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Akbulut corks provide a topological avenue for understanding the

smooth structures of a closed four-manifold. Computing the Hee-

gaard Floer invariants is a first step towards understanding them.

To this end, the Heegaard Floer homology of the bounding three-

manifolds of the Mazur corks is computed.
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Chapter 1

Introduction

In this thesis, we calculate the Heegaard Floer homology of the three-manifolds

bounding a family of Akbulut corks with the goal of shedding light on the

smooth structures of four-manifolds.

Four-manifolds exhibit a variety of unique exotic phenomena. For example,

closed four-manifolds allow infinitely many diffeomorphism types for a single

homeomorphism type.

One might think of dimension 4 as representing a phase transi-

tion between low- and high-dimensional topology, where we find

uniquely complicated phenomena and diverse connections with other

fields.[GS99, xii]

The low-dimensional equivalence between the smooth and topological cate-

gories breaks down, while the powerful high-dimensional h-cobordism theorem

has yet to take full effect. Akbulut corks come out of the failure to extend the

smooth h-cobordism theorem to the fourth dimension.
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In higher dimensions, the h-cobordism theorem states:

Theorem 1 [Sma61] If W n+1 is an h-cobordism between the simply connected

n-dimensional manifolds X− and X+, and n ≥ 5, then W n+1 is diffeomorphic

to the product I ×X−. In particular, X− is diffeomorphic to X+.

Among other things, the h-cobordism theorem gives us the generalized Poincaré

conjecture for dimension greater than or equal to five.

The idea of the h-cobordism theorem is to find a handle body decomposi-

tion of the h-cobordism and then show the handles can all be cancelled. The

difficulty with extending the h-cobordism theorem below the fifth dimension is

the failure of the ‘Whitney trick.’ The Whitney trick is used to construct the

handle body decomposition by resolving intersections between handle bodies

by means of the embedded disks guaranteed by Whitney’s embedding theorem

for dimensions greater than 5.

Freedman was able to extend the h-cobordism theorem down to the fourth

dimension for topological manifolds.

Theorem 2 [Fre82, Theorem 1.3] A compact, 1-connected, smooth, 5-dimensional

h-cobordism (W ;M,M �) (which is a product over the possibly empty boundary

∂M) is topologically a product, i.e., W is homeomorphic to M × [0, 1].

Freedman did this by using Casson handles in place of the standard two-

handles used in the original h-cobordism theorem. In the fourth dimension,

the Whitney trick still allows us to remove an intersection, but one cannot

be sure a new intersection isn’t created. The idea of a Casson handle is to

iterate the process infinitely with the hope that the difficulties with creating
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new intersections vanish in the limit. Indeed, Freedman showed this was true

topologically:

Theorem 3 [Fre82, Theorem 1.1] Any Casson handle is homeomorphic as a

pair to the standard open 2-handle
�
D2 × (D2)

◦
, ∂D2 × (D2)

◦�
.

A smooth extension of the h-cobordism theorem to the fourth dimension

was shown to be impossible by Donaldson. The first step was his diagonal-

izablity theorem, which put severe restrictions on the intersection form of

four-manifolds supporting a smooth structure.

Theorem 4 [Don83, Theorem 1] If X is a smooth, compact, simply-connected

oriented 4-manifold with the property that the associated form Q is positive

definite. Then Q is equivalent, over the integers, to the standard diagonal

form.

Then, in [Don85] and [Don87], he used a new invariant of smooth struc-

tures, Donaldson polynomials, to show that the h-cobordism theorem could

not extend to the fourth dimension for smooth manifolds. Namely, he showed

two manifolds, which Freedman’s theorem said were homeomorphic, had dif-

ferent Donaldson polynomials and were thus not diffeomorphic:

Theorem 5 [Don87, Theorem 3.24] The Dolgachev surface is not diffeomor-

phic to the rational surface CP2#9CP2
.

Interestingly, the difficulties responsible for the failure of the smooth four

dimensional h-cobordism theorem are, in some sense, contained in a sub-h-

cobordism. In the context of four dimensional manifolds, this implies the
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smooth structures on a given four-manifold can all be realized by means of a

contractible co-dimension zero submanifold and an involution on it’s boundary.

Theorem 6 [Kir97] Let M5 be a smooth five-dimensional h-cobordism be-

tween two simply connected, closed four-manifolds, M0 and M1. Then there

exists a sub- h-cobordism W 5 ⊂ M5 between W0 ⊂ M0 and W1 ⊂ M1 with the

properties:

1. W0 and hence W 5 and W1 are compact contractible manifolds, and

2. M − intW 5 is a product h-cobordism, i.e. (M0 − intW0)× [0, 1].

3. W0 is diffeomorphic to W1 by a diffeomorphism which, restricted to

∂W0 = ∂W1 , is an involution.

Definition 1.0.1 The contractible co-dimension zero submanifold with an in-

volution of it’s boundary is a cork (W, τ) of a differentiable simply connected

smooth four-manifold M if M = M − W ∪Id W is homeomorphic, but not

diffeomorphic to M � = M −W ∪f W .

The act of cutting and regluing W with the involution τ is called a cork

twist.

Corks have been found in many pairs of homeomorphic, but non-diffeomorphic,

four-manifolds. The first example of a cork was found by Akbulut in [Akb91].

The Mazur manifold (W1, τ1) was shown to be a cork in E (2)#CP2
. Sub-

sequently, many more examples have been found. See for example [AY08] in

which they show:
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Theorem 7 For n ≥ 1,

(W2n−1, τ2n−1) and (W2n, τ2n) are corks in W2n.

The ‘Mazur’ corks, (Wn, τn) are the focus of this thesis and are the compact

four-manifolds given by the Kirby diagram in figure 1.1. τn is given by the

homeomorphism induced by swapping 0 ↔ · on each component. Since the

link is symmetric, τn is an involution.

n n+ 1

0

Figure 1.1: Akbulut cork Wn

The presence of a cork in a manifold does not, by itself guarantee the cork

twist will produce an exotic copy. Smooth invariants are needed to distinguish

smooth structures on four-manifolds with the same topological type. The Don-

aldson polynomials, mentioned above in theorem 5, were the first such invari-

ant. The Donaldson polynomial’s gauge theoretic approach to smooth four-

manifolds was continued with the Seiberg-Witten invariant. Seiberg-Witten

invariants were much easier to compute and largely superseded the use of Don-

aldson polynomials. In many cases, it is possible to detect different smooth

structures by using properties of the invariant with respect to some extra

structure. For example, a symplectic structure on a four-manifold implies the

Seiberg-Witten invariant is non-vanishing.
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The Heegaard Floer invariant was inspired by the power of the Seiberg-

Witten invariant (in fact they are conjectured to be equivalent cf. [KLT10])

and the hope to create an invariant whose computation did not rely so heavily

on the fortuitous presence of some extra structure.

The Heegaard Floer invariant is a diffeomorphism invariant for closed dif-

ferentiable four-manifolds with b+2 > 1. It is built off of the Heegaard Floer

homology of three-manifolds.

To a closed, oriented three-manifold, we can associate a tuple of groups :

HF−, HF∞ and HF+ (we give a more detailed review in chapter 2). These

groups are associated with a long exact sequence:

... −→ HF− −→ HF∞ −→ HF+ −→ ...

which is abbreviated with the notation HF ◦. There is a fourth group, HFred

which is defined to be either:

HF+

Uk ·HF+
k >> 0

or

ker
�
Uk : HF− −→ HF−� k >> 0.

HFred is well defined as the two groups are isomorphic. The isomorphism is

given by the boundary map, ∂∗, of the above long exact sequence [OS04d,

Lemma 4.6].

HFred thus gives us a way to compose maps on HF− and HF+, which is

needed in the definition of the four-manifold invariant.
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Let W be cobordism between the closed oriented three-manifolds M0 and

M1, and t a spinc structure on W that restricts to s0, s1 on M0 and M1. In

[OS06], they construct a map,

F ◦
W,t : HF ◦ (M0, s0) −→ HF ◦ (M1, s1)

and show it is natural with respect to HF ◦ and a smooth invariant of W and

t. (A gap in the original proof of naturality was fixed in [JT12].)

The Heegaard Floer invariant of a closed four-manifold X with b+2 > 1 is

defined as follows: Remove two four-balls from X to get a cobordism �X from

S3 −→ S3. Cut �X along an embedded three-manifold N ,

�X = W1 ∪N W2,

such that both b+2 (W1) and b+2 (W2) > 0 (recall b+s (X) > 1). This condition

on the Betti numbers are needed to keep the invariant independent of the cut

N . The cobordism map:

F−
W1

: HF− �S3
�
−→ HF− (N)

factors through the inclusion HF−
red (N) �→ HF− (N) and

F+
W2

: HF+
�
S3
�
−→ HF+ (N)

factors through the projection HF+ (N) −→ HF+
red (N). The isomorphism

induced by ∂∗ lets us compose these two maps.
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The closed four-manifold invariant is the coefficient of the image of the

composition of these maps evaluated on the highest graded element x ∈

HF− (S3) = T −
(−2):

Φ (X, t) = F+
W2

◦
�
∂∗|HF+

red

�−1

◦ F−
W1

(x) .

(Here ∂∗ is the isomorphism of theHFred coming from the long exact sequence).

While the Seiberg-Witten invariants have been used with some success in

studying corks, the hope is the Heegaard Floer invariants will facilitate subtler

computations which do not rely on, for example, an associated symplectic

structure. One hope would be to understand corks well enough to construct

exotic pairs with their help. Toward this goal we compute the Heegaard Floer

homology of the boundaries of the Mazur corks (figure 1.1).

There has already been work done towards this goal. In [AD05] it was

shown that the map, f∗ on HF+ induced by the boundary involution acted

non-trivially on the Heegaard Floer homology of first example of the Mazur

corks, HF+ (−∂W1). More recently, in [AK11], f∗ was shown to act non-

trivially on the contact invariant lying within the Floer homology.

Last year an algorithm to compute the Heegaard Floer homologies of the

Mazur corks were given in [AK12]. They realized that, if gradings are disre-

garded, the homologies were found to be isomorphic to a class of plumbed

three-manifolds which could be computed algorithmically using Nemethi’s

method. This thesis gives a closed form solution for this class using a dif-

ferent approach. This approach allows the calculation of absolute gradings,

is applicable to all corks presented as two bridge links, and seems to have a
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natural path to the computation of the four-manifold invariant.

Also of related interest, the Instanton Floer homology of this family of

corks was recently computed as well in [Har13].

Remark 1.0.2 For technical reasons (the preference of HF+ over HF−) neg-

atively oriented corks, −Wn, are studied.

The Kirby diagram of the three-manifold bounding −Wn is given by re-

placing the 1-handle by a zero framed two handle:

−n − (n+ 1)

0

0

Figure 1.2: Oppositely oriented Akbulut cork boundary −∂Wn

In section 3.1 the calculation is reduced from, −∂Wn (a three-manifold

given by surgery on a link) to Y n = (S3
(+1)(K

n))1 (a three-manifold given by

surgery on a knot). A Heegaard diagram for this knot is found in chapter 3,

section 3.2 and the chain complex in section 3.3. Finally, in chapter 4 we use

the integer surgery formula from [OS08] to compute the Floer homology of

their +1 surgeries, HF+(Y n) and thus HF+ (−∂Wn).

In chapter 5 we discuss further directions for this approach and sketch the

first calculation for another class popular class of corks.

The main result is:
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Theorem 1.0.3

HF+ (−∂Wn) =T +
0 ⊕

�

−n<s<n

�
F[U ]

Um(s,0)F[U ]

�2

((s2−s)−(i2−i)−min(0,2(i−s)))

⊕


 �

{m(s,i)>0,i�=0}

F[U ]

Um(s,i)F[U ]




((s2−s)−(i2−i)−min(0,2(i−s)))

Where sum is taken over U-modules distinguished by the exponent, m(s, i), of

the quotient:

m(s, i) =





min (0, (i− s))− n−|i|−(s−i)+1
2

if n− |i|− (s− i) is odd

min (0, (i− s))− n−|i|−(s−i)
2

if n− |i|− (s− i) is even

(1.1)

where, |i|, |s| < n.
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Chapter 2

Background on Heegaard Floer

homology

2.0.1 Heegaard Floer homology

Remark 2.0.4 Let F denote Z/2Z. We will use the Floer invariant with

coefficients in F.

Notation 2.0.5 Recall the following commonly used U-modules:

T ∞ will denote the F[U ] module F[U,U−1]

T −
(d) will denote the F[U ] module F[U ] with maximum grading d.

T +
(d) will denote the F[U ] module F[U,U−1]

U ·F[U ]
with minimum grading d.

Heegaard Floer homology is an invariant of a closed oriented three-manifold.

A closed orientable three-manifold can be split into two handle bodies and a

gluing map φ:

Uα ∪φ Uβ.
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This splitting can be encoded by a genus g surface Σ and two g-tuples of

circles - α, β. The circles in α (and β) are linearly independent in homology.

Attaching two-handles to the α, β circles gives Uα, Uβ respectively.

If we distinguish a point z on a Heegaard diagram we call it a pointed

Heegaard diagram:

(Σ,α,β, z) .

For technical reasons related to the Floer construction, we work with pointed

Heegaard diagrams.

From the pointed Heegaard diagram we form the g-fold symmetric product

Symg (Σ). There are some technical conditions having to do with the almost

complex structure we put on it, but it is shown that for a generic almost

complex structure the invariant is independent of the choice of almost complex

structure.

Within Symg (Σ) we have two totally real tori:

Tα = α1 × ...× αg ⊂ Symg (Σ)

Tβ = β1 × ...× βg ⊂ Symg (Σ) .

The chain complexes are generated over F by the intersection points of

Tα ∩ Tβ.

For x,y ∈ Tα ∩ Tβ, a Whitney disk, φ ∈ π2 (x,y), is an map of the unit

disk D2 ⊂ C2 into Symg (Σ) such that:

1. −i �→ x

2. i �→ y

12



3. ∂D2 ∩ {x > 0} �→ Tα

4. ∂D2 ∩ {x < 0} �→ Tβ.

We study the moduli space, M(φ), of psuedo-holomorphic embeddings φ

with Maslov index equal to one, µ(φ) = 1.

The Maslov index is the expected dimension of the moduli space. In general

the Maslov index is hard to compute, but with the help of [Lip06] it can be

computed from the diagram combinatorially.

By restricting to the moduli space with Maslov index one and the help

of Gromov’s compactness theorem, the quotient space
�M(φ)
R is shown to be

a compact zero dimensional space. Thus the count of the holomorphic disks

#
�M(φ)
R is finite.

Definition 2.0.6 CF∞(Σ,α,β, z) is the module freely generated over F by

generators [x, i] ∈ (Tα ∩ Tβ)× F, endowed with a differential

∂[x, i] =
�

y∈Tα∩Tβ

�

{φ∈π2(x,y)

��µ(φ)=1}

#�M(φ)[y, i− nz(φ)].

Where nz(φ) is the algebraic intersection of z×Symg−1 with φ in Symg (Σ).

In general, the differential is hard to compute as finding the holomorphic

disks require the solution of partial differential equations. In our case, we will

be able to restrict to a special diagram, namely a surface with genus one, in

which these disks can be computed combinatorially.

Definition 2.0.7 CF−(Σ,α,β, z) is the subcomplex with i < 0:

CF− = CF∞ {i < 0} .

13



CF+ is the quotient:

CF+ =
CF∞

CF− .

�CF (Σ,α,β, z) is the subcomplex of CF+:

�CF =
CF{i ≤ 0}
CF{i < 0} .

These complexes are modules over the polynomial algebra F[U ], where

U · [x, i] = [x, i− 1].

We have induced F[U ]-actions on their homology groupsHF∞(Y ),HF−(Y ),

and HF+(Y ).

The complexes have a relative Z-grading:

gr(x,y) = µ(φ)− 2nz(φ).

where φ ∈ π2(x,y).

In our case of b1(Y ) = 0 this can be lifted to an absolute Q-grading. [OS03]

Theorem 8 [OS04d, Theorem 1.1] �HF , HF−, HF+, HF∞ thought of as

modules over F[U ] are topological invariants of Y .

When b1(Y ) > 0 there is a mapping s : Tα ∩ Tβ −→ spinc(Y ). It can be

shown that the differential, ∂, respects the partition, defined by s, of CF ◦ by

spinc structures. Thus the chain complexes CF ◦ and their homologies split

into subcomplexes indexed by spinc structure.

CF ◦ (Y ) =
�

s

CF ◦ (Y ; s)

14



Note: the boundaries of corks are integer homology spheres, so b1(Y ) = 0

and we can ignore issues with spinc structures.

See [OS04d] and [OS04c] for details.

2.0.2 Knot Floer homology

An invariant of a knot K in S3 is constructed by defining a filtration on the

Heegaard Floer chain complexes. In general, the invariant is defined for a

null-homologous knot in a closed, oriented three-manifold, but only the case

of S3 is used here.

Let K be an oriented knot in an integer homology sphere Y and let

(Σ,α,β0), where α = {α1, ...,αg},β0 = {β2, ..., βg}, be a Heegaard diagram

for the knot complement.

Then we will say (Σ,α,β0 ∪ µ), where µ is the meridian ofK, is a Heegaard

diagram for (Y,K).

Marking a point p on µ, lets us define z and w. For a small enough

neighborhood N of p, there are two conected components in N − µ. Marka

z and w in each of the connected components. This gives us a doubly-pointed

Heegaard diagram for a knot (Y,K), H (Σ,α,β, z, w). The choice of which

component to place z and w in corresponds to the two possible orientations of

the knot (so switching z an w corresponds to switching the orientation of the

knot). See figure 2.1 for an example when Y = S3 and K is the right handed

trefoil.

Definition 2.0.8 Because the coefficients are in F = Z/2Z we can abuse

notation and use x ∈ Tα ∩ Tβ to also refer to the algebraic elements.
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z
w

Figure 2.1: Doubly pointed Heegaard diagram for a right handed trefoil.

Let R be the Z ⊕ Z bigraded chain complex generated over F by Tα ∩ Tβ

with differential,

∂x =
�

y∈Tα∩Tβ

�

{φ∈π2(x,y)

��µ(φ)=1}

#�M(φ)y. (2.1)

CFK∞ (S3, K) is then the F[U ] module

F[U,U−1]⊗R.

We define a filtration function F : CFK∞ −→ Z⊕ Z by demanding

1. For x,y ∈ R, F (x,y) = (nz(φ), nw(φ)) , where φ ∈ π2(x,y).

2. If we place x ∈ R in the plane at coordinates F(x), R is symmetric

across the line y = x.

3.

F (x, U ⊗ x) = (1, 1).

F induces a Z × Z filtration on CFK∞ by: F(x) ≤ F(y) if and only if

both the coordinates of F(x) are less than are equal to the coordinates of F(y).

16



Projection of the filtration F to the x-coordinate will be denoted by: F1 (x,y) .

Projection of the filtration F to the y-coordinate will be denoted by: F2 (x,y) .

This is equivalent to the filtration from [OS04a, pg. 13], the filtration will be

encoded by placing the elements of the complex on a Z×Z lattice at coordinates

given by their evaluation by F . The differentials will represented by arrows.

See figure 2.2 for an example when K is the right handed trefoil.

Remark 2.0.9 If the Heegaard diagram for a knot has genus one, even the

differentials can be computed combinatorially. This will be elaborated on in

subsection 3.2.

Remark 2.0.10 The initial definition of CFK∞ was given in the following

equivalent form:

Let CFK∞ (S3, K) be the chain complex of the F[U ] module on the free

abelian group generated by the triples [x, i, j], x ∈ Tα ∩ Tβ and i, j ∈ Z with

U-action:

U · [x, i, j] = [x, i− 1, j − 1],

with differential,

∂[x, i, j] =
�

y∈Tα∩Tβ

�

{φ∈π2(x,y)|µ(φ)=1}
#�M(φ)[y, i− nz(φ), i− nw(φ)]. (2.2)

s(x) + (i− j)PD[µ] = t.

Here s corresponds to the spinc structures of the knot complement.

Theorem 2.0.11 [OS04a, Theorem 3.1] Let (S3, K) be an oriented knot.

17



i = 0 i = 0

j = 0

j = −1

j = 0

j = 1

Figure 2.2: The chain complex CFK∞ (S3, K) (left) and
�

j
�CFK (S3, K, j)

(right) for right handed trefoil.
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Then the filtered chain homotopy type of the chain complex CFK∞ (S3, K)

is a topological invariant of the oriented knot K.

Just as with the three-manifold invariant, the homology of the infinity

variant is not particularly interesting. Knot Floer homology is generally used

to refer to the hat variant, �HFK. Although the homology of CFK∞(Y,K) is

generally not interesting, its chain homotopy type carries a lot of information.

In particular it can be used to compute the Floer homology of knot surgeries

along K (section 4).

See [OS04a] for more details on the construction of CFK∞ and the com-

putation of HF+ (Yn) for sufficiently large |n|. For the case of all n ∈ Z see

[OS08].

2.0.3 Integer Surgery

Given the chain homotopy type of CFK∞ (S3, K), [OS08] describes how to

calculate the Floer homology of an integer surgery along (S3, K). We review

the details for the case of +1 surgery.

Theorem 2.0.12 [OS08, Theorem 4.1] Let Y be an integral homology three-

sphere. Then the homology of the mapping cone X+(1) of

D+
1 : A+ −→ B+

is isomorphic to HF+(Y1(K)).

(The definition of the mapping cone follows below 2.0.14).
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Remark 2.0.13 The above theorem is abridged. The details about the grading

shift and spinc structures are skipped as the surgery coefficient of +1 makes the

grading shift zero and the spinc structures are trivial on an integer homology

sphere.

Definition 2.0.14 Let:

Cs = {Um ⊗ x ∈ CFK∞|µ (Um ⊗ x) < 0 and A (Um ⊗ x) < s}

and

C{i < 0} = {Um ⊗ x ∈ CFK∞|µ (Um ⊗ x) < 0}.

Define the following quotients:

A+
s =

CFK∞

Cs

B+
s =

CFK∞

C{i < 0}

and maps between them:

v+s : A+
s −→ B+

s

and

h+
s : A

+
s −→ B+

s+1.

The map v+s is projection onto B+
s . h+

s is projection onto C{j ≥ s}, which is

identified with B+
s+1 by multiplying by U s, and then using the chain homotopy

equivalence from C{j ≥ 0} to C{i ≥ 0}. [OS08, pg. 2]

Note that B+
s is not dependent on the index s. The index is relevant to the
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absolute grading defined below.

X+(1) is then the mapping cone of

D+
1 : A+ −→ B+

where

A+ =
�

s

A+
s

B+ =
�

s

B+
s

and D+
1 is the direct sum of the chain maps:

D+
1 =

�

s

v+s ⊕ h+
s .

The quotients of CFK∞, A+
s and B+

s inherit its absolute grading. We shift

this old grading by:

d �→ d+ s(s− 1) + 1. (2.3)

The integer surgeries formula says the resulting grading on the mapping cone

X+(1) gives us the absolute grading of the surgered manifold.

Remark 2.0.15 The 1 in D+
1 , X+(1), A+

s , and B+
s denotes we are doing +1

surgery. It is included to keep notation consistent with [OS08].

The computation of the mapping cone is simplified greatly by truncating

the infinite sums A+, B+ to the finite ones:

A+(b) =
�

−b≤s≤b

A+
s
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B+(b) =
�

1−b≤s≤b

B+
s .

The truncated mapping cone is denoted:

X+(1; b).

The following lemma tells us we can always use the truncated mapping

cone:

Lemma 2.0.16 [OS08, Lemma 4.3] For b sufficiently large, X+(1; b) is quasi-

isomorphic to X+(1). In particular, they are quasi-isomorphic if v+s and h+
s

are isomorphisms for |s| > b.

2.1 Lifted Heegaard Diagram

When the genus of the Heegaard diagram is one, we can compute CFK∞

combinatorially. This is done by looking at the lift of the Heegaard diagram,

H.

This is very straight forward. The one subtlety is determining the combi-

natorial conditions for a Whitney disk to have a holomorphic representative.

The condition for counting the holomorphic disks is given in the definition for

the differential below. For the proof that this gives CFK∞, see [OS04a].

Definition 2.1.1 The cover H(K)of a genus one Heegaard Diagram H(K):

1. Let D be the unit square [0, 1]×[0, 1] marked at two points: {(1
3
, 1
2
), (2

3
, 1
2
)}

2. Let R2 be a tiling of R2 by D. �α, �β be embeddings of R.
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3.

�z = {(Z+
1

3
,Z+

1

2
}

4.

�w = {(Z+
2

3
,Z+

1

2
}

5. Then denote H =
�
R2, �α, �β, �w,�z

�
.

6. If the quotient by integer translation is the Heegaard Diagram for a knot,

H
Z⊕ Z

∼= H(K),

we write H(K) = H.

Definition 2.1.2 The knot Floer complex CFK∞
�
H(K)

�
of the cover H(K):

1. The generators:

• Let s : �α ∩ �β → spinc (S3 −K) be a map to the spinc structures on

the knot complement defined by �x �→ s(�x) = s (π(�x)). We use this

to define the generators of the complex:

• CFK∞(H(K)) is generated by {[�x, i, j]| �x ∈ �α∩�β, i, j ∈ Z, s (�x)+

(i− j) = 0}

2. The filtration:

• Define a Z⊕ Z filtration by

F [�x, i, j] = (i, j)
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and the ordering

(i, j) < (i�, j�) ↔ i < i� and j < j�.

3. The differential:

• For �x, �y ∈ �α∩�β let π2(�x, �y) = {�φ : D −→ R2|�φ is an embedding, �φ|∂D ⊂

�α ∪ �β, �φ(−i) = �x, �φ(i) = �y}

• For �x ∈ �α ∩ �β, define the local multiplicity of a disk �φ at �x as

follows. Given �φ ∈ π2(�x, �y), there are four regions in C − �α − �β

which contain �x as a corner point. Choosing interior points z1, ..., z4

in these four regions, define

n�x(�φ) =
nz1(

�φ) + nz2(
�φ) + nz3(

�φ) + nz4(
�φ)

4
. (2.4)

We define n�y(�φ) similarly, only now choosing the points in the four

regions which have �y as a corner point.

• let the index of a disk �φ ∈ π2(�x, �y) be given by:

µ(�φ) = 2(n�x(�φ) + n�y(�φ)).

• The differential is then given by summing over disks with index one:

∂�x =
�

�y

�

{�φ∈π2(�x,�y)|µ(�φ)=1}

[�y, i− n�w(�φ), j − n�z(�φ)].

In [OS08] it is proven that this this is indeed a chain complex and that it is
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Figure 2.3: H of the unknot.

chain homotopic to CFK∞ (H(K)).

Proposition 2.1.3 CFK∞
�
H(K)

�
is a chain complex and we have a filtered

chain homotopy equivalence:

CFK∞
�
H(K)

�
= CFK∞ (H(K)) .

Proof. This is shown in [OS04a, Lemma 6.5, Proposition 6.4]

Example 2.1.4 Let �α ⊂ R2 be y+ x = 0 and Im(�β) be y = 0. Then H(K) is

a lifted diagram for the unknot (Figure 2.3).
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Chapter 3

Chain Complex

3.1 Reduction to Knot Surgery

−∂Wn is a surgery on a two bridge link. Instead of calculating the Floer

homology of −∂Wn, we focus on an associated three-manifold Y n, which is

given by surgery on a knot, Kn. The topology of Y n is similar enough to

−∂Wn that they have isomorphic Floer homology (proposition 3.1.2). Since

Y n is given by a knot surgery, we can compute HF+(Y n) with the formula for

integer surgery discovered in [OS08].

Definition 3.1.1 Let (S3, Ln) be the underlying link in the Kirby diagram

for −∂Wn. Since each of the components of Ln is individually unknotted, ±1

surgery gives back S3. We define a knot (S3, Kn) by blowing down one of

the components by −1 surgery (Figure 3.1). (We don’t need to specify the

component we are blowing down as Ln is symmetric).

Let Y n be the three-manifold given by +1 surgery on Kn. Note Y n is also

given by the kirby diagram Ln with framings (0,−1).
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−1

−n

− (n+ 1)

−→

−n

− (n+ 1)

Figure 3.1: Changing a link into a knot in S3.

Proposition 3.1.2 There is a graded U-isomorphism between the Floer Ho-

mologies of −∂W1 and a homology sphere given by +1 surgery on the knot in

S3.

HF+(−∂Wn) ∼= HF+(Y n)

Proof. Y n fits into +1 surgery exact sequence with −∂Wn (Figure 3.2).

Since −∂Wn an Y n are integral homology three-spheres, they have a well

defined d-invariant [OS03] as well as the splitting HF+ ∼= T +
(d) ⊕HFred.

The d-invariant is zero since they bound contractible four-manifolds (for

Y n this can also be seen directly from the computations below) so they can

only differ on HFred. The claim will follow if we show ∂∗ : HF+
red(−∂Wn) →

HF+
red(Y

n) is a U -module isomorphism.

The surgery exact sequence for +1 surgery on a homology sphere gives us:

. . .
∂∗−→ HF+ (−∂Wn)

f∗−→
−1
2

T +
1
2

⊕ T +
−1
2

g∗−→
−1
2

HF+ (Y n)
∂∗−→ . . . (3.1)
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−n − (n+ 1) −→

0

0
−n − (n+ 1) −→

0

0
−n − (n+ 1)

0

0

−n − (n+ 1)

Handle
Cancellation

0

−1

10

Handle
Cancellation

0 0 0

Figure 3.2: From left to right we have −∂Wn, S
1 × S2, and then Y n.

Since the Floer homology of S1 × S2 is supported entirely in its torsion

spinc structure, the cobordism maps f∗ and g∗ are homogeneous of degree −1
2
.

Since there is only a single T + in HF+ (−∂Wn), f∗ cannot be surjective

and thus the cokernel of f∗ will contain a subcomplex isomorphic to a T +.

Thus the image of g∗ must contain at least one subcomplex isomorphic to T +.

This implies that the coker(g∗) and thus the image of ∂∗ is finitely generated.

Going back to f∗, this shows f∗ is non-zero on T +
0 ⊂ HF+ (−∂Wn).

Let x ∈ T +
0 ⊂ HF+ (−∂Wn) such that f∗ (x) �= 0. Then let k be such that

Uk ·f∗ (x) �= 0 but Uk+1f∗ (x) = 0. Since f∗ is U -equivariant, Uk ·x �= 0. Since

f∗ maps into T +
1
2

⊕ T +
−1
2

, the degree of Uk · f∗ (x) is either 1
2
or −1

2
.

f∗ drops degree by
1
2
, so deg

�
Uk · x

�
= 1 or 0. Since T +

0 takes only even val-

ues, deg
�
Uk · x

�
= 0. This shows that f∗ is injective on T +

0 ⊂ HF+ (−∂Wn).
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Since f∗ is injective on T +
0 ⊂ HF+ (−∂Wn), we know that the ker(g∗) ⊂ T 1

2

and thus Im(g∗) ⊂ T +
0 ⊂ HF+ (−∂Wn). Let x be the element with minimum

degree in coker(f∗). If deg(x) >
1
2
, then deg(g∗ (x)) > 0. Since the d-invariant

of HF+ (Y n) = 0, U · g∗ (x) �= 0. This gives the contradiction:

0 = g∗ (0) = g∗ (U · x) = U · g∗ (x) �= 0.

Thus deg(x) = 1
2
and g∗ is injective on T +

1
2

⊂ HF+ (S1 × S2). So coker(g∗) =

HFred (Y
n) and ker(f∗) = HFred (Y

n). i.e. ∂∗ is an isomorphism between the

HFred groups of the two manifolds.

Remark 3.1.3 In [AK12, Proposition 1.2] a more general but weaker, in the

context of gradings, statement is proven. They show that there is an isomor-

phism HFred(Y ) and HFred(Yp) for any p. However, the isomorphism only

preserves gradings for the case p = 1 so the Floer groups of the plumbed mani-

folds in their paper while isomorphic to −∂Wn for all n, only give information

about the absolute gradings for n = 1.

3.2 Heegaard Diagram

[OS04a] shows how to construct H(K) when K is the result of blowing down

one of the components of a two bridge link. The following is a formalization

of their algorithm:

Notation 3.2.1 Let sgn(i) =





+1 i > 0

−1 i < 0
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z w

z w

z w

z wA A
A A

Longitude

γ2 γ2

Longitude

γ3

Longitude

γ3

Figure 3.3: Comparison of the action on the torus: (ψ,H(K)) (left side) To

the action on the fundamental domain of the cover,
�
ψ,H(K)

�
(right side).

The rotated A’s denote one handles. The top row corresponds to τ 22 . The
bottom row to τ3.

Definition 3.2.2 Define two actions on these lifted Heegaard Diagrams (see

Figure 3.3):

• Rotation by π: On each image of D ⊂ H(K), perform a half Dehn twist

along a circle containing both marked points.

• Finger move of length k: H(K) along the vertical lines {x = n + 2
3
|n ∈

Z}. Start at an intersection point of �β and one of the vertical lines

γ ∈ {x = n+ 2
3
|n ∈ Z}, isotope �β upward (or downward, if sgn(n) = −1)

along γ such that �β crosses exactly the first |n| marked points (�z or �w)

on γ.

H(K) can be obtained by repeated applications of the above two moves:
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Lemma 3.2.3 Let K be obtained by blowing down a component of a two bridge

link L.

Let σ be an element of the braid group on four strands whose plat closure

is the two bridge link, σ = L.

Factor σ into the generating set {τi}i=1,2,3, where τi gives a positive crossing

to the strands i and i+ 1.

If we blowdown with a −1 surgery, start with the lifted Heegaard Diagram

for an unknot, H(K), given in example 2.1.4. For a +1 framed blowdown, let

Im(�β) = {y − x = 0} instead.

Proceeding from left to right along the braid word obtained by factoring σ,

we apply vertical shifts or rotations according to the following identifications:

• τ−2n
2 or τ 2n2 ↔ finger move of length − n or + n.

• τ−1
3 or τ3 ↔ rotation by π or − π.

Proof. [OS04a, Proposition 6.3] proves this for the H(K). In particular, they

show, for γ1,2 in Figure 3.3, that:

• τ−2n
1 = τ 2n2 ↔ Full Dehn twist along the circle γ1

• τ3 ↔ Half Dehn twist along the circle γ3

To see it for H, we check that it commutes with the covering map π:

H(K)
ψ−→ H(K)

↓ � ↓

H(K)
ψ−→ H(K)
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Since the unit square D is a fundamental domain for R2, ψ is determined

by its restriction to D.

The support of the half Dehn twist, ψ3 induced by τ3 doesn’t intersect

the boundary of the fundamental domain D so the lift ψ3|D is still a half

Dehn twist. (Bottom right of Figure 3.3). The full Dehn twist, ψ1 induced by

τ−2n
1 ↔ τ 2n2 unwinds to become a linear push on the cover as ψ1’s support is a

neighborhood of the circle γ3, which lifts to R ⊂ R2 (Top right of Figure 3.3).

Corollary 3.2.4 CFK∞ (S3, Kn) is chain homotopic to the combinatorial

chain complex associated to the Heegaard Diagram H(Kn) (Figure 3.4).

Proof. Ln factors into the braid word τ−2n
1 ◦ τ2 ◦ τ−2(n+1)

1 . Following lemma

3.2.3, we begin with Figure 2.3 and apply the sequence of moves:

• τ−2n
1 corresponds to making a finger of length −n

• The τ2 is a rotation by π which transforms the single long finger, created

by the previous move, into n pairs of fingers.

• τ
−2(n+1)
1 , a finger move of length −n − 1, stretches the 2n fingers to a

length of n+ 1.

(see Figure 3.5).
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R
C
B

Figure 3.4: H(Kn). See Figure 3.14 for an example when n = 2. The label B is
used for points that will function as boundaries in the homology computation.
Likewise, R for relations and C for generators
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Figure 3.5: τ−2n
1 → τ2 → τ

−2(n+1)
1 .

3.3 Chain Complex

Recall that

CFK∞ ∼= F[U,U−1]⊗R.

We prove several propositions about R and combine them at the end of the

section to get CFK∞ in Theorem 3.3.14.

Abusing notation, the elements of �α∩ �β as well as the elements they corre-

spond to in chain complex R will be denoted by the same symbol. This does

34



not cause any difficulties as the coefficients are in F = Z/2Z.

Notation 3.3.1 Let �A� denote the free module over A with coefficients in F

In figure 3.4, �α ∩ �β was split into three sets: R,C and B foreshadowing

their roles as the Relations, Cycles, and Boundaries of R. A precise definition

of R,C and B:

Definition 3.3.2 Partition �α ∩ �β into three classes R,C, and B:

1. An element �x ∈ �α ∩ �β has four regions, in H (Kn)−
�
�α ∪ �β

�
, that have

�x as a corner. If two or more of these regions are not compact,

�x ∈ R

Enumerate R:

R = {r−(n−1), ..., r0, ..., r(n−1)}

2. Put an orientation on �α and �β that makes at least one intersection point

r ∈ R ⊂ �α ∩ �β have a positive sign. (In fact all r ∈ R have the same

sign).

�x ∈ B (respectively C) if �x has positive (negative) sign with the orienta-

tion.

3. Let Si be the subset of
�
�Tα ∩ �Tβ

�
which lie on �α between ri and ri+sgn(i),

i �= 0. For i = 0, Let S0− be the subset between r−1 and r0 and S0+ be

the subset between r0 and r1.

35



The awkward notation of S0±1 is used to highlight the identification of

the ri with Si.

Denote Ci = Si ∩ C and Bi = Si ∩ B

R
C
B

r−1 r0 r1

S−1 S0− S0+ S1

Figure 3.6: A classification of the intersection points on �α ∩ �β

Lemma 3.3.3

µ(b) + 1 = µ(g) = µ(r)− 1

∀ b ∈ B, g ∈ C, r ∈ R

Proof. Within a particular Si the alternating upward and downward fingers

show the alternating g and b points to be split into two Maslov degrees.

The two compact domains (the other two are always non compact) with

a corner at a given ri can be completed by adding fingers to form a Maslov

index one bigon to the two adjacent (along �α) points in R (Figure 3.12). This

shows the g, and thus also the b of different Si and ri, to have (respectively)

the same relative Maslov degree.

The difficult part in computations of CFK∞ is generally the differential.

For ‘lifted’ diagrams H, [OS04a, section 6.2]. shows the differentials can be

computed combinatorially. It particular, if �φ ∈ π2(�x, �y) with µ(�φ) = 1:
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• �φ is unique and a bigon. (Follows from genus being one.)

• #�M(�φ) = 1 ⇔ D(�φ) ≥ 0 [OS04a, proposition 6.4]

• n�x = 1
4
= n�y [OS04a, proposition 6.5]

Proposition 3.3.4 The differential respects the Si:

1. For ri ∈ R, ∂ri ∈
�
Si+sgn(i) ∪ Si

�

2. If �x ∈ �Si�, ∂�x ∈ �Si�

Proof. This follows from the inability of positive bigons to cross the points

{r−(n−1), ..., r0, ..., r(n−1)}. Suppose a bigon has an ri on its boundary, ri ∈ ∂�φ.

Then ri must be a corner of �φ. i.e. ri = �x or �y where �φ ∈ π2(�x, �y)

Inspecting the diagram, we see that for every ri ∈ R there are four domains

which have ri as a corner point (Figure 3.7). Since ri ∈ ∂�φ at least one of these

must have a non-zero positive coefficient in D
�
�φ
�
. Only the two of these are

compact and can have a non-zero coefficient in D
�
�φ
�
. Since the two compact

domains are oppositely oriented with respect to the �α and �β curves, their

coefficients in D
�
�φ
�
must have opposite signs. As we are only interested in

D
�
�φ
�
≥ 0 exactly one of the domains has a non-zero positive coefficient.

Definition 3.3.5 The two compact domains of Figure 3.7 with corners at

ri, will be called gloves. The name was chosen to fit in with the following

definitions of fingers domains and palm domains.

Lemma 3.3.6 For a given Si, there are only two domains out of which all of

the other D
�
�φ
�
with µ

�
�φ
�
= 1 are composed:
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ri

Figure 3.7: Four domains with a corner at ri. The two compact domains are
darkly shaded. The two non-compact domains are lightly shaded.

R
C
B

Figure 3.8: Upward pointing fingers on the left and downward pointing fingers
on the right
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1. Fingers with a corners at adjacent c ∈ C and b ∈ B (Figure 3.8).

2. Palms Bigons with one corner in R and the other corner at the c ∈ C

which precedes the next element of R (Figure 3.9),

R
C
B

Figure 3.9: Upward pointing Palms on the left and downward pointing Palms
on the right

Definition 3.3.7 The union of a all of the upward fingers and the downward

palm will be called, of course, an upward hand. Likewise for a downward

hand.

Proof. (lemma 3.3.6) It suffices to prove this for fingers and gloves instead -

By adding and removing fingers, we can construct palms from gloves and vice

versa. Thus together with the finger domains, they generate the same set of

domains D
�
�φ
�
:

�palms, fingers� ⇔ �gloves, fingers�

Clearly if D
�
�φ
�
∈ �gloves, fingers� then D

�
�φ
�
∈ Si. (i.e. �x, �y ∈ Si). On

the other hand, if D
�
�φ
�
is compact but /∈ �gloves, fingers� then it must pass

contain one of the gloves of proposition 3.3.6. Otherwise D
�
�φ
�
would have
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more than one connected component and have a Maslov index greater than

one. However proposition 3.3.6 concluded that this isn’t possible.

We introduce some simple chain complexes commonly referred to as rails.

[OS04b]. In [OS04b, Theorem 12.1], they showed �CFL could be given a sim-

ple description as a direct sum of rails and some other simple complexes.

Unfortunately, CFK∞ does not have as simple of a description, but the rails

nonetheless allow a construction of a tractable complex.

Definition 3.3.8 A rail is an indecomposable bigraded chain complex with

elements {x2i, y2i±1}a≤2i,2i±1≤b, a, b ∈ Z, with differentials:

∂y2i±1 = 0

and

∂x2i = y2i−1 + y2i+1

(If either y2i−1 or y2i+1 don’t exist replace them with 0 in the above differen-

tial). The relative filtration levels between x2i and y2i−1, y2i+1 are given by:

F(x2i, y2i−1) = (1, 0) F(x2i, y2i+1) = (0, 1).

The length of the rail is max (#{x2i},#{y2i±1}) .

Remark 3.3.9 A rail has homology F if #{x2i, y2i±1}a≤2i,2i±1≤b is odd and is

acyclic otherwise. See the right hand side of figure 3.10 for an example.

As a first application of Lemma 3.3.6, we show there is a rail induced by

each Si.
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Proposition 3.3.10 �c, b ∈ Si� generates a subcomplex isomorophic to a rail

(see figure 3.10).

Proof. (proposition 3.3.10) Lemma 3.3.6, immediately gives us:

R
C
B

Figure 3.10: A rail of length two. The darkly shaded regions of the Heegaard
Diagram are the fingers that induce the differentials in the chain complex on
the right. The arrows inside the fingers are a visual aid denoting the direction
of the differential.

∂ (Si) ⊂ Si.

Thus Si is a subcomplex. Once again, by lemma 3.3.6, we can get away with

only looking at linear combinations of fingers and palms. Since the palms have

a corner in R, and Si was explicitly defined not to contain them there are no

differentials in the subcomplex Si induced by a D
�
�φ
�
containing a palm. This

leaves only the fingers, which all contribute differentials. (Figure 3.10)

Taken by itself, the homology H∗(Si, ∂) of a single rail is F and is generated

by the cycle
�

c∈Ci
c. The missing elements and differentials, (R, ∂), have the

effect of equating these cycles.
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Proposition 3.3.11

∂ri =
�

c∈Ci∪Ci+sgn(i)

c

If either Si or Si+sgn(i) does not exist, take it to be ∅.

Proof. The argument is very similar to the previous proof. Corollary 3.3

together with the Maslov index, lemma 3.3.3 show:

∂ri ⊂
�
Ci ∪ Ci+sgn(i)

�
.

We can make this an equality by explicitly constructing bigons. Start with

a palm and successively add pairs of upward and downward fingers (Figure

3.11). The pairs must be adjacent for the Maslov count to be unchanged.

Lemma 3.3.6 tells us that all of the domains contributing differentials to

the subcomplex �Si� are within the vertical strip bounded by the lines perpen-

dicular to ri and ri+1 (Figure 3.14).

Lemma 3.3.12 There are two gloves having a given Si as a border. The

upward pointing hand �φ has:

n�z(�φ) = 0

n�w(�φ) = max(0,−i)

If �φ is pointing downward:

n�z(�φ) = max(0, i)

n�w(�φ) = 0
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R

C

B

Figure 3.11: Compare with Figure 3.10

Proof. By inspection of figure 3.4. Counting the upward pointing hands:

1. The upward hands lying above {Si}i>0 have n�z(�φ) = 0 and n�w(�φ) = 0.

2. The upward hands lying above {Si}i<0 have n�z(�φ) = 0 but n�w(�φ) = |i|

Analogously for downward pointing hands :

1. The downward hands lying below {Si}i<0 have n�z(�φ) = 0 and n�w(�φ) = 0.

2. The downward hands lying below {Si}i>0 have n�w(�φ) = 0 but n�z(�φ) = i
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Figure 3.12: The shaded region on the left is an upward hand, the shaded
region on the right is a downward hand.

Proposition 3.3.13 F (ri+1, ri) = (i, i+ 1)

Proof. Since the diagram is invariant when rotated by π and switching �z ↔ �w,

it suffices to prove the result for {ri|i ≥ 0}.

-

Figure 3.13: A vertical strip in the diagram for Y 3 between r1 and r2. The left
domain is �φ. The middle, �ψi The right is their difference �φi − �ψi. The lighter
shaded region is negative.

The relative filtration levels between ri and ri+1 is calculated with the

domain given by (Figure 3.13):

�φi − �ψi
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By inspection, all but i of the fingers cancel each other out. Giving us:

|{n�z}| = i. Lemma 3.3.12 tells us the upper glove contributes nothing and the

lower has |{n�w}| = i+ 1.

Thus we have:

F1(ri, ri+1) = −i

F2(ri, ri+1) = −(i+ 1)

F1(ri, ri−1) = −(i+ 1)

F2(ri, ri−1) = −i

R

C
B

Figure 3.14: The alternating stripes distinguish four hands for the diagram

H(K2). See figure 3.14 for its associated chain complex CFK∞
�
H(K2)

�
.

We summarize this sections calculations and give CFK∞ an absolute grad-
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ing:

Theorem 3.3.14 The filtered chain complex CFK∞
�
H(Kn)

�
is given by

F[U,U−1]⊗R where R is a chain group generated over F by the set R∪C∪B.

Since F = Z/2Z we can and will abuse notation by identifying the intersec-

tion points R∪C ∪B with the algebraic elements they induce in R. R is then

just the chain complex generated from the intersection points in the diagram

with differentials corresponding to the Whitney disks. See figure 3.15 for an

example.

1. The differentials are

• ∂ri =
�

c∈Ci∪Ci+sgn(i)
c

For i = 0, ∂r0 =
�

c∈C0−∪C0+
c

If either Si or Si+sgn(i) does not exist, take it to be ∅.

• The differentials of the c and b are best understood graphically. They

form a rail 3.3.8 with c denoting the higher grading generators.

2. The filtration levels are:

• for ri ∈ R:

F(ri) =

�
i2 − i

2
,
i2 + i

2

�

• The c, b ∈ Si, form a rail of length m = n − i with filtration level

stretching from ( i
2−i
2

−m, i
2+i
2
) to ( i

2−i
2
, i

2+i
2

−m)

3. The homology is generated by any of the homologous cycles: [
�

c∈Ci
c]
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for any −(n− 1) ≤ i ≤ n− 1.

F = H∗ (Si) =

��

c∈Ci

c

�

R

C

B

Figure 3.15: R for the complex CFK∞
�
H(K2)

�
. The differentials from r±1

to the rails centered on r0 are drawn curved and with a light hue. This is
only to add clarity to a cluttered figure and doesn’t have any mathematical
significance. See figure 3.14 for the lifted Heegaard Diagram this complex is
derived from.

Proof. (Theorem 3.3.14) The claim about the differentials is just a restate-

ment of propositions 3.3.11 and 3.3.10.

The absolute grading on CFK∞ is determined by looking at �CFK ([OS04a]).

Since H∗
�
�CF (S3)

�
= F, there is a unique class of cycles generating the ho-

mology. Assigning Maslov grading 0 to the image of the inclusion of these
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cycles into CFK∞, and then extending linearly gives the absolute Maslov

grading.

Recall �CF = CFK∞{i = 0} and so F1 (x,y) = 0, ∀x,y ∈ �CF . Thus we

ignore all but the completely vertical differentials in analyzing �CF . We show

that �CF is a direct sum of two simple subcomplexes (figure 3.16).

Figure 3.16: A cyclic and acyclic complex

For a fixed m, Um ⊗ ri ∈ �CF , ∂ (Um ⊗ ri) now consists of only the c ∈

Um ⊗ Si with F1 (U
m ⊗ ri, U

m ⊗ c) = 0.

1. If i �= 0, ∂Um ⊗ ri consists of exactly one element, the Um ⊗ c at the

bottom of a rail. Since the only differential from this Um ⊗ c shifts

the filtration level horizontally, the Um ⊗ ri and Um ⊗ c = ∂ (Um ⊗ ri)

generate an acyclic subcomplex (left figure of figure 3.16).

2. If i = 0, There are two rails S0− , S0+ and so ∂Um⊗ri consists two different

Um⊗c and together they form a cyclic subcomplex (right figure of figure

3.16).

The only other differentials are those inside a rail Um ⊗ Si. Since these

alternate from shifting the filtration level horizonatally and vertically, their

image in�CF is composed of acyclic subcomplexes (right figure of Figure 3.17).
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Figure 3.17: The remnants of a rail in �HFK.

The homology is then generated by the subcomplex of �CF generated by

{Um ⊗ r0, U
m ⊗ c}. Thus F1 (U

m ⊗ c) = F1 (U
m ⊗ r0) = 0.

The symmetry of CFK∞ then forces F2 (r0) = 0.

The filtration levels of the remaining ri are given by the calculation in

proposition 3.3.13 of the relative filtration levels of the ri and the identity
�n

k=1 k = n(n+1)
2

.

The claim about the homology amounts to computing H∗ (Um ⊗R).

Consider the subcomplex generated by the rail Um ⊗ Si.

H∗ (U
m ⊗ Si) =

��

c∈Ci

Um ⊗ c

�
= F

proposition 3.3.11 tells us that ∂Um ⊗ ri equates the cycles:
�

c∈Ci
Um ⊗ c ∼

�
c∈Ci+1

Um ⊗ c.

Thus the induced cycles are homologous:
��

c∈Ci
Um ⊗ c

�
=
��

c∈Cj
Um ⊗ c

�

for all i, j.
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Chapter 4

Integer Surgery

Definition 4.0.15 Recall from 2.0.14:

• Cs = {Um ⊗ x ∈ CFK∞|F1 (U
m ⊗ x) < 0 and F2 (U

m ⊗ x) < s}

• C{i < 0} = {Um ⊗ x ∈ CFK∞|F1 (U
m ⊗ x) < 0}.

• A+
s = CFK∞

Cs

• B+
s = CFK∞

C{i<0}

• X+(1) is then the mapping cone of

D+
1 : A+ −→ B+

where

A+ =
�

s

A+
s

B+ =
�

s

B+
s
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and D+
1 is the direct sum of the chain maps:

D+
1 =

�

s

v+s ⊕ h+
s .

Also, denote, by ps : CFK∞ −→ Cs, the projection map.

Using the integer surgery formula [OS08], HF+ (−∂Wn) will be computed

from the mapping cone X+(1).

Definition 4.0.16 For convenience, we define two small generalizations of

HF±
Red for k >> 0:

HRed
∗
�
A+

s

�
=

H∗ (A+
s )

Uk ⊗H∗ (A+
s )

HRed
∗ (Cs) = Ker

�
Uk : H∗(Cs) −→ H∗(Cs)

�

Note, these HFRed
∗ are defined identically to HF±

red. The only difference

being they are defined on different subcomplexes (Cs vs. CF−) and quotients

(A+
s vs. CF+) of CFK∞. In particular,

1. There is a long exact sequence induced by the short exact sequence:

0 −→ Cs −→ CFK∞ −→ A+
s −→ 0.

2. It is also clear that they are finitely generated as they differ from CF−,

CF+ in only finitely many elements.

51



Since this is all that is used to prove the isomorphism between HF−
red and

HF+
red, [OS04d, Proposition 4.8], we can also conlude:

Proposition 4.0.17 There is a homogeneous graded isomorphism which drops

degree by 1 between HRed
∗ (Cs) with HRed

∗ (A+
s )

The computation of H∗ (X(n)) will be reduced to computing the HRed
∗ (A+

s )

in proposition 4.0.21 below. HRed
∗ (A+

s ) can be calculated from HRed
∗ (Cs) by

means of an isomorphism of HRed
∗ (Cs) with HRed

∗ (A+
s ), proposition 4.0.17.

Understanding Cs is thus the key part of the calculation.

We investigate the structure of the chain complex Cs with lemma 4.0.18,

show the homology of −∂Wn can be derived from it, and finish off with the

calculation of the homology of HF+ (−∂Wn).

Lemma 4.0.18 Let ps : CFK∞ −→ Cs be the projection.

Then Cs is a direct sum of the U-modules (1) and (2) below.

1. A direct sum of rails (see Figure 4.1):

�

m∈I(n,s)

ps (U
m ⊗ Si)

2. and a subcomplex with homology T −:

�

m∈J(n,s)

�ps (Um ⊗ Si) , ps (U
m ⊗ ri)� .

Where

I(n,s) = K ∩ {m ∈ Z|0 > max (F (Um ⊗ ri)− (0, s))} (4.1)
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and

J(n,s) = K ∩ {m ∈ Z|0 ≤ max (F (Um ⊗ ri)− (0, s))} (4.2)

for

K =




m ∈ Z

�� m > i2−i
2

− n−|i|−(s−i)+1
2

if n− |i|− (s− i) is odd

m > i2−i
2

− n−|i|−(s−i)
2

if n− |i|− (s− i) is even





(4.3)

The max is between the two coordinates of the filtration level for a fixed i and

s. See Figure 4.1 for an example of
�

m∈I(n,s)
ps (U

m ⊗ Si).

i = 0

ps (U
m ⊗ ri)

ps
�
Um+1 ⊗ ri

�

ps
�
Um+1 ⊗ ri

�

j = s

ps (U
m ⊗ Si)

ps
�
Um+1 ⊗ Si

�

ps
�
Um+1 ⊗ Si

�

U U

Cs

Figure 4.1: An example of
�

m∈I(n,s)
ps (U

m ⊗ Si) with |I(n,s)| = 3. The un-

shaded area is Cs.

Proof. Recall Cs is defined as the subcomplex of CFK∞ generated by ele-
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ments with filtration level less than (0, s) and that the U -action lowers the

filtration level by (1, 1),

F (Um ⊗ a) = F (a)− (m,m)

Proposition 3.3.13 gives the filtration level of ps (U
m ⊗ ri) �= 0 explicitly:

F (Um ⊗ ri) = (
i2 − i

2
,
i2 + i

2
)− (m,m).

This gives us a simple way to predict the vanishing of ps (U
m ⊗ ri):

ps (U
m ⊗ ri) �= 0

⇔

0 > max (F (Um ⊗ ri)− (0, s))

(4.4)

(Recall, the max is between the two coordinates of the filtration level for

a fixed i and s.)

When s = i, both the corner (0, s) of Cs and the ps (U
m ⊗ ri) lie on y = x+s

and multiplication by U translates along the line (See figure 4.2). The formula

simplifies to:

ps (U
m ⊗ ri) �= 0

⇔

m > i2−i
2

(4.5)

Theorem 3.3.14 gives the relative filtration levels between Um ⊗ Si and

the Um ⊗ ri. We represent their relative filtration levels pictorially by an

approximating right angled isosceles triangle (figure 4.3). Um ⊗ ri lies at the
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ps (ri) = 0

ps (U ⊗ ri) = 0

ps
�
U2 ⊗ ri

�
= 0

ps
�
U3 ⊗ ri

�
= 0

i = 0

ps
�
U4 ⊗ ri

�
�= 0

s = 3

2

1

0

−1 Cs

Figure 4.2: The unshaded area is the subcomplex Cs. The exponent m of
Um ⊗ r3 must be strictly greater than 3 = 32−3

2
for p3 (U

m ⊗ r3) �= 0.

corner of the right angle, the legs have length n− i, and the rail Um ⊗ Si lies

approximately on the hypotenuse.

ps (U
m ⊗ ri)

�
i2−i
2 − 3, i

2+i
2

� �
i2−i
2 , i

2+i
2

�

�
i2−i
2 , i

2+i
2 − 3

�

Figure 4.3: A visual representation of the relative filtration levels between
Um ⊗ ri and Um ⊗ Si. The approximating isosceles right triangle is shaded.

Using the relative filtration levels between Um ⊗ Si and Um ⊗ ri we derive

a non-vanishing condition for ps (U
m ⊗ Si) as well.

The idea is to is to adjust the vanishing condition for ps (U
m ⊗ ri) by a

quantity proportional to the height of the approximating triangle.

First we will look at the case when the index of the Um⊗Si and Um⊗ri are

equal to the index of Cs, namely when i = s. The calculation then generalizes

easily by induction to the case i �= s.
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There are two cases based on the parity of n− |i|.

1. If n− |i| is odd, the center of Um⊗Si is a ‘pushed in corner’ (figure 4.4).

ps (U
m ⊗ Si) �= 0 if and only if

m >
i2 − i

2
− n− |i|+ 1

2
(4.6)

ps
�
Um−k ⊗ Si

�

ps
�
Um−k ⊗ ri

�

ps (U
m ⊗ Si)

ps (U
m ⊗ ri)

Figure 4.4: A pushed in middle corner. This happens when the length (n−|i| =
3 here) of the triangle is an even integer

2. If n − i is even, the center of Um ⊗ Si is a ‘pushed out corner’ (figure

4.5). ps (U
m ⊗ Si) �= 0 if and only if

m >
i2 − i

2
− n− |i|

2
(4.7)

Now for s �= i. We can see this by keeping i constant and shifting s (figure

4.6). It’s easy to see that shifting s up or down corresponds to increasing
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ps
�
Um−k ⊗ Si

�
ps
�
Um−k ⊗ ri

�

ps (U
m ⊗ Si)

ps (U
m ⊗ ri)

Figure 4.5: A pushed out middle corner. This happens when the length of the
triangle is an odd integer

or decreasing the length of the projected rail by one. Likewise, changing the

exponent m increases or decreases the length of the projected rail. As the

vanishing conditions for the projected rail are given in terms of the exponent,

We can get the general case of s �= i by subtracting s − i from the vanishing

conditions for s = i. The general equations are then:

Cs=i+1

Cs=i

ps (U
m ⊗ Si)

ps (U
m ⊗ ri)

Figure 4.6: An example of two projections of holding the index i of Um ⊗ Si

and Um ⊗ ri constant and shifting the index s of ps=i to ps=i+1.
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1.

m >
i2 − i

2
− n− |i|− (s− i) + 1

2
if n− |i|− (s− i) is odd. (4.8)

2.

m >
i2 − i

2
− n− |i|− (s− i)

2
if n− |i|− (s− i) is even. (4.9)

This verifies half of the corollary, namely that the subcomplex Cs consists

of only those ps (U
m ⊗ Si) with exponents m ∈ K

Now for the second part of the corollary. We show that if

ps (U
m ⊗ ri) �= 0

then

1. ps (U
m ⊗ Si) �= 0

2. ps (U
m ⊗ rj) �= 0 for |k| < |i|

Figure 4.7 is a pictoral illustration of the complex.

r−1 r0 r+1

S−1 S0− S0+ S1

Figure 4.7: A pictoral representation of the subcomplex of Ci containing all of
the non-vanishing p (ri).

Notice that if ( j
2−j
2

, j
2−j
2

) ∈ Cs then ( j
2−j
2

, j
2−j
2

) ∈ Cs for |j| < |i| as
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well. Since these are the filtration levels of the ps (U
m ⊗ ri), we have that

if F (ps (U
m ⊗ ri)) ∈ Cs, then

ps (U
m ⊗ rj) ∈ Cs for |j| < |i|. (4.10)

Since, every element in ps (Si) has filtration level less than or equal to the

filtration levels of (ri), Cs also contains:

ps
�
U � ⊗ Sj

�
j ∈ {− (|i|− 1) , ..., |i|} (4.11)

Putting the ps
�
U � ⊗ Sj

�
and ps

�
U � ⊗ jj

�
together the resulting subcom-

plex looks as shown in figure 4.7.

The homology is computed analogously to our computation of the homol-

ogy of CFK∞ above. e.g. ∂ps
�
U � ⊗ rj

�
equates the cycles from pj

�
U � ⊗ Sj

�
,

pj
�
U � ⊗ Sj+1

�
: 

 �

c∈ps(Si)

U � ⊗ c


 =


 �

c∈ps(Sj)

U � ⊗ c




[OS08] introduce two tricks to simplify the computation of H∗ (X+(1)),

‘truncation’ (see lemma 2.0.16) and a condition under which we may identify

a mapping cone with the kernel of its chain map.

The chain map D+
1:n is the sum of vs and hs. We analyze the maps these

induce on homology, (vs)∗, (hs)∗. We start with a lemma on the structure of

B+
s
∼= CF+, whose homology is the range of (vs)∗, (hs)∗.

Lemma 4.0.19 Let π : CFK∞ −→ CFK+ be the quotient map. Then
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Figure 4.8: A projection of Um ⊗ R to Cs for a single m. The subcomplex
generated by ps (Si) and associated p (ri) �= 0 occupies most of the picture
(figure 4.7 is a pictoral representation of it). There is a single rail on the right
with zero homology (the right side of figure 3.16).

CFK+ is quasi-isomorphic to the subcomplex:

�
∪m≥0


 �

c∈π(Um⊗S0)

c



�

Proof. Since we are dealing with a knot in S3, H∗ (CFK+) = T +
0 and π∗ is

a surjection.

Surjectivity of π∗ lets us represent the cycles of CFK+ by a quotient of

the cycles of CFK∞:

π (Um ⊗ S0) .

The restriction of m ≥ 0 for the exponent follows from the filtration on

CFK∞.

Proposition 4.0.20 The induced maps on homology:
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(vs)∗ : H∗(A
+
s ) −→ H∗(B

+
s )

(hs)∗ : H∗(A
+
s ) −→ H∗(B

+
s )

are surjective and on Uk ·H∗(A+
s )

∼= T + for k >> 0, the maps can be identified

with multiplication by U s or the unit 1 (as H∗ (B+
s )

∼= T + as well):

(hs)∗, (v−s)∗ =





1 s ≤ 0

U s s > 0

Proof. For surjectivity: Let ps : CFK∞ −→ A+
s be the quotient map. Then,

the quotient map π : CFK∞ −→ B+
s
∼= CF+ factors, π = vs ◦ p. Thus:

π∗ = (vs ◦ p)∗ = (vs)∗ ◦ (p)∗

Since π∗ is a surjection, so is (vs)∗. where vs is the map between A+
s and

B+
s , and thus the induced map (vs)∗ is surjective. Surjectivity of (hs)∗ follows

similarly (since you can think of it like (vs)∗ by switching the the x and y axis

and then shifting laterally).

Under (vs), [ps (S0)] �→ [π (S0)]. Corollary 4.0.19 tells us [π (S0)] is the

homology class with the lowest degree in H∗ (B+
s ). Thus (vs)∗ is injective on

Uk ·H∗(A+
s )

∼= T +, k >> 0 for for s > 0.

More precisely, (vs)∗, (hs)∗ is given by U j on Uk ·H∗(A+
s )

∼= T +, k >> 0,

where j ≥ 0 is the largest exponent such that U j · [ps (S0)] �= 0
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Proposition 4.0.21 H∗ (X+(1)) ∼= H∗ (X+(1;n))) ∼= ker
�
D+

1:n

�
∗ where n is

the index of the cork boundary −∂Wn.

Proof. First we show that we can take b = n where b is from lemma 2.0.16

and n is the index of our cork −∂Wn.

This will follow if CFK∞ lies between the lines y = x+ n and y = x− n,

as this would imply (vs)∗ is an isomorphism, for s > n and also (hs)∗ when

s < n.

Let the rail Si lie below the line y = x+Ci, and Sj below y = x+Cj (where

Ci an Cj are taken to be the smallest integer possible). Then by looking at

the filtration levels of theorem 3.3.14, we get Ci − Cj = i − j. In particular,

Si lies below y = x + Cj if j ≥ i. Thus all the rails lie below y = x + Cn−1.

Theorem 3.3.14 lets us calculate Cn−1 = n. To finish off, note that the ri ∈ R

also lie below this line as F (ri) =
�

i2−i
2
, i

2+i
2

�
and −(n− 1) ≤ i ≤ n− 1.

By the symmetry of CFK∞ around y = x, nothing lies below y = x − n.

This finishes the argument for truncation.

Now we identify H∗ (X+(1;n)) with the kernel of D+
1;n : H∗ (A+(n)) −→

H∗ (B+(n)). Since the homology of the mapping cone of f : X −→ Y is

isomorphic to the kernel of f∗ : H∗(X) −→ H∗(Y ) if f∗ is surjective, the claim

will follow if the chain map
�
D+

1:n

�
∗ of X+(1;n) is surjective.

Recall D+
1:n is the restriction of

�
s vs ⊕ hs to the truncated mapping cone

X+(1;n). See figure 4.9.

The preceding proposition, 4.0.20, showed the induced maps on homology:

(vs)∗ : H∗(A
+
s ) −→ H∗(B

+
s )
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A+
n

A+
n−1

A+
−(n−1)

A+
−n

B+
n

B+
n−1

B+
−(n−1)

vn

vn−1

v−(n−1)

hn−1

h−n

Figure 4.9: D+
1:n. Surjectivity of each of the vs, hs implies surjectivity of D+

1:n

walking the surjectivity of h−n up to the top by adding the vs ⊕ hs one at a
time.

(hs)∗ : H∗(A
+
s ) −→ H∗(B

+
s )

are surjective.

Using linear combinations of the (vs)∗ and (hs)∗ we can bootstrap this into

surjectivity of
�
D+

1:n

�
∗.

Since

{0⊕ ...0⊕H∗
�
B+

i

�
⊕ 0...⊕ 0}−(n−1)<i<n

span
�

{−n<s<n} H∗ (B+
s ), it is enough to show each of these sub-spaces is in

the image of
�
D+

1:n

�
∗.

The restriction of
�
D+

1:n

�
∗ to the submodule

0⊕ ...⊕ 0⊕H∗
�
A+

−n

�
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is the map:

0⊕ ...⊕ 0⊕ (h−n)∗ ⊕ (v−n)∗

=0⊕ ...⊕ 0⊕ (h−n)∗

This follows as H∗
�
B+

−(n−1)

�
is the lowest possible index −(n − 1) and thus

(v−n)∗ = 0 (as its intended target, H∗
�
B+

−n

�
is truncated. See bottom of figure

4.9).

In the case of when s > −n, the restriction of
�
D+

1:n

�
∗ to the submodule

0⊕ ...⊕ 0⊕H∗
�
B+

s+1

�
⊕H∗

�
B+

s

�
⊕ ...⊕ 0

has image:

0⊕ ...⊕ 0⊕H∗
�
A+

−n

�

as (vn)∗ �= 0.

However if the single summand

0⊕ ...⊕ 0⊕H∗
�
B+

s

�
⊕ ...⊕ 0

is in the image, the linearity of
�
D+

1:n

�
∗ implies

0⊕ ...⊕ 0⊕H∗
�
B+

s+1

�
⊕ ...⊕ 0

is also in the image.
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Since there are a finite number of

0⊕ ...⊕ 0⊕H∗
�
B+

s

�
⊕ ...⊕ 0

we can induct off of

0⊕ ...⊕ 0⊕H∗
�
A+

−n

�

and conclude surjectivity.

Theorem 4.0.22

H∗ (X(n)) =T +
0 ⊕

�

−n<s<n

�
F[U ]

Um(s,0)F[U ]

�2

((s2−s)−(i2−i)−min(0,2(i−s)))

⊕


 �

{m(s,i)>0,i�=0}

F[U ]

Um(s,i)F[U ]




((s2−s)−(i2−i)−min(0,2(i−s)))

Where

m(s, i) =





min (0, (i− s))− n−|i|−(s−i)+1
2

if n− |i|− (s− i) is odd

min (0, (i− s))− n−|i|−(s−i)
2

if n− |i|− (s− i) is even

(4.12)

Note: |i|, |s| must be < n by theorem 3.3.14.

Proof. By theorem 2.0.12, H∗ (−∂Wn) is given by the homology of the map-

ping cone of D+
1 : A+ −→ B+. Proposition 4.0.21 tells us this is given by
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ker
�
D+

1:n

�
∗. Since HRed

∗ (A+
s ) ≤ ker(vs)∗ ∩ ker(hs)∗ we may write this as:

ker
�
D+

1:n

�
∗
∼=
�

s

HRed
∗
�
A+

s

�
⊕ B

Where B is the kernel of

�
D+

1:n

�
∗ :

�

−n≤s≤n

Uk ·H∗
�
A+

s

�
−→

�

−(n−1)≤s≤n

H∗
�
B+

s

�

with k >> 0.

Proposition 4.0.20 shows that for each s, either (vs)
Red
∗ or (hs)

Red
∗ is an

isomorphism. This lets us further truncate our mapping cone down to a single

T +
0 in the domain and a map into 0.

Thus, H∗ (X+) ∼= T +
0

�
s H

Red
∗ (A+

s ).

Proposition 4.0.17 gives us an isomorphism betweenHRed
∗ (A+

s ) andHRed
∗ (Cs).

Corollary 4.0.18, showed HRed
∗ (Cs) is given by the homology of a direct sum

of rails:

HRed
∗ (Cs) ∼= Hs


�

i

�

m∈I(n,s)

ps (U
m ⊗ Si)




For a fixed i, the subcomplexes consisting only of rails ps (U
m ⊗ Ci) will

form a submodule in HRed
∗ (Cs), F[U ]

Um·F[U ]
.

The exponent m is calculated by counting the number of rails that have

non-trivial homology. A rail is acyclic if and only if it has an even number of

generators: 2|#{ps (Um ⊗ Si)}. (See figure 4.10). This happens if and only if:

0 < min [F(Um ⊗ ri)− (0, s)] (4.13)
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otherwise its homology is:

H∗ (U
m ⊗ S)) = F

Figure 4.10: An example of an acyclic rail ps (U
m ⊗ Si) with m < i2−i

2
+

min (0, i− s).

Now equation 4.13 becomes 4.14

0 < min [F(Um ⊗ ri)− (0, s)]

< min

�
i2 − i

2
−m,

i2 + i

2
−m− s

�

⇔

m < min

�
i2 − i

2
,
i2 + i

2
− s

�

m <
i2 − i

2
+ min (0, i− s) (4.14)
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Thus the homology isomorphic to the underlying chain complex modulo

the rails ps (U
m ⊗ Si) with m < i2−i

2
+min (0, i− s).

The absolute homological grading is given by adjusting HRed
∗ (Cs) by s2−s.

(Theorem 2.0.12 tells us to shift A+
s by s2−s+1 and the boundary map in the

L.E.S. relating HRed
∗ (A+

s ) and HRed
∗ (Cs) drops this to a shift by s2 − s.) The

powers of Um correspond to changing this grading by two so we must multiply

by two before shifting by s2 − s.

For a given s, i, this gives:

F[U ]

Um(s,i) ⊗ F[U ] ((s2−s)−(i2−i)−min(0,2(i−s)))

With

m(s, i) =





min (0, (i− s))− n−|i|−(s−i)+1
2

if n− |i|− (s− i) is odd

min (0, (i− s))− n−|i|−(s−i)
2

if n− |i|− (s− i) is even

(4.15)

Putting all these subcomplexes together and remembering to double count

when i = 0, gives the result.

Example 4.0.23 HF+ (−∂W1). Plugging into the formula,

H∗ (X(n)) =

�
F[U ]

Um(0,0)=� 1−|0|+1−|0−0|
2 �F[U ]

�2

0

⊕ T +
0

=

�
F[U ]

U · F[U ]

�2

0

⊕ T +
0
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Chapter 5

Further Directions

5.1 Four-Manifold Invariant

The calculation ofHF+ (−∂Wn) is the first step in computing the four-manifold

invariant:

F+
Wn(K) : HF+ (−∂Wn) −→ HF+

�
S3
�
.

[OS08] gives the cobordism map

F+
Wn(K) : HF+

�
S3
�
−→ HF+ (−∂Wn)

as the map induced on homology by the inclusion:

ι∗ : H∗ (B0) −→ H∗
�
X+(n)

�
.
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One would hope for a similar result for the cobordism map

F+
Wn(K) : HF+ (−∂Wn) −→ HF+

�
S3
�
.

Namely, for it to be given as the map induced on homology by the projec-

tion:

π∗ : H∗
�
X+(n)

�
−→ H∗ (B0) .

In principal this should be more time consuming than hard. In conversa-

tion, Peter Ozsváth suggested it could be done by redoing [OS08] using the

subcomplex CFK∞
CFK∞{i<0 or j<s} instead of A+

s = CFK∞
CFK∞{i<0 and j<s} .

j = s

i = 0

j = s

i = 0

Figure 5.1: CFK∞
CFK∞{i<0 or j<s} on the left instead of A+

s = CFK∞
CFK∞{i<0 and j<s} on

the right.

5.2 Cork Twist Cobordism

The interest in corks arises from the difference that arise between attaching it

via the identity map or via the twist τ .

A natural way to approach this it to compute map induced by the cobor-

dism between a cork and its twist by τ∗.

This approach has already had some significant successes. In [AD05] they
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looked at the Mazur cork −∂Wn and showed that τ∗, acts non-trivially on its

Heegaard Floer homology.

In [AK11] τ∗ was shown to act non-trivially on the contact invariant.

The information carried by the cork twist τ has thus not been lost by pass-

ing to Floer homology. Further, because τ∗’s action on the contact invariant

is non-trivial, there is reason to hope the Heegaard Floer invariant may be

picking up an interesting aspect of the corks.

With the Floer homology of the corks computed, one could hope that the

cobordism maps could be computed directly from the diagram. The hope being

that the differential on the Heegaard diagram could be computed explicitly by

reasoning backwards from what we know the Floer homology must be.

5.3 New Exotic Manifolds

Even with a full understanding of the Heegaard invariants of corks construction

or detection of new exotic manifolds would pose difficulties. To compute the

Heegaard Floer invariant of a four-manifold X, you need information not only

about the cork W , but also X −W .

To sidestep this, one idea is to modify manifolds, that work well with some

of the Mazur corks, to produce manifolds which work well with other Mazur

corks.

Let B denote the cobordism representing the boundary map in the surgery

exact sequence shown in Figure 5.2. (There is an analogous sequence for

Positron corks.) By computing the Heegaard Floer invariant of B we could

ask: if W is a cork in a smooth four-manifold W = M ∪W , is W � was also a
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cork in M � = M ∪ B ∪W �?

One would hope to find a large number of new exotic manifolds by iterating

this process of ‘stacking’ corks.

−n− 1

−n

0 0

−n− 1

−n

0 0

−n− 1

−n

0 0

−n

−n+ 1

0 0

K 0 +1

Figure 5.2: +1 surgery along the knot K gives a surgery triangle containing
−∂Wn and −∂Wn−1.
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5.4 More corks

This approach to the computation of the invariant is extendible to other corks

as well. Even if a closed formula is not obtainable, one should be able obtain

an algorithm. As an example, the computation of the first cork of the Positron

family is sketched.

Following the procedure for reducing the surgery to a knot, we get Figure

5.4 from the two bridge link in Figure 5.3. We build the complex by inspection

then compute H∗(A+
s ).

From Figure 5.7 we get:

H∗(A
+
±1) = F(2)

and

H∗(A
+
±0) = F(0) ⊕ F(0)

So

HF+
�
−∂W1

�
= T +

0 ⊕
�
F(0) ⊕ F(0)

�
⊕
�
F(2) ⊕ F(2)

�
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Figure 5.3: Kirby Diagram of −∂W1

Figure 5.4: Heegaard Diagram for CFK∞ of the knot associated to −∂W1
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r
a b c

3 2 1 r�

3

2 b1

c
r�

a

r

Figure 5.5: Detail of the Heegaard diagram with labeling corresponding to the
chain complex below

rc
r�a∗

3

a
c∗

r�∗

b
1

b∗1∗

2

3∗2∗

Figure 5.6: R where CFK∞ = F[U,U−1] ⊗ R. The subscript ∗ denotes
generators from the other half of the Heegaard diagram.

2 2
b

1 b∗1∗

2∗
Figure 5.7: A+

1 on the left (the number 2 signifies a single element with no
differentials) and A0 on the right.
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3

2 a∗
r�
c

1∗
b∗

1 b r

2∗ r�∗
c∗

a

3∗

Figure 5.8: �CF
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