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A note on terminology

1. If M is a manifold (real or complex), M̃ will denote its universal cover
and C∞ the sheaf of germs of smooth functions (real or complex valued).
When M is complex, O will denote the sheaf of germs of holomorphic
functions on M and Ωp the sheaf of holomorphic p-forms on M . If
E → M is a complex vector bundle, Ap(E) will denote the sheaf of
E-valued C∞ p-forms, Ap,q(E) the sheaf of E-valued C∞ p + q forms
of type (p, q) over M and Ap,q

c (E) the sheaf of compactly supported E-
valued C∞ (p, q)-forms. We will simplify the notation of their spaces of
global sections as H0(M,Ap(E)) = Ap(E), etc. When E is holomorphic,
Ωp(E) will denote the sheaf of holomorphic E-valued p-forms over M .
In particular, Ω0(E) = O(E). If {Ui}i∈I is a collection of open sets in
M , we will denote any finite intersection Ui1∩Ui2∩· · ·∩Uin by Ui1i2···in .

2. The superscript ∗ will be used as a synonym of “dual” (of a vector
space V , a representation ρ, a vector bundle E) with two exceptions:
to denote the adjoint (conjugate transpose) M∗ of a complex matrix
M , and more generally, for the formal adjoint L∗ of an operator L on
a Hilbert space. In particular, ρ∗(γ) and ρ(γ)∗ denote different objects.
The transpose of a matrix M is denoted as tM . Our convention for
a Hermitian inner product is to be antilinear in the second entry. On
Cr, it is given as 〈v1, v2〉 = tv1v2 = tr(v1v

∗
2). On gl(r,C), it is given as

〈M1,M2〉 = tr(M1M
∗
2 ). The subscript ∗ will be used to denote a bundle

endowed with a parabolic structure. Parentheses will be used whenever
confusion could occur; for instance, (Eρ)∗ denotes the bundle Eρ together
with a parabolic structure, while E(ρ∗) denotes a vector bundle indexed
by the representation ρ∗.

3. The variable τ will be used as the complex coordinate on the upper half-
plane H and the variable z will be used as a complex coordinate on C. d2τ
(resp. d2z) will denote the measure gotten by integration with respect

to the 2-form
∣∣∣dτ∧dτ̄

2

∣∣∣ :=
√
−1
2

dτ ∧ dτ̄ (resp.
√
−1
2

dz ∧ dz̄). In particular,

the hyperbolic measure on H is given as (Imτ)−2d2τ . We will follow the
standard notation for the hyperbolic metric on H as ds2 = (Imτ)−2|dτ |2.
Given a Fuchsian group Γ, the letter F will denote a fundamental domain
on H for it.

4. We will denote the homogeneous space GL(r,C)/U(r) of Hermitian and
positive-definite matrices by Hr. B(r) and N(r) (respectively b(r) and
n(r)) will denote the Borel group of complex lower triangular matrices
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and its subgroup of unipotent matrices (respectively, the Lie algebras
of complex lower triangular and lower diagonal matrices). Fr will de-
note the complete flag variety in Cr, given as the homogeneous spaces
U(r)/Tr ∼= GL(r,C)/B(r). Notice that this means that we are consider-
ing descending flags primarily.
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Introduction

This dissertation is about parabolic bundles over the Riemann sphere, their
moduli, and an unexpected interrelation that a certain physical formalism has
with them. The subject has existed for approximately 35 years, but perhaps it
hasn’t received all the attention it deserves, specially since the core idea can be
traced back to the seminal work of André Weil, Généralisation des fonctions
abéliennes [53].

From its inception in the work of Mehta and Seshadri [37], the study of
the subject has depended almost in its entirety on the machinery of algebraic
geometry. It is easy to understand this state of affairs considering the dramatic
development that algebraic geometry went through in the second half of the
twentieth century. Without any doubt, one can say that this point of view is
the broadest. However, it should be emphasized that this point of view is not
the only one.

It is quite surprising that virtually only one work, that of Takhtajan and
Zograf [51], has pursued the classical, complex analytical viewpoint instead.
It is illustrative to recall the study of the moduli problem of Riemann sur-
faces during the twentieth century. The algebraic geometry techniques have
prevailed, but the analytical viewpoint, in the form of the Teichmüller theory,
has also represented a major development towards its understanding. In con-
clusion, we could say that, keeping things in proportion, the moduli theory of
parabolic bundles has its own “Teichmüller theory” in a very natural way. We
follow this analytic approach in the present work. To keep a better idea of this
analogy, we could say that stable parabolic bundles are to Riemann surfaces
of finite type what stable vector bundles (as in the work of Narasimhan and
Seshadri, [40]) are to compact Riemann surfaces.

The analogy is in fact fundamental for us, since our result on the Kähler po-
tential for the Moduli space of stable parabolic bundles is WZNW-equivalent
to a result on the Liouville theory on the Teichmüller space T0,n of Riemann
surfaces of type (0,n) proved by Takhtajan and Zograf in [55].
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Chapter 1 is devoted to the understanding of the notion of “uniformization
of a stable parabolic bundle,” in analogy to the uniformization of a stable (that
is, hyperbolic) Riemann surface. The starting objects of consideration are (1) a
Fuchsian group Γ uniformizing P1 \{z1, · · · , zn} and (2) an irreducible unitary
representation ρ : Γ → U(r) with a fixed system of weights W. The main
result there (Theorem 1.5.3) is on the construction of a canonical function
Υ : H→ GL(r,C) satisfying

Υ(γτ) = Υ(τ)ρ(γ)−1 ∀γ ∈ Γ,

and having a specific automorphic behaviour near the cusps τ1, · · · , τn of Γ.
Once we associate ρ with its corresponding stable parabolic bundle (Eρ)∗ →
P1, Υ induces a parabolic bundle map

(H+ × Cr)∗
J //

pr1
��

(Eρ)∗

π
��

H+ J // P1,

where H+ = H ∪ {τ1, · · · , τn}. Going back to the analogy, the notion of
“marked points on the sphere” is replaced by “flags over marked points on the
sphere”. The trivial connection on H×Cr determined by the DeRham differ-
ential can be projected into a flat connection with logarithmic singularities on
Eρ, which is moreover compatible with the degenerate metric arising as the
projection of the standard Hermitian metric on H×Cr. The specialization to
bundles over the sphere determines a canonical system of trivializations (af-
ter G. Birkhoff and A. Grothendieck), which in turn allows us to think of a
logarithmic connection in terms of the classical notion of a Fuchsian system,
and of a degenerate metric in terms of a function on P1 with values on Hr and
prescribed asymptotics at the marked points.

In Chapter 2 we develop the notion of vector-valued automorphic forms
with a representation ρ. Although this notion is a simple generalization of the
classical case (and was even considered by H. Petersson), its appearance in the
literature remains scarce even today, turning it into an unfortunate rarity. It
is shown how the concept, in the special case of weights 0 and 2, fits naturally
into the theory of parabolic bundles over Riemann surfaces, since there is a
correspondence between the Čech cohomology groups of a parabolic bundle
and the spaces of cusp forms (recall that the latter appears when a Fuchsian
group has parabolic generators). The Petersson inner product is introduced
and it is shown how it corresponds to a particular case of the Hodge inner
product for vector bundles, a fact that allows us to relate these notions with
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the classical harmonic theory on H.
Chapter 3 is substantial for this work. It is divided into two sections.

In the first one we provide an explicit construction of the character variety
K (W), whose points parametrize equivalence classes of irreducible unitary
representations of Γ with a fixed system of weights, and show how it can be
endowed with a natural Kähler structure. The tangent space at a given point
gets identified with the first parabolic cohomology group of the representation
Ad ρ. In the second section, we introduce a complex analytical construction of
the Moduli space M (W) of stable parabolic bundles over P1 with the system
weights W, by means of a differential equation analogous to the Beltrami
differential equation, given as

f−1 · fτ̄ = ν

where ν is the conjugate transpose of a cusp form of weight 2 for the repre-
sentation Ad ρC (and by construction, an element of the tangent space at the
point [(Eρ)∗]). The two constructions are beautifully connected in terms of
the Eichler-Shimura isomorphism, whose proof is also provided. Even though
the relation between a point in the moduli space and those in a neighbour-
hood is complicted in terms of the suitable analogs of a quasiconformal map,
to the first order of approximation the relations become particularly simple.
We study the first variation of these deformations (they will become funda-
mental in the final chapter). The chapter is finished with the introduction
of a canonical (1,0)-form on certain analytic open set of M (W), and of the
parabolic Narasimhan-Atiyah-Bott (1,1)-form on M (W). The latter is more-
over Kähler, a fact that will be ultimately proved in the last chapter.

As of Chapter 4, an action functional is introduced in the space of degen-
erate metrics of any given stable parabolic bundle with prescribed asymtotic
behavior in the marked points on P1. The naive choice turns out to be diver-
gent, a problem that is resolved by means of a process of regularizaton. Once
an additional topological term is added to the functional, it is verified that its
equations of motion turn out to be

(h−1hz)z̄ = 0

which, geometrically, means that its associated connection (compatible with
the complex structure) is logarithmic. By evaluating the functionals at their
extrema, we obtain a function S : M (W)→ R. Then, the variational formulas
found in Chapter 3 are used to prove the main theorem of this work, which
states that the function -S/2 is a Kähler potential for the Narasimhan-Atiyah-
Bott (1,1)-form.

3



To conclude, there are 3 appendices included for the convenience of the
reader. Appendix A gives a brief sumary of some basic results involving log-
arithms as multivalued functions as well as on the exponential map for the
unitary group. Appendix B develops the basic notions of logarithmic connec-
tions on a vector bundle over a Riemann surface from the Čech perspective
(mostly to fix conventions once and for all) and the closely related theory of
Fuchsian systems on the sphere. Finally, Appendix C contains the basic facts
about parabolic bundles and stability that will be used throughout this work.
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Chapter 1

Parabolic bundles on P1

Holomorphic vector bundles over the sphere are rigid and do not admit a non-
trivial deformation theory [44] and moreover, as a consequence of the Birkhoff-
Grothendieck theorem, possess a nontrivial Lie group of automorphisms.1 The
ultimate relevance of parabolic structures in this special case is the introduc-
tion of extra parameters giving rise to a Moduli theory. Perhaps it is best to
keep in mind the analogy with the Riemann surface situation: the Riemann
sphere has a rigid complex structure and a Lie group of automorphisms. The
latter disappears after the removal of 3 points, and if one removes more than
3 points, a Moduli theory arises.

1.1 The Riemann sphere as an extension of a

Fuchsian model

The Riemann sphere is an exceptional Riemann surface in terms of moduli. It
is a curious phenomenon that we can, nevertheless, associate Fuchsian groups
uniformizing it as soon as branching is allowed.

Given D = {z1, · · · , zn} ⊂ P1, n ≥ 3, the Riemann surface X = P1 \D has
fundamental group with the following presentation:

π1(X) ∼= 〈γ1, · · · , γn|γ1 · · · γn〉.

According to the uniformization theorem, there exist an analytic covering map
J : H→ X and a Fuchsian group Γ = Deck(H/X) ∼= π1(X) satisfying

J(γ · τ) = J(τ) ∀ γ ∈ Γ, τ ∈ H
1We will always assume, unless otherwise stated, that the rank of the bundles is grater

or equal than 2.
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such that the induced map Γ \H→ X is a biholomorphism:

H
pr

||

J

��
Γ \H ∼= X

Depending on the situation, we will consider either description of the surface.
We can (and should) assume that zn−2 = 0, zn−1 = 1, zn =∞.

The group Γ has the peculiarity of being generated by parabolic elements.
Their single fixed points τ1, · · · , τn ∈ R ∪ {∞} will be called the cusps of the
covering J , and can be normalized so that τn−2 = 0, τn−1 = 1, τn = ∞. We
make

H+ := H ∪ {τ1, · · · , τn}.

As in [50], we can define a suitable topology and analytic structure on H+ so
that the quotient space Γ \H+ becomes first a Hausdorff and compact space,
and secondly, a Riemann surface biholomorphic to P1. To see this it is useful
to consider an explicit form for the generators of Γ as elements of SL(2,R):

γi =

(
1 + λiτi −λiτ 2

i

λi 1− λiτi

)
, i 6= n, γn =

(
1 λn
0 1

)
, (1.1)

where λ1, · · · , λn are real and non-zero. Since each of them is conjugate to the
translation τ → τ + 1, we can find σ1, · · · , σn ∈ SL(2,R) such that

σ−1
i · γi · σi =

(
1 ±1
0 1

)
; (1.2)

explicitly

σi =

( √
|λi|τi − 1√

|λi|√
|λi| 0

)
, i 6= n, σn =

( √
|λn| 0
0 1√

|λn|

)
. (1.3)

Now, we consider the usual topology for H, and for each τi, a basis of
neighbourhoods would be given by the union of {τi} and the translates σi·Hδ of
the sets Hδ := {τ ∈ H : Im(τ) > δ > 0} (these are open discs whose boundary
is tangent to ∂H at τi for i 6= n). Notice that this topology is stronger than
the subspace topology of H+ ⊂ C, and in particular, the convergence of a
sequence {am}∞m=1 to ∞ (which is equivalent to the convergence of a sequence
to any other cusp) corresponds to Im(am)→∞ in the real sense.
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For each τ ∈ H+, define

Γτ := {γ ∈ Γ : γ(τ) = τ}.

It then follows that Γτ = e if τ ∈ H and for τ1, · · · , τn, Γτi = 〈γi〉, so the
stabilizer of each cusp is an infinite cyclic group. The existence of local Fourier
series expansions at the cusps of a Fuchsian group is a simple and deep result
that will be crucial in our future considerations. Let Vi = {σi · Hδ} ∪ {τi}.
Setting

qi := q ◦ σ−1
i , q = exp

(
2π
√
−1τ

)
(1.4)

since qi extends to τi, it follows that Γτi \ Vi ∼= ∆ε = {z ∈ C : |z| < ε}, where
ε = exp(−2πδ).

Proposition 1.1.1. There is a δ > 0 for which the maps

ιi : Γτi \ Vi → Γ \H+.

are well-defined and homeomorphisms onto their images.

For a detailed proof, the reader is refered to [50], pp. 10-12. Thus the
functions qi play the role of local coordinates at the cusps on the quotient
Γ \ H+ and determine the complex structure there. In particular, we can
express J as a Fourier series on σi ·Hδ

J(σiτ) =


zi +

∞∑
k=1

ai(k)qk if i 6= n;

∞∑
k=−1

an(k)qk if i = n.

(1.5)

It is evident that J extends to H+ as a branched covering over P1 having
z1, · · · , zn as branch points:

H+

pr

{{

J

  
Γ \H+ ∼= P1

In fact, it is true that ai(1) 6= 0 for i < n [55]. This is intuitively clear since
qi(τ) and J(τ)− zi should show the same local behaviour.

7



The following asymptotic formulas for the multivalued behavior of the in-
verse of J will be particularly useful in the future.

σi(J
−1(z)) =


1

2π
√
−1

(
log

(
z − zi
ai(1)

)
+ ci(z − zi) + · · ·

)
if i 6= n;

1

2π
√
−1

(
log

(
an(−1)

z

)
+
cn
z

+ · · ·
)

if i = n.

(1.6)
where the coefficients

ci =


− ai(2)

ai(1)2
if i 6= n;

an(0) if i = n.

(1.7)

are known as accessory parameters and appear in the classical theory of
uniformization.

1.2 A holomorphic correspondence

Given a unitary representation2 ρ : Γ → U(r), we can construct a vector
bundle of rank r over Γ \ H by defining the following equivalence relation on
the trivial bundle pr1 : H× Cr → H:

(τ, v) ∼ (γ · τ, ρ(γ)v), ∀γ ∈ Γ.

The fact that this quotient space is indeed a vector bundle follows from the
fact that the action of Γ on H is free and properly discontinuous. We denote
it (more precisely, the total space of it) by ρ \ H × Cr, and the equivalence
class containing an element (τ, v) by [τ, v]. Similarly, its frame bundle is the
principal bundle gotten by quotienting the product H × GL(r,C) under the
equivalence relation (τ, g) ∼ (γ · τ, ρ(γ)g). In particular, the transition func-
tions of such bundles are always the same. The covering map J also allows us
to consider them indistinctively as bundles over X.

We can think of pr : H → Γ \ H as a principal bundle over Γ \ H with
structure group Γ if we turn the left action into a right action by τ · γ :=
γ−1 · τ . From this point of view, the previous construction lets us interpret a
representation of Γ as an ”extension of the structure group” of the principal

2This construction works for an arbitrary representation, but we are mainly interested
in the unitary case, and we should assume so from now on unless stated otherwise.
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bundle of a Galois covering.
Since the Riemann surface Γ \H is noncompact, we know by a theorem of

Stein that ρ\H×GL(r,C) (and hence ρ\H×Cr) are trivial. This fact is equiv-
alent to the existence of a function Ψ : H→ GL(r,C) with the representation
ρ encoded in its automorphic behaviour. Since the triviality of a principal
GL(r,C)-bundle is equivalent to the existence of a holomorphic section on it,
let us consider a holomorphic section s : Γ \ H → ρ \ H × GL(r,C), and let
F : H→ ρ \H×GL(r,C) be given by

F (τ) = [τ, I]

The following result can be found in [14],[22]. We include it for the convenience
of the reader.

Proposition 1.2.1. There exist a holomorphic function Ψ : H → GL(r,C)
satisfying

F (τ) = s([τ ]) ·Ψ(τ) (1.8)

and
Ψ(γ · τ) = Ψ(τ)ρ−1(γ) ∀γ ∈ Γ. (1.9)

Proof. By considering local trivializations φi : π−1(Ui) → Ui × GL(r,C) for
some open cover {Ui} of Γ \H, since

[γ · τ, I] = [τ, ρ−1(γ)] = [τ, I] · ρ−1(γ) (1.10)

(the last equality meaning the right action of GL(r,C) on ρ \ H × GL(r,C)),
we have that Fi := pr2 ◦ φi ◦ F |J−1(Ui) : pr−1(Ui)→ GL(r,C) are holomorphic
functions such that the restriction of the products to pr−1(Uij)

Fi · F−1
j : pr−1(Uij)→ GL(r,C)

are invariant under the action of Γ, and then they define a 2-cocycle on {Uij}
which we know is solvable by the triviality of ρ\H×GL(r,C), so if we consider
the global holomorphic section s as a collection {Ui, si} where si : Ui →
GL(r,C), we have

si · s−1
j = Fi · F−1

j on Uij.

We can now define on pr−1(Ui) ⊂ H the function

Ψi := s−1
i · Fi (1.11)

9



and it follows that Ψi = Ψj on pr−1(Uij), so the Ψi’s patch together to define
a function Ψ : H→ GL(r,C). By construction s|Ui ↔ si in the same way that
F |Ui ↔ Fi, and we then conclude from (1.11) that

F (τ) = s([τ ]) ·Ψ(τ). (1.12)

Now, it readily follows from (1.10) and (1.12) that Ψ satisfies

Ψ(γ · τ) = Ψ(τ)ρ−1(γ) ∀γ ∈ Γ.

The function Ψ establishes the isomorphism ρ \H× Cr ∼= (Γ \H)× Cr in
the following way: we can define a map

H× Cr → (Γ \H)× Cr

(τ, v) 7→ ([τ ],Ψ(τ)v)

and then (1.9) implies that it only depends on the equivalence class. The
induced bundle map

[τ, v] 7→ ([τ ],Ψ(τ)v)

will be the bundle isomorphism. Holomorphic sections of a principal bundle
correspond tautologically to isomorphisms to the trivial bundle so equation
(1.8) is, in a sense, a restatement of this fact given the nature of our bundle
as a quotient by the representation ρ.

Definition 1.2.2. Given a unitary representation ρ : Γ → U(r), a holomor-
phic function f : H→ Cr is said to be ρ-automorphic if it satisfies

f(γτ) = ρ(γ)f(τ). (1.13)

We thus have tautological correspondences
Holomorphic
sections of
ρ \H× Cr

 oo //

{ ρ-
automorphic

functions

}
oo //

{
Holomorphic

functions
X → Cr

}
(1.14)

the second one depending on the choice of the function Ψ. Namely, any holo-
morphic function f : H→ Cr satisfying

f(γτ) = ρ(γ)f(τ)

10



will descend to the holomorphic section [τ ] 7→ [τ,Ψ(τ)f(τ)] of ρ \ H × Cr

and conversely, the pullback pr∗(s) of a holomorphic section of ρ \ H × Cr

would be a holomorphic section of the trivial bundle H × Cr and thus a ρ-
automorphic function. Now, fix a function Ψ. Since Ψ(τ)f(τ) is invariant
under the action of Γ then Ψ(τ)f(τ) = g(J(τ)) for some holomorphic function
on X and conversely, given a holomorphic function g : X → Cr the function
f(τ) = Ψ−1(τ)g(J(τ)) is ρ-automorphic.

Since the group Γ has a canonical presentation, a unitary representation
of Γ is determined, up to conjugation, by a collection of n diagonal matrices
Wi = diag(αi1, · · · , αir), with 0 ≤ αi1 ≤ · · · ≤ αir < 1, and unitary matrices
Ui such that

Ui exp(2π
√
−1Wi)U

−1
i = Mi = ρ(γi). (1.15)

Notice that the matrices Ui are determined only up to left multiplication by
an element of the centralizer of e2π

√
−1Wi , that is, [Ui] is an element of the flag

variety U(r)/Z(e2π
√
−1Wi).

Definition 1.2.3. We will call the n-tuple W = (W1, · · · ,Wn) the system
of weights of the representation ρ. A system of weights is generic if all the
inequalities defining it are strict.

It is the case that the automorphic behaviour of the function Ψ near the
cusp τi is completely determined by ρ(γi).

Proposition 1.2.4. For a sufficiently large δ, the restriction of Ψ to σi ·Hδi

has the form
Ψ(σiτ) = Φi(q) · q−WiU−1

i (1.16)

where the Φi are holomorphic in ∆ε \ {0}.

Proof. The proof is simple and can also be found in [14]. The function
Ei(σiτ) := q−WiU−1

i is defined on σi ·Hδ and satisfies

Ei(γiσiτ) = Ei(σi(σ
−1
i γiσi)τ) = Ei(σi(τ + 1)) = Ei(σiτ)ρ(γi)

−1,

so it has the same automorphic behaviour than Ψ with respect to γi. Therefore

Ψ|σi·Hδi · E
−1
i

is a function invariant under the action of γi. We define Φi to be this function.

Remark 1. Starting from a representation ρ : Γ → U(r), the construction of
the function Ψ relied on 2 objects: 1) the locally constant function F (τ) = [τ, I]

11



and 2) a global section of the principal bundle ρ \H×GL(r,C). However, the
choice of the later is completely arbitrary and since Γ \H ∼= X is not compact
the space of such holomorphic sections is not even finite dimensional. We can
expand the invariant local terms as a Fourier series

Φi(σiτ) =
∞∑

k=−∞

Ci(k)qk (1.17)

but nothing concrete can be concluded about the type of singularities that
could occur. The goal of the next sections is to determine how prescribing
these singularities leads to the notion of extensions of our quotients.

1.3 Extensions of the vector bundle ρ \H×Cr

From an algebro-geometric perspective, the construction of the Riemann sur-
face Γ\H+ can be understood as an extension of the scheme structure of Γ\H
to the cusps: the sheaf of holomorphic functions is defined there in terms of
the functions qi as a local basis. The idea turns out to extrapolate naturally
to the vector bundle level and provide extensions of ρ \H× Cr.

One of such extensions, that we should call the canonical extension, was
introduced by Deligne [20] and later consider by Mehta and Seshadri [37] in
the general context of a punctured Riemann surface of genus g, where they
show the correspondence between these and the so-called parabolic semistable
bundles (see section C.1 in the appendix for details). To do this we need to
consider the correspondence between holomorphic vector bundles over X and
locally-free sheafs of OX-modules. The sheaf defining ρ \ H × Cr is given by
the correspondence (1.14), so it is only left to extend it in a suitable way to
the neighbourhoods of the cusps.

We explain this in more detail for the purpose of completion. We should
keep in mind, however, that we are just dealing with complex manifolds, and
that these ideas could be easily restated from a purely analytic perspective, as
we will do immediatly after.

The trivial bundle over H corresponds to the free sheaf O(H × Cr) from
which we can induce the direct image sheaf pr∗(O(H × Cr)) on Γ \ H under
the map pr (for an arbitrary sheaf S over H, this is defined as pr∗(S)(U ) :=
S(pr−1(U )) for any open set U ⊂ Γ \H). This can be thought of intuitively
as the “sheaf of multivalued-sections on Γ \ H”, and it possesses a subsheaf
prΓ
∗ (O(H × Cr)) whose sections correspond to ρ-automorphic functions on H

and is clearly locally-free. It is the latter that corresponds to the quotient
bundle ρ \H× Cr over Γ \H.

12



The extension would be a prescription of the desired behaviour of the
sections of this sheaf at the points τ1, · · · , τn. Proposition 1.1.1 characterizes
the local behaviour of the projection pr : H+ → Γ\H+, and moreover, implies
that near the cusps τi a Γ-invariant function would be expressable in the form

fi(σiτ) = Uiq
Wigi(q)

for some local function gi, holomorphic on ∆∗ε and with a potential singularity
of arbitrary type at q = 0. This motivates us to define the extension of the
sheaf prΓ

∗ (O(H× Cr)) at the point τi, 1 ≤ i ≤ n, in terms of the basis

{qαi1i , · · · , qαiri } ,

where diag(αi1, · · · , αik) = Wi. In other words, the local holomorphic sections
would be the fi’s for which gi is holomorphic at τi. This condition is in turn
equivalent to

lim
τ→i∞

‖f(σiτ)‖ <∞ (1.18)

The previous sheaf could be generalized if we let the local bases to be instead{
qαi1+ni1
i , · · · , qαir+niri

}
,

for an arbitrary collection of integers {nij}, thus allowing the holomorphic
sections to correspond to meromorphic functions with a certain bound on its
zeros or poles at τi. In a series of papers [14]-[15] on the Riemann-Hilbert
problem, Andrei Bolibrukh introduced a generalization of this last idea (for a
general, not necessarely unitary representation) and a family of extensions of
the bundle ρ\H×Cr to the whole sphere on which a ”Fuchsian linear system”
could be naturally defined. Such system, which in geometric terms is a special
type of singular connection, would be introduced and studied in section 1.7.

We now proceed to restate the previous ideas in a more analytical setup.
In section 1.4 we will find the transition functions of these extensions for two
canonical coverings of Γ \ H+ giving yet another equivalent way of defining
them.

Let’s start by noticing that the quotient Γ \ H+ can be equivalently de-
scribed as the identification

(Γ \H) tqi ∆ε (1.19)

since the functions qi are biholomorphisms from Γτi \ σi · Hδ onto the punc-
tured disks ∆ε \ {0}. We can carry over the same idea to the bundle level
and analogously provide a collection of extensions of the bundle ρ \ H × Cr.

13



Let’s first consider a collection N = {N1, · · · , Nn} of diagonal r× r matrices
of integers. For a sufficiently small neighbourhood σ−1

i · Hδ of the cusps τi,
i = 1, · · · , n, consider the functions

hi : pr−1(Γτi \ (σi ·Hδ))→ ∆ε × Cr;

[σiτ, v] 7→ (q, q−(Wi+Ni)U−1
i v)

which are biholomorphic maps 3 onto their images (∆ε \ {0}) × Cr. We can
use these functions to identify the fibers of ρ \ H × Cr around the punctured
neighbourhoods Γτi \σi ·Hδ with the corresponding fibers of the trivial bundles
∆ε × Cr.

For notational simplicity, we will denote the bundle ρ \ H × Cr by E0

assuming that the representation ρ under consideration is implicit from the
context.

Definition 1.3.1. For each choice of a collection of diagonal matrices of in-
tegers N = {N1, · · · , Nn}, we define an extension of ρ\H×Cr = E0 to Γ\H+

with total space
Eρ,N := (ρ \H× Cr) thi (∆ε × Cr)

we call the extension corresponding to N1 = · · · = Nn = 0 the canonical
extension, and we denote it by Eρ.

Remark 2. In [16], A. A. Bolibrukh proves that these extensions are indeed
all possible analytic extensions of the bundle E0 and they possess a canonical
logarithmic connection (see Appendix B). The signs of the exponents in the
functions hi are the opposite from Bolibrukh [14]. The reason for his conven-
tion is the wish to apply vector bundle techniques in the study of Fuchsian
systems on P1, and historically these are defined by an equation (d−Ω)w = 0
so that the local behaviour of a solution in a neighbourhood of a singular point
is a multivalued function of the form

φi(z)eEi log(z−zi)

(see proposition 1.1.1, page 13). This makes necessary to consider clockwise
oriented loops around the singularities as generators of the fundamental group
in order to obtain a monodromy representation. On the other hand, a connec-
tion on a vector bundle is defined so that its parallel sections are given locally

3with inverse h−1i (q, v) =
[

1
2π
√
−1L (q, 0), Uie

(Wi+Ni)σ
−1
i L (q,0)v

]
; see appendix A.1 for

details.
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by functions si satisfying equations of the form (d + Ai)si = 0, so in the end
Ω and Ai would be matrix-valued 1-forms with the same local behaviour, that
is, the correspondence between Fuchsian linear systems on P1 and logarithmic
connections modulo gauge transformations on a vector bundle over P1 is con-
sistent after the choice of the canonical Birkhoff-Grothendieck trivializations
(cf. [30]).

1.4 Transition functions for the extensions Eρ,N

By its very definition, the bundle E0 can be prescribed by a collection of
constant transition functions. Given that the bundles Eρ,N are an extension to
Γ \H+ of E0, it should be possible to give a collection of transition functions
for the former containing the constant transition functions of the latter as a
subcollection.

Let us start by considering a finite covering {Ui}mi=1 of Γ\H+ ”fine enough”
in the following sense:

1. The subcollection {Ui}i>n is a covering of Γ \H,

2. Any nonempty intersection is contractible,

3. For 1 ≤ i, j ≤ n, τi ∈ Ui and Uij = ∅,

4. ∃V1, · · · ,Vm ⊂ H+ connected such that, if i > n, then Vi ∼= pr(Vi) = Ui,
and if 1 ≤ i ≤ n, then Γτi \Vi ∼= pr(Vi) = Ui and moreover, σi ·Vn = Vi.

For the neighbourhoods of the cusps τ1, · · · τn we shall fix a reference point
τi0 ∈ Vi, τi0 6= τi.

Proposition 1.4.1. Given a collection N = {N1, · · · , Nn}, the transition
functions of the extension Eρ,N → Γ \ H+ with respect to the aforementioned
open cover are given, up to equivalence, by

gij =


ρ(γij) if i, j > n;

q
−(Wi+Ni)
i U−1

i if 1 ≤ i ≤ n, j > n.

(1.20)

In particular, a collection of transition functions of the bundle E0 = ρ\H×Cr

are given by restriction of the former to the cover {Ui}i>n.

Remark 3. These transition functions (up to the sign of the exponents) are
described by A. Bolibrukh in [16].
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Proof. It is easy to see that that the previous conditions imply that for i 6= j,
if non-empty, pr−1(Uij) ∩ Vk is connected. We define Wij,k := pr−1(Uij) ∩ Vk.
Now, denote by γij the element in Γ such that γij ·Wij,j = Wji,i. It follows that
if Uijk 6= ∅, then the set γjk ·Wik,k ∩Wij,j is nonempty and biholomorphic to
Uijk under pr.

Thus {Uij, γij}i,j>n is a collection of transition functions for pr : H→ Γ\H
thought as a principal Γ-bundle. It follows that {Uij, ρ(γij)}i,j>n would be the
corresponding collection of transition functions for ρ \H× Cr.

To complete the collection we need to consider a function Ψ as in propo-
sition 1.2.1. Then Ψ−1 is a ρ-automorphic function, and we can prescribe
a meromorphic frame on Eρ,N → Γ \ H+ by choosing local representatives
{Ui, si}mi=1 with respect to the open cover {Ui}mi=1 in the following way:

1. For i > n, we let si(q) := Ψ−1(τ)|Vi .

2. If 1 ≤ i ≤ n, then after taking into consideration the local basis of
sections, we make si(qi) := qNii Φ−1

i (qi).

On any nonempty intersection Uij, the matrix-valued functions si, sj would
be holomorphic and invertible. By construction this would possibly happen
only for the cases 1) i, j > n (known already), 2) 1 ≤ i ≤ n and j > n. For
the second case we find

gij = qNii Φ−1
i |Uij ·Ψ|Wij,j = q

−(Wi+Ni)
i U−1

i |Wij,j

= q
−(Wi+Ni)
i U−1

i |Uij .

The last equation is justified since Wij,j is simply-connected and there is a
unique nij ∈ Z such that

σ−1
i τ = L (qi, nij)

is a biholomorphism between Uij and Wij,j (see Appendix A.1).
To finish, we verify that the cocycle condition is satisfied. Triple intersec-

tions could possibly occur in 2 cases: 1) i, j, k > n, and 2) i ≤ n, j, k > n.
Since

γik = γij · γjk
then the cocycle condition is satisfied in the first case, and for the second case,
if Uijk 6= ∅, we have γjk = γ

nij−nik
i . But by the definition of L we know that

L (q, nij) = γnij−nikn ·L (q, nik) = L (q, nik) + nij − nik,

consecuently,
gij|Uijk = gik|Uijk · ρ−1(γjk)
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and we conclude that the cocycle condition is satisfied in the second case as
well.

We have mentioned before that the bundle ρ \H×Cr is isomorphic to the
trivial bundle (Γ \ H) × Cr. Thus the transitions functions previously found
should be equivalent to the identity when i, j > n, that is, there should exist
holomorphic functions gi : Ui → GL(r,C) such that

ρ(γij) = gig
−1
j when i, j > n

In particular, the functions determined by the equation gi([τ ]) := Ψ−1(τ)|Vi
satisfy these properties. If we complete this set by the constant functions
g1 = Id, · · · , gn = Id, we would find an equivalent set of transition functions
given by gij = gig̃ijg

−1
j . Since g̃ij = Id when i, j > n, we shall modify the cover

by replacing all the sets Ui with i > n by their union U0 = ∪i>nUi = Γ \ H.
In this case the only nonempty intersections are of the form Ui0. If we take
proposition 1.2.4 into account, we conclude the following

Corollary 1.4.2. Let {Ui}0≤i≤n be the open cover of Γ \ H+ given by U0 =
Γ \ H, Ui = Γτi \ Vi for i = 1, · · · , n. For any choice of a ρ-automorphic

function Ψ : H → GL(r,C) with local expressions Ψ|Vi = Φiq
−(Wi+Ni)
i U−1

i , the
functions

g0i = Φi i = 1, · · · , n (1.21)

give transition functions for the bundle Eρ,N.

From now on we will concentrate in the canonical extension Eρ.

Definition 1.4.3. Given a unitary representation ρ : Γ→ U(r), the contra-
gradient (or dual) representation ρ∗ : Γ → U(r) is defined as ρ∗ = tρ−1 and
the adjoint representation is the composion of ρ with the adjoint representa-
tion of U(r) in u(r), Ad ρ := Ad◦ρ. Its complexification (Ad ◦ ρ)⊗RC = ρ∗⊗ρ
will be denoted by Ad ρC.

In a similar fashion we can associate the corresponding canonical extensions
to each of these. One should expect a relationship between these bundles; this
one is however, not as one would expect at first.

Proposition 1.4.4. Assume that the system of weights of ρ is generic. There
is an isomorphism

(Eρ)
∗ ∼= O(n)⊗ Eρ∗
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Proof. Since ρ is unitary, ρ∗ is also unitary and its generators satisfy

ρ∗(γi) = tρ(γi)
−1 = ρ(γi),

Since the weights of ρ are generic, the weights W′ = (W ′
1, · · · ,W ′

n) of ρ∗ satisfy
W ′
i = I−Wi after a permutation . This implies that with respect to the cover

consider in the beginning of this section, the vector bundle Eρ∗ would be
determined by the transition functions

g′ij =


ρ(γij) if i, j > n;

q
−(I−Wi)
i U

−1

i if 1 ≤ i ≤ n, j > n.

(1.22)

On the other hand, if a vector bundle E is determined by transition functions
{gij}, the dual bundle E∗ is determined by the transition functions {t(gij)−1}.
Since the base of the bundles is P1, the divisor D is linearly equivalent to the
divisor n∞, which implies that (1.22) are equivalent to

g′ij =



ρ(γij) if i, j > n;

qWi
i U

−1

i if 1 ≤ i ≤ n− 1, j > n,

q
(Wn−nI)
n U

−1

n if i = n, j > n.

(1.23)

Comparing (1.20) and (1.23), we obtain the claim.

The next theorem was proved by A. Grothendieck [25] for arbitrary reduc-
tive groups, although its proof was know to G. Birkhoff already in 1913 [10]
(before vector bundles were even defined!).

Theorem 1.4.5. (Birkhoff-Grothendieck) Any holomorphic vector bundle
E → P1 of rank r splits as a direct sum of line bundles

E ∼= O(a1)⊕ · · · ⊕ O(ar)

where a1 ≥ a2 ≥ · · · ≥ ar are unique up to a possible permutation.

This means that with respect to an open cover of P1 given by the affine
charts {C0,C∞}, with coordinates z ∈ C0 and ζ ∈ C∞ related by ζ = 1/z, the
transition functions of this bundle are equivalent to the ones of the form

g0∞(z) = zN
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with N = diag(a1, · · · , ar). We will call this diagonal matrix of integers the
Birkhoff-Grothendieck type of the bundle.

The next proposition relates algebraic information (the space of invariants
of ρ) and analytic information (the space of holomorphic sections of Eρ). The
isomorphism was first described by Mehta and Seshadri in [37] for parabolic
bundles over Riemann surfaces of arbitrary genus.

Proposition 1.4.6. There is an isomorhism

(Cr)ρ ∼= H0(P1,O(Eρ)) (1.24)

between the subspace of invariant vectors in Cr under ρ and the space of holo-
morphic sections of Eρ.

Proof. Given an eigenvector v of ρ with eigenvalue 1, we can define a global
section of E0 as the constant section defined by v, which clearly extends to the
cusps. Therefore we have an injective map (Cr)ρ → H0(P1,O(Eρ)). Assume
now that s is a holomorphic section of Eρ. Its pull-back to H × Cr is a ρ-
automorphic function f all of whose Fourier expansions 1.17 are holomorphic
as power series in q. This implies that the function ‖f‖ descends to a subhar-
monic function on P1 \ D bounded on D , therefore a constant. This in turn
implies that f , and hence s is a constant, and the map is also surjective.

Since unitary representations are totally reducible and dim(Cr)ρ ≤ r, we
conclude

Corollary 1.4.7. Eρ ∼=
r⊕
i=1

O(aj) where aj ≤ 0, j = 1, · · · , r. If ρ is irre-

ducible, then aj < 0 ∀j. If moreover, the system of weights W is generic, then
−n < aj < 0.

Remark 4. Later on we will prove that
∑r

j=1 aj = deg(Eρ) = −
∑n

i=1

∑r
j=1 αij

(Proposition B.1.7, cf. [37]) Among all the bundles of fixed degree d and
rank r over P1, there is a particular splitting that will be of interest to us,
and is completely determined by these. By writing d = deg(E) = ar + b =
b(a+1)+(r−b)a for 0 ≤ b < r, we see that there is a unique splitting satisfying
the condition |aj − ak| ≤ 1 for all 1 ≤ j, k ≤ r, namely,

O(a+ 1)b ⊕O(a)r−b

We will call such bundles evenly split .
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1.5 A canonical GL(r,C)-valued ρ-automorphic

function

Now we give an application of the previous results into the construction of a
canonical ρ-automorphic function with the virtue of “uniformizing” the vector
bundle Eρ. In order to do that we need one more technical lemma.

Definition 1.5.1. A monopole is a matrix-valued rational function P (z) on
P1, holomorphic and holomorphically invertible in P1 \ {∞}.

In other words, P (z) ∈ GL(r,C[z]). Notice that this implies that the
determinant of P (z), being holomorphic and different from zero on P1 \ {∞},
is a constant, and therefore P−1(z) is also a monopole.

Lemma 1.5.2. (permutation lemma). Let ζ−NΦ(ζ) be a meromorphic func-
tion on C∞ with Φ holomorphic and invertible everywhere and N a diagonal
matrix of integers. There exist a monopole P (z) and another function Φ′(ζ)
holomorphic and invertible on C∞ such that on C0 ∩ C∞,

P · ζ−N · Φ = Φ′ · ζ−N ′ (1.25)

where N ′ is gotten from N by a possible permutation of its diagonal elements.

Proof. We are only interested here in the case where N = diag(a+ 1, · · · , a+
1, a, · · · , a), that is, when N is the Birkhoff-Grothendieck type of an evenly
split bundle. For a proof of the general case see [30], pp. 282-284, [13]. If we
express Φ in block form

Φ(ζ) =

(
Q1(ζ) Q2(ζ)
Q3(ζ) Q4(ζ)

)
then it follows that

ζ−N · Φ(ζ) · ζN =

(
Q1(ζ) ζ−1Q2(ζ)
ζQ3(ζ) Q4(ζ)

)
.

By hypothesis Q4(0) is an invertible matrix. If we define

P (z) =

(
Id −Q2(0)Q4(0)−1z
0 Id

)
,

it readily follows that Φ′ = P · ζ−N · Φ · ζN is indeed a holomorphic function
in ζ.
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Theorem 1.5.3. Let ρ be a unitary representation, and let N is the Birkhoff-
Grothendieck type of Eρ. There exists a unique function Υ : H → GL(r,C)
satisfying Υ(γτ) = Υ(τ)ρ(γ)−1 for all γ ∈ Γ such that

Υ(σiτ) =



(
∞∑
k=0

Ci(k)qk

)
q−WiU−1

i for i < n;

(
I +

∞∑
k=1

Cn(k)qk

)
q−(Wn+N ′)U−1

n for i = n.

(1.26)

with Ci(0) ∈ GL(r,C), i = 1, · · · , n−1 and N ′ is a diagonal matrix differing
from N by a possibly nontrivial permutation.

Proof. Consider any function Ψ as in Proposition 1.2.1. Its local Fourier ex-
pansions (1.17) Φi at the cusps satisfy Φi = g0i ◦ J for some holomorphic
functions g0i : Ui \ {zi} → GL(r,C) which give transition functions for the
bundle Eρ in the convering {U0, · · · ,Un} by Corollary 1.4.2. We can assume
without loss of generality that ∪n−1

i=0 Ui = C0 and Un = C∞.
By the Birkhoff-Grothendieck theorem, the cocycle {U0i, g0i} splits in the

canonical form

g0i =


g0 · g−1

i on U0i, i = 1, · · · , n− 1;

g0 · zN · g−1
n on U0n.

for some holomorphic functions gi : Ui → GL(r,C). The function Ψ′ =(
g−1

0 ◦ J
)
· Ψ has new Fourier expansions Φ′i satisfying the conditions (1.26)

for i = 1, · · · , n − 1. In order to obtain the asymptotic condition at ∞ as
well, we construct a monopole P (z) such that P · ζ−N · g−1

n = g′n · ζ−N
′

with
g′n holomorphic in C∞. We then define

Υ(τ) = (P ◦ J) ·Ψ′.

To show uniqueness, assume there are two functions Υ1, Υ2 satisfying the
above conditions. Then the function Υ1 · Υ−1

2 would be invariant under the
action of Γ, thus descending to a holomorphic function Q : X → GL(r,C) so
that Q ◦ J = Υ1 ·Υ−1

2 and that extends holomorphically to z1, · · · , zn−1 since
it is bounded there. By hypothesis det(Q) 6= 0 on P1 \ {∞} (since potentially
N ′ could be a nontrivial permutation of N) which implies that det(Q) cannot
have either a zero or a pole at ∞ . Therefore det(Q) is a nonzero constant
on the whole P1. Each one of the component functions Qij, 1 ≤ i, j ≤ r is
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a rational function on P1. If one of them has a pole at ∞ then it follows
from the determinant condition that another one should have a zero at ∞.
But then the latter would have a positive number of zeros and no poles on
P1, a contradiction. Therefore none of the functions Qij could have a pole on
P1, which forces them to be constant, which also gives N ′1 = N ′2. Since by
construction Υ1 ·Υ−1

2 (∞) = I, it follows that Υ1 = Υ2.

Remark 5. In the case Eρ is evenly split, the proof of Lemma 1.5.2 gives that
indeed N ′ = N . Moreover, if we consider the matrix Cn(1) in block form

Cn(1) =

(
C1 C2

C3 C4

)
where C1 is b× b, the evenly split property also implies that the Fourier series
expansion at ∞ of Υ can be rewritten as

Υ(σnτ) = q−N (C + o(q)) q−Wn (1.27)

where

C =

(
I 0
C3 I

)
.

Theorem 1.5.4. Assume that Eρ is an evenly split bundle. Then the function
Υ defines a holomorphic bundle map

H+ × Cr J //

pr1
��

Eρ

pr

��
H+ J // P1

(1.28)

Proof. We have already seen in section 1.2 that any GL(r,C)-valued ρ-automorphic
map induces a bundle map

H× Cr J //

pr1
��

X × Cr

pr1
��

H J // X.

The asymptotic expansions 1.26 imply that this extends to the cusps τ1, · · · , τn−1
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giving an intermediate extension

H+ \ {∞} × Cr J //

��

C0 × Cr

pr1

��
H+ \ {∞} J // C0

to the local trivialization of Eρ on C0. The two local trivializations of the
Birkhoff-Grothendieck splitting are related as (z, zNv) ∼ (1/z, v). The Fourier
series expansion in Remark 5 now implies that the map also extends holomor-
phically to the local trivialization on C∞.

1.6 Endomorphisms and the parabolic struc-

ture

The contents of this section are described in [37] as a motivation for the intro-
duction of parabolic structures. We include them here for the convenience of
the reader. Going back to Proposition 1.4.6, we see that the space of invari-
ants of the representation Ad ρC is always at least 1 dimensional, containing
the multiples of the identity. On the other hand, a bundle morphism between
two extensions Eρ1 , Eρ2 for two inequivalent representations should be able to
distinguish them. Recall that two unitary representations ρ1, ρ2 are said to
be unitary equivalent if they possess a unitary intertwiner, i.e. if there exist a
unitary matrix U such that ρ1 · U = U · ρ2·.

Keeping (1.18) in mind, we give the following provisional definition: a
parabolic endomorphism of Eρ is a (Ad ρC)-automorphic function f on H
bounded at the cusps, that is, a holomorphic section of EAd ρC . In terms
of its local Fourier series expansions

f(σiτ) = Uiq
Wi

(
∞∑
k=0

Bi(k)qk

)
q−WiU−1

i , (1.29)

the boundedness condition translates into

(Bi(0))jk = 0 whenever αij − αik < 0. (1.30)

In particular, when the system of weights is generic, the matrices Bi(0) turn
out to be lower triangular.

Proposition 1.6.1. The bundles Eρ1, Eρ2 are equivalent (in the sense of
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parabolic automorphisms) if and only if ρ1, ρ2 are equivalent.

Proof. This is a corollary of Proposition 1.4.6 for the representation ρ∗1 ⊗ ρ2,
since unitary intertwiners correspond to its invertible invariants.

Remark 6. A more general result can be proved in fact: given two unitary
representations (not necessarily of the same rank),

Hom(ρ1, ρ2) ∼= Par Hom(Eρ1 , Eρ2) (1.31)

where the first space corresponds to the intertwiners, and the second one is
interpreted as the space of (ρ∗1 ⊗ ρ2)-automorphic functions bounded at the
cusps. Its proof is based on the same argument for the proof of Proposition
1.4.6.

There is yet another way to describe the parabolic endomorphism property,
giving rise to the general notion of a parabolic structure (see Appendix C).
Observe that an endomorphism f will satisfy the condition (1.30) if and only
if it preserves the descending flags defined over each one of the fibers {τi}×Cr

by [Ui]. Thus the descending flags [Ui] on the fibers over the cusps become a
fundamental structure to consider.

Now, we can clearly descend these flags to the bundle Eρ to the fibers
over the points z1, · · · , zn. We can give a more specific description of them by
using our uniformization map Υ and the trivializations over C0, C∞. On C0,
the descending flags at the fibers over z1, · · · , zn−1 are given as [Ci(0)]. The
normalization of the function Υ at ∞ implies that over C∞, the descending
flag at zn is the standard one, determined by [I]. The parabolic structure is
completeted by adding the weights Wi to each flag [Ci(0)].

1.7 The canonical connection

The trivial bundle H×Cr has the canonical Hermitian metric |dτ |2 and more-
over, the deRham differential operator dτ defines a tautological Hermitian
holomorphic (flat) connection compatible with the complex structure. One
could think it is an excess to think about such simple structures in this intri-
cate way. However, since the operations (τ, v) 7→ (γ · τ, ρ(γ)v) for any γ ∈ Γ
are isometries of the fibers when ρ is unitary and this operations commute
with dτ for arbitrary sections of H× Cr, we conclude that

1. The Hermitian metric I|dτ |2 descends to a Hermitian metric on ρ\H×Cr.
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2. The deRham differential dτ descends to a Hermitian holomorphic con-
nection on ρ \H× Cr.

Two natural questions are: how do these structures extend to the bundle
Eρ? What is their explicit form in the canonical trivializations? To answer
them, we consider once again the Birkhoff-Grothendieck local trivializations
and the inclusion X ↪→ C0. The bijective correspondence between the sheaf
of Γ-invariant holomorphic sections of H × Cr and the sheaf of holomorphic
sections of X×Cr also follows at the level of holomorphic forms, and in general
we have an inclusion

ιp : Ωp(X × Cr) ↪→ Ωp(H× Cr)

Since X×Cr is trivial and X ⊂ C0, any holomorphic connection on it would be
of the form dz+A(z), where A(z) is a holomorphic matrix-valued 1-form on X.
Then the canonical connection on X×Cr is determined by the commutativity
of the following diagram:

O(X × Cr)
dz+A //

ι0
��

Ω1(X × Cr)

ι1
��

O(H× Cr)
dτ // Ω1(H× Cr).

(1.32)

Proposition 1.7.1. The matrix valued 1-form A(z) is holomorphic on X and
satisfies

J∗(A) = −dτΥ ·Υ−1 (1.33)

Proof. If z 7→ (z, s(z)) is a section of X × Cr and f the corresponding Γ-
invariant function, we know that f(τ) = Υ−1(τ)s(J(τ)). Therefore

Υ−1 · ((dz + A)s) ◦ J = dτ (Υ
−1 · (s ◦ J))

or
dτ (s ◦ J) + (A ◦ J)(s ◦ J) = Υ · dτ (Υ−1 · (s ◦ J))

but
Υ · dτ (Υ−1 · (s ◦ J)) = dτ (s ◦ J)− (dτΥ ·Υ−1)(s ◦ J)

since z = J(τ).

Lemma 1.7.2. Let f(τ)dτ be a holomorphic differential on H, invariant under
the action of Γ (so that f(τ) is an automorphic form of weight 2, see Chapter

25



2) and having meromorphic q-series expansions at each cusp τi of the form

f(σiτ)σ′i(τ) =
bi
qmi

(1 + o(q)), i = 1, · · · , n.

Then f(τ)dτ is the pull-back under J of a meromorphic differential R(z)dz
on P1 with singularities at z1, · · · , zn so that in a neighbourhood of zi, i =
1, · · · , n− 1

R(z) =
1

2π
√
−1

biai(1)mi

(z − zi)mi+1
(1 + o(z − zi))

and near infinity

R(z) = − 1

2π
√
−1

bnz
mn−1

an(−1)mn
(1 + o(1/z))

Proof. By definition, J∗(R(z)dz) = R(J(τ))dJ and the series expansions (1.5)
imply that

dJ(σiτ) =


2π
√
−1

(
∞∑
k=1

kai(k)qk

)
dτ if i = 1, · · · , n− 1;

2π
√
−1

(
∞∑

k=−1

kan(k)qk

)
dτ if i = n.

The result is now a straightforward computation.

Proposition 1.7.3. The matrix-valued 1-form A(z) is rational on P1 with
simple poles at z1, · · · , zn.

Proof. The Fourier expansions (1.26) of Υ imply that near the cusps τi, i =
1, · · · , n− 1

−dτΥ(σiτ) ·Υ−1(σiτ) = 2π
√
−1
(
Ci(0)WiCi(0)−1 + o(q)

)
dτ

and near infinity,

−dτΥ ·Υ−1(σnτ) = 2π
√
−1 (Wn +N + o(q)) dτ

It follows from lemma 1.7.2 that on a neighbourhood of zi, i = 1, · · · , n− 1,

A(z) =

(
Ci(0)WiCi(0)−1

z − zi
+ o(1)

)
dz (1.34)
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and at infinity

A(z) = −
(
Wn +N

z
+ o

(
1

z2

))
dz (1.35)

Therefore the holomorphic parts of A(z) have to vanish by Liouville’s theorem,
and

A(z) =

(
n−1∑
i=1

Ai
z − zi

)
dz (1.36)

where Ai = Ci(0)WiCi(0)−1.

Corollary 1.7.4. The cannonical connection extends to a logarithmic con-
nection on the bundle Eρ. With respect to the Birkhoff-Grothendieck local
trivializations, it has residues Ci(0)WiCi(0)−1 along the fibers at z1, · · · , zn .

Proof. We have seen that on C0, θ0 = A(z). On C0 ∩ C∞,

θ∞(ζ) = ζNθ0ζ
−N − dζN · ζ−N =

(
Wn

ζ
+ o(1)

)
dζ

and the claim follows.

Corollary 1.7.5. The degree of the bundle Eρ is equal to minus the sum of
the weights {αij}.

Proof. From proposition B.1.7 we have that

deg(Eρ) = −
n∑
i=1

tr(Wi) = −
n∑
i=1

r∑
j=1

αij. (1.37)

This also follows from the residue theorem applied to the matrix-valued 1-form
A(z) on P1, since its residue at ∞ is An = Wi +N . Then

n∑
i=1

Ai = 0 (1.38)

implies that tr(N) = −
∑n

i=1

∑r
j=1 αij.

Corollary 1.7.6. The bundle Eρ is trivial if and only if the representation ρ
is trivial.

Proof. Since ∀ i, j, αij ≥ 0, a necessary condition for E to be trivial is that
αij = 0 ∀i, j, but this is also sufficient since in this case the representation is
the trivial one.
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Remark 7. It turns out that we can interpret all of our construction in purely
classical terms. If we consider the Fuchsian linear system on the sphere(

d

dz
+

n−1∑
i=1

Ai
z − zi

)
Y = 0, (1.39)

then the multivalued function Y (z) satisfying Y ◦ J = Υ is a fundamental
matrix for it. In conclusion, we have related the unitary case of the classical
Riemann-Hilbert problem, that requires to find, given a unitary representation
of π1(P1 \ D), a Fuchsian linear system on P1 having it as its monodromy
group, with the theory of parabolic bundles on P1 and their uniformization.
In this sense we have produced a canonical injective correspondence

{Unitary representations ρ of π1(X)} ↪→ {Fuchsian systems on P1}.

which is easily seen to only depend on the equivalence class of each represen-
tation. We will refer to is as the Riemann-Hilbert map.

The idea of using vector bundle techniques in the Riemann-Hilbert problem
goes back to H. Röhrl [43]. The main idea is to first solve the problem locally,
a trivial process, since the matrix valued functions

UiWiU
−1
i

z − zi

are readily seen to have monodromy groups generated by ρ(γi). A simple
computation shows that if we make

θ0 = A(z), on U0 = X,

θi =
UiWiU

−1
i

z − zi
dz, on Ui, i = 1, · · · , n,

the compatibily condition θi = gi0θ0g
−1
i0 − (dgi0)g−1

i0 holds on each Ui0 for the
transition functions (1.21) and the matrix valued forms patch up to define a
logarithmic connection on the bundle Eρ.

Proposition 1.7.7. The function

h0 = (Y Y ∗)−1

determines a Hermitian metric on X ×Cr compatible with the canonical con-
nection. It extends to a degenerate metric on Eρ with the following asymptotic
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behaviour at the punctures z1, · · · , zn−1 on C0

h0(z) = (Ci(0)−1)∗|z − zi|2WiCi(0)−1 + o(|z − zi|), (1.40)

and at zn on C∞
h∞(ζ) = |ζ|2Wn + o(|ζ|). (1.41)

Proof. The values of the function h are Hermitian and positive-definite matri-
ces on X. A straightforward computation shows that there

h−1∂h = (Y Y ∗)∂(Y Y ∗)−1 = −(dY )Y −1 = A(z).

The asymptotics (1.40) now follow from the asymptotic behaviour of Y on
z1, · · · , zn−1. The asymptotics (1.41) follow after using formula (B.3) for
g0∞(ζ) = ζ−N .
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Chapter 2

Automorphic forms and unitary
representations

The notions introduced in the following sections are both a generalization to
the vector-valued case and a specialization to the Fuchsian, torsion free-case
of the theory of automorphic forms as appears in Kra [33]. The case r = 1 was
already considered in H. Petersson’s seminal work [45]. Our main goal is to
relate such theory with a suitable version of the harmonic theory on parabolic
bundles. As before we consider a unitary representation ρ : Γ → U(r), not
necessarily irreducible.

2.1 Hilbert spaces of automorphic forms

Definition 2.1.1. A measurable ρ-automorphic form of weight (2p, 2q) is an
equivalence class (modulo functions vanishing a.e.) of measurable functions
f : H→ Cr satisfying

f(γτ)γ′(τ)pγ′(τ)q = ρ(γ)f(τ) ∀γ ∈ Γ. (2.1)

We will abbreviate the weight (2p, 0) simply as 2p. We would be mostly
interested in the case when p, q ∈ {0, 1} (see section 2.2).

Definition 2.1.2. The Petersson inner product [46] of two measurable
ρ-automorphic forms of weight (2p, 2q) is defined as

〈f1, f2〉P =

∫∫
F

tr(f1(τ)f2(τ)∗)(Imτ)2p+2q−2d2τ (2.2)
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As it is customary, L2
p,q(H, ρ) will denote the Hilbert space of measurable

ρ-automorphic forms of weight (2p, 2q) and finite norm.
We are ultimately interested in holomorphic (or antiholomorphic) auto-

morphic forms of weight 2p, the former being the classical case. When such
is the case, the transformation rule (2.1) implies that near the cusps we have
the analytic Fourier series expansions

f(σiτ)σ′i(τ)p = Uiq
Wi

(
∞∑

k=−∞

bi(k)qk

)
. (2.3)

It is intuitively clear that it is desirable to have a better understanding of the
singular growth at the cusps. This motivates the following definitions.

Definition 2.1.3. A ρ-automorphic form of weight 2p is called regular if it
is holomorphic and for every i = 1, · · · , n, limτ→τi f(τ) is finite. It is called a
cusp form if furthermore

lim
τ→τi

f(τ) = 0.

We verify that in terms of its local expansions, f is regular if bi(k) = 0 for
k < 0 and a cusp form if moreover (bi(0))j = 0 whenever αij = 0.

We will denote the vector space of regular ρ-automorphic forms of weight
2p by M2p(Γ, ρ), and the space of cusps forms by S2p(Γ, ρ). We have seen
that M0(Γ, ρ) is naturally isomorphic to (Cr)ρ and this is trivial it the ρ is
irreducible. It is not at all clear that if p = 1, these spaces are nontrivial and
even in that case, if their intersection with L2

2(H, ρ) would be nontrivial.

Proposition 2.1.4. The integral (2.2) is convergent whenever f1 ∈M2(Γ, ρ)
and f2 ∈ S2(Γ, ρ).

Proof. The fundamental region F of Γ can be chosen to be bounded by 2n
geodesic segments, and the integral (2.2) can be decomposed as a sum of
n + 1 integrals by partitioning the fundamental region F into the sets Fi =
F ∩σi ·Hδ and F \∪iFi for some δ � 1. The integral is obviously convergent in
F \ ∪iFi, being a compact set, so it remains to verify its convergence on each
Fi. The Fourier series expansions (2.3) of f1, f2 are absolutely and uniformly
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convergent on compact sets, hence we obtain∫∫
Fi

tr(f1f
∗
2 )d2τ

= lim
a→∞

∫ a

δ

∫ 1

0

tr

(
|q|2Wi

∑
k,l≥0

b1
i (k)(b2

i (l))
∗

)
qkqldxdy

=
∑
k,l≥0

r∑
j=1

(
b1
i (k)

)
j
(b2
i (l))j

(∫ ∞
δ

e−2π(k+l+2αij)ydy

)(∫ 1

0

e2π
√
−1(k−l)xdx

)

=
∑
k≥0

r∑
j=1

Cijk
(
b1
i (k)

)
j
(b2
i (k))j,

where Cijk = e−2π(k+αij)δ/4π(k + αij). Notice that this would be ill-defined if
k = 0 and αij = 0, a possibility that is ruled out by hypothesis. The remaining
series is absolutely convergent by comparison with the series

∑
k≥0Cijk for each

j = 1, · · · , r.

Since the uniform limit of a sequence of analytic functions is analytic, we
readily conclude:

Corollary 2.1.5. S2(Γ, ρ) is a closed subspace of L2
2(H, ρ), consisting of the

holomorphic automorphic forms of weight 2 of bounded norm.

It should not be surprising to encounter a relation between the spaces of
cusp forms and the analytic structure of the bundle Eρ. The latter is encoded
in the mutually isomorphic Čech and Dolbeaut cohomologies theories asso-
ciated to it. In the simplest case when the representation is trivial we can
assume without loss of generality that r = 1. Then there is a simple corre-
spondence between automorphic forms and meromorphic differentials on the
quotient surface S ∼= Γ \ H+, and it turns out that the cusp form condition
corresponds to the holomorphicity of the coresponding differentials, which rep-
resent canonically the space H1(S) by Kodaira-Serre duality. The following
theorem is a generalization of this correspondence for an arbitrary unitary
representation ρ.

Theorem 2.1.6. There is an isomorphism H1(Eρ) ∼= S2(Γ, ρ∗). In particular,
the Hilbert space of cusp forms of weight 2 is finite dimensional.

Proof. We begin by noting that if f(τ) is an automorphic form of weight 2
for the representation ρ∗, then φ = f(τ)dτ is a vector-valued holomorphic
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differential on H satisfying γ∗(φ) = ρ∗(γ)φ ∀γ ∈ Γ. The representation ρ∗ has
weights W ′

i = diag(α′i1, · · · , α′ir) where

α′ij =


αij if αij = 0,

1− αij if αij > 0.

By Kodaira-Serre duality we know that H1(Eρ) ∼= H0((Eρ)
∗⊗K). Notice that

as opposed to the local system case, (Eρ)
∗ is in general not isomorphic to Eρ∗

as the transition functions of the former are g∗ij = tg−1
ij where gij are given in

(1.20) (but, nevertheless, (Eρ)
∗|X ∼= Eρ∗ |X , cf. Proposition 2.9).

If f is a cusp form for ρ∗, since dq = 2π
√
−1qdτ , the form φ = fdτ would

have Fourier series expansions near each cusp τi

φ = Uiq
W ′i

(
∞∑
k=0

bi(k)qk

)
dq

q
= Uiq

−Wi

(
∞∑
k=0

b′i(k)qk

)
dq

where the last equality follows from the cusp form condition (bi(0))j = 0
whenever α′ij = αij = 0. Recalling once again the transition functions 1.20, it
follows that the cusp form condition is precisely the holomorphicity condition
of sections of (Eρ)

∗ ⊗K in the neighbourhoods {Vi} of the cusps.

The following generalization of the classical Riemann-Roch theorem to vec-
tor bundles of arbitrary rank is due to André Weil [53].

Theorem 2.1.7. (Riemann-Roch for vector bundles) Let E → S be a
holomorphic vector bundle of rank r and degree d over a compact Riemann
surface of genus g. Then

h0(E)− h1(E) = d+ r(1− g),

where hi(E) = dimH i(S,E).

Corollary 2.1.8. The following identity holds (wtih respect to the weights of
ρ) :

dimS2(Γ, ρ∗) = dim(Cr)ρ +
n∑
i=1

r∑
j=1

αij − r. (2.4)

Proposition 2.1.9. If two regular automorphic forms f and f ′ satisfy bi(0) =
bi(0)′ for i = 1, · · · , n, then f = f ′.
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Proof. The difference f − f ′ is a regular automorphic form without constant
terms on its local expansions. The product

Υ(f − f ′)dτ

is invariant under the action of Γ and thus corresponds to a vector valued
1-form R(z)dz on P1, holomorphic on P1 \ {∞} by Lemma 1.7.2. Moreover, it
has the following asymptotics near infinity

R(z) =

(
I + o

(
1

z

))
zN
′−2I

(
bn + o

(
1

z

))
Since the coefficients of N ′ are nonpositive, it follows that R(z) is bounded on
P1, hence a constant. Since limz→∞R(z) = 0, we obtain the claim.

2.2 Harmonic theory and automorphic forms

By their very definition, the Riemann surface X = Γ \ H and the bundle
E0 = ρ\H×Cr over it possess natural hermitian metrics that allow to introduce
an inner product and a ∗-operator on the spaces Ap,qc (E0), p, q = 0, 1. The last
one is defined by means of the generalized wedge product

∧ : Ap,q(E0)⊗ Ap′,q′(E∗0)→ Ap+p
′,q+q′(X).

The Hodge inner product is defined for s1, s2 ∈ Ap,qc (E0) as

〈s1, s2〉H =

∫
X

s1 ∧ ∗s2, (2.5)

and allows us to define Hilbert spaces H p,q(E0) as the completion of Ap,qc (E0).
The Hodge Laplacian is defined in terms of the operator ∂̄ and its formal
adjoint ∂̄∗ = − ∗ ∂̄∗ as

∆ = ∂̄∂̄∗ + ∂̄∗∂̄.

A form is s ∈H p,q(E0) called harmonic if ∆s = 0. We denote the space of
harmonic (p, q)-forms with values on E0 by Hp,q(E0).

Since all these stuctures on E0 are induced from those on H×Cr, we might
as well describe them in terms of the corresponding ones in the latter. This
has the advantage of simplifying calculations since H consists of a single global
chart. The pull-back pr∗(s) of a section s ∈ Ap,q(E0) would be a Cr-valued
(p, q)-form on H that by virtue of the global coordinate τ corresponds to an
automorphic function function of weight (2p, 2q). Since ∗pr∗(s) = pr∗(∗s) we
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have∫
X

s1 ∧ ∗s2 =

∫
F

pr∗(s1) ∧ ∗pr∗(s2) =

∫∫
F

tr(f1(τ)f2(τ)∗)(Imτ)2p+2q−2d2τ,

(2.6)
and we conclude that the Hodge inner product coincides with the Petterson
inner product when p, q ∈ {0, 1}, and hence H p,q(E0) ∼= L2

p,q(H, ρ).
At the level of functions of finite norm satisfying the automorphicity con-

dition (2.1), the operator ∂̄ is given as ∂
∂τ̄

and since

〈∂̄f1, f2〉 = 〈f1, ∂̄
∗f2〉

we conclude from (2.6) and integration by parts that ∂̄∗ = −(Imτ)2 ∂
∂τ

. Notice
that only one of the two summands of ∆ will make sense depending on the
values of q as X is 1-dimensional: when q = 0, ∆ = ∂̄∗∂̄ and when q = 1,
∆ = ∂̄∂̄∗. By standard properties of the adjoint of an operator this implies
that

Hp,0(E0) = Ker(∂̄), Hp,1(E0) = Ker(∂̄∗), (2.7)

and their elements correspond to holomorphic (resp. antiholomorphic) func-
tions satisfying f(γτ)γ′(τ)p = ρ(γ)f(τ) (resp. f(γτ)γ′(τ)pγ′(τ) = ρ(γ)f(τ)).

Finally, there are projection maps

Pp,q : H p,q(E0)→ Hp,q(E0),

given explicitly as

Pp,0 = I − ∂̄∗ ◦∆−1 ◦ ∂̄ Pp,1 = I − ∂̄ ◦∆−1 ◦ ∂̄∗ (2.8)

Remark 8. It follows from the transition functions (1.20) that E∗0 = (ρ \H×
Cr)∗ ∼= ρ∗\H×Cr. Moreover, if ρ is unitary, then ρ∗ = ρ. Usual Hilbert space
techniques (the Riesz representation theorem) gives us a complex isomorphism
analogous to the Kodaira-Serre duality in the case of unitary local systems:

Hp,q(E0) ∼= H1−p,1−q(E∗0)∗ for p, q ∈ {0, 1} (2.9)

There are two cases to consider: when p = q = 0, the map

f(τ) 7→ 〈·, f(τ)(Imτ)2〉H ,

Gives the isomorphism H0,0(E0) ∼= H1,1(E∗0)∗ as a consecuency of the relation

Im(γ(τ)) = |γ′(τ)|Im(τ), ∀γ ∈ PSL(2,R), τ ∈ H.
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When p = 1, q = 0 the map

f(τ) 7→ 〈·, f(τ)〉H

gives the isomorphism H1,0(E0) ∼= H0,1(E∗0)∗.

Theorem 2.2.1. We have canonical isomorphisms

H0,0(E0) ∼= (Cr)ρ , H1,1(E0) ∼= (Cr)(ρ∗) , (2.10)

H1,0(E0) ∼= S2(Γ, ρ), H0,1(E0) ∼= S2(Γ, ρ∗). (2.11)

Proof. As a consequence of (2.7), the proof of the first isomorphism in (2.10)
was given in the proof of Proposition 1.4.6 and the second one follows from
H1,1(E0) ∼= H0,0(E∗0). The first isomorphism in (2.11) is essentially a conse-
quence of the matching inner products 2.2 and 2.5, while the second follows
after duality is considered.

Remark 9. It should be noted that our proof admits a straightforward gen-
eralization to the case of a unitary local system on a Kähler manifold. The
classical result of Kodaira-Serre was proven for compact Kähler manifold, and
it wasn’t until very recently that a proof for a general complex manifold was
given [19].

Remark 10. The Hodge theorem asserts that on a hermitian vector bundle
over a compact complex manifold Dolbaut cohomology classes admit a unique
harmonic representative. In our case the metrics on P1 and Eρ degenerate at
the cusps τ1, · · · , τn, but miracluosly, by putting together Theorems 2.1.6 and
2.2.1, we can conclude that a suitable analog of it still holds. The (0, 1)-case
is the most relevant for our purposes:

H0,1

∂̄
(Eρ) ∼= H1(Eρ) ∼= S2(Γ, ρ∗) ∼= H1,0(E∗0) ∼= H0,1(E0). (2.12)

We have identified three different incarnations of the weight 2 cusp form
condition: the finiteness of the Petterson inner product for holomorphic au-
tomorphic forms (Proposition 2.1.4), the holomorphicity of the sections of a
bundle (Theorem 2.1.6) and the harmonicity of an automorphic form (Theo-
rem 2.2.1).
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2.3 A canonical regular automorphic form of

weight 2

Let us consider now a unitary representation ρ with a generic system of weights
and the induced representation Ad ρC. As for the case of parabolic endomor-
phisms, an arbitrary regular automorphic form of weight 2 for the represen-
tation Ad ρC would possess local Fourier series expansions of the same nature
than those of (1.29), namely

f(σiτ)σ′i(τ) = Uiq
Wi

(
∞∑
k=0

Bi(k)qk

)
q−WiU−1

i . (2.13)

where the matrices Bi(0) are lower triangular.
In the next proposition we construct a canonical element of M2(Γ,Ad ρC)\

S2(Γ,Ad ρC) when the .

Proposition 2.3.1. If Eρ is an evenly split bundle, then the function A =
−Υ−1 · Υ′ is a regular automorphic form of weight 2 for the representation
Ad ρC with

Bi(0) =


2π
√
−1Wi i = 1, · · · , n− 1,

2π
√
−1(Wn +M) i = n,

where

M =

(
(a+ 1)I 0
−C3 aI

)
.

Proof. The result is a direct consequence of the local expansions of the function
Υ at the cusps. We verify for i = 1, · · · , n− 1,

− (Υ−1Υ′)(σiτ)σ′i(τ)

= −2π
√
−1Uiq

Wi

(
∞∑
k=0

Ci(k)qk

)−1

·

(
∞∑
k=0

Ci(k)(kI −Wi)q
k

)
q−WiU−1

i

= Uiq
Wi

(
2π
√
−1Wi +

∞∑
k=1

Bi(k)qk

)
q−WiU−1

i .
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For i = n, we get from the asymptotics (1.27)

− (Υ−1Υ′)(σn(τ))σ′n(τ)

= 2π
√
−1Unq

Wn

(
C +

∞∑
k=1

C ′n(k)qk

)−1

·(
CWn +NC +

∞∑
k=1

(NC ′n(k) + C ′n(k)Wn − kC ′n(k))qk

)
q−WnU−1

n

= Unq
Wn

(
2π
√
−1(Wn + C−1NC) +

(
∞∑
k=1

Bn(k)qk

))
q−WnU−1

n

and it is readily verified that M = C−1NC.

Remark 11. The function tr (A ) is a regular (scalar) automorphic form of
weight 2 corresponding to a meromorphic differential on P1 with simple poles
in D and holomorphic everywhere else. The residue theorem yields once again
the result

n∑
i=1

tr(Wi) = −
n∑
i=1

ai.

As a corollary of Proposition (2.1.9), it follows that this is the only regular
automorphic form with these features. There is yet another way to see this,
since the function A is some sort of ”lifting” of the canonical connection, in
the sense that the following identity holds:

Υ ·A ·Υ−1 =

(
n−1∑
i=1

Ai
z − zi

)
◦ J. (2.14)

We could extend this idea and establish a projection from the space of regular
Ad ρ-automorphic forms of weight 2 nd the space of matrix valued-rational
functions on P1, but this idea doesn’t seem to give any new or useful infor-
mation, esentially because we don’t know anything about the matrices Ci(0),
besides their invertibility.
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Chapter 3

Deformation theory and the
Moduli space

The main goal of this chapter is twofold: on one hand we provide a global
construction of the Moduli space of stable parabolic bundles of parabolic degree
0 over P1 with a fixed set of weights by incarnating it as a character variety (the
Mehta-Seshadri theorem), and on the other hand, we consider local aspects
specializing the infinitesimal deformation theory to the language of complex
analysis on the upper half plane by drawing an analogy with the construction
of the Teichmüller space as in the work of Ahlfors and Bers.

3.1 The character variety

3.1.1 Group cohomology and the character variety

We proceed to construct the space of equivalence classes of irreducible unitary
representations of Γ for a fixed set of weights W = {W1, · · · ,Wn} in the spirit
of [39],[40]. Despite the differences under consideration (a purely parabolic
Fuchsian group, appearance of weights), the fact that the generators of Γ
satisfy only one relation ensures that their techniques apply almost word-by-
word once the proper analogies are made. In particular we will see how we
can endow this space with the structure of a Kähler manifold.

We should give a word of caution before starting. Unlike the higher genus
case, it is not necessarely true that unitary representations exist for an arbi-
trary system of weights. P. Belkale [7] and I. Biswas [11] independently found
a collection of inequalities on the system of weights that give necessary and
sufficient conditions for the existence of representations. We will call those
systems admissible.
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Given an admisible set of weights W = {W1, · · · ,Wn} we define the map

ϕ : U(r)× · · · × U(r)︸ ︷︷ ︸
n times

→ SU(r)

(U1, · · · , Un) 7→
n∏
i=1

Uie
2π
√
−1WiU−1

i

This map is invariant under the action of the group (Tr)n given as

(U1, · · · , Un) 7→ (U1D1, · · · , UnDn), Di ∈ Tr

and thus descends to a map

ψ : Fr × · · · × Fr︸ ︷︷ ︸
n times

→ SU(r).

Before continuing we make a short digression. Given a group G and an
arbitrary (real or complex) finite dimensional representation ρ : G→ GL(V ),
it is possible to associate a cochain complex giving rise to a cohomology theory
(see for instance [50], Chapter 8). Let Ci(G, V ) the vector space of maps from
i copies of G into V (in particular C0(G, V ) = V ) and define di : Ci(G, V )→
Ci+1(G, V ) by d0u(g) = (ρ(g)− I)u and

diu(g1, · · · , gi+1) = ρ(g1)u(g2, · · · , gi+1)

+
i∑

j=1

(−1)ju(g1, · · · , gj−1, gigj+1, gj+2, · · · , gi+1)

+(−1)i+1u(g1, · · · , gi).

for i > 0. We are mostly interested in the cases i = 0, 1. Since B0(G, V ) = 0,
we have

H0(G, V ) = {v ∈ V |ρ(g)v = v ∀g ∈ G} = V G, (3.1)

and

Z1(G, V ) = {u : G→ V |u(g1g2) = u(g1) + ρ(g1)u(g2) ∀g1, g2 ∈ G}, (3.2)

B1(G, V ) = {u : G→ V |u(g) = (ρ(g)− I)v}. (3.3)

The spaceH0(G, V ) has a very natural interpretation, namely, that of the space
of invariants of ρ. However, The relations (3.2), (3.3) might appear artificial
at first glance, but there is an instance where its nature is truly revealed.
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Recall that any Lie group possesses a natural adjoint representation on its
Lie algebra, which in the case of subgroups of GL(V ) reduces to conjugation
in the corresponding Lie subalgebra of gl(V ) ∼= End(V ) ∼= V ∗ ⊗ V . The
composition of ρ with the adjoint representation gives a new representation
Ad ρ : G→ GL(gl(V )).

Proposition 3.1.1. Let U be a subgroup of GL(V ) and ρt : G→ U be a real
1-parameter family of representations of G with ρ0 = ρ. Then

z :=

(
dρt
dt
ρ−1
t

) ∣∣∣
t=0

: G→ u

where u = Lie(U) ⊂ gl(V ), is a 1-cocycle for Ad ρ. If in particular ρt =
M−1

t · ρ ·Mt for a smooth path Mt in U with M0 = I, then u is a coboundary
for Ad ρ.

Proof. Let ρ̇ = dρt
dt

∣∣
t=0

. It readily follows from the chain rule that

z(g1g2) = ρ̇(g1g2)ρ(g1g2)−1 = ρ̇(g1)ρ(g1)−1 + ρ(g1)
(
ρ̇(g2)ρ(g2)−1

)
ρ(g1)−1

= z(g1) + Ad ρ(g1)(z(g2)).

Now, if ρt = M−1
t · ρ ·Mt, then Ṁ = dMt

dt

∣∣
t=0
∈ u and z(g) = Ad ρ(g)

(
Ṁ
)
−

Ṁ .

Corollary 3.1.2. Let Γ be a Fuchsian group, ρ : Γ → U(r) and γ1, · · · , γn a
set of parabolic generators for it. The space of deformations of ρ preserving the
conjugacy classes [ρ(γi)] is in correspondence with the space of Ad ρ 1-cocycles
satisfying

z(γi) = Ad ρ(γi)(Xi)−Xi.

for some Xi ∈ u(r).

Proof. A 1-parameter deformation ρt would preserve the conjugacy classes of
the parabolic generators if and only if ∀i,

ρt(γi) = Vi(t)
−1ρ(γi)Vi(t).

with Vi(t) ∈ U(r) and Vi(0) = I. Let Xi =
dVi
dt

∣∣∣∣
t=0

. Then

z(γi) =
(
ρ̇ρ−1

)
(γi) = Ad ρ(γi)(Xi)−Xi.
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This motivates the following definition: a 1-cocycle z ∈ H1(Γ, ρ) is called
parabolic if z(γi) = (ρ(γi)−I)v for every parabolic generator γi ∈ Γ. We denote
the subspace of all parabolic cocycles by Z1

P (Γ, ρ) and let the first Parabolic
cohomology, or Eichler cohomology group be

H1
P (Γ, ρ) = Z1

P (Γ, ρ)/B1(Γ, ρ). (3.4)

It is immediate to see that the parabolic cohomology can be characterized as
the kernel of the map

ϕ : H1(Γ, ρ)→
n⊕
i=1

H1(Γi, ρ) [z] 7→ ([z(γ1)], · · · , [z(γn)]) .

where Γi = 〈γi〉. The subject has been intensively studied in [49], [54], [50],
[33] (cf. [42]) and there exist several variations of it (like considering either real
or complex coefficients), although it was Martin Eichler [21] who first realized
its importance in connection with the theory of Eichler integrals that we will
discuss in the next section.

At the moment we are assuming complex coefficients since unitary repre-
sentations are often though of a complex modules. There is a major exception,
though, which incidentally is the most important example to us: the associated
adjoint representation Ad ρ = Ad ◦ ρ which is real by its very definition.

Proposition 3.1.3. Assume that none of the weights of ρ is equal to 0. Then
there is an isomorphism

H1
P (Γ, ρ) ∼= H1(Γ, ρ).

Proof. It is enough to prove the isomorphism at the level of 1-cocyles. In order
to prove the nontrivial contention, consider any z ∈ Z1(Γ, ρ), and observe that
for each parabolic generator γi, the matrix

ρ(γi)− I = Ui(e
2π
√
−1Wi − I)U−1

i

is invertible as no weight is equal to 0. If we make vi = (ρ(γi) − I)−1z(γi),
then z(γi) = (ρ(γi)− I)vi, and the claim follows.

It is not difficult to see that conversely, given any 1-cocycle of Ad ρ, there
exist a path of representations of G giving rise to it (for instance, we can
construct any 1-coboundary in terms of one-parameter subgroups of U) . It
is clear that two representations ρ1, ρ2 : G → U are equivalent if and only
if they are conjugated in U , so the 1-coboundaries of Ad ρ correspond to the
trivial deformations of ρ. The conclusion from Proposition 3.1.1 and these
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observations is that the space H1(G,Ad ρ) is the right candidate to model a
“tanget space” at a given representation ρ up to equivalence if only we could
make sense of the “space of regresentations of G in V modulo conjugation”
as a smooth manifold. When G = Γ and U = U(r), the space of local defor-
mations would specialize to H1

P (Γ,Ad ρ) since we are interested on preserving
the weights at the parabolic generators, and the set of rank r-unitary repre-
sentations of Γ with fixed weights W corresponds to ψ−1(I) under the obvious
map

[Ui] 7→ Uie
2π
√
−1WiU−1

i = ρ(γi).

but it is not a manifold in general. However, its restriction to the set irreducible
representations is a manifold as a consequence of the following two propositions
and the implicit function theorem.

Lemma 3.1.4. A representation ρ : Γ→ U(r) is irreducible if and only if the
map

κ : u(r)× · · · × u(r)︸ ︷︷ ︸
n times

→ su(r),

(X1, · · · , Xn) 7→
n∑
i=1

Ad ρ(γ1 · · · γi−1)
(
[Xi, ρ(γi)]ρ(γi)

−1
)

is surjective.

Proof. By Schur’s lemma, a representation ρ : Γ → U(r) is irreducible if and
only if the only matrices in u(r) that commute with all ρ(γi) are the multiples
of the identity, which is equivalent to H0(Γ,Ad ρ) = 0. As a consequence, ρ is
irreducible if and only if no nonzero matrix X ∈ su(r) would commute with
all ρ(γi). Since

tr

(
n∑
i=1

[ρ(γi),Ad ρ(γ1 · · · γi)−1(X)]ρ(γi)
−1Xi

)

= tr

(
X

n∑
i=1

Ad ρ(γ1 · · · γi−1)
(
[Xi, ρ(γi)]ρ(γi)

−1
))

for X1, · · · , Xn ∈ u(r) arbitrary and the Killing form 〈X, Y 〉K := −tr(XY )
defines an inner product in su(r), we conclude that there is X 6= 0 in the
orthogonal complement of the image of κ in su(r) if and only

[ρ(γi),Ad ρ(γ1 · · · γi)−1(X)] = 0⇔ [Ad ρ(γ1 · · · γi−1)(ρ(γi)), X] = 0

for all i. It is easy to verify that the centralizer in su(r) of {ρ(γi)}ni=1 coincides
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with the centralizer of {Ad ρ(γ1 · · · γi−1)(ρ(γi))}ni=1 due to the only relation
satisfied by the generators of Γ. Therefore κ is not surjective if and only if ρ
is not irreducible.

Proposition 3.1.5. ψ has maximal rank at a point ([U1], · · · , [Un]) ∈ ψ−1(I)
if and only if the induced representation ρ is irreducible.

Proof. A tangent vector at ([U1], · · · , [Un]) ∈ ψ−1(I) is given as an n-tuple of
matrices (X1, · · · , Xn) ∈ u(r)n with zeros in their diagonals. Once we identify
TgSU(r) ∼= su(r) under right translation by g−1, the differential of ψ at the ith
flag component is given explicitly as

Ad ρ(γ1 · · · γi−1)
(
[dUiU

−1
i , ρ(γi)]ρ(γi)

−1
)

as a simple computation shows. Thus

dψ(X1, · · · , Xn) =
n∑
i=1

Ad ρ(γ1 · · · γi−1)
(
[Xi, ρ(γi)]ρ(γi)

−1
)

and the result follows from Lemma 3.1.4.

Remark 12. Proposition 3.1.1 implies that Ker(dψ|([U1],··· ,[Un])) ∼= Z1
P (Γ,Ad ρ)

regardless of the irreducibility of ρ. The isomorphism is given explicitly by
defining

z(γi) = [Xi, ρ(γi)]ρ(γi)
−1, i = 1, · · · , n,

and forcing the cocycle condition to arbitrary products of the generators. The
only relation z(γ1 · · · γn) = 0 would then follow from the Kernel condition since

z(γ1 · · · γn) =
n∑
i=1

Ad ρ(γ1 · · · γi−1)
(
[Xi, ρ(γi)]ρ(γi)

−1
)
.

Definition 3.1.6. The character variety K (W) = HomW(Γ,U(r))/U(r)
is the set of equivalence classes of irreducible unitary representations of Γ with
fixed weights W.

Corollary 3.1.7. K (W) possesses the structure of a smooth manifold of real
dimension n(r2− r)− 2(r2− 1). The tanget space at a given equivalence class
[ρ] is isomorphic to H1

P (Γ,Ad ρ).

Proof. We already know that P = ψ−1(I), the set of irreducible unitary rep-
resentations of Γ with fixed weights W is a smooth manifold. Now, PSU(r)
acts freely and properly by conjugation on P since it is a compact group.
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The quotient PSU(r) \P = K (W) is then a smooth manifold with P as
principal PSU(r)-bundle over it. Since the tangent space along the fibers
consisting of the Kernel of the differential of the projection at a given point
([U1], · · · , [Un]) is isomorphic to B1(Γ,Ad ρ), it follows from Corollary 3.1.2
that the tangent space over [([U1], · · · , [Un])] in the quotient would be iso-
morphic to H1

P (Γ,Ad ρ). As for the dimension, the implicit function theorem
gives

dim(P) = dim(Fr)n − dim(SU(r)) = n(r2 − r)− (r2 − 1),

and since P is a principal PSU(r)-bundle,

dim(K (W)) = dim(P)− dim(PSU(r)) = n(r2 − r)− 2(r2 − 1).

3.1.2 The Eichler-Shimura isomorphism

We now connect the constructions of section 3.1.1 with the developed theory
of automorphic forms of weight 2.

Fix any reference point τ0 ∈ H. For any f ∈ S2(Γ, ρ), let φ = f(τ)dτ and
define

Fv(τ) =

∫ τ

τ0

φ+ v

for any v ∈ Cr. This gives a generalization of an Eichler integral . Then
clearly Fv(τ) is well-defined and holomorphic on H. Moreover,

Fv(γτ) =

∫ γτ

γτ0

φ+

∫ γτ0

τ0

φ+ v = ρ(γ)Fv(τ) + zv(γ) (3.5)

where

zv(γ) =

∫ γτ0

τ0

φ+ (I − ρ(γ))v.

Note that
zv(γ1γ2) = zv(γ1) + ρ(γ1)zv(γ2)

so that zv(γ) ∈ Z1(Γ, ρ).

Definition 3.1.8. Let p be a nonnegative integer. An Eichler integral of
weight −2p with the representation ρ is a meromorphic function E : H→
Cr satisfying for any γ ∈ Γ

E (γτ)/γ′(τ)p − ρ(γ)E (τ) = pγ(τ) (3.6)
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where the entries of pγ(τ) are polynomials of degree at most 2p.

Thus, the Fv are Eichler integrals of weight 0. Moreover, consider any
other v′ ∈ Cr. Then

zv(γ)− zv′(γ) = (I − ρ(γ))(v − v′) ∈ B1(Γ, ρ),

and similarly if we change the base point. Finally, we notice from the q-series
expansions (2.3) at each cusp of f(τ) that

Fv(σiτ) = Uiq
Wi

(
∞∑
k=0

b′i(k)qk

)∣∣∣∣∣
τ

τ0

(b′i(k))j =
(bi(k))j
αij + k

(3.7)

the cusp form condition guarantees that if αij + k = 0 then (bi(k))j = 0, so
the last expression is meaningful and obviously convergent. As an immediate
consequence we obtain that for each i = 1, · · · , n, limτ→τi Fv(τ) exists, where
the limit is taken over a fundamental region containing τ0. We define

Fv(τi) = lim
τ→τi

Fv(τ).

These values are specially important since γiτi = τi, hence

zv(γi) = (I − ρ(γi))Fv(τi), (3.8)

i.e. zv is a parabolic cocycle. Our conclusion is that there is canonical C-
linear map L : S2(Γ, ρ)→ H1

P (Γ, ρ), with both domain and range being finite
dimensional. In fact, it is easy to prove that this is injective: a cusp form f(τ)
would belong to its kernel if its associated cocycle zv(γ) is a coboundary, that
is, for any given v there is a vector v0 ∈ Cr such that

v0 = Fv(τi), i = 1, · · · , n.

this means that such coboundary canbe chosen to be 0. Now, this implies that
Fv is an Ad ρ-automorphic function bounded at the cusps, hence an endomor-
phism of Eρ, hence a multiple of the identity. But this could only happen if
f = 0.

It would be natural to try to understand this map in more detail. This has
been done extensively, but there is a particular case that will be important to
us. This requires to consider real representations and their complexifications
simultaneously. The reader would notice that this is the case for Ad ρ and
Ad ρC, which leads to Shimura’s generalization of Eichler’s theorem [50].
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Theorem 3.1.9 (Eichler-Shimura). Let ρ be a real representation of Γ on a
compact subgroup of GL(r,R). The map

LES : S2(Γ, ρC)→ H1
P (Γ, ρ), f(τ) 7→ [Re(zv(γ))]

is an isomorphism of real vector spaces.

Proof. We provide a proof when the real representation is Ad ρ for some irre-
ducible unitary representation ρ. We calculated in section 3.1.1 (indirectly in
Corollary 3.1.7) the real dimension of H1

P (Γ,Ad ρ) to be n(r2 − r)− 2(r2 − 1)
and the complex dimension of S2(Γ,Ad ρC) to be equal to n(r2−r)/2−(r2−1)
(indirectly in Corollary 2.1.8). Therefore it is enough to prove that the map
is injective. Notice that since the isomorphism

gl(r,C) ∼= u(r)⊗R C,

is relalized by expressing an arbitrary complex square matrix M as (M −
M∗)/2 +

√
−1((M + M∗)/2

√
−1), the real part of a cocycle zv(γ) associated

to the a cusp form f(τ) would correspond to the class of the unitary cocycle
(zv − z∗v)/2.

Consider now a cusp form f(τ) lying in the kernel of LES. This means that
the original Ad ρC cocycle zv satisfies zv = z∗v , that is, each one of the matrices
Fv(τi) is self-adjoint. This readily implies that

LES
(√
−1f(τ)

)
=
√
−1zv,

but on the other hand, the complexification of the map LES is just the map
f(τ) 7→ zv(γ). This implies that [zv] ≡ 0, but we have seen that this in turn
implies that f(τ) = 0. This concludes the proof.

Notice that the same argument showing injectivity would hold for an arbi-
trary unitary representation and the proof would be complete if we only had
a way to verify that the dimensions of both spaces coincide in general. Since
we won’t need this result, we won’t dwell on it here.

The reader should keep in mind that the theorem holds for arbitrary Fuch-
sian groups of the first kind with parabolic generators (H groups in Lehner’s
convention, [34]), and in more generality for cusp forms of higher weight once
the appropriate representations are considered (Shimura [50] discusses this
case for real coefficients, while Kra [33] generalizes the scalar case to arbitrary
Kleinian groups).
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3.1.3 The canonical Kähler structure

The Eichler-Shimura isomorphism allows us to introduce a complex structure
on the real vector space H1

P (Γ,Ad ρ). We could go beyond and, as in [39],
prove that this defines an integrable almost complex structure on K (W), and
furthermore introduce a Hermitian inner product determining a Kähler metric
as in [38], but we take a different and more powerful approach instead that
allows us to do these two constructions at once (eventually we will discuss the
generalization of the Narasimhan Kähler metric in the case of parabolic bun-
dles, see section 3.2.5). It is possible to introduce an intrinsic Kähler structure
on K (W) using the machinery of Kähler reduction that we now discuss. We
start by noticing that the compact coadjoint orbit nature of the complete flag
variety Fr defines a canonical projective structure on it [17]. In particular Fr
is a Kähler manifold. PSU(r) acts properly on the left and moreover, this
action preserves the Kähler structure of Fr. The same observations hold for
the product space Fr × · · · × Fr, of course.

The group PSU(r) acts freely and properly on SU(r) by means of the
adjoint action. A further inspection of the map

ψ : Fr × · · · × Fr → SU(r)

shows that it is equivariant with respect to these actions, and hence it behaves
analogously to a moment map. This observation makes the consideration of a
prospective Kähler structure on K (W) very natural. we should mention that
the so-called Lie group valued moment maps (like the function ψ) have been
studied by Alekseev, Malkin and Meinrenken in [2]. For our purposes, it is
enough to revise the Kähler reduction apparatus as is presented in [18].

Definition 3.1.10. Let M be a Kähler manifold and G a compact Lie group
acting on M and preserving the Kähler structure. Given an equivariant smooth
map φ : M → g∗ (where g = Lie(G)), we call y ∈ g∗ a good value if the
following conditions are satisfied:

1. φ−1(y) is a smooth manifold.

2. for every x ∈ φ−1(y), Txφ
−1(y) = Ker(dφx).

3. The projection πy : φ−1(y)→ Gy \φ−1(y), where Gy is the isotropy group
of y, is a smooth submersion.

Theorem 3.1.11 (Kähler reduction). Let M be a Kähler manifold with Kähler
structure determined by the pair (g, ω), and let G be a compact Lie group
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acting on M and preserving the Kähler structure. For every good value of
y ∈ g∗, there is a unique Kähler structure (gy, ωy) on Gy \ φ−1(y) defined by
the conditions:

1. π∗y(ωy) is the pull-back of ω to φ−1(y).

2. πy is a Riemannian submersion.

Remark 13. One has to require the action of G to be Poisson as well, but this
is automatically satisfied when the group G is compact.

The important observation here is that the details of the proof, which can
be found in [18], do not use any special properties of g∗, but instead rely on
(1) the equivariance of φ, and (2) the analytical properties of clean values. In
particular, the theorem will still be true if a moment map is replaced by a Lie
group-valued moment map (that is, an equivariant map with values on a Lie
group). Notice that we can always transform a moment map into a Lie group
valued moment map by dualizing and exponentiating.

In the case of interest, exp−1(I) is a discrete set on su(r) ∼= su(r)∗. It is not
hard to prove that ψ−1(I) is connected, and from these considerations it would
follow that ψ−1(I) = φ−1(0), where ψ = exp ◦φ. We thus see that checking
that I is a clean value of ψ is equivalent to checking 0 is a clean value of φ.
Now, we have proved in section 3.1.1 that I is a clean value of the map ψ, and
as a corollary we conclude that the manifold K (W) = PSU(r) \P acquires
a canonical structure of a Kähler manifold.
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3.2 The complex analytic theory of moduli of

stable parabolic bundles

The goal of this section is to give a construction of the moduli space M (W) of
stable parabolic bundles over P1 with a given system of weights W over the set
D = {z1, · · · , zn} as a Kähler manifold in a way analogous to the construction
of the Teichmüller spaces. We know from section C.4 that the infinitesimal
deformations of a given parabolic bundle E∗ are parametrized by the space
H1(Par End(E∗)) and therefore the tangent space to the corresponding point
on any potential moduli space containing it would be modeled by it. In the case
this bundle is parabolic stable, the Mehta-Seshadri theorem (theorem C.3.2)
asserts that E∗ ∼= (Eρ)∗ for some irreducible unitary representation ρ with
weights W, and we have seen that in the latter, the space H1(Par End((Eρ)∗))
is isomorphic to H1(EAd ρC). In particular, there would be an isomorphism of
Kähler manifolds M (W) ∼= K (W).

From now on, we will assume that ρ is an irreducible unitary representation
with generic weights. The representation Ad ρ (and its complexification) is also
unitary and splits as a direct sum of two irreducibles, one of them being trivial
and corresponding to the multiples of the identity while the other consists of
the traceless r × r matrices. Now, for every i = 1, · · · , n, the eigenvectors
of Ad ρ(γi) are the matrices UiEjkU

−1
i with eigenvalues e2π

√
−1(αij−αik) (recall

that (Ejk)lm = δjlδkm). The weights of Ad ρ(γi) are seen to be given as

βijk =


αij − αik if j ≥ k,

1 + αij − αik if j < k.

From this we readily see that regardless of the system of weights char-
acterizing the unitary representation ρ, the degree of the bundle EAd ρC only
depends on the rank r and the number parabolic generators n, since

deg(EAd ρC) = −
n∑
i=1

r∑
j,k=1

βijk = −n(r2 − r)/2. (3.9)

Recall that H0(EAd ρC) = gl(r,C)Ad ρC , and ρ is irreducible if and only if
dimgl(r,C)Ad ρC = 1. Therefore, using the Riemann-Roch theorem for vector
bundles (Theorem 2.1.7), we conclude

Corollary 3.2.1. If E∗ → P1 is parabolic stable, then

dimH0(Par End(E∗)) = 1, (3.10)
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and

dimH1(Par End(E∗)) = n

(
r2 − r

2

)
− (r2 − 1). (3.11)

3.2.1 The differential equation

We will now draw an analogy between the infinitesimal deformation theory
and the Teichmüller theory, as it is considered in [51]. We can materialize
the elements of the space H1(EAd ρC) in terms of the Dolbeault isomorphism
as vector bundle-valued differential forms of type (0,1), but for every class in
H0,1

∂̄
(EAd ρC) there are infinitely many representatives to choose from. The

isomorphism H0,1

∂̄
(EAd ρC) ∼= S2(Γ,Ad ρC) allows us to choose a canonical

harmonic representative on every equivalence class.1 Thus an element of it
corresponds to an antiholomorphic function ν : H→ gl(r,C) satisfying

ν(γτ)γ′(τ) = ρ(γ)ν(τ)ρ(γ)−1 (3.12)

and the corresponding behaviour at the cusps.
In the standard (nonparabolic) deformation theory of a holomorphic vector

bundle E whose holomorphic structure is determined by a Cauchy-Riemann
operator ∂̄, the 1-cocycles θ0,1 representing elements in H0,1

∂̄
(End(E)) have the

interpretation of deformations of the complex structure of the form ∂̄+θ0,1 and
the trivial deformations correspond to pull-backs of ∂̄ under an automorphism
of E, taking the form f−1 ◦ ∂̄ ◦ f = ∂̄ + f−1∂̄f .

If we now consider the bundle H×Cr as a uniformization of a vector bundle
E, the Cauchy-Riemann operator on the latter would be the projection of
standard Cauchy-Riemann operator on H × Cr. Since this operator doesn’t
admit nontrivial deformations, it becomes apparent that we can relate the
local deformations of the holomorphic structure on E with the solutions of the
equation

f−1 · fτ̄ = ν (3.13)

for a suitable automorphic form ν of weight (0,1). We start with a preparatory
lemma.

Lemma 3.2.2. Let ν be an antiholomorphic Ad ρC-automorphic form. Any
antiholomorphic solution f of (3.13) satisfies

f(γτ) = χ(γ)f(τ)ρ(γ)−1, ∀γ ∈ Γ,

for some representation χ : Γ→ GL(r,C).

1Notice that Ad ρC is self-dual, i.e. (Ad ρ)∗ = Ad ρ.
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Proof. Since for an arbitrary solution f we have that f−1fτ̄ = ν, in particular
the representation ρ will appear in f as a right automorphic factor. Let f be
antiholomorphic and consider the function g(τ, γ) = f(γτ)ρ(γ)f(τ)−1. It is
also antiholomorphic, and moreover,

gτ̄ (τ, γ) = fτ̄ (γτ)ρ(γ)f(τ)−1γ′(τ)− f(γτ)ρ(γ)f(τ)−1fτ̄ (τ)f(τ)−1

= f(γτ)ρ(γ)ν(τ)f(τ)−1 − f(γτ)ρ(γ)ν(τ)f(τ)−1 ≡ 0,

which implies that g(·, γ) is holomorphic for each fixed γ ∈ Γ, hence harmonic
and thus a constant χ(γ). To prove that the collection of constants {χ(γ)|γ ∈
Γ} defines a representation of Γ, notice that

χ(γ1γ2) = f(γ1γ2τ)ρ(γ1γ2)f(τ)−1

= (f(γ1γ2τ)ρ(γ1)f(γ2τ)−1) · (f(γ2τ)ρ(γ2)f(τ)−1)

= χ(γ1)χ(γ2).

Lemma 3.2.3. Let ε ∈ D. The differential equation

f−1 · fτ = εν

admits a unique solution f(τ, ε) normalized so that f(τ0, ε) = I which is anti-
holomorphic in τ and holomorphic in ε.

The proof of a slightly more general result can be found in [36] and won’t
be presented here.

Theorem 3.2.4 (Takhtajan-Zograf, [51]). For each ν ∈ S2(Γ,Ad ρC) and
ε ∈ C sufficiently close to 0, there is a unique solution f εν : H→ GL(r,C) of
the differential equation

f−1 · fτ = εν (3.14)

satisfying

1. f εν(γτ) = ρεν(γ)f(τ)ρ(γ)−1 ∀γ ∈ Γ, where ρεν : Γ → U(r) is irre-
ducible;

2. det f εν(τ0) = 1 for some fixed τ0 ∈ H;

3. f εν is regular at the cusps, that is

lim
τ→τi

(f εν(τ))jk <∞, i = 1, · · · , n, 1 ≤ j, k ≤ r.
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Proof. The differential equation (3.14) has a unique antiholomorphic solution
f εν1 satisfying f εν1 (τ0) = I. The regularity at the cusps of f εν1 follows as a
consequence of the cusp form condition on ν∗. Moreover, it is immediate to
see that an arbitrary solution of it is of the form f εν2 f

εν
1 with f εν2 holomorphic.

We know from Lemma 3.2.2 that f1(γτ) = χεν(γ)f(τ)ρ(γ)−1 and moreover,
the dependence on ε is holomorphic as a consequence of Lemma 3.2.3. In this
way we construct a 1-dimensional holomorphic family of parabolic bundles F

with the property that F|{ε}×P1 = (Eχεν )∗ and moreover, F|{0}×P1 = (Eρ)∗.
The openness of parabolic stability implies that that if ε is sufficiently small,
the bundle (Eχεν )∗ would be parabolic stable, therefore (Eχεν )∗ ∼= (Eρεν )∗ for
some irreducible unitary representation ρεν . This last condition is equivalent to
the existence of a holomorphic map f εν2 : H → GL(r,C) satisfying f εν2 (γτ) =
ρεν(γ)f εν2 (τ)χεν(γ)−1 which is furthermore regular at each of the cusps. we
finish the proof by letting

f εν = f εν2 · f εν1 .

The function f εν plays the role of a deformation mapping (analogous to a
quasiconformal mapping) and induces a parabolic bundle map F εν by requiring
the commutativity of the diagram

H+ × Cr fεν //

J

��

H+ × Cr

Jεν

��
Eρ

F εν // Eρεν .

Or equivalently,
(τ, v) � //

_

��

(τ, f ν(τ)v)
_

��
(J(τ),Υ(τ)v) � // (J(τ), w),

with w = (Υενf
εν)(τ)v = ((F εν ◦ J)Υ)(τ)v, or simply,

Υεν · f εν = (F εν ◦ J) ·Υ on H. (3.15)

In general, f εν is a smooth function of ε, ε̄. We will discuss this in more detail
in the next section.

The pull-back (F εν)∗ of any object or structure on Eρεν to an object or
structure on Eρ can be understood at the level of H+ × Cr in terms of the
function f εν . For example, the corresponding ρεν-automorphic function g
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associated to a section of Eρεν transforms into the ρ-automorphic function
(f εν)−1 · g, and similarly for parabolic endomorphisms. Of special importance
are the holomorphic structures on Eρ, Eρεν , which are determined by the corre-
sponding projections of the Cauchy-Riemann operator ∂̄ on H+×Cr (with the
obvious extension at the cusps). by pulling back, the holomorphic structure
of the latter on Eρ becomes the projection of

∂̄εν = Ad
(
(f εν)−1

) (
∂̄
)

= ∂̄ + ενdτ̄ . (3.16)

A similar argument holds for the canonical connections and their corresponding
holomorphic parts. The following lemma will be useful to understand this
better.

Lemma 3.2.5. Let θ1,0 ∈ A1,0(H×Cr) and θ0,1 ∈ A0,1(H×Cr). The operator
∂+θ1,0 on H×Cr is a holomorphic connection with respect to the holomorphic
structure ∂̄ + θ0,1 if and only if

∂θ0,1 + ∂̄θ1,0 + [θ1,0, θ0,1] = 0, (3.17)

where [θ1,0, θ0,1] = θ1,0 ∧ θ0,1 + θ0,1 ∧ θ1,0 is the graded commutator on matrix-
valued 1-forms.

Proof. Let s : H→ Cr be any smooth function such that (∂̄ + θ0,1)s = 0. We
have

(∂̄ + θ0,1)(∂ + θ1,0)s = −(∂ + θ1,0)∂̄s+ (∂̄θ1,0 + θ0,1 ∧ θ1,0)s+ θ0,1 ∧ ∂s
= (∂θ0,1 + θ1,0 ∧ θ0,1)s+ (∂̄θ1,0 + θ0,1 ∧ θ1,0)s,

since ∂+θ1,0 is a holomorphic connection if and only if the previous expression
vanishes for any admissible s, the claim follows.

We defined the canonical connection on Eρ as an extension of the projection
of the De Rham differential. We can also pull-back the canonical connection
corresponding to the bundle Eρεν onto Eρ and this would be given as the
projection of the operator

Ad
(
(f εν)−1

)
(d) = d + θ

where
θ = (f εν)−1df εν .

The functoriality of the pull-back implies that this is not only compatible with
the holomorphic structure ∂̄ + ενdτ̄ but also its (1, 0)-part is a holomorphic
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connection for it: since ∂(ενdτ̄) = 0, by lemma 3.2.5 we only have to verify
that

((f εν)−1f εντ )τ̄ − [(f εν)−1f εντ , (f
εν)−1f εντ̄ ] = 0,

but this equation is clearly equivalent to the equation ((f εν)−1f εντ̄ )τ = (εν)τ =
0.

Let us now denote by A, resp. Aεν the corresponding logarithmic connec-
tions on Eρ, resp. Eρεν .

A ◦ J + Υ
(
(f εν)−1f εντ

)
Υ−1 =

(
(F εν)−1F εν

τ

)
◦ J +

(
(F εν)−1AενF εν

)
◦ J (3.18)

3.2.2 Variational formulas

We have encountered several families of functions depending on a moduli local
parameter ε. Even though their behaviour on such parameter could be rather
complicated, a surprising amount of information is encoded in their first vari-
ations. It is convenient to introduce the following notation: if the dependence
of a family f ε is smooth, we make

ḟ+ =
∂f ε

∂ε

∣∣∣
ε=0
, ḟ− =

∂f ε

∂ε̄

∣∣∣
ε=0
,

while if the dependence is complex analytic, we simply make

ḟ =
∂f ε

∂ε

∣∣∣
ε=0
.

The following lemma is of paramounth importance. All the variational
formulas we will encounter are a consequence of it. The case for stable vector
bundles over Riemann surfaces of genus greater than 1 was proved in [56] and
later reconsidered in [51] for stable parabolic bundles.

Lemma 3.2.6 (Vanishing of the first variation of the hermitian metric under
deformations). The function f εν satisfies

∂

∂ε
((f εν)∗f εν)

∣∣∣
ε=0

=
∂

∂ε̄
((f εν)∗f εν)

∣∣∣
ε=0

= 0.

Proof. The function Φ = ∂
∂ε

((f εν)∗f εν) |ε=0 is smooth and satisfies Φ(γτ) =
Ad(ρ(γ))(Φ(τ)). Since f 0

1 = f 0
2 = I, we also have that

Φ = ˙(f1)+ + ˙(f2)+ + ˙(f1)
∗
− + ˙(f2)

∗
−,

with each of the summands being either holomorphic or antiholomorphic.
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Hence Φ is harmonic and bounded at the cusps, thus a constant. Finally,
we observe that ∂

∂ε̄
((f εν)∗f εν) |ε=0 = Φ∗ = 0.

Corollary 3.2.7. The functions ḟ+, ḟ− satisfy(
ḟ+

)
τ̄

= ν,
(
ḟ−

)
τ̄

= 0, (3.19)(
ḟ+

)
τ

= 0,
(
ḟ−

)
τ

= −ν∗.

Proof. Clearly ḟ+ + ḟ ∗− = ∂
∂ε

((f εν)∗f εν) |ε=0 = 0. The result now follows from

the identities ∂
∂ε

((f εν)−1f εντ̄ ) |ε=0 =
(
ḟ+

)
τ̄
, ∂
∂ε̄

((f εν)−1f εντ̄ ) |ε=0 =
(
ḟ−

)
τ̄

For the second time, Eichler integrals of weight 0 appear naturally in the
infinitesimal deformation theory of stable parabolic bundles. Let us let

E+ = Υ−1 · Υ̇+, E− = Υ−1 · Υ̇−, (3.20)

Lemma 3.2.8. E+ and E− are Eichler integrals of weight 0 with the represen-
tation Ad ρ.

Proof. we know that for sufficiently small values of ε and ∀γ ∈ Γ, Υεν(γτ) =
Υεν(τ)ρεν(γ)−1. Thus

Υ̇±(γτ) = Υ̇±(τ)ρ(γ)−1 −Υ(τ)ρ(γ)−1ρ̇(γ)±ρ(γ)−1,

and consequently,

E±(γτ) = Ad ρ(γ) (E±(τ))− ρ̇(γ)±ρ(γ)−1

Remark 14. Notice that the unitarity of the deformations of ρ implies that(
ρ̇+(γ) · ρ(γ)−1

)∗
= −ρ̇−(γ) · ρ(γ)−1 ∀γ ∈ Γ.

and none of these is, in principle, an element of Z1
P (Γ,Ad ρ) but instead of

Z1
P (Γ,Ad ρC).

We can use these facts to study the first variation of the function F εν . A
direct computation from 3.15 gives

Υ
(
E+ + ḟ+

)
Υ−1 = Ḟ+ ◦ J, (3.21)

Υ
(
E− + ḟ−

)
Υ−1 = Ḟ− ◦ J. (3.22)
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The left hand side of 3.22 is holomorphic in τ as a consequence of corol-
lary 3.2.7, and moreover, the automorphic behaviour of F εν implies that the
function E− + ḟ− is Ad ρ-automorphic and bounded at the cusps, i.e. an en-
domorphism of Eρ, thus a multiple of the identity. The normalization of F εν

now implies that
Ḟ− = 0. (3.23)

In general we can write

F εν = I + εḞ + o(|ε|2).

It is easy to see that if E is an Eichler integral of weight −2p with a repre-
sentation ρ, then E (2p+1) is an automorphic form of weight 2p + 2 with the
representation ρ. In particular, E ′± are automorphic forms of weight 2 with
the representation Ad ρ. We readily get

E ′− = ν∗. (3.24)

The one-parameter family of uniformization maps Υεν generates a family of
hermitian metrics on the bundles Eρεν given as hεν = (YενY ∗

εν)
−1 where Yεν ◦

J = Υεν .

Proposition 3.2.9. The function Ḟ satisfies

Ḟ = −h−1ḣ+, (3.25)

and moreover,
(Ḟ ◦ J)τ̄ = Υ · ν ·Υ−1. (3.26)

Proof. Indeed, since (Υ−1)∗(f εν)∗f ενΥ−1 = ((F εν)∗hενF εν) ◦ J , it follows from
lemma 3.2.6 and F 0 = I that

0 = hḞ + ḣ+,

which gives equation (3.25). Equation (3.26) is an immediate consequence of
(3.21) and Corollary 3.2.7.

To conclude this section, we observe that if we let Aεν = −Υ−1
εν · (Υεν)τ , its

first variation with respect to ε̄ is related to E− as

˙A− = [A ,E−]− E ′−. (3.27)
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3.2.3 Canonical coordinates on M (W)

Let M (W) denote, for a moment, the set of stable parabolic bundles over
P1 with fixed weights W. Our goal here is to introduce complex coordinates
that will turn M (W) into a complex manifold biholomorphic to the character
variety K (W).

We shall first construct a smooth family E of parabolic bundles parametrized
by P analogous to the one appearing in [39], and calculate its infinitesimal
deformation map [41]. To begin, consider the space P × H × Cr as a vector
bundle over P ×H with the following left action of Γ:

γ · (ρ, τ, v) = (ρ, γ · τ, ρ(γ)v), γ ∈ Γ.

The space of orbits is a vector bundle over P ×X, which after the canonical
extensions yields a vector bundle E over P × P1, with the property that for
each ρ ∈P, E|{ρ}×P1

∼= Eρ.

Proposition 3.2.10. The infinitesimal deformation map

Iρ : TρP → H1(Par End((Eρ)∗))

of the family E is the composition of the maps

TρP → Z1
P (Γ,Ad ρ)→ H1

P (Γ,Ad ρ)→ S2(Γ,Ad ρC)→ H1(Par End((Eρ)∗)).

In particular, it is surjective.

Proof. The infinitesimal deformation map Iρ of the family E is defined by
assigning to a tangent vector v ∈ TρP the Čech 1-cocycle on a cover {Ui}mi=1

of P1, considered as a local section of EAd ρC|Uij in terms of the trivialization
at Ui, given as ġij(ρ) · gij(ρ)−1, where

ġij(ρ) = (dgij(ρ
′)) |ρ′=ρ(v)

and {gij(ρ)}are the transition functions of E over the cover {Ui×M (W)}mi=1.
Now, recall the transition functions (1.20) over the cover {Ui}mi=1 of P1

specialized to the representation Ad ρC. Using duality and following the proof
of Theorem 2.1.6 we see that these can be calculated in terms of the cusp form
arising from L−1

ES([z]), where z = δ(v) ∈ Z1
P (Γ,Ad ρ), and δ is the map that

identifies TρP and Z1
P (Γ,Ad ρ) following Proposition 3.1.1.

This theorem implies that we have overdetermined the possible infinitesi-
mal deformations of a given stable parabolic bundle, a fact that we know from
the Mehta-Seshadri theorem. We proceed to introduce a system of coordinates

58



in a neighbourhood of a point of M (W) analogous to the Bers coordinates on
Teichmüller spaces.

Let us call F the map

F : M (W)→ K (W),

given by sending an equivalence class of stable parabolic bundles [E∗] to the
equivalence class of unitary representations [ρ] so that [E∗] = [(Eρ)∗].

Theorem 3.2.11. With respect to the complex coordinates (ε1, · · · , εs), given
by choosing an arbitrary basis {ν1, · · · , νs} ⊂ S2(Γ,Ad ρC), the differential of
F at the point [(Eρ)∗] is given by

dF[(Eρ)∗](νi) = −2LES(ν∗i ). (3.28)

Proof. Let ε = x+
√
−1y. By restriction of scalars, a complex basis {ν1, · · · , νs}

corresponds to the real basis
{
ν1,
√
−1ν1, · · · , νs,

√
−1νs

}
. If we now interpret

any given ν,
√
−1ν as tangent vectors at [(Eρ)∗], it follows that their image

under the differential dF would be equal to the classes of the unitary parabolic
cocycles ρx|ε=0 · ρ−1, ρx|ε=0 · ρ−1.

Now, we have seen in section 3.2.2 that whenever ν ∈ S2(Γ,Ad ρC), the
Eichler integral associated to ν∗ is equal to E− (equation (3.24)), and its
parabolic 1-cocycle is zν∗ = −ρ̇− · ρ−1. It follow from remark 14 that

LES(ν∗) =
zν∗ − z∗ν∗

2
= −1

2
(ρx|ε=0) · ρ−1

and

LES
(
−
√
−1ν∗

)
=
zν∗ + z∗ν∗

2
√
−1

= −1

2
(ρy|ε=0) · ρ−1.

This concludes the proof.

Remark 15. Theorem 3.2.11 shows indirectly that the almost complex struc-
ture on K (W) induced by the Eichler-Shimura isomorphism (in the same
spirit of [39]) would be integrable provided that the complex coordinates on
M (W) define a holomorphic structure. This is guaranteed by the next result,
which can be found in [51] and will be of paramount importance.

Theorem 3.2.12. Let I : (Dδ)
s ⊂ S2(Γ,Ad ρC) → M (W) be the local

embedding given by εν 7→ [(Eρεν )∗]. Then dI is given as

dI (µ) = PAd ρενC

(
f ενµ(f εν)−1

)
. (3.29)

where PAd ρενC
is the projection operator defined in section 2.2.
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3.2.4 The evenly split locus

So far, we don’t know much about the splitting type of the vector bundles
Eρ. H. Röhrl proved in [44] that on any holomorphic family F → M ×
P1 of vector bundles over P1 parametrized by a complex manifold M , the
Birkhoff-Grothendieck theorem still holds in the complement of a codimension
1 analytic set in M (which could be empty). However, as we have discussed,
there are many potential splittings. Our next goal is to determine the generic
splitting that the stable parabolic bundles have.

Lemma 3.2.13. Let F be a family of vector bundles over P1 parametrized by
a complex manifold M . If E = F|{x0}×P1 is evenly split for some x0 ∈ M ,
then there exist a neighbourhood x0 ∈ U so that F|U ×P1 is evenly split.

Proof. Recall that the evenly split property is equivalent to the vanishing of
H1(End(E)). the result then follows from the upper semicontinuity of coho-
mology.

Theorem 3.2.14. The generic member of M (W) is evenly split.

Proof. It is a well-known fact that every vector bundle E over a Riemann
surface which is generated by its global sections admits an exact sequence

0→ Or−1 → E → det(E)→ 0.

(a proof of this fact can be found in [3]).
If Eρ = ⊕rj=1O(aj), a1 ≥ · · · ≥ ar, then Eρ ⊗ O(−ar) is generated by its

global sections. Therefore, after twisting again we get a short exact sequence

0→ O(ar)
r−1 → Eρ → L→ 0,

where L = det(Eρ)⊗O(−(r−1)ar). Thus Eρ belongs to the holomorphic and
irreducible family

Ext(L,O(ar)
r−1).

Let d = deg(Eρ) = ar + b. This is also the case for the bundle

O(a+ 1)b ⊕O(a)r−b

and as a consequence of Lemma 3.2.13, there exists a stable parabolic bundle
which is also evenly split. The theorem now follows by applying Lemma 3.2.13
once again to the family of stable parabolic bundles parametrized by M (W).

We will call evenly split locus the analytic open set in M (W) consisting of
stable parabolic bundles which are evenly split, and denote it by U (W).
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3.2.5 The Kähler metric on M (W)

We have learned that, when incarnated as a character variety, the Moduli space
M (W) acquires a natural Kähler structure. There is another way to induce
this structure in terms of the identification T[(Eρ)∗]M (W)↔ S2(Γ,Ad ρC). If
we denote the holomorphic tanget vector corresponding to µ by ∂

∂ε(µ)
, we define

a (1,1)-form Ω which at [(Eρ)∗] ∈M (W) is given as

Ω

(
∂

∂ε(µ)
,

∂

∂ε(ν)

)
=

√
−1

2
〈µ, ν〉P , (3.30)

If follows from Theorem 3.2.12 that the previous prescription trully defines
a smooth (1,1)-form on M (W). One of the goals of the next chapter would
be to prove that this form is indeed Kähler. We will call it the parabolic
Narasimhan-Atiyah-Bott metric.

Keeping in mind the analogy with the Teichmüller theory, the reader would
not be surprised with such a choice. This metric is nothing but a siutable
analog of the Weil-Petersson metric in the context of parabolic bundles. An
analogous expression for the case of stable parabolic bundles over Riemann
surfaces of genus g > 1 appeared first in [38], and later in [5].

3.2.6 A canonical section of T ∗U (W)

We have learned in section 2.3 that whenever the vector bundle Eρ is evenly
split, the Ad ρC-automorphic form A is regular. Since the inner product of
regular automorphic forms and cusp forms is always well-defined (Proposition
2.1.4), this implies that we can construct a canonical 1-form Q over the evenly-
split locus U (W) ⊂ M (W) defined over each tangent space T[(Eρ)∗]U (W) as
the linear functional

Q(ν) = 〈A , ν∗〉P =

∫∫
F

tr(A ν)d2τ. (3.31)

As with the Narasimhan-Atiyah-Both (1,1)-form, the smoothness of Q follows
Theorem 3.2.12. The goal of the next chapter will be to understand the relation
between these structures.
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Chapter 4

The WZNW functional on
M (W)

In this chapter, the reader should keep in mind the work of Takhtajan and
Zograf [55], since all of our results are WZNW-parallel to the ones on the Li-
ouville theory once the proper analogies are given. For every Riemann surface
of type (0,n), they construct an action functional on the space of metrics with
prescribed singularities at the set of points D , whose Euler-Lagrange equation
turns out to be the Liouville equation, and whose solution corresponds to the
hyperbolic metric on P1 \ D with cusp singularities on D . Their main result
states that each one of these functionals evaluated at their extrema gives rise
to a function on Teichmüller space T0,n which is a generating function for the
accessory parameters of the uniformization problem on P1 \ D and a Kähler
potential for the Weil-Petersson metric on T0,n. The main difference that the
reader should keep in mind is that in their work, the set of points D is not
fixed (in fact, such points constitute the Moduli parameters).

4.1 The space of singular Hermitian metrics

on Eρ

Consider the space C∞[ρ](P1 \ D ,Hr) of smooth maps h : P1 \ D → Hr having
asymptotic behaviour

h(z) '

 (Ci(0)∗)−1 |z − zi|2WiCi(0)−1 as z → zi, i = 1 · · ·n− 1,

|z|−2(Wn+N) as z →∞.
(4.1)
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Our aim is to construct a functional S : C∞[ρ](P1 \D ,Hr)→ R. Let

Xλ = C \

(
n−1⋃
i=1

{|z − zi| < λ} ∪ {|z| > 1/λ}

)
.

Our first observation is that if 0 < λ′ < λ are taken to be sufficiently small,
the asymptotics (4.1) imply

h−1hz '


Ci(0)WiCi(0)−1

z − zi
as z → zi, i = 1, · · · , n− 1,

−Wn +N

z
as z →∞,

(4.2)

h−1hz̄ '


Ci(0)WiCi(0)−1

z̄ − z̄i
as z → zi, i = 1, · · · , n− 1

−Wn +N

z̄
as z →∞.

(4.3)

hence

tr(h−1hzh
−1hz̄) '


tr(W 2

i )

|z − zi|2
as z → zi, i = 1, · · · , n− 1

tr((Wn +N)2)

|z|2
as z →∞.

Thus∫
Xλ′\Xλ

tr(h−1hzh
−1hz̄)d

2z ' 2π(ln(λ)− ln(λ′))
r∑
j=1

(
n−1∑
i=1

α2
ij + (αnj + aj)

2

)
.

In particular, the integral of tr(h−1hzh
−1hz̄) on Xλ would be divergent when

λ→ 0. In order to fix this, we define the regularized kinetic term of our action
functional as the limit

S0[h] = lim
λ→0

Sλ0 [h],

where

Sλ0 [h] =

∫
Xλ

tr(h−1hzh
−1hz̄)d

2z + 2π ln (λ)
r∑
j=1

(
n−1∑
i=1

α2
ij + (αnj + aj)

2

)
.
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We would like to determine the first variation of the functional S0. For this let
us consider the linear space of Lie algebra-valued smooth maps u : P1 → n(r)o
Rr with support contained in Xλ for some λ > 0, and consider the increments
betu (or equivalently etu

∗
hetu) that consequently preserve the asymptotics (4.1).

The first variation is the linear functional on this space defined as

δS0[b;u] = lim
λ→0

(
d

dt

∣∣∣
t=0
Sλ0 [betu]

)
. (4.4)

Proposition 4.1.1. The Euler-Lagrange equations of S0 are

(h−1hz)z̄ =
1

2
[h−1hz, h

−1hz̄], (4.5)

known as equations of principal chiral fields.

Proof. This is a routine computation. The following formulas will be useful:

h−1hz = b−1(bzb
−1 + (bz̄b

−1)∗)b, h−1hz̄ = b−1(bz̄b
−1 + (bzb

−1)∗)b,

(betu)z(be
tu)−1 = bzb

−1 + tbuzb
−1, (betu)z̄(be

tu)−1 = bzb
−1 + tbuz̄b

−1

then

δSλ0 [b;u] =

∫
Xλ

tr
(
(buzb

−1 + (buz̄b
−1)∗)(bz̄b

−1 + (bzb
−1)∗)

+ (bzb
−1 + (bz̄b

−1)∗)(buz̄b
−1 + (buzb

−1)∗)
)

d2z

=

∫
Xλ

tr
(
uzh

−1hz̄ + uz̄h
−1hz + (uzh

−1hz̄ + uz̄h
−1hz)

∗)
= −

∫
Xλ

tr
(
u
(
(h−1hz̄)z + (h−1hz)z̄

)
+ u∗

(
(h−1hz̄)z + (h−1hz)z̄

)∗)
−
√
−1

2

∫
∂Xλ

tr
(
uh−1hz̄ + (uh−1hz)

∗) dz

−
√
−1

2

∫
∂Xλ

tr
(
uh−1hz + (uh−1hz̄)

∗) dz̄.

The vanishing of u near the punctures implies that the line integrals at ∂Xλ

also vanish for sufficiently small λ. Letting h−1δh = u + h−1u∗h, we can
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rearrange the above equations after the limit is taken as

δS0[b;u] = −
∫
C

tr
(
h−1δh

(
(h−1hz̄)z + (h−1hz)z̄

))
d2z

= −
∫
C

tr
(
h−1δh

(
2(h−1hz)z̄ + [h−1hz̄, h

−1hz]
))

d2z.

We thus see that the functional S0 has the solutions of (4.5) satisfying the
asymptotics (4.1) as its critical points.

4.2 Cholesky decomposition and the WZNW

term

Recall that a matrix h is Hermitian and positive definite, i.e. h ∈ Hr if and only
if h = M∗M for some invertible matrix M . Since the Gram-Schmidt process
on the columns of M allows us to express M = Ub where U is unitary and b
upper triangular with positive diagonal terms (a particular case of the Iwasawa
decomposition) we conclude that h factors in the form h = b∗b where b is upper
triangular with positive diagonal terms (hence invertible). This factorization is
known as the Cholesky decomposition, even though it was apparently known to
Jacobi (and later rediscovered by Toeplitz, see [52]) . It is easy to see that this
decomposition is in fact unique. Since b can be factored as pd with p unipotent
and d positive diagonal, we see that Hn acquires the structure of a group in
terms of the Cholesky decomposition isomorphic to the semidirect product
N(r)o (R+)r, with the action of (R+)r on N(r) being conjugation. Since this
factorization gives global canonical coordinates on Hr, we could consider the
functions b as the primary parameters in S0. One could equivalently factor h
in the form c∗ac with c unipotent and a diagonal and positive, i.e.

b =
√
ac.

The factorization h = c∗ac has the advantage of admiting a particular explicit
(yet cumbersome) expression in terms of the coefficients of h that we now
describe. Let M be a r× r matrix and s an integer between 1 and r. Consider
arbitrary collections of integers

1 ≤ k1 < k2 < · · · < ks < r, 1 ≤ l1 < l2 < · · · < ls < r
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and let Mk1···ks
l1···ls be the s× s matrix constructed from M as

(Mk1···ks
l1···ls )ij = (M)kilj .

Define, for j ≤ k,

Pjk =
∑

l1<···<lj

det
(
M

l1···lj
1···j−1j

)
det
(
M

l1···lj
1···j−1k

)
(4.6)

Notice that if M is invertible, then Pjj is real and positive for j = 1, · · · , r by
the standard properties of the minors of a matrix.

Lemma 4.2.1. If h = M∗M for M ∈ GL(r,C), the factorization h = c∗ac is
given by the following explicit formulas

(a)jj =
Pjj

Pj−1j−1

(4.7)

(c)jk =
Pjk
Pjj

(4.8)

It is not hard to prove this lemma using induction and the recursive formu-
las defining the Cholesky decomposition (following the Gram-Schimdt process)
but since this is rather tedious we will omit the proof. A proof of an equivalent
result can be found in [23]. As an application, we can use formulas (4.7),(4.8)
and the expansions (4.1) to provide asymptotic expansions near the points
z1, · · · , zn for the matrix-valued functions b factoring the singular metrics h.

Consider the 3-form Θ = tr(θ ∧ θ ∧ θ) on GL(r,C) defined in terms of the
Maurer-Cartan form θ = g−1 ·dg. Since θ satisfies the Maurer-Cartan equation
dθ + θ ∧ θ = 0, it follows that Θ is closed. Indeed,

dΘ = −d(tr(dθ ∧ θ)) = −tr(dθ ∧ dθ) = −tr(θ ∧ θ ∧ θ ∧ θ) = 0.

The unitary group U(r) is a deformation retract of GL(r,C) which implies
that the nonzero cohomology groups of the homogeneous space Hr vanish. In
particular, the projection of Θ to Hr is exact. By a slight abuse of notation,
we will also denote this projection by Θ. This fact can be shown explicitly
with the aid of the Cholesky decomposition.

Lemma 4.2.2. Let θ1 = db · b−1. The projection of Θ to Hr is given as

Θ = 3d(tr(θ1 ∧ θ∗1))
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Proof.
θ = h−1dh = b−1(db · b−1 + (db · b−1)∗)b

dθ1 = θ2
1, dθ∗1 = −(θ∗1)2

Θ = tr
(
(θ1 + θ∗1)3

)
= 3tr(θ2

1 ∧ θ∗1 + θ1 ∧ (θ∗1)2)

= 3tr(dθ1 ∧ θ∗1 − θ1 ∧ dθ∗1)

= d(3tr(θ1 ∧ θ∗1)).

The form Θ is a generator of H3(GL(r,C),Z). The classical Wess-Zumino-
Novikov-Witten term (abbreviated WZNW) is defined as a multivalued func-
tional by considering cycles h : P1 → GL(r,C) as boundaries of arbitrary
3-chains over which Θ can be integrated. Since the difference of any 2 3-chains
is a 3-cycle, the value of such integrals would be determined up to an integral
multiple of a given constant. In our situation (a coset model in physics ter-
minology) every 3-cycle on Hr is a boundary and we can define the analog of
the WZNW term on the space C∞[ρ](P1 \D ,Hr) explicitly as

W [b] =
1

2
√
−1

∫
P1

tr(θ1 ∧ θ∗1) (4.9)

=

∫
P1

tr
(
(bz̄b

−1)(bz̄b
−1)∗ − (bzb

−1)(bzb
−1)∗

)
d2z. (4.10)

Proposition 4.2.3. The Euler-Lagrange equations of W [b] are

[h−1hz, h
−1hz̄] = 0. (4.11)

Proof. To determine the first variation of W we use once again the identities
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in the begining of the proof of proposition 4.5.

δW λ[b;u] =

∫
P1

tr
(
buz̄b

−1(bz̄b
−1)∗ + bz̄b

−1(buz̄b
−1)∗

−buzb−1(bzb
−1)∗ − bzb−1(buzb

−1)∗
)

d2z

=

∫
P1

tr
(
u
(
(h−1hz̄ − b−1bz̄)z − (h−1hz − b−1bz)z̄

)
+u∗

(
(h−1hz̄ − b−1bz̄)z − (h−1hz − b−1bz)z̄

)∗)
d2z

= −
∫
Xλ

tr
(
u
(
[h−1hz, h

−1hz̄]− [b−1bz, b
−1bz̄]

)
+ u∗

(
[h−1hz, h

−1hz̄]− [b−1bz, b
−1bz̄]

)∗)
d2z

Notice that since b−1bz, b
−1bz̄ are upper triangular, their commutator is upper

diagonal. Since upper diagonal matrices form an ideal in the algebra of upper
triangular matrices, we conclude

δW [b;u] = −
∫
C

tr
(
h−1δh[h−1hz, h

−1hz̄]
)

d2z

Definition 4.2.4. The regularized WZNW functional on the space C∞[ρ](P1\
D ,Hr) is defined as S := S0 +W .

Corollary 4.2.5. The critical points of the WZNW functional on the space
C∞[ρ](P1 \D ,Hr) correspond to the solutions of the equation(

h−1hz
)
z̄

= 0 (4.12)

satisfying the asymptotics (4.1).

We should call this equation the matrix Laplace equation. We can say more
about its solutions.

Proposition 4.2.6. The matrix Laplace equation has at most one solution
satisfying the asymptotics (4.1).

Proof. Assume that h, h′ are hermitian, positive definite functions on P1 \D
solving (4.12) with asymptotics (4.1). Since h−1hz, h

′−1h′z are holomorphic
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and have asymptotics (4.2), it follows that h−1hz = h′−1h′z =
∑n−1

i=1
Ai
z−zi . This

and the hermitian property imply that the function h′h−1 is holomorphic and
antiholomorphic on P1 \D , hence a constant. Since lim

z→zi
(h′h−1)(z) = I ∀i, we

conclude that h = h′.

4.3 The main theorems

Once uniqueness of the solution of equation (4.12) has been proved, we can
define a function on M (r,W) by evaluating the functional S at each corre-
sponding critical point, which we will denote as S by a slight abuse of notation.
Doubts might be raised on whether this crude function could have any inter-
esting properties at all. The next theorems reveal the deep relation of it and
the geometry of M (r,W).

Theorem 4.3.1. The function S : M (W)→ R satisfies

∂S|U (W) = −2Q (4.13)

that is, for every ν ∈ S2(Γ,Ad ρ)∗ and ε its local coordinate,

∂S

∂ε

∣∣∣∣
ε=0

= −2

∫∫
F

(A ν) d2τ.

Proof. To prove the result, we start by showing that
∂Sλ

∂ε

∣∣∣∣
ε=0

→ Q(ν) as
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λ→ 0 in the sense of pointwise convergence.

∂Sλ0
∂ε

=

∫
Xλ

tr
(
(h−1hz)εh

−1hz̄ + h−1hz(h
−1hz̄)ε

)
d2z

=

∫
Xλ

tr
((

(h−1hε)z + [h−1hz, h
−1hε]

)
h−1hz̄

+ h−1hz
(
(h−1hε)z̄ + [h−1hz̄, h

−1hε]
))

d2z

=

∫
Xλ

tr
(
(h−1hε)z̄h

−1hz + (h−1hε)zh
−1hz̄

)
d2z

=

∫
Xλ

tr
(
(h−1hε)z̄h

−1hz
)

d2z −
∫
Xλ

tr
(
h−1hε(h

−1hz̄)z
)

d2z

+

√
−1

2

∫
∂Xλ

tr
(
h−1hεh

−1hz̄
)

dz̄

= 2

∫
Xλ

tr
(
(h−1hε)z̄h

−1hz
)

d2z −
∫
Xλ

tr
(
(h−1hε)[h

−1hz̄, h
−1hz]

)
d2z

+

√
−1

2

∫
∂Xλ

tr
(
h−1hεh

−1dh
)
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∂W

∂ε
=

∫
P1

tr
(
(bz̄b

−1)ε(bz̄b
−1)∗ + (bz̄b

−1)(bz̄b
−1)∗ε

− (bzb
−1)ε(bzb

−1)∗ − (bz̄b
−1)(bz̄b

−1)∗ε
)

d2z

=

∫
P1

tr
((

(bεb
−1)z̄ + [bεb

−1, bz̄b
−1]
)

(bzb
−1)∗

+ bz̄b
−1
(
(bε̄b

−1)z̄ + [bε̄b
−1, bz̄b

−1]
)∗

−
(
(bεb

−1 + [bεb
−1, bzb

−1])z
)

(bzb
−1)∗

− bzb−1
(
(bε̄b

−1)z + [bε̄b−1 , bzb
−1]
)∗)

d2z

=

∫
P1

tr
(
bεb
−1
(
[bz̄b

−1, (bz̄b
−1)∗]

+ [(bzb
−1)∗, bzb

−1] + [(bzb
−1)∗, (bz̄b

−1)∗]
))

d2z

+

∫
P1

tr
(
(bε̄b

−1)∗
(
[bz̄b

−1, bzb
−1]

+ [(bz̄b
−1), (bz̄b

−1)∗] + [(bzb
−1)∗, bzb

−1]
))

d2z

=

∫
P1

tr
(
h−1hε[h

−1hz̄, h
−1hz]

)
d2z

The last equality follows from the identity

b[h−1hz̄, h
−1hz]b

−1 = [bz̄b
−1, bzb

−1] + [bz̄b
−1, (bz̄b

−1)∗]

+[(bzb
−1)∗, bzb

−1] + [(bzb
−1)∗, (bz̄b

−1)∗]

and the fact that the product of an upper triangular matrix and the commu-
tator of upper triangular matrices is upper diagonal.
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Putting the terms together, after consideration of Lemma 3.2.9 we obtain

∂Sλ

∂ε

∣∣∣∣
ε=0

= 2

∫
Xλ

tr
(

(h−1ḣ+)z̄h
−1hz

)
d2z +

√
−1

2

∫
∂Xλ

tr
(
h−1ḣ+h

−1dh
)

= −2

∫
Xλ

tr
(

(Ḟ )z̄h
−1hz

)
d2z −

√
−1

2

∫
∂Xλ

tr
(
Ḟ h−1dh

)
= I1 + I2.

We consider each of these integrals independently. The change of variables
formulas (F εν

z̄ ◦ J) J ′ = (F εν ◦ J)τ̄ , ((h−1hz) ◦ J) J ′ = (h ◦ J)−1(h ◦ J)τ and
equations 3.26 and 2.14 give

I1 = −2

∫
Fλ

tr
(

(Ḟ ◦ J)τ̄ (h ◦ J)−1(h ◦ J)τ

)
d2τ

= −2

∫
Fλ

tr
(
(ΥνΥ−1)(ΥA Υ−1)

)
d2τ

= −2

∫
Fλ

tr (A ν) d2τ

where F λ = J−1(Xλ) ∩ F . Notice that I4 = Q(ν) − I1 ' o(1) by the cusp
form condition.

The identity (3.25) guarantees that in a neighbourhood of the points z1, · · · , zn,
the function Ḟ behaves like

Ḟ (z) ' f(|z − zi|)

and similarly for h. Since

dh ' g(|z − zi|)
(

dz

z − zi
+

dz̄

z − zi

)
as z → zi,

we conclude that
I2 ' o(1) as λ→ 0.

Putting everything together, we have concluded that

∂Sλ

∂ε

∣∣∣∣
ε=0

= −2Q(ν) + o(1)
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Now, the function Υεν is differentiable in ε (in particular this also holds for
its Fourier coefficients Ci(0)εν). Since every single factor in the integrals I2, I3

and I4 depends directly on the derivative at of Υεν at 0, we conclude that such
remainders can be estimated uniformly in a neighbourhood of [Eρ] in M (W).
Of course, the same will hold if we let ν =

∑s
i=1 εiνi for an arbitrary basis

{ν1, · · · , νs} of S2(Γ,Ad ρ).

Theorem 4.3.2. The linear functional Q satisfies

∂̄Q = 2
√
−1Ω|U (W). (4.14)

Proof. Let us consider two arbitrary (but different) forms µ, ν as tanget vec-
tors at [(Eρεν )∗], and let ε be an arbitrary complex number belonging to a
sufficiently small open disk.

Recall that by their very definition, the local coordinates {ε1, · · · , εs} cor-
responding to the choice of a basis {ν1, · · · , νs} of S2(Γ,Ad ρ) determine a
local trivialization of the tangent and cotangent bundles, and in this case, the
linear map identifying the tangent space at [(Eρεν )∗] with the tangent space at
[(Eρ)∗] is given by (3.29). That is why it is enough evaluate Q at the vector
field Yµ,ν over the complex curve ε 7→ [(Eρεν )∗] give as

Yµ,ν |[(Eρεν )∗] = P
(
f ενµ(f εν)−1

)
,

since this way we obtain the coordinate function corresponding to dε.
As before, let

Qλ(Yµ,ν) =

∫∫
Fλ

tr
(
AενP

(
f ενµ(f εν)−1

))
d2τ

A direct computation shows that

∂Qλ(Yµ,ν)

∂ε̄

∣∣∣∣
ε=0

=

∫∫
Fλ

tr
(

˙A−µ+ A [ḟ−, µ]
)

d2τ

=

∫∫
Fλ

tr
((

[A ,E−]− E ′−
)
µ−A [E−, µ]

)
d2τ

= −
∫∫
Fλ

tr (µν∗) d2τ,

where the last two equations follow as a consequence of (3.27), (3.22) and
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(3.24), respectively. From here we conclude

∂Qεν(Yµ,ν)

∂ε̄

∣∣∣∣
ε=0

= −
∫∫
F

tr(µν∗)d2τ = 2
√
−1Ω

(
∂

∂ε(µ)
,

∂

∂ε(ν)

)
.

Recall that, given a Kähler manifold (M,ω), a Kähler potential is a function
u : M → R that satisfies (either locally or globally)

√
−1

2
∂∂̄u = ω. (4.15)

Putting together the Theorems 4.3.1 and 4.3.2, we obtain as a corollary that

∂∂̄S|U (W) = 4
√
−1Ω|U (W), (4.16)

that is, over the evenly split locus in M (W), the function −S/2 is a Kähler
potential for the parabolic Narasimhan-Atiyah-Bott (1,1)-form.
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Appendix A

Logarithms and uniformization

A.1 The Logarithm function

The real logarithm function is defined to be the inverse function of the exponen-
tial function, but in the complex case the later is not injective. By restricting
the domain we define the complex logarithm as a power series around 1 with
radius of convergence 1

log(1 + z) =
∞∑
n=1

(−1)n−1

n
zn

and the value of it at any other complex number z 6= 0 is then gotten by
considering analytic continuations. Recalling that the notion of analytic con-
tinuation relies on the choice of a path and that another possible definition of
log(x) when x is real and positive is in terms of the definite integral

log(x) =

∫ x

1

dx

x
,

we can then try to make the continuations more explicit by considering the
integral ∫

γ

dz

z

for any continuous path γ : [0, 1] → C∗ with γ(0) = 1. Since f(z) = 1/z
is holomorphic in C∗, this integral only depends on the homotopy class of
the path. However, if we allow the paths to wind around 0 we would get
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a ”multivalued function”, since C∗ is not simply connected1. Riemann was
the first to realize that we could make an unambiguous definition of such
functions in terms of the universal cover of the domain. In this particular
case, the universal cover of C∗ is C and one possible covering map2 is given by
mapping τ ∈ C to exp(2π

√
−1τ). This function is automorphic with respect

to the cyclic group Γ∞ generated by the parabolic transformation τ 7→ τ + 1,
and has the additional property that its restriction to the upper half plane H
maps it onto the punctured unit disk D∗. Since the action of Γ∞ on C (and H)
is free, holomorphic and properly discontinuous, it follows that Γ∞ \ C ∼= C∗,
Γ∞ \H ∼= D∗.

We can see now that if we fix points τ0 ∈ C, z0 = exp(2π
√
−1τ0) and we

consider only the paths starting at z0, there will be a unique lift to of this
path to C starting at τ0. In particular, for a loop γ at z0, the corresponding
lift would start at τ0 and end at the point τ0 + n for some n ∈ Z where n is
the winding number of γ,

n(γ) :=
1

2π
√
−1

∫
γ

dz

z

As it was pointed out before, n only depends on the homotopy class of γ,
[γ] ∈ π1(C∗, z0)3.

We can characterize the function that sends the ending point z of a path
γ to the ending point of its lift in the following simple way: First let’s notice
that the ending point z of a path with 0 winding number starting at z0 would
not lie in the ray through 0 and z0 and that the lift of this path starting at
τ0 would have ending point τ0 + 1

2π
√
−1

log(z/z0) 4. Since the lift of a loop at
z0 with winding number n would be a path ending at τ0 + n and any path γ
in C∗ starting at z0 and ending at some arbitrary point z is homotopic to the
product of a loop γn at z0 with winding number n(γ) and a path γ0 joining
z0 and z with 0 winding number, the lift of γ at τ0 will be a path ending at

1Of course we can avoid this by defining log(z) (as it is customarily done) in a maximal
simply connected subdomain of C∗, for instance, the slitted plane C \ {az0 : a ≥ 0} for any
z0 6= 0.

2This covering is analytic, and any other analytic covering will differ from this by pre-
composition with a biholomorphism of C.

3From now on we will slightly abuse notation and use the symbol γ to denote indistinc-
tively 1) a loop in a complex domain, 2) the homotopy class of this loop, 3) the corresponding
deck transformation in the universal cover. The precise meaning should be clear from the
given context.

4Or in other words, the logarithm function is well-defined for the choice of the branch
C \ {az0 : a ≥ 0}; the factor 1

2π
√
−1 comes from the established choice of the uniformization

function.
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τ0 + 1
2π
√
−1

log(z/z0) + n.

Definition A.1.1. We define a function L : C∗ × Z→ C by

L (z, n) := τ0 +
1

2π
√
−1

∫
γ

dz

z

where γ is any path starting at z0 and ending at z with n(γ) = n. This function
satisfies

exp(2π
√
−1L (z, n)) = z. (A.1)

Remark 16. The introduction of the function L is done as a way of keeping
track of the ”multivaluedness” of the logarithm. By its very definition, it also
satisfies

L (z, n+ 1) = L (z, n) + 1

Moreover, the restriction of it to the subdomain D∗ × Z has the upper half
plane H as its image, and the restriction of it to U×{0} where U is any simply
connected subdomain of C∗ gives a suitable branch of the usual logarithmic
function (after multiplication of the factor 2π

√
−1).

We are now ready to give a cleaner version of a fundamental definition for
our future constructions:

Definition A.1.2. For any matrix r × r matrix A with complex entries, we
define the function

zA : C∗ × Z→ C

as
(z, n) 7→ exp(2π

√
−1AL (z, n)).

We define (z − zi)A in a similar way.

It should be emphasized that this definition depends on the choice of the
points τ0 ∈ C, z0 ∈ C∗ with exp(2π

√
−1τ0) = z0.

A.2 The logarithm of a unitary matrix

Given a r× r unitary matrix M , we would like to find all possible solutions of
the equation

exp(A) = M (A.2)

we would call any such solution a logarithm of M .
By the fact M is unitary we know it is diagonalizable and its eigenvalues

are unitary complex numbers. If U is the matrix whose columns correspond to
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a basis of normalized eigenvectors of M , then U is unitary and M = UDU∗,
where D is the diagonal matrix of eigenvalues of M . Now, since the operation
of conjugation commutes with the exponential, we can reduce our problem to
the particular case

exp(A) = D (A.3)

where D is unitary and diagonal. Furthermore, since a unitary complex
number can be uniquely expressed in the form exp(2π

√
−1λ) where λ ∈ [0, 1),

we can assume that

D = exp(2π
√
−1Λ), Λ = diag(λ1, · · · , λr), 0 ≤ λ1 ≤ · · · ≤ λr < 1. (A.4)

We will call 2π
√
−1Λ the canonical solution of the system (A.2). First we

prove the following

Lemma A.2.1. A r × r matrix A is diagonalizable if and only if exp(A) is
diagonalizable.

Proof. One direction is obvious since conjugation commutes with exponentia-
tion. Let’s now assume that exp(A) is diagonalizable. We can assume without
loss of generality that A is in its Jordan canonical form, and then exp(A) would
be upper triangular (with each triangular block having the same element along
the diagonal, namely the exponential of the corresponding eigenvalue of A),
but such a matrix can de diagonalizable just if it is already diagonal, and we
conclude that A is diagonal.

Proposition A.2.2. A matrix A is is skew-Hermitian if and only if exp(A)
is unitary.

Proof. One direction is clear since A + A∗ = 0 implies Id = exp(A + A∗) =
exp(A) exp(A∗) = exp(A) exp(A)∗ (since A and A∗ = −A commute).

Now if we assume that exp(A) is unitary then A has to be diagonalizable
by lemma (A.2.1) which in turn implies that A is normal, i.e. AA∗ = A∗A.
Thus

Id = exp(A) exp(A)∗ = exp(A+ A∗)

but we know that A = UBU∗, where B is diagonal and U unitary so A∗ =
UΛ∗U∗, and then

A+ A∗ = U(B +B∗)U∗ = 0

since B is the matrix of eigenvalues of A, which are imaginary since their
exponentials are unitary complex numbers.
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From the previous proposition we know that it is enough to restrict the
matrix A to the skew-Hermitian case. These are precisely the diagonaliz-
able matrices with purely imaginary eigenvalues. Hence if we assume that
A = U(2π

√
−1Λ′)U∗ and exp(A) = D, then from (A.4) we conclude that

up to a permutation, Λ′ = Λ + N , where Λ is te canonical solution and
N = diag(n1, · · · , nr), ni ∈ Z.

Now, it is still possible that there is a unitary matrix U that commutes
with Λ, and in this case A = 2π

√
−1U(Λ + N)U∗ would be the most general

type of a solution (provided U does not commute with N). Hence we can
state:

Corollary A.2.3. Every solution of the equation (A.3) is of the form

A = 2π
√
−1U(Λ +N)U∗,

where N is a diagonal matrix of integers, and U is a unitary matrix that
commutes with Λ.

We notice that if in particular the elements of the canonical solution are all
different, 0 ≤ λ1 < λ2 < · · · < λr < 1, then any other solution would have to
differ from the canonical solution by a diagonal matrix of multiples of 2π

√
−1.
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Appendix B

Singular metrics and
connections

B.1 The Čech point of view

The Čech conception of vector bundles in terms of transition functions al-
lows us to have a simple understanding of the different constructions we can
associate to it by 1) first classifying them on trivial bundles and then 2) un-
derstanding the corresponding compatibility condition for its form on different
patches. The formulas developed hereafter, though simple in nature, could be
easily confused; Special emphasis is made on their differences with the ones
appearing when changes of frames are considered (cf. [24]).

Given a complex vector bundle E →M , a connection is a C-linear mapping
∇ : A0(E)→ A1(E) satisfying Leibniz rule:

∇(fs) = df ⊗ s+ f∇(s), ∀f ∈ C∞(U ), s ∈ A(E)(U ), U ⊂M, (B.1)

and its curvature is the resulting map ∇2 after extending as a graded deriva-
tion. It can be readily verified that the latter map is C∞(M)-linear, or equiv-
alently is defined as the action of a section of ∧2(M)⊗End(E). Similarly, the
difference of two connections is C∞(M)-linear:

(∇1 −∇2)(fs) = f(∇1 −∇2)(s),

and the space of connections on E form an affine space parametrized by A1(E).
If E = M×Cr, exterior differentiation defines a connection, so any connnection
will be of the form d + θ with θ ∈ A1(M × Cr×r). Thus, locally, a connection
is an operator of the form d + θ, θ ∈ A1(End(E))(U ) and equivalently, it
can be defined in terms of the Čech cocycle {U, gij} as a collection {Ui, θi},
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θi ∈ A1(End(E))(Ui), such that on Uij,

θi = gijθjg
−1
ij − (dgij)g

−1
ij . (B.2)

since sections of E correspond to collections of local functions {si : Ui → Cr}
such that on Uij, si = gijsj, and (B.2) ensures that on Uij,

∇|Ui(si)|Uij = ∇|Ui(gijsj)|Uij = gij∇|Uj(sj)|Uij .

The following is a classical result.

Theorem B.1.1. Let E be a complex vector bundle over a smooth manifold
M . Then the following are equivalent:

1. E is isomorphic to the quotient ρ \ (M̃ ×Cr), for a given representation
ρ : π1(M)→ GL(r,C).

2. E is defined by a set of constant transition functions.

3. E admits a connection with vanishing curvature

For the proof, the reader can consult [31] (although the equivalence of 1 and
2 follows from a direct generalization of the construction given in proposition
1.4.1). The word flat is used to denote such a bundle and such a connection.
This connection is precisely the one for which the local trivializations giving
the constant transition functions correspond to a frame of parallel sections.
The nature of it is rather transparent: a section of a bundle E isomorphic
to a quotient by a reprensentation ρ is equivalent to a a function f : M̃ →
Cr satisfying f(γx) = ρ(γ)f(x), and the exterior derivative df would also
have the same automorphic property and thus correspond to an element of
A1(E). It is readily seen that this procedure indeed defines a connection on
E. In particular, the bundle ρ \H×Cr → X constructed before admits a flat
connection.

Definition B.1.2. A holomorphic connection on a holomorphic vector
bundle E → M is a C-linear map of sheaves ∇ : O(E) → Ω1(E), which
satisfies the Leibniz rule

∇(fs) = ∂f ⊗ s+ f∇(s), ∀f ∈ O(U ), s ∈ O(E)(U ), U ⊂M,

We should emphasize that such connections do not necessarily exist in
general (cf. [3]). The following proposition will throw some light on this issue
when M is a Riemann surface, but before, one more definition.
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Definition B.1.3. We say that a connection ∇ on a holomorphic vector bun-
dle is compatible with the complex structure if ∇0,1 = ∂̄, where ∇0,1

denotes the (0, 1)-part of ∇.

Proposition B.1.4. Given a holomorphic vector bundle E over a Riemann
surface S, there is bijective correspondence between holomorphic connections
on E and flat connections on E compatible with the complex structure

Proof. A holomorphic connection ∇ on E satisfies ∇0,1 = ∂̄ and is thus com-
patible with the complex structure. It is given locally for a sufficiently small
U ⊂ S as d + θ, where θ is a Ω1(U )-valued r × r matrix. Since S is 1-
dimensional and θ holomorphic, dθ − θ ∧ θ = 0 so ∇ is flat. Conversely,
if ∇ is a flat connection compatible with the complex structure we have that
∇ = ∇1,0+∂̄ and∇2 = 0. Looking at the (1, 1)-part we have∇1,0∂̄+∂̄∇1,0 = 0,
so if s ∈ O(E)

0 = (∇1,0∂̄ + ∂̄∇1,0)s = ∂̄(∇1,0s)

this is, ∇1,0s ∈ Ω1(E).

We are led to conclude that ρ \ H × Cr admits a canonical holomorphic
connection. Since we are ultimately interested in the bundle Eρ, it would be
desirable to extend this holomorphic connection to it. This, however, couldn’t
possibly be a holomorphic extension, since otherwise we would conclude that
Eρ is itself a quotient by a representation of the fundamental group of P1 which
is trivial and hence the trivial bundle. We are undoubtedly required to relax
and extend our definitions.

Definition B.1.5. Let D =
∑
Vi be a smooth divisor in M . A logarithmic

connection on a holomorphic vector bundle E → M is a C-linear map of
sheaves ∇ : O(E) → O(E) ⊗ Ω1(Log(D)) satisfying the Leibniz rule, where
Ω1(Log(D)) is the sheaf of rational 1-forms on M with logarithmic poles on
D.

In terms of the Čech cocycle {Uij, gij}, a logarithmic connection is given
by a collection {Ui, θi} where the θi are meromorphic matrix-valued 1-forms
on Ui with simple poles in D ∩Ui related by the rule (B.2). More generally,
a meromorphic connection is one whose singularities are poles of higher order.
We are only interested in the former.

A meromorphic frame {Ui, φi} of E defines a logarithmic connection in a
canonical way:

−∂(φi)φ
−1
i = −∂gijg−1

ij + gij(−∂(φj)φ
−1
j )g−1

ij on Uij,
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thus the collection {Ui, θi}, where θi = −∂(φi)φ
−1
i , defines a logarithmic con-

nection on E. Given that on Ui

(∂ + θi)φi = 0,

we see that {Ui, φi} is a frame of parallel sections of the induced connection.

Proposition B.1.6. A frame of parallel sections of a Logarithmic connection
is uniquely determined up to right multiplication by an invertible matrix.

Proof. If two frames differ by right multiplication of an element of GL(r,C),
φi2 = φi1M , then −∂(φi2)φ−1

i2 = −∂(φi1)φ−1
i1 and similarly, if for two meromor-

phic frames the induced connections coincide, then

∂(φ−1
i1 φi2) = ∂(φ−1

i1 )φi2 + φ−1
i1 ∂(φi2)

= −φ−1
i1 ∂(φi1)φ−1

i1 φi2 + φ−1
i1 ∂(φi2)

= 0

therefore φi2 = φi1M , M ∈ GL(r,C).

In terms of the transition functions, a Hermitian metric on a bundle E is
given by a collection of hermitian and positive definite functions hi : Ui → Hn

satisfying
hj = g∗ijhigij. (B.3)

If the eigenvalues of the functions hi are allowed to become zero along a divisor
in M , the metric is called pseudo-Hermitian. It is easy to see that given a
pseudo-Hermitian metric in a holomorphic vector bundle, there exist a unique
metric-compatible connection, which we will refer to as a metric connection.
It is explicitly given as

θi = h−1
i ∂hi. (B.4)

Given a logarithmic connection, consider a meromorphic frame of parallel sec-
tions. Then the functions

hi = (φiφ
∗
i )
−1

are hermitian and satisfy

hj = (φjφ
∗
j)
−1 = (g−1

ij φiφ
∗
i g
∗−1
ij )−1 = g∗ijhigij.

Also, it is immediately verified that

h−1
i ∂hi = −∂(φi)φ

−1
i = θi.
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However, it is not clear at all that the eigenvalues of these hermitian func-
tions should be nonnegative (and then define a hermitian metric making the
Logarithmic connection a metric connection). Since for any divisor D in a
complex manifold M , M \D is connected, the eigenvalue functions will have
either positive or negative values in the complement of the divisor defined by
the functions {hi}.

Given a logarithmic connection on a vector bundle, we can associate an-
other logarithmic connection on the determinant bundle called the trace con-
nection. Since the transition functions of the latter are {Uij, det(gij)}, it
follows from the Liouville-Ostrogradski formula that the trace connection is
given by the collection of 1-forms {Ui, tr(θi)}. The residues of these 1-forms
are well-defined as a number associated to a point in S.

Proposition B.1.7. Given a logarithmic connection ∇ on a vector bundle E
over a compact Riemann surface S, we have the equality∑

x∈S

Resx∇ = −deg(E) (B.5)

Proof. If E is a line bundle, its degree is equal to the sum of the orders of any
meromorphic section s. Given a section s, let us consider a cover {Ui} of S
such that the zeros and poles of s do not lie simultaneously in two different
open sets of the cover. The section is equivalent to a collection {Ui, si}. As a
consequence of the previous convention we have

deg(E) =
∑
i

ordx∈Ui(si) =
∑
i

Resx(d(si)s
−1
i ) (B.6)

Now, since on Uij si = gijsj, we have that

−d(si)s
−1
i = gij(−d(sj)s

−1
j )g−1

ij − d(gij)g
−1
ij

and therefore the collection {Ui,−d(si)s
−1
i } determines a logarithmic connec-

tion ∇s on E and by definition the right hand side of (B.6) is equal to minus
the sum of the residues of ∇s. Then∑

x∈S

Res∇s = −deg(E).

Since the difference of two connections corresponds to a 1-form on S and the
sum of the residues of any 1-form on a compact Riemann surface is equal to
zero, the result is true as well for any meromorphic connection ∇.

By definition, deg(E) = deg(ΛrE), and the result follows from the Liouville-
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Ostrogradski formula for the trace connection on the determinant bundle and
the previous result.

B.2 Linear systems and monodromy

For any meromorphic 1-form ω on a compact Riemann surface∑
p∈S

Respω = 0

Consider a matrix valued 1-form ω on P1 with only simple poles. Make the
singular points z1, . . . , zn and moreover assume none of them is ∞. Define

Ri = Resziω

Consider the new form (on the finite plane first)

ω′(z) = ω(z)−
n∑
i=1

Ridz

z − zi

such that ω′ is holomorphic on C. Now make ζ = 1/z;

ω′(ζ) = ω(ζ)−
n∑
i=1

Ridζ

ζ(1− ziζ)
= ω(ζ) + (

n∑
i=1

Ri)
dζ

ζ
+

n∑
i=1

Rizidζ

1− ziζ

so the form ω′ is holomorphic also at ∞. This implies that ω′ ≡ 0. Hence

ω(z) =
n∑
i=1

Ridz

z − zi
.

The same calculation shows that any form
∑n

i=1
Ridz
z−zi such that

∑n
i=1 Ri = 0

is holomorphic at ∞. This defines a linear system on P1 by

dw = Ωw,

which is known as a Fuchsian system. It is a classical result that every Fuchsian
system is regular and that it determines a representation of P1 \ {z1, · · · , zn}
into GL(r,C).

The monodromy of such a system is not easy to find. However, if the
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matrices Ri commute, the system has a fundamental solution given by

Y (z) = Πn
i=1(z − zi)Ri

and monodromy
Mi = exp(2π

√
−1Ri).

Definition B.2.1. A regular linear system (not necessarily Fuchsian) is re-
ducible if the matrix-valued function defining it has the form

A(z) =

(
A′ ∗
0 A′′

)
(B.7)

for some square matrix-valued functions A′, A′′.

Proposition B.2.2. Given an r-dimensional representation ρ of π1(X), the
associated linear system is irreducible if and only if its monodromy represen-
tation is irreducible.

Proof. If the system is reducible and A(z) has the form (B.7), then the solu-
tions of the system determined by A′ are naturally included in the space of
solutions of our system. The monodromy ρ′ of this subsystem is a subrepre-
sentation of ρ. Conversely, if the monodromy representation is reducible then
it contains a nontrivial subrepresentation of strictly smaller dimension r′ < r.
We can then assume without any loss of generality that ρ is in block upper
triangular form,

ρ(γi) = Mi =

(
M ′

i M ′′′
i

0 M ′′
i

)
so the subrepresentation ρ′ is given by ρ′(γi) = M ′

i . We claim that the function
Ψ corresponding to this system is equivalent to a block-upper triangular one.
In principle it has the block form

Ψ =

(
A B
C D

)
.

with C 6= 0. We can prove this by constructing a block-upper triangular
function Ψ′ with the same monodromy ρ and regular single valued parts at
z1, · · · , zn−1, which by uniqueness will differ from Ψ by left multiplication of
an invertible matrix M . We first associate the function Ψ1 : H → GL(r′,C)
arising from ρ′ . This will constitute the first block of Ψ′. Although the ma-
trices {M ′′

i } do not form a subrepresentation of ρ, they form a representation
of π1(X) which we will denote by ρ′′. We can associate as well a fucntion Ψ2
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having ρ′′ as its monodromy. We consider the function

Ψ′ =

(
Ψ1 B
0 Ψ2

)
A simple calculation shows that it has the same monodromy as Ψ. Since
det(Ψ) = det(Ψ′)det(Ψ′′), the single valued parts are regular at z1, · · · , zn−1 as
well. The uniqueness of Ψ implies that Ψ = MΨ′ for some M ∈ GL(r,C).

Proposition B.2.3. If the representation ρ is unitary and reducible, the func-
tion Ψ is equivalent to a block-diagonal function. The associated matrix-valued
function A(z) has the form (

A′ 0
0 A′′

)
(B.8)

Proof. This case is simpler to deal with, since a reducible unitary representa-
tion is a direct sum ρ ∼= ρ1 ⊕ ρ2. Each one of the subrepresentations has an
associated matrix valued function Ψ1, Ψ2. The function

Ψ′ =

(
Ψ1 0
0 Ψ2

)
has ρ as its monodromy representation. By the uniqueness of the function Ψ
we conclude that Ψ = MΨ′ for some M ∈ GL(r,C). The associated fuchsian
linear system on X would then be conjugated to one of the form (B.8)
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Appendix C

Parabolic structures on vector
bundles

C.1 The category of parabolic bundles

Definition C.1.1. Let S be a compact Riemann surface and E → S a holo-
morphic vector bundle of rank r. Given a finite set D = {z1, · · · , zn} ⊂ S, a
parabolic structure of E at D consists of

1. decreasing flags at each π−1(zi)

Ezi = F 1
zi
⊃ F 2

zi
⊃ · · · ⊃ F li+1

zi
= {0}

2. constants 0 ≤ αi1 < · · · < αili < 1, and multiplicities mi1, · · · ,mili such
that mij = dim(F j

zi
/F j+1

zi
) (hence

∑li
j=1mij = r), called the system of

weights of the flags. We call αij the weight of F j
zi

.

A parabolic bundle E∗ is a holomorphic vector bundle E endowed with a
parabolic structure. The parabolic degree is defined as

Par deg(E∗) = deg(E) +
n∑
i=1

li∑
j=1

mijαij. (C.1)

Definition C.1.2. Given two parabolic vector bundles E∗, E
′
∗ over S with

weights {αij}, {α′ij} a parabolic homomorphism is a homomorphism T ∈
Hom(E,E ′) with the additional property that

T (F j
zi

) ⊂ F k+1
zi

whenever αij > α′ik.
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In particular, the notion of isomorphism makes sense only if the systems
of weights coincide.

C.2 Induced parabolic structures

To every parabolic bundle E∗ we can associate the subsheaf of the sheaf of en-
domorphisms of E consisting of the local germs of parabolic endomorphisms. It
turns out to be locally free and thus a correspondent vector bundle Par End(E)
whose global sections correspond to the parabolic endomorphisms of E∗. We
can induce a canonical parabolic structure on Par End(E) and thus turn it
into a parabolic bundle. On each fiber π−1(zi),

As it has been remarked in section 1.6, the following identity holds by
definition

Par End(Eρ)∗ ∼= (EAd ρ)∗ . (C.2)

A subbundle E ′ of a parabolic bundle E∗ acquires a natural parabolic structure
by restriction: the flag of E ′∗ at zi is simply

E ′zi = F 1
zi
∩ E ′zi ⊃ F 2

zi
∩ E ′zi ⊃ · · · ⊃ F li+1

zi
∩ E ′zi = {0}.

Of course, the lenght of this flag might be smaller than that of the flag of E∗
as different intersections could coincide. We take care of this by associating
to F j

zi
∩ E ′zi the weight αik of the largest k such that F j

zi
∩ E ′zi ⊂ F k

zi
. In the

same way we can define a canonical parabolic structure on any quotient E/E ′

by considering the quotient flag

(E/E ′)zi = F 1
zi
/E ′zi ⊃ F 2

zi
/E ′zi ⊃ · · · ⊃ F li+1

zi
/E ′zi = {0}.

Once again, several quotients could coincide and give the same quotient flag
element. If F j−1

zi
/E ′zi = F j

zi
/E ′zi but F j+1

zi
/E ′zi is a proper subset we asign the

weight αij to F j
zi
/E ′zi

Remark 17. In their paper [37], Mehta and Seshadri define an exact sequence
of parabolic bundles

0→ E ′∗ → E∗ → E ′′∗ → 0

being an exact sequence of bundles in the usual sense, such that E ′∗ is a
parabolic subbundle of E∗ and E ′′∗ a parabolic quotient bundle of E∗. It fol-
lows that the parabolic bundles E ′∗, E∗ and (E/E ′)∗ form an exact sequence of
parabolic bundles. However, there is an important subtlety here: the notion
of splitting (and direct sum) does not follow straighforwardly if a sequence
splits in the usual bundle sense. The problem is that since direct sums and
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intersections do not commute in general as operations on vector spaces, even
if E ∼= E ′ ⊕ E ′′, we cannot recover the flags of E∗ from those of E ′∗ and E ′′∗ .

Since neither Mehta and Seshadri, nor Biswas give a precise definition of
the parabolic structure in a direct sum of parabolic bundles, we propose the
following one, which in the case of a reducible representation ρ = ρ1 ⊕ ρ2

induces the same parabolic structure on (Eρ)∗ and (Eρ1)∗ ⊕ (Eρ2)∗.

Assume we have 2 parabolic bundles E ′∗, E
′′
∗ with parabolic structures over

the same set of points z1, · · · , zn such that the underlying bundles E ′, E ′′ are
subbundles of E and satisfy E ∼= E ′⊕E ′′. We will induce a decreasing flag and
weights at every parabolic vertex zi in the following way: the first element will

be F 1
zi

= Ezi
∼= E ′zi ⊕ E

′′
zi

with weight αi1 = Min({α′ik}
l′i
k=1 ∪ {α′′ik}

l′′i
k=1). Now,

assuming we have constructed the jth element of the flag, we construct the
(j + 1)th element by first considering the set of weights minus {αi1, · · · , αij},
this is,

{{α′ik}
l′i
k=1 ∪ {α

′′
ik}

l′′i
k=1} \ {αi1, · · · , αij}

the subspace F j+1
zi

will be

F j+1
zi

= F ′k
′

zi
⊕ F ′′k′′zi

where k′, resp. k′′ are the minimum indices in the sets of weights {α′ik}
l′i
k=1 \

{αi1, · · · , αij}, resp. {α′′ik}
l′′i
k=1\{αi1, · · · , αij}. The corresponding weight αij+1

the minimum in the later set of weights. The previous one is obviously a finite
process, and by construction it follows that F j+1

zi
⊂ F j

zi
.

Definition C.2.1. A parabolic bundle E∗ is parabolic decomposable if
there exist two subbundles E ′, E ′′ such that E = E ′ ⊕ E ′′ and the parabolic
structures of E∗ and E ′∗ ⊕ E ′′∗ coincide.

Proposition C.2.2. Given a representation ρ, the parabolic bundle (Eρ)∗ is
parabolic indecomposable if and only if ρ is irreducible.

Proof. This is a straightforward generalization of the fact, proved in propo-
sition B.2.3, that the function Υ asociated to ρ is block diagonal if and only
if the representation ρ is block diagonal. We just have to emphasize that the
induced parabolic structures in the subbundles Eρ1 , Eρ2 are complementary
since the corresponding flags are given in terms of the columns of the blocks,
and the weights in terms of the eigenvalues of the blocks.

Remark 18. It should be observed that the dual of a parabolic bundle E∗ of
parabolic degree 0 cannot be a parabolic bundle of parabolic degree 0. This
should be contrasted with the fact that duality is a well-defined operation in
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the category of unitary representations. One could keep in mind Proposition
1.4.4 (at least if the system of weights is generic), and define the parabolic dual
of a parabolic vector bundle E∗ to have O(−n)⊗ E∗ as its underlying vector
bundle, with parabolic structure induced by replacing the flags in the following
way: at the point {zi} set Ezi = F 1

zi
⊃ F 1

zi
/F li

zi
⊃ · · · ⊃ F 1

zi
/F 2

zi
⊃ {0} with

weights 1− αili ≤ 1− αili−1 ≤ · · · ≤ 1− αi1 < 1.

C.3 Parabolic stability

Definition C.3.1. A parabolic bundle E∗ is called parabolic semistable
(resp. parabolic stable) if for any parabolic subbundle E ′∗ ⊂ E∗we have

Par deg(E ′∗)

rk(E ′)
≤ Par deg(E∗)

rk(E)
(resp. <).

A major result of the theory of parabolic bundles is the next theorem,
which relates the parabolic stability with a suitable notion of uniformization.

Theorem C.3.2 (Mehta & Seshadri). A parabolic bundle E∗ of parabolic de-
gree 0 (with rational weights) is semistable if and only if E∗ ∼= (Eρ)∗ for a
unitary representation ρ : π1(S) → U(r). E∗ is stable if and only if ρ is irre-
ducible. Two parabolic semistable bundles E∗, E

′
∗ are equivalent if and only if

the corresponding representations ρ, ρ′ are equivalent.

The isomorphism is realized through the branched covering extending the
uniformization map J : H+ → S as

(Eρ)∗ oo
J∗ //

pr

��

E∗

π

��
Γ \H+ oo J // S

It is important to emphasize that the proof of the theorem of Mehta and
Seshadri is only valid for systems of weights consisting of rational numbers.
In the spirit of S. Donaldson, O. Biquard [9] proved that in the category of
parabolic bundles, the notion of parabolic stability of a parabolic vector bundle
E∗ of parabolic degree 0 is equivalent to the existence of a meromorphic metric
connection on E with logarithmic singularities at the parabolic locus of S.
Moreover, his proof works for arbitrary real weights. In their work [12], H.
Boden and Y. Hu proved that if a system of weights is generic, then every
parabolic semistable bundle with such system of weights is parabolic stable.
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S. Bauer proved in [6] that over P1, for generic weights the moduli space of
stable parabolic bundles of rank 2 is birational to a projective space. This
result was generalized to arbitrary rank in [12].

C.4 The infinitesimal deformation map

It is a standard fact of Kodaira’s deformation theory that for any smooth or
holomorphic vector bundle E, the infinitesimal deformations of it are parametri-
zed by the Čech cohomology group H1(End(E)), and given any smooth or
holomorphic family F →M × S of vector bundles Ex → S, x ∈M such that
for for some x0 ∈ F, Ex0

∼= E, there is a canonical infinitesimal deformation
map,

Tx0 : Tx0M → H1(End(E))

A classical result ([40], cf. Lemma 15.5 Atiyah-Bott, [5]) states that in fact any
holomorphic vector bundle over a Riemann surface possesses “sufficiently big”
families, that is, for every holomorphic vector bundle E, there exist a family
M of vector bundles so that for some x0 ∈ M , Ex0

∼= E, and moreover, the
infinitesimal deformation map Tx0M → H1(End(E)) is an isomorphism.

Proceeding by analogy, it is natural to expect that the infinitesimal defor-
mations of a given parabolic bundle E∗ are parametrized by the Čech coho-
mology group H1(Par End(E∗)) instead. It is not hard to prove [41] that any
smooth or holomorphic family F → M × S of parabolic bundles induces an
infinitesimal deformation map

Tx0 : Tx0M → H1(Par End(E∗)) (C.3)

and that every parabolic bundle E∗ is contained in a family whose infinitesimal
deformation map is an isomorphism.

For the family of parabolic bundles arising from irreducible unitary repre-
sentations of π1(S) (with a fixed set of weights at the parabolic generators),
this isomorphism can be constructed explicitly through the character variety.
the particular case of S = P1 is discussed explicitly in section 3.2.3.
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