Ω ∪ Γ2, where ω is the volume form on

S ∩ (Γ1 ∪ Ω ∪ Γ2). Set

Φ = d(τψ + (1− τ)π∗g(ψ|S)),

where τ is a gluing function in Ω illustrated in the picture above with value one

near Γ1 and zero near Γ2. (The picture here is just an illustration, since the

region “hight” h is generally smaller than one to guarantee no overlapping.)

Since Φ(
−−→
TxSg) = 1, where x ∈ S∩(Γ1∪Ω∪Γ2) and

−−→
TxSg is the unique oriented

unit horizontal m-vector through x on S, it can be achieved by shrinking h

(with respect to g) that the smooth function

Φ(
−−→
TySg) >

1

2
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in Γ1 ∪Ω ∪ Γ2 for all y in Γ1 ∪Ω ∪ Γ2, where
−−→
TySg is the unique oriented unit

horizontal m-vector through y with respect to g. Let

ḡ = f · g,

where

f = δ + (1− δ)(Φ(
−−→
TySg))

2
m

defined in Γ1∪Ω. On the support of δ, Φ = φ. Since (φ, g) is a local calibration

pair given in the assumption, we know f ≥ (Φ(
−−→
TySg))

2
m on Γ1 ∪ Ω and f ≡ 1

on Γ1. Then ḡ can be extended to Υ, where Υ is the region embraced by

the (blue) curves in the picture below (which is an “h-disc bundle” containing

Γ1 ∪ Ω ∪ Γ2), with properties:

(a). Φ calibrates S ∩ (Υ− Ω) on (Υ− Ω, ḡ),

(b). ḡ = g in Γ1, and

(c). Φ(
−−→
TySḡ) ≤ 1 with equality on Υ−Γ1−Ω, where

−−→
TySḡ is defined similar

as
−−→
TySg but with respect to ḡ instead.

o

S

X

Bε(o; g)

Υ

Figure 5.3: Region Υ.

In order to glue ḡ and g together and meanwhile to guarantee Φ a calibra-

tion, two powerful lemmas from [7] are needed.
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Lemma 5.0.5 (Harvey and Lawson) Let ξ ∈ ΛpRn be a simple p-vector

with V = span{ξ}. Suppose φ ∈ ΛpRn satisfies φ(ξ) = 1. Then there exists a

unique oriented complementary subspace W to V with the following property.

For any basis v1, · · · , vn of Rn such that ξ = v1 ∧ ...∧ vp and v− p+ 1, · · · , vn
is basis for W , one has that

φ = v∗1 ∧ · · · ∧ v∗p +
∑

aIv
∗
I , (5.0.1)

where aI = 0 whenever ip−1 ≤ p.

Lemma 5.0.6 (Harvey and Lawson) Let φ, V = span{ξ}, and W be as in

Lemma 5.0.5, and consider an inner product < ·, · > on Rn such that V ⊥ W

and ‖ξ‖ = 1. Choose any constant C2 >
(
n
p

)
‖φ‖∗ and define a new inner

product on Rn = V ⊕W by setting < ·, · >′=< ·, · >V +C2 < ·, · >W . Then

in this new metric we have

‖φ‖∗ = 1 and φ(ξ) = ‖ξ‖ = 1.

Remark 5.0.7 According to the oringinal proofs, if φ(ξ) = ϑ (positive) in-

stead of one, one can apply Lemma 5.0.5 to ϑ−1φ to get a similar conclusion

that ‖φ‖∗ = ϑ with ‖ξ‖ = 1 and φ(ξ) = ϑ by choosing C2 > ϑ−1
(
n
p

)
‖φ‖∗.

By Lemma 5.0.5 for Φ,
−−→
TySḡ and ḡ on Υ, there exists a smoothly varying

(n −m)-dimensional plane field W transverse to the horizontal directions on

Υ. Following Lemma 5.0.6 and Remark 5.0.7, for any metric gW along W ,

there is a sufficiently large constant ᾱ (by the compactness of Υ) such that if

we set g̃ = ḡh⊕ ᾱgW , then ‖Φ‖∗g̃ = Φ(
−−→
TySḡ) which is no larger than 1 on Υ by

property (c).
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Now construct a smooth metric ǧ on Ξ as follows based on property (b).

ǧ =



g near o

g + (1− δ̂1)((0 · ḡh)⊕ ᾱgW ) on A

(1− δ̂2)((0 · gh)⊕ gν) + g̃ on B

g̃ on Ω

σ̃g̃ + (1− σ̃)ḡ on Γ2

ḡ far away from o

(5.0.2)

In (5.0.2), ⊕ means the orthogonal splitting of a (pseudo-)metric and + is the

addition between two (pseudo-)metrics.

Note that on Γ2, W is actually the vertical distribution (fiber directions)

and Φ is π∗g(ω) − a simple horizontal m-form. It is not hard to check that Φ

is a calibration form on (Ξ, ǧ) by Lemma 2.1.9, 2.1.10 and 2.1.11. Note that

Ξ can be retracted to S and thereafter we can play previous gluing tricks for

form and metric respectively in smaller regions of S to get a global calibration

pair (Φ̂, ĝ) for S.

o

S

X

Bε(o; g)

Ξ

Figure 5.4: Region Ξ.
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In fact, the last step of the proof, i.e., gluing forms does not require that S

is a retract of some open neighborhood of S. As long as there exists a global

defined form which stands for [Φ] on the intersection of Ξ and some open

neighborhood of S, then we can proceed. Therefore, the above ideas work well

for more general cases.

Theorem 5.0.8 Suppose that S is an oriented connected compact submanifold

with a compact singular set S in (X, g). Assume that [S] is non-zero in the

current R-homology of X. Also assume that Hm(X;R) → Hm(U ;R) is onto

for some open neighborhood U of S. If a local part Sε , Bε(S ; g) ∩ S for

some ε > 0 can be calibrated in (Bε(S ; g), g), where Bε(S ; g) stands for the

ε-neighborhood of S with respect to g. Then there exists a metric ĝ coinciding

with g in B ε
2
(S ; g) such that S can be calibrated in (X, ĝ).

Remark 5.0.9 By the Almgren regularity theorem, S has codimension at

least 2 and then ∂S ⊂ S implies ∂S = Ø.

Besides standard local models of complex varieties of singularities inKähler

manifolds, one famous type worth mentioning is the Simons cones. For dimen-

sion 7, it is the cone generated by S3( 1√
2
)× S3( 1√

2
) in S7(1) of Euclidean R8.

Since Lawson [14] constructed smooth calibrations for cases Sr−1(
√

r
r+s

) ×
Ss−1(

√
s
r+s

) with r + s > 10, or r + s = 9 and |r − s| < 5, or r = s = 4,

we know that a local model of Simons cones meets the requirment of Theo-

rem 5.0.3. Recently, Haskins [9], Haskins and Kapouleas [10] and [11] provide

many local prototypes of special Lagrangian cone type. In fact, we need dif-

feomorphic types only. For example, in an open patch U in a 6-dimensional

manifold, if the pair (U , the part of a 3-dimensional submanifold in U) is

diffeomorphic to (C3, a special Lagrangian cone), then it satisfies the local

condition of Theorem 5.0.3 by considering the pulling back forms and metrics.
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One can consider product cases as well, e.g., S1× a Simons cone or a Simons

cone × a special Lagrangian cone.

Our theorem here merely confirms the existence of a metric which makes S

globally minimal. Under the same hypotheses, we may also ask: is it possible

to conformally change g such that S can be calibrated for the new metric?

Little progress has been made on this direction so far. However, it is not hard

to prove, under the above assumptions but without the requirement that [S]

is non-zero in the R-homology of X, that there exist metrics in the conformal

class of g which force the mean curvature to be zero away from the above

singular set. This includes all Lawlor cones (cf. [13]) which is minimal in

standard Euclidean spaces.

Theorem 5.0.10 Suppose that S is an oriented compact manifold with a sin-

gular point o in (Xn, g). If S̊ε , Bε(o; g)∩S−{o} is minimal on (Bε(o; g), g),

then for any open neighborhood U of S, a new metric ĝ can be constructed by

a conformal change g supported in U −B ε
2
(o; g), such that the mean curvature

vector, with respect to ĝ, is zero on S − o.

Proof. Suppose that ε in the assumption is sufficiently small so that Bε(o; g)

is an open disc in some local chart. We can use the same method to con-

struct a local calibration pair − the pull-back of the volume form ω̃ on Uε′(S−
B 7ε

12
(o; g)), which is ε′ neighborhood of S−B 7ε

12
(o; g) along fibers induced by g

(choose ε′ small enough to guarantee the bundle structure and its inclusion in

U −B 7ε
12

(o; g)) and the metric g′ = (‖ω̃‖∗g)
2
m g as in Theorem 4.1.1 .

Now glue g and g′ by taking:

ĝ = ρ̂(r)g + (1− ρ̂(r))g′,
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where r = r(πg(·)) is the composition of projection and the g-distance to o

along S, and ρ̂ looks like

0
ε
3

2ε
3

ε
r

ρ̂(r)1

Figure 5.5: Graph for ρ̂.

By the Lemma 2.1.12, the metric g′ equals g along S − B 7ε
12

(o; g). Hence

ĝ = g along S. Since S̊ε∩(Bε(o; g)−B 7
12
ε(o; g)) is already minimal with respect

to g, by Appendix .1, we have

Hg′ = Hg −
m

2
· grad⊥g ((‖ω̃‖∗g)

2
m ), i.e.,

0 = 0− m

2
· grad⊥g ((‖ω̃‖∗g)

2
m ), therefore

0 = grad⊥g ((‖ω̃‖∗g)
2
m ).

It follows that the mean curvature vector field on S̊ε ∩ (Bε(o; g) − B 7
12
ε(o; g))

is still zero with respect to ĝ by the computation:

Hĝ = Hg −
m

2
· grad⊥g ((ρ̂+ (1− ρ̂)(‖ω̃‖∗g)

2
m )

= 0 + ρ̂ · m
2
· grad⊥g ((‖ω̃‖∗g)

2
m )

= 0.

More generally, we have:

Theorem 5.0.11 Suppose that S is an oriented connected compact submani-

fold with compact singular set S as a submanifold in (X, g). If S̊ε , Bε(S ; g)∩
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S−S is minimal in (Bε(S ; g), g) for some ε > 0 , where Bε(S ; g) stands for

the ε-neighborhood of S with respect to g. Then for any open neighborhood U

of S, a new metric ĝ can be constructed by a conformal change g supported in

U − B ε
2
(S ; g), such that the mean curvature vector, with respect to ĝ, is zero

on S −S .
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Chapter 6

“Equivariant” Cases

We can naturally strengthen “equivariant” theorems in [25] by our meth-

ods. First, let us review the result from [25].

Theorem 6.0.12 (Tasaki) Let K be a compact connected Lie transformation

group of a manifold X and M be a compact oriented submanifold embedded in

a manifold X. We assume that M is invariant under the action of K. If the

real homology class represented by M in X is not equal to 0 , then there exists

a K-invariant Riemannian metric g on X such that M is mass minimizing in

its real homology class with respect to g.

Notice that M in the above theorem is necessarily connected. Also pointed

out by Prof. Tasaki, this result can be generalized to case when K is not

connected but the K-action is orientation preserving.

Theorem 6.0.13 (Tasaki) Let K be a compact Lie transformation group of

a manifold X and M be a compact connected oriented submanifold embedded

in a manifold X. We assume that M is invariant under the action of K and

the action is orientation preserving. If the real homology class represented by

M in X is not equal to 0 , then there exists a K-invariant Riemannian metric
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g on X such that M is mass minimizing in its real homology class with respect

to g.

By our method, we can obtain:

Theorem 6.0.14 Let K be a compact Lie transformation group of a manifold

X and M be a compact connected oriented submanifold embedded in a manifold

X. We assume that M is invariant under the action of K and the action is

orientation preserving. Then for any K-invariant Riemannian metric gK,

there exists a K-invariant metric ĝK in the same conformal class of gK such

that M can be calibrated in (X, ĝK).

Proof. It can be easily derived from the proof of Theorem 6.0.15.

If we restrict ourselves to the K-connected case, another generalization is:

Theorem 6.0.15 Let K be a compact connected Lie transformation group of

a manifold X and M be a finite collection (or a countable neat collection with

only lowest level consisting of infinte components) with each component class

non-zero in the real homology of X. We assume that each component of M

is invariant under the action of K. Then for any K-invariant Riemannian

metric gK, there exists a K-invariant metric ĝK in the conformal class of gK

such that M can be strongly calibrated in (X, ĝK).

Proof. By Theorem 3.5.5, without loss of generality, we only need consider

one level case.

First, the projection map of the local disc-fibered bundle structure induced

by gK around each component is K-invariant. Therefore, the projection π is
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K-equivariant and by §2.4, we know the local forms are K-invariant.

Since K is connected, its action on each component of M is automatically

orientation preserving.

By the discussions in §2.2, we can find some smooth closed m-form φ of X with

positive integrals over all components of M (possibly with reversed orientation

for some components). Since K is a compact Lie group, we have Haar-measure

dµ, with
∫
K
dµ = 1, based on which one may average φ. Denote the result

form by φK and then we have

∫
Mi

φK =

∫
Mi

φ.

Now we are ready to construct an m-form Φ described in §2.4 with an appro-

priate choice of ε by locally gluing ω∗, a right mutilple of pull-back of volume

form induced by gK , and φK as follows. Suppose that φK = ω∗+dψ, where ψ is

a one dimension lower form. Then we get φK = ω∗+dψK , where ψK ,
∫
K
ψdµ.

Set

Φ = ω∗ + d((1− ρ) · ψK).

As in Theorem 4.1.1, g′K , d and σ are all K-invariant. Then choose α such

that (3.1.6) and (3.1.7) hold. Take αK =
∫
K
αdµ. Do the gluing as in §3.1

around each component:

ĝK = σ
1
m (1 + d2) · g′K + αK(1− σ)

1
m · gK ,

where m is the dimension of the component. It is easy to see (Φ, ĝK) is a

K-invariant calibration pair, which calibrates all components of M .
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• Question:

How about the case when K does not fix all components of M?
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Chapter 7

Calibrations on Manifolds with

Boundary and Relative

Calibrations

Since we treat the boundary case and relative case essentially in the same

way, this chapter is organized as follows. In §7.1, details of boundary case are

given for the theory. Instead, in §7.2, several classical examples arising from

the relative case are mentioned. In the last section, the natural generalized

version of conformal change result on metric is proved.

7.1 Calibrations on Manifolds with Boundary

Parallel to Harvey and Lawson’s original idea, we wish to adapt the concept

of calibration forms such that each calibrated current is mass minimizing in

its relative homology class. In order to realize the idea, any contribution from

the boundary part should be zero. In fact, this leads to the right choice of

calibration for this case.
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Definition 7.1.1 Suppose (X, ∂X, g) is a smooth Riemannian manifold with

boundary. Define

Ep(X, ∂X) , {φ ∈ Ep(X) : φ|∂X = 0},

where Ep(X) is the set of all smooth p-forms on X and “|∂X” means pulling

back map induced by the inclusion : ∂X → X. Therefore, we have a cochain

complex with usual operator d, which induces

Hp
deR(X, ∂X) , {φ ∈ Ep(X, ∂X) : dφ = 0}/{dψ : ψ ∈ Ep−1(X, ∂X)}.

An important de Rham type lemma is the following.

Lemma 7.1.2 (de Rham) Suppose (X, ∂X, g) is a smooth finite type Rie-

mannian manifold with boundary, then

Hp
deR(E∗(X, ∂X)) ∼= Hp(C∗(X, ∂X)) ∼= Hp(X, ∂X)∗,

where both singular homology and cohomology are assumed with real coeffi-

cient.

Proof. By the short exact sequence

0→ E∗(X, ∂X)→ E∗(X)→ E∗(∂X)→ 0,

and the commutativity of the diagram

0 // E∗(X, ∂X) //

��

E∗(X) //

��

E∗(∂X) //

��

0

0 // C∗(X, ∂X) // C∗(X) // C∗(∂X) // 0
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we have the following commutative diagram:

Hk−1
deR (E∗) //

∼=

��

Hk−1
deR (E∗(∂)) //

∼=

��

Hk
deR(E∗(X, ∂)) //

��

Hk
deR(E∗) //

∼=
��

Hk
deR(E∗(∂))

∼=

��
Hk−1(C∗) // Hk−1(C∗(∂)) // Hk(C∗(X, ∂)) // Hk(C∗) // Hk(C∗(∂))

where X is omitted and ∂ stands for ∂X.

The vertical isomorphisms except the middle column are due to de Rham

Theorem. Therefore, by five lemma, the middle one is also an isomorphism.

The last isomorphism in the statement follows from the universal coefficient

theorem (another way is to use five lemma again for the natural pairing) for

manifolds of finite type.

Now we are ready to modify definitions in [8] for the case with boundary

as follows.

Definition 7.1.3 Suppose that (X, ∂X, g) is a smooth Riemannian manifold

of finite type with boundary. φ ∈ Em(X) is called a calibration (with boundary)

if it satisfies

(a) comass of φ is one,

(b) dφ = 0, and

(c) φ|∂X = 0.

The triple (X, g, φ) is called a calibrated geometry (with boundary).

Definition 7.1.4 In a calibrated geometry (X, g, φ), an m-dimensional sub-

manifold M which represents a non-zero relative homology class in Hm(X, ∂X),

is called calibrated if φ|M is the induced volume form of M in (X, g).

As in [8], let us define
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Definition 7.1.5 Suppose φ is a smooth p-form of comass 1 on (X, ∂X, g).

We define G (φ) to be the union of the sets

Gx(φ) , {ξx ∈ G(p, TxX) : < φx, ξx >= 1},

where

G(p, TxX) = {ζ ∈ ΛPTxX : ζ is a unit simple p-vector}.

Each locally rectifiable current T ∈ Rloc
p (X) determines an associated “vol-

ume” measure ‖T‖, and for ‖T‖-a.e. x there is an oriented “tangent” p-plane,

T (x) ∈ G(p, TxX). The current T is characterized by

T (ψ) =

∫
< T, ψ > d‖T‖

for any form ψ.

Definition 7.1.6 Let M be an m dimensional submanifold in (X, ∂X, g),

and suppose that φ is a smooth p-form of comass one. We call M is a φ-

submanifold, if the unit oriented tangent of M at any point belongs to G (φ).

Similarly, we also have the notions φ-chains, φ-cycles, positive φ-chains,

positive φ-cycles, positive φ-currents, closed positive φ-currents and the fol-

lowing statements.

Lemma 7.1.7 (Harvey and Lawson) In a Riemannian manifold (X, ∂X, g),

suppose that φ is a smooth m-form with comass one and that T is an arbitrary

m-current with compact support. Then

T (φ) ≤M(T )

with equality if and only if T is a positive φ-current.
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In particular, if S is a compact oriented m-dimensional submanifold (with

possible boundary) in X, then

∫
S

φ ≤ vol(S)

with equality if and only if S is a φ-submanifold.

Next theorem is the most important and it is called “fundamental theorem

in calibrated geometry”.

Theorem 7.1.8 (Harvey and Lawson) Suppose that (X, ∂X, g) is a cali-

brated manifold with calibration φ, and that T is a positive φ-current with

compact support. Let T ′ be any compactly supported current homologous to T

(i.e., T − T ′ is a boundary and in particular dT = dT ′) in H∗(X, ∂X). Then

M(T ) ≤M(T ′)

with equality if and only if T ′ is a positive φ-current.

In particular, if M is an m-dimensional φ-submanifold possibly with bound-

ary and M ′ is a compact submanifold homologous to M in Hm(X, ∂X), then

Vol(M) ≤ Vol(M ′)

with equality if and only if M ′ is calibrated by φ as well.

Proof. Since T −T ′ = dS+K, for some compactly supported (m+1)-current

S in X and some m-current K in ∂X, we have T (φ)− T ′(φ) = (T − T ′)(φ) =

dS +K(φ) = S(dφ) +K(φ) = 0. Combining Lemma 7.1.7, we have

M(T ) = T (φ) = T ′(φ) ≤M(T ′)
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with equality if and only if T ′ is also a positive φ-current.

It is apparent that if a calibrated submanifold does not touch the boundary

of ambient manifold, then it basically falls into the realm of [8]. Therefore we

will mainly focus on the cases of submanifolds with boundary in the boundary

of ambient manifold for the rest of this note.

Suppose that M is a submanifold in (X, g) with boundary ∂M contained

in ∂X. Pick one point x in ∂M , then TxM and Tx∂M can be identified as a

linear subspace of TxX. Using the metric gx, there exists a unique unit inner

vector Vx perpendicular to Tx∂M such that span({Vx}∪Tx∂M) is TxM . When

x varies in ∂M , we get a vector field and name it the boundary vector field

of M in (X, g).

As what happens for dimension one (consider a shortest curve in its rel-

ative homology class), a calibrated submanifold which represents a relative

homology class of any dimension must be “perpendicular” to the boundary of

ambient manifold along its own boundary.

Theorem 7.1.9 If M is calibrated in (X, g, φ), then its boundary vector field

V is perpendicular to ∂X, i.e., V is the restriction of the unit inner normal

vector field to M .

Proof. Suppose Vx = cos θx ·Tx+sin θx ·Nx, where Nx is the unit inner normal

vector to ∂X at x, Tx is a unit vector tangential to ∂X at x, and θx is the angle

between Vx and Tx. Let us fix the point x and omit the subscripts. Since the

volume element of TxM at a boundary point x is just the wedge product of

W (the induced volume element of Tx∂M) and V , from M ’s being calibrated,

we have

1 = φ(V ∧W) = φ((cos θ · T + sin θ ·N) ∧W) = φ(sin θ ·N ∧W) ≤ sin θ
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Therefore, θ = π
2

for any point x ∈ ∂M , i.e., V is perpendicular to ∂X along

∂M .

7.2 Relative Calibrations

Definition 7.2.1 Suppose (X,M, g) is a triple of a smooth manifold without

boundary, a submanifold inside and a Riemannian metric defined on X.

Ep(X,M) , {φ ∈ Ep(X) : φ|M = 0},

where Ep(X) is the set of all smooth p-forms on X and “|M” means pulling

back map induced by the inclusion : M → X. Therefore, we have a cochain

complex with usual operator d, which induces

Hp
deR(X,M) , {φ ∈ Ep(X,M) : dφ = 0}/{dψ : ψ ∈ Ep−1(X,M)}.

Definition 7.2.2 Suppose that (X,M, g) is a smooth Riemannian manifold

of finite type. φ ∈ Em(X) is called a calibration if it satisfies

(a) comass of φ is one,

(b) dφ = 0, and

(c) φ|M = 0.

The (X,M, g, φ) is called a relative calibrated geometry.

Apparently, results in the previous section also work for relative case.

Example A In [6], one beautiful existence theorem is the following.
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Theorem 7.2.3 (Gromov) Every closed quasi-Lagrangian submanifold W ⊂
Cn admits a (non-constant!) holomorphic disk (D2, ∂D2)→ (Cn,W ).

Any triangulation of D for the pseudoholomorphic disk will give us a sigular

relative two cycle in (Cn,W ). If we only focus on the image set, then it will be

a relatively calibrated current in (Cn,W ) with respect to standard metric and

symplectic form. Since its (symplectic) area is not zero, it stands for a non-

zero class in the relative homology class of H2(Cn,W ;R) and meanwihle mass

minimizing. This argument reconfirms the homological minimality of pseudo-

holomorphic disks with boundary in Lagrangian submanifolds in symplectic

geometry.

From the inclusion maps

W → Cn → (Cn,W ),

we have the exact sequence

· · · → H2(Cn)→ H2(Cn,W )→ H1(W )→ H1(Cn)→ · · ·

Since the first and last homology are zero for Cn, we see that the existence

of pseudoholomorphic disk with boundary on a given compact Lagrangian

submanifold implies that the submnanifold has non-trivial first homology class.

Together with the previous result, we have

Theorem 7.2.4 (Gromov [6], Sikorav [22]) Every closed quasi-Lagrangian

submanifold W ⊂ Cn supports a non-zero first real homology class.

In particular, there are no Lagrangian spheres in the standard complex

vector spaces (except S1 ⊂ C1).
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Sikorav [22] gave a proof without bothering Gromov’s result, where he also

pointed out the following direct proof based on Theorem 7.2.3.

Proof. Since Cn has trivial first homology classes, the standard symplec-

tic form ω = dφ. For any compact Lagrangian submanifold W , there is some

non-constant pseudoholomorphic disk (identifying with its image) such that

∂D ⊂ W . If H1(W ;R) = 0, then φ = df on M and

0 <

∫
D

ω =

∫
∂D

φ|W =

∫
∂D

df = 0.

Contradiction!

Another examples from symplectic geometry involve the notation “dis-

placeable”. To be displaceable of a Lagrangian submanifold implies the ex-

istence of a pseudoholomorphic disk with boundary on it. If we assume the

ambient symplectic space is exact, i.e. the symplectic form ω = dφ, we have

the following by the same argument.

Corollary 7.2.5 In any exact symplectic manifold (X,ω), any displaceable

Lagrangian submanifold has non-trivial first real homology class.

An exact Lagrangian submanifold L in an exact symplectic manifold X

means φ|L = df , where dφ equals the symplectic 2-form on X and f ∈ C∞(L).

Corollary 7.2.6 For any exact Lagrangian submanifold in an exact symplec-

tic manifold, there are no relative symplectic currents.

Example B Any associative with boundary in a coassociative in a G2 man-

ifold.
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Leung, Wang and Zhu [16] prove the existence of thin associative subman-

ifolds between two nearby disjoint conassociatives M1,M2 in a G2 manifold

(X,φ3). It is obtained by suitably moving the three dimensional submanifold

generated by a complex curve in one coassociative. This induces a large class

of relative calibrated submanifolds (or currents) and therefore leads to a quite

non-trivial and interesting relative homology of H3(X,M1 ∪M2).

Inspired by Salur [20] and Dr. Haskins’ remark, more questions about G2

may be asked (for example restrict ourselves to full G2 holonomy case).

Q1: Is it possible to consider the G2 cobordism theory between six dimen-

sional manifolds or Calabi-Yau threefolds?

Q2: Is it possible to stretch G2 manifolds between two six dimensional man-

ifolds or Calabi-Yau threefolds aribitrarily to infinity? (maybe the realizable

“length” is discrete or finite)

As Dr. Haskins pointed out, if two ends can be smoothly extended to

infinity cylinders still with non-negative Ric, then, in the first question, it

must be a cylinder connecting two essentially same six dimensional manifolds

or Calabi-Yau threefolds with strictly small holonomy in G2. However it seems

not easy to keep the non-negativity.

Q3: Is it true that any totally geodesic six dimensional submanifold in a G2

manifold is Calabi-Yau with full SU(3) holonomy? Does it imply a cylinder

splitting? (The answer is a twisted cylinder proved by others.)

Relevant to this question, the following is ture.

Proposition 7.2.7 Suppose that (X,Φ, g) is a calibrated geometry (relative

or not) with ∇Φ = 0, and that M (could be ∂X) is an oriented totally geodesic

hypersurface. Denote its normal vector field by N (uniquely determined by

orientation), then (M, (NyΦ)|M , g|M) is a calibrated geometry (possibly relative

depending on the choice of M).
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Proof. Denote the form (NyΦ)|M by φ. Since M is totally geodesic, it follows

that ∇N vanishes along M . By choosing a geodesic normal basis ei at any

point p in M , we have

dφ = ei ∧∇⊥ei(Φ(N, · · · )|M)

= ei ∧ ((∇eiΦ)(N, · · · )|M + Φ(∇eiN, · · · )|M)

= 0.

Its comass one property clearly follows from the contraction construction.

Remark 7.2.8 If the submanifold is totally umbilic at each point instead of

being totally geodesic, then the same computation leads us to

dφ = i∗M{λ(Φ−N∗ ∧ (NyΦ))} = λΦ|M

along M , where λ is the “totally umbilic function”.

Easy to see that φ in the proof is parallel.

Example C Again, G2 manifolds.

The calibration form on a G2 manifold is from the standard Φs in R7 ∼=
Imaginary part of O with

Φs = ω234 − ω278 − ω638 − ω674 − ω265 − ω375 − ω485.

Here we think ωabc = e∗a ∧ e∗b ∧ e∗c , where e1 = 1, e2 = i, e3 = j, e4 = k, e5 =

e, e6 = ie, e7 = je, e8 = ke with i, j, k, standard imaginary basis for H,

anti-commutative with a unit vector e in R8 ∼= H⊕ (H · e). Since Φ and N are

parallel along M , we can identify N with the vector e at a point p, then we
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have φ = ω26 + ω37 + ω48 which is a non-degenerate 2-form.

Define Jp : TpM → TpM by

g|M(JpV,W ) = φ(V,W )

for ∀ V,W ∈ TpM , explicitly by sending e2 to e6, e3 to e7 and e4 to e8. Then,

by parallel transporting Jp, we have a compatible integrable complex structure

J , with respect to which the holonomy of M lies in SU(3). Therefore (M,J, φ)

is a Calabi-Yau threefold with a non-zero parallel three form Φ|M .

Example D Kähler manifolds.

If there exists an oriented totally geodesic hypersurface M in a Kähler

manifold (X2n, J, ω), then similarly, for

φ2k−1 = Nyωk/k!

or

ψ2k−2 = JNyNyωk/k!,

M with the induce metric is a calibrated manifold.

In fact φ2k−1 = φ1 ∧ ψ2k−2 and φ1 foliates M , namely by the intersec-

tions with complex curves perpendicular to it. This is one example filled with

(oriented) geodesics related to the famous question in introduction.

7.3 Conformal Change of Metric

From Theorem 7.1.9, we see that the orthogonal condition along boundary

of a submanifold is necessary for its being calibrated. If one allows conformal

change of metric, then it turns out this is the unique requirement.
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Theorem 7.3.1 Suppose that M is an oriented connected k-dimensional sub-

manifold in a Riemannian manifold (X, g) of finite type, with ∂M ⊂ ∂X, and

that [M ] is non-zero in Hk(X, ∂X;R). Then the following are equivalent:

1. the boundary vector field of M is perpendicular to ∂X, and

2. there exists a metric ĝ conformal to g and a calibration φ with respect

to ĝ such that M is calibrated in (X, ĝ, φ).

Remark 7.3.2 The main difficulty for this case is the construction of fibra-

tion structure in a neighborhood of M in X with each fiber perpendicular to

the submanifold (in order to make the pull back volume form of comass one)

and any fiber through boundary point contained in ∂X (for the pull back vol-

ume form’s being zero when restricted to ∂X), whereas, for the case with no

boundary, one can simply take the fibration induced by distance function.

Proof. 2)⇒ 1) is trivial by Theorem 7.1.9. Now consider 1)⇒ 2).

First, extend X, M and g smoothly beyond the boundary a little bit. Let

the new submanifold be M Consider a sufficiently small neighborhood U of

M . Via the horizontal change, we know that, with respect to the result metric

ḡ, the original M is now totally geodesic, which allows us to do the following

construction for the required fibration structure.

Determined by the boundary vector field (note that ḡ|M = g|M), we have

a geodesic foliation of M near its boundary by γp starting from any point

p ∈ ∂M . Suppose the uniform existent length is T (with negative direction)

without conjugate points along those γp.

There exists a natural (n − m + 1)-dimensional submanifold in U deter-

mined by γp and the exponential map of normal ε-disk bundle of M along γ̄p

(extension of γp) for small ε. We truncate the submanifold by ∂X and call it

Γp(ε, T ) showed in the pictures with color blue.
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p

M

γp
Γp

Γp

Γp

∂X

T

the (n−m+ 1) dimensional slice Γp in U over a point of p on ∂M

p

T

Figure 7.1: Γp(ε, T ).

Take ε, t small enough such that exp−1
p |Γp(ε,t)(·) induces a diffeomorphism

on Γp(ε, t) for any p on ∂M . When ∂M is compact, ε can be a constant.

Otherwise take ε as a smooth function.

Consider the foliation exp−1
p |Γp(Γp) with respect to ḡ|Γp for the “left half

part”, i.e., T ≤ x ≤ T/2 defined below. Now we can reduce the question to

construct a foliation on the region of TpX/Tp(∂M) in the next picture (γp is

still geodesic in (Γp, ḡ|Γp)).
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0

TpX/Tp(∂M)

γp

T

Figure 7.2: A construction of bundle.

Define

ξ(x, ȳ) = ξ(x, ȳ)− σ̌(x)(ξ(x, ȳ)− ξ0(ȳ)),

where x is the intersection of the fiber ξ with line γp (same symbol for the

preimage), ȳ means the orthogonal coordinates components, ξ0(ȳ) is the unique

(if necessary, shrink ε appropriately for “the graph property”) point on the

preimage exp−1
p |Γp(∂X ∩ Γp), corresponding to ȳ, and σ̌ is increasing to hight

one at T/2 like

T 2T/3 T/2 0

Figure 7.3: Graph of σ̌.

By a direct computation of

d

dx
ξ(x, ȳ) =

d

dx
ξ(x, ȳ)− d

dx
σ̌(x) · (ξ(x, ȳ)− ξ0(ȳ))− σ̌(x)

d

dx
ξ(x, ȳ),

= (1− σ̌(x))
d

dx
ξ(x, ȳ)− d

dx
σ̌(x) · ξ(x, ȳ)

> 0
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for any fixed ȳ and T ≤ x < T/2 (T is negative in our notation), it shows that

the stretched one (along each Γp) is a foliation (no intersection).

Because the horizontal change preserves the orthogonal property along M

and the linear stretch construction (note that ξ0 ⊥ γp at 0) guarantees that

constructed foliation leaves, expp |Γp(ξ̄) for T ≤ x ≤ T/2, are perpendicular to

M by Gauss Lemma, we know that the extended foliation (actually fibration),

by the exponential map of normal ε-disk bundle for the part with distance

larger than |T |, meets our needs in Remark 7.3.2.

Denote the neighborhood by Uε. Clearly (M,∂M) is a retract pair of

(Uε, ∂Uε). So

Hk(Uε, ∂Uε) ∼= R · [ω̃],

where ω̃ is the pull back of volume form induced by g (NOT ḡ) via the above

fibration structure. By Lemma 2.12, we have that ‖ω̃‖∗g equals one along M

and at each point q it reaches one if and only if paired with the oriented

tangent k-vector of M at p among all unit simple k-vector of TqX.

Now by de Rham lemma 7.1.2, there is a closed k-form φ with φ|∂X = 0

and
∫
M
φ = Volg(M). Since

∫
M

φ = Volg(M) =

∫
M

ω̃,

[φ] = [ω̃] and therefore φ = ω̃ + dψ, where ψ is (k − 1)-form on Uε with zero

restriction into ∂X.

Set

Φ , ω̃ + d((1− ρ)ψ),

where ρ(d) is a gluing function as below of variable d, where d is the distance

function (w.r.t g) along fibers.
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d

1

ρ

Figure 7.4: Graph of ρ for boundary case.

It is easy to see that Φ is closed and of comass one along M plus Φ|∂X = 0.

By the gluing method of metrics for no boundary case, we know after suitable

conformal change on g, we have many new metric ĝ, with respect to which M

is relatively calibrated by Φ.

Remark 7.3.3 Modified version for relative case can be obtained similarly.

Results parallel to §4.1 can be achieved as well.
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Appendices
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.1 A Formula on Mean Curvatures by a Con-

formal Change of Metric

Theorem .1.1 Suppose M is an m-dimensional submanifold in (X, g) and a

conformal metric change is given by g̃ = f · g where f is a positive function.

Then we have the formula

f · H̃p = Hp −
m

2f
· grad⊥g,p(f). (.1.1)

Here H is the mean verctor field of M in (X, g), H̃ is the mean verctor field

of M in (X, g̃), and grad⊥g,p(·) means the normal gradient at p to g, i.e., the

normal part of gradg,p(·).

Proof. Since both sides of (.1.1) are coordinates independent. We only need

to verify it pointwisely. Let us take a coordinates (x1, · · · , xm, · · · , xn) of X

centered at p, first m components of which contribute to a coordinates of M .

We can meanwhile make {∂/∂xi|p}n1 an orthonormal frame with respect to g.

For g,

Γkij =
1

2
gkl{∂glj

∂xi
+
∂gil
∂xj
− ∂gij
∂xl
},

and for g̃,

Γ̃kij =
1

2
g̃kl{∂g̃lj

∂xi
+
∂g̃il
∂xj
− ∂g̃ij
∂xl
}

=
1

2
gkl{∂glj

∂xi
+
∂gil
∂xj
− ∂gij
∂xl
}+

1

2
g̃kl{ ∂f

∂xi
glj +

∂f

∂xj
gil −

∂f

∂xl
gij}.
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Set i, j ∈ {1, · · · ,m} and κ ∈ {m+ 1, · · · , n}. By the orthonormality at p,

Γ̃κij = Γκij +
1

2
g̃κκ{ ∂f

∂xi
gκj +

∂f

∂xj
giκ −

∂f

∂xκ
gij}

= Γκij −
1

2f

∂f

∂xκ
δij.

Denote ∂/∂xs|p and f−1/2 · ∂/∂xs|p by es and ẽs separately for s ∈ {1, · · · , n},
then

H̃ =
∑
i,κ

< ∇̃ẽi ẽi, ẽκ >g̃ ẽκ

=
∑
i,κ

< ∇̃eiei, eκ >g
eκ
f

=
∑
i,κ

< ∇eiei −
1

2f
· grad⊥g,p(f), eκ >g

eκ
f

=
1

f
· (H − m

2f
· grad⊥g,p(f)).

Hence the proof is complete.
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.2 A Concrete Construction of Metric and Re-

gion for §4.3

Since there is no essential difference for our construction in this section for

higher dimensions, we focus on dimension one case only.

Lemma .2.1 Suppose that L is an infinite line in a complete manifold (X, g)

and that U is an open neighborhood containing L. Then there exists g′ in g’s

conformal class such that U1(L; g′) lies in U .

Proof. Pick a point O on L. Without loss of generality, assume U 6= X. Since

L is embedded, if necessary, we can shrink U to guarantee that, for every point

in U , there is a unique nearest point on L. Define

r(d) , sup{r : for any x with d(x,O) = d, B(x, r) ∈ U}.

Since the induced metric is complete, r(d) is a well-defined continuous function

with R values. For each d, {x|d(x,O) = d} is compact due to the completeness

of L, so r(d) is always a finite number. Set r̃(d) , infs≤d{r(s)}, then it is an

everywhere positive, decreasing and continuous function.

Let

e(x) =

e
− 1

1−|x|2 when |x| ≤ 1

0 when |x| > 1

,

and define

h(d) , (
1

r̃
∗ e)(d).

If we take h̃(d) , h(d+ 1), then

1. h̃ is smooth and increasing, and
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2. h̃(d) = h(d+ 1) ≥ 1
r̃(d)

.

Set

r̂(d) ,
1

h̃(d)
.

By the above two properties, r̂ is smooth and decreasing with r̂(d) ≤ r̃(d).

Now we have a smooth neighborhood Ur̂(L; g) , {y : y is of distance at most

r̃ r̂r

d

Figure 5: Modifications on function r.

r̂(d(x)) from x ∈ L} contained in U . Since we want to rescale metric such

that Ur̂(L) includes all points with distance at most one from L under the new

metric, we only need to concentrate on the infinity part. Suppose r̂ decreases

below 1 from some d0. (If there are no such d0, we are done.) For the part of

d ≥ d0 + 1, we define ḡ , r̂(d+ 3− r̂(d))−2g. Then, it follows that

d+ 3− r̂(d) is increasing

⇒ r̂(d+ 3− r̂(d)) is decreasing

⇒ r̂(d+ 3− r̂(d))−2 is increasing.

Hence on the union of balls ∪{x|d(x)=d}Br̂(d)(x; g) for any d ≥ d0 + 1, we have

1

r̂(d+ 3− r̂(d))2 ≥
1

r̂(d− r̂ + 3− r̂(d− r̂))2 ≥
1

r̂(d+ 1)2

The last inequality is due to the fact that both r̂ and r̂(d − r̂) are smaller
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than one. Choose arbitrary curve γ from x to ∂Br̂(d)(x; g) entirely contained

in Br̂(d)(x; g). Then

lḡ(γ) =

∫
γ

dsḡ

≥
∫
γ

1

r̂(d− r̂(d) + 3− r̂(d− r̂(d)))
dsg

=
1

r̂(d− r̂(d) + 3− r̂(d− r̂(d)))

∫
γ

dsg

≥ 1

r̂(d+ 1)
r̂(d)

> 1.

It is easy to extend ḡ to a smooth metric g′ conformal to g on Ur̂(L) with

U1(L; g′) ⊂ Ur̂(L; g) ⊂ U .
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.3 A Generalized Gauss Lemma

Since, for an one dimensional foliation, it is always locally orientable, one

can define a local length flow with respect to metric according to a choice of

orientation. By an observation of Sullivan [23], and a special case in Harvey

and Lawson [7], we have the following theorems.

Theorem .3.1 (Sullivan) A one dimensional flow is geodesible if and only if

there is a transverse field of codimension one planes invariant under the local

length flow.

Theorem .3.2 (Harvey and Lawson) A one dimensional foliation Γ in (X, g)

is geodesic if and only if its perpendicular plane field P is invariant under the

length flow.

Proof. Locally, choose an orientation of Γ and denote the unit tangent vector

field by V . For any local (nowhere zero) smooth section N of P ∼= TX/TΓ,

we have

0 = N < V, V >= 2 < ∇NV, V >,

which implies

0 = V < V,N >

=< ∇V V,N > + < V,∇VN >

=< ∇V V,N > + < V,∇NV + LVN >

=< ∇V V,N > + < V,LVN > .

Hence, in the last line, the first term equals zero is equivalent to say the second

term is zero, namely Γ is geodesic if and only if its perpendicular plane field
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is preserved by the local length flow.

Since what we encounter in the proof of Propersition 3.3.5 is the case that

P is locally integrable, we will focus on this special case from now on.

Corollary .3.3 (Generalized Gauss Lemma) Suppose that Γ is a one di-

mensional foliation for an open ball Bn in Rn with a metric g. If the per-

pendicular plane field of Γ is locally integrable, then Γ is geodesic if and only

if (locally) integral pieces of the perpendicular plane field are preserved by the

length flow along Γ.

D

Γ

Figure 6: Foliation of dimension one.

Remark .3.4 Suppose that the local perpendicular plane field Pof a geodesic

foliation Γ through p is integrable. Say Pp is an integral piece. Then, by the

length flow, it follows that P is integrable near p.

Remark .3.5 For the integrable case, we have a different proof by construct-

ing a distinguished coordinates of the foliation via local length flow and the

classical Clairaut′s Theorem on geodesics of surfaces of revolution in R3 is a

by-product from that argument.
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The reason why we assign the appellation “Generalized Gauss Lemma” to

Lemma .3.3 is the following. For a fixed p on (X, g). Since d(expp 0)(·) is

identity on TpX, expp is a local diffeomorphism in a small neighborhood U of

0. Without loss of generality, assume that the unit sphere S in (TpX, gp) is

contained in U . For any vector v ∈ S, take a connected open neighborhood

W̃ of v in S and denote the sector (generated by W̃ to 0) by W (topologically

(0, 1]× W̃ ). Then expp(W − 0) is foliated by F , {expp(I̊w);w ∈ W̃}, where

I̊w is the interval between 0 and w excluding 0 but including w. Obviously,

PP, {expp(tW̃ ); 0 < t ≤ 1} (potentially perpendicular plane field of F ) are

integrable and preserved by the length flow along F . Although the foliation

PP seems smashed at p, let us zoom in and look at its limit behavior. For

the geodesic expp(I̊v), its limit tangent vector (outward) at p is v and the limit

of PP at p is d(expp 0)(TvS). Again, due to the fact d(expp 0)(·) = Id, the

limits PP0 and F0 at (p, v) are orthogonal. Therefore, it follows that PP

is the perpendicular plane field of F .

Corollary .3.6 Suppose that Γ is a one-dimensional geodesic foliation of an

open ball (Bn, g) and that its perpendicular plane field is locally integrable. Let

g = gΓ ⊕ g⊥ be the metric decomposition of g along Γ and its orthogonal part.

If ĝ = gΓ⊕ ĝ⊥ is a smooth metric by replacing g⊥ by ĝ⊥, then Γ is geodesic as

well with respect to ĝ.

Proof. Since gΓ and Γ’s perpendicular plane field are unchanged, Γ and ĝ

satisfy the conditions in Theorem .3.3. Thus the corollary follows.
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