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Abstract of the Dissertation

Representation Theory of Categorified Quantum sl2

by

Eitan Chatav

Doctor of Philosophy

in

Mathematics

Stony Brook University

2012

Quantum sl2 gives rise to the Jones polynomial knot invariant. One of the insights

of categorification is that this 3-dimensional picture is a shadow, the decategori-

fication, of a 4-dimensional picture. Thus, the categorification of quantum sl2

gives rise through its representation theory to Khovanov homology, the cate-

gorification of the Jones polynomial. In the 3-dimensional picture, the algebra

of Temperley-Lieb diagrams, used in the construction of the Jones polynomial,

gives a graphical calculus for intertwiners of the representations of quantum sl2.

We show that the algebra of Bar-Natan’s dotted cobordisms, used in the con-

struction of Khovanov homology, gives a graphical calculus for intertwiners of

representations of categorified quantum sl2.
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Chapter 1

Introduction

1.1 The decategorified picture

Quantum sl2, denoted U = Uq (sl2) is a deformation of the universal enveloping algebra of

sl2 by a parameter q. U is the Z [q, q−1]-algebra generated by ↓, ↑ and an invertible element

K with relations

K ↑= q2 ↑ K K ↓= q−2 ↓ K ↑↓ − ↓↑= K −K−1

q − q−1

U has irreducible representations Vλ = U− |
λ

for λ ∈ N where U− is the subalgebra of U

generated by ↓, and, |
λ

is a vector in Vλ with K |
λ

= qλ |
λ

and ↑ |
λ

= 0. Tensor products of

irreducible representations Vλ = VλN ⊗ · · · ⊗ Vλ1 are also representations of U .

The space of Temperley-Lieb diagrams TL (m,n) is the Z [q, q−1]-module generated

by isotopy classes of planar curves with endpoints, m to the left and n to the right, and

elements in TL (l,m) and TL (m,n) may be glued together along their m endpoints, for

instance,

∈ TL(3, 1) ∈ TL(1, 3) ∈ TL(3, 3)
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subject to the Temperley-Lieb relation for a circle,

= q + q−1

Temperley-Lieb diagrams provide a graphical calculus for intertwiners of tensor powers of

the fundamental representation V1,··· ,1 due to the following theorem.

Theorem. There is a representation of the category TL of all Temperley-Lieb diagrams in

the category of U-intertwiners of the representations V1,··· ,1 which sends q to −q.

The key to constructing this representation is the invariant dual canonical basis vector

v1♥v−1 ∈ V1 ⊗ V1. One has that the intertwiner ∈ TL(2, 0) is mutiplication of a scalar

by −qv1♥v−1 and that the intertwiner ∈ TL(0, 2) is inner product with v1♥v−1. See [6]

for details. Since the category of Temperley-Lieb diagrams is a ribbon category it may used

to define invariants of tangles, but even more profoundly, by applying the theory of Jones-

Wenzl idempotents in TL, one obtains an invariant of 3-manifolds, the Reshetikhin-Turaev

invariant.

The task of this dissertation is to prove a categorified version of the above theorem.

First we will review some category theory and 2-category theory which we will then utilize

to describe three categorifications, Lauda’s categorification of quantum sl2, Webster’s cat-

egorification of tensor representations, and Bar-Natan’s categorification of Temperley-Lieb

diagrams. Then we will develop a theory of intertwiners and construct a representation of

the 2-category of Bar-Natan cobordisms as intertwiners of the categorification of tensor pow-

ers of the fundamental representation of quantum sl2. Finally, we will make note of some

considerations about the categorification of Jones-Wenzl idempotents.
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1.2 Previous work

The program of categorification was initiated by Louis Crane and Igor Frenkel in an at-

tempt to lift 3-dimensional topological quantum field theory to 4-dimensions [5]. Mikhail

Khovanov then showed that the Jones polynomial can be categorified resulting in the cele-

brated Khovanov homology [7]. Dror Bar-Natan then gave a new construction of Khovanov

homology using a graphical calculus of surfaces which are cobordisms between resolutions

of knot diagrams, categorifying the standard construction of the Jones’ polynomial via the

Kauffman bracket, essentially developing a categorification of Temperley-Lieb diagrams [1].

With Scott Morrison, he also noticed the importance of passing to the Karoubi envelope of

a category [2].

Aaron Lauda then categorified quantum sl2, or more precisely Lusztig’s idempotented

modification, by using a graphical calculus of string diagrams [11]. With Khovanov, he

then generalized to categorifications of any Drinfeld-Jimbo quantum group [8, 9, 10]. Ben

Webster then categorified tensor products of irreducible representations of quantum groups

by modifying Khovanov and Lauda’s graphical calculus of string diagrams [13, 14]. Webster

showed that his categorification provided a knot invariant equivalent to Khovanov’s in the

case of sl2 but did not yet extend it functorially to cobordisms.
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Chapter 2

Algebraic Preliminary

2.1 Linear categories

We will work over a field K. A linear category is a category C whose morphism sets

HomC (a→ b) are K-vector spaces such that composition is bilinear. Functors between

linear categories are assumed to be linear. A graded, linear category has a strictly invertible

endofunctor q. This gives rise to endofunctors qn called grade shifts for n ∈ Z, composi-

tions of q or its inverse. Functors between graded, linear categories are assumed to be grade

preserving, Fq = qF .

Given morphisms a f−→ qn1b and b g−→ qn2c, define graded composition a gf−→ qn1+n2c to

be qn1 (g) f . As this abuse of notation implies, we will not distinguish between grade shifts

of a given morphism. For qn0a
f−→ qn1b define q-degree, degq (f) = n1 − n0. Define graded

morphism and endomorphism sets,

Homq
C (a→ b) =

⊕
n∈Z

Hom (a→ qnb)

EndqC (a) = Homq
C (a→ a)
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Then EndqC (a) are graded rings and Homq
C(a→ b) are graded EndqC (b), EndqC (a)-bimodules.

We will assume all rings and modules are finite-dimensional K-vector spaces.

Example. Given a graded ring R, the category MR of graded, right modules and degree

preserving homomorphisms over R is a graded, linear category.

An idempotent is a morphism e ∈ EndC (a) such that e2 = e. Functors F preserve

idempotents since

F (e)2 = F
(
e2
)

= F (e)

In a linear category if e is an idempotent then 1a − e is an idempotent since

(1a − e)2 = 12
a − 2e+ e2 = 1a − 2e+ e = 1a − e

A split idempotent is a morphism e ∈ EndC (a) such that there is an object im (e), the image

of e, with morphisms im (e)
i
// a

p
oo , the projection and inclusion, such that pi = 1im(e) and

ip = e. A split idempotent is an idempotent since

e2 = (ip)2 = ipip = i1im(e)p = ip = e

The image of a split idempotent is uniquely determined up to canonical isomorphism.

A 0 object in a linear category is an object with identity 10 = 0. A direct sum of a

finite set of objects a1, . . . , an in a linear category is an object
⊕n

i=1 ai = a1 ⊕ · · · ⊕ an with

morphisms ak
ik
//

⊕n
i=1 ai

pkoo such that the direct sum relations hold: pkik = 1ak and pkij = 0

for k 6= j and
∑n

i=1 iipi = 1⊕
i ai

. Thus, an empty direct sum is a 0 object. Direct sums are

uniquely determined up to canonical isomorphisms and linear functors preserve direct sums.

Notice each ek = ikpk is a split idempotent with ak ∼= im (ek). Conversely,

Proposition. If e, 1a − e ∈ EndC (a) are split idempotents, then a ∼= im (e)⊕ im (1a − e)

5



Proof. We must check the direct sum relations. We have that peie = 1im(e) and p1−ei1−e =

1im(1−e) by definition of split idempotents and,

pei1−e = 1im(e)pei1−e1im(1−e) = peiepei1−ep1−ei1−e

= pee(1a − e)i1−e = pe(e− e2)i1−e = 0

p1−eie = 1im(1−e)p1−eie1im(e) = p1−ei1−ep1−eiepeie

= p1−e (1a − e) eie = p1−e
(
e− e2

)
ie = 0

iepe + i1−ep1−e = e+ 1a − e = 1a

Thus we can identify images of split idempotents as direct summands.

2.2 Pseudo-Abelian categories

A graded pseudo-Abelian category is a graded linear category which is closed under direct

sums and direct summands, that is, it is additive and all idempotents are split.

Example. The category PR of graded, projective, right modules and degree preserving

homomorphisms over R is a graded, pseudo-Abelian category.

Define the pseudo-Abelian closure Ċ of a linear category C by formally adjoining

direct sums and direct summands. That is Ċ = Add (Split (C)) where Split (C), the Karoubi

envelope of C, is the category with:

• objects im (e) are formal images of idempotents e ∈ EndC (a) from C,

• morphisms im (e1)
f−→ im (e2) are morphisms a1

f−→ a2 from C such that fe1 = f = e2f ,

• composition im (e1)
f−→ im (e2)

g−→ im (e3) is just composition gf from C,
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• the identity on im (e) is e,

• Split (C) contains C as a full, faithful embedding with an object a in C identified with

the object im (1a) in Split (C),

• If C is graded, linear then Split (C) is too with the same addition and q (im (e)) =

im (q (e));

and Add (D), the additive closure of a linear category D, is the category with:

• objects are formal finite direct sums of objects
⊕

i ai from D,

• morphisms
⊕

i ai
f−→
⊕

j bj are matrices of morphisms ai
fji−→ bj from D,

• composition
⊕

i ai
f−→
⊕

j bj
g−→
⊕

k ck is given by matrix multiplication (gf)ki =∑
j gkjfji,

• the identity on
⊕

i ai is the identity matrix 1jj = 1aj and 1kj = 0 for k 6= j,

• Add (D) contains D as a full, faithful embedding,

• If D is graded, linear then Add (D) is too with matrix addition and q (
⊕

i ai) =⊕
i q (ai).

The pseudo-Abelian closure Ċ is characterized by the universal property that Ċ is pseudo-

Abelian and any functor from C to a pseudo-Abelian category factors through Ċ uniquely up

to functorial isomorphism. Thus, if C is pseudo-Abelian, then Ċ is equivalent to C.

An object a projectively generates C if and only if every object in C is isomorphic to

an object generated by a under direct sums, direct summands and grade shifts. In that case

Ċ is equivalent to the pseudo-Abelian closure of the subcategory of C with objects restricted

to qna, n ∈ Z.

Proposition. If a projectively generates C and R ∼= EndqC (a), then Ċ is equivalent to PR.
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Proof. We will show that Homq

Ċ (a→ −) gives a functor from Ċ to PR. Any object b in Ċ

is isomorphic to a direct sum of grade shifts of images of idempotents b ∼=
⊕N

i=1 q
niim (ei),

ei ∈ EndC (a) so it is a direct summand of a⊕N ; letting b′ =
⊕N

i=1 q
−niim (1a − ei),

b⊕ b′ ∼=
N⊕
i=1

im (ei)⊕ im (1a − ei) ∼= a⊕N

So, Homq

Ċ (a→ b)⊕Homq

Ċ (a→ b′) ∼= EndqC (a)⊕N ∼= R⊕N

since Homq

Ċ (a→ −) preserves direct sums and grade shifts. Thus, Homq

Ċ (a→ b) is a pro-

jective, right R-module.

We must show for any objects b, c in Ċ that Homq

Ċ (a→ −) induces an isomorphism

of graded EndqĊ (c) , EndqĊ (b)-bimodules between Homq

Ċ (b→ c) and

HomPR

(
Homq

Ċ (a→ b)→ Homq

Ċ (a→ c)
)

In the case a ∼= b ∼= c, we have that EndqĊ (a) ∼= EndPR

(
EndqĊ (a)

)
, with f ∈ EndqĊ (a)

identified with left graded composition by f and g ∈ EndPR

(
EndqĊ (a)

)
identified with

g (1a). The general case follows from this and the fact that Homq

Ċ (a→ −) preserves direct

sums, direct summands and grade shifts. Thus, Homq

Ċ (a→ −) is full and faithful.

We must show that for any graded, projective, right R-module P , there is an object

b in Ċ such that P ∼= Homq

Ċ (a→ b). P is a direct summand of R⊕N ∼= EndqC (a)⊕N so let

EndqC (a)⊕N
e←− EndqC (a)⊕N be the idempotent with P ∼= im (e). Let e′ ∈ EndqĊ

(
a⊕N

)
be

the morphism induced by e. Then e′2 = 0, so take b = im (e′). Thus, Homq

Ċ (a→ −) is

essentially surjective and is an equivalence of categories.

A finite set of objects a1, . . . , aN projectively generate C if and only if every object

in C is isomorphic to an object generated by them under direct sums, direct summands and

8



grade shifts.

Corollary. If a1, . . . , aN projectively generate C and R ∼=
N⊕
i=1

N⊕
j=1

Homq
C (ai → aj) then Ċ is

equivalent to PR.

Proof. This follows since
⊕N

i=1 ai projectively generates of Ċ and

EndqĊ

(
N⊕
i=1

ai

)
∼=

N⊕
i=1

N⊕
j=1

Homq
C (aj ← ai)

with multiplication given by graded composition where well-defined and 0 otherwise.

2.3 Derived categories

For a linear category C, let K (C) denote the homotopy category of complexes in C with:

• objects are formal cochain complexes a, sequences of objects ai with i ∈ Z and differ-

entials, morphisms ai
dia−→ ai+1, from C such that diadi−1a = 0,

• morphisms a f−→ b are sequences of morphisms ai f i−→ bi from C with dibf
i = f i+1dia.

They are considered up to homotopies f ∼ g, sequences ai hi−→ bi−1 of morphisms such

that f i − gi = hi+1dia + di−1b hi,

· · · // bi−1
di−1
b // bi

dib // bi+1 // · · ·

· · · // ai−1
di−1
a //

f i−1

OO

gi−1

OO

ai
dia //

f i

OO

gi

OO

hi
ee

ai+1

f i+1

OO

gi+1

OO

hi+1

ee

// · · ·

• morphisms in K (C) compose term-wise; the identity morphism 1a is a sequence of

identity morphisms 1ai ,

• K (C) is linear, morphisms are linearly combined term-wise; the 0 morphism is a se-

quence of 0 morphisms,
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• K (C) has a grading t, called translation, with ta given by (ta)i = ai+1 and dita = −di+1
a

for objects and t (f)i = f i+1 for morphisms,

• K (C) contains C as a full, faithful embedding with an object a in C identified with the

complex with a0 = a and ai = 0 for i 6= 0,

• if C has a grading q, then K (C) inherits a grading q with qa given by (qa)i = q (ai)

and diqa = q (dia) for objects and q (f)i = q (f i) for morphisms, and qt = tq,

• if C is additive, then K (C) is too with a ⊕ b having (a⊕ b)i ∼= ai ⊕ bi and dia⊕b = dia 0

0 dib

,

• functors between linear categories canonically extend to functors between their homo-

topy categories of complexes.

If C has a 0 object, then let K− (C), the homotopy category of bounded above complexes in

C, be the subcategory of K (C) with objects restricted to complexes a with ai ∼= 0 for all

i > n for some n.

Given a graded ring R, the derived category DR is K (MR) localized at quasi-

isomorphisms, that is, DR includes formal inverses of those morphisms of complexes which

induce isomorphisms on homology. Let D−R be its subcategory with objects restricted to

bounded above complexes.

Corollary. If a1, . . . , aN projectively generate C and R ∼=
N⊕
i=1

N⊕
j=1

Homq
C (ai → aj) then K−

(
Ċ
)

is equivalent to D−R.

Proof. This follows from a theorem of homological algebra that the bounded-above derived

category D−R is equivalent to K− (PR).

Given graded rings R1, R2, let R1MR2 be the category of graded R1, R2-bimodules

and degree preserving homomorphisms, let the derived category R1DR2 be the localization of

10



K (R1MR2) at quasi-isomorphisms, and let R1D−R2
be its subcategory with objects restricted

to bounded-above complexes. Given objects a in R1D−R and b in RD−R2
, there is an object,

the left derived tensor product a
L
⊗
R
b, in R1D−R2

obtained by replacing a with its image in

K− (PR) and taking the standard tensor product, and −
L
⊗
R
− extends to a bifunctor.

Let DbR be the subcategory of DR with objects restricted to bounded complexes.

Then by a theorem of Happel, if R has finite global dimension, then there is an invertible

endofunctor of DbR, the Serre functor, SR = −
L
⊗
R
R∗, where −∗ is vector space dual. See [3]

for details.

2.4 2-categories

For a 2-category C, we will follow the convention that horizontal sources are on the right and

targets on the left, and that vertical sources are on the bottom and targets on the top. All

2-categories C will be enriched in graded, linear categories, that is, the morphism categories

HomC (b← a) will be graded, linear categories. The 2-categories Ċ, and K−
(
Ċ
)
are obtained

by taking pseudo-Abelian closures and homotopy cochain categories of morphism categories

and extending horizontal composition. 2-categories will be assumed to be strict, either by

definition or by strictification and 2-functors between them will be strict.

Example. There is a 2-category with graded linear categories as 0-morphisms, functors as

1-morphisms and functorial morphisms as 2-morphisms.

We will use the graphical calculus of string diagrams to denote morphisms of 2-

categories. 1-morphisms b
g
// a

f
oo in a 2-category C are adjoint f a g if and only if there

are 2-morphisms, the unit ∪ ∈ HomEndC(a)


gf

⇑

1a

 and counit ∩ ∈ HomEndC(b)


1b

⇑

fg

,

11



which in the graphical calculus of string diagrams are denoted as g f and gf such that the

unit-counit relations hold
g

g

=

g

g

f

f

=

f

f

In particular adjoint functors F a G are adjoint as 1-morphisms in the 2-category of cate-

gories, functors and functorial morphisms. Adjoints are determined up to 2-isomorphisms.

If C is graded, linear-enriched, then say that f, g are graded biadjoint of degree n if and only

if q−nf a g a qnf . Thus, f, g are graded biadjoint of degree n if and only if

there is a 2-morphism, a morphism in, with target, and source.

g f EndC (a) q−ngf 1a

f g
EndC (b) qnfg 1b

g f EndC (a) q−n1a gf

f g EndC (b) qn1b fg

such that the relations for a graded biadjunction hold

g

g

=

g

g

=

g

g

f

f

=

f

f

=

f

f

A semistrict monoidal structure on a 2-category is an associative product of 0-

morphisms with an identity 0-morphism that extends 2-functorially to 1-morphisms and

2-morphisms.
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Chapter 3

Categorifications

3.1 Lauda’s categorification of quantum sl2.

U−, the categorification of the negative half of quantum sl2, is the graded, linear-enriched,

strict 2-category consisting of:

• 0-morphisms are integers n ∈ Z.

• 1-morphisms

– For all n ∈ Z, there is a 1-morphism ↓, an object in HomU− (n− 2← n).

– 1-morphisms are generated by horizontal composition, and grade shifts of these

and the horizontal identity 1-morphisms n.

• 2-morphisms

– For all n ∈ Z

there is a 2-morphism, a morphism in, with target, and source.

��• HomU− (n− 2← n) q2 ↓ n ↓ n

�� �� HomU− (n− 4← n) q−2 ↓↓ n ↓↓ n

13



– 2-morphisms are generated by horizontal and vertical composition, grade shifts,

and linear combinations of these and the vertical identity 2-morphisms ↓, and n.

• 2-morphisms are subject to the nil-Hecke relations

�� ��
= 0 ��

•
�� − ��• �� = �� �� = �� ��• − �� ��•

�� ����

=
�� �� ��

The nil-Hecke rings are

Ra = EndqHomU− (n−2a←n)

(
↓
a
n

)
where ↓

a
= ↓ · · · ↓︸ ︷︷ ︸

a

. For different values of n, the Ra are all isomorphic. And, there are

equivalences of categories,

HomU̇− (n− 2a← n) ∼= PRa HomK−(U̇−) (n− 2a← n) ∼= D−Ra

U , Lauda’s categorification of quantum sl2, is the graded, linear-enriched, strict 2-

category containing U− consisting of:

• 0-morphisms are integers n ∈ Z.

• 1-morphisms

– For all n ∈ Z, there is a 1-morphism ↑, an object in HomU− (n+ 2← n).

– 1-morphisms are generated by horizontal composition, and grade shifts of these,

the 1-morphisms ↓ in U−, and the horizontal identity 1-morphisms n.

• 2-morphisms

– For all n ∈ Z

14



there is a 2-morphism, a morphism in, with target, and source.
OO

EndU (n) q1−n ↑↓ n n

OO

EndU (n) q1+n ↓↑ n n

�� EndU (n) q1−nn ↑↓ n

�� EndU (n) q1+nn ↓↑ n

– 2-morphisms are generated by horizontal and vertical composition, grade shifts,

and linear combinations of these, the 2-morphisms ��• and �� �� in U−, and the vertical

identity 2-morphisms ↑, ↓, and n.

• 2-morphisms are subject to the following relations.

– nil-Hecke relations from U−

– Duality relations
OO

=
OO

=
OO

��
=
��
=
��

OO

• =
OO

•
OO OO

=

OOOO

∗ These relations guarantee that any 2-morphisms which are planar isotopic

as oriented diagrams are equal. Thus, notation can be extended to planar

isotopy classes of diagrams making sense of such diagrams as:

OO
•

OO

�� ��

OO OOOO

– Bubble relations
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∗ Define inductively by vertical composition

��

•0 =
��

and
��

•

m
+

1

=
��•
•

m

∗ The “dotted bubbles”

•
oo n

n− 1 + d
and •

// n
−n− 1 + d

both have degree 2d in the graded unital ring EndqEndU (n) (n). They make

sense only when d ≥ 1 − n and d ≥ 1 + n respectively. However, we extend

notation to include “fake” bubbles with d < 1− n and d < 1 + n respectively.

∗ We require the relation

•
oo n

n− 1 + d
=

•
// n

−n− 1 + d
=


0 · n d < 0

1 · n d = 0

which defines fake bubbles when d ≤ 0.

∗ We require the relation

∑
a+b+c=−2

•
oo

b •
//
n

c
=


0 · n a < 0

1 · n a = 0

Setting a = −d implies that

•
oo
n

n− 1 + d
= −

d−1∑
`=0

•
oo

n− 1 + ` •
//
n

−n− 1 + d− `
, 0 < d < 1− n

16



•
//
n

−n− 1 + d
= −

d∑
`=1

•
oo

n− 1 + ` •
//
n

−n− 1 + d− `
, 0 < d < 1 + n

inductively defining fake bubbles when d > 0.

∗ Finally, we require the relations

��

n =
∑

a+b=−1
a≥0

b•
//

��
•a
n

��

n = −
∑

a+b=−1
a≥0

b•
oo

��
•a
n

OO

��

n = −
OO

��

n+
∑

a+b+c=−2
a,c≥0

OO

•
��
•

a
c
•
//
n

b

��

OO

n = −
OO

��

n+
∑

a+b+c=−2
a,c≥0

OO

•
��
•

a
c
•
oo
n

b

Proposition. In U , there are direct sum decompositions of 1-morphisms

↑↓ n ∼=
n−1⊕
a=0

qn−1−2an⊕ ↓↑ n for n ≥ 0 (3.1.1)

↓↑ n ∼=
−n−1⊕
a=0

q−n−1−2an⊕ ↑↓ n for n ≤ 0 (3.1.2)

Proof. For 0 ≤ a < n, let

pa =
∑

a+b+c=−2
c≥0

b•
//

��
•c
n

and ia =
OO

•a n and let pn = −
OO

�� n and in = ��

OO
n. The relations for the direct sum decom-

position (3.1.1);
pa

ia

= 1 · n for 0 ≤ a < n,
pn

in

=↓↑ n,
pa′

ia

= 0 · n for a 6= a′ and

∑n
a=0

ia

pa

=↑↓ n, all follow from bubble relations.

17



For 0 ≤ a < −n, let

pa =
∑

a+b+c=−2
c≥0

b•
oo

��
•c
n

and ia =
OO

•a n and let p−n = − ��
OO
n and i−n =

OO

�� n. The relations for the direct sum

decomposition (3.1.2);
pa

ia

= 1 · n for 0 ≤ a < −n,
p−n

i−n

=↑↓ n,
pa′

ia

= 0 · n for a 6= a′ and

∑−n
a=0

ia

pa

=↓↑ n, all follow from bubble relations.

3.2 Webster’s categorification of tensor representations

Let Ũ− be the graded, linear-enriched, strict 2-category containing U− consisting of:

• 0-morphisms are integers n ∈ Z

• 1-morphisms

– For all n ∈ Z, λ ∈ N, there is a 1-morphism |
λ

, an object in HomŨ− (n+ λ← n);

– 1-morphisms are generated by horizontal composition, and grade shifts of these,

the 1-morphisms ↓ in U−, and the horizontal identity 1-morphisms n.

• 2-morphisms

– For all n ∈ Z, λ ∈ N, there is

a 2-morphism, a morphism in, with target, and source.

��
λ

HomŨ− (n+ λ− 2← n) qλ |
λ

↓ n ↓ |
λ

n

��
λ

HomŨ− (n+ λ− 2← n) qλ ↓ |
λ

n |
λ

↓ n

18



– 2-morphisms are generated by horizontal and vertical composition, grade shifts,

and linear combinations of these, the 2-morphisms ��• and �� �� in U− and the vertical

identity 2-morphisms ↓, |
λ

and n.

• 2-morphisms are subject to the following relations.

– nil-Hecke relations from U−.

– Webster relations

��
λ

= •
��

λ

λ

��
λ

= •
��
λ

λ

��
•
λ

= ��•
λ

��•
λ

= ��
•
λ

����
λ

=
�� ��

λ
�� ��

λ

=
�� ��

λ

����
λ

−
�� ��
λ

=
∑

a+b=λ−1
a,b≥0

•
��

•
��

λ
a b

Any 2-morphism in Ũ− has the same ordering of labels λ = λN , . . . , λ1 on its target and

source 1-morphisms, so let Ũ−λ be the sub-2-category with diagrams in only that ordering.

Let
[
λ
a

]
be the set of a = aN , . . . , a0 with ai ∈ N and a =

∑N
i=0 ai and let |λ| =

∑N
i=1 λi.

The Webster rings (for sl2) are

R̃λ
a =

⊕
a,b∈[λa ]

Homq
HomŨ−

λ
(n+|λ|−2a←n)


↓
bN

|
λN

· · · |
λ1

↓
b0

n

⇑

↓
aN

|
λN

· · · |
λ1

↓
a0

n


For different values of n the R̃λ

a are all isomorphic. Let Rλ
a , the cyclotomic Webster ring, be

the quotient of R̃λ
a (with n = 0) by the relation that a diagram with ↓ 0 on the right is 0.

Let mVλ be the quotient of HomŨ−λ (m← 0) by the relation that a diagram with ↓ 0 on the
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right is 0. Then there are equivalences of categories

|λ|−2aV̇λ ∼= PRλa K−
(
|λ|−2aV̇λ

)
∼= D−

R
λ
a

Example. The cyclotomic Webster rings R1,1
a , suppressing the labels 1, 1, are

• R1,1
0 = K | | ∼= K

• R1,1
1 has basis

�� �� �� �� ��•

and has indecomposable projective generators ��
R1,1

1

and ��
R1,1

1

.

• R1,1
2 has basis

�� ��
�� �� �� ��•

�� ��

•
�� ��
•

�� ��••

�� ��
�� �� − �� ��•

and as a ring there is an isomorphism with the matrix ring R1,1
2
∼= Mat3×3 (K) sending

these generators to the elementary generators. Thus R1,1
2 is Morita equivalent to K.

• R1,1
a with a > 2 is trivial and is trivially trivial for a < 0.

By a representation of U̇ we mean a 2-functor from U̇ .

Proposition. There is a representation V̇λ of U̇ for which the 0-morphism n is sent to the

category nV̇λ.
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Proof. Let Ũ be the 2-category containing both U and Ũ−, with all 0, 1, and 2-morphisms

from both, subject to all relations from both and the additional relations

OO

λ

=
OO

λ

OO

λ

=
OO

λ

where
OO

λ
=

OO

λ

OO

λ
=

OO

λ

Thus, in Ũ ,

↑ |
λ

∼= |
λ

↑ (3.2.1)

Let Ũλ be the sub-2-category of Ũ with the ordering of labels given by λ, and let

nWλ = HomŨλ (n← 0) / ∼ where the relation ∼ is that a diagram with ↓ 0 or ↑ 0 on the

right is 0. Define rings

T̃ λa =
⊕

a,b∈[λa ]

Homq
HomŨλ

(|λ|−2a←0)


↓
bN

|
λN

· · · |
λ1

↓
b0

0

⇑

↓
aN

|
λN

· · · |
λ1

↓
a0

0



T λa =
⊕

a,b∈[λa ]

Homq

|λ|−2aWλ


↓
bN

|
λN

· · · |
λ1

↓
b0

0

⇑

↓
aN

|
λN

· · · |
λ1

↓
a0

0


Using (3.1.1), (3.1.2) and (3.2.1) we see that any 1-morphism in Ũ is isomorphic to a

direct summand of a direct sum of grade shifts of 1-morphisms for which all ↑ are on the right.

Applying the relation ∼ we then see that the objects ↓
aN

|
λN

· · · |
λ1

↓
a0

0, a ∈
[
λ
a

]
projectively

generate |λ|−2aWλ. Thus, there is an equivalence of categories, |λ|−2aẆλ
∼= P

(
T λa
)
.

Consider the 2-functor HomŨλ (− ← 0) / ∼ applied to the image of U in Ũ . It sends

n to nWλ, and is the category of functors and functorial morphisms to n′Wλ from nWλ given
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by left horizontal composition by HomU (n′ ← n), which is well-defined.

There is an inclusion of rings given by horizontal composition

R̃λ
a ⊗

K
EndqEndU (0) (0)→ T̃ λa

Using relations in Ũ , we can combinatorially simplify diagrams in T̃ λa to show that this is

an isomorphism. Modding out both sides by the relation ∼ shows that T λa ∼= Rλ
a . Thus,

nẆλ
∼= nV̇λ, so that applying the pseudo-Abelian envelope induces a representation of U̇

that sends n to nV̇λ. Let V̇λ be the image of this representation of U̇ .

Corollary. In V̇λ, ↓ n + 1 and ↑ n − 1 are equivalent to Ind and qnRes, the extension

and shifted restriction of scalars functions induced by the inclusion of rings Rλ
a

↓·−→ Rλ
a+1,

n = |λ| − 2a − 1, given by left horizontal composition by ↓. And, ↓ n + 1 is also equivalent

to q−2ncoInd, the shifted coinduction functor.

Proof. The equivalence of categories n+1V̇λ ∼= PRλa is given by the functor

Homq

n+1V̇λ


−

⇑⊕
a∈[λa ]

↓
aN

|
λN

· · · |
λ1

↓
a0

0


so that left horizontal composition by ↓ as a functor with target n−1V̇λ and source n+1V̇λ will

be equivalent to the extension of scalars functor with target P
R
λ
a+1

and source P
R
λ
a
induced

by the homomorphism Rλ
a

↓·−→ Rλ
a+1, i.e. the following diagram commutes.

P
R
λ
a+1

P
R
λ
a

Indoo

n−1V̇λ

∼=
OO

n+1V̇λ

∼=

OO

↓
oo
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By the duality relations in U , ↓ n+ 1 and ↑ n− 1 are graded biadjoint of degree n,

q−n ↓ n+ 1 a ↑ n− 1 a qn ↓ n+ 1

But Ind a Res a coInd, so q−nInd a qnRes a q−ncoInd. Thus, ↑ n − 1 is equivalent to

qnRes and ↓ n+ 1 is equivalent to q−2ncoInd.

3.3 Bar-Natan’s categorification of Temperley-Lieb dia-

grams

Let i be the graded, linear-enriched, semistrict, monoidal 2-category consisting of:

• 0-morphisms

– There is a 0-morphism · the monoidal generator.

– 0-morphisms are generated by monoidal products of these ···}
N

and the monoidal

identity is ···}
0

= ∅.

• 1-morphisms

– There is a 1-morphism an object in Homi (· · ← ∅).

– There is a 1-morphism an object in Homi (∅ ← · ·).

– 1-morphisms are generated by horizontal composition, monoidal products and

grade shifts of these and the horizontal identity 1-morphisms }
N

.

• 2-morphisms
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There is a 2-morphism, a morphism in, with target, and source.

Endi (∅) q−1∅

Endi (∅) q∅

• Endi (∅) q∅
•

Endi (∅) q−1∅

Endi (·)

Endi (·)

Endi (·)

Endi (·)

Endi ( ·· ) q

Endi ( ·· ) q−1

– 2-morphisms are generated by horizontal and vertical composition, monoidal

products, grade shifts, and linear combinations of these and the vertical iden-

tity 2-morphisms , and }
N

.

– 2-morphisms are subject to the following relations:

∗ Bar-Natan relations

•
= ∅ = • = 0 =

•
• =

•
+ •

∗ Duality relations:

Cusp cancellation relations

= =

24



= =

Morse cancellation relations

= = = =

Dot slide relations

•
= •

•
= •

Saddle slide relations

= =

= =

∗ The duality relations guarantee that any 2-morphisms which are spatial iso-

topic as dotted surfaces with corners are equal. See [12] for details. Thus,

notation can be extended to spatial isotopy classes of such dotted surfaces

with corners making sense of such dotted surfaces as:

• • •

and we require the nilpotency relation for dotted surfaces

• • = 0
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Proposition. In i, there is a direct sum decomposition of 1-morphisms

∼=
(
q ⊕ q−1

)
1∅

Proof. The Bar-Natan relations are the relations for the direct sum decomposition.

Given a dotted surface Σ, let χ (Σ) be its Euler characteristic, h (Σ) be its number of hori-

zontal boundary components and d (Σ) be its number of dots •.

Proposition. The degree of a dotted surface Σ in i is

degq (Σ) = X (Σ)− h (Σ)

2
− 2d (Σ)

Proof. Degrees of monoidal products of dotted surfaces are additive since each of χ, h, d is

additive under disjoint union. Degrees of horizontal and of vertical compositions of dotted

surfaces are additive since χ − h
2
is additive, which follows from the inclusion-exclusion

principle for χ and comparing Euler characteristics of shared boundary curves with numbers

of horizontal boundary components, and also d is additive. Thus, in order to be the formula

for degree, it suffices that degq is the degree of the generating 2-morphisms, which, upon

inspection, it is.
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Chapter 4

Intertwiner theory

4.1 Intertwiner 2-category

The 2-category Twine of intertwiners of categorified tensor representations consists of:

• 0-morphisms are sequences of categories K−
(
nV̇λ
)
, n ∈ Z.

• 1-morphisms are intertwiners, sequences of functors

K−
(
nV̇µ
)

nF←− K−
(
nV̇λ
)

such that for any object u in homK−(U̇) (n′ ← n), the following diagram commutes up

to functorial isomorphism.

K−
(
n′V̇µ

)
K−
(
n′V̇λ

)
n′Foo

K−
(
nV̇µ
)u

OO

u}

5=

K−
(
nV̇λ
)

nF
oo

u

OO

– Horizontal composition of intertwiners is the sequence of compositions of functors
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n (GF ) = nGnF and horizontal identities are sequences of identity functors on

K−
(
nV̇λ
)
.

• A 2-morphism is a sequence of functorial morphisms between intertwiners. Horizontal

and vertical compositions are sequences of horizontal and vertical compositions of func-

torial morphisms and vertical identities are sequences of identity functorial morphisms.

• The morphism categories of Twine inherit gradings q, t and a linear structure from the

categories K−
(
nV̇λ
)
.

Proposition. Twine has a monoidal structure.

Proof. Define the monoidal product of the 0-morphisms to be the concatenation,

K−
(
nV̇λ1

)
t K−

(
nV̇λ2

)
= K−

(
nV̇λ1λ2

)

The categories K−
(
nV̇λ
)

are equivalent to the derived categories D−
R
λ
a
where n =

|λ| − 2a. Under this equivalence, a 1-morphism K−
(
nV̇µ
)

nF←− K−
(
nV̇λ
)

in Twine gets

sent to a sequence of functors D−
R
µ

b

nF←− D−
R
λ
a
which are functorially isomorphic to the derived

tensor products −
L
⊗
R
λ
a

nX where nX = nF
(
Rλ
a

)
is an object in the derived category

R
λ
a
D−
R
µ

b

.

Given X1, a right Rλ1
a1 -module, and X2, a right Rλ2

a2 -module, X1 is also a right

R̃
λ1
a1 -module and X1 ⊗

K
X2 is a right R̃λ1

a1 ⊗
K
R
λ2
a2 -module, so there is a right Rλ1λ2

a1+a2-module

Inda1,a2

(
X1 ⊗

K
X2

)
where Inda1,a2 is the extension of scalars functor induced by the inclu-

sion of rings R̃λ1
a1 ⊗

K
R
λ2
a2 → R

λ1λ2
a1+a2 given by horizontal composition. Extension of scalars is

exact so given objects X1 in D−
R
λ1
a1

and X2 in D−
R
λ2
a2

, the definition extends to give an object

Inda1,a2

(
X1 ⊗

K
X2

)
in D−

R
λ1,λ2
a1+a2

. If X1 is an object in
R
λ1
a1

D−
R
µ1
b1

and X2 is an object in
R
λ2
a2

D−
R
µ2
b2

,

then define the object Inda1,a2b1,b2

(
X1 ⊗

K
X2

)
by extension of scalars for both the left and right

actions.
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Then, given intertwiners K−
(
nV̇µ1

)
nF1←−− K−

(
nV̇λ1

)
and K−

(
nV̇µ2

)
nF2←−− K−

(
nV̇λ2

)
,

they are equivalent to derived tensor products −
L
⊗
R
λ1
a1

nX1 and −
L
⊗
R
λ1
a1

nX2 so define their

monoidal product to be the derived tensor products n (F1 t F2) = −
L
⊗
R
λ
a

n (X1 tX2) where

n (X1 tX2) =
⊕

n1+n2=n

Inda1,a2b1,b2

(
n1X1 ⊗

K
n2X2

)

Then n (F1 t F2) is an intertwiner for the action of K−
(
U̇
)

since ↑ and ↓ commute with

extension of scalars,

↓ Inda1,a2b1,b2

(
X1 ⊗

K
X2

)
∼= Inda1+1,a2

b1+1,b2

(
↓ X1 ⊗

K
X2

)

↑ Inda1,a2b1,b2

(
X1 ⊗

K
X2

)
∼= Inda1−1,a2b1−1,b2

(
↑ X1 ⊗

K
X2

)
Also, t is trivially unital and is associative since

Inda1+a2,a3b1+b2,b3

(
Inda1,a2b1,b2

(
X1 ⊗

K
X2

)
⊗
K
X3

)
∼= Inda1,a2+a3b1,b2+b3

(
X1 ⊗

K
Inda2,a3b2,b3

(
X2 ⊗

K
X3

))

Finally, t extends the monoidal product defined on 0-morphisms since

⊕
a1+a2=a

Inda1,a2a1,a2

(
R
λ1
a1 ⊗

K
R
λ2
a2

)
∼= R

λ1λ2
a

The monoidal product extends functorially to morphisms between intertwiners and thus

gives a monoidal structure on Twine.

Let Twine1 be the sub-2-category of Twine with 0-morphisms restricted to K−
(
nV̇1,...,1

)
.

Theorem. There is a representation of i in Twine1 which sends q to q
t
.
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This theorem will be proved in a number of steps, but the critical ingrediant will be

a module L which is the categorified analogue of the invariant dual canonical basis vector

v1♥v−1.

4.2 Graphical calculus of intertwiners

Define 0-morphisms in Twine

n
···}
N

= K−

nV̇1, . . . , 1︸ ︷︷ ︸

N

 ∼= D−
R1,...,1
N−n

2

thus representing the 0-morphisms ···}
N

from i as the sequence of categories n
···}
N

.

Let L be the irreducible right R1,1
1 -module

L ∼=
��

R1,1
1 ��

R1,1
1

Then L ∼= K �� with generator

�� = �� + ��
R1,1

1

and L is quasi-isomorphic to its projective resolution

L ∼= q−2 ��
R1,1

1

�� // q−1 ��
R1,1

1

�� // ��
R1,1

1

with coboundaries given by graded top composition by the indicated diagrams.

For a diagram D let D be the diagram obtained from D by reflecting it vertically and

reversing all orientations. We must be careful to keep track of the grade shifts of targets and

sources. If D has target qmb and source qna, then D has target q−na and source q−mb. The
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operation is an involution D = D. If D1 and D2 are graded composable, then as diagrams
D2

D1
= D1

D2
, but keeping track of the grade shifts, equality only holds if we redefine graded

composition on the right hand side. Given two morphisms q−n1a
f−→ b and q−n2b

g−→ c in a

graded category, define a second graded composition q−n1−n2a
gf−→ c by gq−n2 (f). Now the

equality holds using the first graded composition on the left hand side and the second graded

composition on the right hand side.

Applying the bar involution to all diagrams in L and its projective resolution defines

a left R1,1
1 -module L,

L ∼= ��

R1,1
1

��

R1,1
1

L ∼= K �� �� = �� +
��

R1,1
1

L ∼= q−2
��

R1,1
1

��

// q−1
��

R1,1
1

��

//

��

R1,1
1

with coboundaries in the projective resolution given by second graded bottom composition

by the indicated diagrams.

Define functors n
··

n←−− n∅ and n∅
n←−− n

·· which are both necessarily 0 for n 6= 0

and let 0 = q
t

(
−⊗

K
L

)
and 0 = −

L
⊗
R1,1

1

L.

Proposition. n and n are intertwiners, 1-morphisms in Twine.

Proof. We must show that given an object u in homK−(U̇) (n′ ← n), the following diagrams

commutes up to functorial isomorphism.

n′
·· n′∅n′oo

n
··

u

OO

n∅

u

OO

n
oo

n′∅ n′
··

n′oo

n∅

u

OO

n
··

u

OO

n
oo
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All such diagrams trivially commute except for the diagrams

−2 ·· −2∅
−2
oo

0
··

↓

OO

0∅

↓

OO

0
oo

2
·· 2∅

2
oo

0
··

↑

OO

0∅

↑

OO

0
oo

0∅ 0
··

0
oo

2∅

↓

OO

2
··

↓

OO

2
oo

0∅ 0
··

0
oo

−2∅

↑

OO

−2 ··

↑

OO

−2
oo

It suffices to check that the first two diagrams commute starting with K in the lower right, the

third diagram commutes starting with R1,1
0 in the lower right and the last diagram commutes

starting with R1,1
2 in the lower right since these are projective generators.

The compositions

−2 (↓ (K)) 2 (↑ (K)) ↓
(
2

(
R1,1

0

))
↑
(
−2

(
R1,1

2

))
are 0 since n and n are 0 for n 6= 0. We have that

↓ 0 (K) ∼=
q

t
↓ L ↑ 0 (K) ∼=

q

t
↑ L 0

(
↓ R1,1

0

) ∼= ↑ L 0

(
↑ R1,1

2

) ∼= ↓ L
The latter two isomorphisms follow from considering the bar involution on diagrams,

0

(
↓ R1,1

0

) ∼= 0

(
��
R
1,1
0

R1,1
1

)
∼=

��
R
1,1
0

R1,1
1

⊗

L

∼=

L

⊗

��
R
1,1
0

R1,1
1

∼=
��
R
1,1
0

L ∼= ↑ L

0

(
↑ R1,1

2

) ∼= 0

(
R1,1

2

�� R1,1
1

)
∼=

R1,1
2

�� R1,1
1

⊗

L

∼=

L

⊗

R1,1
2

�� R1,1
1

∼=
R1,1

2

�� L ∼= ↓ L

Thus, it suffices to show that ↑ L and ↓ L are isomorphic to 0 since this implies that the
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diagrams commute.

We get that

↑ L ∼=
��

R1,1
1

��
R
1,1
0

��
R1,1

1

��
R
1,1
0

∼=
��

R1,1
1

��

��
R1,1

1

��

∼= K ��
K ��

∼= 0

Also, the projective resolution of ↓ L has a contraction given by

q−2
��

R1,1
1��

R1,1
2

d−2
// q−1

��
R1,1

1��
R1,1

2

d−1
// ��

R1,1
1��

R1,1
2

q−2
��

R1,1
1��

R1,1
2

1

OO

d−2
// q−1

��
R1,1

1��
R1,1

2

1

OO

d−1
//

h−1

bb

��
R1,1

1��
R1,1

2

1

OO
h0

``

where the coboundaries and homotopies are given by graded top compositions

d−1 = �� �� d−2 = �� �� h0 =
�� ��

h−1 =
�� ��

h is a null-homotopy of the identity since

d−1

h0
= �� �� = h−1

d−2
and h0

d−1
+ d−2

h−1
= �� ��

by the Webster and nil-Hecke relations. Thus, ↓ L ∼= 0.

Thus, we have represented the generating 1-morphisms and of i as intertwiners

n and n . Using the monoidal structures in i and Twine, this extends to a representation

of all 1-morphisms of i.
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4.3 Graphical calculus of bowls and dotted bowls

There is a direct sum decomposition

0 (K) ∼= q
t
L
L
⊗
R1,1

1

L

∼=
(
q−1 ��

R1,1
1

→ ��
R1,1

1

→ q ��
R1,1

1

)
⊗
R1,1

1

L

∼= q−1
��

R1,1
1

��

R1,1
1

��
R1,1

1

��

→
��
R1,1

1

��

R1,1
1

��
R1,1

1

��

→ q
��

R1,1
1

��

R1,1
1

��
R1,1

1

��

∼= q−1K �� → K ��

K ��
→ qK ��

∼=
(
q
t
⊕
(
q
t

)−1)K
Denote its inclusions and projections as

q
t
K

0 • (K)

// 0 (K)

0 (K)

oo

0
•

(K)

//

(
q
t

)−1K0 (K)

oo

Define 2-morphisms

n n n • n
•

in Twine which are necessarily 0 for n 6= 0 and let

0 = −⊗
K

0 (K)

0 = −⊗
K

0 (K)

0 • = −⊗
K

0 • (K)

0
•

= −⊗
K

0
•

(K)
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Then it follows that the Bar-Natan relations hold in Twine

n
•

= n∅ = n • n = 0 = n
•
• n = n

•
+ n •

4.4 Graphical calculus of cusp surfaces

Calculate that

1 (R1
0)
∼= 1 t

(
R1,1,1

1

) L
⊗

R1,1,1
1

1 t (R1
0)

∼=
R1,1,1

1

��

L
⊗

R1,1,1
1

R1,1,1
1

��

∼=
(
q−1 ��

R1,1,1
1

→ ��
R1,1,1

1

→ q ��
R1,1,1

1

)
⊗

R1,1,1
1

R1,1,1
1

��

∼= q−1 R1,1,1
1

��

��

→ R1,1,1
1

��

��

→ q R1,1,1
1

��

��

∼= K ��

In the last step, plugging in generators, the first and third term vanish and we find that as

R1
0, R

1
0-bimodules 1 (R1

0)
∼= R1

0 where �� is identified with . Similarly, we have

that 1 (R1
0)
∼= R1

0 and

−1
(
R1

1

) ∼= R1
1
∼= −1

(
R1

1

)
Denote these isomorphisms as

n (R1
a)

n (R1
a)

// R1
a

n (R1
a)

oo

n (R1
a)

// 1 (R1
a)

n (R1
a)

oo
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Define 2-morphisms

n n n n

in Twine which are necessarily 0 for n 6= ±1 and for n = ±1, let

n = −
L
⊗
R1
a

n

(
R1
a

)

n = −
L
⊗
R1
a

n

(
R1
a

)
n = −

L
⊗
R1
a

n

(
R1
a

)
n = −

L
⊗
R1
a

n

(
R1
a

)
Then it follows that the cusp cancellation relations hold in Twine

n = n = n

n = n n = n

4.5 Graphical calculus of saddles

Define a homomorphism of R1,1
1 , R1,1

1 -bimodules,

R1,1
1

0 (R1,1
1 )
// L⊗

K
L

��

� // ��

��

x /∈ K ��
� // 0
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where ��

��
= �� ⊗

K
�� and define a 2-morphism n in Twine which is necessarily 0

for n 6= 0 and let 0 = −
L
⊗
R1,1

1

0

(
R1,1

1

)
.

Then, to show that the Morse cancellation relation n = n holds in Twine it

suffices to show that

(
0 (K)⊗

K
L

)(
L
L
⊗
R1,1

1

0

(
R1,1

1

))
= 1L

Replacing L with its projective resolution, calculate

(
q−2 ��

R1,1
1

→ q−1 ��
R1,1

1

→ ��
R1,1

1

)
⊗
R1,1

1

0

(
R1,1

1

)

=

q−2 ��
R1,1

1

⊗
R1,1

1

L⊗
K
L // q−1 ��

R1,1
1

⊗
R1,1

1

L⊗
K
L // ��

R1,1
1

⊗
R1,1

1

L⊗
K
L

q−2 ��
R1,1

1

⊗
R1,1

1

R1,1
1

//

OO

q−1 ��
R1,1

1

⊗
R1,1

1

R1,1
1

//

OO

��
R1,1

1

⊗
R1,1

1

R1,1
1

OO

=

q−2L // 0 // L

q−2 ��
R1,1

1

//

OO

q−1 ��
R1,1

1

//

OO

��
R1,1

1

OO

with

��
R1,1

1

// L

��

� //

��

��

� // 0

On the other hand,

0 (K)⊗
K
L =

 K

q−2K // 0 // K
1
OO

⊗
K
L =

L

q−2L // 0 // L
1L

OO

so that the composition

(
0 (K)⊗

K
L

)((
q−2 ��

R1,1
1

→ q−1 ��
R1,1

1

→ ��
R1,1

1

)
⊗
R1,1

1

0

(
R1,1

1

))
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is equal to the quasi-isomorphism of L and its projective resolution,

L

q−2 ��
R1,1

1

// q−1 ��
R1,1

1

// ��
R1,1

1

OO

with

��
R1,1

1

// L

��

� //

��

��

� // 0

so composing with the formal inverse of the quasi-isomorphism gives

(
0 (K)⊗

K
L

)(
L
L
⊗
R1,1

1

0

(
R1,1

1

))
= 1L

The Morse cancellation relation n = n follows from a similar calculation which shows

that (
L⊗

K
0 (K)

)(
0

(
R1,1

1

) L
⊗
R1,1

1

L

)
= 1L

by replacing L with its projective resolution.

L and L are vector space duals of each other, L ∼= L
∗, since vertically composing their

generators is non-degenerate,

��
= �� +

��

��

R1,1
1 +

��

��
R1,1

1 +
��

��
R1,1

1 = ��

It follows that L has an injective resolution which is the vector space dual of the projective

resolution of L,

L ∼=
��

R1,1
1

∗
→ q

��

R1,1
1

∗
→ q2

��

R1,1
1

∗
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Thus, applying the Serre functor, SR1,1
1

= −
L
⊗
R1,1

1

R1,1∗
1 , to the projective resolution of L gives

SR1,1
1

(L) ∼= q−2 ��
R1,1

1

⊗
R1,1

1

R1,1∗
1 → q−1 ��

R1,1
1

⊗
R1,1

1

R1,1∗
1 → ��

R1,1
1

⊗
R1,1

1

R1,1∗
1

∼= q−2
��

R1,1
1

∗
→ q−1

��

R1,1
1

∗
→

��

R1,1
1

∗

∼=
(
q
t

)−2
L

Define a homomorphism of R1,1
1 , R1,1

1 -bimodules,

L⊗
K
L

S
R
1,1
1

(
0 (R1,1

1 )
)
// R1,1∗

1

��

��

� //

��

∗

where

R1,1
1

��

∗

// K

��

� // 1

x /∈ K ��
� // 0

and let

0

(
R1,1

1

)
= S−1

R1,1
1

(
SR1,1

1

(
0

(
R1,1

1

)))
and define a 2-morphism n in Twine which is necessarily 0 for n 6= 0 and let 0 =

−
L
⊗
R1,1

1

0

(
R1,1

1

)
.

To show that the Morse cancellation relation n = n holds in Twine it suffices

to show that (
L
L
⊗
R1,1

1

0

(
R1,1

1

))(
0 (K)⊗

K
L

)
= 1L
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Replacing L with its projective resolution, calculate

(
q−2 ��

R1,1
1

→ q−1 ��
R1,1

1

→ ��
R1,1

1

)
⊗
R1,1

1

SR1,1
1

(
0

(
R1,1

1

))

=

q−2 ��
R1,1

1

⊗
R1,1

1

R1,1∗
1

// q−1 ��
R1,1

1

⊗
R1,1

1

R1,1∗
1

// ��
R1,1

1

⊗
R1,1

1

R1,1∗
1

q−2 ��
R1,1

1

⊗
R1,1

1

L⊗
K
L //

OO

q−1 ��
R1,1

1

⊗
R1,1

1

L⊗
K
L //

OO

��
R1,1

1

⊗
R1,1

1

L⊗
K
L

OO

=
q−2

��

R1,1
1

∗
// q−1

��

R1,1
1

∗
//

��

R1,1
1

∗

q−2L //

OO

0 //

OO

L

OO with
L //

��

R1,1
1

∗

��

� //

��

∗

On the other hand,

0 (K)⊗
K
SR1,1

1
(L) =

 K // 0 // q2K

K
1
OO

⊗
K

(q
t

)−2
L =

q−2L // 0 // L

q−2L

1L
OO

so that the composition

((
q−2 ��

R1,1
1

→ q−1 ��
R1,1

1

→ ��
R1,1

1

)
⊗
R1,1

1

SR1,1
1

(
0

(
R1,1

1

)))(
0 (K)⊗

K
SR1,1

1
(L)

)

is equal to
(
q
t

)−2 applied to the quasi-isomorphism of L and its injective resolution,

��

R1,1
1

∗
// q
��

R1,1
1

∗
// q2

��

R1,1
1

∗

L

OO with
L //

��

R1,1
1

∗

��

� //

��

∗
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so composing with the formal inverse of the quasi-isomorphism and applying S−1
R1,1

1

gives

(
L
L
⊗
R1,1

1

0

(
R1,1

1

))(
0 (K)⊗

K
L

)
= 1L

The Morse cancellation relation n = n follows from a similar calculation.

To show that the dot slide relation n
•

= n • holds in Twine it suffices to

show that

(
0
•

(K)⊗
K
L

)(
L
L
⊗
R1,1

1

0

(
R1,1

1

))
=

(
L
L
⊗
R1,1

1

0

(
R1,1

1

))(
0 • (K)⊗

K
L

)

which follows since the left side equals the composition of

q−2L

q−2 ��
R1,1

1

//

OO

q−1 ��
R1,1

1

// ��
R1,1

1

with

��
R1,1

1

// L

��

� //

��

��

� // 0

with the formal inverse of the quasi-isomorphism of L and its projective resolution and the

right side equals the composition of

��

R1,1
1

∗
// q
��

R1,1
1

∗
// q2

��

R1,1
1

∗

q2L

OO with
L //

��

R1,1
1

∗

��

� //

��

∗

with the formal inverse of the quasi-isomorphism of L and its injective resolution and the

two are equal up to a grade shift. The dot slide relation • = • similarly holds.

We can use the monoidal structures to represent all 2-morphisms of i.

The saddle slide relation n = n holds in Twine since it can be
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shown that both sides of

1

(
R1,1,1

1

)
= 1

(
R1,1,1

1

)
equal the composition of

��
R1,1,1

1

q−1 ��
R1,1,1

1

// ��
R1,1,1

1

//

OO

q ��
R1,1,1

1

with

��
R1,1,1

1

// ��
R1,1,1

1

��

� //

��

x /∈ K ��
� // 0

and the formal inverse of the quasi-isomorphism

q

t
��

R1,1,1
1

∼= q−1 ��
R1,1,1

1

→ ��
R1,1,1

1

→ q ��
R1,1,1

1

and similarly for n = −1,

−1
(
R1,1,1

2

)
= −1

(
R1,1,1

2

)
while for n 6= ±1, both sides are 0. All the saddle slide relations hold similarly in Twine.

To show that the nilpotency relation n • • = 0 holds in Twine it suffices by spatial

isotopy to show that n
•
• = 0. This is trivial for n 6= 0 and 0

•
•
(
R1,1

1

)
factors through the

composition,

q−3 ��
R1,1

1

// q−2 ��
R1,1

1

// q−1 ��
R1,1

1

q−1 ��
R1,1

1

//

OO

��
R1,1

1

// q ��
R1,1

1

q ��
R1,1

1

//

OO

q2 ��
R1,1

1

// q3 ��
R1,1

1
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which is 0.

This proves the theorem that there is a representation of i in Twine1. As a corollary,

we immediately get that there is a representation of K−
(
i̇
)
in Twine1. I conjecture that

K−
(
i̇
)
and Twine1 are equivalent as monoidal 2-categories.

4.6 Categorification of Jones-Wenzl idempotents

Define 0-morphisms in Twine,

n·N = K−
(
nV̇N

)
∼= D−RNa

with n = N − 2a. Then define intertwiners,

n
···}
N

n N←−−−−− n·N

n·N
n }

N←−−−−− n
···}
N

which are extensions of scalars Ind and restrictions of scalars Res induced by the inclusions

of rings,

RN
a

// R

N︷ ︸︸ ︷
1, · · · , 1
a

x |
N

� // x | · · · |︸︷︷︸
N

Then n N is functorially isomorphic to n N , the identity on n·N since extending and

then restricting scalars leaves a module unchanged. Thus, the intertwiner n }
N

is an

idempotent,

n }
N

∼= n }
N
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The Jones-Wenzl idempotent has been categorified by Cooper and Krushkal using the

graphical calculus of Bar-Natan’s dotted surfaces [4]. I conjecture that their categorification

corresponds with the intertwiner n }
N

, although theirs is a bounded below complex in

i, so it may be necessary to work with the categories D+

R
λ
a

∼= K+
(
I
R
λ
a

)
of bounded below

complexes of injective modules instead of the categories D−
R
λ
a

∼= K−
(
P
R
λ
a

)
we used to define

Twine.
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