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Chapter 1

Introduction

1.1 Real rational curves in the plane

In 1876, Harnack published published a paper on the bound on the number
of components of a plane projective real algebraic curve [6]. In the year 1900,
Hilbert suggested the classification of real, non-singular plane projective real
algebraic curves in his famous list of problems [8]. This stimulated research
in the topology of real algebraic varieties, particularly the classification of real
algebraic curves. Non-singular real algebraic curves in RP2 are topologically
the union of circles, and Hilbert was interested in which arrangements were
possible for a particular degree. The difficulty greatly increases as the degree
increases. Klein, Rokhlin, Viro and many others worked on the problem and
a complete classification has been obtained up to degree 7. Viro invented a
patchworking method which proved to be a very useful combinatorial technique
to construct examples of real algebraic curves.

Real algebraic curves can be naturally extended to their complexification
and considering this proved very fruitful in understanding them. For instance,
Rokhlin realized the importance of curves that divided their complexification in
two components, which are called Type I curves. He discovered the Rokhlin’s
Complex Orientation Formula for Type I curves, which provides a restriction
on the type of arrangements possible. Rokhlin also defined the stronger notion
of a rigid isotopy which is an isotopy in which the objects are of the same real
algebraic class throughout the isotopy. There are examples of curves in RP2

that are isotopic but not rigidly isotopic in degree 6.
Real rational curves form an important subclass of real singular curves.

Their rigid isotopy classification has been completed up to degree 5. Generally,
curves of a particular degree have been classified by considering restrictions
on the type of arrangements possible and then constructing examples that
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satisfy those restrictions. Indeed, this is how rational curves of degree 4 and 5
were classified. However, in chapter 2 of this thesis we will see a explanation
for the rigid isotopy classes of rational curves of degree 4. We will generalize
the notion of a real chord diagram by replacing the circle by a sphere. We
will define the meaning of real chords and then show that there is a bijective
correspondence between the rigid isotopy classes of generic rational curves of
degree 4 and extended chord diagrams with exactly three chords.

1.2 Real rational knots

A natural generalization of Hilbert’s original problem is the study of co-
dimension 1 varieties in RPn for a general n, particularly real algebraic hy-
persurfaces in RP3. They have been classified up to degree 4. Another gen-
eralization of Hilbert’s original problem is to classify real algebraic curves of
co-dimension 2 in RP3 or another smooth projective variety of dimension 3.

1.2.1 Previous work on real rational knots

Viro invented a rigid isotopy invariant of a real rational knot K in RP3, called
the encomplexed writhe number [12], denoted by w(K).

Since the number of double points of a real rational plane curve of degree d
is bounded by (d−1)(d−2)

2
, the writhe number of a real rational knotK of degree d

satisfies the following restrictions.

|w(K)| ≤ (d− 1)(d− 2)

2
(1.1)

w(K) =
(d− 1)(d− 2)

2
mod 2 (1.2)

Bjorklund studied real rational knots in RP3 [1]. He proved the following
“gluing method” to construct real rational knots in RP3.

Theorem 1. If two real rational knots of degrees m and n repsectively, inter-
sect in only one point p and their tangents at p do not coincide, then there
exits a real rational knot of degree m + n that is isotopic to the union of the
two original knots, with a small perturbation at p.

By using the gluing method, he was able to obtain a knot of a given degree
with the maximum and minimum possible writhe numbers± (d−1)(d−2)

2
. Indeed,

it is possible to construct knots of degree d with each of the writhe numbers
permitted by equations 1.1 and 1.2.
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He classified, up to rigid isotopy, all real rational knots up to degree 5. The
classification can be described as follows.

1. Degree 1: writhe 0 (topologically a line)

2. Degree 2: writhe 0 (topologically a circle)

3. Degree 3: writhe ±1 (topologically a line and its mirror image)

4. Degree 4:

(a) writhe ±1 (topologically a circle and its mirror image)

(b) writhe ±3 (topologically a two crossing knot and its mirror image)

5. Degree 5:

(a) writhe 0 (topologically a line)

(b) writhe ±2 (topologically a line and its mirror image)

(c) writhe ±4 (topologically a trefoil and its mirror image)

(d) writhe ±6 (topologically a projective 53 knot and its mirror image)

The classification shows that the writhe number can distinguish rigid iso-
topy classes of knots of degrees less than 5. This is not true for higher degrees;
Bjorklund constructed an example of two non-rigidly isotopic knots of degree 6
which have the same writhe number.

1.2.2 Real rational knots in the 3-sphere

One can consider real rational curves in other 3-manifolds that are also real
algebraic varieties, like non-singular quadrics of dimension 3. Among them,
the quadric with signature 1, plays an important role. Topologically it is
a 3-sphere, which is the traditional ambient space for classical knots. Real
algebraic knots in S3 also arise naturally as the links of singularities of complex
plane algebraic curves. Chapter 3 describes a classification of real rational
knots in the 3-sphere up to degree 6. Apart from the classification, we will
also consider the link between rational knots in the 3-sphere and rational knots
in RP3.
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Chapter 2

Chord diagrams and generic
planar rational quartics

2.1 Introduction

All kinds of topological classification problems on real algebraic plane projec-
tive curves of degree 4 have been solved, see D.A. Gudkov’s survey paper [5].
However, the complexity of the results and just the number of inequivalent
curves (117 types of irreducible curves), is a motivation to look for parts of
the classification that can help in understanding the entire picture.

Algebraic curves that have only the simplest singularities, i.e. non-degenerate
double points, are called nodal curves. Rational real nodal curves occupy a
very special place in the space of all irreducible real algebraic plane projec-
tive curves of degree 4: nodal curves of higher genus can be obtained from
them by small perturbations, and curves with more complicated singularities
can be obtained from nodal curves by degenerations. Both perturbations and
degenerations for the curves under consideration are easy to see, although the
complete list of the results is huge.

Topological classifications of nodal rational real algebraic plane projective
curves of degree 4 were known, but the result was formulated as just a list of
pictures.

The results of this paper provide a key to understanding the list. We prove
that the rigid isotopy type of a nodal rational real plane projective curve is
determined by the chord diagram which describes the double points and that
every chord diagram with at most 3 chords is realized by such a curve. This
gives a new elementary proof for the rigid isotopy classification.
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2.1.1 Plane projective rational curves

A plane projective curve C is called a rational curve if it can be presented as
the image of a regular map of the projective line. Such a map θ is defined by
formulae

[s : t] 7→ [p0(s, t) : p1(s, t) : p2(s, t)] (2.1)

where p0, p1, and p2 are homogeneous polynomials of the same degree d with
no common root. In this paper we study such curves of degree d = 4 defined
over the field R of real numbers.

The set of real points of C is denoted by RC and the set of complex points
of C by CC. CC is the image of the map Cθ : CP1 → CC ⊂ CP2 defined by
(2.1).

2.1.2 Real nodes

If the preimage Cθ−1(x) ⊂ CP1 of a point x ∈ CC consists of two points and
the corresponding branches of CC are transversal, then that point is called a
node.

A real node x ∈ RC is said to be non-solitary if Cθ−1(x) ⊂ CP1 consists
of two real points. Then x is an intersection point of two branches of RC
transversal to each other in RP2.

A real node x ∈ RC is said to be solitary if Cθ−1(x) ⊂ CP1 consists of two
imaginary points. Then x is an intersection point of two complex conjugate
branches of CC transversal to each other in CP2, but as a point of RC this
point is isolated.

Non-real nodes are of two types: the preimage may consist of points that
either belong to the same component of CC \RC or to different components.

A generic rational complex plane projective curve of degree d has only nodes
as singularities and they are (d−1)(d−2)

2
in number. Then its parametrizations

Rθ and Cθ are generic immersions of the circle RP1 to RP2 and of the 2-
sphere CP1 to CP2, respectively. In particular, a generic rational complex
plane projective curve of degree 4 has 3 nodes.

2.1.3 Chord diagrams

For a generic rational real plane projective curve C, the position of real non-
solitary nodes on RC can be encoded into a graph formed by a circle and a few
chords. The circle is a copy of RP1 parametrizing C and each chord represents
a non-solitary real node of C connecting the corresponding pair of points on
the circle. The whole graph is called the real chord diagram of C.
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In the presence of imaginary nodes, one can enlarge the real chord diagram
by incorporating information about the imaginary nodes. The circle is ex-
tended to a 2-sphere in which the original circle is the equator, a real solitary
node corresponds to a chord with end-points symmetric with respect to the
equatorial plane, an imaginary node corresponds to a chord connecting non-
symmetric points that do not belong the equator. However, as the curve is
real, the set of all end-points of all the chords is invariant under the symmetry
in the equatorial plane. A chord with non-symmetric end-points can be of one
of two types: it connects either points of the same hemi-sphere or of different
hemi-spheres. Such a chord diagram will be called an extended chord diagrams
of the curve C.

A rigid isotopy of a generic real plane projective curve is a continuous
one-parameter deformation Ct with t ∈ [0, 1] consisting of generic real plane
projective curves of the same degree. Rigid isotopy is an equivalence relation.
A real chord diagram is preserved under a rigid isotopy.

There are two major problems related to using chord diagrams as rigid
isotopy invariants. Firstly, it is not known which chord diagrams are realizable
by curves of degree d. Secondly, it is not true that two generic real plane
projective curves that have the same chord diagram are rigid isotopic.

Below we solve both problems for curves of degree 4.

2.1.4 The main result

Theorem 2. Any extended chord diagram with at most 3 chords is realizable
by a nodal rational real plane projective curve of degree 4. Two nodal rational
real plane projective curves of degree 4 with only real nodes are rigidly isotopic
if and only if they have the same extended chord diagram.

Proof. Either all nodes are real or exactly two nodes are imaginary. This is
because imaginary nodes must occur in pairs since the curve is real. We first
consider the case where all the nodes are real:

Case 1: All nodes are real

Realize a given chord diagram with at most three chords, on the projective
line RP1. If the number of chords in it is less than three, then complete it by
chords connecting complex conjugate points on the sphere CP1. Let the pairs
of end points of the chords be [αi : βi] and [γi : δi] for i = 0, 1, 2. Then the
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polynomials

p0(s, t) =(β1s− α1t)(δ1s− γ1t)(β2s− α2t)(δ2s− γ2t)
p1(s, t) =(β0s− α0t)(δ0s− γ0t)(β2s− α2t)(δ2s− γ2t)
p2(s, t) =(β0s− α0t)(δ0s− γ0t)(β1s− α1t)(δ1s− γ1t)

(2.2)

define a parametrization of a generic real plane projective curve of degree 4
with the nodes at the points z0 = [1 : 0 : 0], z1 = [0 : 1 : 0], and z2 = [0 : 0 : 1]
and the prescribed chord diagram. So any chord diagram is realizable as the
chord diagram corresponding to rational curve of degree 4.

We now show that chord diagrams are a strong rigid isotopy invariant for
curves of degree 4. Let C be a generic real plane projective curve with three
real nodes. The nodes cannot be co-linear, because then a line containing them
would have an intersection number with C of at least 6, which would contradict
Bezout’s theorem. Therefore, there is a projective transformation that can
transform the curve so that the nodes of C are the points z0 = [1 : 0 : 0],
z1 = [0 : 1 : 0], and z2 = [0 : 0 : 1].

Let [αi : βi] and [γi : δi] be in the preimage of zi. Let qi be the quadratic
polynomials defined by

q0(s, t) =(β0s− α0t)(δ0s− γ0t)
q1(s, t) =(β1s− α1t)(δ1s− γ1t)
q2(s, t) =(β2s− α2t)(δ2s− γ2t)

(2.3)

If the points [αi : βi] and [γi : δi] are imaginary then they must occur in
conjugate pairs, so each qi is a real polynomial.

The main observation is that when we consider θ explicitly as [p0 : p1 : p2],
where pi are homogeneous polynomials of degree 4, then the fact that [1 : 0 : 0]
is a node means that q0 divides p1 and p2. Similarly, q1 divides p0 and p2, and
q2 divides p0 and p1. This proves that p0 = c0q1q2, p1 = c1q0q2, and p2 = c2q0q1
where each qi is quadratic polynomials and each ci is a constant, which can
all be made 1 by a projective transformation that corresponds to scaling the
coordinate axes.

Therefore, by a projective transformation, the curve has been transformed
to one whose parametrization has coordinates p0, p1, and p2 such that p0 =
q1q2, p1 = q0q2, and p2 = q0q1, where each qi is determined by the preimages of
the nodes as described above. This is defined explicitly by equations 2.2, where
the pair {[αi : βi], [γi : δi]} is the preimage of each node zi. This new curve
is projectively equivalent to the original curve. What we have proved is that
there is a unique generic degree 4 rational parametrization (up to projective
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transformations) with the given nodes and their preimages. Therefore, to show
that two curves are isotopic, we only need to keep a track of their nodes and
the pre-images of their nodes.

Consider two curves C1 and C2 with equivalent chord diagrams. They have
the same number of solitary nodes. Denote their explicit parametrizations by
[p10 : p11 : p12] and [p20 : p21 : p22] respectively. Use a projective transformation
to transform each of the curves in such a way that their nodes are sent to
[1 : 0 : 0], [0 : 1 : 0], and [0 : 0 : 1], and the solitary nodes of both curves
are sent to the same points. By what we have discussed above, their resulting
coordinates are of the form [qi1q

i
2 : qi0q

i
2 : qi0q

i
1] for i = 1, 2, where

qi0(s, t) =(βi0s− αi0t)(δi0s− γi0t)
qi1(s, t) =(βi1s− αi1t)(δi1s− γi1t)
qi2(s, t) =(βi2s− αi2t)(δi2s− γi2t)

(2.4)

A path [αti : βti ] between [α1
i : β1

i ] and [α2
i : β2

i ] will result in a rigid isotopy
as long as the [αti : βti ] does not coincide with any other roots of any qji . No
two of the polynomials qji , for each j = 1, 2, can share a root, otherwise all the
coordinates will vanish on that point and the curve would not be well defined.
No other singularity can be formed in the process because a generic planar
rational curve of degree 4 can have only three nodes.

Now we will show that the since the chord diagrams are the same, we
can find a path between the roots of corresponding qji . Suppose [α1

i : β1
i ] is

imaginary, then so will [α2
i : β2

i ]. Their conjugates would then be [δ1i : γ1i ] and
[δ2i : γ2i ] respectively. It is always possible to find a path in CP1 \RP1 between
[α1
i : β1

i ] and [α2
i : β2

i ] that does not contain any other root of any qji . The
conjugate of this path will be a path between their conjugates [δ1i : γ1i ] and
[δ2i : γ2i ].

Consider the case where [α1
i : β1

i ] is real. Since the curves share the same
chord diagram, it is also possible to find a path [αti : βti ] between [α1

i : β1
i ]

and [α2
i : β2

i ]. For the same reason, we can find a path connecting [δ2i : γ2i ]
and [δ2i : γ2i ], and therefore we obtain a path between the polynomials q1i and
q2i , for each i. This defines a path between p1i and p2i , which shows that the
curves C1 and C2 are in the same rigid isotopic class because we have been
able to transform them to curves that have the same nodes and pre-images of
the nodes.

Case 2: Two nodes are imaginary

Consider a chord diagram with end points [α0, β0] and [γ0 : δ0] that are imagi-
nary but not conjugate. Since the chord diagram is real, there must be another
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chord with end points [ᾱ0, β̄0] and [γ̄0 : δ̄0]. Since the chord diagram has only
three chords, the end points of the third chord must be real. Denote them by
[α1, β1] and [γ1 : δ1]. Then the polynomials

p0(s, t) =(β1s− α1t)(δ1s− γ1t)(β̄0s− ᾱ0t)(δ̄0s− γ̄0t)
p1(s, t) =(β0s− α0t)(δ0s− γ0t)(β̄0s− ᾱ0t)(δ̄0s− γ̄0t)
p2(s, t) =(β0s− α0t)(δ0s− γ0t)(β1s− α1t)(δ1s− γ1t)

(2.5)

define a complex parametrization of a generic complex plane projective curve
of degree 4 with the nodes at the points z0 = [1 : 0 : 0], z1 = [0 : 1 : 0],
and z2 = [0 : 0 : 1] and the prescribed chord diagram. The parametrization
is complex, of a special type: p1 is real, and p2 = p̄0. This means that the
transformation [x0 : x1 : x2] → [x0 + x2 : x1 : i(x2 − x1)] transforms it to a
real parametrization, but with the double points zi transformed to [1 : 0 : −i],
[0 : 1 : 0], and [1 : 0 : i]. Therefore we have produced a real curve with two
imaginary double points.

We now show that two curves with imaginary double points that have the
same chord diagram are isotopic. First transform each of the curves by a real
transformation that sends their double points to the points [1 : 0 : 0], [0 : 1 : i],
and [0 : 1 : −i]. The new curves are isotopic to their original ones.

The invertible projective linear transformation [x0 : x1 : x2] → [x0 :
x1 + ix2 : x1 − ix2] sends the real parametrizations of each curve to com-
plex parametrizations [pi0 : pi1 : pi2], i = 1, 2 such that pi2 = p̄i1, and the double
points to [1 : 0 : 0], [0 : 1 : 0], and [0 : 0 : 1]. Let their pre-images be the
pairs {[αi0 : βi0], [γ

i
0 : δi0]}, {[ᾱi0 : β̄i0], [γ̄

i
0 : δ̄i0]}, and {[αi1 : βi1], [γ

i
1 : δi1]}, where

i = 1, 2. Define the polynomials qi0, q
i
1 and qi2 as before, but this time observe

that qi2’s are real and qi1 = q̄i0.
Now we apply the same reasoning as in the case of real double points: the

fact that [1 : 0 : 0] is a node means that qi0 divides pi1 and pi2. Similarly, qi1
divides pi0 and pi2, and qi2 divides pi0 and pi1. Again, pi0 = ci0q

i
1q
i
2, p

i
1 = ci1q0q

i
2,

and pi2 = ci2q
i
0q
i
1 and the fact that pi2 = p̄i1 and pi0 is real imposes the condition

that ci2 = c̄i1 and ci0 are real. The paths ct0 and ct1 make the coefficients 1 while
still maintaining the fact that that the last two coordinates are conjugates.

As before, since the parametrizations have the same chord diagram and the
nodes are the same, there are paths [αt0 : βt0] between [α1

0 : β1
0 ] and [α2

0 : β2
0 ],

and [γt0 : δt0] between [γ10 : δ10] and [γ20 : δ20]. Consequently, there are conjugate
paths [ᾱt0 : β̄t0] between [ᾱ1

0 : β̄1
0 ] and [ᾱ2

0 : β̄2
0 ], and [γ̄t0 : δ̄t0] between [γ̄10 : δ̄10]

and [γ̄20 : δ̄20]. There is only one real point double point of each curve, so there
is path [αt1 : βt1] between [α1

1 : β1
1 ] and [α2

1 : β2
1 ], and [γt1 : δt1] between [γ11 : δ11]

and [γ21 : δ21]. Observe that for each t, pt0 is real and pt2 = p̄t1. So for each t the
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complex curve Ct (which has nodes at [1 : 0 : 0], 0 : 1 : 0, and [0 : 0 : 1]) is
parametrized by a parametrization defined by the polynomials pti, correspond
to a real curve with nodes at [1 : 0 : −i], [0 : 1 : 0], and [1 : 0 : i]. The
correspondence is given by the map [x0 : x1 : x2]→ [x0 : x1 + ix2 : x1 − ix2].

Since there are 9 chord diagrams with at most three chords, we have:

Corollary 3. There are 9 rigid isotopy classes of real rational curves of de-
gree 4 in RP2 with only real nodes as singularities.

Representatives of each of these rigid isotopy classes and their respective
chord diagrams are listed in figure 2.1. The dots represent the positions of the
solitary nodes that which will now be deduced. Out of them, there are two
chord diagrams that can correspond to curves with imaginary nodes. They are
shown in figure 2.1. For each such chord diagram, their nodes may arise out of
self intersections of two hemispheres of CC \ RC, or intersections of different
hemispheres. So there are four more such curves, and therefore:

Corollary 4. There are 13 rigid isotopy classes of generic planar rational
curves of degree 4.

2.2 Positions of the solitary nodes

As we have seen, the positions of the nodes and pre-images uniquely determine
the rational curve. Therefore, for a curve C with a parametrization θ, we
should be able to uniquely determine which components of RP3 \ θ(RP1) each
of the solitary nodes must lie in. We will now determine the component and
show that if the curve has more than one solitary node, then all the solitary
nodes lie in the same component of RP3 \ θ(RP1)

Consider the curves in figure 2.1 that have solitary nodes. They are in
the second row of figure 2.1. Call them C1, C2, C3, and C4 and denote their
respective parametrizations by θ1, θ2, θ3, and θ4. Then, RP2 \ θ2(RP1),RP2 \
θ3(RP1), and RP2 \ θ4(RP1) each have only one component that is not a disk.

If a solitary node lay in the interior of a disk, any line passing through
it would have to intersect the boundary of the disk twice. So a line joining
this solitary node and another node would intersect the curve in at least 5
points counting multiplicity: four from the double intersections with the two
nodes defining the line, and at least one more from the intersection with the
boundary of the disk at a point that is not a node. So none of the solitary

10



Figure 2.1: Real chord diagrams of planar curves of degree 4 with real nodes.
The first row consists of curves with only real non-solitary nodes and so only
the equator of the chord diagram is shown. The last row consists of curves
with non-real double points.

nodes can lie inside the disk components. Figure 2.2 shows one example of
this applied to C2.

Since the complements of θ2(RP1), θ3(RP1), and θ4(RP1), each have only
one non-disk component, their solitary nodes have to lie in it as is shown for
the last three curves of the second row in figure 2.1.

Figure 2.2: An example of an impossible position for a solitary node because
the line would intersect the curve in more than 5 points counting multiplicity.

We are only left with the curve C1 from figure 2.1 and the curves in the last
row, which have non-real nodes, from figure 2.1. For the curve C1, θ1(RP1)
divides RP2 into three components out of which only one is a disk. The same
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reasoning as above will show that its node cannot lie in that disk. To deduce
which of the other components it lies on, and the postion of the solitary nodes
in the last row in figure 2.1, we will need to use Rokhlin’s Complex Orientation
Formula for non-singular curves of Type I which is briefly reviewed in the next
section. For more details on Rokhlin’s Complex Orientation Formula see [13].

2.2.1 Review of Rokhlin’s Complex Orientation For-
mula

A real algebraic curve A is said to be of Type I if [RA] = 0 ∈ H1(CA),
otherwise it is said to be of Type II. If A is of Type I, then RA is the boundary
of each of the two halves of CC \RA which are conjugate to each other. If the
halves intersect, they do so precisely at the solitary nodes.

Each half induces a natural pair of opposite orientations on their common
boundary RA. This pair of orientations is called the complex orientation of
the curve. A rational curves is an example of a Type I curve and its com-
plex orientations coincide with the natural orientations induced on it by its
parametrization.

We now consider non-singular real algebraic curves defined by the zero set
of a real polynomial. The real zero set RA of a non-singular real algebraic
curve A is a compact one-dimensional manifold and therefore each component
is topologically a circle.

If the complement of a component of RA divides RP2 it is called an oval.
Each oval is the boundary of a disk in RP2; the disk is called the interior of
the oval.

A pair of ovals is called injective if one lies in the interior of the other.
A pair of injective ovals bounds an annulus. If the orientation of the ovals is
compatible with the orientation induced on the boundary of the annulus, it
is called a positive pair, otherwise it is called a negative pair. The number of
positive pairs is denoted by Π+ and the number of negative pairs is denoted
by Π−. Rokhlin proved that non-singular real planar curves of Type I of
even degree d and with l components satisfy the following formula known as
Rokhlin’s Compex Orientation Formula [10]

2(Π+ − Π−) = l − d2

4
(2.6)

For a singular real curve A with only double points, this formula has been
extended in the following way as described in [11]: The complex orientation
defines a unique way to smoothen the singularities of RA in a way that is
compatible with a chosen complex orientation. An example of such a pertur-
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bation is show in figure 2.3. Denote this smoothened curves as R̃A. C̃A may
still have non-real singularities. Let σ denote those imaginary nodes that arise
owing to the intersection of different halves of RA\CA. As before, denote the

number of components of C̃A by l, the number of its positive pairs by Π+ and
the number of negative pairs as Π−. Positive and negative pairs are defined as
before. In that case the Rokhlin’s Complex Orientation Formula extends to:

2(Π+ − Π−) = l − d2

4
+ σ (2.7)

2.2.2 The rest of the curves

Orient RC1. This orientation corresponds to one of its complex orientations,
which is equivalent to choosing one half of the complexification. It is possible
to smoothen the real part of the curve in such a way that the node changes to
an oval and the curve continues to remain of Type I (see section 2.2 of [11]).
There is only one way to resolve the crossings so that they conform to the
complex orientation that will be induced. This, as shown in figure 2.3, will
give rise to a non-singular degree 4 planar curve with two ovals. One of the
ovals is the result of the perturbation of the solitary node.

Figure 2.3: C1 and its perturbation with a complex orientation

If the pair of ovals is not injective, then the number of positive pairs of
ovals Π+ and the number of negative pairs of ovals Π− will be 0. But the right
hand side of formula 2.6 should be −2, because d = 4, σ = 0, and l = 2. There
is only one possible component of RP2 \ θ1(RP1) in which the solitary node
can lie in, so that on perturbing the resulting ovals will be nested. The only
possible position for the solitary node is shown in figures 2.3 and 2.1.

Rokhlin’s Complex Orientation Formula also determines which of the curves
in the last row of figure 2.1 have nodes which are the result of a self intersection
of a hemisphere and which are the result of two hemispheres intersecting.

Perturbing the third curve in the last row results in a negative pair of ovals
and therefore 2(Π+−Π−) = 2. Equation 2.7, then, forces σ = 0, which means
that each imaginary node is the result of a the self intersection of a hemisphere.
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On the other hand, perturbing the last curve in the last row results in no
nested ovals and therefore 2(Π+ − Π−) = 0. Equation 2.7, then, forces σ = 2,
which means that each imaginary node is owing to the intersection of distinct
hemispheres.

This completes the proof of the rigid isotopy classification of all generic de-
gree 4 projective planar rational curves, including the positions of the isolated
nodes.
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Chapter 3

Real rational knots in the
sphere

3.1 Introduction

3.1.1 Background

In the topology of real algebraic varieties the most traditional objects of study
were either non-singular varieties (like surfaces) or subvarieties of co-dimension
one (curves in the 2-space or surfaces in the 3-space). There were few papers
devoted to the topology of curves in the 3-space [1] [12], and there the ambient
3-space was the real projective space RP3. From a purely topological point of
view, the curves are knots in RP3.There were also papers devoted to polynomial
knots in R3 [3] [9].

In topology, the more traditional objects are classical knots which are
curves in the 3-sphere S3. The sphere S3 appears as the set of real points
of algebraic 3-folds. The simplest of them is the quadric in RP4 defined by
the equation x21 + x22 + x23 + x24 = x20. Following notations used in topology, we
denote this quadric by S3.

In this paper we will study the simplest real algebraic knots in S3: non-
singular real rational curves of low degrees. A curve C ⊂ S3 is rational if
there exists a regular map k : RP1 → RP4 which defines an isomorphism
k : RP1 → C. Such a map k is defined by formulas ([s : t] → [k0(s, t) :
k1(s, t) : k2(s, t) : k3(s, t) : k4(s, t)]) where k0, . . . , k4 are real homogeneous
polynomials of degree d with no common root.

A map k is not unique, but C defines k up to real projective transformations
of the source RP1. We will call k a (rational) parametrization of C.

The same polynomials define a regular map Ck : CP1 → CP4, a parametriza-
tion of the set CC of complex points of C.
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A rational curve C is called a real rational knot if C has no singular
points (neither real nor complex: i.e. its parametrization Ck : CP1 → CP4

has no double points and at least one of the partial derivatives is non-zero).
A rational curve C ∈ S3 with singularities is called a singular real rational

knot. Real rational knots may be considered from the perspectives of knot
theory where the major equivalence relation comes from isotopy. Recall that
knots k1, k2 ∈ S3 are called isotopic if they can be included in a one parameter
continuous family kt ∈ S3 of classical knots.

In our real algebraic setup, where all knots are real algebraic curves, the
notion of isotopy is modified accordingly to a one-parameter family of non-
singular real algebraic curves, that is a path in the space of such curves. Such
a path is called a rigid isotopy. Observe that a rigid isotopy of real al-
gebraic knots can be lifted to a continuous family of parametrizations. In
particular, the degree of the knots (which is the degree polynomials forming
the parametrization) is preserved under a rigid isotopy. The notion of rigid
isotopy can be defined in a similar way in a more general situation and real
algebraic varieties of several classical types were classified up to rigid isotopy
(see for example, [4]).

In [12], Viro defined the encomplexed writhe number for real rational
knots in RP3. It is a rigid isotopy invariant. The definition can be used to
define the writhe number of a knot in the sphere as follows: given a knot C in
the 3-sphere, choose a point of projection p on the sphere which is not on the
knot and project the knot to πp(C) in RP3. The encomplexed writhe number
of C is defined as the writhe number of πp(C). Note that this is independent
of the point of projection because the image of knots under two different such
projections are rigidly isotopic in RP3 and so they will have the same writhe
number.

3.1.2 Main results

An odd degree rational curve in RP4 must intersect a generic linear hyper-
surface in an odd number of real points to preserve the mod 2 intersection
number. This is impossible for odd degree knots contained in the sphere be-
cause there are real planes disjoint from the real sphere. Therefore: all real
rational knots in the sphere are of even degree. We will prove the following
rigid isotopy classification for knots of degrees 2, 4, and 6 in S3:

Theorem 5. The rigid isotopy classes of knots of degrees less than 6 can be
described as follows:

1. Degree 2: there is one rigid isotopy class; it has writhe number 0. All
knots are topologically isotopic to the unknot.
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2. Degree 4: there are two rigid isotopy classes; they have writhe numbers
±2. Mirror images of each knot lie in separate classes. Each of them
are topologically isotopic to the unknot.

3. Degree 6: there is one rigid isotopy class with each of the writhe numbers
0, ±2, or ±4. Their smooth isotopy classes may be described as follows:

(a) writhe 0: unknot

(b) writhe 2: unknot

(c) writhe −2: unknot

(d) writhe 4: trefoil

(e) writhe −4: trefoil

In fact for degrees 2 and 4 we will prove a stronger result that knots in
the same rigid isotopy class are projectively equivalent: any two of them can
be transformed from one to the other by a projective linear transformation in
RP4 that preserves S3.

Besides merely classifying them, we will also relate them to knots in the
projective space. Indeed, we will use the classification of knots in the pro-
jective space to derive our classification, although we will need to extend the
classification in the projective space to pairs of knots and planes that intersect
in a special way.

To construct examples, we will note that for each degree d, there are
(m, d/2)-torus knots for any m which is coprime to d/2. We will also ob-
serve that Björklund’s method [1] of constructing real rational knots can be
lifted to the sphere to provide an exact counterpart to his method of construc-
tion. This will at first seem to contradict the classification of curves in S3

which does not allow the figure eight knot to be realized by a degree 6 curve.
However, section 3.4.1 will demonstrate why we need to be careful when con-
structing curves in S3 because we are not permitted to use general conics (as
Björklund had used in RP3 setting), only circles. Indeed, the trefoil in the
sphere cannot be constructed by perturbing the configuration that Björklund
used, but uses a different configuration.

Björklund [1] had classified real rational knots in RP3 up to degree 5. We
can partially add to that classification by classifying singular knots of degree 6
in RP3 with four double points, by showing that such knots are characterized,
up to rigid isotopy and mirror reflection, by their chord diagrams just as it was
done in Chapter 3. There is also some hope of this method providing some
information about knots of degree 8 in S3.
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3.1.3 Outline of the method

There are several difficulties when trying to classify real rational knots in S3

up to rigid isotopy. In [1], linear transformations were used to simplify knots
in RP3; for knots in S3, we can only use linear transformations that preserve
the sphere. This does not help except in the simplest cases like degrees 4.
In fact the method of classification of degree 4 knots in S3 is very similar to
the approach used in [1] to classify rational curves of degree 3 in RP3, which
suggests a connection between knots in S3 and knots in RP3 of lower degree.

The connection is owing to the stereographic projection. If one considers
knots with one singularity, the degree d knots in S3 with the north pole as
its only double point, relate to degree d− 2 knots in RP3 which intersect the
plane at infinity in d − 2 points, d − 4 of which lie on a conic of signature 0.
More generally we may consider pairs of knots and planes as described in the
next two paragraphs.

Following the notation in [1], let Kd denote the space of real rational knots
of degree d in RP3. PGr(3,R4) is the grassmanian of 2-planes in RP3. Consider
the space of pairs (C,X) ∈ Kd × PGr(3,R4), where C is a real rational knot
of degree d in RP3 and X is a real plane in RP3. Denote by Pd,m the subspace
of those pairs such that RC and RX intersect in exactly m real points, where
m = 0 or m = 2.

Define P ′d,m ⊂ Pd,m to be the pairs (C,X), such that d − 4 points of
intersection of CC and CX lie on a conic in X of signature 0.

In theorem 9 of section 3.2.3, we will prove that the space of rational knots
of degree d in S3 with exactly one double point, is a double covering of P ′d−2,m
where m = 0 if the double point is solitary, and m = 2 if it is not. The two
curves in each fibre of the double covering are rigidly isotopic to the mirror
images of each other.

It will be difficult to extend an isotopy of knots in RP3 to an isotopy of
pairs in P ′d,m because of the condition imposed on the intersection of the knot
and the plane. However, in section 10, we will show that when d ≤ 6, then
P ′d,m is a strong deformation retract of Pd,m. This simplifies the restriction on
the intersection, however maintinaining the right number of real intersection
points is still difficult. For degree 6, we will be able to overcome this difficulty
because they relate to degree 4 knots in RP3, which always lie on a quadric.
Knowing the bi-degree of the degree 4 knot on the quadric will make it easier
to classify the pairs of knots and planes which intersect in a fixed number of
real points.

While this will classify degree 6 knots with one double point, we obtain the
non-singular knots by perturbing these. By using the Borel-Moore homology,
we will that the number of rigid isotopy components cannot exceed 5. In order
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to obtain this bound, we will be faced with another difficulty: that the space
of rational knots of degree 6 in S3 is a connected manifold. This problem is
trivial for knots in a projective space, since the space of knots of a fixed degree
in RP3 is itself a projective space. We will solve it for rational knots in S3

in section 3.3.4. Finally, we will construct 5 rational knots of degree 6 in the
sphere with different writhe numbers, to obtain a representative for each of
the 5 rigid isotopy classes.

3.2 Degrees 2 and 4

3.2.1 Degree 2 knots

Degree 2 knots in the sphere also lie on a two dimensional plane in RP4 because
any three points on the curve define a pencil of planes; it has to lie on the
intersection of the planes from the pencil because it intersects each plane in
more than 2 points. The intersection is a two dimensional plane on which our
knot lies and so it is a planar conic which is non-empty. It is well known that
non-empty non-singular planar conics are projectively equivalent and so the
knot is rigidly isotopic to the unknot.

3.2.2 Degree 4 knots

Lemma 6. A degree 4 knot in S3 lies on a linear hypersurface of RP4 if and
only if it has a double point.

Proof. Degree 4 knots in the sphere with double points, lie on a linear hyper-
surface. This is because any double point on the knot along with three other
points define a linear hypersurface in RP4 which intersects the knot in five
points (counting multiplicity, because of the double point). So the singular
knot is forced to lie on the linear hypersurface.

Conversely, if a curve lies on a linear hypersurface in RP4, then it must
be singular. This can be seen by projecting it to RP3 via the stereographic
projection, from a point on the linear hypersurface but not on the curve. It will
project to a degree 4 curve on a plane. The complexification of this rational
curve must have 3 double points because any planar rational curve of degree d
must have (d−1)(d−2)

2
double points. Since the curve is real, any imaginary

double points must occur in pairs. Therefore, at least one double point is real
and the original curve is not a knot.

Observe that changing the parametrization of a knot C parametrized by
k : RP1 → S3 ⊂ RP4 means composing k by a transformation of RP1, namely

19



a transformation in PGL(2,R) which has two connected components that cor-
respond to transformations that either retain or reverse the orientations re-
spectively. Therefore changing the parametrization provides a knot which is
either the same or reverses its orientation.

Projective transformations that preserve the 3-sphere form the projec-
tivization of the transformations that preserve the bilinear form x21 + x22 +
x23 + x24 − x20, namely the indefinite orthogonal group O(4, 1). O(4, 1) has four
components but after projectivizing it has two components. One component
contains the identity whereas the other component contains the reflection. De-
note the projectivization of O(4, 1) by PO(4, 1). Given any curve C in S3, its
image under a transformation A ∈ PO(4, 1) is either isotopic to itself or to its
mirror image.

Recall that a finite set of points in RPn is said to be in general position if
there is no subset with n+ 1 points that all lie on a linear hypersurface. The
following lemma will show that any projective transformation will do:

Lemma 7. A transformation in PGL5(R) that takes at least 14 points in
general position in S3 to points within S3 is in PO(4, 1).

Proof. The images of the points are also in general position because the inverse
of the transformation would pull back any linear relations satisfied by the
images. The images lie in the image of the sphere (another quadric), but are
given to be in the original sphere. The sphere and its image must coincide
because 14 points in general position uniquely define a quadric in RP4. So the
transformation preserves S3.

Theorem 8. Any two degree 4 real rational knots in the 3-sphere are pro-
jectively equivalent. Therefore, there are two rigid isotopy classes which are
mirror images of each other.

Proof. Let k1, k2 : RP1 → S3 ⊂ RP4 each denote the parametrization of two
knots C1 and C2 of degree 4. Distinct points on C1 or C2 are now in general
position in RP4 because a linear hypersurface of RP4 containing more than
five of these points would contain the curve for intersecting it in more than
four points. This would contradict lemma 6.

If the ith coordinate of a parametrization k of a real rational knot is the
polynomial

∑d
j=0 α

i
js
jtd−j, then let Ak denote the matrix of coefficients (αji )

of k. Note that knot defined by k not lying on a linear hypersurface of RP4

is equivalent to Ak ∈ PGL5(R). Therefore, Ak1A
−1
k2
∈ PGL5(R). Observe that

Ak1A
−1
k2
k2 = k1. Therefore, they are projectively equivalent.

If Ak1A
−1
k2

lies in the component of PO(4, 1) that contains the identity, then
the knots defined by k1 and k2 are rigidly isotopic, otherwise k1 is isotopic to
the mirror image of k2.
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3.2.3 The connection between real rational knots in S3

and real rational knots in RP3

The idea of using the fact that non-planar curves are non-singular, is borrowed
from Björklund’s paper [1]. The behaviour of degree 4 knots in S3 is very
similar to degree 3 knots in RP3. This connection will be made explicit by
using the stereographic projection. Since we are concerned with the stronger
notion of rigid isotopy, we will need to keep a track of the intersection of the
curve with the blow up of the point of projection.

Consider the sphere S3 ⊂ RP4 and a point p on S3. A linear hypersurface in
RP4 which is disjoint from S3 can be treated as a copy of RP3. The projection
map πp : S3 \ p→ RP3 is defined by mapping any point α to the intersection
of the plane with the unique line joining p and α. The line is unique because
any line can transversally intersect a quadric in only two points, one of which
is p.

The projection can be extended to the complexification CS3 ⊂ CP4. If a
point α on S3 is such that the line joining it with p is not tangential to S3,
then the line does not intersect any other points of S3. Therefore, πp is a
bijection on the set S3 \CTp, where Tp is the tangent plane to S3 at p. It is a
rational map on S3 that blows up p to a plane Xp in RP3.

Cp ∩ CS3 is a quadric with a singularity at p. It is therefore a complex
2-dimensional cone with an apex at p. This cone intersects the plane of pro-
jection RP2 in an empty conic lying on Xp. Recall that an empty conic is a
conic defined by a polynomial with real coefficients but which does not have
any real zeros.

The complexification CC of any degree d rational curve C, parametrized
by k, intersects CTp in d points (counting multiplicity). These d points of
intersection must lie on the cone defined by Cp ∩CS3. If p does not lie on the
curve C, the closure of πp(CC) \CTp intersects CXp in d points that all lie on
the empty conic which is the projection of the cone Cp ∩ CS3. We define the
image πp(C) of the curve C under the rational map πp as the rational curve
defined by the closure of πp(CC\CTp). Since the image intersects the plane Xp

in d points, the degree of this rational curve is d. πp is a bijection between real
rational curves in S3 of degree d and real rational curves in RP3 of degree d
which intersect the blow-up of p in points that lie on an empty conic.

By choosing the point of projection to be on the curve C, the degree of
πp(C) can be made to drop. If the curve C passes through p, then Tp intersects
C at p with multiplicity 2, then d−2 of them intersect Tp in imaginary points.
The closure of πp(CC \CTp) intersects CXp in d− 1 points and is therefore a
curve of degree d−1. d−2 of these points of intersection lie on the empty conic
which is the projection of the cone Cp ∩ CS3. πp is a bijection between real
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rational curves in S3 of degree d and real rational curves in RP3 of degree d−1
which intersects the blow-up of p in d points, d − 1 of which lie on an empty
conic.

The branch of the curve around p gets mapped to a branch that intersects
the plane at infinity once. This point of intersection is determined by the
direction of the tangent line to the curve at p.

It will prove more useful to consider the case where the point p is a double
point.

Theorem 9. The space of degree d knots in S3 with one double point is a
double covering of P ′d−2,k, where k = 0 if the double point is solitary, and
k = 2 if its not. Given a pair (C,X) ∈ Pd−2,k, the two lifts of it are related:
they are each isotopic to the mirror image of the other.

Proof. If p is a double point of the curve C, then Tp intersects two branches
of C at p, each with multiplicity 2. In that case, d− 4 of them intersect Tp in
imaginary points. The closure of πp(CC) \CTp intersects CXp in d− 2 points,
and is therefore of degree d− 2. d− 4 of them lie on the empty conic which is
the projection of the cone Cp ∩CS3. This will help us to relate rational knots
of degree d with one double point, to rational curves of degree d − 2 in RP3

that intersect the blow up of the double point in d− 2 points, d− 4 of which
lie on an empty conic.

Simplifying the hypothesis for degree 6

The main difficulty is in maintaining the right intersection for between a knot
and a plane belonging to a pair in P4,k. Recall that we had defined the space
P ′4,k to be the space of those pairs (C, k), where C intersects k in k real points,
but the imaginary points of intersection need not lie on the empty conic.

Theorem 10. P ′4,k is a deformation retract of P4,k, where k = 0 or k = 2. In
other words: there is a retraction map r : P4,k → P ′4,k which is homotopic to
the identity.

Proof. For each line we will need a fixed real point that does not lie on it. But
it is possible to define a continuous map θ from the space of all real lines at
the plane at infinity to the space of all real points at the plane at infinity such
that each line is taken to a point that does not lie on it.

Define a homotopy of maps [0, 1] × P ′4,k → P4,k as follows: given a curve
C in P4,k, it intersects the plane at infinity in a conjugate pair z and z̄ which
will define a real line l. Cl intersects the standard empty conic in another
conjugate pair w and w̄ where we let w denote the point that is in the same
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component of Cl \ Rl as z. By the previous paragraph, θ(l) is a point in the
plane at infinity. Define Tt to be the unique real linear transformation that
fixes the real points [1 : 0 : 0 : 0] and θ(l), and maps z → (1 − t)z + tw and
z̄ → (1− t)z̄ + tw̄. Observe that T0 is the identity map, and T1 takes z → w
and z̄ → w̄. Therefore the map r : P4,k → P ′4,k defined by r(C) := T1(C) is a
retract which is homotopic to the identity.

Therefore, to prove that two degree 6 curves in S3, each with one double
point, are isotopic, we only need to find a path between their stereographic
projections in the space P4,k.

Remark 11. We can use the stereographic projection to classify the degree 4
knots in S3 by connecting them with degree 3 knots in RP3.

A degree 4 knot in S3 can be projected by a point on the knot to a knot
in RP3 which intersects the plane at infinity in one real and a pair of conju-
gate imaginary points. The imaginary points lie on the empty quadric. Any
degree 3 curve in RP3 intersects the plane at infinity in one real and a pair of
conjugate imaginary points. The conjugate imaginary points can always made
to lie on the standard empty conic and therefore any degree 3 curve in RP3

may be lifted to S3 by the stereographic projection. Therefore, the isotopy
classes of degree 4 knots in S3 correspond to the isotopy classes of degree 3
knots in RP3. Since there are two isotopy classes of degree 3 knots in RP3,
there are two isotopy classes of degree 4 knots in S3 [1].

3.3 Degree 6

To classify degree 6 knots in S3 with one double point, we can relate them to
pairs of degree 4 knots and planes in RP3. Björklund [1] had classified degree
4 curves by first classifying the singular ones and then perturbing them. But
this cannot be used to extend this to the space of pairs of knots and planes,
so we will consider the fact that degree 4 curves lie on a quadric. But first we
will show how theorem 9 can be used to obtain the degree 4 curves with one
double point.

Change bases so that the double point is [1 : 0 : 0 : 0] as the images of
either [0 : 1] and [1 : 0], or [1 : i] and [1 : −i], depending on whether it is real or
imaginary. Project from this to the plane defined by x0 = 0. This projection
will produce only finitely many double points because the knot is on a quadric
and so a double points can only occur when its inverse under the projection is
a line on the quadric that passes through [1 : 0 : 0 : 0]. At most two lines can
pass through [1 : 0 : 0 : 0], namely the ones from the ruling of the quadric.
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As before the projection is a curve degree 2 = 4− 2, because the common
factors of either st or s2 + t2 will pull out. Change the basis so that this degree
2 curve is the standard [s : t] → [s2 : st : t2]. Since the knot lies on the
cone over this curve with the apex as the double point, it must be of the form
[s3t : s2t2 : st3 : p4[s : t]] or [s2(s2 + t2) : st(s2 + t2) : t2(s2 + t2) : p4[s : t]] where
p4[s : t] is a polynomial of degree 4.

In the case where they are real double points, this polynomial may be
reduced to either s4 + t4, s4 − t4, −s4 + t4, or −s4 − t4 because all the other
coefficients may be brought to zero without forming a double point as the first
three coordinates are distinct anyway. We only need to avoid s or t dividing
it or else the degree will drop; the presence of both s4 and t4 prevent this.

In the case where they are solitary double points, we only need to avoid
multiples of s2 + t2 which form a co-dimension two hypersurface in the space
of polynomials of degree 4. This can therefore be reduced to a standard form
of [s2(s2 + t2) : st(s2 + t2) : t2(s2 + t2) : s4]. Therefore the walls are:

[s3t : s2t2 : st3 : s4 + t4]

[s3t : s2t2 : st3 : s4 − t4]

[s3t : s2t2 : st3 : −s4 + t4]

[s3t : s2t2 : st3 : −s4 − t4]

[s2(s2 + t2) : st(s2 + t2) : t2(s2 + t2) : s4]

These were precisely the walls considered by Björklund [1], and he also
observed that the first and the third are rigidly isotopic. By perturbing them
he showed that knots of degree 4 were either the unknot and its image (with
writhes +1 or −1) or the two crossing knot and its mirror image (with writhes
+3 or −3).

3.3.1 Classification of P4,k

Degree 4 curves in RP3 must lie on a quadric surface because we can always
find a quadric surface passing through any 9 points on the curve. The curve
can intersect the quadric in more than 8 points only if it lies on it. To classify
P4,k, it will prove essential to understand how the knots of degree 4 lie on this
quadric surface.

In the complex case, there is only one non-singular quadric. In the real case,
there are two non-singular quadrics, which are the sphere and hyperboloid.

By a change of coordinates, the hyperboloid can be defined by as the zero
set of the polynomial z0z3 − z1z2 = 0. It can also be realized as the image of
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the embedding, θ : RP1 × RP1 → RQ ⊂ RP3, which is defined explicitly by
the map

([x0 : x1], [x2 : x3])→ [x0x2 : x0x3 : x1x2 : x1x3]

This map can be extended to the complexification, which is known as the Segre
embedding.

For a fixed [α : β], the image of ([α : β], [x2 : x3]) is a line L[α:β]. Similarly,
for a fixed [α : β], the image of ([x0 : x1], [α : β]) is a line L′[α:β]. The lines L[α:β]

form a family of rulings F , while the lines L′[α:β] form a family of rulings F ′. If
two lines are from the same family they are disjoint, and if they are different
families they intersect in one point. The homology classes [RL] and [RL′] with
representatives L and L′ from different families, generate H1(RQ) = Z ⊕ Z.
Similarly the homology classes [CL] and C[L′] with representatives L and L′

from different families, generate H2(CQ) = Z⊕ Z
By a change of coordinates, a real sphere in the projective space can be

defined to satisfy the equation x21 + x22 = x20 − x23. The rulings on it are
imaginary and can be realized as follows. Each side of x21 + x22 = x20 − x23 can
be factored to give (x1 + ix2)(x1 − ix2) = (x0 − x3)(x0 + x3). So the bijection
[x0 : x1 : x2 : x3]→ [x1 + ix2 : x0 − x3 : x0 + x3 : x1 − ix2] takes the sphere to
a complex quadric which satisfies the equation z0z3 = z1z2 and is the image
of the Segre embedding. This is a bijection on the complexification of the
sphere; when the bijection is restricted to the real part, the coordinates of the
image also satisfy the conditions that z1 and z2 are real, and that z3 = z̄0.
The defined in the previous paragraph will define a ruling. Observe that in
this case the two families of rulings are conjugate to each other.

There are also two singular quadrics: a pair of planes and a cone; the latter
has only one singular point whereas the former has infinitely many.

We now revise the concept of a bi-degree of a rational curve, but more
specifically for real rational curves.

Lemma 12. Given a curve f : RP1 → Q ⊂ RP3, there is a map f̃ : RP1 →
RP1 × RP1 such that θ ◦ f̃ = f as is in the diagram:

RP1

RP1×RP1 Q

f
f̃

θ

Proof. Let [s : t]→ [p0(s, t) : p1(s, t) : p2(s, t) : p3(s, t)] denote the parametriza-
tion of a degree d curve that lies on the quadric defined by X0X3−X1X2 = 0.
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Therefore p0p3 = p1p2 and so p0p3 and p1p2 have the same factors. Let q0 be
the factor of highest degree common to p0 and p1 (it must be real since imag-
inary roots occur in pairs), and denote its degree by m. Therefore q2 = p0/q0
and q3 = p1/q0 are degree d−m real polynomials.

By definition, q2 divides p0, and therefore it divides p1p2. If it shares a
common factor r with p1 then q0r is a factor common to p0 and p1, contradict-
ing the fact that q0 was the highest common factor. Therefore, q2 is co-prime
to q1 and so it must divide p2 and q1 = p2/q2 is a degree d− (m− d) = m real
polynomial.

This way p0 = q0q2, p1 = q0q3, and p2 = q1q2. We only have to check
that p3 = q1q3, but q1q3 = p1p2/(q0q2) = p1p2/p0. Since p0p3 = p1p2, we get
p3 = q1q3.

q0 and q1 have the same degree m; q2 and q3 have the same degree d −
m. Therefore the map defined by coordinates [q0 : q1] and [q2 : q3] are well
defined.

Definition 13. Given a rational map f : RP1 → Q ⊂ RP3, consider its
corresponding map f̃ : RP1 → RP1 × RP1 as defined in the previous lemma.
Fix an orientation of each RP1 in both the domain and co-domain and let π1
and π2 denote the projections onto the first and second coordinates respectively.
πi ◦ f̃ : RP1 → RP1, for i = 1, 2, are maps with degrees m = deg(π1 ◦ f̃) and
n = deg(π2 ◦ f̃). Then the real bi-degree of the curve is defined to be (m,n).

The maps in lemma 12 can be extended to the complexification. We can
therefore define the complex bi-degree of the curve as follows:

Definition 14. Given a rational map f : CP1 → Q ⊂ CP3, consider its
corresponding map f̃ : CP1 → CP1 × CP1 as defined in the previous lemma.
If m = deg(π1 ◦ f̃) and n = deg(π2 ◦ f̃), Then the complex bi-degree of the
curve is defined to be (m,n).

Remark 15. The complex bi-degree of the curve as defined above is the same
as the degrees of the homogeneous polynomials defining the map f̃ . This
means that if the complex bi-degree of the curve f is (m,n), then m + n =
the degree of the rational map f . Note that m or n may be negative when
(m,n) denotes the real bi-degree but not when it denotes the complex bi-
degree.

Lemma 16. A curve C in a quadric surface Q cannot have bi-degree (2, 2).

Proof. This easily follows from the adjunction formula [7] g = mn−m−n+ 1
for a genus g curve of bi-degree (m,n) embedded in CP1 × CP1. Curves of
bi-degree (2, 2) would have to have genus 1 and therefore cannot be rational.
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However, in this special case, it may also be seen by the following elementary
means.

The stereographic projection from a point on Q which is not on the curve,
will project C to a planar rational curve of degree 4.

Note that the tangent plane to the point of projection intersects the quadric
in a pair of lines. By the definition of the bi-degree, the curve intersects each
of these lines in a pair of points. Each pair projects to the same point at
the plane at infinity, giving rise to two nodes (one for each line) at the line at
infinity in RP2. So it projects to a degree 4 rational curve with only two nodes,
which is impossible because a rational curve with only nodes as its singularity
has to have exactly (d−1)(d−2)

2
nodes.

Lemma 17. A degree 4 real rational curve C cannot lie in a real sphere.

Proof. The complexification of the sphere is ruled by two families of complex
lines. The two families are conjugate to each other. If the complexification CC
of a real curve C intersects a line from one of these families in m points, then
it must also intersect the conjugate of that line in m points. This means that
it would have to have bi-degree (m,m). This is impossible for degree 4 real
rational curves which cannot have bi-degree (2, 2) because of lemma 16.

We now note two lemmas that will help us when classifying degree 4 curves
by reducing the number of real bi-degree cases to be checked to merely two
cases.

Lemma 18. Consider a curve of real bi-degree (m,n) in a curve in the hyper-
boloid Q defined by x0x3 = x1x2. Reflection along the plane x1 = x2 preserves
the hyperboloid, but interchanges the family of rulings and therefore changes
the curve to one of bi-degree (n,m).

Proof. When the Segre embedding θ : RP1 × RP1 → Q ⊂ RP3 is composed
with the map r : RP1 × RP1 → RP1 × RP1 which interchanges coordinates,
it reverses the families. Explicitly: ([x0 : x1], [x2 : x3]) → ([x2 : x3], [x0 :
x1]) → [x0x2 : x1x2 : x0x3 : x1x3]. But this is the same as the embedding
([x0 : x1], [x2 : x3]) → [x0x2 : x0x3 : x1x2 : x1x3] composed by a reflection in
the plane given by x1 = x2.

Lemma 19. Consider a curve C of real bi-degree (m,n) in the hyperboloid Q
defined by x0x3 = x1x2. Reversing the orientation of one coordinate, results in
a curve C̄ of real bi-degree (−m,n), which is projectively equivalent to C by a
transformation which is in the component of PGL4(R) containing the identity.
Therefore C̄ is rigidly isotopic to C.
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Proof. Reversing the orientation of one coordinate is equivalent to compos-
ing the Segre embedding θ : RP1 × RP1 → Q ⊂ RP3 with the map r :
RP1 × RP1 → RP1 × RP1, given explicitly by ([x0 : x1], [x2 : x3]) → ([x0 :
−x1], [x2 : x3]) → [x0x2 : −x1x2 : x0x3 : −x1x3] which is the same as the
embedding ([x0 : x1], [x2 : x3]) → [x0x2 : x0x3 : x1x2 : x1x3] composed by the
projective transformation [x0 : x1 : x2 : x3] → [x0 : −x1 : x2 : −x3]. This
projective transformation is in the same component of PGL4(R) that contains
the identity.

Lemma 20. All degree 4 rational curves in the hyperboloid are rigidly isotopic
to either one of these curves, or their reflections:

[s(s3 + t3) : s(s3 − t3) : t(s3 + t3) : t(s3 − t3)]

[s2(s2 − 4t2) : st(s2 − t2) : st(s2 − 4t2) : t2(s2 − t2)]

Proof. We know that the curve must have bi-degree (1, 3) or (3, 1). If it has
bi-degree (3, 1), consider its reflection with bi-degree (1, 3). After a change of
coordinates, its parametrization k : RP1 × RP1 may be explicitly defined as:

[s : t]→ ([s : t], [p0 : p1])

where each pi has degree 3. In that case k is always an embedding, no matter
what pi’s are as long as they are of degree 3, since the linear part has no
double points. Therefore, to ensure that a homotopy is an isotopy, we only
need to avoid a common factor in the coordinate polynomials defining the
second coordinate of k. As long as this is ensured, no singularities can result
owing to the linear part. Therefore moving a root of p0 will define a rigid
isotopy as long it does not meet with a root of p1. Similarly, moving a root of
p1 will define a rigid isotopy as long it does not meet with a root of p0.

There are three cases to be examined:
Case 1 (p0 and p1 have imaginary roots): Then the polynomials are each

characterized by a pair of conjugate imaginary roots and therefore by an ele-
ment of CP1 \ RP1. It is easy to shift the complex roots of p0 to [1 : ω] and
[1 : −ω2] and the roots of p1 to [l : −ω] and [1 : ω2]. Thereafter, there is
no obstruction to shifting the real roots of p0 and p1 to [1 : −1] and [1 : 1],
thereby showing that all curves of this bi-degree form one isotopy class.

[s : t]→ ([s : t], [s3 + t3 : s3 − t3])

Case 2 (either p0 or p1 has imaginary roots): Assume that p0 has imaginary
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roots, and p1 has all real roots, then the only real root of p0 divides RP1 into
only two components. At least two of the roots of p1 are forced to lie in the
same component and therefore may be combined to form a double root and
then converted to an imaginary pair, reducing it to the above case.

Case 3 (p0 and p1 have only real roots): The roots of p0 divides RP1 into
three components. If at least two of the roots of p1 lie in the same component,
then this pair can be combined to form an imaginary pair, thereby reducing
this to the above case.

So finally the only case left is where both polynomials have real roots, and
none of the roots of p1 lie in the same component of RP1 \ {roots of p0}. We
may move the roots so that the roots of p0 are [1,−2], [0 : 1], [1, 2] while the
roots of p1 are [1,−1], [1 : 0], [1, 1], giving rise the following map:

[s : t]→ ([s : t], [s(s2 − 4t2) : t(s2 − t2)])

Composing each of the above four curves on RP1×RP1 with the Segre map
([x0 : x1], [x2 : x3]) → [x0x2 : x0x3 : x1x2 : x1x3] gives a parametrization for
each of the four isotopy classes of degree 4 up to mirror reflection.

They are as follows:

[s(s3 + t3) : s(s3 − t3) : t(s3 + t3) : t(s3 − t3)]

[s2(s2 − 4t2) : st(s2 − t2) : st(s2 − 4t2) : t2(s2 − t2)]

When the stereographic projection is applied to a knot of degree 6 in S3

with one double point, it is sent to a real rational knot in RP3, which intersects
the plane at infinity in two real points if the double point was real and only
imaginary points if the double point was solitary.

A non-singular knot in RP3 may lie on a cone (if it lies on a plane it would
have to be singular). However, the following lemma reduces its study to only
those knots which lie on a hyperboloid.

Lemma 21. Consider a pair (C,X) ∈ P4,k of a real rational knot C and a
plane X so that the CC ∩CX has four distinct points. C can be perturbed by
an arbitrary small perturbation to lie on a hyperboloid and still intersect the
plane CX in four distinct points and the same number of real points.

Proof. If C lies on a cone, use a projective transformation to transform the
cone to one defined by x0x2−x21 = 0. So a parametrization [p0 : p1 : p2 : p3] of
a curve on this cone is p0p2 = p21. This means that the roots of p1 determine
the roots of p0 and p2 while p3 can be arbitrary; therefore the dimension of
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the curves on this cone are 10. Since the space of cones is of dimension 8, the
total dimension of the space of curves lying on a cone is 18 and therefore of
codimension one in the space of all curves of degree 4 in RP3.

So by small perturbation, the curve can be made to lie on a hyperboloid.
The perturbation may be chosen small enough to not change the real intersec-
tion and ensure that the points in the intersection of the complexification are
distinct.

We now use our study of knots of degree 4 in RP3 to study knots of degree 6
in the sphere with one double point.

3.3.2 Degree 6 knots in S3 with a real double point

The real part of a real curve in RP3 is called affine if there is a real plane which
is disjoint from it. We first prove the following lemma that will be used later:

Lemma 22. A real curve of real bi-degree (1, 3) on a hyperboloid in RP3 cannot
be affine.

Proof. Any plane X intersects Q in either an ellipse or a distinct pair of
lines. In either case, the bi-degree of RQ ∩ RX is (±1,±1) and it represents
the homology class ±[L1] + ±[L2], where [L1] and [L2] are the generators of
H1(Q) and are each represented by a line in the ruling. The homology class
represented by the curve of bi-degree (1, 3) is [L1] + 3[L2], so the intersection
number ([L1] + 3[L2]) ◦ (±[L1] + ±[L2]) = ±[L1] ◦ [L2] ± 3[L1] ◦ [l2], so the
intersection number is either ±2 or ±4.

Lemma 23. Consider a rational curve C of real bi-degree (1, 3) in a hyper-
boloid Q. All real lines l such that Cl intersects CC in two (conjugate) imag-
inary points lie in the same component of RP3 \ RQ.

Proof. Consider two lines l1 (resp. l2), such that Cl1 (resp. Cl2) intersect CC
(paramaterized by k) in the points k(z1) and k(z̄1) (resp. k(z1) and k(z̄1)). We
may assume that z1 and z2 lie in the same component of CP1 \ RP1, because
if not, we may replace z2 by its conjugate. So there is a path zt of imaginary
points in one half of CP1 \ RP1, connecting z1 and z2. The conjugate z̄t of
the path connects z̄1 and z̄2. If a line lt, connecting zt and z̄t, intersects CQ
in more than two points, it would have to lie on CQ and would be one of
the rulings. This is impossible since by definition, lt intersects the curve in at
least two imaginary points but the curve has real bi-degree (1, 3). Therefore
the line Rlt never intersects RQ and therefore Rl1 and Rl2 must lie in the same
component.
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Lemma 24. Consider a line l intersecting a non-singular real rational curve
C of bi-degree (1, 3) in a hyperboloid Q in only a pair of conjugate imaginary
points. It defines a pencil of planes containing l. Any plane from that pencil
intersects C in two more distinct real points.

Proof. The pencil may be parametrized by RP1 and each plane may be denoted
by Xt, for some t ∈ RP1.

Since the knot is not affine (lemma 22), RXt intsersects RC. Xt already
intersects the C in two imaginary points, so there are exactly two real points
of intersection. We will now show that these points have to be distinct.

If a plane, say X0, intersects C in a real point with multiplicity two then
for a small ε, the intersections RXt ∩ RC for all t ∈ (−ε, ε) cannot be real
because then the intersection of the planes with the curve would be tracing
out local branches of the curve that are intersecting. We know that this curve
does not have crossings. But then, since the knot is affine, RXt ∩ RC cannot
be purely imaginary for any t.

Lemma 25. Consider a homotopy of rational maps qt : RP1 → RP1 of degree
3. If there is a point w0 such that q0(w0) = z0 such that #(q−10 (z0)) = 1, then
for each t there is a point wt such that qt(wt) = zt such that #(q−1t (zt)) = 1.

Proof. Consider the largest interval I0 containing w0 such that q0 �It is injec-
tive. This interval must remain non-empty throughout the isotopy because for
the smallest t0 for which It0 = ∅, the end-points of the interval would merge to
give point zt0 such that #(q−1t0 (qt0(zt0))) = 4 which is impossible for a rational
map of degree 3. So at each stage we may continuously choose a point zt from
It.

Lemma 26. Consider two pairs (C0, X0) and (C1, X1) in P4,2. If C0 and C1

are rigidly isotopic, then there is there is a path in P4,2 joining (C0, X0) and
(C1, X1).

Proof. We will solve these individually for the two types of real bi-degrees.
Denote the path of rational knots connecting C0 and C1 by Ct, where 0 ≤
t ≤ 1. Let kt denote a parametrization of Ct, for each t, and RX0 ∩ RC0 =
{k0(z), k0(z̄), k0(λ1), k0(λ2)}, for some z which is imaginary and some λi which
are real. Keep z fixed throughout the isotopy and define the line lt to be the
line defined by the two imaginary points kt(z) and kt(z̄). The points kt(z) and
kt(z̄) must be distinct, otherwise it would give rise to a solitary double point.
Now consider the two bi-degree cases separately:

Real bi-degree (1, 3): For each t, lt does not intersect Q in any more points,
otherwise it would be forced to lie on Q and would have to be one of the rulings
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that intersect the curve in one real and two imaginary points. That is impos-
sible because this curve is of real bi-degree (1, 3). Therefore, by lemma 24, for
each t, the unique plane Xt defined by the line lt and kt(λ1) must intersect the
curve in two distinct real points.

Using lemma 23, one can find a path of lines lt between the line l0 and one
which is defined by the conjugate pair in the intersection CX1∩CC1. Again by
lemma 24, the plane Xt defined by each line lt and the fixed real point kt(λ1)
will intersect it in distinct points. Finally move λ1 to a point which is in the
preimage of the real point of intersection RX1 ∩ RC1. Once again lemma 24
ensures that the curve and the plane will intersect in distinct real points.

Real bi-degree (1, 1): Each plane Xt containing lt will intersect the curve in
the two real points kt(λt) and kt(λ

′
t). Since the curve is of degree 4, the point

λt can always be continuously chosen so the plane Xt defined by it and the
line lt intersects the curve in distinct points. This is can be seen as follows:
Parametrize the pencil of planes containing a line l by RP1. For each s ∈ RP1,
denote the plane by Xs. If there is a plane Xs0 that intersects the knot in a one
double point, then for every s small interval around s0, it is impossible that
Xs intersects k in only real points because that will trace out two intersecting
branches of the curve. This means that the double point must arise because
Xs0 is tangent to the knot. Supposing Xs1 is another plane tangential to the
knot, then let I denote the interval component of RP1 \ {s0, s1} for which Xs

intersects the knot in real points for all s ∈ I. In that case, for each s ∈ I,
Xs is intersecting the curve in distinct real points that coincide at the for Xs0

and Xs1 . The two real intersection points trace out a closed loop. Since the
real part of a rational curve is connected, this loop must be the entire real
curve.Since the rational curve is infinite, this interval must also be infinite,
and therefore throughout the isotopy of lines, one may continuously choose a
plane that intersects the knot in distinct real points.

Consider the smallest t0 for which the line lt0 lies on Q. Xt0 will then be
tangent to Q and would intersect Q in a pair of lines, one of which intersects
the curve in one real point, and another which intersects the curve in a real
point and a conjugate pair.

The pullback of the line lt0 by the Segre embedding may be explicitly
given by the set ([x0 : x1], [αt0 : βt0 ]) where [αt0 : βt0 ] is fixed. Its points
of intersections with the curve are given by those points [p0(si, ti) : p1(si, ti)]
(i = 1, . . . , 3) such that [p2(si, ti) : p3(si, ti)] = [αt0 : βt0 ]. Since the line
intersects in two imaginary points and one real point, two of the [si : ti] are
conjugate imaginary. By lemma 25, one can extend [αt0 , βt0 ] throughout the
isotopy to [αt, βt] so that the line lt defined by ([x0 : x1], [αt : βt]) intersects
the curve in an imaginary pair and one real point. The line from the other
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family of rulings that passes through [αt, βt] intersects the curve in only one
point, so together the two lines, one from each ruling, define a plane Xt which
intersects the curve in two real and two imaginary points.

By lemma 20, we know that k0 is isotopic to the curve

[s(s3 + t3) : s(s3 − t3) : t(s3 + t3) : t(s3 − t3)]

(or its mirror image) and by what we have just proved, the plane X0 can be
isotoped to a plane X0 which intersects the curve [s(s3 + t3) : s(s3 − t3) :
t(s3 + t3) : t(s3 − t3)] in two distinct real points throughout the isotopy.

By the same reasoning, k1 can also be isotoped to the curve [s(s3 + t3) :
s(s3 − t3) : t(s3 + t3) : t(s3 − t3)] and the plane X1 to X1 so that in intersects
the curve it two distinct real points throughout the isotopy. Observe that
X0 and X1 are tangential to the ambient hyperboloid, but there the curve
[s(s3 + t3) : s(s3 − t3) : t(s3 + t3) : t(s3 − t3)] intersects every line of its ruling
in just one real point. So every plane tangent to the hyperboloid intersects
the curve in two real points and therefore X0 and X1 may be moved to each
other via planes that intersect the curve in two real points.

A degree four knot in RP3 which intersects the plane at infinity in two
real points is either the unknot or the two crossing knot. Therefore, by the
previous theorem,

Theorem 27. Singular knots in S3 with one double point form a wall between
two unknots or a wall between the unknot and the trefoil.

3.3.3 Degree 6 knots in S3 with a solitary double point

Given a knot, if there is a plane disjoint from it, then it intersects the com-
plexification of the knot in two pairs of conjugate imaginary points. Each pair
defines a real line. Pick one of these real lines. It does not intersect the real
part of the curve and indeed it will be shown that that such a line can always
be chosen along an isotopy. We will need the following lemma.

Lemma 28. Consider a homotopy of rational maps ft : CP1 → CP1, each
of degree 3. For a fixed open set U ⊂ CP1, consider an z0 ∈ f−1t (U). It is
possible to continuously extend z0 throughout the isotopy, so that for each t,
xt ∈ f−1t (U)

Proof. Fix w = f(z0). For each t, there are three points in f−1t (w), out of
which one can choose the point zt which will continuously extend z0.
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Lemma 29. Consider a pair (C, l) of a degree 4 knot and a line, such that
Cl intersects CC in a conjugate pair of imaginary points but is disjoint from
the real point of the knot. Suppose there is an isotopy Ct of the knot, where
C0 = C, then this isotopy can be extended to a pair (Ct, lt), where for each t,
Clt intersects CCt in a pair of conjugate imaginary points but no real points.

Proof. A degree 4 knot lies on a hyperboloid. The line that is defined, already
intersects the knot and therefore the hyperboloid in two imaginary points. If
it is not already transversal to the to the hyperboloid, perturb it so that it is.
It cannot intersect the hyperboloid (and therefore not even the knot lying on
it) in any more points and therefore is disjoint from the real part of C.

Let kt be the parametrization of C. We need to find a path zt so that
and the line lt be defined by the points k(zt) and k(z̄t) does not intersect the
curve in any more points. This means that the line lt must never be the real
ruling. In other words, [p2(z) : p3(z)] must never be real in the parametrization
([s : t], [p2 : p3]), where the pi’s are of degree 3, because the ruling is defined
by ([x0 : x1], [α : β]) for some real α and β and it intersects the curve when for
those values of z such that [p2(z) : p3(z)] = [α : β]. But the previous lemma
shows that this is always possible.

If the line defined by a pair of conjugate imaginary points, k(z) and k(z̄),
is such that no real point of the curve lies on it, then each real point and this
line defines a plane belonging to the pencil of curves that is parametrized by
RP1. This defines a map θ : RP1 → RP1.

Lemma 30. If θ is surjective, it is a two sheeted covering of degree 2.

Proof. The image of a point by θ corresponds to a plane from the pencil that
passes through the point. Since the degree is 4 it intersects one more point
which, will turn out to be distinct. If the points coincide, then since the map
is surjective, the preimage of a small enough neighbourhood of the pencil will
be two intervals that intersect each other at one point. This is impossible since
the knot does not have real double points.

Since each plane from the pencil intersects the curve in two real points, the
preimage of a small enough interval around the point will be a disjoint union
of two intervals and will therefore be evenly covered.

Corollary 31. Consider two isotopic knots C1 and C2. If there is a plane
X1 disjoint from RC1, then an isotopy of knots Ct between C1 and C2, can be
extended to a pair of (Ct,Xt), where Xt is disjoint from Rkt.

Proof. If there does not exist a plane disjoint from a knot k, then the map
θ corresponding to it must be surjective and hence a two sheeted covering of
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degree 2. The map corresponding to any knot isotopic to C will also have
degree 2 and will therefore be surjective.

The planes which do intersect the curve in real points form an interval in
the pencil. The complement is also an interval, which we have just shown
is non-empty throughout the isotopy and therefore it is possible to always
continuously choose a plane from it which will not intersect the knot in any
real points.

Although the plane that is obtained at the end of the isotopy is disjoint
from k2, it need not be the one that we want, but we also have:

Lemma 32. If there are two planes X1 and X2 that intersect a knot in only
imaginary points, then they are connected by a path of planes Xt that are all
disjoint from the real part of the knot.

Proof. The two planes intersect in a line that define a pencil of planes. Again,
we may define a map θ : RP1 → RP1 by taking each point on the real part
of the knot to the plane defined by it and the line. The image is a connected
interval that is a proper subset of RP1 because the two given planes do not
intersect the knot in real points. The complement of a connected interval in
RP1 is an interval and therefore one can choose path to connect the planes in
the pencil.

Observe that this wall is the same as one of the earlier walls because we
can isotope the knot so that the solitary double point becomes a cusp and
thereafter a non-solitary double point. This can be seen by considering its
corresponding pair of the real degree 4 rational curve and the plane that inter-
sects the curve in only imaginary points. Move the plane so that it is tangential
to the curve and thereafter intersects it in a real pair. At the stage that it is
tangential to the curve is when the curve lifts to one in the sphere that has a
cusp.

We have proved that:

Theorem 33. In the space of rational curves of degree 6 in S3, there are 4
rigid isotopy classes of curves that have only one double point as a singularity.

3.3.4 The space of real rational curves in S3

The space of rational curves in RP3 is a projective space and therefore a closed
manifold. When we consider those curves in RP4 whose image lies in S3, the
situation is no longer straightforward. However, we will prove that this space
is also a closed manifold. This will enable us to use the fact that the top
homology is Z/2 and the Poincare duality to find a bound on the number
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of components. We will then show that in the case of degree 6, the bound
obtained is sharp.

The space of real rational curves in S3 is a manifold

We will need two lemmas from linear algebra to prove the following theorem
which states that the space of degree 6 rational curves in S3 is a manifold.

Lemma 34. If h0, h1, . . . , hd are linearly independent polynomials of degree
≤ d, then the determinant of the following matrix will be non-zero:

h0(t1) h1(t1) . . . hd(t1)
h0(t2) h1(t2) . . . hd(t2)

... . . . . . .
...

h0(td+1) h1(td+1) . . . hd(td+1)


as long as all the ti’s are distinct.

Proof. No linear combination of {h0, h1, . . . , hd} can result in the zero poly-
nomial since they are linearly independent. However, if the columns of this
matrix are linearly dependant, it is equivalent to a linear combination of hi’s
having d + 1 roots, which is impossible for a polynomial of degree less than
d+ 1.

Lemma 35. Let p0(t) and p1(t) be two polynomials of degree d that do not
share a root. Then the set

{p0(t), tp0(t), . . . , td−1p0(t), p1(t), tp1(t), . . . , td−1p1(t), tdp1(t), . . . , td+kp1(t)}

is linearly independent in the space of polynomials of degree 2d+ k.

Proof. Let p0(t) = a0 + a1t + . . . + ad and p1(t) = b0 + b1t + . . . + bd where
ad 6= 0 6= bd. The set of polynomials

{p0(t), tp0(t), . . . , td−1p0(t), p1(t), tp1(t), . . . , td+k−1p1(t), td+kp1(t)}
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is linearly independent if and only if the following matrix is non-singular:

a0 a1 · · · ad−1 ad 0 0 0 0 0 0
0 a0 a1 · · · ad−1 ad 0 0 0 0 0

...
0 0 0 0 0 a0 a1 · · · ad−1 ad 0

b0 b1 · · · bd−1 bd 0 0 0 0 0
... 0

0 b0 b1 · · · bd−1 bd 0 0 0 0
... 0

...
0 0 0 0 0 b0 b1 · · · bd−1 bd 0

...
0 0 0 0 0 0 b0 b1 · · · bd−1 bd


Observe that the submatrix which is obtained by removing the last row and

column is the Sylvester matrix whose determinant is the resultant R(p0, p1)
which is non-zero because the p0 and p1 do not share a root. The determinant
of the original matrix is ±bk1d R(p0, p1) which is non-zero because bd 6= 0.

Theorem 36. The space of real parametrizations of rational curves of degree
6 in RP4 that lie in the sphere, is a manifold of dimension 21 (co-dimension
13).

Proof. Denote any rational parametrization explicitly by [p0 : p1 : p2 : p3 :
p4], where each pi is a homogeneous polynomial of the same degree. Let
q(t) = p1(t)

2 + p2(t)
2 + p3(t)

2 + p4(t)
2 − p0(t)

2. The space of all rational
parametrizations in RP4 is the projective space RP34. We will restrict attention
to each chart, defined by one coefficient of one of the polynomials, and dividing
all the coordinate polynomials by that coefficient. We will prove that for
each chart, we can find a submersion to RP13 whose pullback of 0 will be
parametrizations of curves that lie in S3

Fix points t1, t2, . . . , t13 in RP1. Define the map θ : R34 → R13 that
takes the parametrization [p0 : p1 : p2 : p3 : p4] (restricted to a chart) to
(q(t1), q(t2), . . . , q(t13)). The inverse image of (0, 0, . . . , 0) ∈ R13 is precisely
the set that we want because any degree 6 rational curve the intersects the
sphere in 13 distinct points must lie on the sphere.

Represent a parametrization in RP34 by coordinates [a0 : a2 : . . . : a34]
where a0, . . . , a6 are the coefficients of p0, a7, . . . , a13 are the coefficients of p1,
and so on. Each q(ti) is a quadratic polynomial in ai for a fixed ti.

It is enough to show that for any arbitrary point in this space, the differ-
ential dθ is surjective. dθ is a 13 × 34 matrix where the rows are of the form
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(∂q(ti)
∂aj

)(i,j). By using the chain rule on each entry it is easy to see that if ai

is the lth coefficient of pk, the matrix is (±2pk(tj)t
l
j)(i,j). The sign is − when

k = 6.
We now have to find a minor of the above matrix which has a non-zero

determinant. Choose two pi1 and pi2 which do not share a root and whose
coefficients are not the with the coefficient defining the chart. Consider the
following 13× 13 minor: pi1(t1) . . . t51pi1(t1) pi2(t1) . . . t61pi2(t1)

... · · · · · · · · · · · · ...
pi1(t13) . . . t513pi1(t13) pi2(t13) . . . t613pi2(t13)


Lemma 35 shows that the polynomials {pi1(t), . . . , t5pi1(t), pi2(t), . . . , t6pi(t)}

are linearly independant, and lemma 34 shows that the above matrix is non-
singular.

If the point [a0 : a2 : . . . : a34] corresponds to a parametrization [p0 :
p1 : p2 : p3 : p4] where two coordinate polynomials share a root, it means
that the curve intersects the co-dimension two linear subspace defined by two
coordinates of RP4 equal zero. By the transversality theorem, it is possible to
find a diffeomorphism (for instance, a rotation) that preserves S3 and takes the
curve to one which does not intersect any of the co-dimension 2 hypersurfaces
defined by xi = 0 and xj = 0. Simply compose this diffeomorphism with the
map θ to define a new map which will be regular when restricted to a small
enough neighbourhood of [a0 : a2 : . . . : a34] in a chart containing it.

Remark 37. The above theorem easily generalizes to the curves of higher de-
grees.

The space of real rational curves in S3 is connected

We do this in two steps because it is easier to prove the theorem for singular
curves:

Lemma 38. The space of real rational curves of degree 6 in S3 with at least
one double point, is connected.

Proof. Given two curves in S3 with at least one double point, use a linear
transformation so that they have a common double point. Project each of
these curves from their common double point. Denote the projections by C1

and C2 and their respective parametrizations by k1 and k2. They each intersect
the plane at infinity in at least one conjugate pair say ki(zi) and ki(z̄i).
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We know that each rational curve of degree 6 with one double point in S3

corresponds to a pair (C,P ) where C is a degree 4 real rational curve in RP3

and P is a plane that intersects k in 4 points such that at least two of them
form a conjugate imaginary pair.

Consider a path kt between k1 and k2 and a path zt between z1 and z2.
Extend the path to the path of pairs (kt, Pt) where each Pt is continuously
chosen so that it contains kt(zt) and kt(z̄t). Now make the plane Pt coincide
with the original plane at infinity. At each stage we get a pair that will be
pulled back to a degree 6 curve in the sphere.

Lemma 39. Given a curve k1 in the space of real rational curves in S3, there
is a curve with one double point in its path connected component.

Proof. Project the curve from a point on it to a degree 5 curve in S3. The
projection will be a curve which intersects the plane at infinity in one real
point and two conjugate pairs of imaginary points that lie on the empty conic.
Denote the parametrization of the curve by k : RP1 → RP3, and fix the
imaginary pairs k(zi) = vi and k(z̄i) = v̄i for some fixed zi where i = 1, 2. Fix
two distinct points λ1 and λ2 in RP1, then we can always find a curve so that
k(λ1) = w1 and k(λ2) = w2 for any pair w1 and w2, while still maintaining
k(zi) = vi and k(z̄i) = v̄i so that it lies on the imaginary conic at infinity and
the curve can be lifted back to S3. Now given a path wt between w1 to w2, for
each wt there is a kt such that kt(λ1) = wt = k(λ2), kt(zi) = vi and kt(z̄i) = v̄i
and to create a double point.

By the previous two lemmas we obtain the theorem:

Theorem 40. The space of real rational curves of degree 6 in the sphere is
connected.

We now prove that:

Lemma 41. The space of rational curves with exactly one double point is a
manifold of dimension 20.

Proof. Denote the space of rational curves with at least one double point as D
and the space of rational curves with more than one double point as D′, then

D \D′ ∼= S3 ×Dp

where Dp denotes the space of curves with exactly one double point at the
north pole p. This equivalence map can be seen as follows: S3 may be treated
as the unit quarternions with the north pole p as the identity quarternion.
The quarternions act transitively on S3 and extend linearly to R4. The map is
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then defined by sending a curve k with one double point at q to the pair (q, k0)
where k0 is the action of Aq on k, where Aq is the quarternion that takes q to
p.

So it is enough to show that Dp is a manifold. Via the stereographic
projection, this space is isomorphic to the space of knots of degree 4 in RP3

that intersects the plane at infinity in four points, two of which lie on the
empty conic. The curves that intersect the plane at infinity in the points
[0 : 0 : 1 : i] and [0 : 0 : 1 : −i] is a manifold of dimension 17, which will
be denoted by Ki. Fix a real point λ1 on the plane at infinity and one point
λ2 outside it. Given any conjugate pair z and z̄ on the empty conic, there is
unique transformation Tz which fixes λ1 and λ2 and takes z → i and z̄ → −i.
For an open neighbourhood U around z in the empty conic, the map and a
neigbhbourhood V around a chosen knot, Tz gives an isomorphism

V ∼= U ×Ki

that is defined by taking a knot k which intersects the empty conic in z and z̄
to (z, Tz(k)).

Computing a bound on the number of components

Let X denote the space of parametrizations of real rational knots of degree
6 in S3. Its dimension is 21. Denote by D, the co-dimension 1 subspace of
parametrizations which have at least one singularity.

Since X is a manifold, by Poincare duality:

H0(X \D;Z/2) = HBM
21 (X \D;Z/2)

By the long exact sequence of Borel-Moore homology [2],

dim HBM
21 (X \D;Z/2) ≤ dim HBM

21 (X;Z/2) + dim HBM
20 (D;Z/2) (3.1)

dim HBM
21 (X;Z/2) = 1 since X is a connected manifold of dimension 21

any manifold is Z/2-orientable. Consider the space of curves which have only
one double point or a cusp as a singularity. Denote the complement of this
space in the space of curves with singularities to be D′; it is of co-dimension
2. Then

dim HBM
20 (D;Z/2) ≤ dim HBM

20 (D′;Z/2) + dim HBM
20 (D \D′;Z/2) (3.2)
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Figure 3.1: Knots of degree 6 writhes 4, 2, 0, and 2. The first is topologically
isotopic to the trefoil and the other two are topologically isotopic to the unknot.
The successive perturbations are formed by a vertical rotation of the innermost
circle.

Again by duality, since D \D′ was shown to be a manifold by lemma 41,

HBM
20 (D \D′;Z/2) = H0(D \D′;Z/2)

which we know has rank 4, and D′ has co-dimension 2 so dim HBM
20 (D′;Z/2) =

0. Therefore, by the inequality 3.1,

H0(X \D;Z/2) ≤ 1 + 4 = 5

We will now try and obtain representatives for these five components.
The first three knots shown in figure 3.3.4 are not isotopic to each other

because they have distinct writhe numbers: 4, 2, and 0. There is a wall
separating the knots with writhes 4 and 2 and this is the wall obtained by the
pull back in the sphere of the two crossing knot of degree 4 in RP3.

Observe that the trefoil T+ and its mirror image T− lie in separate com-
ponents and therefore account for two of the rigid isotopy classes. They can
be obtained by perturbing the pullback of the two-crossing knot.

Now consider the pullback of the unknot. Perturbing it will lead to knots
of different writhes and therefore one of them, denoted by U+

2 , has got to have
a non-zero writhe. Its mirror image, denoted by U−2 , would have a negative
writhe number and therefore will lie in a separate component. Together, they
account for two more components.

Since we need to account for only one more component, the other knot
formed by a pullback of the unknot, and denoted by U0, is isotopic to its
mirror reflection. It must have writhe number 0 and therefore U+

2 , and U−2
must have writhes +2 and −2 respectively.

1. A knot of writhe number 2 which is topologically isotopic to the trefoil
(and its mirror image)
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2. A knot of writhe number 2 which is topologically isotopic to the unknot
(and its mirror image)

3. A knot of writhe number 0 which is topologically isotopic to the unknot.
It is rigidly isotopic to its mirror image.

and that the two walls divide the knots of different writhes.

3.4 Constructing examples of knots in S3

Before demonstrating why Björklund’s [1] method of constructing examples
applies to curves in the sphere, we note that following simple lemma which
proves the existence of torus knots in rational curves of each degree d.

Lemma 42. There exist (m, d/2)-torus knots in S3 of degree d for each m
which is coprime to d/2.

Proof. Treat the real 3-sphere as a subset of C2 defined by |z1|2 + |z2|2 = 1. It
is easy to see the that curve defined by t→ (emit, edit/2) (where m < d/2) is a
rational immersion of degree d. It is an embedding if and only if (m, d/2) are
co-prime.

One method of constructing real rational knots in the sphere is to pull back
knots from the projective space and perturb them. However this cannot be
done directly because in applying theorem 9 to curves of degree 8 in S3 with
one double point, we see that they correspond to curves of degree 6 in RP3

which intersect the plane at infinity in 6 points, 4 of which lie in the empty
conic. The 4 intersection points of the curve with the plane at infinity that
lie on the empty conic are in conjugate pairs. Although they define a real
pencil of conics, not every real pencil of conics may contain the empty conic,
for example: the pencil joining x20−x2 +x23, and x20−x2 +2x23. This is because
any linear combination will always result in the coefficients of x0 and x1 having
different signs.

However, Björklund [1] showed that a real rational knot in RP3 can be
obtained from a union of two real rational knots that intersect each other in
one point. He specifically showed that if the parametrizations of the rational
curves are [p0 : p1 : p2 : p3], and [q0 : q1 : q2 : q3], then the perturbed union is
defined by the rational curve given by (p1/p0+q1/q0, p2/p0+q2/q0, p3/p0+q3/q0)
for points where p0 is not zero. The perturbed union is then extended by
continuity to the whole projective space. The degree of the resulting curve is
the sum of the degrees of the original curves.
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It will be useful to define the perturbed union in terms of projective co-
ordinates: [p0q0 : p1q0 + q1p0 : p2q0 + q2p0 : p3q0 + q3p0]. Observe that the
intersections of each knot with the plane at infinity do not change after the
perturbation because for any [s : t] such that q(s, t) = 0, [p0q0 : p1q0 + q1p0 :
p2q0 + q2p0 : p3q0 + q3p0]=[0 : q1p0 : q2p0 : q3p0]=[0 : q1 : q2 : q3]. The same
happens for any [s : t] such that p(s, t) = 0. Therefore in order to construct
curves of degree 8 which intersect the plane at infinity such that four points
of the intersection points lie on the empty conic, we can perturb the union of
two curves of degrees m and n (where m + n = 8) which individually satisfy
this condition and which intersect in one point. Perturbing will not disrupt
their intersection with the plane at infinity. In fact, we only need to take care
of one point of each conjugate pair because the other will also have to lie on
it since the empty conic and the curve are both real.

The above was done to construct singular knots by using knots of lower
degrees in the projective space. But it is not too difficult to see that we also
have the following counterpart to Björklund’s theorem for knots in spheres:

Theorem 43. If there are two knots in the sphere with degrees m and n which
intersect in only one point, they can be perturbed slightly to form a knot of
degree m+ n in the sphere which is isotopic tot he union of the original knots
outside a small neighbourhood of the intersection.

Proof. Project the union of the knots to RP3 by a point not on either of the
knots. This will result in knots in RP3 that intersect the plane at infinity in
conjugate imaginary points, all lying on the sphere. If the parametrizations
of the projected knots are [p0 : p1 : p2 : p3], and [q0 : q1 : q2 : q3], then
the perturbed union defined by the rational curve parametrization given by
[p0q0 : p1q0 + q1p0 : p2q0 + q2p0 : p3q0 + q3p0] preserves the points at infinity. So
this new knot also intersects the plane at infinity in only imaginary points at
the empty conic and can therefore be lifted via the stereographic projection
to S3.

The following lemma will be useful in constructing many examples:

Lemma 44. A degree 2 curve C in S3 projects under the stereographic pro-
jection πp to a degree 2 curve π2(C) in RP3 if and only if π2(C) is a circle.

Proof. π2(C) is a conic that lies on a plane which can be transformed via an
orthogonal transformation to the plane defined by x0 = 0. The plane defined
by x0 = 0 intersects the empty conic at the plane at infinity in the conjugate
pair [0 : 0 : 1 : i] and [0 : 0 : 1 : −i]. π2(C) would be the image under the
stereographic projection of a curve of the same degree if and only if its two
points of intersection with the plane at infinity lie on the empty conic. Since
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Figure 3.2: Figure-eight knot in S3 realized by a degree 8 rational curve.

its ambient plane intersects the conic in [0 : 0 : 1 : i] and [0 : 0 : 1 : −i], π2(C)
would have to contain these two points. It is easy to see that conics that lie on
the plane x0 = 0 and pass through these two points are circles. Indeed, circles
may be characterized by conics which pass through this conjugate pair.

Note that the “only if” part is easy because the stereographic projection is
conformal. For the converse, we needed to show that the pullback was of the
same degree.

Corollary 45. Any knot in RP3 that can be constructed inductively by using
only circles, can be pulled back to via the stereographic projection, to a knot of
the same degree in S3.

Figure 3.4 shows an example of the figure-eight knot of degree 8 constructed
in S3. The knot is constructed in RP3 using only circles. Therefore, by the
previous corollary, it is possible to lift it back to a degree 8 curve in the sphere.

The fact that we are allowed to use only circles (and not general conics)
is a strong restriction. It prevents us from constructing the wall between the
trefoil and figure eight knot as is demonstrated in the following section. The
impossibility of this construction was already predicted by the classification.

3.4.1 Example of a construction impossible in S3

A

B

C
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Björklund constructed the figure of eight knot and the trefoil knot by perturb-
ing the above union of ellipses. Given that the method of constructing curves
is possible for curves in S3, it seems that such a construction must be possible
in the sphere too. The following remarks will illustrate where the problem lies.

If such a configuration came from the sphere via the stereographic projec-
tion, then the conics would have to be circles because the only conics in the
sphere are circles and the stereographic projection takes circles to circles.

In the figure, Circle B meets Circle C in the plane containing it but also
meets that plane in another point. It will be shown that if Circle C is large
enough to contain this other point in the interior component, it will be too
large to remain unlinked with Circle A

The following lemma will make it more helpful to consider the above con-
figuration with a minor change: keeping the point of intersection of circle A
and circle B fixed, circle A is shrunk to create another intersection point, like
this:

A

B

C

If the first configuration of circles is possible, so will the second configuration,
but the second configuration will be easier to prove impossible because now
the unions of circles A and B lie on a sphere:

Lemma 46. The union of two circles in RP3 that intersect in two points, lies
on a sphere.

Proof. There is a sphere containing the two intersection points and one ad-
ditional point from each of the two circles (since they are only four in num-
ber). The sphere shares three points with each circle and therefore contains
them.

The plane containing circle C will intersect the sphere containing circles A
and B in following way:
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b

b'

a
a'

Here a and a′ are the intersections of circle A with the plane, while b and
b′ are intersections of the circle B with the plane. The dotted circle is the
intersection of the sphere with the plane.

Points a and a′ divide the dotted circle into two arcs, one that contains b
and the other that contains b′.

Circle C passes through b′ and will intersect the dotted circle in one more
point. If that point is on the arc aa′ containing the point b then circle C and
circle A would have a non-zero linking number, which we know is not the case.
Therefore both points of intersection of circle C with the dotted circle lie on
the arc aa′ containing b′. The arc of the dotted circle that is in the interior of
circle C must therefore be disjoint from the arc aa′ containing b. This proves
that b cannot lie in the interior of circle C which is a contradiction.

b

b'

a
a'

Circle C

b

b'

a
a'

Circle C

Figure 3.3: Circle C will either link with circle A or not contain b. In the
second case the arc contained in the interior of Circle C is disjoint from the
arc aa′ containing b.

3.5 Degree 6 knots in RP3

Consider a real rational curve of degree 6 in RP3 with four real double points.
It is parametrized by a map θ : RP1 → RP3 that can be extended to its
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complexification θ : CP1 → CP3. If the preimage of a double point is a real
pair, then the double point is a self intersection; if the preimage of a double
point is a conjugate imaginary pair, then the double point is solitary.

Associated to each curve, is a chord diagram defined as follows. Represent
RP1 by a circle and mark on it the preimages of the non-solitary double points.
Connect the pair in the pre-image of each double point by a chord. But first:

Lemma 47. A degree 6 curve in RP3 cannot have more than four double
points.

Proof. If a degree 6 curve has five double points, then choosing these double
points and four more points on the curve will define a quadric that would
intersect the curve in at least 13 points (counting multiplicity). So the curve
would have to lie on the quadric because a transversal intersection can have
no more than 2× 6 = 12 points. By a small perturbation, one can ensure that
it lies on a non-singular quadric.

The stereographic projection from one of these double points would project
the curve to a degree 4 planar rational curve with four nodes, which is impos-
sible.

Theorem 48. Degree 6 curves in RP3 with four real double points rational
curves with equivalent chord diagrams are rigidly isotopic up to mirror reflec-
tion.

Proof. Transform the curve by a projective transformation that takes the four
double points to the points z0 = [1 : 0 : 0 : 0], z1 = [0 : 1 : 0 : 0], z2 = [0 :
0 : 1 : 0], and z3 = [0 : 0 : 0 : 1] such that if there is only one solitary double
point then that is sent to z0 and if there are two solitary double points then
they are sent to z0 and z1 and so on.

Let [αi : βi] and [γi : δi] be in the preimage of zi. Let qi be the quadratic
polynomial (βis − αit)(βis − αit). If [αi : βi] and [γi : δi] are imaginary then
they must be in conjugate pairs and so qi’s are always real polynomials.

If θ is given explicitly by [p0 : p1 : p2 : p3] (where pi are homogeneous
polynomials of degree 4), then the fact that [1 : 0 : 0 : 0] is a double point
means that q0 divides p1, p2 and p3. Similarly, q1 divides p0, p2 and p3; q2
divides p0, p1 and p3 and q3 divides p0, p1 and p2.

This proves that p0 = c0q1q2q3, p1 = c1q0q2q3, p2 = c2q0q1q3, and p3 =
c3q0q1q2 where the ci’s are constants which can all be made ±1 by a projective
transformation.

Therefore, by a projective transformation, the curve has been transformed
to one whose parametrization has coordinates p0, p1, p2 and p3 such that
p0 = ±1q1q2q3, p1 = ±1q2q3, p2 = ±1q1q3, and p3 = ±1q1q2. This will be
rigidly isotopic to the original curve.
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No two of the polynomials qi can share a root, otherwise all the coordinates
will vanish on that point and the curve would not be well defined. Moving a
root of a qi will result in a rigid isotopy as long as it does not coincide with
another root of a qi, in the process. No other double points can be formed in
the process because of the previous lemma.

Suppose the conjugate pair of the preimage of one of the solitary double
points is x and x̄, this conjugate pair may be moved to any other conjugate
pair without passing through any other root of the qi’s. This is because x is
in one half of CP1 \ RP1 and can be moved to any other point that lies in
that half minus any other imaginary roots of qi’s. Its conjugate will be moved
accordingly.

Since there is no obstruction to moving the conjugate imaginary pairs, we
only need to keep a track of the non-solitary double points. They can be
moved as long as they do not coincide with another real root of a qi. In other
words, the roots of qi can be moved to any configuration having an equivalent
chord diagram.

Remark 49. The above method will also prove that rigid isotopy class of de-
gree 4 rational curves in RP2 with three real double points. This has been in
the first chapter.
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