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Abstract of the Dissertation

On Conformal Geometry of Kähler Surfaces

by

Caner Koca

Doctor of Philosophy

in

Mathematics

Stony Brook University

2012

In this thesis, we study several problems related to conformal ge-

ometry of Kähler and Einstein metrics on compact 4-manifolds, by

using the conformally invariant Weyl functional.

We first study a coupled system of equations on oriented compact

4-manifolds which we call the Bach–Merkulov equations. These

equations can be thought of as the conformally invariant version of

the classical Einstein–Maxwell equations. Inspired by the work of

C. LeBrun on Einstein–Maxwell equations on compact Kähler sur-

faces, we give a variational characterization of solutions to Bach–

Merkulov equations as critical points of the Weyl functional. We

also show that extremal Kähler metrics are solutions to these equa-
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tions, although, contrary to the Einstein–Maxwell analogue, they

are not necessarily minimizers of the Weyl functional. We illustrate

this phenomenon by studying the Calabi action on Hirzebruch sur-

faces.

Next we prove that the only compact 4-manifold M with an Ein-

stein metric of positive sectional curvature which is also hermitian

with respect to some complex structure on M , is CP2, with its

Fubini–Study metric.

Finally we present an alternative proof of existence of conformally

compact Einstein metrics on some complex ruled surfaces fibered

over Riemann surfaces of genus at least 2. This result was first

proved by C. Tønnesen-Friedman. We prove the existence by find-

ing the critical points of the Weyl functional on space of all ex-

tremal Kähler metrics on these ruled surfaces.

iv



Contents

Acknowledgements vi

1 Bach–Merkulov Equations and Extremal Kähler Metrics 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Einstein–Maxwell Equations . . . . . . . . . . . . . . . . . . . 6

1.3 Bach–Merkulov Equations . . . . . . . . . . . . . . . . . . . . 9

1.4 Example: Hirzebruch Surfaces . . . . . . . . . . . . . . . . . . 11

1.5 Minimizers of Weyl functional . . . . . . . . . . . . . . . . . . 15

2 Positively Curved Einstein Hermitian Metrics 18

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2 Page metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3 Chen-LeBrun-Weber metric . . . . . . . . . . . . . . . . . . . 27

3 Calabi Energy of Tønnesen-Friedman Metrics 29

Bibliography 33

v



Acknowledgements

I would like to thank Professor Claude LeBrun for his guidance and encour-

agement. All of the work in this thesis are inspired by his magnificent work

and his beautifully written papers.

I would like to express my gratitude to Professor Blaine Lawson, Professor

Michael Anderson and Professor Martin Roček for taking part in the thesis
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Chapter 1

Bach–Merkulov Equations and

Extremal Kähler Metrics

1.1 Introduction

Let M be a smooth oriented n-manifold. A Riemannian metric g on M is said

to satisfy the Einstein–Maxwell equations if

[r + F ◦ F ]◦ = 0

dF = 0, d ∗ F = 0

(1.1.1)

for some 2-form F on M. Here, r is the Ricci tensor of g; (F ◦ F )ij = Fi
sFsj

is the composition of F with itself as an endomorphism of the tangent bundle

TM ; [·]◦ denotes the trace-free part of a (2, 0)-tensor, and ∗ is the Hodge

operator with respect to the metric g. When M is compact, the second line

of (1.1.1), which is called Maxwell equations, is equivalent to saying that F is
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harmonic with respect to g, i.e. ∆F = 0.

By Hodge theory we know that any harmonic form F minimizes the L2

norm F 7→
∫
M
|F |2gdµg among the forms cohomologous to F , namely on [F ] ∈

H2
dR(M,R). If, in addition, M has dimension 4, the integral

∫
M
|F |gdµg is

unchanged if g is replaced by any conformally related metric g̃ := ug, for a

positive smooth function u on M . Therefore, if F is harmonic with respect to

g, it will be harmonic with respect to g̃. By contrast, the first line of (1.1.1)

is certainly not conformally invariant in any dimension. There is, however, an

interesting conformally invariant counterpart of these equations introduced by

Merkulov in [28]:

B + [F ◦ F ]◦ = 0

dF = 0, d ∗ F = 0

(1.1.2)

where Bij = (∇s∇t + 1
2
rst)Wisjt is the Bach tensor [3]. When M is compact,

this tensor arises as the Euler–Lagrange equations for the Weyl energy func-

tional g 7→
∫
M
|W |2dµg over the space of all metrics. That is, if we vary the

metric gt = go + th+ o(t2), then [7]

d

dt

∣∣∣∣
t=0

W(gt) =

∫
M

〈h,B〉dµ =

∫
M

gisgtjhstBijdµ. (1.1.3)

Note that in 4 dimensions, W is indeed conformally invariant since the con-

formal change g̃ = ug of the metric implies

dµ̃ = u2dµ and W̃ijk
l = Wijk

l.
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Bach tensor, too, behaves well under conformal change: B̃ij = 1
u
Bij. To see

this note that for the rescaled variation g̃t = ug0 + tuh+ o(t2) we have

d

dt

∣∣∣∣
t=0

W(g̃t) =

∫
M

〈uh, B̃〉dµ̃ =

∫
M

g̃isg̃tjuhstB̃ijdµ̃

and comparing it to (1.1.3) we deduce that B̃ij = 1
u
Bij. Also B is symmetric,

trace-free and divergence-free. Note also that [F ◦ F ]◦, the other term in

(1.1.2), rescales similar to Bij under conformal rescaling. Clearing out the

1
u

factors, we see that, when M is a compact manifold of dimension 4, the

coupled system of equations (1.1.2) is conformally invariant in the sense that

if (g, F ) is a solution, so is (ug, F ) for any positive smooth function u.

Both Einstein–Maxwell and Bach–Merkulov equations stem from a varia-

tional origin. For any given de Rham class Ω ∈ H2
dR(M,R), solutions (g, F )

of Einstein-Maxwell solutions with [F ] = Ω are in fact the critical point of the

coupled action

G1 × Ω −→ R

(g, F ) 7−→
∫
M

sg + |F |2gdµg

where G1 stands for the space of unit volume metrics [25]. Similarly [3],[28],

Bach–Merkulov solutions are the critical point of the action

G1 × Ω −→ R

(g, F ) 7−→
∫
M

|W |2g + |F |2gdµg.
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In [25], C. LeBrun studied Einstein–Maxwell equations (1.1.1) on com-

pact smooth 4-manifolds, and discovered some fascinating properties of these

equations in relation to Kähler geometry. He showed that constant scalar cur-

vature Kähler metrics satisfy (1.1.1); all solutions to (1.1.1) are critical points

of L2-norm of scalar curvature on GΩ, the space of metrics for which a fixed

cohomology class Ω is represented by a self-dual harmonic form Ωg; and on

complex surfaces constant scalar curvature Kähler metrics are global minimiz-

ers of that action if c1 · Ω ≤ 0. These results are summarized in Section 2.

The aim of this chapter is to state and prove the relevant properties of the

Bach–Merkulov equations. The first main results is:

Theorem 1.1.1. Let M be a compact complex surface, and let g be a metric

conformal to an extremal Kähler metric on M . Then g solves the Bach–

Merkulov equations for some F . As a consequence, on any compact complex

surface Kähler type we can solve (1.1.2).

In other words, extremal Kähler metrics are standard solutions of Bach–

Merkulov equations on a compact complex surface. On a more general compact

oriented 4–manifold the Bach–Merkulov equations naturally become critical

points of the Weyl energy functional g 7→
∫
M
|W |2dµ:

Theorem 1.1.2. Let M be a smooth compact oriented 4–manifold, and Ω ∈

H2
dR(M,R) be any de Rham class. A metric g ∈ GΩ is a critical point of

the restriction of Weyl functional to GΩ iff g is a solution of Bach–Merkulov

equations in conjunction with a unique harmonic form F whose self-dual part

is F+ = Ωg.
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On a compact Kähler surface, one could therefore ask analogously if ex-

tremal Kähler metrics are absolute minimizers of the Weyl functional on GΩ

where Ω is the Kähler class represented by the extremal Kähler metric. It

turns out that this is not the case:

Theorem 1.1.3. For any given Ω ∈ H2
dR(M,R) on Kähler-type smooth 4-

manifolds CP2]CP2 or CP1 × CP1 the extremal Kähler metrics in GΩ (with

respect to some complex structure) are not necessarily minimizers of the Weyl

functional restricted to GΩ.

Theorem 1.1.1 and 1.1.2 are proved in Section 3 in Propositions 1.3.1, 1.3.2,

1.3.3. Theorem 1.1.3 is a consequence of the discussion in Section 4.

Recall that, given a compact complex manifold (M,J) with a Kähler class

Ω (i.e. Ω is represented by a Kähler form), an extremal Kähler metric is, by

definition, the critical point of the action

Ω+ −→ R (1.1.4)

ω 7−→
∫
M

s2
ωdµω

where Ω+ stands for the space of Kähler forms in the de Rham class Ω. This

notion of extremal metrics was introduced by Calabi [9] in an attempt to show

existence of constant scalar curvature Kähler metrics on compact complex

manifolds. The Euler-Lagrange equations of this action are given by ∂2s
∂z̄i∂z̄j

= 0.

In particular, every constant scalar curvature Kähler metric is extremal. The

converse, however, is not true: For any given Kähler class on Hirzebruch sru-

faces Fk = P(O(−k)⊕O), Calabi constructed explicit extremal Kähler metrics

in that class. However, the first Hirzebruch surface F1 ≈ CP2]CP2 cannot
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admit constant scalar curvature Kähler metric by Matsushima–Lichnerowicz

theorem because the maximal compact subgroup Lie group of automorphisms

is not reductive [9].

By computing the second variation of this action at a critical metric, Calabi

was able to show that extremal Kähler metrics are local minimizers [9]. Indeed,

they turn out to be global minimizers as proven recently by Donaldson and

Chen [14], [11]. As we will discuss in Section 2, on compact complex surfaces,

LeBrun showed that the constant scalar curvature Kähler metrics remain to

be global minimizers of the action (1.1.4) if we extend the domain from Ω+

to GΩ, provided c1 · Ω ≤ 0. However, we will show in Section 4 that the

extremal Kähler metrics are not necessarily global minimizers of the Weyl

energy functional.

1.2 Einstein–Maxwell Equations

This section summarizes some of the results in [25].

Recall that the Euler–Lagrange equations of the action g 7→
∫
M
sgdµg,

where g is allowed to vary over all unit volume metrics are precisely r̊ = 0 (i.e.

Einstein metrics). Also, from Hodge theory, the Euler–Lagrange equations of

the action F 7→
∫
M
|F |2gdµg, where g is fixed but F is varying over all closed

2-forms in a fixed de Rham class [F ] ∈ H2
dR(M,R) are the Laplace equation

∆F = 0. Therefore, the Einstein–Maxwell equations are precisely the Euler-

Lagrange equations of the joint action (g, F ) 7→
∫
M
sg + |F |2gdµg where g is

varying over unit volume Riemannian metrics and F is varying over a fixed de

Rham class.
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If we restrict the first action to the conformal class of a critical metric,

we get the Einstein–Hilbert action whose critical points are well known to

have constant scalar curvature [36]. Thus, any Einstein–Maxwell metric is

of constant scalar curvature. Conversely, C. LeBrun observed the following

remarkable fact:

Proposition 1.2.1 (LeBrun). Suppose that (M4, g, J) is a Kähler surface with

Kähler form ω = g(J ·, ·) and Ricci form ρ = r(J ·, ·). If g is constant scalar

curvature Kähler, then g satisfies Einstein–Maxwell equations with F = ω+ 1
2
ρ̊,

where ρ̊ = r̊(J ·, ·) is the primitive part of the Ricci form ρ of g.

Recall that constant scalar curvature Kähler metrics are in particular ex-

tremal Kähler, which are critical points of L2-norm of scalar curvature g 7→∫
M
s2
gdµg, where g is varying over Kähler metrics on a fixed Kähler class

Ω ∈ H2
dR(M,R). C. LeBrun generalized the notion of a Kähler class and

Calabi problem for a Kähler surface to the Riemannian setting, where, a pri-

ori, there may not be a complex structure at all. The generalization is as

follows:

Let M be a smooth 4-manifold; and let Ω be a de Rham class as above. By

Hodge theory, we know that any Riemannian metric g gives a unique harmonic

representative Ωg of Ω. If Ωg is self-dual, g is called an Ω-adapted metric. The

space of all Ω-adapted metrics is denoted by GΩ; i.e. GΩ = {g : ∗Ωg = Ωg}.

Observe that if M is a complex surface and Ω is a Kähler class, then GΩ

contains all Kähler metrics in Ω, because any Kähler form is self-dual. In this

sense, GΩ is a Riemannian generalization of a Kähler class. Also note that

if g ∈ GΩ, so is g̃ = ug ∈ GΩ since Hodge ∗-operator is unchanged under
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conformal changes of the metric.

Now, as in the Calabi problem, C. LeBrun considers the action

g 7→
∫
M

s2
gdµg (*)

on GΩ, and sees which metrics are critical points of this action:

Proposition 1.2.2 (LeBrun). Critical points of (*) are either

(1) scalar-flat metrics (i.e. s ≡ 0), or

(2) Einstein–Maxwell metrics g with F+ = Ωg.

Thus, in particular, constant scalar curvature Kähler metrics are critical

points of (*). Moreover, they are actually minimizers if c1 · Ω ≤ 0.

Theorem 1.2.3 (LeBrun). Let (M4, J) be a compact complex surface and Ω

is a Kähler class with c1 ·Ω ≤ 0. Then any metric g in GΩ satisfies
∫
M
s2dµ ≥

32π2 (c1·Ω)2

Ω·Ω , and equality holds iff g is constant scalar curvature Kähler.

Another observation of C. LeBrun is that any compact smooth 4-manifold

of Kähler type admits a solution of (1.1.1). This follows from Shu’s result [30],

which says that such 4-manifolds admit a constant scalar curvature Kähler

metrics unless they are diffeomorphic to CP2]CP 2 or CP2]2CP 2. However,

both of these manifolds admit Einstein metrics (Page metric [29] and Chen–

LeBrun–Weber metric [12]) which are automatically Einstein–Maxwell with

F = 0.
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1.3 Bach–Merkulov Equations

In this section we will state and prove analogues of LeBrun’s results stated in

section 1.2 for Bach–Merkulov equations.

First we start by observing the following proposition which shows that

Bach–Merkulov equations possess an interesting family of solutions.

Proposition 1.3.1. Let g be an extremal Kähler metric on a compact complex

surface (M,J). Then (g, F ) satisfies the Bach–Merkulov equations with F =

ω+ 1
2
ψ where ψ = B(J ·, ·). Hence any metric conformal to an extremal Kähler

metric is a solution of (1.1.2).

Proof. The proof is similar to the one of Proposition 1.2.1. First, observe that

[F ◦ F ]◦ = 2F+ ◦ F− where F+ and F− are the self-dual and anti-self-dual

part of F , respectively. Since g is Kähler, ω is a self-dual harmonic 2-form.

Moreover, since g is extremal, ψ = B(J ·, ·) is an anti-self-dual harmonic 2-

form (see [12]). Thus, setting F+ = ω and F− = ψ
2
, we see that 2F+ ◦ F− =

ωi
sψsj = ψ(J ·, ·) = −B. Thus we get B + [F ◦ F ]◦ = 0. Moreover, F is

harmonic since both F+ and F− are so. Therefore, (g, F ) is a solution of

Bach–Merkulov equations. �

More explicitly, if g is extremal Kähler, then the Bach tensor can be re-

written in the form

B =
1

12
(s̊r + 2 Hess◦(s))

and therefore ψ = 1
12

[sρ+ i∂∂̄s]◦ where [ · ]◦ stands for the primitive part of a

(1,1)-form (see [12]). In particular, if the extremal Kähler metric turns out to

have non-zero constant scalar curvature, then ψ simplifies to s
12
ρ̊. So we see
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that the solution of Proposition 1.3.1 becomes (g, F = ω+ s
24
ρ̊) which is quite

similar to LeBrun’s solution to Einstein–Maxwell equations (g, F = ω + ρ̊
2
).

Proposition 1.3.1 together with Shu’s result implies the following:

Proposition 1.3.2. Let M be the underlying 4-manifold of any compact com-

plex surface of Kähler type. Then M admits a solution (g, F ) of Bach–Merkulov

equations.

Next, we will prove the analogue of Proposition 1.2.2 for Bach–Merkulov

equations:

Proposition 1.3.3. An Ω-adapted metric g is a critical point of the restriction

of Weyl functional to GΩ iff g is a solution of Bach–Merkulov equations in

conjunction with a unique harmonic form F with F+ = Ωg.

Proof. The proof is similar to the one of Proposition 1.2.2. Let gt = g + th+

O(t2) be a variation of a metric g in GΩ. Donaldson showed that the tangent

space TgGΩ is precisely the L2-orthogonal complement of {Ωg ◦ϕ : ϕ ∈ H−g } in

Γ(
⊙2 T ∗M). Thus, in our case, h can be taken such that

∫
M
〈h,Ωg ◦ϕ〉dµg = 0

for all ϕ ∈ Hg.

The first variation of the Weyl functional is given by ([3], [7])

d

dt

∫
M

‖W‖2dµgt

∣∣∣∣
t=0

=

∫
M

hijBijdµg =

∫
M

〈h,B〉dµg.

Thus, g is a critical point iff h is L2-orthogonal to B. By Donaldson’s result,

this implies that B = Ωg ◦ ϕ for some ϕ ∈ H−g . So, taking F+ = Ωg and

F− = −ϕ
2
, we see that g satisfies (1.1.2).
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Conversely, if g is an Ω-adapted solution of (1.1.2) with F+ = Ωg, then∫
〈h,B〉dµ = 2

∫
〈h, F+ ◦ F−〉dµ = 0 for any variation h as above. Thus, by

Donaldson, g is a critical point. �

In particular, extremal Kähler metrics are also critical points of this func-

tional. The natural question to ask is whether they are global minimizers

in GΩ. In the next section, we will show that the answer to this question is

negative: the analogue of Theorem 1.2.3 does not hold for Bach–Merkulov

equations.

1.4 Example: Hirzebruch Surfaces

In this section we will show that extremal Kähler metrics adapted to a fixed

cohomology class Ω do not necessarily have the same Weyl energy. We will

illustrate this fact on Hirzebruch surfaces, by showing existence of two closed

forms in Ω which are extremal Kähler with respect to different complex struc-

tures. Using the formula in [21] it will turn out that the Weyl energy of the

corresponding extremal Kähler metrics are different.

Recall that the k-th Hirzebruch surface Fk is defined as the projectivization

of the rank-2 complex vector bundle O(−k)⊕O over CP1 (see [5] and [4] for

details). Fk is diffeomorphic to S2×S2 if k is even, and to CP2]CP2 if k is odd

[19]. They are, however, all biholomorphically distinct as complex surfaces (see

[19]). They are simply connected; they have second Betti number b2(Fk) = 2

and Euler characteristic χ(Fk) = 4.

For the generators of the homology of Fk we will take the fiber F and the

image of the section {z 7→ [0 : z]} : CP1 → P(O(−k)⊕O) = Fk, which we will
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denote by Ck. Note that F · F = 0, F · Ck = 1 and Ck · Ck = −k so that in

this basis the intersection pairing becomes

 0 1

1 −k

 .

Let the Poincaré dual of Ck and F be ck and f respectively. Then any

de Rham class Ω ∈ H2
dR(Fk,R) can be written as Ω = pck + qf for some

p, q ∈ R. If k and n are two positive integers of same parity, then Fk and Fn

are diffeomorphic; so we can represent Ω with respect to the basis {cn, f}. The

following lemma gives the change of basis formula:

Lemma 1.4.1. We have

ck = cn +
n− k

2
f.

Therefore,

Ω = pck + qf = pcn + q̃f

where q̃ = pn−k
2

+ q

Proof. Let

Ck = sCn + tF (1.4.1)

for some constants s, t. Take the intersection of both sides with F :

Ck · F = sCn · F + tF · F.

Since Ck · F = Cn · F = 1 and F · F = 0, we have s = 1. On the other hand,
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take the self intersection of both sides:

Ck · Ck = (Cn + tF ) · (Cn + tF )

−k = −n+ 2t.

Therefore t = n−k
2

. Taking the Poincaré dual of (1.4.1) proves the first equality.

The second equality follows immediately from this. �

Note also that Ω = pck + qf ∈ H2
dR(Fk,R) is a Kähler class iff Ω · Ck > 0

and Ω · F > 0, that is, iff p > 0 and q > kp. Now we can deduce when the

same de Rham class Ω is a Kähler class in Fn, where n and k have the same

parity. Let Jk denote the complex structure of the complex surface Fk.

Lemma 1.4.2. A Kähler class Ω = pck + qf in Fk is a Kähler class in Fn iff

n < 2 q
p
− k. In particular, Ω is Kähler with respect to only finitely many Jn’s.

Proof. Ω = pck + qf is Kähler with respect to Jk iff p > 0 and q > kp. By

Lemma 1.4.1, Ω = pcn +
(
pn−k

2
+ q
)
. Now, by the previous paragraph, this

class is Kähler with respect to Jn iff p > 0 and pn−k
2

+ q > np. The second

inequality is the same as n < 2 q
p
− k. Notice that 2 q

p
− k is positive since

Ω = pck + qf is assumed to be Kähler since q > pk. Hence there are only

finitely many possibilities for n so that Ω remains Kähler with respect to Jn.

�

So there are de Rham classes on smooth 4-manifolds S2 × S2 or CP2]CP2

which are Kähler with respect to different complex structures. However, Calabi

[9] showed that every Kähler class on a Hirzebruch surface is represented by

an extremal Kähler metric.
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So, with our previous notation all Riemannian metrics g whose Kähler

form ω = g(Jk·, ·) with respect to any of the complex structures Jk are in

GΩ. Thus, we have essentially distinct extremal Kähler metrics in GΩ. Each

of those metrics are critical points of the restriction of the Weyl functional to

GΩ.

Next, we will show that this the Weyl energy levels of those metrics are

different. First note that [13] for Kähler metrics we have |W+|2 = s2

24
. By

signature formula,
∫
|W+|2dµ = 1

2

∫
|W |2dµ + 6π2τ . Since the signature τ

of the Hirzebruch surfaces is 0, we see that the Weyl energy of a Kähler

metric is equal to its Calabi energy up to an overall multiplicative constant.

Hwang&Simanca [21] gave the following formula for the Calabi energy of an

extremal metric in a Kähler class on the Hirzebruch surface Fk.

Proposition 1.4.3 (Hwang&Simanca). The Calabi energy of the extremal

Kähler metric in the class Ω = 4πck + 2π(a+ k)f in Fk is given as:

C̃(a, k) := 12π
a3 + 4a2 + (4 + k2)a− 4k2

3a2 − k2
. (1.4.2)

Note that the Calabi energy and the Weyl energy are scale-invariant in

dimension four. Therefore by appropriate scaling we see that the Calabi energy

of the extremal Kähler metric in Ω = pck + qf is given by

C(p, q,Fk) := C̃(2q
p
−k, k) = 12π

(2 q
p
− k)3 + 4(2 q

p
− k)2 + (4 + k2)(2 q

p
− k)− 4k2

3(2 q
p
− k)2 − k2

.

(1.4.3)

We therefore see that the extremal Kähler metrics with respect to different

complex structures in Ω have different energy, i.e. C(p, q,Fk) 6= C(p, pn−k2
+
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q,Fn) in general. Thus, they also have different Weyl energy.

This shows that the analogue of of Theorem 1.2.3 cannot hold for the

Bach–Merkulov equations.

1.5 Minimizers of Weyl functional

We are concluding this chapter with a discussion on critical points of the re-

striction of the Weyl functional to various subspaces of the space of all metrics

G.

As discussed earlier, the critical points of W as a functional on G are

precisely the Bach-flat metrics. Locally conformally flat metrics and half-

conformally flat metrics are minimizers of this action. Einstein metrics are

Bach-flat by the second Bianchi identity, but they are not necessarily of min-

imal energy.

On a compact complex manifold (M,J) with a fixed Kähler class Ω, the

critical points of W restricted to Ω+ are extremal Kähler metrics. They are

global minimizers of this action, and such a minimizer is unique (up to biholo-

morphism) if it exists ([11],[14]). Constant scalar curvature Kähler metrics

(in particular Kähler-Einstein metrics) are examples of extremal Kähler met-

rics. Hirzebruch surfaces are examples of compact complex surfaces for which

all Kähler classes are represented by an extremal Kähler metric which is not

of constant scalar curvature. Tønnesen-Friedman [34] gave examples of com-

plex surfaces for which some classes admit extremal Kähler representatives

and some do not. Burns and de Bartolomeis [8] gave examples of surfaces for

which no Kähler class has an extremal Kähler representative.
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If, on a compact complex surface (M,J), we regard W as a functional on

the extremal cone (i.e. the space of all extremal Kähler metrics), the critical

points are surprisingly Bach-flat (see [12]), that is, they are critical points of

the functional on the whole space G. If g is such a Bach-flat Kähler metric,

then the conformally related metric h := s−2g is Einstein wherever s 6= 0 (see

[13]). This is how the (globally) Einstein metrics known as the Page metric

and Chen–LeBrun–Weber metric are found. In the last chapter of this thesis,

using the same method, we will show existence of Poincaré–Einstein metrics

in some ruled surfaces which blow up on the three dimensional submanifold

{s = 0}. In all these examples the critical points turn out to be minimizers,

but no such general statement is known.

Gursky [16] studied the action W+ :=
∫
|W+|2dµ as a functional on

Yamabe-positive metrics Y+ on compact oriented 4-manifolds with b+ > 0.

Here Y+ stands for the space of conformal classes of metrics with constant pos-

itive scalar curvature. He gave the following general topological lower bound

for the functional:

W+[g] ≥ 4π2

3
(2χ+ 3τ)

where χ is the Euler characteristic and τ is the signature of the manifold.

Furthermore, he showed that equality is achieved only for Kähler–Einstein

metrics (in which case they are automatically minimizers). This happens only

when M is either

(i) CP2]kCP2, k = 3, 4, . . . , 8 with Tian’s Kähler–Einstein metrics

(ii) CP2 with Fubini–Study metric

(iii) CP1 × CP1 with the product Einstein metric.
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It is interesting that the cases CP2]CP2 and CP2]2CP2 are excluded in

Gursky’s results. These manifolds are known not to admit a Kähler–Einstein

metric [33], so the lower bounds 4π2

3
(2χ + 3τ), which in our case is equal

to 32π2

3
and 28π2

3
, respectively, are certainly not attained in Y+. However,

there are canonical Einstein metrics on these surfaces, namely the Page metric

and the Chen–LeBrun–Weber metric, which are potential candidates for the

minimizers. As a numerical evidence, note that the gap between W+[gPage] ≈

107.63 (see [23]) and the lower bound 32π2

3
≈ 105.28 is very small. In passing,

one should also keep in mind that the Kähler–Ricci solitons discovered by

Koiso–Cao on CP2]CP2 and Wang–Zhu on CP2]2CP2 are other candidates for

the minimizer (if it exists).

We conjecture that the Page metric and the Chen–LeBrun–Weber metric

are indeed minimizers on the space of all metrics G. More weakly, we suspect

that the Page metric (which is given explicitly in coordinates) is indeed a local

minimizer. One way to show this would be to use O. Kobayashi’s formula

[22] for the second variation of the Weyl functional at an Einstein metric: If

g = g0 + th+O(t2) is a variation of an Einstein metric g0, then

d2

dt2
W(gt)

∣∣∣∣
t=0

=

∫
〈(∆L +

s

2
)h, (∆L +

s

3
)h)〉dµ

where (∆Lh)ij = (∆h)ij + hik;kj − hik;jk + hjk;ki − hjk;ik is the Lichnerowicz

Laplacian and ∆ is the rough Laplacian. This complicated calculation may

illuminate the answer of our problem.
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Chapter 2

Positively Curved Einstein

Hermitian Metrics

2.1 Introduction

Let M be a smooth n-manifold. A Riemannian metric g on M is called Einstein

if the Ricci tensor is a constant multiple of the metric tensor, i.e.

r = λg

for some constant λ ∈ R, called the Einstein constant [7]. If λ > 0 and g

is complete, M is compact by Myer’s Theorem. Since the Ricci tensor is, by

definition, the pointwise average of all sectional curvatures, for an Einstein

metric the positivity of λ is assured if all sectional curvatures are positive.

In this chapter, we are dealing with compact smooth manifolds in dimen-

sion 4 which admit Einstein metrics with λ > 0. Examples of such manifolds
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are 4-sphere S4 with its standard round metric (which has all sectional cur-

vatures K ≡ 1), and the complex projective plane CP2 with the Fubini-Study

metric gFS (which has 1 ≤ K ≤ 4 everywhere). Notice that these examples

are of strictly positive sectional curvature. The product metric on S2 × S2 is

Einstein with λ > 0, too, its sectional curvatures, however, are non-negative.

They are actually 0 for transverse planes (i.e. KΠ = 0 if the plane Π is not tan-

gent to each of the factors). In fact, the famous Hopf Conjecture asks whether

or not there are any metrics on S2 × S2 of positive sectional curvature.

The most fruitful resource of Einstein metrics is the Kähler geometry. For

a compact complex surface M ,

a. there is a unique Kähler-Einstein metric with λ < 0 if c1(M) < 0 (see

[38], [2]),

b. there is a unique Kähler-Einstein metric with λ = 0 (i.e. Ricci-flat) in

each Kähler class if c1(M) = 0 (see [37]).

c. In λ > 0 case, Tian [33] showed that M admits a Kähler-Einstein metric

with λ > 0 iff M has c1(M) > 0 and its automorphism group Aut(M)

is a reductive Lie group. The diffeomorphism types of such complex

surfaces are CP2, CP1 × CP1 and CP2]kCP2 with k = 3, 4, . . . , 8.

Among those Kähler-Einstein metrics, only the ones on CP2 are of positive

sectional curvature. This follows, for example, by Andreotti’s Theorem [1],

which says that any compact complex surface M with a Kähler metric of

positive sectional curvature must be CP2. Andreotti’s theorem is a special

case of Frankel’s conjecture [15], which was later proved by Siu and Yau [32],
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which asserts that the generalization of the statement is true for all complex

dimensions n.

As a consequence of the following theorem, Gursky and LeBrun [17] reached

at the same conclusion that CP2 is the unique compact complex surface with

a positively curved Kähler-Einstein metric:

Theorem 2.1.1 (Gursky-LeBrun). Let (M4, g) be an compact oriented Ein-

stein 4-manifold of non-negative sectional curvature.

(i) if M has positive intersection form, then (M, g) = (CP2, gFS), up to

rescaling and isometry;

(ii) if g is neither self-dual nor anti-self-dual, then 15
4
|τ | < χ ≤ 9 where τ is

the signature and χ is the Euler characteristic of M .

Note that CP2]kCP2 have τ = 1 − k and χ = 3 + k, so the inequality is

not satisfied if k = 3, 4, . . . , 8. The Kähler-Einstein metrics on those surfaces

cannot be self-dual (that is, W− ≡ 0) or anti-self-dual (that is, W+ ≡ 0) as a

consequence of

12π2τ =

∫
M

|W+|2 − |W−|2dµ (Signature Formula)

8π2χ =

∫
M

|W+|2 + |W 2
−|+

s2

24
− |̊r|

2
dµ (Gauss-Bonnet)

and the fact that |W+|2 = s2

24
for Kähler metrics. Indeed, since τ < 0, the

signature formula implies that g cannot be self-dual. If, on the other hand,

g were anti-self-dual, then s = 0 since g is Kähler, and also r̊ = 0 since g

is Einstein. So, the two formulas would give different values for the integral
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∫
M

|W−|2dµ unless k = 9; but this case is excluded from the range for k.

Observe, in passing, that part (ii) has a similar taste with Hitchin’s theo-

rem [20], which says that a compact oriented Einstein 4-manifold of positive

sectional curvature should satisfy χ ≥ (3
2
)3/2|τ |; and the Hitchin-Thorpe in-

equality χ ≥ 3
2
|τ | which holds for all compact orientable Einstein 4-manifolds.

If we relax the Kähler condition on the Einstein metric g, and merely

assume that g is hermitian, that is g(J ·, J ·) = g(·, ·) for a complex structure

J on the manifold M , interesting enough, we get only two more exceptional

metrics:

Theorem 2.1.2 (LeBrun [26]). Let (M4, J) be a compact complex surface. If

g is Einstein and Hermitian, then only one of the following holds:

(1) g is Kähler-Einstein with λ > 0.

(2) (M,J) is biholomorphic to CP2]CP2 and g is the Page metric gPage (up

to rescaling and isometry).

(3) (M,J) is biholomorphic to CP2]2CP2 and g is the Chen-LeBrun-Weber

metric gCLW (up to rescaling and isometry).

Thus, if we in addition assume that g is of positive sectional curvature,

then the first case of the above theorem is possible only when M is CP2,

by Andreotti’s theorem. Moreover, by a theorem of Berger [6], the Kähler-

Einstein metric g on CP2, is the Fubini-Study metric (up to rescaling and

isometry) since it has positive holomorphic bisectional curvature.

In the next two sections we will prove that the two exceptional metrics gPage

and gCLW are not of positive sectional curvature either. This will conclude the
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proof of our main theorem:

Theorem 2.1.3. Let M4 be a compact smooth 4-manifold, and let g be an

Einstein metric of positive sectional curvature. If g is hermitian with respect

to some complex structure J on M , then (M,J) is biholomorphic to CP2, and

g is the Fubini-Study metric (up to rescaling and isometry).

One of the key facts in the proof of this theorem is Frankel’s Theorem [15]

which says that totally geodesic submanifolds of complementary dimensions

on positively curved manifolds necessarily intersect. Since the Page metric has

an explicit form, we are also able to give a computational proof of the failure

of positivity. Note that, on the contrary, Chen-LeBrun-Weber metric does not

possess such an explicit formula.

2.2 Page metric

The Page metric was first introduced by D. Page in 1978 as a limiting metric

of Kerr-de Sitter solution (see [29]). To define it formally, we first think of the

following metric on the product S3 × I where I is the closed interval [0, π]:

g = V (r)dr2 + f(r)(σ2
1 + σ2

1) +
C sin2 r

V (r)
σ2

3
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where the coefficient functions are given as

V (r) =
1− a2 cos2 r

3− a2 − a2(1 + a2) cos2 r

f(r) =
4

3 + 6a2 − a4
(1− a2cos2r)

C =

(
2

3 + a2

)2

and a is the unique positive root of a4 +4a3−6a2 +12a−3 = 0. Here, σ1, σ2, σ3

is the standard left invariant 1-forms on the Lie group SU(2) ≈ S3.

When r = 0 or π, we see from the formula that the metric reduces to

a round metric on S2. Thus, g descends to a metric, denoted by gPage, on

the quotient (S3 × I)� ∼ where ∼ identifies the fibers of the Hopf fibration

p : S3 → S2 on the two ends S3 × {0} and S3 × {π} of the cylinder S3 × I.

p p

S3

S2

S3

S2

The resulting manifold is indeed the connected sum CP2]CP2. To see

this, recall that in the cell decomposition of CP2, the attaching map from the

boundary of the 4-cell (which is S3) to the 2-skeleton (which is CP1 ≈ S2) is

given by the Hopf map [18]. So, if we cut the cylinder S3×I in two halves and

identify the Hopf fibers of S3 at each end, we get CP2 − {small ball}. Since

the right and left halves have different orientations, we obtain CP2]CP2 in the
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quotient.

p

S3

S2

CP2 − small ball

4-cell

CP1

CP0

small ball removed

attaching map

Now, we will prove that the Page metric is not of positive sectional curva-

ture. We will use the following classical theorem by Frankel:

Theorem 2.2.1 (Frankel [15]). Let M be a smooth n-manifold, and let g be a

complete Riemannian metric of positive sectional curvature. If X and Y are

two compact totally geodesic submanifolds of dimensions d1 and d2 such that

d1 + d2 ≥ n, then X and Y intersect.

In our case, the two 2-spheres on each end of the above quotient will play

the role of X and Y . They are compact and the dimensions add up to 4. So it

remains to show that those two submanifolds are totally geodesic with respect

to gPage. Since they are obviously disjoint, this will imply that gPage cannot

have positive sectional curvature.

There is a very well-known lemma to detect totally geodesic submanifolds:

Lemma 2.2.2. Let (M, g) be a Riemannian manifold. If f is an isometry,

then each connected component of the fix point set Fix(f) of f is a totally

geodesic submanifold of M .
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So, below we will show that there is an isometry of the Page metric whose

fix point set is precisely the two end spheres.

What are the isometries of the Page metric? Derdziński [13] showed that

the Page metric is indeed conformal to one of Calabi’s extremal Kähler met-

rics on CP2]CP2. On the other hand, the identity component of the isometry

group of extremal Kähler metrics is a maximal compact subgroup of the iden-

tity component of the automorphism group [10]. In the case of CP2]CP2, this

implies that the identity component of the isometry group of the Page met-

ric is U(2) = (SU(2) × S1)/Z2. By the formula of the metric, we see that

the isometries in the SU(2) component are precisely given by the left multi-

plication action of SU(2) on the first factor of S3 × I. Note that the forms

σi, i = 1, 2, 3 are invariant under the action, but the action on the 3-spheres

S3 × {r}, r ∈ (0, π) is fixed-point-free! The metric is invariant under this

action as the coefficients of the metric only depend on the parameter r.

Now, let us see what happens at the endpoints r = 0 and r = π: It

is well-known that the action of U ∈ SU(2) on the 2-sphere S2 (after the

quotient) is given by the conjugation A 7→ UAU−1, where we regard the

2 × 2 complex matrix A = xσ1 + yσ2 + zσ3 with x2 + y2 + z2 = 1 as a

point of S2. It is now straightforward to see that the action of −I ∈ SU(2)

is trivial on S2 (since (−I)A(−I)−1 = A); thus, it fixes every point on S2.

Therefore, we conclude that the fixed point set of the isometry given by the

“antipodal map” −I ∈ SU(2) consists of the two 2-spheres at each end of the

quotient ((S3 × I)� ∼) ≈ CP2]CP2. Note that, indeed, there is an S1-family

of isometries generated by rotation in direction of σ3 having the exact same

fixed point set.
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So we showed that there are two disjoint compact totally geodesic subman-

ifolds of CP2]CP2. Therefore, by Frankel’s theorem, we conclude that gPage is

not of positive sectional curvature.

Finally, we note that we can actually show the failure of positivity directly

by brute-force using tensor calculus: Introduce a new coordinate function x :=

cos(r), so that the metric becomes

g = W 2(x)dx2 +G2(x)(σ2
1 + σ2

1) +
D2

W 2(x)
σ2

3

where the coefficient functions are given as

W (x) =

√
1− a2x2

(3− a2 − a2(1 + a2)x2)(1− x2)

G(x) = 2

√
1− a2x2

3 + 6a2 − a4

D =
2

3 + a2

and choose the following vierbein: {Wdx,Gσ1, Gσ2,
D
W
σ3} =: {e0, e1, e2, e3}.

Then by a standard tensor calculus, we see that the sectional curvature of the

plane generated by e0 and e1 is given by

K01 = 2
G′W ′ −G′′W

GW 3
.

Using a computer program like Maple, one can easily verify that this function

K01(x) can take both positive and negative values for x ∈ (−1, 1).
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2.3 Chen-LeBrun-Weber metric

After the discovery of the Kähler-Einstein metrics on CP2]kCP2 for k =

3, . . . , 8, and the Einstein metric (namely the Page metric) on CP2]CP2, it was

speculated that whether CP2]2CP2 admits an Einstein metric. Derdziński [13]

had discovered in early ’80s that even though Page metric is not Kähler, it is

actually confomally related to a Kähler metric on CP2]CP2; indeed to one of

Calabi’s extremal Kähler metrics in [9]. Inspired by this result, LeBrun showed

in 1995 that an Einstein hermitian metric h on CP2]2CP2 has to be confor-

mally related to an extremal Kähler metric [23], in such a way that h = s−2g,

where s is the scalar curvature of g, which turns out to be necessarily positive

in this setting. Conversely, it was proved that for an extremal Kähler metric

g, the metric h := s−2g is Einstein (defined wherever s 6= 0) if g is the critical

point of the Calabi functional regarded as an action on extremal Kähler cone

[31], [12].

Unlike the CP2]CP2 case, not every Kähler class on CP2]2CP2 is repre-

sented by an extremal Kähler metric. Nevertheless, using the computations

of Futaki invariant in [27], Chen, LeBrun and Weber [12] showed that this

action has a critical point, and this critical class is indeed represented by an

extremal Kähler metric g of positive scalar curvature! Thus, the conformally

related metric s−2g is an Einstein metric on CP2]CP2, denoted by gCLW. More

recenty, LeBrun [26] showed that this is the unique Einstein hermitian metric

on CP2]CP2, and it can be obtained also as an appropriate deformation of the

Kähler-Einstein metric in CP2]3CP2 representing the first Chern class c1 (see

[24]).
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The identity component of the isometry group of gCLW lies in the iden-

tity component of the group of biholomorphisms of CP2]2CP2 as a maximal

compact subgroup. Indeed, there is a natural torus action [12] of S1 × S1 on

CP2]2CP2 obtained by lifting the torus action

(eiθ, eiξ) 7−→ ([u1 : eiθu2], [v1 : eiξv2])

on CP1 × CP1 to its blowup at ([0 : 1], [0 : 1]). Note that CP2]2CP2 is

isomorphic to the blowup of CP1 × CP1 at one point. This torus action has

the following moment map profile [26]:

x

y

Here, x and y are Hamiltonians. In particular, the fix point set of the vector

field of the Hamiltonian x contains the two vertical edges of the pentagon,

which indeed correspond to two disjoint holomorphic CP1’s lying in CP2]2CP2.

Again, by Lemma 2.2.2, they are totally geodesic. Therefore, by Frankel’s

theorem, it follows that gCLW is not of positive sectional curvature. This

completes the proof of Theorem 2.1.3.
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Chapter 3

Calabi Energy of

Tønnesen-Friedman Metrics

Let (M4, J) be a compact complex surface, and let g be an extremal Kähler

metric. Denote the Kähler form of g by ω and its Kähler class by Ω. Then its

Calabi Energy is given by

C(g) =

∫
M

s2dµ = s0

∫
M

dµ+

∫
M

(s− s0)2dµ = 32π2 (c1 · Ω)2

Ω2
−F(ξ,Ω)

where ξ = ∇1,0s = (∂̄s)] is the extremal vector field, s0 is the average scalar

curvature, and F(·,Ω) is the Futaki character.

Consider the ruled surface M = P(O ⊕ L) over a Riemann surface Σg of

genus g ≥ 2 where L is a holomorphic line bundle of degree l > 0 over Σg.

The homology of M is generated by two holomorphic curves: the fiber C with

C · C = 0, and the section E0 with E0 · E0 = l = degL.

In [34], based on the computations of LeBrun&Simanca in [27], Tønnesen-
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Friedman showed that for the Kähler class Ω = m1C+m2E0 (with m1,m2 > 0)

the Futaki invariant in direction of the Euler vector field X (of the natural C∗

action) is given by

F(X,Ω) = m2
2l

(
1− 1

3

2m1 +m2(l − 2(g − 1))

2m1 +m2l

)
.

The Euler vector field is a constant multiple of the extremal vector field ξ:

ξ = stX

where st is the derivative of the scalar curvature s with respect to the moment

map coordinate t. Note that st is indeed constant because in these coordinates

the extremal condition s,j̄k̄ becomes stt = 0.

Now assume Ωk = 4π
(

l
k−1

C + E0

)
. If we assume that this class is extremal,

Tønnesen-Friedman showed that its extremal Kähler representative has the

property that

st = −cq

where q = l/(g− 1) and

c =
6[(q + 1)k + (q − 1)](k − 1)

(k2 + 4k + 1)q2
.

Thus, keeping in mind that c1 ·Ω = 2m1 +m2(l− 2(g− 1)), the A-energy
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of the Kähler class Ωk is:

A(Ωk) =
(c1 · Ωk)

2

Ω2
k

− 1

32π2
F(ξ,Ωk)

=
(2m1 +m2(l − 2(g− 1)))2

2m1m2 +m2
2l

+
1

32π2

6[(q + 1)k + (q − 1)](k − 1)

(k2 + 4k + 1)q
m2

2l

(
1− 1

3

2m1 +m2(l − 2(g− 1))

2m1 +m2l

)
.

where m1 = 4πl/(k − 1) and m2 = 4π. More explicitly:

1

l
A(Ωk) = ((1−2/q)k+(1+2/q))2

k2−1
+ ((q+1)k+q−1)(k−1)

((k2+4k+1))q

(
3− (1−2/q)k+(2/q+1)

k+1

)

We see that the right hand side depends only on k, and the ratio q = l/g − 1,

rather than degree and genus individually. Therefore critical points of this

functional depend only on q.

If a critical point k of this functional lies in the extremal range, then the

extremal representative gk of Ωk will be Bach-flat (see [12]), and hence by

Derdzinski [13], it will be conformally equivalent to a Poincaré–Einstein metric

s−2gk.

For example, if q = 4, that is, if l = 4(g − 1), one can check on computer

that the derivative of A-functional with respect to the parameter k has a zero

at k ≈ 3.59. The extremal range when q = 4 is (1, k̃q) where k̃q > q+
√

1 + q ≈

6.23 (see [34]). Therefore there is a critical Kähler class which is represented

by an extremal Kähler metric. So we have the following conclusion:

Proposition 3.0.1. Over any compact Riemann surface Σg of genus g ≥ 2,

there is a ruled surface P(O⊕L) which carries a Bach-flat Kähler metric, and
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hence a Poincaré–Einstein Metric.

This proposition was first proved by Tønnesen-Friedman (see [35]) using

Derdziński’s equation [13] for Bach-flat metrics.
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