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Abstract of the Dissertation

Hyperhähler 4n-manifolds with n commuting
Quaternionic Killing fields

by

Joseph Malkoun

Doctor of Philosophy

in

Mathematics

Stony Brook University

2012

We consider a hyperkähler 4n-manifold M admitting n commut-

ing quaternionic (real) Killing fields X1,...,Xn which are pointwise

quaternionically linearly independent, and such that the first n−1

of them, namely X1,..., Xn−1 are further assumed to be triholomor-

phic. We show that such spaces fall into 2 categories, depending

on whether ∇Xn has a vanishing self-dual component or not. In

the first case, we show that such manifolds M can be obtained

by the Hitchin-Karlhede-Lindström-Roĉek ansatz for hyperkahler

4n-manifolds with n commuting triholomorphic Killing fields. In

the second case, we obtain a canonical form for the n vector fields
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X1,...,Xn in special coordinates. Moreover, a Kähler potential Ω

for a compatible complex structure I is shown to satisfy some sym-

metries, as well as a system of non-linear second order PDE’s com-

ing from the symplectic Monge-Ampere equations.

In the process of obtaining this result, we also obtain local neces-

sary and sufficient conditions for a (smooth) real vector field X to

be quaternionic Killing on a hyperkähler 4n-manifold M .

Our study is completely local, and is a generalization of the Boyer

and Finley work for self-dual Ricci-flat 4-manifolds with a Killing

field.
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Chapter 1

Basic Concepts (Complex,

Kähler and Hyperkähler

Manifolds)

We assume that the reader is familiar with the basic facts about smooth man-

ifolds and real differential geometry. We begin by recalling some basic defini-

tions and fixing the notation.

A topological n-manifold M is a second-countable Hausdorff topological

space which is locally Euclidean. By locally Euclidean, we mean that each

point of M has a neighborhood which is homeomorphic to an open subset of

Rn with its usual topology.

If, in addition, M is equipped with a smooth atlas (U , (ϕU)), it is said to

be a smooth n-manifold. A smooth atlas (U , (ϕU)) consists of an open cover

U of M and a collection of homeomorphisms (ϕU) indexed by U ∈ U , where

ϕU : U → U ′ is a homeomorphism from U onto an open subset U ′ ⊆ Rn, such
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that the transition maps ϕU2 ◦ ϕ−1
U1

: U ′1 → U ′2 are smooth (i.e. C∞) and have

smooth inverses, for all U1, U2 ∈ U .

The presence of a smooth structure, which is an equivalence class of smooth

atlases, where two smooth atlases are equivalent if and only if they are com-

patible in an obvious sense (if their union is a smooth atlas), allows us to

define the tangent space Tm(M) at a chosen point m ∈ M . Moreover, the

set-theoretic disjoint union of the Tm(M)’s as m varies over M , has a natural

induced smooth structure from that of M , and forms a smooth 2n-dimensional

manifold called the tangent bundle of M , and denoted by T (M).

A complex m-manifold is a topological 2m-manifold together with a com-

plex atlas, consisting of an open cover and a collection of homeomorphisms

onto open subsets of Cm, such that the transition mappings are biholomorphic.

There is an alternative way to describe complex manifolds, via the so-

called almost complex structures. If M is a smooth 2m-dimensional manifold,

a smooth section I of End(T (M)) := T ∗(M) ⊗ T (M) satisfying I2 = − Id is

called an almost complex structure. We call the pair (M, I) an almost complex

manifold. Examples of almost complex manifolds include complex manifolds (if

zj’s are local complex coordinates, write zj = xj + iyj, xj, yj real coordinates,

define I : ∂xj 7→ ∂yj and check that it is well-defined). This leads us to ask,

what condition(s) do we need to impose on I to ensure that (M, I) admits a

complex atlas compatible with I? The answer is provided by the Newlander-

Nirenberg theorem ([1]).

Definition 1.0.1. The Nijenhuis tensor NI of an almost complex structure is

NI(X, Y ) = [X, Y ] + I[IX, Y ] + I[X, IY ]− [IX, IY ],
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where X, Y are vector fields.

Theorem 1.0.2 (Newlander-Nirenberg). An almost complex manifold (M, I)

admits a compatible complex atlas if and only if the Nijenhuis tensor NI of I

vanishes identically.

If there is a complex atlas compatible with I, we say that I is integrable.

Thus, the Newlander-Nirenberg theorem says that I is integrable if and only

if its Nijenhuis tensor is identically zero. We note that in that case, there is

up to equivalence a unique complex atlas compatible with I, because if a dif-

feomorphism from an open subset of (R2m, I) with its natural almost complex

structure and coordinates z to another open subset of (R2m, I) with coordi-

nates w preserves I, then it naturally corresponds to a holomorphic mapping

z = f(w) (strictly speaking it corresponds to this holomorphic mapping and

its complex conjugate mapping z = f(w), which is antiholomorphic, but we

choose the holomorphic mapping).

If I is integrable, we refer to it simply as a complex structure, and refer

to (M, I) as a complex manifold. Thus a complex manifold can be described

in two equivalent ways, namely with a complex atlas, or with an integrable

almost complex structure I, both up to equivalence.

If a complex manifold (M, I) is equipped with a smooth metric g such that

1. g(IX, IY ) = g(X, Y ) for all vector fields X and Y , and

2. the 2-form ωI defined by ωI(X, Y ) = g(IX, Y ) is closed,

then we refer to (M, g, I) as a Kähler m-manifold (or simply Kähler man-

ifold, omitting the complex dimension m). We have
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Proposition 1.0.3. If (M, g, I) is a Kähler manifold, then ∇LCI = 0, where

∇LC is the Levi-Civita connection of g.

It thus follows from the proposition that the (restricted) holonomy group

of a Kahler m-manifold is a Lie subgroup of U(m).

We are now ready to define hyperkähler manifolds. A smooth 4n-manifold

M , together with a smooth metric g and three complex structures I, J and

K such that K = IJ = −JI, and such that g is Kähler with respect to each

of these 3 complex structures (I, J and K), is said to be hyperkähler. We will

refer to (M, g, I, J,K) as a hyperkähler manifold.

We remark that the (restricted) holonomy group of a hyperkähler 4n-

manifold (M, g, I, J,K) is a Lie subgroup of Sp(n).
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Chapter 2

Moment Maps and

Construction of Quotients

2.1 In Symplectic Geometry

Let (M,ω) be a symplectic 2m-manifold (i.e. M is a smooth 2m-manifold and

ω is a closed non-degenerate 2-form on M). Assume there is a k-dimensional

Lie group G acting freely on M and preserving ω. The naive quotient M/G

may not even be even dimensional, and therefore does not carry a symplectic

structure induced from ω. There is however a construction of a “quotient”

due to Marsden and Weinstein ([2]) which constructs a 2m − 2k dimensional

symplectic manifold from (M,ω) and the symplectic group action of G. We

now describe this procedure.

Let 0 6= ξ ∈ g, and let X be the corresponding vector field. More precisely,

if γ(t) is the unique one-parameter subgroup of G such that γ′(0) = ξ, then
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given m ∈M , we define

Xm =
d

dt
(γ(t).m)

∣∣∣∣
t=0

.

Since the action of G preserves ω, it follows that LX(ω) = 0, where LX denotes

the Lie derivative with respect to X.

We recall Cartan’s magic formula. If Y is any smooth vector field, and β

is a differential k-form, then

LY (β) = (d ◦ ιY + ιY ◦ d)(β),

where ιY denotes inner contraction with the vector field Y .

Back to our setting, it follows therefore that

0 = LX(ω) = d(ιX(ω)),

(since ω is closed). Hence ιX(ω) is closed. We assume further that it is exact,

so that there is a function hX on M such that

dhX = ιX(ω).

The function hX is only defined up to a constant (assuming M is connected).

Next, we choose a basis, ξ1, . . . , ξk of g, this corresponds to vector fields

X1,. . . ,Xk, and k functions hX1 , . . . , hXk
, each defined up to a constant. We
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then extend h linearly, and thus get a map

h : M → g∗.

If we can choose the constants in such a way as to make the map h G-

equivariant (the adjoint action of G on its lie algebra g is assumed), we call

such an h a moment map. A moment map is defined up to the addition of a

constant element of g∗ which is fixed by the action of G.

Having a moment map h of the group action of G, we remark that, by

the G-equivariance property, G acts on h−1(0). If 0 is a regular value of the

moment map h, then by the implicit function theorem, h−1(0) to be a smooth

(2m− k) dimensional submanifold.

We further assume that the action of G on h−1(0) is such that M̃ :=

h−1(0)/G is a smooth (Hausdorff) (2m− 2k) dimensional manifold (with the

quotient topology).

Theorem 2.1.1 (Marsden-Weinstein). If (M,ω) is a 2m dimensional sym-

plectic manifold, with a k-dimensional Lie group acting symplectically on M ,

and if h : M → g∗, then there is a unique 2-form ω̃ on M̃ whose pullback to

h−1(0) via the natural projection h−1(0)→ M̃ is the restriction of ω to h−1(0).

Moreover, ω̃ is closed and non-degenerate, i.e. a symplectic form on M̃ .

The symplectic manifold (M̃, ω̃) is known as the Marsden-Weinstein re-

duction of (M,ω) by the group action of G (sometimes the word quotient is

used instead of reduction, but this construction must not be confused with

the ordinary quotient of a smooth manifold by a smooth and free Lie group

action!).
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2.2 In Kähler Geometry

In this section, we let (M, I, g) be a Kähler m-manifold (see 1 for some quick

definitions). We further assume that there is a k-dimensional Lie group G

acting freely on M by biholomorphic isometries (it preserves I and g).

Thus, if 0 6= ξ ∈ g and X is the corresponding vector field generated via

the action of G (see 2.1), we then have that LX(ωI) = 0, so that

0 = d(ιX(ωI)),

by Cartan’s magic formula. The 1-form ιX(ωI) is closed, and we assume further

that it is exact (which would be the case if for instance H1(M,R) = 0), in

other words, that there is a smooth function hX on M such that

dhX = ιX(ωI).

Just like for the symplectic case (see 2.1), we get a smooth map h : M → g∗,

defined up to addition of a constant element of g∗. If we further assume that

h is G-equivariant (with G acting on its dual Lie algebra g∗ via the co-adjoint

action), we call such an h a moment map on M for the action of G.

Also, similar to 2.1, G acts on h−1(0). We further assume that 0 is a regular

value of the moment map h, so that h−1(0) is a real smooth submanifold of M

of dimension 2m − k. Then, by the Marsden-Weinstein symplectic reduction

(see 2.1), M̃ := h−1(0)/G (which we assume to be a smooth Hausdorff manifold

of dimension 2m− 2k) inherits a symplectic form ω̃ from ωI .

Moreover, h−1(0) inherits the metric res(g) obtained by restricting g to it,
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and M̃ inherits a metric g̃ from that restriction, by a standard procedure, since

G acts by isometries. The latter can be thus summarized: in order to define

g̃m̃(Ỹ1, Ỹ2), where Ỹ1, Ỹ2 are tangent vectors to M̃ at m̃ ∈ M̃ , we just choose

a lift m ∈ f−1(0) of m̃ and two tangent vectors Y1 and Y2 which project down

to Ỹ1 and Ỹ2 respectively, and which are orthogonal to the vertical subspace

of Tm(h−1(0)) spanned by the generating vectors of the action of G (see figure

2.1), and we define

g̃m̃(Ỹ1, Ỹ2) := res(g)m(Y1, Y2).

m

m̃

X

Y1

Y2

Ỹ1 Tm̃(M̃)

Ỹ2

Figure 2.1: Quotient metric under an isometric Lie group action. In this figure,
X denotes a generating vector of the action of G, and X is both orthogonal
to Y1 and Y2

One can check that this is independent of the choices of lifts involved.

As a generalization of the Marsden-Weinstein symplectic reduction to the

Kähler case, in [3], the authors show the following theorem:

Theorem 2.2.1 ([3]). If (M, g, ω) is a Kähler m-manifold, with a (real) k-
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dimensional group G acting by Kähler isometries (i.e. preserving g and ω),

and if h : M → R is the moment map of the action of G, then M̃ = h−1(0)/G,

is Kähler, when endowed with the quotient metric g̃, the Marsden-Weinstein

symplectic form ω̃ and the complex structure Ĩ given by

ω̃(−,−) = g̃(Ĩ−,−).

Proof. For a proof of this result, please refer to [3].

2.3 In Hyperkähler Geometry

The reduction of a hyperkaḧler manifold ([3]) by a Lie group action is similar

to the reduction of a Kähler manifold, and so we will omit some details.

Let (M, g, I, J,K) denote a hyperkähler 4n-manifold admitting an isomet-

ric and triholomorphic free action of a Lie group G of dimension k. In this

setting, for a given (non-zero) generating vector field X of G, we get 3 func-

tions h1
X , h2

X and h3
X corresponding to I, J and K respectively. Collecting the

functions together, we get a map

h : M → g∗ ⊗ R3,

which we assume to be G-equivariant, where G acts on g∗ by the co-adjoint

action and acts trivially on R3. We denote by M̃ the quotient f−1(0)/G. We

then have

Theorem 2.3.1 ([3]). If (M, g, I, J,K) is a hyperkähler 4n dimensional man-
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ifold, with a (real) k dimensional Lie group acting on M by triholomorphic

isometries, and if h : M → g∗ ⊗ R3 is the corresponding moment map of the

action of G, then the 4(n − k)-dimensional manifold M̃ = h−1(0)/G is hy-

perkähler, when endowed with the quotient metric g̃, and the three symplectic

forms ω̃1, ω̃2 and ω̃3 arising from the Marsden-Weinstein reductions of ω1, ω2

and ω3. The complex structures Ĩi, for 1 ≤ i ≤ 3 of M̃ are defined by

g(ĨiX, Y ) = ω̃i(X, Y ).

Proof. We let

h+ = h2 + ih3.

It follows from the construction of the moment maps hi that dh+ is of type

(1, 0) with respect to I and hence that h+ is holomorphic with respect to I.

Hence (h+)−1(0) is a complex manifold of dimension 2l− k which is moreover

Kähler with respect to the restriction of (g, I), such that G acts on it by holo-

morphic isometries (since h is G-equivariant). We apply the Kähler reduction

construction to (h+)−1(0), and we get that

M̃ = h−1(0)/G = ((h+)−1(0) ∩ (h1)−1(0))/G

is Kähler with respect to (g̃, Ĩ). Repeating the argument for J and K instead

of I shows that (M̃, g̃, Ĩ , J̃ , K̃) is hyperkähler.

This trick of specializing one complex structure (say I) in the natural S2

of complex structures on a hyperkähler manifold will be useful to us later.
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We remark before leaving this topic that

ω+ = ω2 + iω3

is a holomorphic form, with respect to I, of type (2, 0) (in fact, it is even

covariantly constant with respect to the Levi-Civita connection ∇LC of g).
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Chapter 3

Twistor Spaces of Hyperkähler

manifolds

3.1 Introduction

Sir Roger Penrose introduced twistor theory in the 1970’s (cf. [4] and [5])

for the case of an antiselfdual Lorentzian Einstein 4-manifold. One of his

aims was to unify gravity and quantum theory. The Riemannian version of

Penrose’s twistor theory is due to Atiyah, Hitchin and Singer ([6]). From a

purely mathematical point of view, one associates to a conformal 4-manifold

(M, c) an almost complex 6-manifold (Z, I), which is diffeomorphic to an S2

bundle over M . The almost complex structure I on Z encodes the conformal

structure c. Moreover, c is antiselfdual if and only if I is integrable, in which

case (Z, I) becomes a complex 3-manifold. A general philosophy in twistor

theory is to encode as many equations and operators of interest to physicists

and/or geometers (Dirac, wave, Laplace...) using the ∂̄-operator on the twistor

13



space.

In [7] and [8], Simon Salamon developed a twistor theory of quaternionic

manifolds (see however the much earlier work of J. Wolf in [9]). In [3], N.J.

Hitchin, A. Karlhede, U. Lindström and M. Roĉek specialized and devel-

oped that theory to hyperkähler manifolds, and then applied it to the case

of hyperkähler manifolds with toric symmetry. Hyperkähler manifolds can be

viewed as a generalization of Ricci-flat anti-selfdual Riemannian 4-manifolds.

In this section, we review the twistor theory of hyperkähler 4n-manifolds,

as found in [3].

3.2 The Twistor Space of a Hyperkähler Man-

ifold

Let (M, g, I, J,K) be a hyperkähler 4n-manifold. We let Z = M×S2, as a real

smooth 4n+2-manifold. The sphere S2 has a natural complex structure, when

thought of as the Riemann sphere P1. Using stereographic projection, S2 can

be covered by 2 open sets U and Ũ , both homeomorphic to C, with coordinates

ζ and ζ̃ respectively, such that ζ̃ = 1/ζ. In terms of ζ, the coordinates (x, y, z)

of a point in S2 ⊆ R3 are

(x, y, z) =

(
ζζ̄ − 1

1 + ζζ̄
,
ζ + ζ̄

1 + ζζ̄
,
i(ζ̄ − ζ)

1 + ζζ̄

)
.

However, we find it more natural to use the conjugate complex structure

IS2 on S2. One motivation for this, is that stereographic projection induces

the opposite orientation on S2 from the usual one (given by an outward normal

14



N

(x, y, z)

ζ

x

y

z

Figure 3.1: The steregraphic projection of (x, y, z) from N is the point ζ on
the equatorial plane.

vector). With respect to IS2 , the roles of ζ and ζ̄ are interchanged, and we

get, instead of the previous formula:

(a, b, c) =

(
ζζ̄ − 1

1 + ζζ̄
,
ζ + ζ̄

1 + ζζ̄
,
i(ζ − ζ̄)

1 + ζζ̄

)
.

We then define in T (Z) the following almost complex structure

I =

(
ζζ̄ − 1

1 + ζζ̄
I +

ζ + ζ̄

1 + ζζ̄
J +

i(ζ − ζ̄)

1 + ζζ̄
K, IS2

)
(3.2.1)

where IS2 is the conjugate complex structure in T (S2) from the one induced

by stereographic projection.

Proposition 3.2.1. I is integrable.

Proof. We apply the Newlander-Nirenberg theorem, which says that an almost

complex structure is integrable if and only if the ideal generated by the (1, 0)-

forms (in the exterior algebra) is closed under d. This is a complex version of

15



the Frobenius theorem.

We need to figure out what are the (1, 0)-forms θ with respect to I (Iθ =

−iθ). Let ϕ be a (0, 1)-form with respect to I (Iϕ = iϕ), and set

θ = ϕ− ζKϕ.

We claim that θ is of type (1, 0) for I. Indeed, we have

Iθ = iϕ+ iζKϕ

Jθ = iKϕ− iζϕ

Kθ = Kϕ+ ζϕ.

From these and 3.2.1, it follows that Iθ = −iθ. Moreover, it is clear that the

map ϕ 7→ θ is injective. Thus, by a simple dimension count, the θs together

with dζ gives us a complete basis for the (1, 0) forms for I on Z. It is clear

that dζ is closed. We then compute

dθ = dxi ∧∇xi(ϕ− ζKϕ)− dζ ∧Kϕ.

where the xis are local coordinates on M . But ∇xiI = 0, so that

I∇xi(ϕ− ζKϕ) = −i∇xi(ϕ− ζKϕ).

Thus we see that dθ, as well as dζ are in the ideal generated by the (1, 0) forms

for I, therefore I is integrable.

16



.

What we have done so far is encode the information about I, J and K in

the complex structure I in T (Z). We remark that the projection p : Z → CP1

is holomorphic, since p∗(dζ) is of type (1, 0) on Z. A point m ∈M corresponds

to a holomorphic section of p whose image we denote by Pm, and is known as

the twistor line of m.

We need to find the normal bundle of N of a twistor line Pm. This is

defined as

N = T ′(Z)|Pm/T
′(Pm),

where T ′(Z), T ′(Pm) denote the holomorphic tangent bundles of Z and Pm

respectively. We remark that the underlying real vector bundle ofN ' Pm×Tm

(with Tm ' C2k) is trivial, but as a holomorphic vector bundle, it is not, as

we shall see shortly.

We represent I, J and K on Tm by

I =

i1n 0

0 −i1n

 (3.2.2)

J =

 0 1n

−1n 0

 (3.2.3)

K =

 0 i1n

i1n 0

 . (3.2.4)
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Hence

I =
1

1 + ζζ̄

−i(1− ζζ̄) 2ζ̄

−2ζ i(1− ζζ̄)

 . (3.2.5)

Therefore the −i eigenvectors of I are of the form

 v

−iζv

 .

If we express I with respect to ζ̃, we get that the −i eigenvectors of I are of

the form iζ̃w
w

 .

Hence v = iζ̃w, so that N ∗ ' C2n(−1), from which we deduce that

N ' C2n(1). (3.2.6)

Proposition 3.2.2. The form ω+ = ω2 + iω3 is holomorphic with respect to

I (in fact, it is covariantly constant) of type (2, 0).

Proof. The holomorphic part of the statement is clear since the ωis are covari-

antly constant. It remains to check that ω+ is of type (2, 0).

ω+(IX, Y ) = ω2(IX, Y ) + iω3(IX, Y )

= g(JIX, Y ) + ig(KIX, Y )

= −g(KX,Y ) + ig(JX, Y )

= iω+(X, Y ).

18



ω+(X, IY ) = g(JX, IY ) + ig(KX, IY )

= −g(KX,Y ) + ig(JX, Y )

= iω+(X, Y ).

Next, we prove that there is a holomorphic symplectic form on the fibres

Fζ = p−1(ζ) of p : Z → CP1 which varies holomorphically with respect to ζ.

But before we do that, We need the following lemma.

Lemma 3.2.3. If Iψ = −iψ, then I(ζ +K)ψ = −i(ζ +K)ψ.

Proof.

I(ζψ +Kψ) = −iζψ + iKψ

J(ζψ +Kψ) = −iζKψ − iψ

K(ζψ +Kψ) = ζKψ − ψ,

from which it follows that I(ζψ +Kψ) = −i(ζψ +Kψ), using 3.2.1.

There is a local coframe ψα on M , for 1 ≤ α ≤ 2n, such that

ω2 + iω3 =
n∑
i=1

ψi ∧ ψn+i.

Next, we need to make ω2 + iω3 vary (holomorphically) with ζ, so, using the

previous lemma, we consider

ω =
n∑
i=1

(ζ +K)ψi ∧ (ζ +K)ψn+i, (3.2.7)
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so that

ω =
n∑
i=1

(ψi ∧ ψn+i)ζ
2 +

n∑
i=1

(ψi ∧Kψn+i +Kψi ∧ ψn+i)ζ +
n∑
i=1

Kψi ∧Kψn+i.

We compute, suppressing the summation sign

(ψi ∧Kψn+i +Kψi ∧ ψn+i)(X, Y )

= −ψi(X)ψn+i(KY )− ψi(KX)ψn+i(Y ) + ψi(Y )ψn+i(KX) + ψi(KY )ψn+i(X)

= −ω+(X,KY )− ω+(KX,Y )

= −g(JX,KY )− ig(KX,KY )− g(JKX, Y )− ig(K2X, Y )

= −2g(IX, Y )

= −2ω1(X, Y ).

We also have

(Kψi ∧Kψn+i)(X, Y )

= ω+(KX,KY )

= g(JKX,KY ) + ig(K2X,KY )

= −g(JX, Y ) + ig(KX,Y )

= −(ω2 − iω3)(X, Y ).

Hence we have the following formula for ω:

ω = (ω2 + iω3)ζ2 − 2ω1ζ − (ω2 − iω3). (3.2.8)
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Hence, we see that ω ∈ H0(Z,O(Λ2T ∗F (2))), where TF is the vertical subbundle

of the map p : Z → CP1 (in other words, TF = ker(p∗), with p∗ : T (Z) →

T (CP1)). We are denoting by O(n) the bundle p∗(O(n)), by a slight abuse

of notation. Moreover, ω restricts to a holomorphic symplectic form on each

fiber Fζ of the map p.

There is one last structure on the twistor space Z, namely a real structure

τ , which is defined as the following map from Z to itself

τ(m, ζ) = (m,−1/ζ̄), (3.2.9)

where we have used that Z is diffeomorphic to M × S2. Thus τ fixes the M

factor and is the antipodal map on the S2 factor. It follows from the definition

of I that τ is an antiholomorphic automorphism of Z (i.e. τ∗ anti-commutes

with I and τ 2 = Id).

It turns out that we have encoded enough information about the hy-

perkähler manifoldM as holomorphic (and antiholomorphic) data on its twistor

space Z to reconstruct M from the twistorial data. More precisely, we have

the following theorem:

Theorem 3.2.4. Let Z be 2n+ 1 dimensional complex manifold such that

1. there is a holomorphic map p : Z → S2 such that Z is a holomorphic

fibre bundle over S2,

2. Z has a family of holomorphic sections P of p, each with normal bundle

NP ' C2n(1),

3. there is a an ω ∈ H0(Z,O(Λ2T ∗F (2))) which restricts to a holomorphic
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symplectic form on each fibre Fζ = p−1(ζ),

4. there is an antiholomorphic involution τ on Z (τ 2 = Id), such that

σ◦p = p◦τ , where σ is the antipodal map on S2, and τ is compatible with

ω. What this last statement means is that if P is a twistor line (a holo-

morphic section of p with normal bundle NP ' C2n(1)), then τ induces

a complex antilinear map τ∗ : H0(P,O(NP )) → H0(τ(P ),O(Nτ(P ))),

and if X and Y are two elements of H0(P,O(NP )), then ω(τ∗X, τ∗Y ) =

−(1/ζ̄2)ω(X, Y ).

Proof. A theorem of Kodaira guarantees that if S is a submanifold of a complex

manifold Z of normal bundle NS, and if H1(S,O(NS)) = 0, then there is an

complex analytic m-dimensional family of deformations of S in Z, where m is

the dimension of H0(S,O(NS)). If S ′ is a deformation of S in Z corresponding

to point s′ in the paremeter space B, then the Kodaira-Spencer deformation

theory allows us to identify

Ts′(B) ' H0(S ′,O(NS′))

where NS′ is the normal bundle of S ′ in Z.

We apply this theorem to a twistor line P . Since

H1(P,O(NP )) = H1(P,O(C2n(1))) = 0 = H1(P,O(1))⊗ C2n,

it follows that there is a complex analytic 4n-dimensional parameter family of

deformations of P in Z, whose parameter space we denote by MC.

We note that τ induces an antiholomorphic map which we also denote by τ
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from MC to itself. The fixed point set of τ is a real 4n-dimensional submanifold

M ⊂MC.

Next, we need to define a hyperkähler structure (g, I, J,K) on M whose

twistor space is Z.

We remark that

H0(P,O(N )) = H0(P,O(N (−1)))⊗H0(P,O(1))

= H0(P,O(C2n))⊗H0(P,O(1))

' C2n ⊗ C2.

From the definition of ω ∈ H0(Z,O(Λ2T ∗F (2))), it follows that ω can be viewed

as a symplectic form on H0(P,O(N (−1))). Moreover, there is a natural sym-

plectic form ω̃ on H0(P,O(1)) defined by

ω̃(a1 + b1ζ, a2 + b2ζ) = a1b2 − b1a2, (3.2.10)

where ai, bi are complex numbers. Therefore

gC = ω ⊗ ω̃ (3.2.11)

is a complex metric on MC (a nondegenerate pairing between T ′(MC) and

T ′∗(MC)). Thus, if

x+ ζy ∈ H0(P,O(NP )), (3.2.12)
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with x and y in H0(P,O(N (−1))) ' C2n, we have

g(x+ ζy, x+ ζy) = 2ω(x, y). (3.2.13)

We still need to make use of the real structure τ in order to construct a real

metric on M .

A real structure t on a complex vector space V is a complex anti-linear

involution of V (t(λv) = λ̄t(v) and t2 = Id). A closely related concept is that

of a quaternionic structure j on V , which is a complex anti-linear map from V

to itself (j(λv) = λ̄jv) such that j2 = − Id. We remark that if V and W are

endowed with two quaternionic structures jV and jW , then V ⊗W is endowed

with a real structure, namely jV ⊗ jW .

We remark that, up to sign, there is but one quaternionic strucure j̃ on

H0(Pm,O(1)) covering the antipodal map σ(ζ) = −1/ζ̄

j̃(a+ bζ) = b̄− āζ.

The real structure τ induces a unique quaternionic structure j onH0(Pm,O(NPm(−1)))

such that τ = j ⊗ j̃.

Writing an element of H0(Pm,O(NPm)) as x + yζ, where x and y are

elements of H0(Pm,O(NPm(−1))) ' C2n, we have

τ(x+ yζ) = jy − jxζ,

so that for a real twistor line Pm corresponding to a point m ∈ M , the real
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vectors at m correspond to elements of Tm⊗C ' H0(Pm,O(NPm)) of the form

X = x− (jx)ζ, (3.2.14)

with x ∈ H0(Pm,O(N (−1))). We thus define the metric g on M by

g(X,X) = −2ω(x, jx). (3.2.15)

The compatibility of ω with τ and its nondegeneracy ensure that g is either

positive definite, or negative definite (assuming that M is connected). Without

loss of generality, we can assume that g is positive definite, and thus is a metric

on M (otherwise, we just multiply g by −1).

Suppose that X vanishes at some ζ0. Then x = (jx)ζ0, and we have

g(X,X) = −2ω((jx)ζ0, jx) = 0,

which implies that X vanishes since g is positive-definite. Hence given a real

twistor line Pm, for any given ζ, one can identify a neighborhood of m ∈ M

with a neighborhood in Fζ = p−1(ζ) of the intersection of Pm with Fζ .

We remind the reader that a real vector X(ζ) at Pm is of the form

X(ζ) = x− (jx)ζ,

with x ∈ H0(Pm,O(N (−1))). Letting y = −jx, we can alternatively write it

as

X(ζ) = jy + yζ.
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So if we identify M (locally) with the fiber F∞, the vector X(ζ) gets identified

with X(∞) = y. We define I on the real tangent vector y to be simply

multiplication by i, and J to be left multiplication by ij

I(y) = iy, J(y) = ij(y) and K(y) = −j(y).

We note that I and J anticommute because j is complex anti-linear (the reader

is probably wondering why not define J to by left multiplication by j; this is

just to be consistent with our formula for I(ζ)). It is clear that I is integrable,

since (M, I) is locally identified with the fibre F∞ as a complex manifold.

We now check that J and K are also integrable. This is because J and K

correspond to left multiplication by i after we identify M locally with F1 and

F−i respectively. We do the computation only for J (the other is similar). We

have

X(1) = jy + y,

so

iX(1) = ijy + iy = ijy + j(ijy),

from which we see that y becomes ijy, which is precisely how J acts. Hence J

is integrable, and similarly, so is K. It remains only to check that the Kähler

forms ω1, ω2 and ω3 are closed. We do this only for ω1 (the other two are

similar). Upon restricting ω on a fibre Fζ , this defines a symplectic 2-form on
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M which we denote by ϕζ . If

X1 = jy1 + y1ζ

X2 = jy2 + y2ζ.

Hence

ϕi(X1, X2) = ω(jy1 + iy1, jy2 + iy2)

ϕ−i(X1, X2) = ω(jy1 − iy1, jy2 − iy2),

from which we deduce that

1

2
(ϕi − ϕ−i)(X1, X2) = iω(jy1, y2) + iω(y1, jy2) = −ω1(X1, X2).

Hence ω1 is closed (since the ϕζs are symplectic forms on M and therefore

closed). This finishes the proof that (M, g, I, J,K) is hyperkähler.
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Chapter 4

The Legendre Transform

In this chapter, we review the Legendre transform construction of [3]. Briefly,

the idea is the following. If M has n commuting triholomorphic Killing fields,

then the moment map induces a holomorphic map from the twistor space Z of

M onto the total space of the holomorphic bundle Cn(2) over CP1. Thus, due

to Cn-equivariance, we may view Z as a principal fibre bundle over Cn(2) with

group the additive group Cn. This setup, naturally leads to a description of Z

as the gluing of two copies of C2n+1 using a holomorphic symplectomorphism

whose hamiltonian H is a holomorphic function of n + 1 complex variables.

Then, one expresses the Kähler potential K with respect to I as a Legendre

transform of a holomorphic function F , which in turn is given by a contour

integral expression in terms of the hamiltonian H. The contour integral ex-

pression for F is equivalent to F satisfying a system of linear elliptic second

order PDEs, and is a higher dimension analogue of the classical Whittaker

formula [10], which represents harmonic functions on R3 as a contour integral.

Assume that (M, g, I, J,K) is a hyperkähler manifold admitting an action
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of the abelian group Rn by triholomorphic isometries. This gives an action

of Rn by biholomorphic transformations of the twistor space Z preserving ω.

We assume that this action extends to a biholomorphic and free action of the

complexification Cn of Rn on Z, also preserving ω.

The moment map of this complex symplectic action of Cn on Z can be

viewed as a holomorphic map µ : Z → Y , where Y is the total space of Cn(2)

over CP1. Moreover µ is Cn-equivariant, and Cn acts trivially on Y since Cn is

abelian. Thus, one can view Z as a principal fibre bundle over Y with group

the additive group Cn.

The complex manifold Cn(2) can be covered with two sets of coordinates

(ζ, ηi) and (ζ̃ , η̃i) (1 ≤ i ≤ n), on π−1(U) and π−1(Ũ) respectively (π : Cn(2)→

CP1 the bundle projection), satisfying the following transition relations:

ηi = ζ2η̃i, ζ̃ = 1/ζ, (4.0.1)

for ζ 6= 0. As for the complex manifold Z, we need two sets of n additional

coordinates ξi and ξ̃i to describe it. We then have

ξ̃i = ξi + f i(ηj, ζ), ηi = ζ2η̃i, ζ̃ = 1/ζ, (4.0.2)

for ζ 6= 0. In these coordinates, the group action is generated by the ∂ξis, and

the ηis form the moment map µ, so that the symplectic form ω along the fibres

is

ω =
∑
i

dξi ∧ dηi = ζ2
∑
i

dξ̃i ∧ dη̃i (mod dζ), (4.0.3)

the last equality coming from the fact that ω is O(2)-valued. Comparing with
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4.0.2, we see that ∑
i,j

∂f i

∂ηj
dηj ∧ dηi = 0.

Hence
∑

i f
idηi is closed with respect to dη, so we can find a holomorphic

function H(ηi, ζ) such that

f i =
∂H

∂ηi
(1 ≤ i ≤ n). (4.0.4)

We remark that the symplectic transformation 4.0.2 patching together the two

copies of C2n+1 has the following symplectic vector field

∑
i

∂H

∂ηi
∂

∂ξi

corresponding to the Hamiltonian H.

We now set out to calculate the real structure τ . It should cover τ(ζ) =

−1/ζ̄, and respect the transition relations 4.0.2. With these requirements, τ is

uniquely determined, up to sign, or a change of coordinates (by say multiplying

some coordinates by i), and is given by

τ(ζ) = −1

ζ̄
, τ(ηi) = − η̄

i

ζ̄2
, τ(ξi) = −ξ̄i. (4.0.5)

A holomorphic section of p : Z → CP1 is mapped holomorphically by µ to a

holomorphic section of the bundle projection π : Y → CP1. We thus set forth

to determine the holomorphic sections of π. These are given by holomorphic
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functions ηi(ζ) and η̃i(ζ̃) satisfying

ηi(ζ) = ζ2η̃i(1/ζ), (4.0.6)

for ζ 6= 0. It then follows that each ηi is quadratic in ζ:

ηi = ai + biζ + ciζ2, (4.0.7)

for 1 ≤ i ≤ n. These are images of the (complex) twistor lines. Images of the

real twistor lines are

ηi = −z̄i − xiζ + ziζ2. (4.0.8)

Hence the projections of the 4n-parameter family of complex (real) twistor

lines in Z via µ are the 3n-parameter family of complex (real) holomorphic

sections of π : Y → CP1 given by 4.0.7 (respectively 4.0.8). Thus we expect

that the complex (real) twistor lines projecting to a fixed complex line in 4.0.8

form a complex (real) n-parameter family. Such twistor lines are given by

holomorphic functions ξ(ζ) and ξ̃(ζ̃) satisfying

ξ̃i(
1

ζ
) = ξi(ζ) +

∂H

∂ηi
(η1(ζ), . . . , ηn(ζ), ζ), (4.0.9)

where ηi(ζ) = zi − xiζ − z̄iζ2, for a fixed (xi, zi) ∈ Rn × Cn. We expand in

power series

ξ̃i(1/ζ) =
∞∑
n=0

ainζ
−n and ξi(ζ) =

∞∑
n=0

binζ
n. (4.0.10)
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So if we expand

∂H

∂ηi
(η1(ζ), . . . , ηn(ζ), ζ)

in Laurent series in ζ, we are forced to assign the terms corresponding to

negative powers of ζ to the ains (n ≥ 1) and those corresponding to positive

powers of ζ to the bins (n ≥ 1). We have however an n-parameter freedom

in assigning the constant terms, and this gives us the “missing” n-parameter

family of twistor curves projecting to the same line in Y . More precisely, if C

is a simple counterclockwise contour around ζ = 0 (and not passing through

∞), we then have

ai0 − bi0 =
1

2πi

∫
C

∂H

∂ηi
dζ

ζ
. (4.0.11)

Moreover, the reality condition forces

ai0 = −bi0. (4.0.12)

We let ui = ξ̃i(0), so that we have

zi = η̃i(0) and ui = ξ̃i(0), (4.0.13)

which are holomorphic with respect to I = I(∞). We need to determine the

functions xi with respect to these coordinates zj and uj. We define

F (xi, zi, z̄i) =
1

2πi

∫
C

H(η1(ζ), . . . , ηn(ζ), ζ)
dζ

ζ2
, (4.0.14)
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where ηi(ζ) = −z̄i − xiζ + ziζ2. Differentiating with respect to xi

∂F

∂xi

∫
C

∂H

∂ηi
(−ζ)

dζ

ζ2
= −(ai0 − bi0).

But

ui = ξ̃i(0) = ai0,

and

bi0 = −ai0 = −ūi,

so that

∂F

∂xi
= −(ui + ūi). (4.0.15)

This gives the xis implicitly in terms of the uj + ūj, zj and z̄j. For

ω =
∑
i

dξi ∧ dηi,

it follows from 4.0.3 and 5.0.6 that

τ ∗(ω) =
ω̄

ζ̄2
, (4.0.16)

while for

ϕ = −(ω2 − iω3)− 2ω1ζ + (ω2 + iω3)ζ2, (4.0.17)

the effect of τ on it is

τ ∗(ϕ) = − ϕ̄
ζ̄2
. (4.0.18)

In order to correct this, we can replace the ηj by iηj. Hence, the Kähler form
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ω1 is determined by the ζ coefficient in

iω = i
∑
j

dξj ∧ dηj

= i
∑
i

(dbj0 + dbj1ζ̃ + . . .) ∧ (−dz̄j − dxj ζ̃ + . . .)

= i
∑
j

(−dūj + dbj1ζ̃ + . . .) ∧ (−dz̄j − dxj ζ̃ + . . .)

= i
∑
j

dūj ∧ dz̄j + i
∑
j

(dūj ∧ dxj − dbj1 ∧ dz̄j)ζ + . . .

Hence

ω1 =
i

2

∑
j

(dbj1 ∧ dz̄j − dūj ∧ dxj). (4.0.19)

But

bj1 = − 1

2πi

∫
C

∂H

∂ηj
dζ

ζ2
=
∂F

∂z̄j
, (4.0.20)

so that

ω1 =
i

2

∑
j

(d(
∂F

∂z̄j
) ∧ dz̄j − dūj ∧ dxj). (4.0.21)

Let

K = F − xj ∂F
∂xj

. (4.0.22)

Note that we are suppressing the summation symbol to alleviate the notation.

Then

∂K =
∂F

∂z̄j
dz̄j +

∂F

∂xj
∂xj − ∂xj ∂F

∂xj
− xj∂

(
∂F

∂xj

)
=
∂F

∂z̄j
dz̄j − xj∂

(
∂F

∂xj

)
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so that

∂∂K = ∂

(
∂F

∂z̄j

)
∧ dz̄j − ∂xj ∧ ∂

(
∂F

∂xj

)
− xj∂∂

(
∂F

∂xj

)
.

Using the equation ∂F/∂xj = −(uj + ūj), we arrive at

∂∂K = ∂

(
∂F

∂z̄j

)
∧ dz̄j + ∂xj ∧ dūj. (4.0.23)

Comparing with 4.0.21, and since ω1 is of type (1, 1) in holomorphic coordi-

nates with respect to I, it follows that K/2 is the Kähler potential of ω1, where

K is given by 4.0.22 and is the Legendre transform of F , and F is given by

F (xi, zi, z̄i) =
1

2πi

∫
C

H(η1(ζ), . . . , ηn(ζ), ζ)
dζ

ζ2
. (4.0.24)
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Chapter 5

The Boyer and Finley Equation

In this chapter, we review the derivation of the Boyer and Finley equation,

as contained in [11]. The authors first consider a complex selfdual Einstein

4-manifold using the formalism of complex H spaces; more precisely, in this

formalism, you have 2 sets of special complex coordinates q1, q2 and q̃1, q̃2, and

the metric is determined by a smooth complex-valued function Ω, referred to

as a potential. There is gauge freedom in the choice of the special coordinates

qA and q̃A, as well as in the choice of potential. The authors first determine

this gauge freedom, and then consider a vector field K satisfying the Killing

equation, which implies a differential relation between Ω and K. There is also

another constraint on K, namely that the antiselfdual part of ∇K must be

constant. Imposing then a reality condition on the complex selfdual Einstein

4-manifold implies that there are two cases to consider, either the antiselfdual

part of ∇K is zero (i.e. ∇K is selfdual), or it is nonzero. They consider

each case separately, and use the gauge freedom to simplify the differential

relation between Ω and K (what they called the master equation). The first
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case turns out to correspond to the Gibbons and Hawking ansatz, where Ω is

determined by a solution to the Laplace equation on (an open subset of) R3.

On the other hand, in the second case, the master equation can be simplified

using the gauge freedom and a Legendre transform to the so-called Boyer and

Finley equation on (an open subset of) R3:

Fqq̄ + (eF )JJ = 0, (5.0.1)

where q, q̄ and J are coordinates on R3 (q complex and J real).

Let MC be a complex selfdual Einstein 4-manifold. Then there exist special

coordinates q1, q2 and q̃1, q̃2 and a smooth complex-valued function Ω of these

coordinates, such that in these coordinates the metric takes the form

g = 2PABdq
A � q̃B, PAB = ΩqAq̃B , (5.0.2)

and Ω satisfies:

PABPAB = 2, (5.0.3)

where raising and lowering of indices A, B is done via a constant (with respect

to these coordinates) skew-symmetric rank 2 spinor field εAB, satifying ε12 = 1:

ψA = ψBεBA ϕA = εABϕB. (5.0.4)

Normalized symmetrization (respectively skew-symmetrization) is denoted by
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parentheses (respectively square brackets). For instance,

ψ(AB)C =
1

2
(ψABC + ψBAC),

ψ[ABC] =
1

3!
(ψABC − ψBAC + ψBCA − ψCBA + ψCAB − ψACB).

A useful trick when dealing with 2-spinors is the following

ψ[AB] =
1

2
ψ C
C εAB. (5.0.5)

The equation 5.0.3 is the Monge-Ampere equation, which also goes by the name

the Heavenly equation in Plebanski’s Ω-formalism. The converse is also true, in

the sense that if Ω is a complex-valued solution to the Monge-Ampere equation,

then the metric g given by 5 is a complex selfdual Einstein 4-manifold.

There is also a very simple prescription to obtain a real selfdual Einstein

4-manifold from MC by imposing the following reality conditions:

q̃A = qA = q̄A, Ω real. (5.0.6)

Moreover, any real Riemannian selfdual Einstein 4-manifold admits com-

plex coordinates q1, q2 and their complex conjugates, together with a potential

Ω, which is now a real-valued function, such that the metric is given by 5 with

q̄B replacing q̃B and Ω satisfies the Monge-Ampere equation 5.0.3.

We now go back to the case of a (complex) H -space MC, by which we mean

a complex selfdual Einstein 4-manifold (with respect to a complex holomorphic
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metric). We let

Σ = dqA ∧ dqA = 2dq1 ∧ dq2, (5.0.7)

Σ̃ = dq̃A ∧ dq̃A = 2dq̃1 ∧ dq̃2. (5.0.8)

Then Σ and Σ̃ are two closed antiselfdual 2-forms on MC. Moreover, the 2-

form PABdq
A ∧ dq̃B is also closed (this follows from the torsion being 0), so

that we have a basis of the antiselfdual 2-forms on MC consisting of closed

2-forms, namely

SȦḂ = (PABdq
A ∧ dq̃B,Σ, Σ̃). (5.0.9)

We wish to investigate changes of coordinates of the form

q′R = q′R(qA, q̃B) (5.0.10)

q̃′S = q′S(qA, q̃B), (5.0.11)

such that the metric g is still given by in the primed coordinates and with Ω

replaced by its transformed version Ω′. We also require that the new S ′ȦḂ still

consists of closed 2-forms, and that it be obtainable from SȦB by

S ′ṘṠ = lṘ
Ȧ
lṠ
Ḃ
SȦḂ, (5.0.12)

where lṘ
Ȧ

is a smooth function on MC with values in SL2(C). In order to

preserve the closedness of the 2-forms in SȦḂ, the function lṘ
Ȧ

must be a

constant element of SL2(C). The solution to all these requirements is that
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such coordinate changes are of the form

dq′R = (dRA)(∆dqA − iτΩqAq̃Bdq̃
B) (5.0.13)

dq̃′S = (d̃SB)(∆̃dq̃B + iτ̃ΩqAqB̃
dqA), (5.0.14)

where dRA, d̃SB are arbitrary smooth functions with values in SL2(C), and ∆,

∆̃, τ , τ̃ are constants satisfying

∆∆̃ + τ τ̃ = 1. (5.0.15)

The 2 by 2 matrix-valued functions

lṘ
Ȧ

=

∆ iτ

iτ̃ ∆̃

, (5.0.16)

lRA = dRA. (5.0.17)

are used to transform dotted and undotted indices respectively. Finally, we

would like to determine how the potential Ω transforms. Consider the Monge-

Ampere equation

(∂A∂̃BΩ)(∂A∂̃BΩ) = 2. (5.0.18)

It follows from this equation that there exist smooth functions F and F̃ such

that

(∂̃BΩ)(∂A∂̃BΩ) = qA + ∂AF (5.0.19)

(∂AΩ)(∂A∂̃BΩ) = q̃B + ∂̃BF̃ (5.0.20)
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Then Ω transforms according to

Ω′ = Ω + i

(
∆̃τ(F̃ + P )−∆τ̃(F + P̃ )

∆∆̃− τ τ̃

)
+ A(q) + Ã(q̃), (5.0.21)

where A, respectively Ã, is a function of the q variables, respectively q̃ vari-

ables, only, and P and P̃ are some functions of all variables.

Next, the authors consider a vector field

K = LA∂A + L̃A∂̃A (5.0.22)

satisfying the Killing equation

∇(aKb) = 0, (5.0.23)

for a, b ranging over all 4 complex coordinates qA and q̃A. After some work,

the authors show that the Killing equation implies that there are constants b0

and b̃0, as well as functions H = H(qA) and H̃ = H̃(q̃A), such that

KΩ = −b̃0F − b0F̃ +H + H̃, (5.0.24)

which is a necessary equation that Ω and K must satisfy if K is a Killing field.

There is another condition that needs to be satisfied though, namely that

lȦḂ = ∇ Ȧ
A K Ḃ

B εAB (5.0.25)

is constant. This integrability condition comes from the fact that an arbitrary
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Killing field K on a Riemannian manifold must satisfy

∇a∇bKc = RbcadK
d, (5.0.26)

where Rbcad is the Riemann curvature tensor. Both the left-hand side and

right-hand side of the previous equation are skew-symmetric in b and c. We

then equate the anti-selfdual part with respect to b and c on both sides to get

the integrability condition 5.0.25; indeed, the anti-selfdual part of the right-

hand side vanishes because MC is a selfdual Ricci-flat (complex) 4-manifold.

Using the Killing equation 5.0.23 and the integrability condition 5.0.25, the

authors then show that there exists a constant c0 and functions ζ = ζ(qA) and

ζ̃ = ζ̃(q̃A) such that the components of the Killing field K are of the form

LA = b0∂
A(Ω)− 1

2
ic0q

A + ∂Aζ (5.0.27)

L̃A = b̃0∂̃
A(Ω) +

1

2
ic0q̃

A + ∂̃Aζ̃ . (5.0.28)

Then the authors focus on the real case, obtained by imposing Ω to be real

and replacing the tilde by the complex conjugate, so that q̃ and b̃0 become q̄

and b̄0, and so on. Under this reality assumption, consider

lȦḂ = −2

 b0 ic0

ic0 b̄0

 , c0 real. (5.0.29)

We have two cases to consider:

case 1: the determinant of lȦḂ is 0, in which case lȦḂ vanishes, which means

that ∇K is selfdual.
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case 2: the determinant of lȦḂ is nonzero or, in other words, the antiselfdual

part of ∇K is nonvanishing.

In case 1, using the “gauge” freedom determined towards the beginning

of this section, the authors simplify the Monge-Ampere equation and then,

using a Legendre transform, simplify it further to the 3-dimensional Laplace

equation. In other words, a selfdual Ricci-flat 4-manifold admitting a selfdual

Killing field can be obtained from the Gibbons-Hawking ansatz, which is what

Jones and Tod had proved in [12].

In case 2, again by using the “gauge” freedom and then making use of a

Legendre-like transform, the authors arrive at the Boyer and Finley equation

[11] (which goes by the name the SU(∞) Toda lattice equation in the physics

literature):

Fqq̄ + (eF )JJ = 0, (5.0.30)

where q, q̄ and J are coordinates on R3 (q complex and J real).

Before closing, we make the following 2 remarks. In [13] (1991), Claude

LeBrun showed that any Kähler scalar-flat 4-manifold with Killing field comes

(locally) from a pair of functions (u, V ) where u is a solution to the Boyer and

Finley equation, while V is a solution of its linearization (at u).

In arXiv:hep-th/0609071v1 (2006), Paul Tod considered the case of an anti-

selfdual Einstein 4-manifold with nonzero cosmological constant, and showed

that such manifolds are also determined by a solution to the Boyer and Fin-

ley equation, just like for the case of a selfdual Einstein 4 manifold with 0

cosmological constant, which was considered by Boyer and Finley.
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Chapter 6

Hyperkähler Manifolds and

Quaternionic Killing fields

6.1 Special Coordinates

In this section, we extend the formalism used in the Boyer and Finley work [11]

(Plebansky’s Ω formalism) in the case of a self-dual Ricci-flat 4-manifold to the

case of a hyperkähler 4n-manifold (which are generalizations of anti-self-dual

Ricci-flat 4-manifolds).

We choose a complex structure, say I, in the S2 of compatible complex

structures on a hyperkähler 4n-manifold M . Then, denoting by ω1, ω2 and

ω3 the Kähler 2-forms corresponding to I, J and K respectively, the complex

2-form

ω+ = ω2 + iω3 (6.1.1)

is a complex holomorphic (in fact covariantly constant) symplectic 2-form with

44



respect to I. We now apply the holomorphic version of Darboux’s theorem,

which guarantees the existence of local holomorphic coordinates (with respect

to I) qA for A going from 1 to 2n such that ω+ is locally of the form

ω+ = εABdq
A ∧ dqB = 2

n∑
k=1

dqk ∧ dqn+k, (6.1.2)

where

(εAB) =

 0n 1n

−1n 0n

 (6.1.3)

In these local coordinates, the metric g takes the form

PAB̄dq
A � dq̄B̄,

where

PAB̄ = ΩqAq̄B̄ ,

and Ω is a smooth real function. Moreover, the condition J2 = − Id implies

the following equation

PAŪP
Ū

B = εAB. (6.1.4)

We will refer to this equation as the symplectic Monge-Ampere equation (SMA

equation for short). The raising and lowering of indices in this formalism is

done via εAB, and not via the metric PAB̄, using the following conventions

ψB = ψAεAB, ϕA = εABϕB.
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We also remark that ε B
A behaves like the identity, namely

ψA = ε B
A ψB, ϕB = ϕAε B

A .

The following is a basis of the (complexified) self-dual 2-forms consisting of

closed forms

SȦḂ = (ω+, PAB̄dq
A ∧ dq̄B̄, ω+).

We wish to investigate the freedom involved in a choice of special coordinates

on M . We remark that instead of choosing I, we could have chosen any other

complex structure in the S2 of compatible complex structures on M . Thus,

any other new special coordinates q′R, q̄′S̄ can be obtained from the old special

coordinates qA, q̄B̄ using transformations

q′R = q′R(qA, q̄B̄)

q̄′S̄ = q′R(qA, q̄B̄),

whose Jacobian is of the form

dq′R = (dRA)(∆dqA − iτPA
B̄ dq̄

B̄) (6.1.5)

dq̄′S̄ = (d̄S̄B̄)(∆̄dq̄B̄ + iτ̄P B̄
A dqA), (6.1.6)

where (dRA) is symplectic,

dRAεRSd
S
B = εAB, (6.1.7)
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, and ∆ and τ are constants satisfying

∆∆̄ + τ τ̄ = 1. (6.1.8)

Under this transformation, we remark that

S ′ṘṠ = lṘ
Ȧ
lṠ
Ḃ
SȦḂ, (6.1.9)

where

(lṘ
Ȧ

) =

∆ iτ

iτ̄ ∆̄

 . (6.1.10)

In other words, (lṘ
Ȧ

) ∈ SU(2).

We go back to the SMA system, which implies that

∂[B(∂R̄Ω∂A]∂̄R̄Ω) = εAB,

so that there exists a smooth function F such that

∂R̄Ω∂A∂̄R̄Ω = −qA + ∂AF, ∂DΩ∂D∂̄B̄Ω = −q̄B̄ + ∂̄B̄F̄ . (6.1.11)

We find that Ω transforms as

Ω′ = Ω + i

(
∆̄τ(F̄ + P )−∆τ̄(F + P̄ )

∆∆̄− τ τ̄

)
+ A(q′) + Ā(q̄′), (6.1.12)

where A, respectively Ā, is a function of the q′ variables, respectively q̄′ vari-
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ables, only, and P̄ satisfy

∂′A∂̄
′
R̄P̄ = iτ̄∆d C

A d̄ Ū
R̄ ∂̄Ū(P T̄

C ∂̄T̄F )− iτ∆̄d C
A d̄ T̄

R̄ ∂C(PD
T̄ ∂DF ). (6.1.13)

The operators ∂′A and ∂̄′
R̄

are defined by

∂′A = (d C
A )(−∆̄∂C + iτ̄P Ū

C ∂̄Ū) (6.1.14)

∂̄′R̄ = (d̄ T̄
R̄ )(−∆∂̄T̄ − iτPD

T̄ ∂D) (6.1.15)

These are the kind of transformations we will consider. They rotate the

complex structures but preserve the local form of ω+.

We remark that the vector fields ∂′A and ∂̄′
R̄

are assumed to be coordinate

vector fields, so that the Lie bracket of any two of them is assumed to vanish.

This implies that

1. the functions d C
A are holomorphic,

2. the functions PAŪ d̄
Ū

R̄
are holomorphic,

3. d C
[A| ∂Cd

D
|B] = 0,

4. d C
A ∂CP

D
T̄

= PC
T̄
∂Cd

D
A .

6.2 Quaternionic Killing fields

Let M be a hyperkähler 4n-manifold.
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Definition 6.2.1. A real vector field X on M is said to be Killing if

LX(g) = 0,

in other words if X preserves the metric g.

Definition 6.2.2. A real vector field X on M is said to be quaternionic if

LXΓ(M,V) ⊆ Γ(M,V),

where V is the real rank 3 bundle spanned by ωk, for k = 1, ..., 3. In other

words V is the bundle of self-dual 2-forms on M .

We also need the following lemma:

Lemma 6.2.3. There exist locally a smooth function F = F (q, q̄) such that

∂̄R̄Ω∂A∂̄R̄Ω = −qA + ∂AF. (6.2.1)

The proof of the lemma is straightforward and follows from the SMA system

of equations.

We now prove the following theorem:

Theorem 6.2.4. If X is a real quaternionic Killing field, then locally, in the

special coordinates qA and q̄B̄ constructed in the previous section, X is of the

form

X = LA∂A + L̄B̄∂̄B̄, (6.2.2)
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where

LA = b∂AΩ− 1

2
icqA + ∂Aζ (6.2.3)

, L̄B̄ = b̄∂̄B̄Ω +
1

2
icq̄B̄ + ∂̄B̄ ζ̄ , (6.2.4)

for some ζ = ζ(q), b ∈ C and c ∈ R and the following master equation holds

XΩ = −b̄F − bF̄ +H + H̄, (6.2.5)

for some H = H(q) and H̄ = H̄(q̄). Conversely, if X is a real vector field on

a hyperkähler manifold M of the form above in local special coordinates and

the master equation is satisfied, then X is quaternionic Killing.

Proof. The Killing equation in special coordinates qA, q̄B̄, with A and B̄ going

from 1 to 2n, splits into the following equations

P Ū
(A ∂B)L̄Ū = 0 (6.2.6)

PD(Ā∂̄B̄)LD = 0 (6.2.7)

∂A(PDB̄L
D) + ∂̄B̄(PAŪ L̄

Ū) = 0. (6.2.8)

The first two equations are complex conjugates of each other, and their solution

can be shown to be (see Appendix A):

LA = EA
B∂

BΩ + JA, (6.2.9)

where EAB = EAB(q), JA = JA(q) and EAB = −EBA.
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Next, we have a constraint coming from the equation

∇a∇bXc = R d
bca Xd, (6.2.10)

which holds in fact for any real Killing vector field X.

Moreover, on a hyperkähler manifoldM , there exist complex bundles E and

H of rank 2n and 2 respectively corresponding to the standard representation

of Sp(n) on C2n and the trivial representation of Sp(n) on C2 respectively.

The bundles E and H are each equipped with a symplectic 2-form, εE and εH .

In addition to these symplectic structures, each of them is equipped with a

quaternionic structure, jE and jH respectively. We note that the complexified

tangent bundle TC(M) is isomorphic to E ⊗ H, and the bundle of self-dual

2-forms is S2H. By that we actually mean (εE)⊗ S2H ⊆ Λ2E ⊗ S2H, but we

will often omit references to the ε’s for simplicity.

It can be shown that the curvature of a hyperkähler manifold M is a section

of S4E. Hence from the constraint equation 6.2.10, it follows that if X is a

real Killing field on a hyperkähler manifold M , then

∇[(∇X)S2H ] = 0. (6.2.11)

We remark that

V = (ω1, ω2, ω3),
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where

ω1 = iPAR̄dq
A ∧ dq̄R̄ (6.2.12)

ω2 =
1

2
(εABdq

A ∧ dqB + εR̄S̄dq̄
R̄ ∧ dq̄S̄) (6.2.13)

ω3 =
i

2
(εABdq

A ∧ dqB − εR̄S̄dq̄R̄ ∧ dq̄S̄). (6.2.14)

The condition

LX(ω2) ∈ Γ(M,V)

implies, after a short computation, that

i(EACP
C
R̄ − ĒR̄T̄P

T̄
A ) is a real function times PAR̄ (6.2.15)

2∂[AEB]C∂
CΩ− 2EC[B∂A]∂

CΩ + 2∂[AJB] is a complex function times εAB.

(6.2.16)

Similarly, the condition

LX(ω3) ∈ Γ(M,V)

implies, similarly, that

EACP
C
R̄ + ĒR̄T̄P

T̄
A is a real function times PAR̄ (6.2.17)

i(2∂[AEB]C∂
CΩ− 2EC[B∂A]∂

CΩ + 2∂[AJB]) is a complex function times εAB.

(6.2.18)

In particular, we have

EACP
C
R̄ is a complex function times PAR̄,
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so that, contracting with P R̄
B on both sides, and making use of the SMA

system, we get that

EAB = fεAB,

for some holomorphic f = f(q). In order to gain more information about f ,

we make use of the constraint 6.2.11, which implies, in particular that

∇[(PCR̄∇̄S̄L
C)dq̄R̄ ∧ dq̄S̄ + (PAŪ∇BL̄

Ū)dqA ∧ dqB]S2H = 0.

But

PCR̄∇̄S̄L
C = −fεR̄S̄,

since f and JC are holomorphic. Hence the constraint 6.2.11 implies that f is

constant, say f = −b, where b ∈ C. Hence

EBC = −bεBC

LA = b∂AΩ + JA.

Using these equations and equations 6.2.16 and 6.2.18, we conclude that there

is a holomorphic function h such that

2∂[AJB] = hεAB. (6.2.19)

We go back to the constraint 6.2.11, which implies also that

∇[∇A(PDR̄L
D) + ∇̄R̄(PAŪ L̄

Ū)]S2H = 0.
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After a short computation, this implies that

∂DJ
D + ∂̄Ū J̄

Ū = id,

where d ∈ R. Hence the left-hand side is real, while the right-hand side is pure

imaginary, so that both sides vanish. Hence ∂DJ
D is pure a pure imaginary

function. This in turn implies that h is both holomorphic and pure imaginary,

so that

h = −ic, (6.2.20)

where c ∈ R. Thus we have from 6.2.19 that

∂[AJB] = −i c
2
εAB. (6.2.21)

Solving this equation yields that there is locally a holomorphic function ζ =

ζ(q) such that

JB = −i c
2
qB + ∂Bζ, (6.2.22)

and therefore,

LA = b∂AΩ− i c
2
qA + ∂Aζ. (6.2.23)

One can also see that the master equation comes from equation 6.2.8.

Conversely, if X is a real vector field on a hyperkähler manifold M with

LA of the above form, and such that the master equation holds, then it is clear

that X is Killing and that LXω2 and LXω3 are sections of V . So it remains

only to check that LXω1 is a section of V , which can easily be done, and follows

from the master equation, as can be checked. Indeed, the condition LXω1 is a
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section of V if

∂A∂̄R̄(bF̄ + b̄F +X(Ω)) is a real function times ∂A∂̄R̄Ω. (6.2.24)

But the master equation tells us precisely that the left-hand side of the pre-

vious equation vanishes, and the converse is thus shown to be true; the real

vector field X on a hyperkähler manifold M of the form above in local special

coordinates and satisfying the master equation is thus quaternionic Killing.

6.3 Application to hyperkähler 4n-manifolds

with n commuting quaternionic Killing fields

Theorem 6.3.1. Let X1,...,Xn be n commuting quaternionic Killing fields on

a hyperkähler 4n-manifold M such that the first n−1 of them, X1,...,Xn−1 are

triholomorphic. If (∇Xn)S2H vanishes at some point p ∈ M , then it vanishes

in a neighborhood of p. Thus we have two cases: in case 1, (∇Xn)S2H vanishes

locally, and in case 2, (∇Xn)S2H is nonzero locally.

Consider first case 1. This is the case of [3]. There are special local coor-

dinates qj, pj and q̄j, p̄j, for j going from 1 to n, such that

ω+ = ω2 + iω3 =
n∑
j=1

dqj ∧ dpj (6.3.1)

and the vector fields Xj are locally of the form

Xj = ∂qj + ∂q̄j , (1 ≤ j ≤ n). (6.3.2)

55



Moreover, the Kähler potential Ω in these special coordinates can be chosen

such that Xj(Ω) = 0, for j going from 1 to n. We then let uj = qj + q̄j and

vj = i(q̄j − qj), and write

Ω(q, p, q̄, p̄) = K(v, p, p̄). (6.3.3)

Then using matrix notation, H satisfies

1n = KT
vvKpp̄ −KT

pvKvp̄, (6.3.4)

KT
pp̄Kvq̄ = KT

vp̄Kpp̄ (6.3.5)

KT
vvKpv = KT

pvKvv. (6.3.6)

After a Legendre transform F of K with respect to the real variables vj, the

equations above reduce to

FV V + Fpp̄ = 0 (6.3.7)

FV p is symmetric. (6.3.8)

Case 1 is the very well known Hitchin-Karlhede-Lindström-Roček result [3].

As for case 2, dimension 4 (i.e. n = 1) was already considered by Boyer

and Finley. We assume that n > 1. After possibly rotating the hyperkähler

structure, there exist special coordinates qj, pj and q̄j, p̄j, for j going from 1

to n, such that

ω+ = ω2 + iω3 =
n∑
j=1

dqj ∧ dpj, (6.3.9)
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and moreover,

X ĵ = ∂qĵ + ∂q̄ĵ (1 ≤ ĵ ≤ n− 1) (6.3.10)

Xn = 2i(
n∑
k=1

pk∂pk −
n∑
k=1

p̄k∂p̄k) + ∂Aη∂A + ∂̄Āη̄∂̄Ā, (6.3.11)

where η = η(q, p) is a holomorphic function satisfying

[X ĵ, ∂Aη∂A] = 0. (6.3.12)

In addition, the local Kähler potential Ω can be chosen such that Xj(Ω) = 0,

for j going from 1 to n. Then, in addition to the equations Xj(Ω) = 0, for

1 ≤ j ≤ n, Ω satisfies using matrix notation the symplectic Monge-Ampere

equations:

1n = ΩT
qq̄Ωpp̄ − ΩT

pq̄Ωqp̄ (6.3.13)

ΩT
qq̄Ωpq̄ = ΩT

pq̄Ωqq̄, (6.3.14)

ΩT
pp̄Ωqp̄ = ΩT

qp̄Ωpp̄ (6.3.15)

Case 2 is a (partial) generalization of the Boyer and Finley [11] work in dimen-

sion 4 (we say “partial” because it might be possible to simplify the equations

further using a Legendre transform perhaps).

Proof. We remark first that a quaternionic Killing field X which satisfies

(∇X)S2H = 0 has b = c = 0 and takes the form

X = ∂Aζ∂A + c.c.,
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in special local coordinates qA and q̄B̄ (with A and B̄ going from 1 to 2n),

where ζ = ζ(q) (c.c. is an abbreviation for complex conjugate). Thus we see

that such a quaternionic Killing field X is triholomorphic.

We consider first case 1. We choose any special local coordinates qA, q̄B̄ at

first (say the q’s are holomorphic for I). Then there are holomorphic functions

ζj = ζj(q) such that

Xj = ∂Aζj∂A + c.c.. (6.3.16)

We make two additional assumptions. First, the vector fields X1, IX1, JX1,

KX1,...,Xn, IXn, JXn and KXn are assumed to be pointwise linearly inde-

pendent (so that they form a local frame). Second,

ωα(Xj, Xk) = 0,

for 1 ≤ j, k ≤ n and 1 ≤ α ≤ 3.

We then define some new coordinates, pj = ζj. By the Carathéodory-

Jacobi-Lie extension of the Darboux symplectic lemma, there are n additional

holomorphic coordinates (for I) qj, with j going from 1 to n such that

ω+ = ω2 + iω3 =
n∑
j=1

dqj ∧ dpj. (6.3.17)

In these coordinates qj,pj and their c.c., we have locally

Xj = ∂qj + c.c.. (6.3.18)
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We then consider the master equations

Xj(Ω) = Hj + H̄j.

We would like to absorb the Hj’s and their complex conjugates in Ω. We can

do this by a proper choice of A, i.e. by replacing Ω by

Ω′ = Ω + A+ Ā,

where A is holomorphic and satisfies

Aqj = Hj.

There exists such an A locally provided

(Hj)qk = (Hk)qj ,

which is garanteed by the fact that

[Xj, Xk] = 0.

Dropping the prime in Ω′, we have shown that by a proper choice of local

special coordinates and of Ω, the master equations can be written simply as

Xj(Ω) = (∂qj + ∂q̄j)(Ω) = 0, (6.3.19)

for j going from 1 to n.
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We then consider the SMA equations:

1n = ΩT
qq̄Ωpp̄ − ΩT

pq̄Ωqp̄ (6.3.20)

ΩT
qq̄Ωpq̄ = ΩT

pq̄Ωqq̄, (6.3.21)

ΩT
pp̄Ωqp̄ = ΩT

qp̄Ωpp̄, (6.3.22)

which reduce to

1n = ΩT
vvΩpp̄ − ΩT

pvΩvp̄, (6.3.23)

ΩT
pp̄Ωvq̄ = ΩT

vp̄Ωpp̄ (6.3.24)

ΩT
vvΩpv = ΩT

pvΩvv, (6.3.25)

using uj = qj + q̄j and vj = i(q̄j − qj). Indeed, the master equations for

instance become simply Ωuj = 0, in these new coordinates.

Next, we make a Legendre transform

F =
n∑
j=1

(vjV j)−K, (6.3.26)

where V j = Kvj , we arrive at the Hitchin-Karlhede-Lindström-Roček ansatz

for a hyperkähler 4n-manifold M with n commuting triholomorphic vector

fields X1,...,Xn, namely

FV V + Fpp̄ = 0 (6.3.27)

FV p is symmetric. (6.3.28)
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This finishes the study of case 1, which is well known [3].

We now move on to case 2. Let qA, q̄Ā be local special coordinates, with

A, Ā going from 1 to 2n. Then we have that

ω+ = εABdq
A ∧ dqB,

and, since the X ĵ’s are triholomorphic (1 ≤ ĵ ≤ n − 1), and Xn is quater-

nionic Killing with (∇Xn)S2H nonzero, it follows that there exist holomorphic

functions ζk = ζk(q), for 1 ≤ k ≤ n, such that

X ĵ = ∂Aζ ĵ∂A + c.c., (6.3.29)

Xn = (b∂AΩ− i c
2
qA + ∂Aζn)∂A + c.c.. (6.3.30)

If b = 0 we can rotate the hyperkähler structure to have b′ 6= 0. So without

loss of generality, we assume that b 6= 0. Then we make the following Ω

transformation to absorb ζn and its complex conjugate

Ω 7→ Ω′ = Ω +
ζn

b
+
ζ̄n

b̄
. (6.3.31)

Then, dropping the prime on Ω, we have that

Xn = (b∂AΩ− i c
2
qA)∂A + c.c.. (6.3.32)

We then rotate the hyperkähler structure to have b′ = 0, and scale Xn to

normalize c. We then obtain that there exist some holomorphic functions

ηĵ = ηĵ(q′) (1 ≤ ĵ ≤ n− 1) such that, in the new special local coordinates q′A
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and q̄′Ā, we have, after dropping the primes

X ĵ = ∂Aηĵ∂A + c.c., (6.3.33)

Xn = i(qA∂A − q̄Ā∂̄Ā). (6.3.34)

We digress a bit to consider dimension 4, i.e. n = 1. In that case, the local

expression for Xn can be further simplified. We introduce first

qA =
1√
2

(q, p),

so that

εABdq
A ∧ dqB = dq ∧ dp.

We then introduce some new coordinates q′, p′ by

q′ = qp (6.3.35)

p′ =
p

q
. (6.3.36)

We then have

qA∂A = 2q′∂q′ . (6.3.37)

After scaling X = X1 by 1
2
, we get

X = i(q∂q − q̄∂q̄). (6.3.38)

This is the simplest form for such a Killing field in dimension 4, as shown in

[11]. Continuing along this line of thought ultimately leads to the Boyer and

62



Finley equation (see [11] or section 5).

We then go back to case 2 and assume from now on that the dimension

is 4n with n > 1. Consider once more equations 6.3.33. There are n − 1

holomorphic functions involved in the local expressions of the Xk’s, namely

the ζ ĵ’s. However we can do better than that.

We make the assumption that X1, IX1, JX1, KX1,...,IXn−1, JXn−1,

KXn−1 are pointwise linearly independent, and that

ωα(X ĵ, X k̂) = 0,

for 1 ≤ α ≤ 3 and 1 ≤ ĵ, k̂ ≤ n− 1.

We introduce

p′ĵ = ηĵ,

and then, by the Carathéodory-Jacobi-Lie extension of the Darboux symplectic

lemma, whose hypotheses are satisfied by our assumption above, we can find

a complete set of holomorphic coordinates for I1, namely q′k, p′k, for k going

from 1 to n, such that, dropping the primes, we have

X ĵ = ∂qj + ∂q̄j , (6.3.39)

Xn = iqA∂A + ∂Aη∂A + c.c.. (6.3.40)

where η is some holomorphic function and

qA =
1√
2

(q1, . . . , qn, p1, . . . , pn).
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Hence, we can also write

Xn = 2ipk∂pk + ∂Aη′∂A + c.c., (6.3.41)

where η′ = η − i
∑

k q
kpk is holomorphic and, moreover,

[X ĵ, ∂Aη′∂A] = 0. (6.3.42)

The master equations are

X ĵ(Ω) = H ĵ + H̄ ĵ (6.3.43)

Xn(Ω) = Hn + H̄n. (6.3.44)

In order to simplify the master equations, we make use of the Ω transformation

Ω 7→ Ω′ + A+ Ā,

where A satisfies

X ĵ(A) = H ĵ (6.3.45)

Xn(A) = Hn. (6.3.46)

A solution A of the above system exists locally provided

X ĵH k̂ = X ĵH k̂ (6.3.47)

XnH ĵ = X ĵHn, (6.3.48)
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which follows from the assumption that the Xk’s are commuting.

The symplectic Monge-Ampere equations PAŪP
Ū

B = εAB, can be written

explicitly in our coordinates qj, pj and q̄j, p̄j as

1n = ΩT
qq̄Ωpp̄ − ΩT

pq̄Ωqp̄ (6.3.49)

ΩT
qq̄Ωpq̄ = ΩT

pq̄Ωqq̄, (6.3.50)

ΩT
pp̄Ωqp̄ = ΩT

qp̄Ωpp̄, (6.3.51)

with the master equations Xk(Ω) = 0, for k going from 1 to n. This finishes

the proof of the theorem.
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Appendix A

Solving the equation

PE(Ā∂̄B̄)LE = 0

In this appendix, we solve
PE(Ā∂̄B̄)LE = 0 (A.0.1)

on a hyperkähler 4n-manifold M . This equation comes from the Killing equa-
tion in special local coordinates qA, q̄Ā (A and Ā going from 1 to 2n).

On one hand, we have

2P Ā
F PE

(Ā ∂̄B̄)LE = −∂̄B̄LF + P Ā
F PE

B̄ ∂̄ĀLE. (A.0.2)

On the other hand, we have

2PE
B̄ P

Ā
(E| ∂̄ĀL|F ) = −∂̄B̄LF + P Ā

F PE
B̄ ∂̄ĀLE. (A.0.3)

Hence, we conclude that on a hyperkähler 4n-manifold M , the equation
A.0.1 is equivalent to the following equation

P Ā
(E| ∂̄ĀL|F ) = 0. (A.0.4)

Then we prove the following lemma

Lemma A.0.2. The following Lie bracket vanishes

[P C̄
A ∂̄C̄ , P

D̄
B ∂̄D̄] = 0. (A.0.5)
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Proof.

(P C̄
[A| ∂̄C̄P

D̄
|B] )∂̄D̄

= (P C̄
[B| ∂̄D̄P|A]C̄ )∂̄D̄

= −(P[A|C̄ ∂̄D̄P
C̄

|B] )∂̄D̄

= (P C̄
[A| ∂̄C̄P|B]D̄ )∂̄D̄

= −(P C̄
[A| ∂̄C̄P

D̄
|B] )∂̄D̄,

from which the lemma follows.

Now consider
P Ē
A ∂̄Ē(P F̄

B ∂̄F̄LC). (A.0.6)

It is skew in B and C from equation A.0.4 and symmetric in A and B from
the previous lemma, hence it vanishes, so that we have proved that equation
A.0.1 (which is equivalent to A.0.4) implies that

P Ē
A ∂̄Ē(P F̄

B ∂̄F̄LC) = 0. (A.0.7)

This implies that
P F̄
B ∂̄F̄LC = EBC , (A.0.8)

where EBC is holomorphic and skew in B and C. This implies that

PB
H̄ EBC = −∂̄H̄LC ,

which can be rewritten as

∂̄H̄(∂BΩEBC) = −∂̄H̄LC .

Hence we conclude that LA is of the form

LA = EA
B∂

BΩ + JA, (A.0.9)

where EAB is holomorphic and skew in A and B, while JA is holomorphic.
Finally, plugging in the expression A.0.10 for LA back in A.0.1 shows that it
is indeed a solution.

We have proved:

Theorem A.0.3. The general solution to A.0.1 is given by

LA = EA
B∂

BΩ + JA, (A.0.10)
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where EAB is holomorphic and skew in A and B, while JA is holomorphic.
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