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Abstract of the Dissertation

Hyperhahler 4n-manifolds with n commuting
Quaternionic Killing fields

by

Joseph Malkoun

Doctor of Philosophy
in
Mathematics
Stony Brook University
2012

We consider a hyperkahler 4n-manifold M admitting n commut-
ing quaternionic (real) Killing fields X*,..., X™ which are pointwise
quaternionically linearly independent, and such that the first n —1
of them, namely X*,..., X"~ ! are further assumed to be triholomor-
phic. We show that such spaces fall into 2 categories, depending
on whether VX" has a vanishing self-dual component or not. In
the first case, we show that such manifolds M can be obtained
by the Hitchin-Karlhede-Lindstrom-Rocek ansatz for hyperkahler
4n-manifolds with n commuting triholomorphic Killing fields. In

the second case, we obtain a canonical form for the n vector fields
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X1,...,X™ in special coordinates. Moreover, a Kahler potential 2
for a compatible complex structure I is shown to satisfy some sym-
metries, as well as a system of non-linear second order PDE’s com-

ing from the symplectic Monge-Ampere equations.

In the process of obtaining this result, we also obtain local neces-
sary and sufficient conditions for a (smooth) real vector field X to

be quaternionic Killing on a hyperkahler 4n-manifold M.

Our study is completely local, and is a generalization of the Boyer
and Finley work for self-dual Ricci-flat 4-manifolds with a Killing
field.
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Chapter 1

Basic Concepts (Complex,
Kahler and Hyperkahler
Manifolds)

We assume that the reader is familiar with the basic facts about smooth man-
ifolds and real differential geometry. We begin by recalling some basic defini-
tions and fixing the notation.

A topological n-manifold M is a second-countable Hausdorff topological
space which is locally Euclidean. By locally Euclidean, we mean that each
point of M has a neighborhood which is homeomorphic to an open subset of
R™ with its usual topology.

If, in addition, M is equipped with a smooth atlas (U, (pr)), it is said to
be a smooth n-manifold. A smooth atlas (U, (¢r)) consists of an open cover
U of M and a collection of homeomorphisms (¢r) indexed by U € U, where

oy : U — U’ is a homeomorphism from U onto an open subset U’ C R", such



that the transition maps ¢y, o ¢! : U — Uj are smooth (i.e. C*) and have
smooth inverses, for all Uy, Uy € U.

The presence of a smooth structure, which is an equivalence class of smooth
atlases, where two smooth atlases are equivalent if and only if they are com-
patible in an obvious sense (if their union is a smooth atlas), allows us to
define the tangent space T,,(M) at a chosen point m € M. Moreover, the
set-theoretic disjoint union of the T,,(M)’s as m varies over M, has a natural
induced smooth structure from that of M, and forms a smooth 2n-dimensional
manifold called the tangent bundle of M, and denoted by T'(M).

A complex m-manifold is a topological 2m-manifold together with a com-
plex atlas, consisting of an open cover and a collection of homeomorphisms
onto open subsets of C™, such that the transition mappings are biholomorphic.

There is an alternative way to describe complex manifolds, via the so-
called almost complex structures. If M is a smooth 2m-dimensional manifold,
a smooth section I of End(T(M)) := T*(M) @ T(M) satisfying I* = —1d is
called an almost complex structure. We call the pair (M, I) an almost complex
manifold. Examples of almost complex manifolds include complex manifolds (if
27’s are local complex coordinates, write 2/ = a7/ +iy’, 27, 3/ real coordinates,
define I : 0,5 +— 0, and check that it is well-defined). This leads us to ask,
what condition(s) do we need to impose on I to ensure that (M, I) admits a
complex atlas compatible with I7 The answer is provided by the Newlander-

Nirenberg theorem ([I]).

Definition 1.0.1. The Nijenhuis tensor N; of an almost complex structure is

Ni(X,Y) = [X,Y]+ I[IX,Y]+ I[X,]Y] — [IX, Y],



where X, Y are vector fields.

Theorem 1.0.2 (Newlander-Nirenberg). An almost complex manifold (M, 1)
admits a compatible complex atlas if and only if the Nijenhuis tensor Ny of 1

vanishes identically.

If there is a complex atlas compatible with I, we say that I is integrable.
Thus, the Newlander-Nirenberg theorem says that [ is integrable if and only
if its Nijenhuis tensor is identically zero. We note that in that case, there is
up to equivalence a unique complex atlas compatible with I, because if a dif-
feomorphism from an open subset of (R*™, ) with its natural almost complex
structure and coordinates z to another open subset of (R*",I) with coordi-
nates w preserves I, then it naturally corresponds to a holomorphic mapping
z = f(w) (strictly speaking it corresponds to this holomorphic mapping and
its complex conjugate mapping Z = f(W), which is antiholomorphic, but we
choose the holomorphic mapping).

If I is integrable, we refer to it simply as a complex structure, and refer
to (M, I) as a complex manifold. Thus a complex manifold can be described
in two equivalent ways, namely with a complex atlas, or with an integrable
almost complex structure I, both up to equivalence.

If a complex manifold (M, I) is equipped with a smooth metric g such that
1. g(IX, 1Y) = g(X,Y) for all vector fields X and Y, and

2. the 2-form w; defined by w;(X,Y) = g(I1X,Y) is closed,

then we refer to (M, g, I) as a Kdhler m-manifold (or simply Kéhler man-

ifold, omitting the complex dimension m). We have



Proposition 1.0.3. If (M, g,I) is a Kdhler manifold, then VoI =0, where

Ve s the Levi-Civita connection of g.

It thus follows from the proposition that the (restricted) holonomy group
of a Kahler m-manifold is a Lie subgroup of U(m).

We are now ready to define hyperkahler manifolds. A smooth 4n-manifold
M, together with a smooth metric g and three complex structures I, J and
K such that K = IJ = —JI, and such that ¢ is Kéhler with respect to each
of these 3 complex structures (I, J and K), is said to be hyperkdhler. We will
refer to (M, g,1,J, K) as a hyperkdahler manifold.

We remark that the (restricted) holonomy group of a hyperkahler 4n-
manifold (M, g, I, J, K) is a Lie subgroup of Sp(n).



Chapter 2

Moment Maps and

Construction of Quotients

2.1 In Symplectic Geometry

Let (M,w) be a symplectic 2m-manifold (i.e. M is a smooth 2m-manifold and
w is a closed non-degenerate 2-form on M). Assume there is a k-dimensional
Lie group G acting freely on M and preserving w. The naive quotient M/G
may not even be even dimensional, and therefore does not carry a symplectic
structure induced from w. There is however a construction of a “quotient”
due to Marsden and Weinstein ([2]) which constructs a 2m — 2k dimensional
symplectic manifold from (M,w) and the symplectic group action of G. We
now describe this procedure.

Let 0 # £ € g, and let X be the corresponding vector field. More precisely,

if y(¢) is the unique one-parameter subgroup of G such that ~/(0) = &, then



given m € M, we define

X = S0

t=0

Since the action of G preserves w, it follows that £x(w) = 0, where Ly denotes
the Lie derivative with respect to X.
We recall Cartan’s magic formula. If Y is any smooth vector field, and g

is a differential k-form, then

Ly(B) = (doty + 1y o d)(B),

where ty denotes inner contraction with the vector field Y.

Back to our setting, it follows therefore that
0=Lx(w)=d(x(w)),

(since w is closed). Hence tx(w) is closed. We assume further that it is exact,

so that there is a function hx on M such that
dhX =Llx (W)

The function hy is only defined up to a constant (assuming M is connected).
Next, we choose a basis, &1, ..., & of g, this corresponds to vector fields

Xi,..., Xy, and k functions hx,, ..., hx,, each defined up to a constant. We



then extend h linearly, and thus get a map

h:M — g

If we can choose the constants in such a way as to make the map h G-
equivariant (the adjoint action of G on its lie algebra g is assumed), we call
such an h a moment map. A moment map is defined up to the addition of a
constant element of g* which is fixed by the action of G.

Having a moment map h of the group action of G, we remark that, by
the G-equivariance property, G acts on h=1(0). If 0 is a regular value of the
moment map h, then by the implicit function theorem, h~1(0) to be a smooth
(2m — k) dimensional submanifold.

We further assume that the action of G on h~'(0) is such that M :=
h=1(0)/G is a smooth (Hausdorff) (2m — 2k) dimensional manifold (with the

quotient topology).

Theorem 2.1.1 (Marsden-Weinstein). If (M,w) is a 2m dimensional sym-
plectic manifold, with a k-dimensional Lie group acting symplectically on M,
and if h - M — g*, then there is a unique 2-form @ on M whose pullback to
h=1(0) via the natural projection h=*(0) — M is the restriction of w to h=(0).

Moreover, w is closed and non-degenerate, i.e. a symplectic form on M.

The symplectic manifold (M,&) is known as the Marsden- Weinstein re-
duction of (M,w) by the group action of G (sometimes the word quotient is
used instead of reduction, but this construction must not be confused with
the ordinary quotient of a smooth manifold by a smooth and free Lie group

action!).



2.2 In Kahler Geometry

In this section, we let (M, I, g) be a Kéhler m-manifold (see [1| for some quick
definitions). We further assume that there is a k-dimensional Lie group G
acting freely on M by biholomorphic isometries (it preserves I and g).

Thus, if 0 # £ € g and X is the corresponding vector field generated via
the action of G (see[2.1)), we then have that £y (w;) = 0, so that

0 = d(ex(wr)),

by Cartan’s magic formula. The 1-form ¢x (wy) is closed, and we assume further
that it is exact (which would be the case if for instance H'(M,R) = 0), in

other words, that there is a smooth function hx on M such that
dhX = lx (WI).

Just like for the symplectic case (see [2.1]), we get a smooth map h : M — g*,
defined up to addition of a constant element of g*. If we further assume that
h is G-equivariant (with G' acting on its dual Lie algebra g* via the co-adjoint
action), we call such an h a moment map on M for the action of G.

Also, similar to2.1} G acts on 271(0). We further assume that 0 is a regular
value of the moment map h, so that A=1(0) is a real smooth submanifold of M
of dimension 2m — k. Then, by the Marsden-Weinstein symplectic reduction
(see, M := h='(0)/G (which we assume to be a smooth Hausdorff manifold
of dimension 2m — 2k) inherits a symplectic form @ from wj.

Moreover, h~1(0) inherits the metric res(g) obtained by restricting ¢ to it,



and M inherits a metric g from that restriction, by a standard procedure, since
GG acts by isometries. The latter can be thus summarized: in order to define
gm(fq, }72), where Y}, Y, are tangent vectors to M at m € M, we just choose
a lift m € f71(0) of m and two tangent vectors Y; and Y5 which project down
to Vi and Ys respectively, and which are orthogonal to the vertical subspace
of T,,,(h=1(0)) spanned by the generating vectors of the action of G (see figure

, and we define
g'rﬁ(i}l7 Y/2> = res(g>m<yi7 )/2)

Figure 2.1: Quotient metric under an isometric Lie group action. In this figure,
X denotes a generating vector of the action of G, and X is both orthogonal
to Y] and Y,

One can check that this is independent of the choices of lifts involved.

As a generalization of the Marsden-Weinstein symplectic reduction to the

Kéhler case, in [3], the authors show the following theorem:

Theorem 2.2.1 ([3]). If (M, g,w) is a Kdhler m-manifold, with a (real) k-



dimensional group G acting by Kdhler isometries (i.e. preserving g and w),
and if h - M — R is the moment map of the action of G, then M = h™'(0)/G,
15 Kahler, when endowed with the quotient metric g, the Marsden-Weinstein

symplectic form @ and the complex structure I given by
w(=,—)=g(I—,-).

Proof. For a proof of this result, please refer to [3]. n

2.3 In Hyperkahler Geometry

The reduction of a hyperkahler manifold ([3]) by a Lie group action is similar
to the reduction of a Kéahler manifold, and so we will omit some details.

Let (M, g,1,J, K) denote a hyperkéhler 4n-manifold admitting an isomet-
ric and triholomorphic free action of a Lie group G of dimension k. In this
setting, for a given (non-zero) generating vector field X of G, we get 3 func-
tions hl, h3 and h3% corresponding to I, J and K respectively. Collecting the

functions together, we get a map
h:M— g ®R3,

which we assume to be G-equivariant, where G acts on g* by the co-adjoint
action and acts trivially on R3. We denote by M the quotient f~1(0)/G. We

then have

Theorem 2.3.1 ([3]). If (M, g,1,J,K) is a hyperkdhler 4n dimensional man-
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ifold, with a (real) k dimensional Lie group acting on M by triholomorphic
isometries, and if h - M — g* ® R3 is the corresponding moment map of the
action of G, then the 4(n — k)-dimensional manifold M = h='(0)/G is hy-
perkahler, when endowed with the quotient metric g, and the three symplectic
forms Wy, Wo and w3 arising from the Marsden- Weinstein reductions of wy, we

and ws. The complex structures I;, for 1 <i <3 of M are defined by

g(IX,Y) = &i(X,Y).

Proof. We let
ht = h*+ih?.

It follows from the construction of the moment maps h® that dh™ is of type
(1,0) with respect to I and hence that At is holomorphic with respect to I.
Hence (h*)71(0) is a complex manifold of dimension 2/ — k which is moreover
Kahler with respect to the restriction of (g, I), such that G' acts on it by holo-
morphic isometries (since h is G-equivariant). We apply the Kéhler reduction

construction to (h™)71(0), and we get that

M =h1(0)/G = ((h")"(0) N (h)71(0)/G

is Kéhler with respect to (g, I). Repeating the argument for J and K instead
of I shows that (M, §,1,.J, K) is hyperkihler.
This trick of specializing one complex structure (say I) in the natural S?

of complex structures on a hyperkédhler manifold will be useful to us later.

11



We remark before leaving this topic that

wh = w? +iW?

is a holomorphic form, with respect to I, of type (2,0) (in fact, it is even

covariantly constant with respect to the Levi-Civita connection V¢ of g). [
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Chapter 3

Twistor Spaces of Hyperkahler

manifolds

3.1 Introduction

Sir Roger Penrose introduced twistor theory in the 1970’s (cf. [4] and [5])
for the case of an antiselfdual Lorentzian Einstein 4-manifold. One of his
aims was to unify gravity and quantum theory. The Riemannian version of
Penrose’s twistor theory is due to Atiyah, Hitchin and Singer ([6]). From a
purely mathematical point of view, one associates to a conformal 4-manifold
(M, c) an almost complex 6-manifold (Z,1), which is diffeomorphic to an S?
bundle over M. The almost complex structure I on Z encodes the conformal
structure c. Moreover, ¢ is antiselfdual if and only if I is integrable, in which
case (Z,1) becomes a complex 3-manifold. A general philosophy in twistor
theory is to encode as many equations and operators of interest to physicists

and/or geometers (Dirac, wave, Laplace...) using the d-operator on the twistor
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space.

In [7] and [8], Simon Salamon developed a twistor theory of quaternionic
manifolds (see however the much earlier work of J. Wolf in [9]). In [3], N.J.
Hitchin, A. Karlhede, U. Lindstrom and M. Rocek specialized and devel-
oped that theory to hyperkiahler manifolds, and then applied it to the case
of hyperkahler manifolds with toric symmetry. Hyperkahler manifolds can be
viewed as a generalization of Ricci-flat anti-selfdual Riemannian 4-manifolds.

In this section, we review the twistor theory of hyperkahler 4n-manifolds,

as found in [3].

3.2 The Twistor Space of a Hyperkahler Man-
ifold

Let (M, g, 1, J, K) be a hyperkihler 4n-manifold. We let Z = M x S?, as a real
smooth 4n +2-manifold. The sphere S? has a natural complex structure, when
thought of as the Riemann sphere P!. Using stereographic projection, S? can
be covered by 2 open sets U and U, both homeomorphic to C, with coordinates
¢ and ( respectively, such that ¢ = 1/¢. In terms of ¢, the coordinates (x, y, 2)

of a point in S? C R? are

(o1 (ol 1)

(#,9,2) = <1+<€’1+<Z’ 1+¢C

However, we find it more natural to use the conjugate complex structure
Ig> on S%. One motivation for this, is that stereographic projection induces

the opposite orientation on S? from the usual one (given by an outward normal

14



Figure 3.1: The steregraphic projection of (z,y,z) from N is the point ¢ on
the equatorial plane.

vector). With respect to Ig2, the roles of ¢ and ( are interchanged, and we

get, instead of the previous formula:

T 14+C¢CT1+¢C 1+CC )

We then define in T'(Z) the following almost complex structure

I:(cc—lH C+¢ k=)

el i T i e K,Igz) (3.2.1)

where Ig is the conjugate complex structure in 7(S?) from the one induced
by stereographic projection.
Proposition 3.2.1. [ is integrable.

Proof. We apply the Newlander-Nirenberg theorem, which says that an almost
complex structure is integrable if and only if the ideal generated by the (1, 0)-

forms (in the exterior algebra) is closed under d. This is a complex version of

15



the Frobenius theorem.
We need to figure out what are the (1,0)-forms 6 with respect to I (16 =

—16). Let ¢ be a (0,1)-form with respect to I (I =ip), and set

0=¢p—(Kop.

We claim that 6 is of type (1,0) for I. Indeed, we have

10 = ip +iCKyp
JO =1Kp —iCyp
KO =Ko+ (p.

From these and [3.2.1] it follows that 10 = —ifl. Moreover, it is clear that the
map ¢ — 6 is injective. Thus, by a simple dimension count, the fs together
with d( gives us a complete basis for the (1,0) forms for I on Z. It is clear

that d( is closed. We then compute

df = dz" A V,i(p — CKp) —dC A K.

where the z's are local coordinates on M. But V,:I = 0, so that

IV.i(p — CKp) = —iV,i(p — (Ko).

Thus we see that df, as well as d( are in the ideal generated by the (1,0) forms

for I, therefore I is integrable. O

16



What we have done so far is encode the information about I, J and K in
the complex structure I in T'(Z). We remark that the projection p : Z — CP?
is holomorphic, since p*(d() is of type (1,0) on Z. A point m € M corresponds
to a holomorphic section of p whose image we denote by P,,, and is known as
the twistor line of m.

We need to find the normal bundle of N of a twistor line P,,. This is
defined as

N = T(Z)|, /T (P),

where T'(Z), T'(P,,) denote the holomorphic tangent bundles of Z and P,
respectively. We remark that the underlying real vector bundle of N' ~ P,,, x T},
(with T;, ~ C?) is trivial, but as a holomorphic vector bundle, it is not, as
we shall see shortly.

We represent I, J and K on T, by

il, 0
I= (3.2.2)
0 —il,
0 1,
J = (3.2.3)
~1, 0
0 il,
K = . (3.2.4)
il, 0

17



Hence

1 [0 %
L+l ¢ i -¢Q

(3.2.5)
Therefore the —i eigenvectors of I are of the form

()

—iCv

If we express I with respect to f , we get that the —¢ eigenvectors of I are of

the form
zf w
w

Hence v = iCw, so that N* ~ C?(—1), from which we deduce that

N ~ C*(1). (3.2.6)
Proposition 3.2.2. The form w, = ws + w3 is holomorphic with respect to
I (in fact, it is covariantly constant) of type (2,0).

Proof. The holomorphic part of the statement is clear since the w;s are covari-

antly constant. It remains to check that w, is of type (2,0).

wiIX,Y) = wy(IX,Y) + iws(IX,Y)
= g(JIX,Y) +ig(KIX,Y)
— —g(KX,Y) +ig(JX,Y)

= iW+(X7 Y)

18



we (X, IY) = g(JX,IY) + ig(K X, IY)
= —g(KX,Y)+ig(JX,Y)

= 'iCU+(X7 Y)

]

Next, we prove that there is a holomorphic symplectic form on the fibres
F: =p1(¢) of p: Z — CP' which varies holomorphically with respect to (.

But before we do that, We need the following lemma.

Lemma 3.2.3. If [y = —it, then 1(( + K)Y = —i(¢ + K)1.

Proof.
I(CY + Ky) = =i + 1Ky
J(CY + Kyp) = —iCKY — iy
K(Cy+ K¢) = CKY — 1),
from which it follows that I(Cy) + K1) = —i((¢ + K1), using [3.2.1] O

There is a local coframe v, on M, for 1 < a < 2n, such that
W + w3 = zn:%' AN
i=1
Next, we need to make wy + w3 vary (holomorphically) with (, so, using the
previous lemma, we consider
w= i((JrK)wi A (C+ K)Ypas, (3.2.7)

i=1

19



so that

W="3 (Wi Ansi) P+ Y (i A Kt + K A b i)+ D Kby A Ky
i=1 =1

i=1

We compute, suppressing the summation sign

(¥ A Ktbngi + K5 A hni) (X, Y)

= —Ui(X)¥n4i(KY) = Di( KX )1i (V) + i (YV)¥nri(KX) + 03 (KY ) 14(X)
= —w (X, KY) —w (KX,Y)

= —g(JX,KY) —ig(KX,KY) — g(JKX,Y) —ig(K*X,Y)

= —29(IX,Y)

= —2w1 (X, Y) .
We also have

(Kt A Kbny)(X,Y)

— w, (KX, KY)
=g(JKX,KY) +ig(K*X,KY)
= —g(JX,Y) +ig(KX,Y)

= —(Cx.)g — in)(X, Y)
Hence we have the following formula for w:

w = (wy + iw3)? — 2w — (wg — iws). (3.2.8)

20



Hence, we see that w € H°(Z, O(A?T%(2))), where T is the vertical subbundle
of the map p : Z — CP! (in other words, Tr = ker(p,), with p, : T(Z) —
T(CP')). We are denoting by O(n) the bundle p*(O(n)), by a slight abuse
of notation. Moreover, w restricts to a holomorphic symplectic form on each
fiber F¢ of the map p.

There is one last structure on the twistor space Z, namely a real structure

7, which is defined as the following map from Z to itself

7(m,¢) = (m, —1/(), (3.2.9)

where we have used that Z is diffeomorphic to M x S?. Thus 7 fixes the M
factor and is the antipodal map on the S? factor. It follows from the definition
of I that 7 is an antiholomorphic automorphism of Z (i.e. 7. anti-commutes
with I and 72 = Id).

It turns out that we have encoded enough information about the hy-
perkéahler manifold M as holomorphic (and antiholomorphic) data on its twistor
space Z to reconstruct M from the twistorial data. More precisely, we have

the following theorem:
Theorem 3.2.4. Let Z be 2n + 1 dimensional complex manifold such that

1. there is a holomorphic map p : Z — S? such that Z is a holomorphic
fibre bundle over S?,

2. Z has a family of holomorphic sections P of p, each with normal bundle
Np = C*(1),

3. there is a an w € H°(Z,O(A*T%(2))) which restricts to a holomorphic

21



symplectic form on each fibre Fr = p~*((),

4. there is an antiholomorphic involution T on Z (7% = 1d), such that

ogop = pot, where o is the antipodal map on S?, and T is compatible with

w. What this last statement means is that if P is a twistor line (a holo-

morphic section of p with normal bundle Np ~ C**(1)), then T induces

a complex antilinear map 7. : H'(P,O(Np)) — H(7(P), O(N.(p))),

and if X and Y are two elements of H*(P,O(Np)), then w(r. X, 7.Y) =
—(1/Pw(X,Y).

Proof. A theorem of Kodaira guarantees that if S is a submanifold of a complex

manifold Z of normal bundle N, and if H'(S,O(Ng)) = 0, then there is an

complex analytic m-dimensional family of deformations of S in Z, where m is

the dimension of H°(S, O(N5)). If S" is a deformation of S in Z corresponding

to point s’ in the paremeter space B, then the Kodaira-Spencer deformation

theory allows us to identify

T.(B) ~ H(S",O(Ng))

where Ny is the normal bundle of S’ in Z.

We apply this theorem to a twistor line P. Since

HY(P,O(Np)) = H'(P,O(C*™(1))) =0= H'(P,0(1)) ® C*,

it follows that there is a complex analytic 4n-dimensional parameter family of
deformations of P in Z, whose parameter space we denote by Mc.

We note that 7 induces an antiholomorphic map which we also denote by 7
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from M¢ to itself. The fixed point set of 7 is a real 4n-dimensional submanifold
M C M.

Next, we need to define a hyperkéhler structure (g, 1, J, K) on M whose
twistor space is Z.

We remark that

H(P,O(N)) = H*(P,ON(-1))) ® H(P,O(1))
= H°(P,O(C*™)) ® H°(P,O(1))

~ C" ® C2.

From the definition of w € H°(Z, O(A*T%(2))), it follows that w can be viewed
as a symplectic form on H(P,O(N(—1))). Moreover, there is a natural sym-
plectic form @ on H°(P,O(1)) defined by

(Ij(al + blc, as + bgC) = a1192 — blag, (3210)

where a;, b; are complex numbers. Therefore

Je=wow (3.2.11)

is a complex metric on M¢ (a nondegenerate pairing between 7"(M¢) and
T™(Mc)). Thus, if
x+Cy € H'(P,O(Np)), (3.2.12)
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with z and y in H*(P,O(N(-1))) ~ C?", we have

g(x + Cy,x + Cy) = 2w(x, y). (3.2.13)

We still need to make use of the real structure 7 in order to construct a real
metric on M.

A real structure t on a complex vector space V is a complex anti-linear
involution of V' (t(A\v) = M (v) and t2 = Id). A closely related concept is that
of a quaternionic structure j on V', which is a complex anti-linear map from V'
to itself (j(A\v) = Ajv) such that j2> = —Id. We remark that if V and W are
endowed with two quaternionic structures jy and jy,, then V ® W is endowed
with a real structure, namely jy ® jy.

We remark that, up to sign, there is but one quaternionic strucure j on

HO(P,,,O(1)) covering the antipodal map o(¢) = —1/(

jla+bC) =b—ac.

The real structure 7 induces a unique quaternionic structure j on H°(P,,, O(Np,, (—1)))

such that 7 = j ® J. O]

Writing an element of H°(P,,,O(Np,)) as = + y¢, where z and y are
elements of H(P,,, O(Np, (—1))) ~ C*", we have

(2 +y¢) = jy — jag,

so that for a real twistor line P,, corresponding to a point m € M, the real
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vectors at m correspond to elements of T, @ C ~ HY(P,,, O(Np,,)) of the form

X =z — (jx)(, (3.2.14)

with z € H°(P,,, O(N(—1))). We thus define the metric g on M by

9(X, X) = —2w(z, jx). (3.2.15)

The compatibility of w with 7 and its nondegeneracy ensure that g is either
positive definite, or negative definite (assuming that M is connected). Without
loss of generality, we can assume that g is positive definite, and thus is a metric
on M (otherwise, we just multiply g by —1).

Suppose that X vanishes at some (5. Then = = (jx)(y, and we have

9(X, X) = —2w((jz)Co, jz) = 0,

which implies that X vanishes since g is positive-definite. Hence given a real
twistor line P,,, for any given (, one can identify a neighborhood of m € M
with a neighborhood in Fr = p~*(¢) of the intersection of P,, with Fp.

We remind the reader that a real vector X (() at P, is of the form

X(Q) =z = (jz)¢,

with x € H°(P,,, O(N(—1))). Letting y = —jx, we can alternatively write it

as

X(¢) = gy +yC.
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So if we identify M (locally) with the fiber F,, the vector X (() gets identified
with X(o0) = y. We define I on the real tangent vector y to be simply

multiplication by ¢, and J to be left multiplication by ij

I(y) =iy, J(y) = ij(y) and K(y) = —j(y).

We note that I and J anticommute because j is complex anti-linear (the reader
is probably wondering why not define J to by left multiplication by j; this is
just to be consistent with our formula for 7(()). It is clear that [ is integrable,
since (M, I) is locally identified with the fibre Fl, as a complex manifold.
We now check that J and K are also integrable. This is because J and K
correspond to left multiplication by ¢ after we identify M locally with F; and
F_; respectively. We do the computation only for J (the other is similar). We

have
SO
iX(1) =ijy + iy = ijy + j(ijy),

from which we see that y becomes 77y, which is precisely how J acts. Hence J
is integrable, and similarly, so is K. It remains only to check that the Kahler
forms wy, we and ws are closed. We do this only for w; (the other two are

similar). Upon restricting w on a fibre F¢, this defines a symplectic 2-form on
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M which we denote by .. If

X1 =J1 + ¢

Xo = Jy2 + y2(.

Hence

©i( X1, Xo) = w(iyr + iy, jyo + iy2)

QO_Z'(XLXQ) = w(jy1 - iylvij - iy2)7

from which we deduce that

1 L. ) :
5(%‘ - 90—1)(X1,X2) = W(]yh?h) + W(?Jh]?h) = _WI(X17X2>'

Hence w; is closed (since the ¢¢s are symplectic forms on M and therefore

closed). This finishes the proof that (M, g, I, J, K) is hyperkéahler.
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Chapter 4

The Legendre Transform

In this chapter, we review the Legendre transform construction of [3]. Briefly,
the idea is the following. If M has n commuting triholomorphic Killing fields,
then the moment map induces a holomorphic map from the twistor space Z of
M onto the total space of the holomorphic bundle C"(2) over CP!. Thus, due
to C"-equivariance, we may view Z as a principal fibre bundle over C"(2) with
group the additive group C”. This setup, naturally leads to a description of Z
as the gluing of two copies of C*"*! using a holomorphic symplectomorphism
whose hamiltonian H is a holomorphic function of n + 1 complex variables.
Then, one expresses the Kéahler potential K with respect to I as a Legendre
transform of a holomorphic function F', which in turn is given by a contour
integral expression in terms of the hamiltonian H. The contour integral ex-
pression for F' is equivalent to F' satisfying a system of linear elliptic second
order PDEs, and is a higher dimension analogue of the classical Whittaker
formula [10], which represents harmonic functions on R? as a contour integral.

Assume that (M, g, 1, J, K) is a hyperkéhler manifold admitting an action
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of the abelian group R™ by triholomorphic isometries. This gives an action
of R™ by biholomorphic transformations of the twistor space Z preserving w.
We assume that this action extends to a biholomorphic and free action of the
complexification C™ of R™ on Z, also preserving w.

The moment map of this complex symplectic action of C" on Z can be
viewed as a holomorphic map p: Z — Y, where Y is the total space of C*(2)
over CP!. Moreover p is C"-equivariant, and C" acts trivially on Y since C" is
abelian. Thus, one can view Z as a principal fibre bundle over Y with group
the additive group C".

The complex manifold C"(2) can be covered with two sets of coordinates
(¢,n") and ({,7%) (1 <4 < n),on 7 Y (U) and 7~ 1(U) respectively (7 : C*(2) —

CP! the bundle projection), satisfying the following transition relations:

n' =, (=1/¢, (4.0.1)

for ¢ # 0. As for the complex manifold Z, we need two sets of n additional

coordinates & and &' to describe it. We then have
E=+1W,0, =1, (=1/ (4.0.2)

for ¢ # 0. In these coordinates, the group action is generated by the s, and
the n's form the moment map i, so that the symplectic form w along the fibres
is

w=Y d§ Adp' =Y dEPAdi (mod dC), (4.0.3)

the last equality coming from the fact that w is O(2)-valued. Comparing with
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[4.0.2] we see that

oft _
S i na =0,
ij o’

Hence Y, f'dn" is closed with respect to d,, so we can find a holomorphic

function H(n‘,¢) such that

<n). (4.0.4)

We remark that the symplectic transformation [4.0.2] patching together the two

copies of C?"*! has the following symplectic vector field

OH 0
; ont 9&*

corresponding to the Hamiltonian H.

We now set out to calculate the real structure 7. It should cover 7(¢) =
—1/¢, and respect the transition relations . With these requirements, 7 is
uniquely determined, up to sign, or a change of coordinates (by say multiplying

some coordinates by i), and is given by

(') = —=, 1) =-¢ (4.0.5)

A holomorphic section of p : Z — CP! is mapped holomorphically by u to a
holomorphic section of the bundle projection 7 : Y — CP'. We thus set forth

to determine the holomorphic sections of 7. These are given by holomorphic

30



functions n*(¢) and 7%(¢) satisfying
n'(¢) = ¢*'(1/0), (4.0.6)
for ¢ # 0. It then follows that each 1’ is quadratic in (:
n' =a'+b'¢+ ¢ (4.0.7)

for 1 < ¢ < n. These are images of the (complex) twistor lines. Images of the

real twistor lines are

n' = -2 — 2’ + 22 (4.0.8)

Hence the projections of the 4n-parameter family of complex (real) twistor
lines in Z via u are the 3n-parameter family of complex (real) holomorphic
sections of 7 : Y — CP! given by (respectively . Thus we expect
that the complex (real) twistor lines projecting to a fixed complex line in m
form a complex (real) m-parameter family. Such twistor lines are given by

holomorphic functions £(¢) and £(¢) satisfying

il i oH n
5(2) _5 (C) + ani (77 (C)ﬂ"'an (C)?C)v (409)

where n°(¢) = 2' — 2'¢ — z'¢?, for a fixed (z%,2") € R" x C". We expand in

power series

§1/Q)=> a,¢™ and ()= b" (4.0.10)
n=0 n=0
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So if we expand

in Laurent series in (, we are forced to assign the terms corresponding to
negative powers of ¢ to the a’s (n > 1) and those corresponding to positive
powers of ¢ to the bis (n > 1). We have however an n-parameter freedom
in assigning the constant terms, and this gives us the “missing” n-parameter
family of twistor curves projecting to the same line in Y. More precisely, if C
is a simple counterclockwise contour around ¢ = 0 (and not passing through

o0), we then have

ap — by = % ; Zﬁ%. (4.0.11)
Moreover, the reality condition forces
al = —bj,. (4.0.12)
We let u’ = £/(0), so that we have
2 =7(0) and u'=£(0), (4.0.13)

which are holomorphic with respect to I = I(c0). We need to determine the

functions z* with respect to these coordinates 2/ and u’. We define

dg

& (4.0.14)

Pt ) = 5 [ HO'O. (0.0
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where 1'(() = —z' — 2'( + 2'¢*. Differentiating with respect to z*

or oH d¢ . 4

: (=)= = —(ay — bY).

ot c anz< C) C—Q (a’O O)
But

u' = £(0) = aj),
and
bé = _a_é = —u,
so that
oF

o = —(u' 4 a').

(4.0.15)

This gives the z’s implicitly in terms of the w/ + @/, 2/ and z/. For

w=Y d§" Ady,
it follows from K4.0.3| and [5.0.6[ that

N w
(W) = @ (4.0.16)
while for
@ = —(ws — iws) — 2w1C + (we + iw3)(2, (4.0.17)
the effect of 7 on it is

(4.0.18)
In order to correct this, we can replace the 1/ by in/. Hence, the Kéahler form
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wy is determined by the ( coefficient in

iw=1Y _d& Ndi
J

=iy (db)+dbj{+ .. )N (—dz —dai(+ .. )
=iy (—dw +dbj¢+...) A (—dF —d2'(+...)

=iy dw NdF +i ) (di Ada? — db] A dF)( +

J J
Hence
Wy = % Z(db{ AdZ — diw A da?). (4.0.19)
j
But
b] = —% gz Cég = %, (4.0.20)
so that
wy = ! Z(d(gj) ANdZ — du A da?). (4.0.21)
j
Let
K=F—o gz (4.0.22)

Note that we are suppressing the summation symbol to alleviate the notation.

Then

0K = 6—Fdz3 + a—F&cJ ox? SF — 299 (8F)

077 oz’ oxI
oF oF
0z dz' — ' (&Uj )
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so that

OOK = 0 a—fp ANdZ —0zI N O a—F — 2990 8_F .
077 oxJ oxJ

Using the equation 0F/0z7 = —(u/ + @), we arrive at

_ OF . . .
00K =0 (ﬁ) NdZ + 0! A di. (4.0.23)
z
Comparing with 4.0.21} and since w; is of type (1,1) in holomorphic coordi-
nates with respect to I, it follows that K /2 is the Kéhler potential of w;, where
K is given by and is the Legendre transform of F', and F' is given by

F(ai, 2, 7) = - /C H (), 1"(0), )

- 2mi

dg

& (4.0.24)
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Chapter 5

The Boyer and Finley Equation

In this chapter, we review the derivation of the Boyer and Finley equation,
as contained in [II]. The authors first consider a complex selfdual Einstein
4-manifold using the formalism of complex 7Z spaces; more precisely, in this
formalism, you have 2 sets of special complex coordinates ¢!, ¢> and ', ¢%, and
the metric is determined by a smooth complex-valued function €2, referred to
as a potential. There is gauge freedom in the choice of the special coordinates
g? and ¢4, as well as in the choice of potential. The authors first determine
this gauge freedom, and then consider a vector field K satisfying the Killing
equation, which implies a differential relation between (2 and K. There is also
another constraint on K, namely that the antiselfdual part of VK must be
constant. Imposing then a reality condition on the complex selfdual Einstein
4-manifold implies that there are two cases to consider, either the antiselfdual
part of VK is zero (i.e. VK is selfdual), or it is nonzero. They consider
each case separately, and use the gauge freedom to simplify the differential

relation between 2 and K (what they called the master equation). The first
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case turns out to correspond to the Gibbons and Hawking ansatz, where (2 is
determined by a solution to the Laplace equation on (an open subset of) R3.
On the other hand, in the second case, the master equation can be simplified
using the gauge freedom and a Legendre transform to the so-called Boyer and

Finley equation on (an open subset of) R?:

Fyg+ (") =0, (5.0.1)

where ¢, ¢ and J are coordinates on R? (¢ complex and J real).
Let M¢ be a complex selfdual Einstein 4-manifold. Then there exist special
coordinates ¢!, ¢* and ¢!, ¢*> and a smooth complex-valued function € of these

coordinates, such that in these coordinates the metric takes the form

g =2Pipdq" ®G°, Pap=Qus, (5.0.2)

and () satisfies:

PABP,p =2, (5.0.3)

where raising and lowering of indices A, B is done via a constant (with respect

to these coordinates) skew-symmetric rank 2 spinor field €45, satifying €12 = 1:

Va4 =vBega ot =eBoyp. (5.0.4)

Normalized symmetrization (respectively skew-symmetrization) is denoted by
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parentheses (respectively square brackets). For instance,

1
Yapyc = 5(%130 + ¥Bac),
1

5(@%30 — Ypac + Vpea — Yepa + Yoas — Yacs).

VYiape) =

A useful trick when dealing with 2-spinors is the following

1
Yap) = §¢CC€AB- (5.0.5)

The equation |5.0.3|is the Monge-Ampere equation, which also goes by the name
the Heavenly equation in Plebanski’s {2-formalism. The converse is also true, in
the sense that if €2 is a complex-valued solution to the Monge-Ampere equation,
then the metric g given by [5| is a complex selfdual Einstein 4-manifold.
There is also a very simple prescription to obtain a real selfdual Einstein

4-manifold from M¢ by imposing the following reality conditions:
'=¢A =7, Qreal (5.0.6)

Moreover, any real Riemannian selfdual Einstein 4-manifold admits com-
plex coordinates ¢!, ¢* and their complex conjugates, together with a potential
), which is now a real-valued function, such that the metric is given by |5 with
g? replacing ¢” and Q satisfies the Monge-Ampere equation m

We now go back to the case of a (complex) s#-space Mc, by which we mean

a complex selfdual Einstein 4-manifold (with respect to a complex holomorphic
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metric). We let

¥ = dga A dg? = 2dg* A dg?, (5.0.7)

S = dja A dg* = 2dGt A d. (5.0.8)

Then ¥ and ¥ are two closed antiselfdual 2-forms on M. Moreover, the 2-
form P4pdq® A dgP is also closed (this follows from the torsion being 0), so
that we have a basis of the antiselfdual 2-forms on M¢ consisting of closed
2-forms, namely

SAB — (Pypdg® A dg®, 2, %), (5.0.9)

We wish to investigate changes of coordinates of the form

¢" =q"(q" ") (5.0.10)

7° =q°(",3"), (5.0.11)

such that the metric g is still given by in the primed coordinates and with €2
replaced by its transformed version 2. We also require that the new S'AB gtill

consists of closed 2-forms, and that it be obtainable from S AB by
SRS =17 15,845, (5.0.12)

where ZRA is a smooth function on M¢ with values in SLy(C). In order to
preserve the closedness of the 2-forms in SAB , the function IR 4 must be a

constant element of SL,(C). The solution to all these requirements is that
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such coordinate changes are of the form

dg'™ = (d",)(Adg” — ity ,45dGP) (5.0.13)

di® = (d°5)(AdG® + i7Qya,. dg™), (5.0.14)

where d¥ ,, d° are arbitrary smooth functions with values in SLy(C), and A,

A, 7, T are constants satisfying
AA + 77 =1. (5.0.15)

The 2 by 2 matrix-valued functions

. A it

1, = . (5.0.16)
i A

1", =d%,. (5.0.17)

are used to transform dotted and undotted indices respectively. Finally, we
would like to determine how the potential €2 transforms. Consider the Monge-

Ampere equation

(04050)(04050) = 2. (5.0.18)

It follows from this equation that there exist smooth functions F' and E such

that

(0PQ)(0405Q) = qa + O4F (5.0.19)

(0°)(04059) = Gp + OpF (5.0.20)
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Then €2 transforms according to

Q,:Q+i<AT(F+P)—AT(F+P)

AA — 17 > + A(q) + A(q), (5.0.21)

where A, respectively A, is a function of the ¢ variables, respectively ¢ vari-
ables, only, and P and P are some functions of all variables.

Next, the authors consider a vector field
K =LA, + L"04 (5.0.22)
satisfying the Killing equation
ViaKy) =0, (5.0.23)

for a, b ranging over all 4 complex coordinates ¢ and ¢*. After some work,
the authors show that the Killing equation implies that there are constants b,

and by, as well as functions H = H(q") and H = H(¢"), such that
KQ = —byF —byF + H+ H, (5.0.24)

which is a necessary equation that 2 and K must satisfy if K is a Killing field.

There is another condition that needs to be satisfied though, namely that
A8 = v AK BeAP (5.0.25)

is constant. This integrability condition comes from the fact that an arbitrary
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Killing field K on a Riemannian manifold must satisfy

VaVch == Rbcade7 (5026)

where Rp..q is the Riemann curvature tensor. Both the left-hand side and
right-hand side of the previous equation are skew-symmetric in b and c¢. We
then equate the anti-selfdual part with respect to b and ¢ on both sides to get
the integrability condition [5.0.25; indeed, the anti-selfdual part of the right-
hand side vanishes because M is a selfdual Ricci-flat (complex) 4-manifold.
Using the Killing equation and the integrability condition [5.0.25 the
authors then show that there exists a constant ¢, and functions ¢ = ((¢*) and

C~ = E (¢*) such that the components of the Killing field K are of the form

1
LA = b,0(Q) — §icoqA +04¢ (5.0.27)
LA = b0t (Q) + %icogf‘ + 04¢. (5.0.28)

Then the authors focus on the real case, obtained by imposing €2 to be real
and replacing the tilde by the complex conjugate, so that ¢ and by become g

and by, and so on. Under this reality assumption, consider

,  Co real. (5.0.29)

We have two cases to consider:

case 1: the determinant of [4# is 0, in which case [4? vanishes, which means

that VK is selfdual.
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case 2: the determinant of (4B is nonzero or, in other words, the antiselfdual

part of VK is nonvanishing.

In case 1, using the “gauge” freedom determined towards the beginning
of this section, the authors simplify the Monge-Ampere equation and then,
using a Legendre transform, simplify it further to the 3-dimensional Laplace
equation. In other words, a selfdual Ricci-flat 4-manifold admitting a selfdual
Killing field can be obtained from the Gibbons-Hawking ansatz, which is what
Jones and Tod had proved in [12].

In case 2, again by using the “gauge” freedom and then making use of a
Legendre-like transform, the authors arrive at the Boyer and Finley equation
[11] (which goes by the name the SU(co) Toda lattice equation in the physics
literature):

Fyg+ (") =0, (5.0.30)

where ¢, ¢ and J are coordinates on R3 (¢ complex and J real).

Before closing, we make the following 2 remarks. In [13] (1991), Claude
LeBrun showed that any Kahler scalar-flat 4-manifold with Killing field comes
(locally) from a pair of functions (u, V') where u is a solution to the Boyer and
Finley equation, while V' is a solution of its linearization (at w).

In arXiv:hep-th/0609071v1 (2006), Paul Tod considered the case of an anti-
selfdual Einstein 4-manifold with nonzero cosmological constant, and showed
that such manifolds are also determined by a solution to the Boyer and Fin-
ley equation, just like for the case of a selfdual Einstein 4 manifold with 0

cosmological constant, which was considered by Boyer and Finley.
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Chapter 6

Hyperkahler Manifolds and

Quaternionic Killing fields

6.1 Special Coordinates

In this section, we extend the formalism used in the Boyer and Finley work [11]
(Plebansky’s €2 formalism) in the case of a self-dual Ricci-flat 4-manifold to the
case of a hyperkdhler 4n-manifold (which are generalizations of anti-self-dual
Ricci-flat 4-manifolds).

We choose a complex structure, say I, in the S? of compatible complex
structures on a hyperkahler 4n-manifold M. Then, denoting by w;, wy and
w3 the Kahler 2-forms corresponding to I, J and K respectively, the complex
2-form

Wi = wy + iws (6.1.1)

is a complex holomorphic (in fact covariantly constant) symplectic 2-form with
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respect to I. We now apply the holomorphic version of Darboux’s theorem,
which guarantees the existence of local holomorphic coordinates (with respect

to I) ¢ for A going from 1 to 2n such that w, is locally of the form

wy = eapdg* NdgP =2 Z dq® A dg™tF, (6.1.2)
k=1
where
0, 1,
(€aB) = (6.1.3)
-1, 0,

In these local coordinates, the metric g takes the form

Pypdg” © dg®,

where
PAB = Qquéa
and € is a smooth real function. Moreover, the condition J? = —Id implies
the following equation
PyiPg" = eap. (6.1.4)

We will refer to this equation as the symplectic Monge-Ampere equation (SMA
equation for short). The raising and lowering of indices in this formalism is

done via €45, and not via the metric P45, using the following conventions

Vg =Pieap, ot =Popp.
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We also remark that €, behaves like the identity, namely
a =€ "p, " =le,”.

The following is a basis of the (complexified) self-dual 2-forms consisting of
closed forms

SAP = (wy, Pypdg™ A dg®,w7).

We wish to investigate the freedom involved in a choice of special coordinates
on M. We remark that instead of choosing I, we could have chosen any other
complex structure in the S? of compatible complex structures on M. Thus,
any other new special coordinates ¢'%, ¢ S can be obtained from the old special

coordinates ¢*, g% using transformations

¢ =q"(¢", ")
7° = q"* "),
whose Jacobian is of the form
dg'™ = (d%,)(Adg” — iT P4, dg®) (6.1.5)
d7® = (d°5)(Adg® + 7P, Bdg™), (6.1.6)
where (d ) is symplectic,
dRAGRSdSB = €AB, (617)
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, and A and 7 are constants satisfying
AA+ 77 =1.
Under this transformation, we remark that
S — g g3 4B,

where

In other words, (ZRA) € SU(2).

We go back to the SMA system, which implies that
(0" Q0 0pR) = €ap,

so that there exists a smooth function F such that

P00 050 = —qa + O4F, 9PQ0p0z0 = —g® + O5F.

We find that € transforms as

) (AT(F + P)— A7(F + P)
Q'=0Q -
+Z< AN 77

) FAW) + A@),

(6.1.8)

(6.1.9)

(6.1.10)

(6.1.11)

(6.1.12)

where A, respectively A, is a function of the ¢’ variables, respectively ¢ vari-
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ables, only, and P satisfy
8,05 P = i7Ad € d V(P Tz F) — itAdCd T 0c (PP 0pF).  (6.1.13)
The operators 0’y and 53:2 are defined by

&y = (d,°)(=Adc + itP,"dp) (6.1.14)

O = (dg") (=207 — iTPPp0p) (6.1.15)

These are the kind of transformations we will consider. They rotate the
complex structures but preserve the local form of w, .

We remark that the vector fields 0/, and 5% are assumed to be coordinate
vector fields, so that the Lie bracket of any two of them is assumed to vanish.

This implies that
1. the functions d,“ are holomorphic,
2. the functions PAUJRU are holomorphic,
3. d[A‘Cacd‘B}D =0,

6.2 Quaternionic Killing fields

Let M be a hyperkahler 4n-manifold.
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Definition 6.2.1. A real vector field X on M is said to be Killing if

in other words if X preserves the metric g.

Definition 6.2.2. A real vector field X on M is said to be quaternionic if
LxD(M,V) CT(M,V),

where V s the real rank 3 bundle spanned by wy, for k = 1,...,3. In other

words V is the bundle of self-dual 2-forms on M.

We also need the following lemma:

Lemma 6.2.3. There exist locally a smooth function F = F(q,q) such that
00NN = —qu + OuF. (6.2.1)

The proof of the lemma is straightforward and follows from the SMA system
of equations.

We now prove the following theorem:

Theorem 6.2.4. If X is a real quaternionic Killing field, then locally, in the
special coordinates ¢ and ch constructed in the previous section, X 1is of the
form

X = L0, + LP0;, (6.2.2)
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where

1
LA = b0 — §z'ch + 94¢ (6.2.3)

JLP =005 + 5@'ch + "¢, (6.2.4)
for some ( = ((q), b € C and c € R and the following master equation holds
XQ=—-bF —bF+H+H, (6.2.5)

for some H = H(q) and H = H(q). Conversely, if X is a real vector field on
a hyperkahler manifold M of the form above in local special coordinates and

the master equation is satisfied, then X is quaternionic Killing.

Proof. The Killing equation in special coordinates ¢4, g5, with A and B going

from 1 to 2n, splits into the following equations

PY0pLg =0 (6.2.6)
PPUAGPI L, =0 (6.2.7)
94(PpsLP) + 05(PyyLY) = 0. (6.2.8)

The first two equations are complex conjugates of each other, and their solution

can be shown to be (see Appendix |A):

LA = EA,05Q + J4, (6.2.9)

where E 5 = Eap(q), J4 = J4(q) and E p = —Epa.
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Next, we have a constraint coming from the equation

V.ViX. = R, X4, (6.2.10)

which holds in fact for any real Killing vector field X.

Moreover, on a hyperkahler manifold M, there exist complex bundles £ and
H of rank 2n and 2 respectively corresponding to the standard representation
of Sp(n) on C?* and the trivial representation of Sp(n) on C? respectively.
The bundles E and H are each equipped with a symplectic 2-form, g and €g.
In addition to these symplectic structures, each of them is equipped with a
quaternionic structure, jg and jgy respectively. We note that the complexified
tangent bundle T¢(M) is isomorphic to F ® H, and the bundle of self-dual
2-forms is S?H. By that we actually mean (ex) ® S?H C A’E ® S?H, but we
will often omit references to the €’s for simplicity.

It can be shown that the curvature of a hyperkéahler manifold M is a section
of S*E. Hence from the constraint equation , it follows that if X is a

real Killing field on a hyperkahler manifold M, then

V[(VX)s2z] = 0. (6.2.11)

We remark that

V= (W17W27w3)7
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where

wi = iPygpdg® A dg" (6.2.12)
1 _ _

Wy = §(EAquA A dq® + epzdq™ A dg”) (6.2.13)
Z. — _

ws = §(EAquA A dq® — epgdg™ A dg®). (6.2.14)

The condition

LX(WQ) € F(M, V)

implies, after a short computation, that

i(EacP% — ErzP,T) is a real function times Py (6.2.15)

QB[AEB]COCQ — 2EC[36A}8CQ + 20[4Jp) is a complex function times €45.

(6.2.16)
Similarly, the condition
ﬁx(wg) € F(M, V)
implies, similarly, that
EACPCR + ERTPAT is a real function times P,z (6.2.17)

i(28[AEB]CacQ — QEC[BQA@CQ + 20i4Jp)) is a complex function times €4p.
(6.2.18)

In particular, we have

E ACPCR is a complex function times Py,
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so that, contracting with PBR on both sides, and making use of the SMA
system, we get that

Eap = feas,

for some holomorphic f = f(g). In order to gain more information about f,

we make use of the constraint [6.2.11], which implies, in particular that
V((PerVsLY)dq"™ A dg® + (PagVeL!)dg" A dg®|sen = 0.

But
PopVsL® = —feps,
since f and J¢ are holomorphic. Hence the constraint [6.2.11]implies that f is

constant, say f = —b, where b € C. Hence

Epc = —bepe

LA = b0 Q + JA.

Using these equations and equations [6.2.16| and [6.2.18, we conclude that there

is a holomorphic function h such that
28[AJB] = hEAB. (6.2.19)
We go back to the constraint [6.2.11] which implies also that

V[VA(PDRLD) + ?R(PAUZU)]WH =0.
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After a short computation, this implies that
OpJP + 95 JV = id,

where d € R. Hence the left-hand side is real, while the right-hand side is pure
imaginary, so that both sides vanish. Hence dpJ” is pure a pure imaginary
function. This in turn implies that h is both holomorphic and pure imaginary,
so that

h = —ic, (6.2.20)
where ¢ € R. Thus we have from [6.2.19 that

Ot p = —igeAB. (6.2.21)

Solving this equation yields that there is locally a holomorphic function ( =
((q) such that

@:—§%+%g (6.2.22)

and therefore,

LA::baAQ-—iqu4—8AQ. (6.2.23)

One can also see that the master equation comes from equation [6.2.8]
Conversely, if X is a real vector field on a hyperkahler manifold M with
L4 of the above form, and such that the master equation holds, then it is clear
that X is Killing and that £xws and L£xws are sections of V. So it remains
only to check that £ xws is a section of V), which can easily be done, and follows

from the master equation, as can be checked. Indeed, the condition £xw, is a
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section of V if
OA0R(bF 4+ bF + X (9)) is a real function times 94051 (6.2.24)

But the master equation tells us precisely that the left-hand side of the pre-
vious equation vanishes, and the converse is thus shown to be true; the real
vector field X on a hyperkédhler manifold M of the form above in local special

coordinates and satisfying the master equation is thus quaternionic Killing. [J

6.3 Application to hyperkahler 4n-manifolds
with n commuting quaternionic Killing fields

Theorem 6.3.1. Let X',.... X" be n commuting quaternionic Killing fields on
a hyperkdhler 4n-manifold M such that the first n—1 of them, X*,.... X" ! are
triholomorphic. If (VX™)s2y vanishes at some point p € M, then it vanishes
in a neighborhood of p. Thus we have two cases: in case 1, (VX")g2p vanishes
locally, and in case 2, (VX")g2y is nonzero locally.

Consider first case 1. This is the case of [3]. There are special local coor-

dinates ¢/, p’ and @, p’, for j going from 1 to n, such that
Wy = wy + iwz = idqj A dp’ (6.3.1)
j=1
and the vector fields X7 are locally of the form
X' =0, + 0y, (1<j<n). (6.3.2)
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Moreover, the Kdhler potential €2 in these special coordinates can be chosen
such that X7(Q) = 0, for j going from 1 to n. We then let v’ = ¢/ + ¢ and

v =i(F@ — ¢), and write

Qq,p,q,p) = K(v,p,p). (6.3.3)

Then using matriz notation, H satisfies

L, = K Ky — K Ko, (6.3.4)
KIKyq =KL Ky (6.3.5)
Kl Ky = K[ Ky (6.3.6)

After a Legendre transform F of K with respect to the real variables v7, the

equations above reduce to

Fyy + Fpp =0 (6.3.7)

Fy, is symmetric. (6.3.8)

Case 1 is the very well known Hitchin-Karlhede-Lindstrém-Rocek result [3].
As for case 2, dimension 4 (i.e. n = 1) was already considered by Boyer

and Finley. We assume that n > 1. After possibly rotating the hyperkdahler

structure, there exist special coordinates ¢, p’ and @, p’, for j going from 1

to n, such that

Wy = Wy +iwg = Z dg? A dp’, (6.3.9)
=1

o6



and moreover,

X7 = 8(13- + 853- (1 <j<n-— 1) (6.3.10)
X" =2i() " pro =Y pFop) + 0o+ 070, (6.3.11)
k=1 k=1

where n = n(q,p) is a holomorphic function satisfying
(X7, 0%n0,4] = 0. (6.3.12)

In addition, the local Kihler potential Q2 can be chosen such that X7(Q2) = 0,
for j going from 1 to n. Then, in addition to the equations X’ (Q) = 0, for
1 < 75 < n, Q satisfies using matrix notation the symplectic Monge-Ampere

equations:

L, = QL — Q1O (6.3.13)
Qg = U Qya (6.3.14)

Case 2 is a (partial) generalization of the Boyer and Finley [11] work in dimen-
sion 4 (we say “partial” because it might be possible to simplify the equations

further using a Legendre transform perhaps).

Proof. We remark first that a quaternionic Killing field X which satisfies

(VX)s2g = 0 has b = ¢ = 0 and takes the form

X =944+ coc.,
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in special local coordinates ¢* and g% (with A and B going from 1 to 2n),
where ( = ((q) (c.c. is an abbreviation for complex conjugate). Thus we see
that such a quaternionic Killing field X is triholomorphic.

We consider first case 1. We choose any special local coordinates ¢4, ch at
first (say the ¢’s are holomorphic for I). Then there are holomorphic functions
¢7 = ¢9(q) such that

X7 =090, + cc. (6.3.16)

We make two additional assumptions. First, the vector fields X!, IX!, JX?!,
KX, X" IX" JX"™ and KX" are assumed to be pointwise linearly inde-

pendent (so that they form a local frame). Second,
wa(X7, X*) =0,

for1<j,k<nand 1< a<3.
We then define some new coordinates, p/ = (/. By the Carathéodory-
Jacobi-Lie extension of the Darboux symplectic lemma, there are n additional

holomorphic coordinates (for I) ¢, with j going from 1 to n such that
wy =wy+iws =Y _dg Adp’. (6.3.17)
j=1
In these coordinates ¢/,p’ and their c.c., we have locally

X7 =0, + cc. (6.3.18)
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We then consider the master equations

X3(Q) = H 4+ H.

We would like to absorb the H’’s and their complex conjugates in 2. We can

do this by a proper choice of A, i.e. by replacing ) by

=0+ A+ A

where A is holomorphic and satisfies

Ay = H.

Q)
There exists such an A locally provided

(Hj)q"’ = (Hk)

@9
which is garanteed by the fact that
(X7, X*] = 0.

Dropping the prime in €', we have shown that by a proper choice of local

special coordinates and of €2, the master equations can be written simply as

X(Q) = (9, + 05)(Q) = 0, (6.3.19)

for 5 going from 1 to n.
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We then consider the SMA equations:

Ly = QL — Q1 (6.3.20)

Qg5 = QL0 (6.3.22)
which reduce to

1, = QL Q5 — QZva@ (6.3.23)

QL Qg = Q0 (6.3.24)

QZ’UQPU - Q;;via (6325)
using v/ = ¢ + @ and v/ = i(¢7 — ¢/). Indeed, the master equations for

instance become simply §2,; = 0, in these new coordinates.

Next, we make a Legendre transform
F=> (V) -K, (6.3.26)
j=1

where V7 = K,;, we arrive at the Hitchin-Karlhede-Lindstrom-Rocek ansatz
for a hyperkahler 4n-manifold M with n commuting triholomorphic vector

fields X1!,...,.X™ namely

Fyy + Fpy =0 (6.3.27)

Fy, is symmetric. (6.3.28)
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This finishes the study of case 1, which is well known [3].
We now move on to case 2. Let ¢, §* be local special coordinates, with

A, A going from 1 to 2n. Then we have that
wy = eapdq™ A dg®,

and, since the X7’s are triholomorphic (1<j<n-1),and X" is quater-
nionic Killing with (V.X")g25 nonzero, it follows that there exist holomorphic

functions ¢* = ¢*(q), for 1 < k < n, such that

X7 =970, + cc., (6.3.29)

X" = (b34Q — iqu + O™ + coc.. (6.3.30)

If b = 0 we can rotate the hyperkahler structure to have ' # 0. So without
loss of generality, we assume that b # 0. Then we make the following €2

transformation to absorb (™ and its complex conjugate

Q— :Q+?+7. (6.3.31)

Then, dropping the prime on €2, we have that
X" = (b0 — iqu)aA +ce. (6.3.32)

We then rotate the hyperkéhler structure to have ¥ = 0, and scale X" to
normalize ¢. We then obtain that there exist some holomorphic functions

0 = r]j(q’) (1 <7 <n—1)such that, in the new special local coordinates ¢'4
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and cj’A, we have, after dropping the primes

XT =0 o, + coc., (6.3.33)

X" =i(¢"04 — 10y). (6.3.34)

We digress a bit to consider dimension 4, i.e. n = 1. In that case, the local

expression for X” can be further simplified. We introduce first

(¢,p),

<
|
Sl
O

so that

eapdq® N dg® = dg A dp.

We then introduce some new coordinates ¢', p’ by

qd =qp (6.3.35)
=2 (6.3.36)
q
We then have
q0a =2q0,. (6.3.37)
After scaling X = X' by 1, we get
X = i(qd, — 39,). (6.3.38)

This is the simplest form for such a Killing field in dimension 4, as shown in

[T1]. Continuing along this line of thought ultimately leads to the Boyer and
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Finley equation (see [1I] or section [f)).

We then go back to case 2 and assume from now on that the dimension
is 4n with n > 1. Consider once more equations [6.3.33] There are n — 1
holomorphic functions involved in the local expressions of the X*’s, namely
the 43’5. However we can do better than that.

We make the assumption that X!, IX' JX!', KX!  I1X""t Jxnt

K X" ! are pointwise linearly independent, and that
wa(X7, X*) =0,

for1§a§3and1§j,l%§n—1.

We introduce

and then, by the Carathéodory-Jacobi-Lie extension of the Darboux symplectic
lemma, whose hypotheses are satisfied by our assumption above, we can find
a complete set of holomorphic coordinates for I;, namely ¢’*, p’*, for k going

from 1 to n, such that, dropping the primes, we have

XI =0y + 0y, (6.3.39)

X" =iq0s + 0104 + c.c.. (6.3.40)
where 7 is some holomorphic function and

1
A_ - 1 n 1 n
q ﬁ(q, .q"p ..., p")
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Hence, we can also write
X" = 2ip*0 + 004 + c.c.,
where ' =n—1i)_, ¢*p"* is holomorphic and, moreover,
(X7, 040 84] = 0.
The master equations are

XI(Q)=H + H

X"(Q) = H" + A"

(6.3.41)

(6.3.42)

(6.3.43)

(6.3.44)

In order to simplify the master equations, we make use of the €2 transformation

Q— QY+ A+ A,
where A satisfies
XI(A) = H
X"(A)=H"

A solution A of the above system exists locally provided

Xk = xi gk

X"H) = XTH",
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(6.3.46)

(6.3.47)

(6.3.48)



which follows from the assumption that the X*’s are commuting.
The symplectic Monge-Ampere equations PAUPBU = €4p, can be written

explicitly in our coordinates ¢/, p’ and ¢/, p’ as

Ly = QL Qs — Q)0 (6.3.49)
QL Qg = QL (6.3.50)

with the master equations X*(Q) = 0, for k going from 1 to n. This finishes

the proof of the theorem. n
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Appendix A

Solving the equation
PEMAJBIL - =0

In this appendix, we solve o
PEPAGBIL L —0 (A.0.1)

on a hyperkéahler 4n-manifold M. This equation comes from the Killing equa-
tion in special local coordinates ¢, % (A and A going from 1 to 2n).
On one hand, we have

2P, PY 1 0p)Lp = —0pLp + Pe* PP50, L. (A.0.2)
On the other hand, we have
2P Py "04Liry = —OpLr + P PP504Lk. (A.0.3)

Hence, we conclude that on a hyperkahler 4n-manifold M, the equation
is equivalent to the following equation

Py 04Lyp) = 0. (A.0.4)
Then we prove the following lemma
Lemma A.0.2. The following Lie bracket vanishes

[P4C0c, PgP0p)] = 0. (A.0.5)
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Proof.
(P ééépm] P)op
= (Pp “0pP yc)0"
= _(P[A\c 8DP|B]C)5]j
= (P[A|055P\B]D)3D
- _(P[A\OgéP\B}D)éD,
from which the lemma follows. O

Now consider - -
P,P0p(Py 0pLe). (A.0.6)

It is skew in B and C' from equation and symmetric in A and B from
the previous lemma, hence it vanishes, so that we have proved that equation

(which is equivalent to [A.0.4]) implies that
P, Pop(PyT0pLe) = 0. (A.0.7)

This implies that -
Pp"0rLe = Epc, (A.0.8)

where Epc is holomorphic and skew in B and C'. This implies that
PP, Epc = —0pLc,
which can be rewritten as
07 (05O Egc) = —0gLe.
Hence we conclude that LA is of the form
LA = EA,05Q + J4, (A.0.9)

where E4p is holomorphic and skew in A and B, while J4 is holomorphic.

Finally, plugging in the expression [A.0.10| for L# back in shows that it
is indeed a solution.

We have proved:

Theorem A.0.3. The general solution to is given by

LA = E4,05Q + J4, (A.0.10)
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where Eap is holomorphic and skew in A and B, while J* is holomorphic.
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