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Abstract of the Dissertation

Hwang–Mok rigidity of cominuscule homogeneous
varieties in positive characteristic

by

Jan Aleksander Gutt

Doctor of Philosophy

in

Mathematics

Stony Brook University

2013

Jun-Muk Hwang and Ngaiming Mok have proved the rigidity of irreducible Hermitian
symmetric spaces of compact type under Kaehler degeneration. I adapt their argument
to the algebraic setting in positive characteristic, where cominuscule homogeneous va-
rieties serve as an analogue of Hermitian symmetric spaces. The main result gives an
explicit (computable in terms of Schubert calculus) lower bound on the characteristic
of the base field, guaranteeing that a smooth projective family with cominuscule homo-
geneous generic fibre is isotrivial. The bound depends only on the type of the generic
fibre, and on the degree of an invertible sheaf whose extension to the special fibre is
very ample. An important part of the proof is a characteristic-free analogue of Hwang
and Mok’s extension theorem for maps of Fano varieties of Picard number 1, a result I
believe to be interesting in its own right.
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1
Introduction

1.1 Overview of the work of Hwang and Mok

1.1.1 The study of VMRT

The results of [10] and [11] forming a basis for the generalisation attempted in this
dissertation, it is the philosophy of the wider research programme due to Hwang and
Mok that informs its overall architecture. We shall thus begin with a review of some of
the main concepts, stating the prototypical theorems and reconstructing from [10,11] the
sketch of a proof that could serve as a point of departure for our own argument. The
lecture notes [9] provide an accessible introduction to this circle of ideas.

By the celebrated theorem of Mori, nonsingular Fano varieties are uniruled, and in
fact chain-connected by rational curves. In the particularly simple case of a nonsingular
Fano variety X of Picard number 1, one can in fact reduce to a family of irreducible ra-
tional curves of minimal degree. Since such curves cannot degenerate to reducible ones,
the family is unsplit, that is, it becomes proper after taking a quotient by the group of
automorphisms of P1 (or its subgroup fixing the origin 0 ∈ P1). Associating to a rational
curve immersed at a general point x ∈ X its tangent direction in the projectivised tangent
space PTX,x, one obtains a rational map from the space of minimal degree rational curves
through x into PTX,x, called the tangent map (a theorem of Kebekus [12] shows that in
the setting we are to consider, the tangent map is in fact an everywhere-defined, finite
morphism). Its closed image, called the variety of minimal rational tangents (VMRT) at
x, is the principal object of study in Hwang and Mok’s approach.

Since X is chain-connected by minimal rational curves, the VMRT at general points
of X connect global information about the geometry of X with the local data of a closed
subvariety in a projectivised tangent space, and its infinitesimal variation. More accu-
rately, this is true in characteristic zero, where one can integrate first order infinitesimal
data.1 For example, one can expect certain classification results for complex Fano mani-

1In positive characteristic, we will need to replace the VMRT with an object encoding infinite order
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folds of Picard number 1, based on the behaviour of VMRT. For the simplest such n-fold,
Pn

C, the VMRT are just entire projectivised tangent spaces—that is, there is a rational
curve of minimal degree through every point, and in every direction—and indeed Pn

C is
completely characterised by this property, implying Fano index n + 1. A similar result
exists for quadrics, whose VMRT are quadrics themselves, implying Fano index n (cf.
[13]). A more general class of complex Fano manifolds of Picard number 1 is provided
by Hermitian symmetric spaces of compact type. One application of the study of the
VMRT is then the following rigidity theorem [10].

Theorem (Hwang–Mok). Let X → ∆ be a proper family of smooth complex manifolds over
the unit disc, such that the fibres Xt, t 6= 0 are biholomorphic to a fixed irreducible Hermitian
symmetric space G/P of compact type. Assume X0 is Kaehler. Then X0 is biholomorphic to G/P.

Its original proof used Ochiai’s application of Cartan’s equivalence method [15] to
a flat L-structure defined by the VMRT on the central fibre X0 (where L is isogeneous
to the Levi factor of P). An underlying prolongation procedure becomes cumbersome
in characteristic p > 0, requiring an immediate introduction of conditions on p. Fortu-
nately, this approach has since been completely replaced by a more recent ‘Cartan-Fubini
type’ extension theorem [11].

Theorem (Hwang–Mok). Let (X,M) and (Y,N ) be complex Fano manifolds of Picard num-
ber 1, together with a choice of an irreducible component of rational curves of minimal degree.
Let C ⊂ PTX and D ⊂ PTY be the corresponding families of VMRT, and assume that the fibre
Cx ⊂ PTX,x at a general point x ∈ X is positive-dimensional, with generically finite Gauss
map (as an embedded projective variety). Let U ⊂ X and V ⊂ Y be connected analytic open
subsets together with a biholomorphic map ϕ : U → V such that ϕ∗ : PTU → PTV maps C|U
isomorphically onto D|V . Then ϕ extends to a biholomorphism φ : X → Y.

We shall first sketch an argument reducing the rigidity theorem to the extension the-
orem, and then describe the main steps in the proof of the latter. Along the way, we
will indicate some of the main difficulties that arise upon passage to positive charac-
teristic. The first issue is of course that the notion of a Hermitian symmetric space is
a complex-analytic one. The proper algebraic replacement is a cominuscule homogeneous
variety, defined in Chapter 2. Complex cominuscule homogeneous varieties are precisely
irreducible Hermitian symmetric spaces of compact type, and we will from now on use
the former notion.

1.1.2 Rigidity theorem

In the setting X → ∆ of the rigidity theorem, after eliminating the case where G/P is
a projective space, Hwang and Mok study specialisations of rational curves of minimal
degree on the cominuscule homogeneous general fibre G/P to the central fibre X0. These
are in fact of degree 1 with respect to the ample generatorOG/P(1) of the Picard group of

information.
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G/P. Observing that X0 is also Fano of Picard number one, we have an ample invertible
sheaf OX(1) on X extending OG/P(1), and the specialisations of degree one curves on
G/P to X0 are again irreducible rational curves of minimal degree. Now, the space
of rational curves of minimal degree through a general point of X0 is smooth (i.e. all
such curves are free; this can fail completely in positive characteristic). In particular,
such curves deform to the general fibre: thus the family of degree one rational curves
through a general point of X0 coincides with the family of specialisations of degree one
curves from G/P.

For a general section s : ∆→ X we have a family M→ ∆ such that Mt is the space of
degree one rational curves P1

C → X mapping 0 ∈ P1
C to σ(t), modulo the action of the

group of automorphisms of P1
C fixing 0. The map M → ∆ is projective and has smooth

fibres. A fundamental result about cominuscule homogeneous varieties states that Mt,
t 6= 0 is either a Segre variety, or a cominuscule homogeneous variety itself. Dealing
separately with the Segre case, one sees that an inductive application of the rigidity
theorem allows us to conclude that M→ ∆ is isotrivial (note that Mt have strictly lower
dimension than Xt). This shows that the space of degree one curves through a general
point of X0 is abstractly biholomorphic to that on the model G/P.

In order to conclude the same about the VMRT (as a subvariety of a projectivised
tangent space), Hwang and Mok show that the latter is linearly nondegenerate. The
argument uses integrability of the meromorphic distribution defined by the linear span
of the VMRT, checking that linear degeneracy leads to the existence of an algebraic
foliation of X0, whose properties would force the Picard number to be greater than 1 (in
characteristic p > 0 this becomes a statement about a purely inseparable quotient, and
we will need some conditions on p to derive a contradiction).

Having shown that the VMRT at a general point of X0, with its embedding into
the projectivised tangent space, is isomorphic to the VMRT at a point of G/P via a
linear identification of tangent spaces, there remains one more step needed to satisfy the
hypotheses of the extension theorem for X0 and G/P with their rational curves of degree
one (on X0 we choose the unique dominating component; the VMRT at a general point
does satisfy finitness of the Gauss map). It has to be checked that the family of VMRT
over a small analytic open subset of X0 can be identified with the family of VMRT over a
biholomorphic analytic open subset of G/P. A natural differential-geometric approach
is to associate with it an L-structure.2 By prolongation theory the latter admits a well-
defined notion of curvature, whose vanishing on Xt, t 6= 0 extends by continuity to X0,
implying local equivalence of L-structures, and thus of families of VMRT on X0 and
G/P [15]. It has already been pointed out that such differential-geometric machinery is
not convenient in positive characteristic. However, as we will explain below, the object
we shall use in our version of the extension theorem will be a family of arcs of infinite
order, rather than just the VMRT. In that setting, flatness will follow from a general result
on the ‘moduli’ of families of formal arcs on a formal disc (Chapter 2).

2A reduction of the frame bundle to a sub-bundle whose structure group is the image of the Levi factor
L of P in GL(g/p).
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1.1.3 Extension theorem

Let us now briefly outline the proof of the extension theorem. Recall that we are in the
setting of a pair of Fano manifolds X, Y with irreducible components of minimal degree
rational curves M, N and corresponding families of VMRT C, D. The theorem states
that an analytic-local biholomorphism ϕ : U → V, compatible with the VMRT, extends
to a global biholomorphism φ : X → Y. The argument consists of several steps.

1. One shows that ϕ in fact sends holomorphic germs of M-curves to holomorphic
germs of N -curves. This relies on differential-geometric methods, and in fact will
never hold in positive characteristic: for example, a ‘constant’ family of subvarieties
of the projectivised tangent bundle of a formal disc is not affected by Artin-Schreier
type automorphisms, although these will typically not preserve its lift to a family
of formal arcs.

It is thus here that we set our point of departure. Our version of the extension
theorem will be a statement about an isomorphism of formal neighbourhoods of
general points compatible with families of formal arcs, rather than just the VMRT.

2. A procedure of ‘analytic continuation along minimal rational curves’ is applied.
A rational curve is called minimal3 if its normal bundle, pulled back to the nor-
malisation, splits into line bundles of degrees 0 and 1. General members of M
and N have this property. The assumption that the VMRT at a general point be
positive-dimensional implies that there is at least one summand of degree 1, so
that a generalM-curve admits a deformation fixing precisely one point. Consider
now a general curve C passing through a general point x0 ∈ U. Its germ at x0 is
sent by ϕ to a germ of a curve D at ϕ(x0) ∈ V.

Choose a point x ∈ C. A deformation of C fixing x induces a deformation of the
germ of C at x, that is, a family of germs of M-curves in U. By Step 1, these are
sent by ϕ∗ to germs of N -curves in V, thus giving rise to a family of N -curves. By
the assumption on generality, theseN -curves intersect at a single point y ∈ D. This
yields a map C → D extending ϕ|C : C ∩U → D ∩V. Furthermore, C → D can be
extended to an open neighbourhood of C swept out by its small deformations.

There is a Zariski-dense open subset of X that can be covered by chains of general
M-curves (of some fixed length) with the first segment passing through x0. Ap-
plying the continuation procedure inductively, we obtain a map into Y from the
space parametrising such chains together with the choice of a point on the last seg-
ment. Furthermore, the map is constant on small deformations of a chain fixing the
marked point. It then follows that the map defined on chains descends to a rational
map φ̃ : X̃ 99K Y from a generically étale cover X̃ → X. There is a biholomorphic
lift Ũ ⊂ X̃ of U ⊂ X such that φ̃ is defined on Ũ and φ̃|Ũ = ϕ via the identification
Ũ ' U. Finally, φ̃ mapsM-curves to N -curves.

3‘Standard’ in [11].
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With analytic neighbourhoods replaced by formal ones, and considering families
rather than closed points, this part of the argument works in arbitrary characteris-
tic.

3. One now checks that φ̃ can in fact be descended to a birational map φ0 : X 99K Y.
Replacing X̃ with the graph of φ̃, a careful examination of the construction of
φ̃ shows that X̃ → X is trivialised over a general M-curve. Then, a genericity
argument, together with simply-connectedness of X, rules out ramification in X̃ →
X, so that the latter is birational. A similar argument is used to check that X̃ 99K Y
is unramified in codimension one, so that φ0 : X 99K Y is birational.

Simply-connectedness of complex Fano manifolds, being a consequence of their
(separable) rational connectedness, will have to be added as a hypothesis in positive
characteristic.

4. The open subvariety of X on which φ0 is defined contains a freeM-curve, and thus
so does its image. It follows that φ0 induces an isomorphism of complements of
closed subvarieties of codimension at least two. A standard argument with pluri-
anticanonical embeddings shows that in this case φ0 extends to an isomorphism
φ : X → Y.

1.2 Main results

The basic elements of the reasoning laid out in the former section have to be carefully
recast in an algebro-geometric language suitable for positive characteristic. Some carry
through without much change, some need additional preparation to avoid pathological
situations, while others will merely be in a relation of analogy to the actual arguments.
In particular, intuitive analytic-local constructions are replaced with somewhat more
technical methods of formal geometry.

Chapter 2 sets up the necessary theoretical foundations: spaces of formal arcs, fam-
ilies of rational curves, and cominuscule homogeneous varieties. We work with un-
parametrised pointed arcs of infinite order, and define corresponding parameter spaces
intrinsically, rather than as an inverse limit. Since no convenient reference seems to be
available for this setting, we work out some basic properties. Proposition 2.1.11 may be
of independent interest here. The section on rational curves is mostly concerned with
introducing the notation for different objects associated with a family of curves, and
gathering some standard facts. The main reference is [14]. We also cite the theorem of
Kebekus [12] in a suitable form. Proposition 2.2.8 is a positive-characteristic analogue
of [10, Prop. 13]. The substantial difference is that we need to consider a purely insep-
arable quotient instead of a foliation by subvarieties. The final section introduces the
class of cominuscule homogeneous varieties, their VMRT and some auxiliary intersec-
tion numbers.

Chapter 3 states and proves a characteristic-free analogue of the extension theorem.
Rather than starting with a single formal isomorphism, we choose to work with an entire
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bundle parametrising isomorphisms between formal neighbourhoods of points on two
varieties X, Y. The bundle admits a natural stratification,4 restricting to a subscheme
cut out by the condition of compatibility with arcs associated with given families M,
N of rational curves satisfying suitable conditions. The central result is Proposition
3.1.5, showing that the latter subscheme admits natural horizontal (generic) trivialisa-
tions alongM-curves. This plays a role analogous to the analytic continuation discussed
in the previous section. Following Step 2 and Step 3 of the original argument, we arrive
at Proposition 3.1.7, producing a horizontal (generic) trivialisation over X. Finally, Step
4 leads to Theorem 3.2.1 and its Corollary.

Chapter 4 states and proves our version of the rigidity theorem over an algebraically
closed field of positive characteristic. The main problem with applying the strategy out-
lined in the previous section is potential inseparability of various evaluation maps, with
the most serious consequence being failure of smoothness of the space of minimal degree
rational curves through a general point of a nonsingular variety, in this case the special
fibre of a degeneration. Such behaviour can be ruled out by imposing a lower bound
on the characteristic. We are not aware of a universal bound that would not require
the knowledge an explicit very ample invertible sheaf on the variety. Hence the main
result of this chapter, Theorem 4.4.1, refers to the notion of d-rigidity: we call a cominus-
cule homogeneous variety G/P d-rigid, if it does not admit nontrivial smooth projective
degenerations with OG/P(d) extending to a very ample invertible sheaf on the special
fibre. An inductive application of the Theorem establishes d-rigidity of G/P under the
assumption that the characteristic be greater than an explicit integer, depending only on
d and G/P, and computable in terms of Schubert calculus on the latter.

1.3 Further directions

It would be interesting to investigate the possibility of applying our method, using for-
mal arcs instead of just VMRT, to other of the multitude of results obtained by Hwang
and Mok. Examples include: rigidity of generically étale morphisms to cominuscule
homogeneous varieties, Lazarsfeld’s problem for morphisms from cominuscule homo-
geneous varieties, rigidity of non-cominuscule homogeneous varieties (all approachable
via the extension theorem, see [9] for a review).

Another outstanding issue is that of improving the bounds on the characteristic in
our version of the rigidity theorem. The way we had obtained them being far from
subtle, there should be an approach exploiting the particular setting of the degeneration
problem to a greater degree. We also do not know how far our bounds are from being
effective: a counterexample to rigidity in low characteristic should be enlightening (we
know none).

4In the sense of an identification of infinitesimally close fibres.
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1.4 Conventions and notation

We work over an algebraically closed field k. We will mostly be interested in the case
char k > 0, although we do not assume this until Chapter 4. A presheaf will mean
a presheaf of sets on the category of k-schemes. A sheaf will mean a sheaf for the
fpqc topology. We do not employ any notational convention to distinguish between
presheaves, sheaves, formal schemes and schemes.

Given a morphism X → S of presheaves, AutSX denotes the presheaf whose value
at T is the set of pairs (T → S, ϕ) where ϕ ∈ AutT XT. If f : Z → X is a morphism
of presheaves over S, AutS(X, f ) denotes the sub-presheaf of AutSX whose value at T
is the subset of (T → S, ϕ) such that ϕ ◦ fT = fT. Given a second morphism Y → S
of presheaves, HomS(X, Y) denotes the presheaf whose value at T is the set of pairs
(T → S, ψ) where ψ ∈ HomT(XT, YT). If g : Z → Y is a morphism of presheaves over
S, we let HomS(X, Y; f , g) be the sub-presheaf of HomS(X, Y) whose value at T is the
subset of (T → S, ψ) such that ψ ◦ fT = gT. There is are sub-presheaves IsomS(X, Y) ⊂
HomS(X, Y) and IsomS(X, Y; f , g) ⊂ HomS(X, Y; f , g) whose values at T are restricted
to those ψ which are isomorphisms.

Given a morphism X → S of presheaves, (X/S)i denotes the i-fold product X ×S
· · · ×S X, together with the natural morphism to S. For X a presheaf equipped with
a pair of structure morphisms X ⇒ S, referred to as the left and right structure map,
(S\X/S)i denotes the i-fold product X ×S · · · ×S X, together with the pair of structure
morphisms into S given by the left structure morphism from the leftmost factor and the
right structure morphism from the rightmost factor. Given morphisms Y → X → S
of presheaves, ∏(Y/X/S) denotes the presheaf whose value at T is the set of pairs
(T → S, σ) where σ : XT → YT is a section of the pullback of Y → X. When applied to
sheaves, all these constructions yield sheaves.

Given a morphism of sheaves X → S and a sheaf of groups G over S acting from the
right on X, we have the quotient sheaf X/G over S. Its value at T is the set of equivalence
classes of diagrams

T′ −−−→ Xy y
T −−−→ S

where T′ → T is a covering, and T′ → X is such that the induced morphism T′ ×T T′ →
X×S X factors through the action morphism X×S G → X×S X. Two diagrams, the other
say with T ← T′′ → X, are identified if T′ ×T T′′ → X ×S X factors through the action
morphism. If instead G acts on X from the left, we have an analogous construction of
G\X.

A morphism Y → X of presheaves is schematic if for every morphism T → X from a
scheme, the pullback T ×X Y is a scheme. Furthermore, a schematic morphism Y → X
is affine if for every morphism T → X from a scheme, T ×X Y → T is affine.

We will mostly work with locally Noetherian formal schemes. Occasionally, we allow
adic morphisms Y → X from a (not necessarily locally Noetherian) formal scheme to a
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locally Noetherian formal scheme, i.e. such that the pullback of the underlying scheme
of X gives an underlying scheme of Y. Such a morphism is in particular schematic, and
the ideal of definition in OY is locally finitely generated.

If X → S is a morphism of locally Noetherian formal schemes, we denote by
(X/S)] ⇒ X the completion of (X/S)2 along the diagonal, together with the induced
pair of structure morphisms into X. It is a formal subscheme of (X/S)2, containing X
and sharing the same underlying reduced scheme. We sometimes consider (X/S)] as a
bundle over X, using the left structure map. In particular, we let (X/S)]x = x∗(X/S)] for
a point or geometric point x of X. The relative tangent sheaf TX/S is as usual defined
to be the OX-module dual to I/I2, where I is the ideal of the diagonal in (X/S)2. We
let TX/S,x = x∗TX/S. Given a sheaf E over X, an S-stratification on E is an isomorphism
X] ×X E → E ×X X] satisfying the usual cocycle condition. For example, X] ×X E is
canonically stratified. A morphism of stratified sheaves is horizontal if it is compatible
(in an obvious manner) with the stratifications.

The base Spec k will be usually omitted from notation, so that ∏(Y/X) = ∏(Y/X/k),
Xi = (X/k)i, X] = (X/k)], TX = TX/k, TX,x = TX/k,x, etc. unless explicitly defined to
mean otherwise. We fix an origin 0 in P1. Given a reduced group scheme G over k, a
morphism X → S together with a G-action is a G-principal bundle if X × G → X ×S X is
an isomorphsm, and there is an étale cover S′ → S together with a section S′ → S′ ×S X.

We will only consider inverse/direct systems indexed by integers. A morphism X →
S of formal schemes is of pro-finite type if it is the limit of an inverse system of morphisms
Xi → S of finite type. A scheme is called pro-algebraic if it is of pro-finite type over k.
An affine group scheme is called pro-unipotent if it is the limit of a countable sequence of
successive extensions by Ga (starting with the trivial group). A∞ denotes the spectrum
of a polynomial algebra in countably infinitely many variables. In particular, a pro-
unipotent group is isomorphic to A∞ as a scheme.

8



2
Technical tools

2.1 Formal arcs

2.1.1 Formal discs

The arguments in Chapters 3 and 4 rely on the study of families of formal arcs on a
nonsingular variety. A formal arc is a morphism from a one-dimensional formal disc.
A formal arc through a closed point x of a nonsingular variety X factors through the
completion X̂ of X at x, a formal disc of dimension dim X. We thus begin with the
description of spaces of morphisms between formal discs. The reader is referred to
Section 1.4 for notation and conventions.

Definition. A formal scheme X̂ is called a formal disc if it is isomorphic to
Spf k[[z1, . . . , zn]] for some n ≥ 0. Its unique k-point is called the origin of X̂. The in-
teger n is referred to as the dimension of X̂.

Lemma 2.1.1. Let X̂ and Ŷ be formal discs of dimensions n > 0 and m > 0 with origins x and
y. Then there is an isomorphism

Hom(X̂, Ŷ; x, y) ' A∞

such that the tangent map to End(TX̂,x, TŶ,y) ' Anm corresponds to a linear projection.

Proof. Fix identifications X̂ = Spf k[[z1, . . . , zn]] and Ŷ = Spf k[[w1, . . . , wm]]. Let B+ be
the set indexing non-constant coefficients of a power series in k[[z1, . . . , zn]], and let

P = k[aiβ | 1 ≤ i ≤ m, β ∈ B+]

be a polynomial algebra over k with free generators indexed by {1, . . . , m} × B+. There
is a continuous homomorphism

Φ : k[[w1, . . . , wm]]→ P[[z1, . . . , zn]]

9



such that the β-th coefficient of Φ(wi) is aiβ. We claim that

Hom(X̂, Ŷ; x, y) ' Spec P

with the universal morphism Hom(X̂, Ŷ; x, y)× X̂ → Ŷ corresponding to

Φ∗ : Spf P[[z1, . . . , zn]]→ Spf k[[w1, . . . , wm]].

Indeed, by the universal property of Hom(X̂, Ŷ; x, y), Φ∗ induces a morphism

φ : Spec P→ Hom(X̂, Ŷ; x, y)

of sheaves. To construct its inverse, we can restrict to affine schemes. Given a k-algebra
Q, and an element f ∈ Hom(X̂, Ŷ; x, y)(Spec Q) defined by

f ∗ : Q[[w1, . . . , wm]]→ Q[[z1, . . . , zn]]

we let ψ( f ) : Spec Q→ Spec P be the morphism such that

ψ( f )∗ : k[aiβ | 1 ≤ i ≤ m, β ∈ B+]→ Q

sends aiβ to the β-th coefficient of f ∗wi. This defines a morphism

ψ : Hom(X̂, Ŷ; x, y)→ Spec P

such that φ and ψ are mutual inverses.
Finally, denoting by j ∈ B+ the coefficient of zj, we have that the tangent map to

End(TX̂,x, TŶ,y) ' Spec k[aij | 1 ≤ i ≤ m, 1 ≤ j ≤ n]

is induced by the natural inclusion k[aij]→ k[aiβ].

Lemma 2.1.2. Let X̂ be a formal disc of dimension n > 0, with origin x. Then Aut(X̂, x) is a
pro-algebraic affine group scheme. Furthermore, the action of origin-preserving automorphisms
on the tangent space at the origin induces an exact sequence

0→ RuAut(X̂, x)→ Aut(X̂, x)→ GL(TX̂,x)→ 1

with a pro-unipotent kernel.

Proof. Recall first that an endomorphism of a power series algebra is invertible if its
linear part is (cf. [2]). It follows that there is a Cartesian diagram

Aut(X̂, x) −−−→ Hom(X̂, X̂, x, x)y y
GL(TX̂,x) −−−→ End(TX̂,x)
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so that, by Lemma 2.1.1,
Aut(X̂, x) ' GLn×An2 A∞

an affine pro-algebraic group scheme, with an epimorphism onto GL(TX̂,x).
Let Xr be the r-th infinitesimal neighbourhood of x in X̂, so that X̂ = lim−→Xr. Letting

Kr be the kernel in
0→ Kr → Aut(X̂, x)→ Aut(Xr, x)→ 1

we have short exact sequences

0→ Kr/Kr+1 → K1/Kr+1 → K1/Kr → 0

Using the notation of the proof of Lemma 2.1.1, applied to Hom(X̂, X̂, x, x), we have
Kr/Kr+1 ' ∏i,β Ga where the product is over 1 ≤ i ≤ n and β ∈ B+ such that deg β = r.
It follows that K1/Kr is unipotent, so that

RuAut(X̂, x) = lim←−K1/Kr

is pro-unipotent.

Morphisms from formal discs to schemes admit well-behaved parameter spaces as
well. The following result is sufficiently general for our purposes.

Lemma 2.1.3. Let X̂ be a formal disc of dimension n > 0, with origin x. Let Y → X̂ be
an adic morphism from a (not necessarily locally Noetherian) formal scheme, so that the fibre
Yx = x×X Y is a scheme. Then ∏(Y/X̂) is a scheme, and the morphism ex : ∏(Y/X̂) → Yx
given by evaluation at x is affine. If Y → X̂ is of pro-finite type, then so is ex.

Proof. If Yx =
⋃

Ui is a cover by open subschemes, then ∏(Y/X̂) =
⋃

e−1
x (Ui) is a

cover by open subfunctors, and it is enough to check that each e−1
x (Ui) is a scheme.

We can thus assume Y is affine. Identifying X̂ with Spf k[[z1, . . . , zn]], we have Y =
Spf R where R is a topological algebra over k[[z1, . . . , zn]], with topology induced by
(z1, . . . , zn)R. Consider a presentation R = S/I where S is a polynomial algebra over
k[[z1, . . . , zn]], possibly of infinite type, with topology induced by (z1, . . . , zn)S. Let A be
the set indexing free generators yα of S, and let B be the set indexing coefficients of a
power series in k[[z1, . . . , zn]]. Let

P = k[aαβ | α ∈ A, β ∈ B]

be a polynomial algebra over k with free generators aαβ indexed by A× B. There is a
homomorphism

Φ : S→ P[[z1, . . . , zn]]

such that for α ∈ A, β ∈ B, the β-th coefficient of Φ(yα) is aαβ. Let

Ψ : I × B→ P

11



be the map sending (s, β) to the β-th coefficient of the power series Φ(s). Finally let
J ⊂ P be the ideal generated by the image Ψ(I × B). Then Φ factors through

Φ̄ : R = S/I → (P/J)[[z1, . . . , zn]].

We claim that
∏(Y/X̂) ' Spec P/J

with the universal morphism ∏(Y/X̂)× X̂ → Y corresponding to

Φ̄∗ : Spf(P/J)[[z1, . . . , zn]]→ Spf R.

Indeed, by the universal property of ∏(Y/X̂), Φ̄∗ induces a morphism

φ : Spec(P/J)→∏(Y/X̂)

of sheaves. To construct its inverse, we can restrict to affine schemes. Given a k-algebra
Q, and an element f ∈ ∏(Y/X̂)(Spec Q) defined by

f ∗ : Q⊗ (S/I)→ Q[[z1, . . . , zn]]

we let ψ( f ) : Spec Q→ Spec P/J be the unique morphism such that

ψ( f )∗ : k[aαβ | α ∈ A, β ∈ B]/J → Q

sends āαβ to the β-th coefficient of f ∗yα. Note that for each (s, β) ∈ I × B, f ∗s = 0 so that
is β-th coefficient is zero, so that ψ( f )∗ takes the generators of J to zero. Hence ψ( f )∗ is
well-defined. This defines a morphism

ψ : ∏(Y/X̂)→ Spec(P/J)

and that φ and ψ are mutual inverses.
Finally, if R is countably generated over k[[z1, . . . , zn]], then A and A× B are count-

able, so that P/J is countably generated over k. Hence Y → X̂ being pro-finite type
implies the same for ∏(Y/X̂)→ Yx.

Naturally, one would like to have a relative notion of a formal disc. For our purposes,
the following is the most convenient (note that in the definition below, dimensions of the
fibres are locally constant, i.e. ni = nj unless Si, Sj are disjoint).

Definition. A morphism X̂ → S of locally Noetherian formal schemes, together with a
section S → X̂, is called a bundle of formal discs if there is a Zariski open cover S =

⋃
Si

such that Si ×S X̂ ' Si × Spf k[[z1, . . . , zni ]] over Si for some ni ≥ 0, and the section
Si → Si ×S X̂ corresponds to the pullback of the origin Spec k→ Spf k[[z1, . . . , zni ]].

Lemma 2.1.4. Let X → S be a smooth morphism of locally Noetherian schemes. Then (X/S)]

together with the diagonal section is a bundle of formal discs over X. If, moreover, S is reduced
and σ ∈ X(S) is a section, then σ∗(X/S)] is naturally isomorphic to the completion of X along
σ(S).
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Proof. Since the question is local, we can assume there is an étale morphism f : X → An
S

and f ◦ σ : S → An
S is the zero-section. Since f is étale, it induces an isomorphism

(X/S)] ' f ∗(An
S/S)] and an isomorphism of the completion of X along σ(S) onto the

completion of An
S along ( f ◦ σ)(S). We can thus replace X with An

S and σ with the zero-
section. Then (X/S)] is identified with S× (An)], and the completion of X along σ(S) is
the product of S with the completion of An at 0. We are thus finally reduced to the case
S = Spec k, X = An, σ = 0, where the result follows by straightforward inspection.

The condition that (X/S)] be a bundle of formal discs is a variant of what in [1]
and [7] is caled lissité differentielle (it coincides with the latter at least for finite type
morphisms of locally Noetherian schemes). We thus make the following definition.

Definition. A morphism f : X → S of locally Noetherian formal schemes is differentially
smooth (with differential dimension n) if (X/S)], together with the diagonal section, is a
bundle of formal discs (of dimension n) over X.

By Lemma 2.1.4, a smooth morphism of locally Noetherian schemes is differentially
smooth. Conversely, one can show that a flat, finite type differentially smooth morphism
of locally Noetherian schemes is smooth [1], although we will not need this fact. At the
same time, a bundle X̂ → S of formal discs is differentially smooth since (X̂/S)] =
(X̂/S)2. Sections of a differentially smooth morphism to a formal disc are parametrized
by a particularly simple object.

Lemma 2.1.5. Let X̂ be a formal disc with origin x, Y a locally Noetherian formal scheme, and
Y → X̂ a differentially smooth morphism with positive differential dimension. Then ∏(Y/X̂)→
Yx is a Zariski-locally trivial A∞-bundle.

Proof. Note that for any scheme T → X̂, and a morphism f : T × X̂ → T ×X̂ Y over
T, the induced morphism 〈( f ◦ x) × X̂, f 〉 : T × X̂ → T ×X̂ (Y/X)2 factors through
T ×X̂ (Y/X)]. We thus have an isomorphism

∏(Y/X̂) ' HomY(Y× X̂, (Y/X̂)]; Y× x, ∆Y)

' HomYx
(Yx × X̂, Yx ×Y (Y/X̂)]; Yx × x, Yx ×Y ∆Y)

where ∆Y : Y → (Y/X̂)] is the diagonal morphism. By hypothesis, Yx ×Y (Y/X̂)] is a
bundle of positive-dimensional formal discs over Yx. Since the problem is local, we can
assume that the bundle is trivial, so that

∏(Y/X̂) ' Yx ×Hom(X̂, Ŷ; x, y) = Yx ×Hom(X̂, Ŷ; x, y)

where Ŷ is a formal disc of positive dimension, with origin y. Then, by Lemma 2.1.1, we
have that ∏(Y/X̂) ' Yx ×A∞ as desired.
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2.1.2 Space of unparametrised pointed arcs

Let P̂1 denote the completion of P1 at 0. It is a one-dimensional formal disc, so that
in particular we have the pro-algebraic group scheme Aut(P̂1, 0). Given a differentially
smooth morphism X → S with positive differential dimension of locally Noetherian
formal schemes, we define

ImmS(S× P̂1, X) ⊂ HomS(S× P̂1, X)

to be the subsheaf whose value at T/S consists of morphisms γ : T× P̂1 → XT inducing
a nowhere-vanishing map γ′ : OT ⊗ TP1,0 → γ|∗T×0TXT/T. That is, ImmS(S × P̂1, X) is
the space of families of parametrised formal arcs in X/S, unramified at the origin 0. The
map sending γ to the image of γ′ induces a morphism ImmS(S×P1, X) → PTX/S into
the projectivised tangent bundle. The automorphism group Aut(P̂1, 0) has a natural
right action on ImmS(S× P̂1, X), reparametrising the arc while preserving the tangent
direction at 0, and thus compatible with the morphism to PTX/S. We define the space of
unparametrised pointed arcs in X/S to be the quotient

ArcX/S = ImmS(S× P̂1, X)/Aut(P̂1, 0),

in the category of sheaves over PTX/S.

Lemma 2.1.6. Let X → S be a differentially smooth morphism with positive differential dimen-
sion of locally Noetherian formal schemes. Then ArcX/S → PTX/S is a Zariski-locally trivial
A∞-bundle.

Proof. Since the problem is local, we can assume by differential smoothness that there is
a positive-dimensional formal disc X̂ with origin x, such that (X/S)] ' X× X̂ inducing
an isomorphism PTX/S ' X ×PTX̂. Arguing as in the proof Lemma 2.1.5 we then have
an isomorphism

ImmS(S× P̂1, X) ' X× Imm(P̂1, X̂)

equivariant under the action of Aut(P̂1, 0), and compatible with the morphisms to PTX/S
and PTX̂. It will thus be enough to prove that

ArcX̂ → PTX̂

is a Zariski-locally trivial A∞-bundle.
Identifying X̂ with the completion of Ga× · · ·×Ga at identity, we turn it into a formal

group scheme. The action of X̂ on itself trivialises ArcX̂ and PTX̂ so that

ArcX̂ ' X̂×ArcX̂,x, PTX̂ ' X̂×PTX̂,x

compatibly with the morphism ArcX̂ → PTX̂. It is thus enough to check that ArcX̂,x →
PTX̂,x is a Zariski-locally trivial A∞-bundle.

Now, identifying X̂ = Spf k[[z1, . . . , zn]] so that PTX̂,x = Proj k[z1, . . . , zn], we have
that PTX̂,x is covered by open affines D(zi), and ArcX̂,x is covered by open subfunctors
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Ui = D(zi) ×PTX̂,x
ArcX̂,x. It will be enough to show that Ui ' D(zi) ×A∞, and by

permuting the variables we only need to consider i = n. Let D̂ = Spf k[[z1, . . . , zn−1]]
and identify P̂1 = Spf k[[zn]], inducing isomorphism D̂ × P̂1 ' X̂. There is a natural
isomorphism

Hom(P̂1, D̂)×Hom(P̂1, P̂1) ' Hom(P̂1, D̂× P̂1)

which, pulled back to the k-point idP̂1 of Hom(P̂1, P̂1), and restricted over the origin
x̄ ∈ D̂(k), gives a monomorphism

φ̃ : Hom(P̂1, D̂; 0, x̄)→ D(zn)×PTX̂,x
Imm(P̂1, X̂).

Composing with projection to the quotient by Aut(P̂1, 0), we obtain

φ : Hom(P̂1, D̂; 0, x̄)→ Un

We first check that φ is a monomorphism. Consider two T-points of Hom(P̂1, D̂; 0, x̄),
corresponding to morphisms b, c : T × P̂1 → T × D̂. If φ(b) = φ(c), then there is a
covering T′ → T and an automorphism g : T′ × P̂1 → T′ × P̂1 such that φ̃(b)T′ ◦ g =
φ̃(c)T′ . But then

g = prT′×P̂1 ◦ φ̃(b)T′ ◦ g = prT′×P̂1 ◦ φ̃(c)T′ = idT′×P̂1

so that φ̃(b)T′ = φ̃(c)T′ , thus bT′ = cT′ and b = c by descent.
To check that φ is an epimorphism, consider a T-point f of Un, represented by a

covering T′ → T and a morphism f ′ : T′ × P̂1 → T′ × D̂ × P̂1 satisfying the condition
that

pr∗1 f ′ = pr∗2 f ′ ◦ g : T′ ×T T′ × P̂1 → T′ ×T T′ × D̂× P̂1

for some automorphism g : T′ ×T T′ × P̂1 → T′ ×T T′ × P̂1, where pr1, pr2 : T′ ×T T′ →
T′ are the two projections. Furthermore, since prT′×P̂1 ◦ f ′ : T′ × P̂1 → T′ × P̂1 is
unramified at the zero section, it is an automorphism. We then let

c′ = prT′×D̂ ◦ f ′ ◦ (prT′×P̂1 ◦ f ′)−1 : T′ × P̂1 → T′ × D̂,

defining a T′-point of Hom(P̂1, D̂; 0, x̄). It is immediate that φ̃(c′) = f ′ ◦ (prT′×P̂1 ◦ f ′)−1,
so that φ(c′) = T′ ×T f . Pulling c′ back by pr1, pr2 : T′ ×T T′ ⇒ T′, we have

pr∗1c′ = prT′×TT′×D̂ ◦ pr∗1 f ′ ◦ (prT′×TT′×P̂1 ◦ pr∗1 f ′)−1

= prT′×TT′×D̂ ◦ pr∗2 f ′ ◦ g ◦ g−1 ◦ (prT′×TT′×P̂1 ◦ pr∗2 f ′)−1

= pr∗2c′

so that c′ descends to a T-point corresponding to c : T × P̂1 → T × D̂.
We thus have an isomorphism Un ' Hom(P̂1, D̂; 0, x̄). By Lemma 2.1.1, Un ' A∞

and the morphism to D(zi) ' An is a linear projection, so that Un ' D(zi)×A∞ as a
D(zi)-scheme.
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Corollary 2.1.7. In the setting of Lemma 2.1.6, ImmS(S× P̂1, X)→ ArcX/S is a Zariski-locally
trivial Aut(P̂1, 0)-torsor.

Proof. A morphism from P̂1 to X is a formal closed immersion if it is unramified at
0, so that ImmS(S× P̂1, X) is a pseudo-torsor for Aut(P̂1, 0). Zariski-local sections are
provided by the morphism φ̃ of the former proof.

Remaining in the previous context, we introduce the pointwise space of families of
arcs determined by their tangent directions. Considering the fibration ArcX/S → PTX/S,
let

Hilb PTX/S ← U → PTX/S

be the universal family over the relative Hilbert scheme1 of the projectivised tangent
bundle. We then define ArcHilbX/S to be the sheaf of sections

ArcHilbX/S = ∏
(
U ×PTX/S ArcX/S / U / Hilb PTX/S

)
so that its value at f : T → Hilb PTX/S is the set of sections of T ×X ArcX/S over the
subscheme of T ×X PTX/S defining f . In particular, if X is differentially smooth over
k, then k-points of ArcHilbX correspond to sections of ArcX over closed subschemes in
fibres of PTX.

Lemma 2.1.8. Let X → S be a differentially smooth morphism with positive differential dimen-
sion of locally Noetherian formal schemes. Then ArcHilbX/S → Hilb PTX/S is a pro-finite type
affine adic morphism from a formal scheme.

Proof. By Lemma 2.1.6, U ×PTX/S ArcX/S → U is a Zariski-locally trivial A∞-bundle. On
the other hand, U → Hilb PTX/S is a projective adic morphism of locally Noetherian
formal schemes. Identify

U ×PTX/S ArcX/S = SpecU A
where A is a quasi-coherent sheaf of OU -algebras locally isomorphic to the symmetric
algebra of a direct sum of countably many copies of OU . Then

ArcHilbX/S(T −→ Hilb PTX/S) = HomUT−alg(AT,OUT)

Suppose one can show that the functor HomU (A,OU ) sending T → Hilb PTX/S to the
set of UT-module morphismsAT → OUT is representable by a formal scheme, affine, adic
and of pro-finite type over Hilb PTX/S. Then ArcHilbX/S is naturally a closed subfunctor
of HomU (A,OU ), hence satisfies the same properties, as desired. To simplify notation,
the claim that remains to be proven is reformulated as the following Lemma (replacing
Hilb PTX/S with S, U with X and A with E ).

Lemma 2.1.9. Suppose X → S is a flat projective adic morphism of locally Noetherian formal
schemes, and E a locally countably generated quasi-coherent sheaf on X. Then ∏(E∨/X/S) is
representable by a formal scheme, affine, adic and of pro-finite type over S.

1 Note that, by differential smoothness, PTX/S is locally trivial, so that Hilb PTX/S is locally just a
pullback of Hilb Pn−1, where n is the differential dimension of X/S.

16



Proof. Since the problem is local on the base, we can assume S is Noetherian. Then X is
quasi-compact, and we can filter E by coherent subsheaves E1 ⊂ E2 ⊂ . . . so that

⋃ Ei = E .
By [6, Thm. 7.7.6], there is a coherent sheaf2 Qi on S such that

∏(E∨i /X/S) = SpecS SymSQi

where the relative Spec construction over the formal scheme S is understood as locally
taking formal spectra with the adic topology induced from OS. Now, E∨ = lim←−E

∨
i , so

that
∏(E/X/S) = lim←− SpecS SymSQi = SpecS lim−→ SymSQi

This is a formal scheme, affine, adic and of pro-finite type over S.

2.1.3 Families of arcs on a formal disc

We would now like to describe families of pointed arcs on a formal disc, up to manage-
able equivalence. Suppose X̂ is a formal disc of positive dimension, with origin x. The
action of Aut(X̂, x) on X̂ lifts to ArcHilbX̂, so that we can consider Aut(X̂, x) acting on
the space of sections of ArcHilbX̂ over X̂. The morphism ArcHilbX̂ → Hilb PTX̂ induces
a morphism on the spaces of sections and, upon evaluation at x, a morphism

∏
(
ArcHilbX̂ /X̂

)
→ Hilb PTX̂,x.

Lemma 2.1.10. Let X̂ be a formal disc of positive dimension, with origin x. Then
∏
(
ArcHilbX̂ /X̂

)
→ Hilb PTX̂,x is a pro-finite type affine morphism of schemes.

Proof. By Lemma 2.1.8, ArcHilbX̂ → Hilb PTX̂ is a pro-finite type affine adic morphism
from a formal scheme, and thus so is its composite with projection to X̂. We then have by
Lemma 2.1.3 that ∏(ArcHilbX̂ /X̂)→ ArcHilbX̂,x is a pro-finite type affine morphism of
schemes. Again by Lemma 2.1.8, the projection ArcHilbX̂,x → Hilb PTX̂,x is a pro-finite
type affine morphism of schemes. Hence the composite ∏(ArcHilbX̂ /X̂) → Hilb PTX̂,x
is a pro-finite type affine morphism of schemes.

The projection to Hilb PTX,x is preserved by the action of the pro-unipotent subgroup
RuAut(X̂, x) of automorphisms inducing identity on TX̂,x.

Proposition 2.1.11. Let X̂ be a formal disc of positive dimension, with origin x. Then the orbits
of k-points under the RuAut(X̂, x)-action on ∏(ArcHilbX̂ /X̂) are closed.

2 While the result in [6] is stated over a base scheme, it extends easily to the formal case. Letting I be an
ideal of definition of S, we have suitable coherent sheaves Q(r)

i on Sr = SpecSOS/I r+1. By the universal

property of the functor of sections, there are isomorphisms Q(r+1)
i |Sr → Q

(r)
i , so that Qi = lim←−Q

(r)
i is

a coherent sheaf on S. Since its pullback to any scheme factors through one of Q(r)
i , it has the desired

property.
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Proof. As we can restrict to fibres over k-points of Hilb PTX̂,x, the Proposition is an im-
mediate corollary of Lemma 2.1.10 and the following pro-algebraic version of Borel’s
fixed point theorem.

Lemma 2.1.12. Suppose a pro-unipotent group scheme acts on an affine pro-algebraic scheme.
Then the orbits of k-points are closed.

Proof. Let U be a pro-unipotent group scheme acting on Spec A. Since U is a limit
of extensions by Ga, we have U ' A∞ as a scheme, so that k[U] ' k[u1, u2, . . . ] is a
polynomial algebra in countably infinitely many variables. Let

ρ : A→ A[u1, u2, . . . ]

be the action morphism.
We claim that for any finite collection a1, . . . , an ∈ A there is a finitely generated

subalgebra A0 ⊂ A containing a1, . . . , an such that ρ restricts to an action morphism
A0 → A0[u1, u2, . . . ]. Indeed, let A0 be the subalgebra generated by the coefficients of
the polynomials ρ(a1), . . . , ρ(an) ∈ A[u1, u2, . . . ] (these include in particular a1, . . . , an).
We have a commutatitive diagram

k[a1, . . . , an]
ρ−−−→ A0[v1, v2, . . . ]

ρ

y yρ⊗1

A0[u1, u2, . . . ]
1⊗µ−−−→ A[u1, u2, . . . ][v1, v2, . . . ]

where µ : k[u1, u2, . . . ] → k[u1, u2, . . . ][v1, v2, . . . ] is the multiplication morphism in U.
The bottom morphism factors through A0[u1, u2, . . . ][v1, v2, . . . ], so that for each ρ(ai),
a polynomial in the v1, v2, . . . , we have that ρ sends its coefficients into A0[u1, u2, . . . ].
Since these coefficients generate A0, the claim follows.

Now, we can filter A by a sequence of finitely generated algebras A1 ⊂ A2 ⊂ . . . , so
that A =

⋃
Ai, and the action of U descends to each Ai. Recalling that U is a limit of

extensions by Ga, we can assume that for each n > 0,

U ' Spec k[u1, u2, . . . ]→ Spec k[u1, . . . , un]

is naturally an epimorphism onto a unipotent algebraic group. For each i, choose the
largest n > 0 such that un appears in the polynomials ρ(Ai) ⊂ Ai[u1, u2, . . . ], and set
Ui = Spec k[u1, . . . , un]. Then Ui is naturally a unipotent algebraic quotient of U, and the
action of U on Spec Ai factors through Ui. Since Spec A = lim←− Spec Ai, the action of U
on Spec A factors through lim←−Ui. We assume without loss of generality that U = lim←−Ui.

Fix an orbit map ϕ : U → Spec A, given by pullback of the action morphism U ×
Spec A→ Spec A to a k-point. For each i consider the commutative diagram

U
ϕ−−−→ Spec A

θi

y πi

y
Ui

ϕi−−−→ Spec Ai
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where πi and θi are the natural projections, and ϕi the factorisation of πi ◦ ϕ. By Borel’s
Fixed Point Theorem, Di = ϕi(Ui) is closed in Spec Ai. Let D =

⋂
π−1

i Di, a closed subset
of Spec A. We then have that ϕ factors through D, and it remains to check surjectivity.
Given x ∈ D, consider the pullback

Vi −−−→ Uy ϕi◦θi

y
Spec κ(x)

πi◦x−−−→ Spec Ai

defining a nonempty closed subscheme Vi ⊂ U⊗ κ(x). Noting that V1 ⊃ V2 ⊃ . . . , we let
V =

⋂
Vi, a closed subset of U ⊗ κ(x). Since U ⊗ κ(x) is affine, and thus quasi-compact,

V is nonempty. Hence its image in U is nonempty, so that x ∈ ϕ(U).

We remark that in the setting of Proposition 2.1.11 the Ui and Spec Ai of the former
proof can be explicitly constructed by filtering X̂ and P̂1 by infinitesmial neighbourhoods
of their origins (cf. the proof of Lemma 2.1.2): this induces a natural presentation of the
action of RuAut(X̂, x) on ∏(ArcHilbX̂ /X̂) as a limit of an inverse system of actions of
unipotent algebraic groups on affine algebraic schemes.

2.2 Rational curves

2.2.1 Space of unparametrised pointed curves

We now turn to the study rational curves on a family of projective varieties. Let X → S
be a smooth morphism of Noetherian schemes. The space of morphisms HomS(P

1
S, X)

is a locally Noetherian S-scheme. Relevant classes of its geometric points are defined as
follows.

Definition. Let Spec L → HomS(P
1
S, X) be a geometric point, corresponding to a mor-

phism f : P1
L → X. Then f is called free (resp. minimal3) if f ∗TX/S is a direct sum

of invertible sheaves of non-negative degree (resp. a direct sum of O(2) and invertible
sheaves of degree 0 or 1).

There is an open subscheme

HomS,bir(P
1
S, X) ⊂ HomS(P

1
S, X)

whose geometric points correspond to morphisms P1
L → X birational to their im-

ages. We let Homn
S,bir(P

1
S, X) be its normalisation. The right action of Aut(P1) on

HomS(P
1
S, X) restricts to HomS,bir(P

1
S, X) and lifts to Homn

S,bir(P
1
S, X). The quotient

morphisms
Homn

S,bir(P
1
S, X)→ Homn

S,bir(P
1
S, X)/Aut(P1, 0)

3 Called ‘standard’ in [10].
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and
Homn

S,bir(P
1
S, X)→ Homn

S,bir(P
1
S, X)/Aut(P1)

are principal bundles [14].

Definition. Given a smooth morphism X → S of Noetherian schemes, a family of rational
curves on X/S is a closed Aut(P1)-invariant subscheme of Homn

S,bir.

Note that the definition does not assume irreducibility. However, most families we
consider will be in fact irreducible components of Homn

S,bir(P
1, X). Given a familyM⊂

Homn
S,bir(P

1
S, X), we introduce the following notation for the quotients:

M0 =M/Aut(P1)

M1 =M/Aut(P1, 0)

whereM→M0, resp. M→M1, is an Aut(P1)-principal bundle, resp. an Aut(P1, 0)-
principal bundle. It follows that M1 → M0 is a P1-bundle. We also consider the
associated P1-bundle

M2 =M×Aut(P1,0) P1.

Let ev : M× P1 → X be the evaluation morphism. The composite ev ◦ 0M descends
to a structure map M1 → X. Its composite with the projection M2 → M1 yields a
morphism M2 → X, which we consider as the left structure map. On the other hand,
ev descends to a morphismM2 → X, which we consider as the right structure map. We
thus have a double fibrationM2 ⇒ X, and think ofM2 as the space of unparametrised
2-pointed M-curves. Completion of M2 along the 0-section M1 →M2 gives a bundle
of formal discs M̂2 →M1. We also define the products

Mi
2 = (X\M2/X)i

together with morphismsMi
2 ⇒ X as introduced in 1.4, and think of them as spaces of

2-pointed i-chains ofM-curves. SinceM→M0 is a principal Aut(P1)-bundle, we have
natural isomorphisms

M1 'M×Aut(P1) P1, M2 'M×Aut(P1) (P1 ×P1).

The transposition on P1 ×P1 induces an involutionM2 →M2 overM0, swapping the
two marked points (i.e. the two structure maps to X).

There are open subschemes Mfree, Mmin, Marc of M such that the curves corre-
sponding to their geometric points are free, resp. minimal, resp. unramified at 0. Since
Mfree and Mmin are Aut(P1)-equivariant, they descend to open subschemes Mfree

1 ,
Mfree

0 and Mmin
1 , Mmin

0 . Since Marc is Aut(P1, 0)-invariant, it descends to an open
subschemeMarc

1 . The inclusion P̂1 → P1 induces morphisms

Marc
1 → ArcX/S → PTX/S
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Finally, we let

Mfree
2 =Mfree

1 ×M1M2, Mi,free
2 = (X\Mfree

2 /X)i.

We remark that if M is an irreducible component of Homn
bir(P

1, X), then Mfree
1 → X

and bothMfree
2 ⇒ X are smooth [14].

2.2.2 Rational curves on a variety

Suppose now X is an irreducible variety, and M ⊂ Homn
bir(P

1, X) a family of rational
curves. We will say thatM is dominating ifM1 → X is dominant. We will say thatM is
unsplit ifM0 is proper. We will say that X is chain-connected byM-curves if the induced
morphismMi

2 → X× X is dominant for some i ≥ 0. In this case

äMi
2 ⇒ X

is a transitive category-scheme, with composition given by concatenation of chains.
Given an object over X together with an isomorphism of its two pullbacks along
M2 ⇒ X, we obtain an action of äMi

2, i.e. a ‘parallel transport’ along chains. We
will use this technique in Chapter 3 to extend ∞-jets of morphisms between varieties
chain-connected by suitable families of rational curves. A simpler application is the
following Proposition.

Lemma 2.2.1. Let X be a nonsingular variety, L an invertible sheaf on X, and M ⊂
Homn

bir(P
1, X) a family of rational curves such that the pullback of L by the generic M-curve

P1 ⊗ k(M)→ X is trivial. Then the two pullbacks of L alongM2 ⇒ X are isomorphic.

Proof. Considering the Aut(P1, 0)-equivariant diagram

M
p1
�
0M
M×P1 ev−→ X

we have that ev∗L ' p∗1K for some Aut(P1, 0)-equivariant invertible sheaf K on M.
There is then an Aut(P1, 0)-equivariant isomorphism

ev∗L ' p∗1K = (0M ◦ p1)
∗p∗1K ' (0M ◦ p1)

∗ev∗L = (ev ◦ 0M ◦ p1)
∗L

descending to e∗1L ' e∗0L where e0, e1 :M2 =M×Aut(P1,0) P1 → X are the left and right
morphisms to X.

Proposition 2.2.2. Suppose X is a nonsingular projective variety, andM ⊂ Homn
bir(P

1, X) a
connected unsplit family of rational curves, such that X is chain-connected byM-curves. Then
X has Picard number 1.
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Proof. We are going to show that if a divisor D on X intersects some (hence every) M-
curve trivially, then it is numerically trivial. Indeed, we have by Lemma 2.2.1 that there
is an isomorphism of the two pullbacks of O(D) along M2 ⇒ X. It then follows that
there is an isomorphism of the pullbacks of O(D) along Mi

2 ⇒ X for each i ≥ 0. Let i
be such thatMi

2 → X× X is dominant, hence surjective. Fix a closed point x ∈ X. Then
the right evaluation morphism e : x ×XMi

2 → X is surjective, and e∗O(D) is trivial.
Since the components of Hom(P1, X) are quasi-projective, it follows by properness that
M1 is projective. Now, for any irreducible curve C ⊂ X, there is an irreducible curve
C̃ ⊂ x ×XMi

2 surjecting onto C. Since degC̃ e∗O(D) = 0, we have (deg e|C̃)(C.D) = 0,
so that C.D = 0 as desired.

We say that an irreducible family of rational curves M on X is of degree d with
respect to an invertible sheaf L if the pullback of L by the genericM-curve P1⊗ k(M)→
X has degree d. We say that M is of minimal degree with respect to L if there is no
component of Homn

bir(P
1, X) of lower degree with respect to L. Unsplit families arise

from curves of minimal degree with respect to an ample invertible sheaf (essentially
unique, a posteriori, in case of a chain-connected nonsingular variety).

Lemma 2.2.3. Suppose X is a nonsingular projective variety, L an ample invertible sheaf, and
M ⊂ Homn

bir(P
1, X) an irreducible family of rational curves of minimal degree with respect to

L. ThenM is unsplit.

Proof. We use the valuative criterion of properness. Let T be a spectrum of a discrete
valuation ring, with closed point t0 and generic point t1, and let f1 : t1 → M0 be
a morphism. The image of t1 ×M0 M1 → t1 × X defines a morphism t1 → Hilb X,
extending by properness of the Hilbert scheme to f̃ : T → Hilb X. Let C ⊂ T × X be
the pullback of the universal family, so that p1 : C → T is a flat family whose fibres
are rational cycles of dimension one. Write [t0 ×T C] = ∑r

i=1 ai[Ci] where Ci are integral
rational curves. SinceM has minimal degree with respect to L, we have

degCj
p∗2L ≥

r

∑
i=1

ai degCi
p∗2L

for each j. Hence r = 1, a1 = 1, and t0 ×T C is an integral rational curve. It follows
that the normalization ν : C̃ → C is a P1-bundle over T. After unramified base change
T′ → T, we have T′ ×T C̃ ' T′ ×P1. Then

idT′ ×(p2 ◦ ν) : T′ ×T C̃ ' T ×P1 → T′ × X

induces a morphism T′ → Homn
bir(P

1, X), necessarily factoring throughM. Its compos-
ite withM→M0 gives

f ′ : T′ →M0.

Letting q1, q2 : T′ ×T T′ → T′ be the two projections, consider

δ f ′ = 〈q∗1 f ′, q∗2 f ′〉 : T′ ×T T′ →M0 ×M0.
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Observing that f ′|t1×TT′ is the pullback of f1, we have that δ f ′|t1×T(T′×TT′) factors through
the diagonal M0 → M0 ×M0. But then, by separatedness of M0, so does entire
δ f ′. Hence f ′ descends along the étale surjection T′ → T to f : T → M0 such that
f |t1 = f1.

Lemma 2.2.4. Let X be a nonsingular projective variety and M ⊂ Homn
bir(P

1, X) an irre-
ducible component such that the genericM-curve f : P1 ⊗ k(M) → X is free. Let D ⊂ X be
a reduced closed subscheme of codimension 1, and W ⊂ X a closed subscheme of codimension 2.
Then f ∗D is reduced, and f ∗W is empty.

Proof. By [14, Cor. 3.5.4], the evaluation morphism ev :Mfree ×P1 → X is smooth.

We end this subsection showing that one can often restrict to chains of free curves.4

Lemma 2.2.5. Suppose X is a nonsingular projective variety of Picard number 1, and M ⊂
Homn

bir(P
1, X) an irreducible component such that the genericM-curve is free. ThenMi,free

2 →
X× X is dominant for some i ≥ 0.

Proof. Let Mi,free
2 =

⋃
Mj be the irreducible components. For each j, let Wj ⊂ X × X be

the closed image subscheme of Mj under M2 → X × X. Choose j0 such that Wj0 has
maximal dimension among all Mj. Set M = Mj0 , W = Wj0 , with the pair of projections
W ⇒ X.

Let x be the generic point of X and set Wx = x×X W. Let η be the generic point of Wx.
By construction, η ×XMfree

2 → X factors through Wx (for otherwise dim Wj > dim W
for some j, a contradiction). Since by freeness X ← Mfree

2 is smooth, we have that
Wx ×XMfree

2 is the closure of η ×XMfree
2 so that Wx ×XMfree

2 → X factors through Wx
as well.

As a closed subscheme of X⊗ κ(x), Wx defines an x-point of Hilb X which, by proper-
ness of the Hilbert scheme, extends to

q : U → Hilb X

over an open subscheme U ⊂ X whose complement has codimension at least 2 in X. It
will be enough to show that q is constant. Note that it is constant at least on the fibres
of X ← W, in particular q|Wx factors through q|x. Letting f : P1 ⊗ k(M) → X be the
genericM-curve, we have by freeness that f (0) = x, so that by the previous paragraph
f factors through Wx. On the other hand, since X \ U has codimension at least 2, f
factors through U by Lemma 2.2.4. It then follows that for any ample invertible sheaf L
on Hilb X, the pullback f ∗q∗L is trivial. Since X has Picard number 1, it follows that L
is numerically trivial, so that q must be a constant morphism. But Wx → X is dominant,
so that q must factor through the k-point of Hilb X corresponding to entire X.

Lemma 2.2.6. Suppose X is a nonsingular projective variety, and M ⊂ Homn
bir(P

1, X) an
irreducible component such that the genericM-curve is free, and the generic fibre ofMfree

1 → X
is geometrically connected. Then:

4I have learned this argument from Jason Starr.
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1. X ←Mi,free
2 has geometrically integral generic fibre,

2. Mi+1,free
2 →Mi,free

2 is a smooth surjection,

3. if the genericM-curve is minimal (resp. unramified at 0), then the generic point ofMi,free
2

is a chain of minimal (resp. unramified at 0) curves

for all i ≥ 0.

Proof. Note that by freeness X ← Mfree
1 is smooth, so that, being geometrically con-

nected, its generic fibre is geometrically integral. The same holds for X ← Mfree
2 , since

Mfree
2 → Mfree

1 is a P1-bundle. Assume by induction that X ← Mi,free
2 has geometri-

cally integral generic fibre. By freeness, Mi,free
2 → X is dominant. On the other hand,

X ←Mfree
2 is smooth with geometrically connected generic fibre. Hence

Mi+1,free
2 =Mi,free

2 ×XMfree
2

has geometrically integral generic fibre, and the projection Mi+1,free
2 →Mi,free

2 is domi-
nant and smooth. To check surjectivity, it is enough to note that it has an obvious section,
duplicating the rightmost link in the i-chain.

For the last statement, it is enough to note that projection Mi,free
2 → M2 to the

rightmost factor is dominant for all i ≥ 0: indeed the generic point of M2 lifts to a
point in Mi,free

2 corresponding to a chain consisting of i copies of the single generic
M-curve.

2.2.3 The tangent map and VMRT

Recall that given a nonsingular projective variety X and a family M of rational curves
on X, we have morphisms

Marc
1 → ArcX → PTX.

The composite will be called the tangent map. The results of Kebekus [12, Thm. 3.3 and
3.4] describe5 the tangent map at the generic point of X.

Proposition 2.2.7 (Kebekus). Let X be a nonsingular projective variety with generic point x,
L an ample invertible sheaf on X, andM a dominating irreducible family of rational curves on
X of degree 1 with respect to L (hence unsplit by Lemma 2.2.3). Then:

1. x∗Marc
1 = x∗M1

2. x∗M1 → PTX,x is finite.

5 There are concerns about the proof in [12] when the degree of the family with respect to the ample
invertible sheaf is divisible by p. This is clearly not the case here.
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Under the hypotheses of Proposition 2.2.7, we call the closed image scheme of
x∗M1 → PTX,x the variety of M-rational tangents at x. Denote by m1 the generic point
of M1. If the generic M-curve is minimal, then x∗M1 → PTX,x unramified at m1, and
induces a well-defined morphism (cf. [10])

PTM1/X,m1 → PΛ2TX,x.

The remainder of this subsection will be occupied by a proof of the following Proposi-
tion, an analogue of [10, Prop. 13].

Proposition 2.2.8. Assume char k = p > 0. Let X be a nonsingular projective Fano variety of
Picard number 1 and with index(X) < p. LetM ⊂ Homn

bir(P
1, X) an irreducible component

of degree 1. Denote by x the generic point of X, and by m1 the generic point of M1. Assume
that:

1. The genericM-curve is minimal.

2. The generic fibre ofM1 → X is geometrically irreducible.

3. There is i ≥ 0 such thatMi,free
2 contains a subscheme separably dominating X× X.

4. Letting Dx ⊂ TX,x be the linear span of the variety ofM-rational tangents at x, the image
of the natural morphism

PTM1/X,m1 → κ(m1)⊗κ(x) PΛ2TX,x

spans κ(m1)⊗κ(x) Λ2Dx.

Then the variety ofM-rational tangents at x is linearly nondegenerate in PTX,x.

Proof. Note that Proposition 2.2.7 applies, so that hypothesis 4 makes sense. We extend
Dx ⊂ TX,x to a saturated subsheaf D ⊂ TX, a sub-bundle away from codimension 2.
Note that rkD > 0. The argument relies on the existence of a height one purely insep-
arable quotient of X associated with D. The proof of integrability is essentially due to
Hwang and Mok. In characteristic p we need p-closedness as well (see [18] for a related
argument).

Lemma 2.2.9. D is integrable and p-closed.

Proof. By [4, Lemma 4.2], we need to check that the maps

θ : Λ2D → TX/D, θ(ξ1 ∧ ξ2) = [ξ1, ξ2] +D

φ : F∗D → TX/D, φ(1⊗ ξ) = ξ p +D
are zero, where F : X → X is the absolute Frobenius morphism, θ is OX-linear, and φ is
OX-linear if θ = 0. Let m̄1 be the geometric generic point of M1, and x̄ the geometric
generic point of X. The rational curve

f : P1
m̄1
' m̄1 ×M1M2 → X
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is minimal and unramified at 0, factors through the locus over which D ⊂ TX is a sub-
bundle, and sends 0 to x̄. Fix a splitting

f ∗TX = O(2)⊕O(1)index(X)−2 ⊕Odim(X)+1−index(X)

and a nonzero vector u ∈ κ(m̄1)⊗κ(x) TX,x in the image of d f |0. Note thatMfree
2 ×X x̄ is

nonsingular, so that given a nonzero vector

v ∈ κ(m̄1)⊗κ(x) TX,x ' f |∗0TX

contained in the O(1)index(X)−2 summand, one can find a morphism

γv : Spf κ(m̄1 × x̄)[[t]]→Mfree
2 ×X x̄

over x̄ such that
(p ◦ γv)(0) = m̄1 × x̄, d(e1γv)|0(

∂

∂t
) = v⊗ 1

where p : Mfree
2 ×X x̄ → Mfree

1 × x̄ is the natural projection, and e1 : Mfree
2 ×X x̄ →

X × x̄ is the left evaluation map. That is, γv is a deformation of a 2-pointed rational
curve, fixing the second marked point, with f ⊗ 1 as the central curve, and v⊗ 1 as the
tangent vector to the corresponding deformation of the first marked point. Considering
pr1 ◦ p ◦ γv : Spf κ(m̄1 × x̄)[[t]]→M1, we have a formal family of parametrised rational
curves

δv : Spf κ(m̄1 × x̄)[[t]]×M1M2 → X

such that dδv factors through δ∗vD, and dδv|(0,0) is an isomorphism onto the base-change
of the span of u and v in κ(m̄1)⊗κ(x) TX,x. In particular, restricting to M̂2 ⊂ M2 gives
an unramified morphism from a formal disc of dimension two:

Spf κ(m̄1 × x̄)[[t]]×M1 M̂2 → X,

tangent to D everywhere, and to the span of u and v at the origin. It follows that

(κ(m̄1)⊗κ(x) θx)(u ∧ v) = 0.

But then, since v was arbitrary, θx vanishes on any element in the linear span of the
image of PTM1/X,m1 → PΛ2TX,x. Hence, by hypothesis 4 of the Proposition, θx = 0, and
finally θ = 0 by construction of D.

We proceed to show vanishing of φ, which we now know to be OX-linear. Consider
an unramified morphism h : m̄1 × Ŵ → X from the base-change of a formal disc Ŵ of
dimension dim(X) − 1, such that the image of dh at the origin is transverse to f . By
smoothness ofM1 → X at the generic point, there is a lift h̃ : m̄1× Ŵ →M1 of h, and a
formal family of parametrised rational curves

g : m̄1 × Ŵ ×P1 ' m̄1 × Ŵ ×M1M2 → X
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whith f as the central fibre. Restricting to P̂1 ⊂ P1, we obtain an unramified morphism
from the base-change of a formal disc of dimension dim(X)

ĝ : m̄1 × Ŵ × P̂1 → X.

Identifying P̂1 = Spf k[[t]], we have

(ĝ∗φ)(dĝ(1⊗ 1⊗ ∂

∂t
)) = 0.

But the smallest subspace of TX,x whose pullback by ĝ contains dĝ(1⊗ 1⊗ ∂
∂t ) is precisely

Dx. Hence φx = 0, and finally φ = 0 by construction of D.

It follows that D defines a height one purely inseparable morphism π : X → Y to a
normal variety, flat away from codimension two, and factoring the geometric Frobenius
FX : X → X′. There is an exact sequence (cf. [4])

0→ D → TX → π∗TY
π∗δ−−→ π∗σ∗D → 0 (2.1)

where σ : Y → X is a composite of the natural morphism Y → X′ factoring FX with the
projection X′ → X, and δ : TY → σ∗D is an OY-module morphism. In particular, σ ◦ π is
the absolute Frobenius X → X. This leads to an equality

(1− p)c1(D)− index(X) + c1(π
∗TY) = 0. (2.2)

Let f : P1⊗ k(M)→ X be the genericM-curve. By definition of D, π ◦ f is everywhere
ramified, so that we have a commutative diagram

P1 ⊗ k(M)
f−−−→ X

F
P1⊗1

y yπ

P1 ⊗ k(M)
f̄−−−→ Y

where FP1 : P1 → P1 is the geometric Frobenius.

Lemma 2.2.10. c1(π
∗TY) ≥ p.

Proof. It will be enough to check that H0(P1, f ∗π∗ωY) = 0. Using ωX = π!ωY (cf. [8])
and the fact that P1 is Frobenius-split, we have

0 = H0(P1, f ∗ωX) = H0(P1, f ∗π!ωY) = H0(P1, f ∗HomY(π∗OX, ωY))

= HomP1(FP1∗OP1 , f̄ ∗ωY) ⊃ H0(P1, f̄ ∗ωY) = H0(P1, f ∗π∗ωY).

By (2.2), Lemma 2.2.10 and the hypothesis on the index of X, it follows that

c1(D) =
c1(π

∗TY)− index(X)

p− 1
> 0. (2.3)
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The sequence (2.1) restricts to

0→ f ∗D → f ∗TX → F∗
P1 f̄ ∗TY

F∗
P1 f̄ ∗δ
−−−→ F∗

P1 f ∗D → 0

where exactnes on the left follows from the fact that the generic M-curve, being free,
factors through the locus over which D is a sub-bundle of TX. In particular, we have a
short exact sequence

0→ f ∗D → f ∗TX → F∗
P1 ker f̄ ∗δ→ 0 (2.4)

Since f is by hypothesis minimal, there is a splitting

f ∗TX =

T +︷ ︸︸ ︷
O(2)⊕O(1)index(X)−2⊕

T 0︷ ︸︸ ︷
Odim(X)+1−index(X) (2.5)

By definition of D, we have T+ ⊂ f ∗D. Identifying f ∗TX/T + with T 0, let

D0 = f ∗D/T + ⊂ f ∗TX/T + = T 0,

a sub-bundle of the trivial bundle T 0 over P1⊗ k(M). There is a splitting D0 =
⊕O(di)

where all di ≤ 0 since D0 is a sub-bundle of the trivial bundle T 0. On the other hand,
(2.4) yields a short exact sequence

0→ D0 → T 0 → F∗
P1 ker f̄ ∗δ→ 0

so that
c1(D0) = −pc1(ker f̄ ∗δ)

and the inequality (2.3) gives

0 < c1( f ∗D) = index(X)− pc1(ker f̄ ∗δ).

Since index(X) < p, it follows that c1(ker f̄ ∗δ) ≤ 0 and thus c1(D0) = ∑ di ≥ 0. But
di ≤ 0, so that necessarily di = 0 for all i, i.e. D0 is a trivial bundle. We can then assume
that

f ∗D =

T +︷ ︸︸ ︷
O(2)⊕O(1)index(X)−2⊕

D0︷ ︸︸ ︷
Ork(D)+1−index(X) (2.6)

compatibly with the decomposition (2.5). This leads to the following property, which
will allow us to use induction on generic chains.

Lemma 2.2.11. Let m2 be the generic point of M2, and e1, e2 : m2 → X the two projections.
Then

de−1
1 (e∗1D) = de−1

2 (e∗2D)

as subspaces of TM2,m2 .

Proof. Immediate by (2.6).
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Let mi
2 be the generic point of Mi,free

2 , and ei
1, ei

2 : mi
2 → X the two projections. By

hypotheses 1–2 of the Proposition, Lemma 2.2.6 applies, so that

mi+1
2 ∈ mi

2 ×X m2.

Then Lemma 2.2.11 and induction on i give

(dei
1)
−1(ei∗

1 D) = (dei
2)
−1(ei∗

2 D)

on mi
2 for all i ≥ 0. The equality extends to Mi,free

2 , so that given a subscheme W ⊂
Mi,free

2 dominating X × X, we have that W → X × X is separable only if D = TX. This
concludes the proof of Proposition 2.2.8.

2.3 Cominuscule homogeneous varieties

2.3.1 Classification and properties

We will devote the last section of this chapter to a review of properties of the class
of homogeneous varieties to be considered in Chapter 4. It is, with exception of one
sub-class, closed under the operation of taking the variety of minimal degree rational
tangents through a point. This forms the basis of an inductive argument in the proof of
the Rigidity Theorem. Recall that we work over the algebraically closed field k. Most of
the material here is standard.

Lemma 2.3.1 (cf. [17], Lemma 2.2). Let X = G/P, where G is a connected, simply connected
simple algebraic group, and P a maximal reduced parabolic subgroup. Then the following are
equivalent:

1. The unipotent radical RuP is abelian.

2. For a suitable choice of a maximal torus and Borel subgroup, P = Pα is a standard maximal
reduced parabolic associated with a simple root α occuring with coefficient 1 in the simple
root decomposition of the highest positive root.

Definition. A homogeneous variety X satisfying either of the equivalent hypotheses in
Lemma 2.3.1 is called cominuscule.

In the following, we will always assume that a cominuscule variety is presented as
X = G/P as in Lemma 2.3.1, and that furthermore a maximal torus T and a Borel
subgroup B have been chosen so that P = Pα is a standard maximal parabolic as in
hypothesis 2 of the Lemma. We let Φ denote the root system of G, Φ+ the set of positive
roots (so thatRuB is generated by root spaces U−β with β ∈ Φ+), and ∆ the set of simple
roots (so that in particular α ∈ ∆). Let ω be the fundamental weight corresponding to
α, and denote by Φ+

α ⊂ Φ+ the subset on which ω is zero. Let Lα = Pα/RuPα be the
Levi factor of Pα, together with an inclusion Lα ⊂ Pα splitting the projection, and let Lss

α

29



Figure 2.1: Marked Dynkin diagrams corresponding to cominuscule homogeneous vari-
eties (left) and their varieties of minimal rational tangents (right). From top to bottom:
Grassmannian, odd-dimensional quadric, symplectic Grassmannian, orthogonal Grass-
miannian, even-dimensional quadric, Cayley plane, Freudenthal variety.
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be its semisimple part. Lα contains T as a maximal torus, and the set of positive roots
of Lss

α is identified with Φ+
α \Φ+

α . In particular, ∆ \ {α} is the set of simple roots of Lss
α .

We have Lα = Pα ∩ P+
α where P+

α is the opposite parabolic. We associate with X the
Dynkin diagram of Φ with a marked node corresponding to α. A complete classification
of cominuscule varieties in terms of their diagrams is then given in the left column of
Figure 2.1 (the right column lists Dynkin diagrams of Lss

α , where the marking will be
explained in the next subsection).

Lemma 2.3.2. Let X = G/Pα be cominuscule. Then X is a simply-connected rational Fano
variety with Pic(X) ' Z generated by a very ample invertible sheaf OX(1).

Proof. The projection G → X induces an open immersion RuP+
α → X, where RuP+

α '
Adim X as a variety. It follows that X is rational, hence simply connected. Now, invertible
sheaves on X are equivalent to descent data on G, i.e. homomorphisms Pα → Gm. Every
such homomorphism factors through Lα and is trivial on Lss

α , hence factors through the
rank one torus Lα/Lss

α ' Gm.
It follows that Pic(X) ' Z, generated by the invertible sheaf OX(1) associated with

the representation Pα → Gm whose restriction to T is ω. More precisely, given an invert-
ible sheaf Lλ on X, with λ the associated weight of T ⊂ Pα, we have

Lλ ' OX(〈λ, α∨〉).

This in particular shows that

c1(TX) = ∑
β∈Φ+\Φ+

α

〈β, α∨〉 = 〈2ρ, α〉 − ∑
β∈Φ+

α

〈β, α∨〉

where ρ is the half sum of all positive roots. Since ρ is dominant, the first term is non-
negative. On the other hand, the second term is negative, being given by the evaluation
on α∨ on a positive combination of simple roots in ∆ \ {α}. Hence c1(TX) > 0 and X is
Fano. Very-ampleness of OX(1) follows from [16, Thm. 1].

We list the basic information in Table 2.1. Here LG(n, 2n), resp. OG(n, 2n), is the
Grassmannian of maximal isotropic subspaces in k2n equipped with a standard symplec-
tic form, resp. inner product; Q ⊂ Pn denotes a quadric hypersurface; the Cayley plane
parametrises rays through idempotent elements in the Albert algebra, while the Freuden-
thal variety parametrises rays through strictly regular elements in the Freudenthal Triple
System associated with the Albert algebra (cf. [5]). We will refer to X ⊂ PH0(X,OX(1))∨

as a minimally embedded cominuscule variety.

2.3.2 Varieties of line tangents

We continue the notation of the previous subsection, with X = G/Pα a cominuscule
variety. Let I(α) ⊂ ∆ be the set of simple roots corresponding to nodes adjacent to α

in the Dynkin diagram of Φ, including α. There is a corresponding standard reduced
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G α X = G/Pα embedding dim(X) index(X)
An αi ∼ αn−i Gr(i, n + 1) Plücker i(n + 1− i) n + 1
Bn α1 Q ⊂ P2n standard 2n− 1 2n− 1
Cn αn LG(n, 2n) Plücker n(n + 1)/2 n + 1
Dn αn ∼ αn−1 OG(n, 2n) Plücker n(n− 1)/2 2n− 2
Dn α1 Q ⊂ P2n−1 standard 2n− 2 2n− 2
E6 α6 ∼ α1 Cayley plane 16 12
E7 α7 Freudenthal variety 27 18

Table 2.1: Cominuscule varieties: root system of G, simple root defining Pα, root system
of the semisimple part of the Lévi factor, type of X = G/Pα, embedding by |OX(1)|,
dimension and Fano index. We use Bourbaki’s ordering of simple roots.

parabolic PI(α) in G, and its intersection PI(α) ∩ Lss
α is a standard reduced parabolic in Lss

α

corresponding to I(α) \ {α} ⊂ ∆ \ {α}. The latter is the set of marked nodes in the right
column of Figure 2.1. It follows that PI(α) is the normaliser of Uα in Pα, and PI(α) ∩ Lss

α is
the stabiliser in Lss

α of the line (gα + p)/p in g/p.
We now consider rational curves on X of degree 1 with respect to OX(1). These are

simply lines in PH0(X,OX(1))∨ contained in X, and we will refer to them this way. We
will use the notation of Section 2.2.

Proposition 2.3.3. Let X = G/Pα be a cominuscule variety with origin x ∈ X(k). Then:

1. Lines on X form an irreducible componentM⊂ Homn
bir(P

1, X).

2. The natural action of G onM1 is transitive, and we haveM1 ' G/PI(α).

3. All lines are minimal, and the tangent mapM1 → PTX is a closed immersion.

4. x×XM1 ' Lss
α /(PI(α) ∩ Lss

α ), and the embedding x×XM1 → PTX,x is defined by the
invertible sheaf associated with −α|T∩Lss

α
.

Proof. This is essentially a corollary of the Main Theorem in [3]. More explicitly, let
SL2 ↪→ G be the subgroup corresponding to α, so that the maximal torus of SL2 maps to
T, and the positive root subgroup of SL2 maps to the root subgroup Uα ⊂ G associated
with α. Then SL2 ∩Pα is a Borel subgroup of SL2, and the inclusion SL2 ↪→ G descends
to a rational curve cα : P1 → X of degree 1 with respect to OX(1). The Main Theorem
in [3] states that every line in X is a G-translate of cα(P1). In fact, by construction, every
parametrised line c : P1 → X is of the form g ◦ cα for some g ∈ G(k).

It follows that lines on X are free (in fact minimal), and form a single irreducible com-
ponent M, which is reduced (in fact nonsingular), and thus G-homogeneous. Likewise
for M1, which is additionally proper, hence a quotient of G by a parabolic subgroup.
Since cα(P1) = UαPα/Pα, we have that the stabiliser of [cα] ∈ M1 in Pα is PI(α).
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G α Lss
α x×XM1 embedding r

An αi Ai−1 × An−i Pi−1 ×Pn−i |O(1, 1)| min(i, n + 1− i)
Bn α1 Bn−1 Q ⊂ P2n−2 |O(1)| 2
Cn αn An−1 Pn−1 |O(2)| n
Dn αn An−1 Gr(2, n) |O(1)| bn

2 c
Dn α1 Dn−1 Q ⊂ P2n−3 |O(1)| 2
E6 α6 D5 OG(5, 10) |O(1)| 2
E7 α7 E6 Cayley plane |O(1)| 3

Table 2.2: Varieties of line tangents and length of connecting chains.

Obviously now M1 → PTX is a closed immersion, so that x ×X M1 embeds into
PTX,x ' P(g/p) as Lss

α /Lss
α ∩ PI(α). The tangent direction to cα(P1) at x is the image

of the root subspace gα in TX,x ' g/p. It follows that Lss
α ∩ PI(α) acts on the fibre of

OPTX,x(−1) at [cα] ∈ PTX,x via α|T∩Lss
α

. Hence O(1) restricts on x×XM1 to the invertible
sheaf associated with −α|T∩Lss

α
.

Note that x×XM1 → PTX,x is a closed immersion onto the variety of line tangents
at x. Associating with Lss

α /(PI(α) ∩ Lss
α ) the Dynkin diagram of the root system Lss

α , and
marking nodes corresponding to I(α) \ {α}, gives the right column in Figure 2.1. The
weight −α|T∩Lss

α
defining the embedding is a combination of fundamental weights of Lss

α ,
and the coefficients determine the multiplicity of marking on corresponding nodes (this
is simply 1 for all marked nodes, except for LG(n, 2n) where −α|T∩Lss

α
= 2ωn−1). We list

this information in Table 2.2.

Corollary 2.3.4. The variety of line tangents at the origin of a cominuscule homogeneous variety
is one of the following:

1. a Segre variety,

2. a Veronese variety of degree 2, or

3. a minimally embedded cominuscule variety.

2.3.3 Chains of lines

As in the proof of Proposition 2.3.3, we consider the subgroup SL2 ⊂ G with root
subgroups U±α, and the line cα : P1 → X. Note that in particular the open immersion
RuP+

α ' Adim X → X restricts to Uα ' A1 → cα(P1). The pullback of the Pα-principal
bundle G → X by cα gives a subvariety

c∗αG = SL2 ·Pα = UαPα
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in G, a Pα-principal bundle over P1. We will inductively construct morphisms qi fitting
into a commutative diagram

(UαPα)i qi

−−−→ [cα]×M1Mi
2y y

G −−−→ X
where the left vertical arrow is an i-fold product in G, the right vertical arrow is the
right structure morphism, and [cα] ∈ M1(k) is the image of cα ∈ M(k). By abuse of
notation, define [cα] ×M1 M0

2 to be Spec k, with both structure maps to X given by x.
Then q0 = idSpec k. Suppose by induction that qi has been defined and makes the above
diagram commute. We then let qi+1 be the composite

UαPα × (U−αPα)
i id×qi

−−−→ UαPα × [cα]×M1Mi
2
〈ϕ◦pr1,ψ〉
−−−−−→ [cα]×M1M2 ×XMi

2

where ψ : G ×Mi
2 → Mi

2 is the action morphism, while φ : UαPα → M2 sends g to
[gcα, (gcα)−1(x)] ∈ M2. It is clear by construction that qi+1 makes the corresponding
diagram commute.

Lemma 2.3.5. qi is a composite of Pα-principal bundles.

Proof. There is a Cartesian diagram

UαPα × [cα]×M1Mi
2

pr1−−−→ U−αPα

〈ϕ◦pr1,ψ〉
y y

[cα]×M1M2 ×XMi
2

c−1
α ◦e2◦pr1−−−−−−→ P1.

where in the bottom horizontal arrow pr1 projects to [cα]×M1M2, and e2 : M2 → X is
the right structure morphism. Since the right vertical arrow is a Pα-principal bundle, so
is 〈ϕ ◦ pr1, ψ〉. Assuming by induction that qi is a composite of Pα-principal bundles, so
is qi+1 = (id×qi) ◦ 〈ϕ ◦ pr1, ψ〉.
Proposition 2.3.6. Given a cominuscule variety X = G/P with M ⊂ Homn

bir(P
1, X) the

component of lines, let r + 1 be the number of P-P double cosets in G. Then Mi
2 → X × X is

separably surjective for i ≥ r.

Proof. As before, we can assume P = Pα for a suitable choice of a maximal torus and a
Borel subgroup. Consider first the action morphism

θi : G× [cα]×M1M
i
2 →Mi

2.

There is a Cartesian diagram

G× [cα]×M1Mi
2 −−−→ G

θi

y [cα]

y
Mi

2 −−−→ M1
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where the bottom horizontal arrow is a composite of projection to the first segment
Mi

2 → M2 and the natural map M2 → M1, while the right vertical arrow is a PI(α)-
principal bundle. Hence θi is a PI(α)-principal bundle.

We now have a commutative diagram

G× (UαPα)i θi◦(id×qi)−−−−−−→ Mi
2

id×µi
y y

G× G −−−→ X× X

where the left vertical arrow is given by multiplication µi : (UαPα)i → G, while the right
vertical arrow is the evaluation morphism. It will be enough to check that µi is separably
surjective. By maximality of Pα it follows that µi is surjective for i sufficiently large. On
the other hand, its image is a union of Pα-Pα double cosets, and its dimension stabilises
once the image of µi+1 coincides with that of µi. Since UαPα is strictly larger than the
first double coset Pα, it follows that µi is surjective for i ≥ r. For separability of µi it is
enough to notice that the normaliser of Uα in Pα is the reduced parabolic PI(α) stabilising
[cα].

The numbers r appearing in the Proposition are listed in Table 2.2, following [17]

2.3.4 Further properties

Let H = c1(OX(1)) be the hyperplane class for the minimal embedding. We will use the
notation

δX = [X] · Hdim X,

for the degree of the minimal embedding. Consider the total evaluation morphism

νi :Mi
2 → Xi+1

for i ≥ r as in Proposition 2.3.6. Letting pi
j : Xi+1 → X, 0 ≤ j ≤ i be the natural

projections, we define the following intersection number:

δX(i) = νi
∗[Mi

2] · pi∗
0 [x] ·

(
i−1

∑
j=1

pi∗
j H

)di

· pi∗
i [x]

where di is the dimension of the generic fibre ofMi
2 → X× X. We will express δX(i) in

terms of Schubert calculus on X.
Denote by V ⊂ PTX,x the variety of line tangents at x, and by Cx ⊂ X the subvariety

swept by lines through x, the closure in X of the image of PαUαPα under the projection
π : G → X. Letting C̃x → Cx be the blowing-up at x, we have a natural commutative
diagram

x×XM1 ←−−− x×XM2 −−−→ X

'
y '

y x
V ←−−− C̃x −−−→ Cx
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where the left horizontal arrows are Zariski-locally trivial P1-bundles.
The morphism G × Cx → X × X sending (g, c) to (gx, gc) factors through a closed

immersion G ×Pα Cx → X × X, and we let C ⊂ X × X be its image. It follows that
C = G · (x × Cx), with the diagonal action of G on X × X. Define Ci = (X\C/X)i,
naturally a closed subvariety of Xi+1. There is a commutative diagram

Ci+1 −−−→ Xi+1y y
Ci −−−→ Xi

where the horizontal arrows are the natural closed immersions, the right vertical arrow
is the projection onto the first i factors, and the left vertical arrow is a Zariski-locally
trivial Cx-fibration. It follows that Ci is an iterated Cx-fibration.

Lemma 2.3.7. The total evaluation map νi :Mi
2 → Xi+1 factors through a birational morphism

onto Ci.

Proof. That νi factors through a proper surjective morphism onto Ci follows by induction
on i. SinceM-curves are projective lines, the restriction of νi over the complement of the
diagonals in Xi+1 is a proper monomorphism, i.e. a closed immersion.

It follows that

δX(i) = [Ci] · pi∗
0 [x] ·

(
i−1

∑
j=1

pi∗
j H

)di

· pi∗
i [x].

Assuming i ≥ r as in Proposition 2.3.6, we have

di = dim Ci − 2 dim X = i dim Cx − dim X = i dim V + i− dim X.

Letting {[Xσ]}σ∈S be an additive basis of the Chow ring A∗(X) consisting of closed
Schubert varieties, and identifying A∗(Xi+1) with A∗(X)⊗(i+1), we can write

[C] = ∑ aστ[Xσ]⊗ [Xτ]

where (aστ) is a symmetric integer matrix. Then

[Ci] = ∑ aρ0...ρi [Xρ0 ]⊗ · · · ⊗ [Xρi ]

with
aρ0...ρi = ∑ aσ0τ0 · · · aσiτi δ

ρ0
σ0 µ

ρ1
τ0σ1 · · · µ

ρi−1
τi−1σi δ

ρi
τi

where (µ
ρ
στ) are the Littlewood-Richardson coefficients: [Xσ] · [Xτ] = ∑ µ

ρ
στ[Xρ].

Letting ξ ∈ S be the unique element with [Xξ ] = [X], we have

pi∗
0 [x] · [Ci] · pi∗

i [x] = ∑ aξρ1...ρi−1ξ [x]⊗ [Xρ1 ]⊗ · · · ⊗ [Xρi−1 ]⊗ [x]
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so that

δX(i) = ∑
ρ1,...,ρi−1∈S

b1+···+bi−1=di

N(di; b1, . . . , bi−1)aξρ1...ρi−1ξ
i−1

∏
j=1

[Xρj ] · H
bj

= ∑
ρ1,...,ρi−1

N(i dim V + i− dim X; dim Xρ1 , . . . , dim Xρi−1)aξρ1...ρi−1ξ
i−1

∏
j=1

deg Xρj

where N(d; b) are the multinomial coefficients: (∑ xj)
d = ∑b N(d; b)∏ x

bj
j . It follows that

δX(i) can be computed in terms of the matrix (aστ) and the degrees and dimensions of
Schubert varieties Xσ.

In order to apply Proposition 2.2.8 in Chapter 4, we will also need the following
property. The proof by Hwang and Mok [10, Proposition 14] goes without change.

Lemma 2.3.8. Assume char k 6= 2. Then (X,M) satisfy hypothesis (4) of Proposition 2.2.8.
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3
The extension theorem

3.1 Morphisms of varieties with curves

3.1.1 Jets of étale morphisms

Given a nonsingular variety X, let ∆X : X → X] denote the diagonal section. Since X]

is a bundle of formal discs, the sheaf AutX(X]; ∆X) is an affine group scheme over X, a
Zariski-locally trivial twisted form of the group of origin-preserving automorphisms of
a formal disc of dimension dim(X). Given another nonsingular variety Y with dim(Y) =
dim(X), let

X
prX←−− X×Y

prY−−→ Y

be the two projections, and consider the sheaves

FX,Y = HomX×Y(pr∗XX], pr∗YY]; pr∗X∆X, pr∗Y∆Y)

EX,Y = IsomX×Y(pr∗XX], pr∗YY]; pr∗X∆X, pr∗Y∆Y)

over X × Y. Since pr∗XX] and pr∗YY] are bundles of formal discs of equal dimension,
it follows that FX,Y is a Zariski-locally trivial A∞-bundle over X × Y, while EX,Y is a
Zariski-locally trivial right torsor for AutX(X]; ∆X)× Y, and a Zariski-locally trivial left
torsor for X×AutY(Y]; ∆Y).

Lemma 3.1.1. FX,Y/X is equipped with a natural stratification, restricting to EX,Y/X.

Proof. Let ε : FX,Y×X X] → Y] be the universal map. Consider the commutative diagram

FX,Y ×X X] ×X X] id×p13−−−−→ FX,Y ×X X] ε−−−→ Y]

id×∆X

x x∆Y

FX,Y ×X X] ε−−−→ Y] p2−−−→ Y
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where p2 : Y] → Y is the right projection, and p13 : X] ×X X] → X] is the leftmost-
rightmost projection. By the universal property of FX,Y, the top composite ε ◦ (id×p13)
defines a morphism fitting into a diagram

FX,Y ×X X] −−−→ FX,Yy y
X] −−−→ X

where the bottom horizontal arrow is the right structure map. This gives the desired
morphism FX,Y ×X X] → X]×X FX,Y over X]. Since EX,Y is an open subscheme of FX,Y,
it inherits a stratification.

The sheaf EX,Y parametrises ∞-jets of formally-étale maps X → Y. Such maps induce
isomorphisms of spaces of arcs: the universal map

ΦX,Y : EX,Y ×X X] → EX,Y ×Y Y]

lifts to produce a commutative diagram

EX,Y ×X X] ×X ArcX
Φ̃X,Y−−−→ EX,Y ×Y Y] ×Y ArcYy y

EX,Y ×X X] ΦX,Y−−−→ EX,Y ×Y Y]

where both horizontal arrows are isomorphisms.
We now want to restrict to maps preserving families of arcs induced by families of

rational curves. Let us for convenience introduce the following notion.

Definition. A good family on a nonsingular projective variety X is a irreducible compo-
nent M ⊂ Homn

bir(P
1, X) such that the generic M-curve is minimal and unramified

at 0, and the generic fibre of Mfree
1 → X is geometrically irreducible and positive-

dimensional.

Given a nonsingular variety with good family (X,M), we will denote by M̂1 ⊂ ArcX
the closure of the image of the generic point of M1 under the natural monomorphism
Marc

1 → ArcX (in particular,M1 and M̂1 are birational). Given another such pair (Y,N ),
with dim(Y) = dim(X), consider the subsheaf CX,Y ⊂ EX,Y defined by

CX,Y(T) = {ϕ ∈ EX,Y(T) | ϕ∗Φ̃X,Y : T ×X X] ×X M̂1
'−→ T ×Y Y] ×Y N̂1}.

It is a closed subscheme of EX,Y, parametrising ∞-jets of formally étale maps X → Y
inducing isomorphisms of M̂1 onto N̂1. We will also use the ‘generic locus’

C◦X,Y = x×X CX,Y ×Y y

where x, y are the generic points of X, Y.
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Lemma 3.1.2. The stratification on EX,Y/X restricts to CX,Y/X and C◦X,Y/X.

Proof. It is enough to notice that Φ̃X,Y is horizontal with respect to the pullbacks of the
canonical stratifications on X] ×X ArcX and Y] ×Y ArcY.

Lemma 3.1.3. C◦X,Y is dense in CX,Y.

Proof. Let c0 ∈ CX,Y be a point with prX(c0) = x0. Let I ⊂ OX,x0 be the kernel of
OX,x0 → prX∗OCX,Y ,c0 . By Lemma 3.1.2, I ⊂ ∩rm

r
x0

= 0, so that x×X SpecOCX,Y ,c0 is dense
in SpecOCX,Y ,c0 .

Now let c ∈ x ×X SpecOCX,Y ,c0 be a point with prY(c) = y0. Let J ⊂ OY,y0 be the
kernel of OY,y0 → prY∗OCX,Y ,c. Since the definition of CX,Y is symmetric in X, Y, Lemma
3.1.2 gives a stratification on CX,Y/Y. Hence J ⊂ ∩rm

r
y0

= 0, so that SpecOCX,Y ,c ×Y y is
dense in SpecOCX,Y ,c.

Lemma 3.1.4. There is a natural commutative diagram

C◦X,Y ×X X] ×X m1 −−−→ C◦X,Y ×Y Y] ×Y n1y y
C◦X,Y ×X X] ×X M̂1

Φ̃X,Y−−−→ C◦X,Y ×Y Y] ×Y N̂1

where m1, n1 are the generic points ofM1, N1.

Proof. Recall that m1 → M̂1 and n1 → N̂1 are inclusions of generic points, while
the bottom horizontal arrow is an isomorphism. The field extensions κ(m1)/κ(x) and
κ(n1)/κ(y) are separable by freeness of m1, n1. It follows that for every c ∈ C◦X,Y the
induced isomorphism

κ(c)⊗κ(x) (x×X M̂1)
Φ̃X,Y−−→ κ(c)⊗κ(y) (y×Y N̂1)

sends c×x m1 to c×y n1. Since C◦X,Y ×Y n1 is a localisation of C◦X,Y ×Y N̂1, it follows that

C◦X,Y ×X X] ×X M̂1
Φ̃X,Y−−→ C◦X,Y ×Y Y] ×Y N1

sends C◦X,Y ×X X] ×X m1 into C◦X,Y ×Y Y] ×Y n1.

3.1.2 Parallel transport along curves

Note that given a morphism f : T → X, the stratification on CX,Y/X induces one on the
pullback f ∗CX,Y/T:

T] ×T f ∗CX,Y T] ×X CX,Y T] ×X] (X] ×X CX,Y)

'
y

f ∗CX,Y ×T T] CX,Y ×X T] (CX,Y ×X X])×X] T].

The key point of this section is then the following ‘parallel transport’ result, an analogue
of Hwang and Mok’s analytic continuation along rational curves [11].
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Proposition 3.1.5. Let (X,M) and (Y,N ) be a pair of nonsingular varieties with good families,
such that dim(X) = dim(Y). Let m2 be the generic point ofM2 together with evaluation maps
m2 ⇒ X. Then there is a natural isomorphism

C◦X,Y ×X m2 → m2 ×X C◦X,Y

horizontal over m2 with respect to the induced stratifications.

Proof. Let m̃1 ∈ M2 be the image of m1 under the zero-sectionM1 →M2. Set

M = SpecOM2,m̃1 , M̂ = Spf ÔM2,m̃1

so that M is the spectrum of a discrete valuation ring with closed point m̃1 and generic
point m2, and M̂ is its completion. We will first construct a morphism

ψ : C◦X,Y ×X X] ×X M→ N2.

extending the canonical top horizontal arrow in the diagram

C◦X,Y ×X X] ×X M̂
ψ̂−−−→ N̂2y y

C◦X,Y ×X X] ×X ArcX ×XX] −−−→ ArcY ×YY]

where the bottom hotizontal arrow is induced by Φ̃ and Φ, while the vertical arrows
are induced by the natural maps to the spaces of arcs and by evaluation at the second
marked point.

With (M2/X)2 denoting the fibre product ofM2 with itself with respect to the right
structure maps into X, consider the natural diagram

M2

q1
�
∆

(M2/X)]
q2−→ X] ×XM2

of morphisms over X]. Its pullback by the rightmost structure map C◦X,Y ×X X] → X
gives

C◦X,Y ×X X] ×X M
q̃1
�
∆̃
C◦X,Y ×X X] ×X (M/X)]

q̃2−→ C◦X,Y ×X X] ×X X] ×X M.

Let π :M2 → N1, v : N2 → N1 and p13 : X]×X X] → X] denote the natural projections.
By Lemma 3.1.4, we have the composite

ν : C◦X,Y ×X X] ×X (M/X)]
q̃2−→ C◦X,Y ×X X] ×X X] ×X M

p13∗−−→ C◦X,Y ×X X] ×X M
π∗−→ C◦X,Y ×X X] ×X m1

Φ̃X,Y−−→ C◦X,Y ×Y Y] ×Y n1
prn1−−→ n1.
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Consider now the pullback diagram

∆̃∗ν∗N2 −−−→ ν∗N2 −−−→ N2

h

y y v

y
C◦X,Y ×X X] ×X M ∆̃−−−→ C◦X,Y ×X X] ×X (M/X)]

ν−−−→ N1

where the vertical arrows are P1-bundles. Viewing N2 → N1 as the universal N -curve
in Y, let NN2/Y be the universal normal sheaf on N2. Identifying TM/X with the pullback
by ∆ of the relative tangent sheaf of q1, the pullback ∆̃∗dν defines by adjunction a map

g : r∗1 TM/X → r∗2 NN2/Y

of locally free sheaves on ∆̃∗ν∗N2, where.

M
r1←− ∆̃∗ν∗N2

r2−→ N2,

are the natural projections.

Lemma 3.1.6. The zero-locus of g is the graph of a morphism

ψ : C◦X,Y ×X X] ×X M→ N2

lifting ν ◦ ∆̃ and extending ψ̂.

Proof. Let C◦X,Y be the zero-locus of g. Since h is proper, so it h|C◦X,Y
. Since the generic

N -curve is minimal, the ideal sheaf IC◦X,Y
of C◦X,Y in ∆̃∗ν∗N2 splits along the fibres of the

P1-bundle h into invertible sheaves with degrees in {−1, 0}, so that R1h∗IC◦X,Y
= 0 and

the natural map
OC◦X,Y×XX]×X M → h∗OC◦X,Y

is surjective. It follows that every geometric fibre of h|C◦X,Y
is either empty, a single

reduced point, or a whole P1.
Consider the pullback

ι∗∆̃∗ν∗N̂2
ι̃−−−→ ∆̃∗ν∗N̂2 −−−→ N̂2y y v

y
C◦X,Y ×X X] ×X M̂ ι−−−→ C◦X,Y ×X X] ×X M ν◦∆̃−−−→ N1

where ι is the natural monomorphism. By construction, the graph of

ψ̂ : C◦X,Y ×X X] ×X M̂→ N̂2
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factors through C◦X,Y. Since the geometric generic fibre of Mfree
1 → X is positive-

dimensional, the geometric fibres of h|C◦X,Y
over C◦X,Y ×X X] ×X m̃1 are single reduced

points, so that the restriction C◦X,Y ∩ ι∗∆̃∗ν∗N2 actually coincides with the graph of ψ̂. In
particular, ι∗h|C◦X,Y

is an isomorphism. Since ι is an epimorphism of formal schemes, and
v is a P1-bundle, it follows that ι̃ is an epimorphism of formal schemes. Thus h|C◦X,Y

is a
closed immersion, adic and admitting a section over ι, hence an isomorphism.

We have thus constructed the map ψ, which will allow us to produce a morphism
C◦X,Y ×X M → M×X C◦X,Y whose restriction over m2 gives the isomorphism announced
in the Proposition. By freeness of the genericM-curve, we can choose an isomorphism

ρ : C◦X,Y ×X M×X X] → C◦X,Y ×X X] ×X M

over C◦X,Y × X (leftmost-rightmost structure map). Let φ be the composite

φ : C◦X,Y ×X M×X X] ρ−→ C◦X,Y ×X X] ×X M
ψ−→ N2 → Y

where the rightmost arrow is the right structure map. Consider now the pair

C◦X,Y ×X M×X X]
s∗φ
⇒
φ

Y

where s = ∆X ◦ p1 : X] → X] is the ‘retraction onto origin’. These induce a morphism

θ = 〈id, s∗φ, φ〉 : C◦X,Y ×X M×X X] → C◦X,Y ×X M×Y Y]

together with the map
[θ] : C◦X,Y ×X M→ M×X FX,Y

defined by the universal property of FX,Y.
Now, since ψ is an extension of ψ̂, there is a commutative diagram

C◦X,Y ×X M̂×X X] θ−−−→ C◦X,Y ×X M̂×Y]

id×(p13◦e)
y yid×prY]

C◦X,Y ×X X] ΦX,Y−−−→ C◦X,Y ×Y Y]

where e : M̂ → X̂ is the restriction of the structure morphismM2 → X × X. Hence the
restriction of [θ] to C◦X,Y ×X M̂ is a pullback of the stratifying isomorphism

C◦X,Y ×X X] → X] ×X C◦X,Y,

and in particular it is horizontal and factors through M̂×X C◦X,Y. Since C◦X,Y ×X M̂ does
not factor through any proper subscheme of C◦X,Y×X M, it follows that [θ] factors through
the open subscheme M ×X EX,Y ⊂ M ×X FX,Y, through the closed subscheme M ×X
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CX,Y ⊂ M ×X EX,Y, and finally through the ‘generic locus’ M ×X C◦X,Y ⊂ M ×X CX,Y.
Letting

τ : C◦X,Y ×X M→ M×X C◦X,Y

be the map induced by the point-swapping involution on M ⊂ M2, we have a pair of
morphisms

C◦X,Y ×X M
[θ]

�
τ[θ]τ

M×X C◦X,Y

such that τ[θ] and [θ]τ restrict to identity over C◦X,Y ×X M̂ and M̂ ×X C◦X,Y. Hence the
above morphisms are mutual inverses, and their restriction over m2 gives the isomor-
phism announced in the Proposition, thus concluding its proof.

3.1.3 Induction and descent

We can now use Proposition 3.1.5 inductively to trivialise C◦X,Y along generic chains of
M-curves. Under suitable conditions, the trivialisation descends generically to the base.

Proposition 3.1.7. Let (X,M) and (Y,N ) be a pair of nonsingular varieties with good families
such that dim(X) = dim(Y). Suppose that X is simply-connected, of Picard number 1. Let ξ

be the generic point of X× X. Then there is a natural isomorphism

C◦X,Y ×X ξ → ξ ×X C◦X,Y

horizontal over ξ.

We will need the following bit of commutative algebra.

Lemma 3.1.8. Let L/K be a finitely generated field extension, and Ks,L the separable algebraic
closure of K in L. Then the following is an equaliser diagram:

Ks,L → L⇒ L̂⊗K L

where we complete at the diagonal ideal.

Proof. Let K′ ⊂ L be the equaliser of L⇒ L̂⊗K L. We first observe that the claim is true
in the following cases:

1. L/K purely transcendental: then L⊗K L→ L̂⊗K L is injective, so that K′ = K.

2. L/K purely inseparable: then L⊗K L is Artinian, hence already complete, and we
argue as above.

3. L/K separable algebraic: then L⊗K L is a product of finitely many copies of L, so
that the diagonal ideal is idempotent and K′ = L.
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In the general case, by (2) we can assume that L/K is separably generated, so that there
is an intermediate extension K ⊂ L0 ⊂ L such that L/L0 is separable algebraic and L0/K
purely transcendental. Suppose x ∈ K′. Since K′ is invariant under the Galois group of
L/L0, the conjugates of x are also contained in K′. It follows that the coefficients of the
minimal polynomial of x in L0 are contained in K′ ∩ L0, and thus in K by (1). Hence x is
separable algebraic over K, and thus K′ ⊂ Ks,L. The converse follows by (3).

Proof of Proposition 3.1.7. Let mi
2 the generic point of Mi,free

2 . By Lemma 2.2.6, mi+1
2 ∈

mi
2 ×X m2, so that Proposition 3.1.5 and induction on i gives a horizontal isomorphism

θi : C◦X,Y ×X mi
2 → mi

2 ×X C◦X,Y

over mi
2. By Lemma 2.2.5 we can choose i such that mi

2 maps to ξ ∈ X × X. By horizon-
tality of θi, the pullbacks

C◦X,Y ×X (mi
2/ξ)] ⇒ C◦X,Y

of prC◦X,Y
◦ θi by (mi

2/ξ)] ⇒ mi
2 coincide. Hence, by Lemma 3.1.8, θi descends to a

morphism
θ̄ : C◦X,Y ×X ξ̃ → ξ̃ ×X C◦X,Y

where ξ̃ is the spectrum of the separable algebraic closure of κ(ξ) in κ(mi
2). Being an al-

gebraic subextension of a finitely generated extension, κ(ξ̃)/κ(ξ) is finite. Horizontality
and invertibility of θ̄ follows from that of θi by descent.

To show that θ̄ is in fact defined over κ(ξ), we first consider a geometric generic point
ζ̄ of X×M0 and the corresponding rational curve

f : P1
ζ̄ → ζ̄ × X → X× X.

Lemma 3.1.9. Let W ⊂ f ∗ξ̃ be a connected component. Then f ∗θ̄ : C◦X,Y ×X W → W ×X C◦X,Y
descends along W → f ∗ξ.

Proof. Let ϑ̄ = pr2 ◦ θ̄ : C◦X,Y ×X ξ̃ → C◦X,Y. Recall that in the Proof of Proposition 3.1.5
we have actually constructed an isomorphism θ : C◦X,Y ×X M → M ×X C◦X,Y horizontal
over M = SpecOM2,m̃1 , where m̃1 is the image of m1 under the zero-sectionM1 →M2.
Consider the diagram with Cartesian squares

C◦X,Y ×X (X\ξ̃)] ×X×X M̂ −−−→ C◦X,Y ×X (X\ξ̃)2 ×X×X M Θ−−−→ C◦X,Y ×X M×X C◦X,Yy y y
C◦X,Y ×X (X\ξ̃)] −−−→ C◦X,Y ×X (X\ξ̃)2 ϑ̄×ϑ̄−−−→ C◦X,Y × C◦X,Y

The left square is induced by the natural inclusion (X\ξ̃)] → (X\ξ̃)2. By horizontality,
the top horizontal composite factors through the graph of θ.

Identify P1
ζ̄

and P1
ζ̄
×ζ̄ P1

ζ̄
with, respectively, ζ̄ ×M0 M1 and ζ̄ ×M0 M2. Consider

Mζ̄ = ζ̄ ×M0 M as a subscheme of P1
ζ̄
×ζ̄ P1

ζ̄
. The curve f is identified with the natural
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morphism ζ̄ ×M0 M1 → X × X induced by ζ̄ → X and M1 → X. Let W ⊂ f ∗ξ̃ be an
irreducible component. Pulling back the top row of the above diagram, we have that the
composite

C◦X,Y ×X (W/ζ̄)] → C◦X,Y ×X (W/ζ̄)2 → C◦X,Y × C◦X,Y

factors through the pullback of the diagram of θ by (W/ζ̄)] → Mζ̄ . Hence so does the
right arrow itself, and in particular the restriction

C◦X,Y ×X (W/P1
ζ̄)

2 → C◦X,Y × C◦X,Y

factors through the diagonal. Hence f ∗ϑ̄ : C◦X,Y ×W → C◦X,Y descends along W → f ∗ξ,
and so does f ∗θ̄.

Continuing the proof of the Proposition, fix a separable closure κ(ξ̄s) of κ(ξ). The
Galois group Gal(ξ̄s/ξ) acts on the set E of isomorphisms C◦X,Y ×X ξ̄s → ξ̄s ×X C◦X,Y
horizontal over ξ̄s. By the first part of the proof, there is an element θ̄ ∈ E whose
stabiliser in Gal(ξ̄s/ξ) is of finite index. Letting η ' ζ̄ ⊗ k(t) be the generic point of P1

ζ̄
,

we have an extension κ(η)/κ(ξ). We can lift it to κ(η̄s)/κ(ξ̄s) where η̄s is a separable
closure of η. It then follows by Lemma 3.1.9 that the stabiliser of θ̄ in Gal(ξ̄s/ξ) contains
the image of Gal(η̄s/η).

Let Γ → X × X be a normal Galois cover corresponding to the stabiliser of θ̄, so that
θ̄ is defined over the generic point of Γ, and f ∗Γ is trivial by the previous paragraph. We
want to show that Γ itself is trivial. Since X is simply-connected, it will be enough to
show that Γ → X × X is étale. Assuming the opposite, we have by the classical purity
theorem that it is ramified over a divisor D ⊂ X × X. Since the problem is symmetric
under the transposition on X × X, we can assume that D is not a pullback of a divisor
from the first factor. Since X has Picard number 1, the pullback f ∗D is positive, and
there is a lift f̃ : P1

ζ̄
→ Γ of f intersecting the ramification divisor. It follows that f is

tangent to D at the intersection points. But by Lemma 2.2.4 a genericM-curve intersects
D transversely, a contradiction. Hence Γ is trivial, θ̄ is invariant under Gal(ξ̄s/ξ), and
thus finally defined over ξ.

3.2 Extension

Theorem 3.2.1. Let (X,M) and (Y,N ) be a pair of simply-connected, nonsingular projective
Fano varieties of Picard number 1 and equal dimensions, together with good families of rational
curves. Let K be an algebraically closed field, and c̄ : Spec K → C◦X,Y a geometric point. Then
there is an isomorphism

φ : X⊗ K → Y⊗ K

extending the canonical isomorphism c̄∗Φ : c̄∗X] → c̄∗Y].
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Proof. By Lemma 2.2.5,Mi,free
2 → X×X is dominant for some i > 0. Let XK = X⊗K and

YK = Y ⊗ K with generic points xK, yK. Then, by Proposition 3.1.7, there is a horizontal
section

σ : ηXK → C
◦
X,Y ⊗ K.

Its composite with projection to YK extends to a morphism

φ0 : XK \W → YK, codimXK W ≥ 2

whose restriction to xK is formally étale and induces an isomorphism x∗KX] ×X M̂1 '
φ0|∗xK

Y] ×Y N̂1. It follows that φ0 is dominant and generically étale. We will now show
that it is actally étale on entire XK \W.

Indeed, let ζ̄ be a geometric generic point of M1 ⊗ K. Then the generic M-curve
f : P1

ζ → XK factors through XK \W (by Lemma 2.2.4), and φ0 ◦ f : P1
ζ → YK is a generic

N -curve (since its restriction to P̂1
ζ maps, as an unramified morphism from a formal disc,

to the generic point of N̂1). Now, if φ0 is not étale, then, by the classical purity theorem,
it is ramified over a divisor D ⊂ YK. Since Y has Picard number 1, φ0 ◦ f intersects D.
But since φ0 ◦ f is free, the intersection is transverse (again by Lemma 2.2.4). It then
follows that f does not intersect the ramification divisor in XK \W – a contradiction.

Hence φ0 is étale. Furthermore, since φ0 ◦ f is free, it follows that the complement
of the image of φ0 has codimension at least 2 in YK (Lemma 2.2.4. It then follows by
simply-connectedness of YK that φ0 is an isomorphism onto its image. Now, since X and
Y are Fano, we can find an integer d > 0 such that −dKX and −dKY are both very ample.
Being an isomorphism of open subsets whose complements have codimension at least
2, φ0 induces an isomorphism of Picard groups and of spaces of global sections for any
invertible sheaf. Using the differential dφ0 to identify φ∗0 KY with KX, we have a diagram

XL YL

PH0(XK,O(−dKX))
∨ PH0(YK,O(−dKY))

∨
?

p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p-φ0

?
-

where the vertical arrows are the projective embeddings indced by −dKX and −dKY.
Hence φ0 extends to an isomorphism φ : XK → YK.

It remains to check that φ is an extension of c̄∗Φ. Consider the lift of φ to a morphism
φ̃, horizontal overMi

2 and fitting into a commutative diagram

c̄×XMi
2

φ̃−−−→ c̄×XMi
2 ×X CX,Yy y

c̄× X
φ−−−→ c̄×Y
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where the left vertical arrow is induced by the right structure mapMi
2 → X. Recall that

in the proof of Proposition 3.1.5 we have constructed an isomorphism

C◦X,Y ×X M→ M×X C◦X,Y

where M = SpecOM2,m̃1 and m̃1 is the image of m1 under the zero-section M1 → M2.
Note that its restriction over m̃1 is the identity on C◦X,Y ×X m1. By induction, we have an
isomorphism

θ̃i : C◦X,Y ×X (X\M/X)i → (X\M/X)i ×X C◦X,Y

extending θi of the proof of Proposition 3.1.7. It follows that we have a commutative
diagram

c̄×X mi
2 −−−→ c̄×XMi

2y φ̃

y
c̄×X (X\M/X)i c̄∗ θ̃i

−−−→ c̄×XMi
2 ×X CX,Y

i.e. φ̃ and c̄∗θ̃i agree on c̄×X mi
2. Then, by irreducibility and reducedness of c̄×XMi,free

2
(cf. Lemma 2.2.6), they agree on (X\M/X)i ⊂Mi

2. In particular, the composite

c̄×X m1
c̄∗〈m̃1,...,m̃1〉−−−−−−→ c̄×XMi

2
φ̃−→ c̄×XMi

2 ×X CX,Y → c̄×X CX,Y

factors through the diagonal embedding c̄ → c̄×X CX,Y. Since φ̃ is a horizontal lift of φ,
it follows that we have a commutative diagram

(c̄×X X])×X×XMi
2

φ̃−−−→ c̄×XMi
2 ×X CX,Yy y

c̄×X X] c̄∗Φ−−−→ c̄×Y

Since the left vertical arrow is an epimorphism of formal schemes, it follows that the
composite

c̄×X X] → c̄× X
φ−→ c̄×Y

coincides with c̄∗Φ.

Corollary 3.2.2. Let (X,M) and (Y,N ) be a pair of simply-connected, nonsingular projective
Fano varieties of Picard number 1 and equal dimensions, together with good families of rational
curves. Let K be an algebraically closed field, and x̄0 : Spec K → X, ȳ0 : Spec K → Y a pair of
geometric points such that there is an isomorphism x̄∗0 X] ' ȳ∗0Y] identifying x̄∗0 X] ×X M̂1 with
ȳ∗0Y] ×Y N̂1. Then there is an isomorphism X ' Y identifyingM with N .

Proof. By Lemma 3.1.3, C◦X,Y is nonempty, so that there is an algebraically closed ex-
tension L/K and a geometric point c̄ : Spec L → C◦X,Y, inducing by Theorem 3.2.1 an
isomorphism

φL : X⊗ L→ Y⊗ L
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identifying M̂1 ⊗ L with N̂1 ⊗ L and thus M⊗ L with N ⊗ L. Since X and Y are
algebraic, there is a subalgebra A ⊂ L, of finite type over k, and such that φL is the
base-change of an isomorphism

φA : X⊗ A→ Y⊗ A

identifyingM⊗ A with N ⊗ A. Restricting φA over a closed point of Spec A yields the
desired isomorphism X ' Y.
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4
The rigidity theorem

4.1 The setup

Definition. Let G/P be a cominuscule variety. A smooth projective degeneration of G/P is
a smooth, projective morphism X → S such that S is the spectrum of a discrete valuation
ring over k, with residue field k and fraction field F, and the geometric generic fibre of
X is isomorphic to G/P⊗ F̄.

Hwang and Mok [10] show that, over k = C, every smooth projective degeneration of
a cominuscule variety G/P is an isotrivial fibration. Assuming from now on that k is of
characteristic p > 0, we want to find conditions on p guaranteeing an analogous rigidity
result. However, we will need to introduce an additional parameter.

Definition. Let G/P be a cominuscule variety, and d a positive integer. We will say that
G/P is d-rigid if every smooth projective degeneration X → S of G/P, such that there
exists a very ample invertible sheaf on X retricting to OG/P(d) ⊗ F̄ on the geometric
generic fibre, is necessarily an isotrivial fibration.

Since isotriviality can be checked after faithfully flat base change, we can restrict to
smooth projective degenerations with trivial generic fibres. Furthermore, since the group
Aut(G/P) is smooth, isotriviality is equivalent to the central fibre being isomorphic to
G/P.

It the following we will fix a cominuscule variety G/P and a smooth projective de-
generation X → S with trivial generic fibre. Denote with s1, resp. s0, the generic, resp.
special, point of S. Let X1 = s1 ×S X, X0 = s0 ×S X. Recall that the Picard group of
G/P is generated by an ample invertible sheaf OG/P(1). We let OX(1) be the unique
extension of OG/P(1)⊗ F to an invertible sheaf on X, and OX0(1) its restriction to the
central fibre. Note that the restriction map

Pic X → Pic X1 ' Z
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is an isomorphism, so that OX(1) is ample by projectivity of X → S. We also let

M⊂ Homn
S,bir(P

1
S, X)

be the closed subscheme, flat over S, such that s1 ×SM ⊂ s1 ×Homn
bir(P

1, G/P) is the
component of lines on G/P. The fibre

s0 ×SM⊂ Homn
bir(P

1, X0)

is connected, but it may be in general reducible. Since every component is an irreducible
family of rational curves of degree 1 with respect to OX0(1), hence unsplit by Lemma
2.2.3, it follows that s0 ×SM0 is proper. So is thenM0 → S.

Let us state some immediate properties of X0.

Lemma 4.1.1. The central fibre X0 is simply-connected, Fano, of Picard number 1, and chain-
connected by (s0 ×SM)-curves.

Proof. Every finite étale cover X̃0 → X0 deforms to a finite étale cover X̃ → X, restricting
to X̃1 → X1 at the generic fibre. By simply-connectedness of G/P, X̃1 ⊗ F̄ → X1 ⊗ F̄ is
trivial. After a finite separable base change T → S it follows that T ×S X̃ → T ×S X is
trivial, and thus so is the restriction X̃0 → X0 over a closed point of T above s0. Hence
X0 is simply-connected.

The relative anticanonical sheaf ω−1
X/S is isomorphic to OX(index(G/P)), hence am-

ple, so that in particular X0 is Fano. SinceM0 → S is proper,Mi
2 → X×S X is surjective

for i as in Proposition 2.3.6. Hence X0 is chain-connected by (s0 ×SM)-curves, and
furthermore of Picard number 1 by Proposition 2.2.2.

4.2 Curves at the generic point

4.2.1 Smoothness

In order to proceed with the proof of rigidity, we first need to establish smoothness of
the family of M-curves through the generic point of X0. Equivalently, we check that
every M-curve through the generic point of X0 is free, a result that comes for free in
characteristic zero (cf. [14]). Let us begin with a converse, stating that M contains all
free rational curves of degree one:

Lemma 4.2.1. Let W ⊂ Homn
bir(P

1, X0) be an irreducible component of degree 1 with respect
to OX(1), and such that the generic W-curve is free. Then W ⊂M.

Proof. Let f : P1 ⊗ k(W) → X0 be the generic W-curve. By freeness, H =
Homn

S,bir(P
1
S, X) → S is smooth at ηW , so that in particular SpecOH,ηW → S is faith-

fully flat. Since deg f ∗OX(1) = 1, it follows that s1 ×S SpecOH,ηW is a family of lines on
X1 ' s1 × (G/P) and thus SpecOH,ηW ⊂M. Hence ηW ∈ M and W ⊂M.
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Letting x1, resp. x0, be the generic point of X1, resp. X0, observe that OS ⊂ OX,x0

is an unramified extension of discrete valuation rings, inducing separably generated
extensions of residue and fraction fields.

Lemma 4.2.2. SpecOX,x0 ×XM1 → SpecOX,x0 is flat.

Proof. Since M → S is flat, and M → M1 is a principal bundle, M1 → S is flat. That
is, multiplication by the uniformizer of OS is injective in the local rings of M1. But the
uniformizer of OS is also a uniformizer in OX,x0 .

Singular points of x0 ×XM1 can be detected by inseparability of their residue fields
viewed as extensions of κ(x0):

Lemma 4.2.3. Let y ∈ x0×XM1 be a point such that κ(y)/κ(x0) is separably generated. Then
x0 ×XM1 → x0 is smooth at y.

Proof. Let f : P1 ⊗ κ(y) → X0 be the corresponding rational curve. By separability of
κ(y)/κ(x0), the map H0(P1⊗ κ(y), f ∗TX0)→ f |∗0TX0 is surjective, so that f is free. Hence
M1 → X0 is smooth at y (cf. [14, Cor. 3.5.4], noting thatM1 is the universal P1-bundle
overM0).

Let now x̄1, resp. x̄0, be the geometric generic point of X1, resp. X0. We will identify
a condition on the characteristic p ensuring that x̄0 ×XM1 is a nonsingular variety. The
idea is to examine the degrees of the components of its singular locus in a suitable
projective embedding.

Lemma 4.2.4. Let Z be an irreducible component of the singular locus of x̄0 ×X M1. Then
lengthOZ,ηZ is divisible by p.

Proof. This is an immediate consequence of Lemma 4.2.3.

The idea of the following crucial lemma is due to Fedor Bogomolov.1

Lemma 4.2.5. Let Y ⊂ PN be a closed subscheme of degree e and pure dimension n. Assume
that the singular locus Ysing is zero-dimensional. Then length Ysing ≤ e(e− 1)n.

Proof. We claim that there is an n-dimensional subspace V ⊂ H0(Y,O(e− 1)) such that
the base locus of the linear system |V| zero-dimensional and contains Ysing. We will then
have

length Ysing ≤ Y · ((d− 1)H)n = e(e− 1)n,

where H is the hyperplane class in PN.
To prove the claim, we first note that for every closed point y ∈ Y \ Ysing there

exists a linear projection πy : PN 99K Pn+1 such that πy(Y) is a degree d hypersurface,
and πy is an immersion on some open neighbourhood of y. Let fy ∈ H0(Pn+1,O(e))
be the homogeneous polynomial cutting out πy(Y), and fy,i ∈ H0(Pn+1,O(e − 1)) its

1Explained to me by Jason Starr.
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partial derivatives. Let U ⊂ H0(Y,O(e − 1)) be the subspace generated by π∗y fy,i for
all 0 ≤ i ≤ n + 1 and all y ∈ Y \ Ysing. For each y ∈ Y \ Ysing we have that not all
π∗Y fy,i vanish at y, but all vanish on Ysing. It follows that the base locus of |U| contains
Ysing and has the same reduced structure. In particular, it is zero-dimensional, so that
we can find an n-dimensional subspace V ⊂ U such that the base-locus of |V| is zero-
dimensional.

Lemma 4.2.6. Let m = dim(x̄1 ×X M1). Suppose there is a degree e projective embedding
x̄0 ×XM1 ↪→ x̄0 ×PN. Assume p > e(e− 1)m. Then x̄0 ×XM1 is smooth.

Proof. Suppose x̄0 ×XM1 ⊂ x̄0 ×PN is not smooth. Let Z be an irreducible component
of maximal dimension of the singular locus of x̄0 ×XM1. By Bertini’s Theorem, there is
a linear subspace Λ ⊂ x̄0 ×X PN with codim Λ = dim Z such that Y = Λ ∩ (x̄0 ×XM1)
is a degree e subscheme of pure dimension m − dim Z, whose singular locus is zero-
dimensional and contains Λ ∩ Z, a nonempty zero-dimensional subscheme of length
divisible by p. It then follows by Lemma 4.2.5 that

0 < length(Λ ∩ Z) ≤ e(e− 1)m−dim Z ≤ e(e− 1)m < p,

a contradiction.

We now need an expression for the integer e in Lemma 4.2.6. By Proposition 2.2.7,
x0×XMarc

1 = x0×XM1, so that SpecOX,x0 ×XMarc
1 = SpecOX,x0 ×Marc

1 , and we have
morphisms

SpecOX,x0 ×XM1 → SpecOX,x0 ×X ArcX/S → SpecOX,x0 ×X PTX/S

whose composite, the tangent map, is a finite morphism, and an isomorphism over X1.

Lemma 4.2.7. Suppose OX(d) is very ample on X. Let τ : x0×XM1 → PTX0,x0 be the tangent
map over X0. Then τ∗OPTX0,x0

(
d(d+1)

2

)
is very ample on x0 ×XM1.

Proof. Consider the projective embedding ι : X0 → PN = PH0(X0,OX0(1)) defined by
the complete linear system |OX0(1)|. Let N ⊂ Homn

bir(P
1, PN) be the component of

degree d with respect to OPN(1), so that there is a natural commutative diagram

x0 ×XM1
τ−−−→ x0 ×X PTX0 −−−→ x0y y y

N arc
1

θ−−−→ PTPN −−−→ PN

where the vertical arrows are induced by ι, and θ is the tangent morphism. By linearity
of ι∗ : PTX0,x0 → PTPN ,ι(x0)

and Aut(PN)-equivariance of N1, it will be enough to check
that, for a point q ∈ PN(k), the pullback θ∗OPT

PN ,q
(d(d + 1)/2) is very ample on q×PN

N arc
1 .
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Let m be the maximal ideal in OPN ,q, and define

D = SpecOPN ,q/md+1, P = Spec k[t]/(td+1), A = Imm(P, D; 0, q)/ Aut(P, 0)

where 0 ∈ P(k). There are natural morphisms

q×PN ArcPN → A→ PTPN ,q

where the tangent map A → PTPN ,q is a Zariski-locally trivial affine space bundle, and
can be viewed as a quotient of q ×PN ArcPN parametrising d-th jets of immersed arcs
through q ∈ PN. Since N parametrises rational curves of degree d on PN, the composite

q×PN N arc
1

ϑ−→ q×PN ArcPN → A

is a locally closed immersion, factoring θ, so that it will now be enough to show that
ϑ∗OPT

PN ,q
(d(d + 1)/2) is very ample on A.

Let T ⊂ A× D be the universal family over A, so that OT is a sheaf of infinitesimal
extensions of OA. The evaluation morphism T → D induces an epimorphism

OA ⊗OPN ,q/md+1 → OT → 0

of filtered OA-algebras, with filtrations induced by m and the ideal sheaf I ⊂ OT of the
zero-section A→ T. Since I is a locally free OA-module, the map

OA ⊗m/md+1 → I → 0

induces a morphism

f : A→ Gr(dim(m/md+1)− d, dim(m/md+1))

factoring the natural immersion A → HilbD. It follows that det I is very ample on A.
Since A is an affine space bundle over PTPN ,q, it follows that ϑ∗ : Pic PTPN ,q → Pic A is
an isomorphism, so that det I = ϑ∗OPT

PN ,q
(e) for some e > 0, and one can determine e

by computing the intersection of c1(I) with a curve. Let c : P1 → A be a rational curve
such that ϑ ◦ c is a line in PTPN ,q. Then

c∗I ' O(1)⊕ · · · ⊕ O(d)

so that

e = deg c∗ det I =
d(d + 1)

2
.

Hence finally ϑ∗OPT
PN ,q

( d(d+1)
2 ) is very ample on A.

We have thus arrived at the following condition for smoothness of x̄0 ×XM1.
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Proposition 4.2.8. Let m = dim(x̄1×XM1) and let δ be the degree of x̄1×XM1 with respect
to the embedding in x̄1 ×X PTX/S. Suppose OX(d) is very ample on X. Assume

p >

(
d(d + 1)

2

)m

δ

((
d(d + 1)

2

)m

δ− 1
)m

.

Then x̄0 ×XM1 is smooth.

Proof. By Lemma 4.2.7, the pullback of OPTX/S(d(d + 1)/2) by the tangent map is very
ample on x0×XM1, and thus on SpecOX0,x0 ×XM1. Then, by Lemma 4.2.2, the degree

of the corresponding projective embedding of x̄0 ×XM1 is e =
(

d(d+1)
2

)m
δ. Applying

Lemma 4.2.6, the claim follows.

4.2.2 Segre case

The preceding subsection gives a condition under which the space ofM-curves through
the generic point of X0 is a smooth degeneration of the space of M-curves through the
generic point of X1. As indicated in Corollary 2.3.4, in case of G being of type An, the
tangent map indentifies the space of M-curves through any point of X1 with a Segre
subvariety of the projectivised tangent space. Smooth degenerations in such situation
are described by the following.

Lemma 4.2.9. Let f : Y → S be a smooth morphism whose geometric generic fibre is isomorphic
to (Pa × Pb) ⊗ F̄. Suppose f factors through a finite morphism ϕ : Y → Pab+a+b

S whose
restriction to the geometric generic fibre of f is a Segre embedding. Then f is an isotrivial
fibration.

Proof. Set Y1 = s1 ×S Y, Y0 = s0 ×S Y. After faithfully flat base change, we can assume
that Y1 ' (Pa ×Pb)⊗ F. Let

P ⊂ HilbY/S

be the closed subscheme, flat over S, such that P1 = s1 ×S P ' Pa
F is the component

parametrising subspaces of the form {∗} ×Pb ⊂ Y1. Let ΛP ⊂ P×S Y be the universal
family, so that s1 ×S ΛP ' P1 ×Pb. We will show that ΛP → P is an isotrivial bundle of
projective spaces. By flatness of the universal family, and by smoothness of PGLb+1, it
will be enough to check that for each closed point p ∈ P0 = s0 ×S P, the fibre p×P ΛP is
isomorphic to Pb. Given p ∈ P0, there is a finite flat base change T → S to the spectrum
of a discrete valuation ring with closed point t0 and generic point t1, together with a
section σ : T → T ×S P such that σ(t0) = p. The composite

σ|∗t1
ΛP → t1 ×S Y

ϕ−→ t1 ×Pab+a+b

is a family of linear subspaces over t1, thus defining a t1-point of the appropriate Grass-
mannian. By properness of the Grassmannian, the t1-point extends to a T-point, and
thus defines a family

Λ̄P ⊂ Pab+a+b
T
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of linear subspaces, flat over T. In fact, Λ̄P ' Pb
T. The inclusion t1 ×T Λ̄P ⊂ t1 ×S Y

extends to a rational map i : Λ̄P 99K Y such that ϕ ◦ i is the identity on Λ̄P. Since ϕ is
finite, it follows that i is in fact regular, hence a closed immersion. Thus σ∗ΛP and Λ̄P
are closed subschemes of T ×S Y, flat over T, and with identical restrictions over t1 –
hence σ∗ΛP = Λ̄P, and in particular p∗ΛP ' Pb.

We have thus defined the subscheme P ⊂ HilbY/S such that the universal family
ΛP → P is an isotrivial Pb-bundle. Symmetrically, we define a closed subscheme Q ⊂
HilbY/S, flat over S, such that Q1 = s1 ×S Q ' Pb

F is the component parametrising
subspaces of the form Pa × {∗} ⊂ Y1, and with the universal family ΛQ → Q being an
isotrivial Pa-bundle. We now claim that the arrows in the projection diagram

P×S Q← ΛP ×Y ΛQ → Y

are isomorphisms. Since they do become isomorphisms after restriction over s1, it will
be enough to check that their restrictions over s0 are bijective on closed points. Let us
refer to the closed fibres of s0 ×S ΛP → s0 ×S P (resp. s0 ×S ΛQ → s0 ×S Q) as P-planes
(resp. Q-planes) in Y0. We then need to check that all P-planes (resp. Q-planes) are
disjoint, and that a P-plane intersects a Q-plane in a single point. Using smoothness
of Y, this follows by intersection theory, specialising relevant classes from the generic
fibre. Finally, we have Y ' P ×S Q, where the double fibration P ← P ×S Q → Q is
a pair of bundles of projective spaces. It thus follows that P ' Pa

S, Q ' Pb
S, so that

Y ' Pa
S ×S Pb

S.

4.2.3 General case

Recall the description of x̄1 ×XM1 given in Proposition 2.3.3, Corollary 2.3.4 and Table
2.2. It is isomorphic to x̄1 × V, where V is the variety of line tangents at the origin of
G/P: either a Segre variety, or degree 2 Veronese, or a minimally embedded cominuscule
variety. Combining the results of the two preceding subsections, we are ready to state
a condition on the characteristic p ensuring that the space of M-curves through the
generic point does not degenerate.

Proposition 4.2.10. Let V be the variety of line tangents at the origin of G/P. Suppose OX(d)
is very ample on X, and assume one of the following holds.

1. G is of type An, P is associated to αi, and

p >

(
d(d + 1)

2

)n−1(n− 1
i− 1

)((
d(d + 1)

2

)n−1(n− 1
i− 1

)
− 1

)n−1

2. G is of type Cn and

p > (d(d + 1))n−1
(
(d(d + 1))n−1 − 1

)n−1
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3. G is of one of remaning types, V is d(d+1)
2 -rigid, and

p >

(
d(d + 1)

2

)m

(deg V)(

(
d(d + 1)

2

)m

(deg V − 1)m

where m = dim V and deg V is the degree of V embedded in the projectivised tangent
space at the origin of G/P.

Then SpecOX,x0 ×XM1 → SpecOX,x0 is an isotrivial V-bundle.

Proof. We first use Proposition 4.2.8 to conclude smoothness of x̄0 ×XM1, and thus –
by Lemma 4.2.2 – of SpecOX,x0 ×XM1 → SpecOX,x0 . The conditions on p correspond
precisely to the hypothesis of Proposition 4.2.8, where in cases (1) and (2) we use well-
known expressions for degrees of Segre and Veronese varieties.

Then, to check isotriviality, after a faithfully flat base-change and replacing k with
κ(x̄0), we may replace SpecOX,x0 with S. We thus obtain a smooth projective morphism
Y → S whose generic fibre is isomorphic to a base-change of V. Now, depending on the
type of G, we use:

1. Lemma 4.2.9 with the finite morphism Y → P
dim(G/P)−1
S induced by the tangent

map;

2. well-known rigidity of Pn−1;

3. d(d+1)
2 -rigidity of V, where OY(d(d + 1)/2) is very ample by Lemma 4.2.7.

4.3 Arcs at the generic point

4.3.1 Minimality

We have so far described, under suitable conditions, the abstract space of M-curves
through the generic point, concluding that it does not degenerate in the central fibre.
In order to apply the main Theorem of Chapter 3, we need a similar result for the em-
bedding into the space of arcs. This will be achieved in three steps: we first check that,
after discarding non-dominant components of s0 ×XM, we are left with an irreducible
component whose generic member is minimal; next, we obtain a condition on the char-
acteristic p ensuring that the corresponding variety of rational tangents at the generic
point of X0 is linearly nondegenerate; finally, we check that the corresponding family of
arcs through a formal neighbourhood of the generic point is isomorphic to that on G/P.

Lemma 4.3.1. Assume x̄0×XM1 is smooth. Then there is a unique irreducible componentM∗
of s0×XM such thatM∗ is a dominating family of rational curves on X0. Furthermore,M∗ is
an irreducible component of Homn

bir(P
1, X0), and the genericM∗-curve is free.
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Proof. Existence and uniqueness of M∗ follows from smoothness, and thus irreducibil-
ity of x0 ×X M1. By Lemma 4.2.1, M contains every irreducible component of
Homn

bir(P
1, X0) whose generic member is free, hence is a component itself. Since

x0 ×XM∗,1 = x0 ×XM1, the genericM∗-curve is free.

In the remainder of this section we will assume the hypotheses of Proposition 4.2.10,
so that in particular x̄0×XM1 is smooth and Lemma 4.3.1 applies. We use our standard
notationM∗,1,Mi

∗,2, etc. Note that by Lemma 2.2.5,Mi,free
∗,2 → X0 × X0 is dominant for

some i ≥ 0, so that X0 is chain-connected byM∗-curves.
By smoothness of x̄0 ×X0M∗,1, the genericM∗-curve is free. In fact, our hypotheses

on p imply more.

Lemma 4.3.2. The genericM∗-curve is minimal.

Proof. Let (V,L) be the variety of line tangents at the origin o in G/P, together with the
very ample invertible sheaf defining the embedding V ⊂ PTG/P,o into the projectivised
tangent space. More concretely, for G of type An, V is a Segre variety with L = O(1, 1);
for G of type Cn, V is a Veronese variety with L = O(2); for remaining types, V is
cominuscule with L = O(1). By Proposition 4.2.10, we have a commutative diagram
with Cartesian squares

V ⊗ κ(x̄0) −−−→ SpecOX,x0 ×XM1 ←−−− V ⊗ κ(x̄1)

d

y y |L⊗κ(x̄1)|
y

x̄0 ×X PTX/S −−−→ SpecOX,x0 ×X PTX/S ←−−− x̄1 ×X PTX/S

where d ⊂ |L ⊗ κ(x̄0)| is a linear subsystem. In particular, it follows that the tangent
morphism x̄0 ×XM∗,1 → x̄∗0PTX0 factors as

x̄0 ×XM∗,1 ' V ⊗ κ(x̄0)
|L|−→ PTG/P,o ⊗ κ(x̄0) 99K x̄∗0PTX/S

where the rightmost arrow is a linear projection onto a subspace. Now, the hypotheses
of Proposition 4.2.10 ensure that the degree of the embedding defined by |L| is less than
p. It follows that the tangent morphism, being finite, is generically unramified, so that
the generic M∗-curve f : P1 ⊗ k(M∗) → X0 does not admit nontrivial infinitesimal
deformations fixing f (0) and the tangent direction in f |∗0PTX0 . Hence f is minimal.

4.3.2 Linear nondegeneracy

We are going to derive linear nondegeneracy of the variety of M∗-rational tangents at
x0 from Proposition 2.2.8. That will require X0 to be separably connected by chains of
free M∗-curves, a condition we shall satisfy by constructing a projective embedding
of a suitable blow-down of the generic fibre of Mi,free

∗,2 → X0 × X0, and imposing its
degree as another bound on the characteristic p. As a consequence, it will follow that
the space of M-curves through the generic point of X0, the corresponding variety of

58



rational tangents, and the tangent map between the two, are isomorphic to those on
G/P.

Recall that by Lemma 2.2.5,Mi,free
∗,2 → X0×X0 is dominant for some i ≥ 0. Letting ξ1,

resp. ξ0, be the generic point of X1 ×s1 X1, resp. X0 × X0, observe that OS ⊂ O(X/S)2,ξ0
is an unramified extension of discrete valuation rings, inducing separably generated
extensions of residue and fraction fields.

Lemma 4.3.3. Let r0 be the smallest i > 0 such thatMi,free
∗,2 → X0 × X0 is dominant. Then:

1. r0 ≤ dim(G/P);

2. The total evaluation morphism ξ0 ×X2
0
Mr0,free
∗,2 → ξ0 ×X2

0
Xr0+1

0 is quasi-finite.

3. ξ0×X2
0
Mr0,free
∗,2 is a dense open subscheme of an irreducible component of ξ0×(X/S)2Mr0

2 ;

Proof. 1. Let n = dim(G/P) = dim X0. Denote by di the dimension of the closed
image of Mi,free

∗,2 → X0 × X0. We then have that the sequence di is nondecreasing,
d0 = n, and di+1 = di if and only if di = 2n. We then have dr0 = dn = 2n, so that
r0 ≤ n.

2. Suppose not, so that there is a point ~x ∈ ξ0 ×X2
0

Xr0+1
0 with a positive-dimensional

fibre in ξ0 ×X2
0
Mr0,free
∗,2 . By Bend-and-Break, this can only happen if ~x factors

through one of the diagonals in Xr0+1
0 . It follows that a chain corresponding to

a point in the fibre contains a segment whose two marked points coincide. Remov-
ing the segment, we obtain a chain of length r0 − 1, corresponding to a point in
ξ0 ×X2

0
Mr0−1,free
∗,2 . This contradicts minimality of r0.

3. SinceMfree
∗ is openM∗, we have that ξ0×X2

0
Mr0,free
∗,2 is open in ξ0×X2

0
Mr0
∗,2. Since

x̄0×X0M∗,1 is smooth and connected, we have by Lemma 2.2.6 that ξ0×X2
0
Mr0,free
∗,2

is irreducible, and thus its closure in ξ0 ×X2
0
Mr0
∗,2 is an irreducible component.

Finally, ξ0 ×X2
0
Mr0
∗,2 is a union of irreducible components of ξ0 ×(X/S)2Mr0

2 .

Lemma 4.3.4. Let V be the variety of line tangents at the origin of G/P, and assume p >

δG/P(r0) (cf. 2.3.4). ThenMr0,free
∗,2 → X0 × X0 is separably dominant.

Proof. Let M̄r0
2 ⊂ SpecO(X/S)2,ξ0

×(X/S)2 Mr0
2 be the flat limit of ξ1 ×(X/S)2 Mr0

2 over

SpecO(X/S)2,ξ0
. Note that ξ0 ×(X/S)2 M̄r0

2 contains ξ0 ×X2
0
Mr0,free
∗,2 . Consider the total

evaluation morphism

ν : M̄r0
2 → SpecOX/S2,ξ0

×(X/S)2 (X/S)r0+1.
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Letting pj : (X/S)r0+1 → X, 0 ≤ j ≤ r0, be the natural projections, we have an invertible
sheaf

L =
r0−1⊗
j=1

ν∗p∗jOX(1)

on SpecO(X/S)2,ξ0
×(X/S)2Mr0

2 . By the definition in 2.3.4,

(ξ̄1 ×(X/S)2Mr0
2 ) · c1(L)dim ξ̄∗1M

r0
2 = δG/P(r0)

holds on the geometric generic fibre, so that

(ξ̄0 ×(X/S)2 M̄r0
2 ) · c1(L)dim ξ̄∗0M

r0
2 = δG/P(r0)

holds on the geomteric special fibre.
Let now W ⊂ ξ0 ×(X/S)2 M̄r0

2 be the closure of ξ0 ×X2
0
Mr0,free
∗,2 , an irreducible com-

ponent. Suppose κ(ηW)/κ(ξ0) is not separably generated. Then local rings of generic
points of ξ̄0 ×ξ0 W have length divisible by p, so that

(ξ̄0 ×ξ0 W) · c1(L)dim ξ̄∗0W ∈ pZ.

By Lemma 4.3.3, the restriction of ν to W is generically finite, and the above intersection
number is positive. We then have

δG/P(r0) ≥ (ξ̄0 ×ξ0 W) · c1(L)dim ξ̄∗0W ≥ p.

But p > δG/P(r0), a contradiction. It follows that Mr0,free
∗,2 → X0 × X0, dominant by

Lemma 4.3.3, is separable.

Proposition 4.3.5. Let (V,L) be the variety of line tangents at the origin of G/P, and the
invertible sheaf defining the projective embedding into the projectivised tangent space at the ori-
gin. Assume the hypotheses of Proposition 4.2.10, and furthermore p > δG/P(dim(G/P)) and
p > index(G/P). Then the tangent morphism

SpecOX,x0 ×XM1 → SpecOX,x0 ×X PTX/S,

a map between an isotrivial V-bundle and a trivial projective space bundle, is defined by the
complete linear system associated with L.

Proof. Recall the factorisation

x̄0 ×XM∗,1 ' V ⊗ κ(x̄0)
|L|−→ PTG/P,o ⊗ κ(x̄0) 99K x̄0 ×X PTX/S

of the tangent morphism x̄0×XM∗,1 → x̄0×X PTX0 (cf. the proof of Lemma 4.3.2). It will
be enough to show that the linear projection corresponding to the dashed arrow is an
isomorphism, i.e. that the image of the tangent morphism is linearly nondegenerate in
x̄∗0PTX/S. We apply Proppsition 2.2.8 to X0 andM∗. Note that index(X0) = index(G/P).
Hypothesis (1) is satisfied by Lemma 4.3.2. Hypothesis (2) is satisfied by smoothness of
x̄0 ×X0 M∗,1. Hypothesis (3) is satisfied by Lemma 4.3.4. Hypothesis (4) is satisfied by
Lemma 2.3.8, using the above factorisation.
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4.3.3 Identification with model

We now wish to extend Proposition 4.3.5 to a statement about the family of arcs through
a formal neighbourhood of the generic point, essentially saying that this family cannot
acquire ‘curvature’ when specialising to X0. The extension theorem of Chapter 3 will
then apply immediately.

It will be convenient to introduce the following notation:

Y = G/P, y ∈ Y origin, Ŷ = y×Y Y] completion at y

N ⊂ Homn
bir(P

1, Y) lines, V = y×Y N1 ↪→ PTY,y line tangents at y.

In addition to the hypotheses of Proposition 4.2.8, we now assume those of Proposition
4.3.5, so that

SpecOX,x0 ×XM1 → SpecOX,x0 ×X PTX/S

is a closed immersion, étale locally isomorphic to the embedding

V → PTY,y.

Lemma 4.3.6. There is a faithfully flat base-change T → SpecOX,x0 such that T is the spec-
trum of a discrete valuation ring over κ(x̄0), with the latter as its residue field, and there is a
commutative diagram

T ×XM1 −−−→ T ×X PTX/Sy' y'
T ×V −−−→ T ×PTY,y

where the vertical arrows are isomorphisms, and the horizontal arrows are the natural tangent
embeddings.

Proof. Immediate by the preceding paragraph.

Since SpecOX,x0 ×XM1 = SpecOX,x0 ×XMarc
1 (Proposition 2.2.7), it follows that the

tangent map, a closed immersion, factors through the arc space:

SpecOX,x0 ×X ArcX/S

SpecOX,x0 ×XM1 SpecOX,x0 ×X PTX/S

?
-

��
�
��

�
��

�
��*

where the diagonal arrow is an isomorphism onto SpecOX,x0 ×X M̂1. Since
SpecOX,x0 ×XM1 is flat over SpecOX,x0 , the above diagram defines a section

σX : SpecOX,x0 → SpecOX,x0 ×X ArcHilbX/S .

Note that N1 defines a corresponding section σY : Y → ArcHilbY.
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Proposition 4.3.7. There is a faithfully flat base-change T → SpecOX,x0 such that T is the
spectrum of a discrete valuation ring over κ(x̄0), with the latter as its residue field, and there is a
commutative diagram

T ×X (X/S)]
idT ×σX−−−−→ T ×X (X/S)] ×X ArcHilbX/Sy' y'

T × Ŷ
idT ×σY−−−−→ T × Ŷ×Y ArcHilbY

where the vertical arrows are isomorphisms.

Proof. Let T be as in Lemma 4.3.6, together with the isomorphism

φ̄ : T ×X PTX/S → T ×PTY,y

identifying pullbacks ofM1 and V. Let

φ : T ×X (X/S)] → T × Ŷ

be any isomorphism of bundles of formal discs whose restriction to the first infinitesimal
neighbourhood of T in T×X (X/S)], viewed as an isomorphism of pullbacks of tangent
bundles, projectivises to φ̄. There is a natural lift of φ to a commutative diagram

T ×X (X/S)] ×X ArcHilbX/S
φ̃−−−→ T × Ŷ×Y ArcHilbYy y

T ×X (X/S)]
φ−−−→ T × Ŷ

where both horizontal arrows are isomorphisms. The section σX then induces a commu-
tative diagram

T ×X (X/S)] ×X ArcHilbX/S
φ̃−−−→ T × Ŷ×Y ArcHilbY

idT ×σX

x xσ
φ
X

T ×X (X/S)]
φ−−−→ T × Ŷ

where both vertical arrows are sections. We now have a pair of sections

T × Ŷ
σ

φ
X
⇒

idT ×σY

T × Ŷ×Y ArcHilbY

thus defining a pair morphisms

T
tX
⇒
tY

∏(ArcHilbŶ /Ŷ)
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where tY is constant, i.e. factors through a k-point, which we will denote with the same
symbol. By construction, the restriction of tX to the generic point of T factors through
the RuAut(Ŷ, y)-orbit of tY. Hence, by Proposition 2.1.11, tX itself factors through the
same orbit. It follows that, possibly after a further faithfully flat base change, there is
g : T → RuAut(Ŷ, y) such that gφ gives the desired isomorphism.

Corollary 4.3.8. Under the hypotheses of Propositions 4.2.8 and 4.2.10, X0 is isomorphic to
G/P.

Proof. By the above Proposition, there is an isomorphism x̄∗0 X]
0 → x̄0 × Ŷ identifying

x̄∗0 X]
0×X M̂1 with x̄0× Ŷ×Y N̂1. Let ȳ0 : Spec κ(x̄0)→ Y be the geometric point factoring

through y. Note that M∗ and N are good families in the language of Chapter 3. Hence,
applying Corollary 3.2.2 to the pair (X0,M∗), (Y,N ), and geometric points x̄0, ȳ0, we
have an isomorphism X ' Y.

4.4 Conclusion

Corollary 4.3.8 essentially concludes the proof of a rigidity theorem for G/P, establishing
its d-rigidity under the hypotheses we have been gradually introducing. Combining
these, and abstracting from the particular situation X → S, we can restate the main
result of this chapter as follows.

Theorem 4.4.1. Let G/P be a cominuscule homogeneous variety, and d > 0 an integer. Assume
one of the following holds:

1. G is of type An, P is associated to αi, and

p > max{
(

d(d + 1)
2

)n−1(n− 1
i− 1

)((
d(d + 1)

2

)n−1 (n− 1
i− 1

)
− 1

)n−1

,

n + 1, δG/P(i(n + 1− i))}

2. G is of type Cn,

p > max{(d(d + 1))n−1
(
(d(d + 1))n−1 − 1

)n−1
, n + 1, δG/P(n(n + 1)/2)}

3. G is of one of remaining types, its variety V of line tangents at the origin is d(d+1)
2 -rigid,

and

p > max{
(

d(d + 1)
2

)m

δV

((
d(d + 1)

2

)m

δV − 1
)m

, index(G/P), δG/P(dim(G/P))}

where m = dim V.

Then G/P is d-rigid.
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Proof. It is enough to show isotriviality for every smooth projective degeneration X → S
of G/P with trivial generic fibre and very ampleOX(d). In such situation, the hypotheses
of the Theorem imply those of Propositions 4.2.8 and 4.2.10, so that X0 ' G/P by
Corollary 4.3.8.

Note that for G not of type An, Cn, the Theorem derives d-rigidity of G/P from d(d+1)
2 -

rigidity of its variety of line tangents, a cominuscule homogeneous variety of lower di-
mension (i.e. with lower rank of the corresponding simple algebraic group). Given an
integer d, this allows one to obtain a lower bound on p guaranteeing d-rigidity by ap-
plying the Theorem inductively, eventually terminating at a cominuscule homogeneous
variety for a group of type An or Cn.2

2 Unfortunately, the bounds obtained in subsequent steps of the induction tend to grow due to replacing
d with d(d+1)

2 , the expression appearing in Lemma 4.2.7. This situation would be greatly improved if one
could prove the Lemma with d in place of the former expression. An observation due to David Jensen
indicates that this is indeed possible.
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