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Abstract of the Dissertation

Two-Point Gromov-Witten Formulas
for Symplectic Toric Manifolds

by
Alexandra Mihaela Popa
Doctor of Philosophy
in
Mathematics
Stony Brook University

2012

We show that the standard generating functions for genus 0 two-point twisted Gromov-
Witten invariants arising from concavex vector bundles over symplectic toric manifolds are
explicit transforms of the corresponding one-point generating functions. The latter are, in
turn, transforms of Givental’s J-function. We obtain closed formulas for them and, in partic-
ular, for two-point Gromov-Witten invariants of non-negative toric complete intersections.
Such two-point formulas should play a key role in the computation of genus 1 Gromov-Witten
invariants (closed, open, and unoriented) of toric complete intersections as they indeed do
in the case of the projective complete intersections.
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Chapter 1

Introduction

Torus actions on moduli spaces of stable maps into a smooth projective variety facilitate
the computation of equivariant Gromov-Witten invariants |Gil] via the Localization The-
orem |ABol, |[GraPa]. Equivariant formulas lead to other interesting consequences beyond
the computation of non-equivariant Gromov-Witten invariants. In the case of the projective
spaces, two-point equivariant Gromov-Witten formulas in [PoZ] lead to the confirmation
of mirror symmetry predictions concerning open and unoriented genus 1 Gromov-Witten
invariants in the same paper and to the computation of closed genus 1 Gromov-Witten in-
variants in [Po]. In this dissertation we obtain equivariant formulas expressing the standard
two-point closed genus 0 generating function for certain twisted Gromov-Witten invariants
of symplectic toric manifolds in terms of the corresponding one-point generating functions.
We also obtain explicit formulas for the latter. In particular, we show that the standard gen-
erating function for these two-point invariants is a fairly simple transform of the well-known
Givental’s J-function. The formulas obtained in this dissertation compute, in particular, the
twisted /un-twisted Gromov-Witten numbers (L2])/(L3) below.

For a smooth projective variety X and a class A € Hy(X;7Z), Mo,.(X, A) denotes the
moduli space of stable maps from genus 0 curves with m marked points into X representing
A. Let

ev; ﬁo,m(X, A)— X

be the evaluation map at the i-th marked point; see [MirSym, Chapter 24]. All cohomology
groups in this dissertation will be with rational coefficients unless otherwise specified. For
each i = 1,2,...,m, let 1; € H*9My(X,A)) be the first Chern class of the universal
cotangent line bundle for the i-th marked point. Let

U — ﬁo,m(X, A)

be the universal curve and ev : 4 — X the natural evaluation map; see [MirSym, Sec-
tion 24.3].
A holomorphic vector bundle £ — X is called concavex if

E=E*®FE, with H' (P, f*E*)=0, H’(P,f*E")=0 Vf:P'— X.
Such a vector bundle induces a vector orbi-bundle Vg over My, (X, A):

Vg =Vg+ ®Vg-, where Vg+ =mev*ET, V- = Rln.ev*E. (1.1)



Given a class A€ Hy(X;Z) and classes n;,m2 € H*(X), the corresponding genus 0 twisted
two-point Gromov-Witten (GW) invariants of X are:

<¢p17717 ¢p2772>1)4(7E = f[m o (Wflevf?h) (¢§2€V§ng)e(VE) e Q. (1.2)

In particular, if = E*, the twisted Gromov-Witten invariants (L2) are the genus 0 two-
point Gromov-Witten invariants of a complete intersection Y = s71(0) < X defined by a
generic holomorphic section s: X — E™:

<¢p1n1,¢”nz>fﬂ+ = (PP, P, = <¢p1771,1/1p2772>10 Vo, mee H*(Y);  (1.3)

the first equality follows from |[El, Theorem 0.1.1, Remark 0.1.1].

The numbers (L.2]) have been computed in the X =P"~! case under various assumptions
on F through various approaches. The case when E is a positive line bundle is solved
in [BK| and [Z1] and extended to the case when E is a sum of positive line bundles in [PoZ].
The former led to the computation of the genus 1 Gromov-Witten invariants of Calabi-Yau
hypersurfaces in [Z2], while the latter to the computation of the genus 1 Gromov-Witten
invariants of Calabi-Yau complete intersections in [Po]. The case when E is a concavex vector
bundle has been solved in [Ch] in the setting of [LLY1]. More recently, genus 0 formulas
with any number of ¢ classes have been obtained in [Z3]. In this dissertation we extend the
approaches of [Z1] and [PoZ)] to the case when X is an arbitrary compact symplectic toric
manifold and F is a sum of non-negative and negative line bundles.

1.1 Some results

If n is a non-negative integer, we write

[n]={1,2,...,n}.
Let s=>1, Ny,..., Ny>2 and for each i€[s] let

H; = pr*H e H? (H ]P’NJ“1> ,
=1
where pr; : [ PYi~1— PNi=1is the projection onto the i-th component and He H?(PNi—1)
j=1

is the hyperplane class on PV,
Theorem 1.1. Let d=(dy,...,d,)€(Z7%). The degree d genus 0 two-point GW invariants
(L3) of U PN~ are given by the following identity in Wai=teBrenBal -1 p17).

i=1 (Aﬁvi,Bévi Vie[s])
—1—a s—1—asg —1— s—1—bs 2 IpNifl
Al yeeny as=0 ’ ’ hl_z/} hQ—w d
bl ----- bs?O (1 4)
_ 1 Z (A1+ elhl)al C. (As—|—esh1)as (B1—|— fth)bl o (Bs"i'fshQ)bs .
hl +h2a- bier, fi>0 S Ci N; fi N, ’
a;+bi=N;—1 [T (Ai+rh)™ T] (B;+rhe)
e;+fi=d; i=1 \r=1 r=1



This follows from Corollary B.§ in Section [3.21

Remark 1.2. The sums on both sides of (4] are power series in h; " and Ay'. In order
to see that this is the case for the right-hand side of (IL4]), divide both the numerator

Nie; Nifi
and denominator of each a;, b;, €;, fi-summand by h%l h?l . Part of the statement of
Theorem [[T] is that the right-hand side sum in (L4 is divisible by A; +hs (i.e. it vanishes
when evaluated at (hy, hy) = (h, —h)). Identity (L4]) should be interpreted by first dividing
this sum by hA;+hy and then setting it equal to the left-hand side.

The results below concern the GW invariants of a compact symplectic toric manifold X7,
defined by (22]) from a minimal toric pair (M, 7) as in Definition 2l We assume that the
vector bundle E splits

a b
E=E*®oFE — X;,, where ET=@L, E-=PL;, (1.5)
=1

i=1

L} are non-trivial, non-negative line bundles and L; are negative line bundles Theorem [1.3]
and Remark [[.4] below describe two-point twisted GW invariants in terms of one-point ones.
As is usually done, the twisted GW invariants will be assembled into a generating function
in the formal variables

Q:(Qla"'an)

with powers indexed by
A={del, (Xj;Z): {w,d)>0 Ywek,}, (1.6)

where K, is the closed Kihler cone of X7, B
A ring R and the monoid A induce an R-algebra denoted R[[A]]: to each d we associate
a basis element denoted Q9 and set

R[[A]] = {Z aaQ® : ageR VdeA}.

deA

Addition in R[[A]] is defined naturally; multiplication is defined by

Qd'Qd/ = Qd+d’ Vd, deA

'Recall that a line bundle L —> X7, is called positive (respectively negative) if c1(L) € H?(X7,;R)
(respectively —cq(L)) can be represented by a Kéhler form on X7,. A line bundle L — X7, is called
non-negative if ¢1(L) € H%(X;;R) can be represented by a 2-form w satisfying w(v, Jv) >0 for all v. The
assumptions that the line bundles L; are non-trivial and that L; are negative (that is, ¢1(L; ) <0 as opposed
to just ¢1(L; ) <0) are only used in the theorems that rely on the one-point mirror theorem (5.2)) of [LLY3],
that is Theorem [B.5] Corollary B.7 Corollary B.8] Theorem 7, Corollary [£.8] and Corollary .9l

2By |B1, Theorem 4.5], a non-empty closed convex subset of R? is the intersection of its supporting half-
spaces. The supporting half-spaces of a closed convex cone C in R? are all sets of the form {veR? : <v, w> >0}
for some weR? such that <v, w>>0 for all veC. This implies that

wek;w — <w,d>>0 vVdeA.



and extended by R-linearity. o

For each m > 1 and each d e A—{0}, let o; : My (X, d) — U be the section of the
universal curve given by the i-th marked point,

Ve=R'r, (ev*E*(—01))®R'm, (ev*E~ (—01)) — Mo (X}, d), and

ot _ (1.7)
Vp=R'm, (ev*E" (—02))®R'm, (ev*E~ (—03)) —> My (X];,d) whenever m>2.

If m>3 and d=0, Vi and Vg are well-defined as well and they are 0. We next define the
genus 0 two-point generating function Z:

v kg e(ij)
Z(hlvh27Q) hl + hZZQd eleeVZ) [(hl_wl) (hQ_wQ)] ) (18)

where evy, evy 3%073()(]7\—4, d) — X7, are the evaluation maps at the first two marked points.
This is used - in the case of the projective spaces - for the computation of the genus 1 GW
invariants of Calabi-Yau complete intersections.

With evy, evy : Mo2(XE,,d) — X7, denoting the evaluation maps at the two marked
points and for all ne H?(X7,), let

2@ =+ ¥ Qlevs, | T | g (i),
deA—0 1
i - (1.9)
Zo (@) =+ 3 QUense | “CEE | (AT
deA—0 | ! _

Theorem 1.3. Let pr; : X}, x X7, — X}, denote the projection onto the i-th component
and let n;,1;,€ H*(X];) be such that

S
2, primpraije H2N P (XF < X))
j=1

s the Poincaré dual to the diagonal class, where N —Fk is the complex dimension of X7j,.
Then,

7 (h1, 2, Q) = Z pri 2y, (M, Q) pr3 Zy, (ha, Q).

hl—f-hg

This follows from Theorem below, which is an equivariant version of Theorem [L.3]

Remark 1.4. The genus 0 two-point twisted GW invariants ([L2]) are assembled into

d (Vi)
zZ* hl,hQ,QE Q evy Xevy), s 1.10
ot @)= 30 Qs |G o

where evy, evy: Mg o(X7,,d) —> X7,. By the string relation [MirSyml, Section 26.3],

hahy
by + he

Z* (h1, ha, Q) = > (eleer)*[( (V) ]eH*(X&xX&)[hfl,hgl][[A]],

el I —1p1) (ha—1)2)

4



where ev, evy: Mg 3(X7,,d) — X7,. By (L7) and (LI)),
e(Vplevie(EY) = e(Vp)evie(E™).
The last two equations imply that
Z*(ln, o, Q)prie(E™) = Z*(n, i, Q)prie(E7),

where Z* is obtained from Z by disregarding the Q° term and pr; : X}, x X], — X7, is
the pI‘OJeCtIOIl onto the first component. This together with Theorem EIB] expresses Z* i
terms of Z Z in the = E™* case. In all other cases, Z* can be expressed in terms of one-

point GW generatlng functions which can be computed under one additional assumption;
see Remark [3.91

Remark 1.5. If E=0p2(—1) ® Op2(—2) and He H?(P?) is the hyperplane class, then

2d)!
J e(Vg)eviH?eviH = J e(Vg)eviHeviH? = (—1)* ( ?2 Vd=1.
T2 (P2,d) o (P2, d) 2d(d)

If E=0p2(—1)® Op2(—1) ® Op2(—1) and He H?*(P?) is the hyperplane class, then

(_1)d+1
J e(Vg)eviH?eviH? = Vd=1.
Wo.2(F2,d) d

If E=0pi(—=1)@® Op1(—1) and He H*(P!) is the hyperplane class, then
1
J e(Vg)eviHeviH = Vd=1.
Mo (P ,d) d

These follow from (B.36) in Section [3.2 which relies on Theorem (5], the equivariant version
of Theorem above. The first of these equations implies the first statement in [KIPa,
Proposition 2] by the divisor relation of [MirSym, Section 26.3], the second recovers the first
statement in [PaZ, Lemma 3.1], and the third implies the Aspinwall-Morrison formula.

1.2 Outline of the dissertation

Chapter ] presents the facts about symplectic toric manifolds needed for the Gromov-
Witten theory parts of the dissertation. These are Proposition and Remark 210 in
Section 211, Propositions 2.14], 2.16] and 217 in Section 2.2] and Corollary and Propo-
sition 221] in Section 23l This chapter is inspired by the view in [Gi2] of a symplectic toric
manifold as given by a matrix and the choice of a certain regular value together with the
holomorphic charts of [Ba]. It contains proofs of all statements or references to the ones
that are omitted. The reader interested only in the Gromov-Witten theory part may want
to skip all proofs in Chapter 2

Section [3.2] gives formulas for the one-point GW generating functions Zv777 Z] of (L9) under
an additional assumption in terms of explicit formal power series constructed in Section [3.11
It begins with a short setup.



The explicit GW formulas of Section B.2l and Theorem [L.3]above follow from the equivari-
ant statements of Section 4.2l In particular, equivariant versions of Zn and Z, are expressed
in terms of explicit power series constructed in Section LIl Chapter d also begins with a
short setup.

An outline of the proofs of the equivariant theorems of Section is given in Section .1l
The remaining sections of Chapter [ provide the details.



Chapter 2

Overview of symplectic toric
manifolds

This chapter reviews the basics of symplectic toric manifolds and sets up notation that
will be used throughout the rest of the dissertation. It combines the perspectives of |Au,
Chapter VII|, [McDSa, Section 11.3], |[Ba, Section 2], [CK|, Section 3.3.4], [Gi2], |Gi3], and
[Sp, Sections 5,6].

Sections give the definition and describe the basic properties of a compact sym-
plectic toric manifold. Section 2.3 is a preparation for localization computations in a toric
setting; it describes the fixed points and curves and the equivariant cohomology.

2.1 Definition, charts, and Kahler classes
Throughout this dissertation, k and N denote fixed positive integers such that k<N and
[N]={1,2,...,N}.

If veR* (or veCY) and je[k] (or je[N]), let v;€R (or v;€C) denote the j-th component
of v and define
supp(v) = {j: v; #0}.
If J<[N], let
R/ = {UERN: supp(v)gj} ~ R, C’ = {zeCN: supp(z)QJ}ECM.

If A= (aij)ie[r),je(n] is @ kx N matrix and J < [N], denote by A; the kx|J| submatrix of A
consisting of the columns indexed by the elements of J. Let
L
Wstd = 5 ledzj A d?j

be the standard symplectic form on CV. Let

HMstd : cN — RN, ,ustd(zla ) ZN) = (’2’1’27 SR ‘ZN|2)



be the moment map for the restriction of the standard action of TV=(C*)" on (CV, -2 wya),

(t1, .. tn) (215 -5 2n) = (bizn, - - Even),

to (SH)N=TV.
An integer kxN matrix M = (m;;)ie[r] je[n] induces an action of Tk =(C*)* on (CV, —2wsa),

(B ) (21 o) = (P gy gy g ()
the moment map of its restriction to (S*)*<T* is
par = M o pigq: cYN — RF
If in addition TeR”, let
P{ = M7 (1) n (RZ*)Y,

)?X/I =CN - U c’ = {ZE(CN: (Cs“pp(z)m,u;}(T) ;é@}, Xy = )?X/[/Tk; (2.2)

JS[N]

C npyf (1)=2

see diagram (2.3]). By Proposition below, X7, is a compact projective manifold if the
pair (M, 7) is toric in the sense of Definition Bl In this case, u_;(Pf;)/(S')* has a unique
smooth structure making the projection

tigea(Pip) — by (Prp)/(SY)

a submersion. With this smooth structure, p_:(Pf)/(S')* is diffeomorphic to X7, via a

diffeomorphism induced by the inclusion p_}(Pf;) < X7,. We summarize this setup in a
diagram:

Pi=M~(1)n(R>")"

|

it () =g (P} X, ——CV o (R70) N RV (2:3)
projection i l projection Y. J] M
—1 . .
sy ) difleo , x7, RF57

Given a pair (M, 7) consisting of an integer kx N matrix M and a vector T€R*, we define

¥ = {Jg[N] : ]J]zk,P]QmRJ#@}
(2.4)
= {JQ[N] I =k, Jve M7 (1) (RZO)Y s.t. supp(v)gJ}.

Definition 2.1. A pair (M, T) consisting of an integer kx N matriv M and a vector TeR*
is toric if



(1) T is a regular value of uy and Pf;# &;
(1i) det Mye{£1} for all JeVy;;
(iii) Py ={0} (= Pj; is bounded).
A toric pair (M, 1) is minimal if
(i) P nRWI=UY £ o5 for all je[N].
If a pair (M, 7) satisfies in Definition 2.1] above, then

2eCY, supp(z)2J forsome Je¥y, = 3IteT* suchthat (¢t2);=1 Vjeld.

If (M,7) is a toric pair, then a point z € CV lies in )N(X/[ if and only if supp(z) =2 J for
some J € ¥ and the TV-fixed points of XJ, are indexed by ¥}}; see Lemma and
Corollary 220 a )l

Proposition 2.2. If (M,7) is a toric pair, then X}, is a connected compact projective
manifold of complex dimension N —k endowed with a TN-action induced from the standard
action of TV on CN.

Proof of Proposition[2.2. By Lemmas 2.5(a)| @, and below, X7J, is a connected, com-
pact complex manifold. Tt admits a positive line bundle by Lemmas 213, 27(0), and
below. By the Kodaira Embedding Theorem |GriH, p181], X7, is then projective. [l

Remark 2.3. If X is a compact symplectic toric manifold in the sense of |Ca, Defini-
tion 1.1.15], then the image of its moment map is a Delzant polytope P (a polytope with
certain properties [Ca, Definition 1.2.1]); see |Atl, Theorem 1] or [GuS, Theorem 5.2]. This
polytope P determines a fan ¥ p, which in turn determines a compact complex manifold Xy, ,;
see |Au, Section VII.1.ac|. This complex manifold Xy, is endowed with a symplectic form,
a torus action, and a moment map with image P making it into a symplectic toric manifold;
see [Au, Theorem VII.2.1]. Moreover, this symplectic form is K&hler with respect to the
complex structure, as stated in [Gi2, Section 3] and can be deduced from [Au, Chapter VII].
Since X and Xy, have the same moment polytope (i.e. image of the moment map), they
are isomorphic as symplectic toric manifolds by Delzant’s uniqueness theorem |[De, Theo-
rem 2.1]. On the other hand, Xy, = X, for some minimal toric pair (M, 7) by the proof
of [Au, Theorem VII.2.1]. Thus, a compact symplectic toric manifold (X?", w, (S*)™, 1) in
the sense of [Ca, Definition I.1.15] admits a complex structure J so that (X,w, J) is Kahler
and (X, J) is isomorphic to X, for some minimal toric pair (M, 7).

Lemma 28 relies on parts|(4)|and |(7)|of Lemma 24 below which in turn rely on the other
parts of Lemma 24l Lemma [2.9]is based on Lemma [2.8 and Lemma 27(d)| Lemma

follows from Lemma 27(a)] while the proof of Lemma uses Lemma 27 ¢)]

For t=(t1,ty,...,t,)€TF and p=(p1,p2, ..., px) EZF, let
tP =

Lemma 2.4. Let (M, 1) be a toric pair.



(a) The subset P, (R®°)N is a polytope (i.e. the convex hull of a finite set of points).
(b) Let neR¥ be any reqular value of pyr. If we PY,, then
M : {veR": supp(v) < supp(w)} — R*
is onto. In particular, if we Py;, then |supp(w)|=k.
(c) If Je ¥y, then J=supp(y) for some yeuy; (7).
(d) If JS[N] and supp(v) <= J for some ve P, then supp(w)=.J for some we Py,.
(e) The polytope P, has dimension N —k.
(f) If v is a vertex of P}, then supp(v)€¥}].
(g) If Vertices), is the set of vertices of the polytope Pf;, the map
supp : Vertices), — ¥7;, v — supp(v),
18 a bijection.
(h) If yepuyj (1), then supp(y)2J for some Je ¥},
(i) Let zeCN. Then, ze)?jf/[ if and only if supp(z)2J for some Je V.

(i) Let I, Je ¥y, and t™ eT*. If || — oo and there exists § >0 such that |t§n)| =4 for
all i [k], then |(t™)M1 M| is unbounded for some je J.

Proof. [(a)| By |Zi, Theorem 1.1], a subset of R" is a polytope if and only if it is a bounded
intersection of half-spaces. Thus, the claim follows from in Definition 211

@ This is immediate from the surjectivity of d .

This follows from the second statement in @

Assume that supp(v) S 1 S& J and that there exists v'€ Pj, with supp(v')=1. Let [; o1
with [; € J and |I1]|=|I|+1. We show that there exists we Pf; with supp(w)=1I;. By the first
statement in [(0)] there exists w'e M~'(7) cRY with supp(w’) =1I;. Let w= (1—\)v/+w'
with AeR satisfying

/

w.
>0 if jel,—I and A<1—v—j)<1 vijel.

J

By together with the second condition in |(i)| in Definition 21l supp(w) = [N] for
some we P, and thus dim Pj; = N —k, since M has rank k by [(0)]

By , |supp(v)| < k; the opposite inequality follows from the second statement in @
@ By supp(v) € ¥} for every vertex v of P, . The map supp is injective by in
Definition 2.1] and surjective by [(¢)] and [(ii)] in Definition 2.1

By [Zi, Proposition 2.2], every polytope is the convex hull of its vertices; since psq(y) € Pj;
and Pj; is a polytope by @,

ﬂstd(y) = 2 )\svs
s=1

10



for some vertices vy, vy, ..., v, € Py, and Aj, Ag, ..., A\, € R7?. Then, supp(y) 2supp(v;) and
supp(v1) € #37 by [(f)}
If ze X[, there exists ye C"PP) 1 (7). By [(A)] there exists Je ¥} with JSsupp(y).
Since supp(y) S supp(z), it follows that J<supp(z). The converse follows from
By [(c)} there exist v,we (R*®)* such that Mv=7=M;w. By in Definition 211 it
follows that there exists ae (Z>°)* such that M; ' M ae (Z>°)".

Assume by contradiction that |(¢(™)Mr 1MJ'| is a bounded sequence for all je.J. By passing
to subsequences, we may assume that |(¢™)M7 M| is convergent for all je.J. It follows that

I1 |(F)Mi M5 || () My Mal (2.5)

jed

is also convergent. On the other hand, by passing to some subsequences, we may assume
that for each i€ [k], \tg")\ has a limit (possibly ). Since at least one of these limits is c
and none is 0, the right-hand side of ([2.5]) diverges leading to a contradiction. O

For ze CN and J={ji <jo< ...< jn} S[N], let
27 = (2415 Zjgs -1 %)
For z€ X7, let [2]€ X7, denote the corresponding class.
Lemma 2.5. Let (M, 1) be a toric pair.
(a) The space )N(]Q is path-connected.
(b) The torus T* acts freely on )N(]@
(c) The subset Ty} (1) of CN is open.
(d) The subset T*-p3 (1) of X7, is closed.
(e) There is a unique map
phr X5 — (R7O)F < T* st pi(z)zept(r) VzeXl,.
Furthermore, this map is smooth.
(f) The quotient py; (7)/(SY¥ is a compact and Hausdorff.
(g) The inclusion py} (1) — X7, induces a homeomorphism
par (7)/(SN* — Xy (2.6)
In particular, X7, is compact and Hausdorff.

(h) The space X7, is a complex manifold of complex dimension N —k.

11



Proof. @ This holds since )N(& is the complement of coordinate subspaces in C.
[(0)|Let t€ T* and z€ XJ,; be such that t-z= 2. By Lemmal2Z4[(7)| there exists J € ¥} such that

J={j1<...<jr} Ssupp(z).

By in Definition 21 the group homomorphism

T — T% ¢ — (M, M),
is injective and so t=(1,1,...,1).
For each zeCV, let
|21] 0
M, =M
0 |2 |

If ze u;/ (1), supp(z) 2 J for some Je ¥y, by Lemma24(h)] Since M is invertible by [(ii)] in
Definition [ZT], so are (M.); and M,(M,)". Since the differential of the map

BB (o)
at t=(1,...,1)e(R>")* < T* is 2M,(M.,)¥, the differential of the map
Tk x M]T;(T> - Rk? (t,Z) - ,UM(tZ)7

is surjective at (1,z2) for all ze /(7). Since the restriction of this differential to the second
component vanishes, the differential of the map

Tk X M]T;(T) - CN? (t,Z) — 1z, (27>

is surjective at (1,z) for all zeu,; () and so, by the Inverse Function Theorem, the image
of ([21) contains an open neighborhood of py; () in CV.
Let 2(™e X7, and t™ eT* be sequences such that

lim 2™ = ze X7, and y™ =™ e L),

n—-o0

By in Definition 21 we can assume that y™ — y e u,; (7). By Lemma 27[(7), there
exist J(y), J(z)€e ¥}, such that

J)={h<...<je} Ssupp(y) and  J(2) < supp(2);

we can assume that J(y), J(z) € supp(y™) = supp(z™) for all n. By in Definition 2.1],
M) is invertible and so

o ().
t§n>:(g<n>)(MJ<y>)i, where ({<n>)izgy )i Vi=1,... k.

Since (y™); — y; # 0 for all j € J(y) and (2™); — 2;, [(#™);] = § for some § € R>?
and for all n and 4. If [(£{™)| is not bounded above, after passing to a subsequence we can

12



assume that [ — o0, By Lemma 2.4[()] there exists je.J(z) such that, after passing to
a subsequence,
(0N Ms| = |(F) Mo ™| — oo,

Since t™-2(") — y it follows that (2(™); — 0 and so j ¢supp(z), contrary to the assumption.
Thus, {f{(™} is a compact subset of T*. After passing to a subsequence, we can thus assume
that t) —teT*. It follows that

t-z= lim t™. lim 2™ = lim ¢™.z(™ lim y™ =y.

n—--a0 n—->-=ao n—->-=ao n—-o0

Thus, ze T*- uy} (7).
By the proof of 7 is a regular value of the smooth map

&: (R)" x X, —RY (1.2) — pult-2),

and the projection map my: ®(7) —> X7, is a submersion. By [(a)} and [(d)} this map
is surjective. We show that it is also injective; by @, , and this is equivalent to
showing that

(ri,...,r)eRF 2 (e ... e™)-z € uyt(7) — r; =0 Vi=1,...,k,

where the action of (e™,...,e™) e T* on z is defined by (1)) as above. We present the
argument in the proof of [Ki, 7.2 Lemma]. Let

fTR—R,  f(u)= <MM [(e", ..., " )-z], (11, .. ,rk)> VueR.

Since f(0)= f(1), there exists upe (0, 1) such that f’(uy)=0. Since

N
f'(uo) =2 Z gPuol(r T’“)’Mj><(7‘1, T, Mj>2|zj|2,

j=1
f'(uo) = 0 implies that {(r1,...,rg), M;)z; = 0 for all j € [N]. By Lemma 2(7)| there
exists J € ¥} such that J < supp(z) and so {(rq,...,7%), M;» =0 for all jeJ. By in
Definition 1], this implies that 7; =0 for all i€ [k]. The map p}, is m, ' composed with the
projection (R%)kF x X7, — (R>0).
Since /(1) is compact by in Definition 2.1} so is the quotient space puy; (7)/(S*)F.

If p is the quotient projection map and Ac iy, (7) is a closed subset,
p(p(A)) = (S A= {t-z: ze A, te(S")*}

is the image of the compact subset (S1)*x A in u,; () under the continuous multiplication
map

(81" x paf (1) — iy (7)
and thus compact. Since p,; () is Hausdorff, it follows that p~'(p(A)) is a closed subset

of uy/ (7). We conclude the quotient map p is a closed map. Since py; (1) is a normal
topological space, by [Mu, Lemma 73.3] so is puy; (7)/(S1).

13



[(9)] The map (2.6) is well-defined, since the inclusion s} (1) — X7, is equivariant under the
inclusion (S')¥ < T* and is continuous by the defining property of the quotient topology.
The map N

Xy — (1), 2 —py(2) - 2,
is equivariant with respect to the natural projection T* — (S')*¥ by the uniqueness property
in[(e)]and thus induces a continuous map in the opposite direction to (2Z.6). Since Pl pl(r) =
(1,...,1), the two maps are easily seen to be mutual inverses.

[(h)] We cover X7, by holomorphic charts as in [Ba, Propositions 2.17, 2.18]. For each Je€¥#}],
let

[N]—J = {iy<is<...<iy_y}, U= {zeC:supp(z)2J}, U;= U,/T",

_ i i Zin_
hJCU]—>CN k, hJ[Z]E — N — gy 71Nk . (28)
My =My, My~ M, My My,

By Lemma 24[(z)] the collections (U; : Je¥q) and {Uy : Je ¥} cover X7, and X7,
respectively. The map h; is well-defined. First, MJ_1 exists and is an integer matrix by
in Definition 211 Second, if teT*, 2eUy;, and J={j1 <jo< ...<Jjx}, then

—1ay _ —1ar. _ —Lar.
(12,7 20 1.2, = (<th1zj1> N M“”) ez,

_ “1a M M —M7'M;
_ M (M Mls)+MZSzJ T =2 T T Py, Vse[N—k].

The map hjl is the composition of the continuous maps

7~ project ~ if §=1
CN_k h; i projection U <h_1 ) _ Zg, 1 S5 VielNT.
J I 7 3), 1, ified ie[N]

The composition CN =% — U; lr, ON=k g obviously the identity. The other relevant
composition is given by U;3[z] — [y]€ U, where

MM i =g
Y = J is) o 59 V]E[N]
1, if ie J,

Let ¢, =2, for all re[k]; it follows that ¢-2=y.

If in addition J’€ ¥}, the domain and image of the overlap map h Joh;,l are complements
of some the coordinate subspaces in CV~*, and every component of this map is a ratio of
monomials in the complex coordinates. In particular, this map is holomorphic. ]

Remark 2.6. Let (M, 7) be a toric pair. The projection 7 : )Z']Q — X7, is a holomorphic
submersion; this can be seen using the charts (Z.8]).

Let K7j; be the connected component of 7 inside the regular value locus of ;.

Lemma 2.7. Let (M, 1) be a toric pair.
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(a) Let neR*. Then, 1 is a reqular value of pas if and only if n¢ M;(RZ)V for every
J[N] with |J|<k—1.

(b) The subset K7, of R is an open cone (i.e. an open subset of R* such that Ane K7,
whenever A\>0 and ne K}, ).

(c) For every ne Ki,;, Vyr="4.
(d) For every ne K}, (M,n) is a toric pair and X}, =X},

Proof. [(a)| If n is a regular value of par, n¢ M;(RZ)VI for every J < [N] with |J|<k—1
by the second statement in Lemma ZZJ(6)] Suppose n¢ M;(R=)/V! for every J < [N] with
|J| < k—1. We prove that for every v e P}, there exists J < supp(v) such that |J| =k and
det M; #0. Suppose not, i.e. det M ;=0 for all J<supp(v) with |J|=k. We show that there
exists v’ € P), with [supp(v’)| < k; this contradicts the assumption on n. If |supp(v)| = k,
there exists we M~(0) =RY such that supp(w) S supp(v) and w;, >0 for some jo€supp(v).
Let

A = min {Z)—] : jesupp(v) such that w; >0} .

J

It follows that v—Aw e Py, and supp(v—Aw) & supp(v). Continuing in this way, we obtain
v'e P}, with |supp(v')| <k.
@ This follows immediately from @
We show that the set {ne KJ, : ¥;} = ¥};} is open and closed in K}, and thus equals
K7,. It suffices to show that for any 2 <{J<[N]: |J|=k} the set

ek Vm=2 =) {nekiy  PhioR 2z} [ {nekj : PjoR/ =g}
Jep Jg[N¢]:\)}J|=k
J 7

is open. We show that the set
{neKj;: PR’ #z}

with J<[N] and |J|=Fk is open. Let 7/ be any of its elements and let we P!y AR’. By the
surjectivity of dy,pas, supp(w)=.J and det M #0; this shows that M;(R>%)* is open and

neM; (R) n K], S {neK}, : Pl AR’ # 3},

The set
{neKy: Pj,nR' =g} = Kj,—M,(R>")

with JS[N] and |J|=k is open as well.

Since Pf; # &, py (1) # & and so ¥y, # & by Lemma ZA4[(h)] Since ¥} # &, Vi) # &
by|[(¢)]and so Py, # &. Since (M, ) satisfies|(ii)]in Definition 211, by [(¢)]so does (M, n). Thus,
(M,n) is toric. The equality X}, = X7, follows from [(¢)| together with Lemma O

Lemma 2.8. Let (M, 1) be a toric pair.
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(a) The quotient py; (7)/(SYH* admits a unique smooth structure such that the projection
7y s HH(7) — ) /(ST 29)
s a submersion.
(b) There exists a unique symplectic form w, on uy; (7)/(S* such that

*
T Wr = Wstd 1,0

Hp (1)
where m, is the projection (2.9).
(c) The map (2.4) is a diffeomorphism.

Proof. [(a)| By [tD, Proposition 5.2], if G is a compact Lie group acting freely and smoothly
on a manifold M, then the quotient M /G carries a unique differentiable structure such that

the projection
M — M/G

is a submersion. Thus, the claim follows from [(i)] in Definition 2] and Lemma 2T(b)|
@ This follows from the Marsden-Weinstein symplectic reduction theorem |[MW, Theo-
rem 1].

By [(a)] and Lemma 2ZH(g)] it is enough to show that the restriction

A ) — XE
Har (1)

of the projection m: X7, — X7, is a submersion. This follows from the fact that the map
TkX:UJJT/[l(T) - XJ7\—/I7 (t,Z) - [Z]v

is a submersion whose differential at (¢, z) vanishes on T;T* x 0. This map is a submersion
because it is the composition of two submersions,

T x pyf (1) — X7, (t,2) —tz and 7: X[ — XJ,.

The former map is a submersion by the proof of Lemma 2.5 c)|, while 7 is a submersion by
Remark 2.6l O

If (M,7) is a toric pair, we abuse notation and denote by w, not only the form on
par (7)/(S1)¥ defined by Lemma ()] but also the form it induces on X7J,; via the diffeo-

morphism (Z6) of Lemma 2-§(c)] In this case, by Lemma 27J(d)| and Lemma 2ZJ(b)| for

every ne€ Kj;, wy is the unique symplectic form on X7, satisfying

W*wn}u&l(n) = wStd‘u;}(n)’ where 7: X}, — X}, (2.10)

is the projection; see also diagram (2.3]).

Lemma 2.9. Let (M, 7) be a toric pair. For every ne Kj;, w, is Kdhler with respect to the
complex structure on Xj;.
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Proof. The form w, is positive with respect to the complex structure on X7, by (2.10)

together with the equality T*- u;/(n) = X7, (justified by Lemmas and 2.7(d))), Re-
mark 2.0] and the positivity of wgg. O

Remark 2.10. If (M, 1) is a toric pair and J < [N], the pair (M, 7) is toric if and only
if Py # . In this case, X}, is a connected compact projective manifold of complex
dimension |J|—k by Proposition 2:21 It is biholomorphic to

X1 ()={[z]e X}, : supp(z) = J}

via the map

o
X7y, 2 [l — [()]e X5 (), where (14(2)), = {g i;]?w]“ (2.11)

if J={j1<ja<...<jr}. In particular, if (M, 7) is a minimal toric pair and M: is the matrix
obtained from M by deleting the j-th column, then X7, is a connected compact projective
J
manifold of complex dimension N —1. The map (2.I1)) identifies X}, with the hypersurface
J

Xu(IN1={j}) = D; = {lz] € X}, : =0} (2.12)
If Je ¥y with ¥ defined by (2.4]), then X7,(.J) is the point

1, if jed;

, (2.13)
0, otherwise.

[J] = [z1,---,2n], where z; = {

This follows from Lemma and in Definition 211

If J<[N] is such that P[,nR’ # & and |J| = k+1, then X7,(J) is a one-dimensional
complex manifold and there exist exactly 2 multi-indices [ € ¥}, with I < J. The latter
follows since multi-indices /€ ¥y} with I = J correspond bijectively via ¢; to elements of ¥} ,
which in turn correspond to the vertices of Pf; by Lemma 24(g)} Py, has dimension 1 by

Lemma 24e)]

Remark 2.11. If (M, 7) is a toric pair with M a kx N matrix, then (V M, V) is a toric
pair whenever Ve GLg(Z). In this case, ¥j; = %Yy and X7, is biholomorphic to XV/7,. The
pair (V M, V1) satisfies the first condition of|(i)|in Definition 2], since V' is an isomorphism.
Since Pf;=PYl;, ¥y =" and so (VM, V) satisfies the second condition of [(i)] and
in Definition 2.1] as well.

Remark 2.12. If (M, 7) is a toric pair with M a kx(k+1) matrix, then X7J, is biholomorphic
to PL. In order to see this, note first that |#};| =2 by Lemma and Lemma 24[(¢)] By
Remark 2.10] we can assume that M; =1d; for some J e #};. The claim now follows from
[2.8): X7}, is a compact manifold covered by two charts

hJ:UJ:)C, h[IU[;C

satisfying h;(U;nU;) =h(U;nU;) =C* since IuJ =[k+1] and hyoh;'(2)=2*! by in
Definition 211
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2.2 Cohomology, Kahler cone, and Picard group

Throughout the remaining part of this dissertation, (M, 1) is a toric pair. In order to
complete the proof in Section 2.1 that X7J, is projective, we describe some holomorphic line
bundles over it. For each peZ*, let

L,= X7, xp C = )N(]TWX(C/ ~, where (z,¢) ~ (t7'-2,tPc), Vte T (2.14)

Since 7 : X, —> X7, with 7(2) = [z] is a T*-principal bundle by Lemma 2H(5) and Re-
mark 2.0]
LP—)X;\—/D [Z,C]—> [2]7

is a holomorphic line bundle. Furthermore,
Lo = Oxy,, Ly =1L, Ly ® Ly = Lpyr.
The line bundle L_;;; admits a holomorphic section
sj: Xy — Lo, (2] — [2, 2] (2.15)

Since s; is transverse to the zero set by ([Z8) and s7'(0) = D; by 2I2), ¢1(L_n;,) =PD(D;).
For all je[N] and i€ [k], let

U] = Cl(L,M].), Vi = Leia Hz = 01(7::)7 (216)
where {e; : i€[k]} = ZF is the standard basis. Thus,

k
Lo, =™ @%"™ 0. .@y"™ = U;j=>myH, Vje[N]. (217)

=1

Lemma [2.13] below is used in the proof of Proposition in Section 2.1 and to describe the
Kahler cone of X}, in Proposition 2.16] below.

Lemma 2.13. For every neZ*n K7,

e(Lg)= o,

where wy, is the Kdhler form defined by (2.10).

Proof. We follow closely the proof of [Au, Proposition VIL.3.1]. Let
I, — i ()8!

be the pull-back of L_, via the diffeomorphism (2.6]) of Lemma and

1 -
L‘En =yt () x_p ST B
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be its sphere bundle. Let

fiag (m) x St 1ag (1)
(1‘/ ‘7“1

51 p s (n)

L,n (%1)k

be the natural projections.
Let efé be the fundamental vector field on yj/(n) x S' corresponding to e; € R for the
T*-action given by (214]) with p=—n. Thus,

d
=4

Lodt

(exp(ite;) - (x1+iy1,. . ., TN +iyn, T+iy))
=0

= Y\ ox; T oy; ‘7oz “oy)’

where z;,y;, z, y are the standard coordinates on C =(R?)" and C=R?, respectively. Let

N
a= Z(—:z:jdyj +y;daz;) € QF (uy) (0)) and o= zdy—ydz e Q'(Sh).
j=1
Since 4 (a @ o) =0 on p;; (n) x S* for all ie[k], « @ o descends to a 1-form (a @ o)g1 on

L 17] This form is a connection 1-form for the principal S'-bundle L® 177 because it satisfies
ﬁx#<a@0)51=0, Lx#(a@g)slzl,

where
0 0
You * m@y
is the fundamental vector field for the S'-action on Lﬁ; as a principal S'-bundle; see [Au,
Exercises V.4,V.5]. Let  denote the curvature form associated to (a @ o)si. By |Au,
Section V.4.c], it is uniquely determined by

pB=dla®o)gs.

X# =

Since ¢*d((« @ 0)s1) = —2p*wstd, B = —2w, by the uniqueness of reduced symplectic form
wy, of Lemma ZF(b)] Thus, by |[Au, Proposition VI.1.18] and |Au, Section VIL.5.b],
-1 1 _
aL2,) = 2218 = ~lwle Bl 0)/(5')9),
as claimed. n
We define

£ = {Jg[N] : ﬂDj=@}:{J§[N] MPEOARO =g} (218)

jed

the second equality follows from Lemma 24:)|(c)(d)| and ([ZT2]).
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Proposition 2.14. If (M, 7)is a toric pair,

Q[Hy,Hsy, ..., Hg, Uy, Uy, ..., Up]

: :
(Uj — > myiH;, 1<j<[N]) + (H Uj: Jeg}&)
i=1

jedJ

H* (X3)

lle

If, in addition (M, 1) is minimal, H*> (X7, Z) is free with basis {Hy,Hy, ... Hy}.
Proof. This follows from [McDSa, Section 11.3] together with Lemma 2§ (c)| O

Remark 2.15. By Proposition 214 H*(X},) is generated as a Q-algebra by {Hy, ..., Hy}.
Along with in Definition 211 this implies that H*(X7],) is generated as a Q-algebra by
{Ul, R ,UN}.

Proposition 2.16. If (M, ) is a minimal toric pair, there is a basis {c;(L_,,): 1€ [k]} for
H*(X7,) formed by the first Chern classes of ample line bundles, with L_,, as in (2.14). In
particular, the Kahler cone K}, of X}, has dimension k.

Proof. By Lemmas 213 229, and E(0)(d)], there exists a subset {ny,...,n:} S Z*, linearly

independent over Q, such that the line bundles L_,  are positive. The first Chern classes of
these line bundles form a Q-basis of H*(X7},) by the last statement in Proposition 214 [

Proposition 2.17. If (M, 1) is a minimal toric pair, the Picard group of X7, is free of rank
k and has a Z-basis given by v1, ...,y defined by (2.14).

Proof. The first Chern class homomorphism is an isomorphism because h%!(X7,) = h%%(X},) =
0 which in turn follows from Proposition 2141

Remark 2.18. If (M, 1) is a toric pair, there is a short exact sequence

N
L 0% E, SorxT
0— OF @L,Mj TX; — 0. (2.19)
]:
Specifically, we can take
F([Z]; 61;) = [27m1121,mi222, e 7miNZN] Vie [k]7 [Z]EX;\—/D

N
0 ~
G(Z7y17--‘7yN) Ezy]dzﬂ- (62 )7 VZEX]Q7 y17"'7yNE(C7
j=1 J'?

where {¢; : i€[k]} is the standard basis for C¥ and 7: X7, —> X7, is the projection. Thus,

7=1
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2.3 Torus action and equivariant notation
The equivariant cohomology of a topological space X endowed with a continuous T™-action
is
w(X)=H* (ETNXTNX> )

where ETN = (C* — 0)V is the classifying space for TY. In particular, the equivariant
cohomology of a point is

Hix(point) = Hiy = H*((P*)Y) = Q[av, ..., an] = Q[a],

where o = ¢ (75 Op» (1)), 7 : (P*)N — P” is the projection onto the j-th component and
Op= (1) is dual to the tautological line bundle over P*. The equivariant Euler class of an
oriented vector bundle V — X endowed with a lift of the T"-action on X is

e(V) = e(ETY xqw V) € Hin (X).

A TV-equivariant map f: X — Y between compact oriented manifolds induces a push-
forward map
f* . 'E*N (X) N H’;xdle—dlmX<Y)

characterized by
| =]t vne )R (221)

If Y is a point, f, is the integration along the fiber homomorphism §, : H2 (X) —>H§,}dimx )
The push-forward map f, extends to a homomorphism between the modules of fractions with
denominators in Q[«]; in particular, the integration along the fiber homomorphism extends
to

| Hv () @ 00) — Q@) where Q) = Qlan...an)

is the field of fractions of Q[a]. If X is a compact oriented manifold on which TV acts
smoothly, then, by the classical Localization Theorem |[ABo]

ol | 0= N | s, Vo), (2.22)

X Fex™ Nryx)

where the sum runs over the components of the TV pointwise fixed locus XT" of X.

Lemma 2.19. If (M, 1) is a toric pair, (TN -z/T*) is diffeomorphic to TIFPPEI=k for cpery
ze X},

Proof. By Lemma 2.7[(i)] and in Definition 2] there exists J S supp(z) with |J|=k and
det M;e{+1}. The map

TN'Z —Mles
T 2wl — (yJ

) ¢ Tlsupp(2)|—k
sesupp(z)—J
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is a diffeomorphism with inverse

1, if j¢supp(z),
=, lf] = jsa

Js
L ifjed,

%j

TN .z
Tk ’

>

Tisupp(2)l=k 5\ [t1z1,...,tn2n] €

where tj

183

and supp(z) —J={j1 <...<Jjsupp(z)|—k}; see the proof of Lemma 25(/) in Section ZI O
Corollary 2.20. (a) The T"-fized points in X7, are the points [J| of (Z13).

(b) The closed TN-fived curves in X3, are the submanifolds X5,(J) of Remark with
|J| = k+1; all such tuples J are of the form J = Iy uly with with Iy, Iy € ¥}, and
\I1n 15| =k—1. These curves are biholomorphic to P'.

Proof. The first two statements follow from Lemma 2.J9 The third follows from the last
part of Remark 210 The last follows from Remarks 210 and O

We next consider lifts of the standard action of TV on X7, to the line bundles L, of
(214) which will be used in describing the equivariant cohomology of X7,. One such lift is
the canonical one

(tla"'7tN)'[Zl7"'azNac] = [t1217~"7tNZN7C] (223)
for all (t1,...,tx)€TY, (21,...,2x)€ X, and ceC. We denote by

ETY X iy Ly —> ETY xonv X7,
the induced line bundle. Another lift is given by
(t1y ..y tn)- 21, v 2n, ] = [tz ... tvan, tic] (2.24)
for all (ti,...,tn)€TN, (2,... ,ZN)G)?]\-J, and ceC. We denote by
ETY x; L, —> ETY xqv X},
the induced line bundle. These line bundles are related by isomorphisms

(BTN X iiy Lp) Q(ETYN x; L) = ETY x Ly, (2.25)
ET" x; Ly = prin} Ope(—1), (2.26)

where pry : ETN xpn X7, — (P)" denotes the natural projection. The first of these follows
by considering the isomorphism

Lo®Ly—> Lp, [z,c1]® [z, 2] — [z, c1c2] Vze X1, c1,c06C

which is TV-equivariant with respect to the TV action on L,®Lq obtained by tensoring
(223) with (224)) and the action (Z24) on L,. The second is given by

ETY x;Lo 5 (e, z,¢) — (e, 2, ce;) € primiOpo(—1) Ve=(ey,.. L en)eETY 2e X7, ceC.
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For all je[N],ie[k] and with v; defined by (2.16), let
D] =ETY %, Lory, %=ET %y w=a([Dyl), wi=ci(vi)eHin(X7,). (2.27)
For each Je ¥}, the inclusion [J]<— X], induces a restriction map
(), |y Hin (X)) — Hin([J]) = Hix. (2.28)
By 2I7), @.23) and [2.26),

uj = Zmijxi—aj Vje[N]. (2.29)

For each j e [N], the section ([2I5) of L_y; — X7}, is TN-equivariant with respect to the
action (2:24) and thus induces a section s; of [D;] over ETY x v X7,. If Je¥}; and je€ J,
s; does not vanish on ETY x ¢~ [J] and thus

JeVy, — u;(J) =0 Vjed. (2.30)

On the other hand, if J e &f;, with £F; defined by ([2I8), then @®,.;s; is a nowhere zero
section of (B ;[D;] and thus

Jegy, = |uw =0eHn(X]). (2.31)

jedJ
Proposition 2.21. Let (M, 1) be a toric pair.

(a) If T=(j1<...<jr)eV5y,
(#1(7) 22(9) - an(D) = (g g ooz ) M

(b) With x; and u; defined by (2.27),

. . Qla] [z1, 2, . .., Tg, ug, Uz, . .., UN]
e (XT,) = - . (2.32)
(uj—Zmijxi—i-aj, 1<]<N)+(HUJJE(€X4>
=1 jed

If in addition Pe H}y(X7,), then P=0 if and only if P(J)=0 for all Je ¥};.

Proof. [(a)] This follows from [229) and (2.30).
[(0)| By Remark 215, there exists B < (Z>°)* such that {HP : pe B} is a Q-basis for H*(X],).
The map

H*(X},) 2 H? — 2P € Hin(X}) VpeB

defines a cohomology extension of the fiber for the fiber bundle ETY x¢v X7, — (P*)V.
Thus, by the Leray-Hirsch Theorem [Spa, Chapter 5], the map

Hix®H*(X],) 3 PQHP —> PaP e Hiv(X],) VpeB
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is an isomorphism of vector spaces. The relations in (232) hold by (229) and (231]). We
show below that there are no other relations and simultaneously verify the last claim.
Suppose Pe Hxy(X7,), P(J)=0 for all Je7};. By in Definition 2] any element P
of Hix(X7,) is a polynomial in uy, ..., uy with coeflicients in Q[a]. If Je ¥}, and je[N]-J,
then
u;(J) =—aq; (2.33)

a;=0 VieJ

by (229) and [(a)] By 230) and (Z33), whenever uf! ... u$* is a monomial appearing in P
and Je ¥, {i1,...,is}nJ # . This shows that

PeHin(X}y),P(J)=0 VJe¥y — PeH/,
where H’ is the ideal
H = (uil...uis Hin, L inJ# S VJE%&)CQ[O[][UM...,UN].

Since H'< ([ [,,u; : Je&fy) by Lemma 2.4[4)]

PeH:x(X]),P(J)=0 VJe¥y  — Pe<]_[uj;Je5;4).

jedJ
By (231)), this implies that P=0e Hiy(X},) if P(J)=0 for all Je#}]. O
For every Je 7}, let
¢JE H Uj.
JE[N]—-J

By 2.19) and (2.30),
65(0) = (TXE). ) =0 ¥ IeH—17} 2.31)
Thus, by the Localization Theorem (2:22)),
J Poy— P(J) ¥ PeHW(X],), Je, (2.35)
X

i.e. ¢; is the equivariant Poincaré dual of the point [J]e X7,.

2.4 Examples

Example 2.22 (the complex projective space PN~ with the standard action of TV). If
M=(1,...,)eRY and 7eR",
then
par c CN — R, () =|zP+. .. +|2n ] Py, = {ve (RBO)N: vt .+UN=T} ,
(M, 7) is a minimal toric pair, )N(]Tw =CN—{0},

N

Xiy =PV = (5771 (VT))/S, PV = Qlay, .. an][z]/ ] [(e—ar).
k=1
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Example 2.23 (the Hirzebruch surfaces F,=P (Op1 @ Op1(k))). If k=0,
/0011 (1
M:<1 10 k) T:(k+1)’

(t1,t2) - (21, 29, 23, 24) = (t2z1, tazo, t1 23, tils 24)

2+ |z4)?
oL R2 — 23] 4
o € 8 n2) = (1 P )

then

Pl = {ve (R>0)4: v3t+vg=1, vl+v2+kv4=k+1} ,
(M, 7) is a minimal toric pair,
X, =cCt- <(C2><0u0><(C2), X7, = X7, /T2
The map
X7, > Fy, [21, 20, 23, 24] — [[zl, 29], 23, ((zl, 29)®F — 24)] , (2.36)

is a T*-equivariant biholomorphism with respect to the action of T* on F;, given by

(ti,t2, t3,ta) - [[21, 22], 23, 0] = [[tlzla toza], tazs, (t1yr, taya)®" — tap ((2/17 y2)®k)] ;
V[Zl, ZQ] € Pl, Z3 € C, @Y e Opl (kf)‘

[21,22]"
By Proposition 2.14],
Q [Hh H27 Ula U2a U37 U4]
(Uy —Hy, Uy — Hy, Us — Hy, Uy — Hy — kHy) + (U1 Ug, UsUy)
Q [H17 HQ]
(H3, Hy (H; + kH))

H* (Fy) =

Since the toric hypersurfaces Dy and D3 defined by (2Z.12) intersect at one point,
H,H, = U,U; =1, H?=—kH,Hy=—F.

The isomorphism (2.36) maps D4 onto Ey and D3 onto E,,, where
Ey = image of the section (1,0) in Fy,

E,, = closure of the image of (0,0) in Fy,

where o is any non-zero holomorphic section of Op: (k).
Since ¥y = {(1,3),(1,4),(2,3),(2,4)}, by Corollary 220, the T*-fixed points in X}, are
[1,0,1,0],[1,0,0,1],[0,1,1,0], and [0O,1,0,1],
while the closed T*-fixed curves are all 4 toric hypersurfaces D;, Dy, D3, and D4. By
Proposition 2.21(b)]
$4 (]Fk)E @[a17a27a37a4][x17'r2]

((xQ —ay)(ry — ), (1 — ag)(z1 + kxe — oz4)> ‘
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Example 2.24 (products). Let (My, 1) and (Ms, 72) be (minimal) toric pairs, where M is
a kj x N; matrix. Define
M, 0 )

M1®MQE(O ‘1\42

Then, (M; @ My, (11, 72)) is a (minimal) toric pair,
PG = Poox PR, and X\ = X< X7
The projections 7;: CM*+2— CYi induce a TN *N2_equivariant biholomorphism
Xpa 2 1 (Im@)L [m:)]) € X7, x X7,
where the action of TV*™2 on X7} x X7? is the product of the standard actions of TV on
X7 and of TV on X7 . By (24) and Lemma 2.4(a){(g)]
Vi = Vb X Vot
Thus, by Corollary ), the TN +N2_fixed points of XJ\??W are the points ([[1], [I2]) for
all I, e ”//]\:[J , with [I;] deﬁned by [213). By Corollary 2.20(b)| and the second statement in

Lemma 24[(0)] the closed TN ™2_fixed curves in Xz(\/,[ ® ]&[ are all curves of the form C x [I5]
and [[;] x CQ, where C; is any closed TVi-fixed curve in X A}j and [ je”//]\z is arbitrary.

In particular, PM~!x. .. xPN~! is given by the minimal toric pair

N1 columns Ns columns
—N —N
11...11 00...00 71
00...00 - 00...00 | ,_[™]|cmoye (2.37)
5 TOWS : . : :
00...00 00...00 Ts
00...00 11---11

By Proposition 2.2T)(b)]

D 1<i<s, 1< <Ni|[z1,...,x
< gty - U 1SiS8 1< <N e, ]

( <xi—0z§~)>,1<i<3>
j

Remark 2.25. Let 0 : [N] — [N] be a permutation and (M, 7) be a (minimal) toric pair.
Let

(2.38)

.

=g

M? = (mw(]))11<]fzkv = Mold”

be the matrix obtained from M by permuting its columns as dictated by o. Then (M7, 7)
is a (minimal) toric pair as well and Id°  induces a biholomorphism between X7, and X7,
(since ppre = ppr0ld?) equivariant with respect to

TV — TV, (ti,ta,....tn) — (to)sto(@)s-- - to(n)) -

In particular, taking k=0 in Example 223 gives - via [237) - P! x P! as expected, since
the corresponding matrices differ by a permutation of columns.
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Chapter 3

Explicit Gromov-Witten formulas

For the remaining part of this dissertation, X7], is the compact projective manifold defined
by (22)), where (M, 7) is a minimal toric pair as in Definition 2.1l Theorem [3.5]in Section

below computes the one-point GW generating functions Zn and Zn of (L9) if ne H*(X7,) is of
the form n=HP, where {Hy, ..., H;} is the basis for H?(X],; Z) referred to in Proposition 214
and

HP =HY . HYF Vp=(pi,...,pn)e(Z70)"

We denote . . . .
Zp = ZHP and Zp = ZHP. (31)

Section B.I] constructs the explicit formal power series in terms of which Zp and Zp are
expressed in Theorem B.5 Throughout this construction, which extends the constructions
in [Z1, Section 2.3] and [PoZ, Sections 2,3.1] from P! to an arbitrary toric manifold X7,

we assume that
vep(d) =0 VdeA, (3.2)

with vg as in (8.3]), and identify
Hy(X7;:Z) = 7F

via the basis {Hy,...,Hg}. Via this identification A< Z* with A as in (LG).

3.1 Notation and construction of explicit power series

If R is a ring, we denote by R[[A]] the ring of formal Laurent series in h~! with finite
principal part:
R[[A]l = R[[h"']] + R[A].

Given f,ge R[[h] and s€Z>°, we write
s—1
f=g modh* if f—geR[h]+{2aih_i:aieR Vie[s—l]}.
i=1

If R is a field, we view R(h) as a subring of R[[A]| by associating to each element of R(h) its
Laurent series at =1 =0.
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With the line bundles L; as in (LH) and U, as in [216) and de Hy(X],;Z), we define
d) = <Uj, d>, Lz <Cl >
al ! (3.3)
= Dj(d)—z Lf(d)+2 L (d).
=1 i=1 i=1

If in addition Y < X is a one-dimensional submanifold, let
D;(Y)=D;([Ylxg,), Li(Y)=LF([Vixg,),

where [Y]xr € Ho(X7,; Z) is the homology class represented by Y. By (2.20)), our assumption
(32), and Footnote 2]

a b
e (TXT)) 2 (L) + Z

Thus, if F # E*, then X, is Fano. In this case, the Cone Theorem |La, Theorem 1.5.33]
implies that the closed R-cone of curves is a polytope spanned by classes of rational curves.
By [La, Proposition 1.4.28] and [La, Theorem 1.4.23(i)], this closed cone is the R-cone
spanned by A. Thus, L; (d) <0 for all de A—{0} and all ie[b]

Let R be a ring. Similarly to Section [[LT], we denote by R[[A—0]] and R[[A;vg=0]] the
subalgebras of R[[A]] given by

deA

R[[A—0]] = {Z aqQ? € R[[A]] : ao = 0} ,

R[[A: vp=0]] {ZadeeR[[ ]]:ad=Oiqu(d)7éO}.

deA

In some cases, the formal variables whose powers are indexed by A within R[[A]] will be
denoted by Q=(Q1,...,Qy) as in Section [T, while in other cases the formal Variables will
be ¢=(q1,...,q). If feR[[A]] and de A, we write [f],.4€ R for the coefficient of ¢ in f.
By Proposition 2.16] the set {se A :d— seA} is finite for every de A; thus,

f e R[[A]] is invertible — [fl,0€ R isinvertible.

If f=5 faq¥e R[[A]], we define

deA

[,e0= ), fag* € R[[A;vp=0]].

deA
ve(d)=0

By ([LEH) and @20), vg(d) = {c1(T(E"|y)),d) if Y is a smooth complete intersection defined by a
holomorphic section of E* and T(E~|y) is the tangent bundle of the total space of E~ |y

4In the notation of |La], N'(X7,)r = HY1(X],) n H>(X7,;R) as can be seen from Poincaré Duality,
Lefschetz Theorem on (1, 1)-classes, and Hard Lefschetz Theorem.
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Let A=(Ay,...,A;) be a tuple of formal variables. If =Y fq(A)g%eR[[A]][[A]] and p >0,
deA
we write )

[fTap= D [fa(®)]4, a* € RIAL AL

deA
where [fa(A)],,, € R[A] denotes the degree p homogeneous part of fa(A) and R[A], the
space of homogeneous polynomials of degree p in Ay, ..., Ay with coefficients in R. Finally,
we write
Pl=p1+p2t... .+ Vp = (p1,pa, - ... pr)€(Z70)".

For each deA, let

11 19[ (Zk] mi;Ai + 571)

i=1

D](d)<0
U(d; A, h) I e Q[A][TH] . (3.4)
1_[ (Z m”Az + Sh)
je[N] s=1 =1
Dj(d)ZO

By Proposition 217, the line bundles ~;* of (2Z16]) form a basis for the Picard group of X7,.
Thus, there are well-defined integers ¢ such that

+ *£+
Ly = & ®...Qy " (3.5)
With A and d as above, let
a Lid) / k b —Ly(d)-1 / k
E(d; A h) = ]‘[H(Zemrﬂh)]_[ 1 (Z >eZ[Ah]
=1 s r=1 i=1 s=0 r=1
(3.6)
a Li(@-1 / g b —Lj(d)
E(d; A h) = ]‘[ H (Z CEA, + sh) 1 (2 (oA, — ) e Z[A, h).
i= r=1 i=1 s=1 r=1
The formal power series computing va and Ep in Theorem are obtained from
Y(A R q) = > ¢ U(d; A, h)E(d; A, h) € Q[A][[A71,A]],
deA
o (3.7)
V(A hq) =) q*U(d; A, ) E(d; A, h) € QA][[n, A]].
deA
We define
lo(q) =Y(A,hq) mod k™', Io(q) =Y(A,hq) mod ", (3.8)
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and so

To(q) =1+ 00 ), q‘“}l—,
deh o st [1(D;(d))

D;(d)>0 V je[N]

N S Ly (@) i
Lig=1+ >, (== -

q N
deA—-0, vg(d)=0 ) |
Dej (d)=0 €§e)m jl;[l (D;(d)!)
L} (d)=0Vie[a]

We next describe an operator DP acting on a subset of Q(A, &) [[A]] and certain associated

“structure coefficients” in Q[[A]] which occur in the formulas for Z and Z Fix an element
Y (A, h,q) of Q(A, h)[[A]] such that for all de A

[Y(A R q)]q = gjgi g

for some homogeneous polynomials fq(A, k), ga(A, h)eQ[A, h] satisfying
fo(A ) = go(A, R), deg fa —deg ga = —vp(d), ga|,_o #0 VdeA. (3.9)

This condition is satisfied by the power series Y and ¥ of (B210) and so the construction below
applies to Y=Y and Y =Y. We inductively define

J(Y) € Endappan-o (QIIA; v =01][A],) ¥peZ?", DPY(A,h,q) € QA WIA]) ¥ pe(Z*)"
satisfying
(P1) for every pe(Z=°)* with [p|=p, [{/,(Y)}(AP)] o = AP;

(P2) there exist C)=CY)(Y) e Q[[A]] with p,re(Z>°)* and s€Z>° such that

DPY (A, %, q) = h|p|2 > Ol (g)ATh (3.10)

s=0 re(Z>0)k

[{Cglﬂq;d:() if s#vp(d)+|r|, |:|:CE)I:?9:|:|VE__5PI'5|1‘ s if s<|pl, [[ p)lr\ﬂ o =0pr- (3.11)

By (B3.9), we can define Jo(Y) € Q[[A; vg=0]] and D°Y eQ(A, h)[[A]] by
{Jo(Y)}(1) =Y (A, h,q) mod A, DY (A, B, q) = [{Jo(Y)} )] ' Y(A, hq). (3.12)

Suppose next that p >0 and we have constructed an operator J,(Y") and power series
DP'Y for all p’ € (Z>°)F with |p’| = p satisfying the above properties. For each p € (Z>°)*
with |p|=p+1, let

1

lsupp( )l iesupp(p) }Dp_eiY(A’ h,q) € Q(A, B)[[A]],

i (3.13)
VAP = [BPY ) o 1]

J
A;p+1

30



where {ey, ..., ey} is the canonical basis for Z*. By [(P2)]

1 acty)
(VAP = ——— > | Y O AA™+ D g e PPl AT
PP e | f | =p+1 ¢
. (3.14)
1 ( (r—e;) dC;fe‘ p+1>
= Z Z Cp—eiip + ¢ 5 AT
[supp(P)| | S | i) dg;
where we set Cg:::,Z,EO if i¢supp(r). By (B14) and (3.11)),
{Jp1(Y)}(AP) € Q[[A;vp =0]][Alps1 and  [{/p1(Y)}(AP)] o = AP; (3.15)

in particular, J,1(Y) is invertible. With cpp(q) € Q[[A;vE = 0]] for p,p’ € (Z7°)* with
[pl, [p'[=p+1 given by

{Ton (Y)}TH(AP) = Z Cp;p’(q)Apla (3.16)

p'e(Z>0)",|p/|=p+1

we define N
DpY<A7 ha Q) = Z CP;P'(q)DplY(Aa h? Q) (317>

p'e(Z20)k |p/|=p+1

By (817) and the inductive assumption (B.10]),

DPY (A, h,q) = hp“Z D1 Cll(g)ATh™* . where

s=0 I‘E(Z>O)k

dcyy
(r) _ Cpip’ (r—ei) P —cis
Cp,s - Z |Supp(p’)| Z (C —e;,5— 1 + qz dq > 9 (318)
p'e(Z>0)k,|p’|=p+1 iesupp(p’) ‘
where we set C(r_(:)s L =0 if i ¢ supp(r) or s =0. By the first property in (B.II]) with p

replaced by p’—e; with |p’|=p+1 and i €supp(p’), Cg)s satisfies this property as well. By
the second property in (B.I1]) with p replaced by p’—e; with |p’| = p+1 and i € supp(p’),

[[Cg)s]] Voo =0 if s<p. Since CppJrl dpr Whenever |r| =p+1 by (B18) and B10), Cg
also satisfies the second property in (B.11]). By the second statement in (B.15) and (B.16),
[cpip] .0 =0ppr- Thus, by the third property in (311l with p replaced by p’—e; with [p’[=p+1
and iesupp(p’), Cg)s satisfies the last property in ([B.11]) as well.

Define ég)szég)s(}/)e(@[[/\]] for p,se(Z?°)* and reZ>° with |s|<|p|—r and r <|p| by

Z Z b SerH = prbro YV re(ZZF |r| < |p|-T (3.19)

1=0 sg(7>0)k
Is|<I|p|—t
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Equations (8.19) indeed uniquely determine &0 since

p;s’
c) y cret 3.20
Z Z p;s s|r\+r t Z PS s|r\+r tJr P;s s,|r| + p,r’ ( ’ )
t=0 ge Z>0) t=0 e(2>9) se(Z>0)k
Isl<|p|—t ||<| \ Is|<[r]
as follows from (B.I1]). By (B.19) together with the first and third statements in (3.11]),
~(r)
Hcp,sﬂ — G500 - (3.21)
4,0
By (319), (3:20), and induction on |[s|,
ég)’)s(q) = ps Vp,se(Z>0)k with |s|<|p]. (3.22)
By (319), (320)), the first statement in (BI1]), and induction on |s| and 7,
HG;)H —0 i wp(d) £ (3.23)
“lgd

Remark 3.1. With Y, Y as in (37) and Io, Ip as in (3.8),

{0} ) = ola). DV (ARG) = 7V (A Ba)
v v 0¥ B 1
(@} =hote). DVARG) = T (A )
by B.12).
Define

d P d P d Pr SOk
A — 3 ={A — 3 ..RA — = - 7).
{ +hqdq} { 1+7iq1dq1} { k+h€1kqu} Vp = (p1,...,px)€(Z7")
Remark 3.2. If vg(d) > 0 for all de A—{0} and Y (A, A, q) € Q(A, h)[[A]] satisfies (3.9,

then J,(Y)=1d for all peZ>° by [(P1)] above. Along with the first equation in (B:13)), (3.16),
(3I7), and induction on |p|, this implies that

P
DPY (A, b, q) = {A+hqd%} Y(A, hq)

for all pe (Z>°)k.
Remark 3.3. Suppose p*e€Z>° Y (A, h,q)eQ(A, h)[[A]] satisfies (3.9), and
deg;, fa(A, h) — deg, ga(A, h) < —p* VdeA—{0}.
By the same reasoning as in Remark B.2 we again find that
d 14
Jp(Y)=1d,  DPY(A hq)= {A+hqd—} Y(A, h,q),
q

for all peZ>® and pe(Z>°)* such that p, |p| <p*.
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Remark 3.4. Let (M, 1) be the toric pair of Example 2.22 with N =n so that X[, =

Let ,
E = @ O]Pm—l (g,j) @ @ O]Pm—l (6;)
i=1 =1

a b
with a,b>0, ¢; >0 for all i€[a], ¢; <0 for all i€[b], and Y] ¢ — >} ¢; <n. Thus,
=1

i=1

ve(d) = (n—iﬁj—i—i@) d

i=1

for all deZ>°. By (3.7),

a z:rd b —¢; d-1
o TIT1(¢FA+sh) ] (¢; A—sh)
}}(A, h, q) _ Z qdi:l s=1 y i=1 s=0 ’
=0 IT (A+sh)"
s=1
a fFd-1 b~ d
. T @A) 1T 1T (6 A-sn)
i/(A7 h, q) _ Z qdi:I s=0 - i=1 s=1
= [T (A+sh)"

By Remark B3]

v v d)?.
J,(Y)=1d, DPY(A h,q) = {A—i—hq—} Y (A, R, q) Vp<b,

vy

vy d)? .-
J,(Y) =1d, DPY (A, h,q) = {A—i—hq—} Y (A, R q) Vp<a.

a b
If > ¢F—> ¢; <n, then

=1 =1

v v v d)?. vy d)?..
J,(V), J,(Y)=1d, DPY = {A+hqd—} Y, DY = {A+hqd—} v
q q

a b
for all p by Remark B2l If > ¢ — 3 ¢; =n, then we follow [PoZ, (1.1)] and set

=1 =1

a 4id b —L;d
o Ul 1 (¢ w+r) ! U1 (6;w—r)
F(w,q)= > ¢"="= —= ,
d

d
=0 [T (w+r)"
r=1
)

M) = {1+ 20 (E00) | p =M.
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JV) = I o(@ld, DPV(A B g) = AP MPF (%) Yp=b,
Iﬁ—b(Q) h

v v A
L) = I u(@)ld, DYV (A B g) = AP MR (W) Vpsa

Ib—a(Q)

3.2 Statements

The statements and proofs of the theorems below rely on the one-point mirror formula
(52) below, which is proved in [LLY3]. We begin by defining the mirror map occurring in
this formula.

For each ie[k], let

@)= N o 2 copa-o (325)

with jo(q) defined by (B.8). The mirror map is the change of variables ¢ — (), where

(Q1,...,Qr) = (qlefl(q),...,qkef"'(q)) : (3.26)
Finally, let
. T (@)
G(q)= T s 2( o = eQ[A-0]]. (3.27)
D id):gv €[N] ].1]1 (D;(d)})

Theorem 3.5. If vg(d) =0 for all deA, then Zp and Ep of (31) and (1.9) are given by

2 (h.Q) = . (”@IH”“”]&'@(H,h, Qe (X[ AL

1
R

Gla)+ 3 Hifilg )] -

Zp(h,Q) = e = Yo(H, h, q)e H* (X7 )[R ][[A]L

where

Ip| —

YolA,h,q) = DPY (A hq) + 22 Coala)P DRV (A, B, g) QA DA,

(3.28)
lpl Ipl— =
Yp(A, h,q) = DPY (A, b, q) Z 2 Cor (@) AP 5DV (A, B, q) e Q(A, B)[[A]],

with (NJS)S = (NJE:)S(E'/) and é; C ( 7Y defined by (319), Q and q related by the mirror
map [3.28), G and f; given by (@) and [3.23), and the operator DP defined by (313) and
(3.1
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If |p| <b, DPY = {A—l—hqdiq}pf/ and ég)szo for allre[|p|]. If Ip|<a and L (d)=1 for

v

all ic[a] and de A—{0}, then DPY = {A+hqdiq}pi} and (Njg,)s:() for all re||p|].

This follows from Theorem B.7 together with (A.18) and [(EP1)|below; Theorem {7 is an
equivariant version of Theorem 3.5

Remark 3.6. In the inductive construction of DPY withY = Y or Y = y, the first equation
in ([B.13) may be replaced by

1

~ d
DPY (A, h,q)= Z cp;i{Ai—l—hqid

iesupp(p)

}Dp—mA, B, q)eQ(A, B)[[A]]

for any tuple (cp;i)iesupp(p) Of rational numbers with Y] ¢p; = 1. The endomorphism
iesupp(p)

Jp+1(Y) and the power series DPY defined by the second equation in (3.13) and (8.17) in

terms of the new “weighted” DPY satisfy [(P1) and [(P2)[ by the same arguments as in the

case when c¢p; = —— oy for all iesupp(p). Therefore, (B.19) continues to define power series

supp(
GI()T)S(Y) in terms of the “new weighted” CI(;)S(Y). The resulting “weighted” power series Y},
of (3:28)) do not depend on the “weights” cp.; as elements of H*(X7],)[[R][[A]]; this follows

from Remark .10L

Corollary 3.7. If vg(d)=0 or vg(d)>|p| for all de A—{0}, then

. —;[G<q>+_§ Himq)] . . —;[G<q>+_§ Himq)] ..
Zo(h,Q) = e = DPY (H, h,q), Zo(h Q) =e = DPY (H, 1, ¢),

with Q and q related by the mirror map (3.20) and G and f; given by (3:27) and (323).

This follows from Theorem [3.5] together with (3.23)).
Let pr;: X, x X}, — X}, denote the projection onto the ¢-th component.

Corollary 3.8. Let gps € Q be such that > gpsPriHPpriH® is the Poincaré dual to
Ip|+|s|=N—Fk
the diagonal class in Xj;, where N —k 1is the complex dimension of Xj,;. If N >k and

ve(d)>N—Fk for all de A—{0}, then the two-point function Z of (L8) is given by

vv

. 1 d\®. d\®
Z(hi, ha, q) > Gospri {H+h1qd—q} Y (H, 7, q)prs {H+h2qd—q} Y (H, ha, q).

T+ h
LR SNk

This follows from Theorem [[3], Corollary B.7, and Remark 321

<§1 b AT)
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3
Z
|

~. ~.
Il o |l Q
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then .
Z*(hl, hQ, Q) = Z*<h17 h27 Q)pI'TP(H),

where pr, : X7, x X7, — X7, is the projection onto the first component, while Z* and Z* are
as in Remark [[L4l Via Theorem [[.3] this expresses the two-point function Z* in terms of the
one-point functions Zn, Z77 In this case and if vg(d) =0 for all de A, Z* can be computed
explicitly in terms of Y and V via Theorem B.5

We next use an idea from [CoZ] to express Z* in terms of one-point GW generating
functions and then show how to compute the latter in the b>0 case. If pr; : X7, x X7, — X},
and gps€Q are as in Corollary B.8, then

1
Z*(h1, h2, Q) = D Gus[priHPPISZE (e, Q)
hy + h2‘p|+|s|:N7,€ (3.29)

+ prTZ;(hb Q)pr;ZS(h’% Q)]a

where

e(Vg)eviHP
h—=1

and evy : My o(XF,,d) —> X7, This follows from (E2T).

We next assume that 6> 0 and vg(d) >0 for all de A and express Z5(h, Q) in terms of
explicit power series. Along with (8.29) and Theorem B.5, this will conclude the computation
of Z*.

With U(d; A, k) given by (3.4]), we define

a L(d) / & —L; (d)
V(AR q)=) U AR]] [] (szﬁsn)ﬂ I <ZEHA m) (3.30)

deA i=1 s=1 r=1 =1 s=1

2@ = Y Qlew, [ ]eH*(Xm [ ITAT]

.

As Y satisfies (39), we may define DPY and él()r)szég)s(?) by (817) and (3.19). We define

?p(A, h,q) by the right-hand side of ([B:28) above, with Y replaced by Y and ég )S by (Njg)s
Let

a Lj(d) b —Li(d)-1/ k
“(Ahg)= D ¢ U A ] ] ]‘[(Z e+AT+sh> 1] <Z E;Ar—sh> . (3.31)
deA—0 i=1 s=1 i=1 s=1 r=1
We define Egge(@[[A]] by
d P ~ [p|=b[p|=b—s
{Aqu—q} Y*(A k)= > > EFA™ mod k' (3.32)
s=0 |r|=0

It follows that [[Eg")s]] =0 unless |p|=b+s+ vg(d)+]|r|. Whenever b>2,
T lgd

Ip|=b [p|-b—s
d ~
* _ * (r) s
Zp(h, q)—e(E+) {H + hq—dq} Y (H, A, q) SEO ME 0 Epsh Y.(H,h,q) | . (3.33)
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If b=1 and @ and ¢ are related by the mirror map (3.20),

_ p
Z5(1,Q) = e(B)e= Y [{H - hqdi} V*(H, 1)
q

|p|—b |p|—b—s (E+)pro(q) 0 1 e(E_)fo(q) n (3'34>
where .
) [1 (L (@)
fl@= Y A (-D)B @ (—Ly(d)-1)1E i (3.35)
send o I (@)

Identities (3.33) and (3:34) follow by setting a=0 in (£35]) and (4.30]).
As in [CoZ], if X7, =P"! and b>2, (B33)) can be be replaced by a simpler formula in
terms of the power series F'(w, ¢) in (8.:24]) above. Assume that E—P"! is as in Remark [3.4]

a b
and Y 7 —> (7 =n. Similarly to [CoZ],
i=1 =1
e(E*) {H—i—hqdi pY(H,h, q)—HP, if p<b,

e(E-) HpMp "F(9) e
p b(q) ’

Zy(h,q) = o
1 p/ )

where the right-hand side should be first simplified in Q(H, #)[[¢]] to eliminate division
by H and only afterwards viewed as an element in H*(P"')[h~!][[¢]]. This follows from
Remarks [£.4] and B4 together with Theorem 7 By Theorem and Remark B.4]

{H + hqdiq}pi}(H,h, q), if p<a,

pMP~F (5 .q)
H Ip*d(‘l) ’

Zp(ha q) = oo
it p=a.

The last two displayed equations together with (8:29) imply that

a

e

Edqf e(Vg)eviH evi H? = (Ieyv1-0(q)—1) and I 1 p=1Ic11p, (3.36)

mogpnld) Hél—

whenever ¢;+ ¢co=n—2—a+b and with I,(¢) defined by (3:24)) if p=>0 and I,(¢) =1 if p<O.

°In this case, f;(q) = €;; fo(q) with ¢;; €Z given by (B.H).
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Chapter 4

Equivariant theorems

In this chapter we introduce equivariant versions of the GW generating functions Z ,
va and Zn of (L) and (L9). We then present theorems about them which imply the
non-equivariant statements of Section [3.2]

With a = (a,...,ay) denoting the TV-weights of Section 23] HZ\(X],) is generated
over Q[a] by {z1,...,xx}; see Proposition 22Tl The classes z; of (221) satisfy

Hiy(X]) o SN e H2(XT,)  Vie[k], e(yf) =z  Vie[k],

where e(q7) is defined by the lift (Z23) of the action of T on XJ, to the line bundle 7.
Let
r=(z1,...,08), aP=af- . a2}k Vp = (p1,--.,pk)e(Z>°)k,

The action of T on X7}, induces an action on My, (X7, d) which lifts to an action on
the vector orbi-bundles Vg, 1>E, and )v)E of (LI) and (L1). It also lifts to an action on the
universal cotangent line bundle to the i-th marked point whose equivariant Euler class will
also be denoted by ;. The evaluation maps ev;: 0, (X7, d) —> X}, are TV-equivariant.

With evy, evy: 9 3(XF,,d) —> X, denoting the evaluation maps at the first two marked
points, let

d e ]'}E
29 <eleev2)*[(hl—w1(> (hl—%)]' -y

With evy, evy: Moo (XF,,d) —> X, denoting the evaluation maps at the two marked points
and for all ne H¥y(X7,), let

. [ e(Vp)evin | y - _
2@ =n+ Y Qv | ez o) i, )
deA—0 7]
n— - (4.2)
v e(Vg)evs . . _
E Q) =nt Y QUevi, | CVEE ¢ (o) (17 A
deA—0 | r |
In the n=2xP cases, these are equivariant versions of Z'p and Zp in (31):
Z5(h, Q) = Zuw (1, Q), Zp(h. Q) = Zow (h, Q)€ Hin (X7, [, A]]- (4.3)
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In particular, Zo=Z,, with 0€Z* and 1€ Hy (XF)-

Section LIl below constructs the explicit formal power series in terms of which va and Z'p
are expressed in Theorem[4.7l Throughout this construction, which extends the constructions
in [Z1, Section 2.3] and [PoZ, Section 3.1] from P"~! to an arbitrary toric manifold X7,, we
assume that vg(d) =0 for all de A and identify Hy(X7,;Z) =~ ZF via the basis {Hy,. .., Hy}
of H*(X7,;Z). Via this identification A< Z*.

4.1 Construction of equivariant power series
We begin by defining equivariant versions Y and Y of the power series Y and YV in B0

as these will compute ép and ép in Theorem 7l We consider the lift ([223) of the TN-action
on X7, to the line bundles L of (L) and (B.5) so that

k
Mo=e(Lf)=) tta,. (4.4)
r=1

An equivariant version of the power series U(d; A, k) in ([B.4]) is given by

I1 19[ (i mz’in—OéjJrSﬁ)

je[N] s=D;(d)+1 \i=1

u(d; A, )= D=0 — e Qa, A][TA]. (4.5)
H H <Z mz-in—ozj—Fsh)
je[N] s=1 \i=1
Dj(d)=0
By (2.29), )
I [T (uj+sh)
Dje(([i];/lo s=Dj;(d)+1
u(d; z, h)= RES (4.6)
11 (u;+sh)
jelN] 5=l
D;(d)=0
With E(d;A, h) and E(d;A,h) as in ([30]), let
V(A hyq) = Y q%u(d; A, h)E(d; A, h) € Q[a, AJ[[n™", A,
- el . (4.7)
V(A h,q) = ) q*u(d; A, R)E(d; A, h) € Q[a, A][[A7", A]].
deA

In the above definitions of J) and y and throughout the construction below, the torus
weights « should be thought of as formal variables, in the same way in which A of Section B.1]
are formal variables. With A replaced by =, y and y become well-defined elements in
He v (X7)[[R™', A]]l. However, this is irrelevant for the purposes of this section and becomes

relevant only when we use y and y in the formulas for ép and va.
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As before, Q, =Q(«). We next describe an operator ®P acting on a subset of Q, (A, h)[[A]]
and certain associated “equivariant structure coefficients” in Q[a][[A]] which occur in the

formulas for Z, and Z,. Fix an element Y(A, A, ¢)€ Qo (A, B)[[A]] such that for all de A
fd(A’ h)

V(AR Q)] q = ga(Ah)

~

for some homogeneous polynomials fq(A, k), ga(A, k) € Q[a, A, k], symmetric in «, and sat-
isfying

fo(A h) = go(A, h), deg fqa —deg ga = —vg(d), 9a |a=0 #0 VdeA. (4.8)

This condition is satisfied by the power series y and y of (A1) and so the construction below
applies to Y=Y and Y =Y. We inductively define DPY(A, ki, ) in Qu (A, h)[[A]] satisfying

(EP1) with DP defined in Section [B.]

DPY(A, R, q)

=DP (Ji(A, h,q)

):
a=0

(EP2) there exist CCh=CE)())eQ[a][[A]] with p,re (Z2°)F, seZ>9, such that [[cp’fg]] s
.,

a homogeneous symmetric polynomial in «a of degree —vg(d)—|r|+s,

a=0

DPV(A R =1 Y Y CEl AR, (4.9)
s=0re(z=>0)k
[[cg;g]]qﬁ: Oprlpls VP, re(Z70)F, 5eZ7°. (4.10)
By (438)), (312), and since [[{Jo(y}azo)}(l)]] o= 1 by [[P1)} we can define
DOV(A, h,q) = [{h(V],_)} (D] V(A B, q)eQa(A, B[A]] (4.11)

Suppose next that p > 0 and we have constructed power series P V(A, h, q) for all
p’€(Z>%)k with |p’| =p satisfying the above properties. For each pe(Z>°)* with |p|=p+1,
let

~ d
DOPY(A b, q)=—— A;+hg; DPTEY(A b, (A, R)[|A]],

V(A h.q) |supp<p>!m§p(p>{ F | DA b )€ QulA AT .
DPYA )= Y cpp(@)DP V(A B g),

PE(Z0)F [p/|=p+1

where ¢pp(q) € Q[[A; vp =0]] are defined by BI6) with Y'=Y| _ and where {ey, ..., e} is
the standard basis of Z*. Since [[EP1)| holds with p replaced by any p’ with |p/|=p,

5I)J}(AA? ha Q)’azo = fjp (y(A’ h’ q>|a:0)
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by [BI3); thus, by the second equation in ({I2) and BI7), DPY satisfies (EP1)| It is
immediate to verify that DPY(A, h, ¢) admits an expansion as in ([L9). Since [cp;p/],.0=0pp
by the second statement in (B.I5) and (BI6) and (£I0) holds for p—e; with i € supp(p)
instead of p, (EI0) also holds for p with |p|=p+1.

By [[EPT)}, (B10), and (&9,

a:()) , (4.13)

with C(*) b as in |[(P2)}
Define Cyd =Cyl(Y)eQ[a][[A]] for p,se (Z>0)F and reZ>° with |s| < |p|—r and r<|p|
by

2 et L =0ubo  Yre(ZP)F, [r|<|p|-. (4.14)

t=0 ge(7z>0)k
s|<|p|-t

Equations (£I4) indeed uniquely determine 5{,’2, since

> Y ., - 2 Soane® L+ S ene® + e, (45)

1=0 sg(7>0)k 1=0 gg(7=0)k se(Z>0)k
|S|<|P\ t Is|<|p|—t Is|<[r]

This follows from
C(r)

plr|

G i Irl<Ipl, (4.16)
which in turn follows from (EI3)), the second equation in (B.I1]), and the first property in

(EP2)} By @I4) and (EI0),

[[c”g;g]] = Gt (4.17)

By @.13), (3.19), (3.20), (4.14), @.I5), and induction,

(r "‘("")
Céé(y)‘a:() =Cps (y|o¢=0) : (4.18)
y (AI7) in the d = 0 case and ({I4), ([AI5), ((EP2), and induction in all other cases,

B

[[Cl(fg(q)]] is a degree r—vg(d) homogeneous symmetric polynomial in «. In particular,
q;d

Ct

)

Og(q)e(@[[ Al]. This together with (AI8) and ([B:22]) implies that,

Cil(a) = 0ps  Vp,se(Z7)" with [s|<[pl. (4.19)

Remark 4.1. By (411, :)')L):O:f/, jE‘a:O:'YVV’ and Remark B.1],

))(Aa h, Q)a on}<Aa hv Q) = j}(Aa hv Q)

DOY(A, B, q) = -
A (9) Io(q)

o
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Remark 4.2. If vg(d) >0 for all de A—{0} and Y(A, h, q) € Qu(A, h)[[A]] satisfies (LT,
then

d P
pr(A’h’Q):{Athqd—q} Y(Ahq)  ¥p=(p1,..., o) e(Z70).

This follows by induction on |p| from {I2) since cpp (V| ) = 0pp With cpypy defined by
(B.16). The latter follows since Jp(y|a:0) =1Id by Remark 3.2

Remark 4.3. Suppose p*€Z>° Y(A, h,q)e Q. (A, h)[[A]] satisfies (£F]), and
degy, fa(A, h) — degj, ga(A, h)<—p*  VdeA—0.

By the same reasoning as in Remark 2], but using Remark [3.3] instead of B.2]
d p
DPY(A, h, q)z{A—I—hqd—q} V(A h,q) if |p|<p*. (4.20)

By @14), @.13), and @.I9),

t T ( r) __
p|r|+7‘ +2 Z C C Jr|r—tT Z C;()gcs Ir| +Cf)l = (4.21)
t=1g Z>0 se(7=0k
|§<hﬂ t T;<uf

if r>1 and |r|<|p|—7r. By (£20) and (£10),
DPY(A, h,q) = AP mod At if |p|<p*.
This together with (3] implies that whenever |p|<p*,
(r)
Cp x| +r

Finally, using (£.21), (£22)), and induction, we find that

=0 if r=1 and |r|<|p|—T (4.22)

Ch=0 it r=1, |p|<p*, [s|<|p|-r

Remark 4.4. Let (M, 1) be the toric pair of Example with N =n so that X, =P"!
and E—P"! be as in Remark B4l By (&.1),

a UFd b —0;d—1
o TTIT(EA+sh) T TT (67 A=sh)
V(A hq) =) "= ,
d=0 ]_[ ]—[ (A—aj+sh)
a jd b —5i
o N1 T (G A+sh) [T TT (67A-sh)
N e — .
=0 IT1] (A= +sh)
j=1s=1
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By Remark 4.3]

v d4)? . ~ v
zﬂty(A>h7q)::{fx+Jiqaa}':y(Aﬁhaq) and 52()0 =0 Vlﬁ<b,j1<7”<lﬁ

vy d)? .. ~ vy
@py(A,h,q):{AJrhq—} V(A h,q) and W) =0 Vp<a, 1<r<p.

a b
If > ¢F—> ¢; <n, then

i=1 i=1
. d1? . v d)? .
DPY =S A+hq—; YV, DYV =<{A+hq—; ),

dq dg

a b
for all p by Remark @21 If ) ¢ — > ¢; =n, then

%
1=1 =1

. 1 d)’. . 1 d .
DY = {A+h —} ), DPY = {A+h —}@p—ly Vp>b,
To(q) Taq T,(q) gy P
DY = ! {A+ hqd }y DPY — ! {A+hqi}©“j} Vp>a
Io(q) dg ’ Iy—a(q) dg ’

by (AI2) and Remark 341

4.2 Equivariant statements

Theorem 4.5. Suppose (M, T) is a minimal toric pair and pr; : Xj; x X, — X, is the
projection onto the i-th component. If n;,7,€ Hin(X],;) are such that

S

e N-k T T
Z pry7; Pral; € H’]?‘SV ) (Xar x X7y)

=1

1s the equivariant Poincaré dual of the diagonal, then

Z(hy, b2, Q) me (h, Q) prs 25, (ha, Q). (4.23)

hz

Corollary 4.6. Let (M, 1) be the minimal toric pair (2.37) so that X,=][ P¥~1, N=Y] N,

i=1 i=1
and H;N<H1 }P’Nil) is given by (2.38). Let pr;: X7, x Xj,— XJ, denote the projection onto
the j-th component. For all i€|s] and reZ>°, denote by aﬁi) the r-th elementary symmetric
polynomial in ag ), . ag\, Then,

El

: 1 S .
2 fe, @) =57, 2 ()= o) oDt Z, ey (B, Q) P2, ) (B, Q).
ri+a;+b;=N;—1VYie[s

+ri7:i7bi>0Vi€[s]E[ ]
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This follows from Theorem as the equivariant Poincaré dual to the diagonal in

S
[TPYL s

=1

Z T4 a
> (=)= o) o Ppri(aft . at) pry(al k).
ri+a;+b;=N;—1Vi€[s]
Ti,ai7bi20V’i€[S]

Theorem 4.7. Let (M, ) be a minimal toric pair. If vg(d) =0 for all de A, then Zp and

Z, of ({-3) and ([f-3) are given by

v -3 [G(q)+_§1 xifi(q)+ g}l a;9g; (q)] . . i
ZP(FL’ Q) =¢ - - yp(w7 h’ Q)EH'JI‘N<XM)H—h—|-|[[A]]7

(4.24)
- ,11[ (q)+Z zifi(@)+ X agg](q)] - . T
Zp(h,Q) =e = =t Yp(@, h, q)€ Hpn (X3 TRAIIALL
where
. [p| [p|—r
V(7. h,q) = DPV(z, hq) + . Z ") (@) HP==BDs Y (2, 1, q),
Tl (4.25)

V(. h,q) = DPY(x, h, q) 5 (@D Y (2, 1, ),

Ip\ lpl—r,

r=1|

with CI(Q = Cég()v)) and Cé,rs = 5ps( Y) defined by (4.14), Q and q related by the mirror map
(3.20), G, f; and g;€ Q[[A—0;vg=0] ngen by (3-27), (M) cmd (5.1), and the operator

DP defined by ({.13). The coefficient of ¢ within each ofC s and Cps is a degree r—vg(d)
homogeneous symmetric polynomaial in ap, ..o, Q-

If |p|<b, DPY = {A+hqs }Py and CYL=0 for allre[\p\]. If Ip|<a and LF(d) =1 for
all ie[a] and de A—{0}, then DPY = {A+hql }Py and Cps—() for all re(|p|].

Corollary 4.8. If pe(Z”°)* and max(|p|,1) <vg(d) for all de A—{0}, then

v d p vy d p
zp<h,q>={w+hqd—q} Va, hq), zp<h,q>={x+hqd—q} (. b ).

This follows from Theorem [4.7 and Remark

Corollary 4.9. Let gps€ Q[a] be homogeneous polynomials such that Y, gpsprizPpria®
|p|+|s|<N—k

15 the equivariant Poincaré dual to the diagonal in X7;, where N—k is the complex dimension

SFurthermore, g; =0 if b>0 or D;(d)e{—1,0} for all de A with vg(d)=0.

44



of X3, If N>k and vg(d) > N—Fk for all de A—{0}, then the two-point function Z of 1)
s given by

. 1 d)P - d)5 .
Z(Hy. Fig. q) = pr fiy g— B, q)prs Fip g— o, q).
(hi, ha, q) P p|+|s|Z<ngp pri {x+ 1qdq} Y(z,h1,q)pra {er 2qdq} Y(x, hy, q)

This follows from Theorem and Corollary 1.8

Remark 4.10. In the inductive construction of ®P) with V= y ory= j}, the first equation
in (4.12) may be replaced by

DPY(Ah )= Y. ¢ {A +hqdi}©p “Y(A, h,q)eQa(A, D)[[A]],

iesupp(p)

for any tuple (cpy)iesupp(p) Of rational numbers with >} ¢p,; = 1. The power series DPY
iesupp(p)

defined by the second equation in (ZIZ) in terms of the “new weighted” DPY satisfy [EP1)|
and [(EP2)| with DP correspondingly “Weighted as in Remark B.60l This follows by the
same arguments as in the case when cp,; = Isup—p(p\ for all i € supp(p). Therefore, ({.14)

continues to define power series CNSZ(J)) in terms of the “new weighted” ng()}). The resulting
“weighted” power series ), of (£25) do not depend on the “weights” ¢, as elements of
Hx v (X3)TRI[[A]] by the proof of Theorem BT outlined in Section .11

Remark 4.11. We define an equivariant version of Z* in (LI0). Let

Z*(hl,ﬁz,Q)Ed%]_OQd(evl er2)*[(h1_;l<)V(b;32_w2) , (4.26)

where evy, evy:Moo(X7,, d) — X7,. Since e(Vp)evie(ET) =e(Vg)evie(E™),

Z*(h, h, Q)prie(ET) = Z*(hn, o, Q)prie(E7),

where Z* is obtained from Z by disregarding the Q° term and pry: X}, x X7, — X7, is the
projection onto the first component. This together with Theorem expresses Z* in terms
of 2,;,7 and z] in the E=E™" case.

Using an idea from |CoZ], we derive a formula for Z* in terms of one-point GW generating
functions that holds in all cases. Following [CoZ], we then show how to express the latter
in terms of explicit power series if b> 0. If pr;: XJ, x X}, — X]; and gps € Q[c] are as in
Corollary 4.9, then

1
Z* (h’h h?u Q) = h + h Z gPS [prikxppr;zs*<h27 Q)
P sl <Nk (4.27)

+ priZE(h, Q)pri Zs(ha, Q)]

where

250,00 = 3 Qovs| T e (xg - )
deA—-0 1
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This follows from Theorem 5] using that pr’f(e(E*)/e(E*))(Z'—[[Zv]]Q;O) =Z* and

* e(E+) * *( ] * *
Pfl( ) Z JpsPri2Ppry(Zs(R, Q) — 2%) = Z GpsDT TPPIE 22 (1, Q). (4.28)

e(E~
( ) Ip|+|s|<N—E Ip|+|s|<SN—k

In the X7, =P" ! case, ([E21) is [CoZ, (2.19)] and the proof of the X}, =P"! case of (28]
in |CoZ] extends to the case of an arbitrary toric manifold.

We give another proof of (£28), using the Virtual Localization Theorem (5.16) on
Moo(X7,,d) as in Section F.4 We prove that ([ZZ8) holds when restricted to [I] x [J]
for arbitrary I, Je¥};. The left-hand side of (£28§]) restricted to [I]x[J] is

e(E* d e(Vg)evizsevio,
0 2, S 0

’UZ’V‘ J—
o4 s<n—k laéro [Mo,2(XF,.d) ] h—1

The right-hand side of (28] restricted to [I]x[J] is

> gpsx Z Qdf eVplevizievi, (4.30)

'u7,'r _
[p[+[s|<N—k deA 0 93702 X7, h—1

Since ¢y is the equivariant Poincaré dual of [I],

ngsprf‘rppr;xs‘[[]x[J] = f prigipryg, = ¢1¢g = ¢1(J) =0 VI JeVy,
p,s A(XTr)

Xir

where A(X],) € X]; x X, denotes the diagonal. Thus, by the Virtual Localization Theo-
rem (5.I6), a graph I' as in Section [.4] may contribute to (£.29) or (£30) only if its second
marked point is mapped into [[]. Finally, [£28)) follows from the above since

e(E")

e(E) ‘[I]G(ﬁE)

=e(Vg)

Zr

Zr

whenever Zr < M o(XF,,d) is the TV-pointwise fixed locus corresponding to a graph I
whose second marked point is mapped into [].

We next assume that b>0 and vg(d) >0 for all de A and express Zj(h, Q) in terms of
explicit power series. Along with (£27)) and Theorem A7), this will conclude the computation
of Z*.

We define

a L (d)

7

—L;(d)
V(A B q)=) ¢ u(d; A, ) <Z €+Ar+sh> ﬁ (Z (A, sh> (4.31)

deA i=1 s= i=1 s=1 r=1

As Y satisfies (A8), we may define DPY and Cud=CS2(Y) by @IZ) and (@EI4). We define

JA/p(A, h,q) by the right-hand side of (£23]) above, with » replaced by Y and CNIE,T; by 51(,7"2;
Let

a L)/ & b —Ly(d)-1/ g
“(Ahg=> ¢tud; AR ]] (Z E:;Aﬂrsh) 11 (Z ggiAr—sh> . (4.32)

deA—0 i=1 s=1 \r=1 i=1 s=1 r=1
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Define &gdeQ[a][[A]] by

d)P ~ Ip|—b |p|—b—s
{A.+hqa§}\y%Aﬂmq); D1 EWATR mod AT (4.33)
s=0 |r|=0

It follows that [[51()2]] is a degree |p|—b—s— vg(d)—|r| symmetric homogeneous polynomial
q;d

in a. Then,
. 4P . [p|—b |p|—b—s R
yp<x,h,c2>={x+hqd—q} V(w,hq)—e(E™) Y >, EXRVe(x,hq),  (434)
s=0 |r|=0

where Y, is defined by ([@25); see Section [5.1] for a proof of ([E34).
Whenever b= 2,

Ip|—b [p|—b—s
Z5(h,q)=e(E™) {x+hq§} V*(x, b, q)— Z Z rhs Ve(x,hyq) | - (4.35)

s=0 |r‘0

Ifh=1,
. N Y0 d®~,
Z5(h,Q) =e(ET)e” 7 T+ ﬁqd—q V*(x,h,q)

|p|—b |p|—b—s - . ) )
_ Z Zgr(:ghsfir(x,h,q)] _e(E7)zPfolg) Z 1 [_e(E )fo(q)] |

o h (n+1)!

n=0

with @ and ¢ related by the mirror map ([B.26) and fy(q) € Q[[A]] given by (B:35). Equa-
tions (A.33)) and (£30) follow from Z% = e(E ; (’Zp—wp>, ([@24)), and (E34).
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Chapter 5

Proofs

5.1 Outline

In this chapter, we prove Theorems and [£7 and the identity (d34]). The proofs of
the two theorems are in the spirit of the proof of mirror symmetry in |Gil] and [Gi2] but
with a twist. Similarly to |Gil] and [Gi2], our argument revolves around the restrictions on
power series imposed by certain recursivity and polynomiality conditions. The concept of
C-recursivity was first introduced in [Gil] in the XT, =P"~! case, extended to an arbitrary
X7}, in |Gi2], and re-defined in |Z1]; all these definitions involve an explicit collection C
of structure coefficients. Our concept of C-recursivity introduced in Definition extends
the notion of C-recursivity with an arbitrary collection of structure coefficients from the
X7, =P"! case considered in [PoZ] to an arbitrary X7,. The concept of (self-) polynomiality
introduced in [Gil] in the X}, = P"! case and extended to an arbitrary X7, in |Gi2] was
modified into the concept of mutual polynomiality for a pair of power series in the X7, =P"!
case in [Z1]; we extend the latter to an arbitrary X7, in Definition 5.5l By Proposition (.6,
which extends |Z1, Proposition 2.1] from the X7, = P"~! case to an arbitrary X7, C-
recursivity and mutual polynomiality impose severe restrictions on power series, more severe
than the restrictions imposed by recursivity and self-polynomiality as discovered in |Gil].

Analogous to [Z1] and [PoZ], the proof of Theorem .7 relies on the one-point mirror
theorem of [LLY3]. We begin by stating it. The coefficient of «;/h for je[N] in the Laurent

expansion of ~—Y at h~'=0 is given b
P Io(q)y}A:O & Y

50 [T[L;(d)] (Dg( l)

Q..

9i(q) = = > ot

]'O(Q) deA, vg(d)=0 ﬁ [D,(d)!]
Ds(d)=0Vse[N] 5
) (5.1)
[T[L (@]
fY )P D) -
Ds(d)=0 V¥ se[N]—{;} -
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By [LLY3, Theorem 4.7] together with |[LLY3, Section 5.2], if vg(d) >0 for all de A, then

1 -t G(q)+§: xifi(q)f% ;g (@) | &
e =1 i=t Y(z,h,q), (5.2)

with @) and ¢ related by the mirror map ([3.:26), G, f;, and g¢; defined by (327), (3.25]), and
GO

Remark 5.1. By ([&.7), (327), and (3:25),

Io(q)G(q) = HJ"(A h.q)

a=0

A=0 1

ﬂ N and  Io(q)fi(q) = [[y(A, h, q)ﬂ x Vie k],

where [ [;-1,, and [ ]]% , denote the coefficients of h~! and 4t respectively within the

Laurent expansion around A~ =0 of the power series inside of the brackets. Thus,

Y] | =l

h—11

k N
G(q) + Z Aifi(q) + Z ajgj(Q)] :

Some of the proofs in this chapter also hold if we replace Q by any field R 2 Q. Given
such a field R, let

Ra = @a ®Q R = R[Oél, e 704N]<P:Pe(@[a]—0> and H;N (X;\-J, R) = *N (X;\-/[) ®Q R

An element in HXy(X7,; R)[[A]|[[A]] admits a lift to an element in R[c, z][[R]|[[A]] and an
element in R[a, z|[[R]|[[A]] induces an element in HXy(X7,; R)[[A]|[[A]] via Proposition Z211
Given Y (h, Q)€ Hin (Xf; R)[[R][[A]] and Je ¥}, we write

Y(RQl, o Y(RQ, or Y((J).h Q)€ Rlal[K[A]

for the power series obtained from Y by replacing each coefficient of 2°Q¢ in Y by its image
via the restriction map -(J) of (2.28]).

In proving Theorem .7, we follow the steps outlined in |Z1, Section 1.3] and used for
proving [Z1, Theorem 1.1J:

(M1) if R2Q is any field, Y, Ze Hiy (X5 R)[R][[A]], Z(h, Q) is C-recursive in the sense of
Definition [5.21and satisfies the mutual polynomiality condition (MPC) of Definition 5.5
with respect to Y (A, @), the transforms of Z(k, Q) of Lemma are also C-recursive
and satisfy the MPC with respect to appropriate transforms of Y (%, Q);

(M2) if R2Q is any field, Ze Hxy (X7,; R)[[R]|[[A]] is recursive in the sense of Definition
and (Y, Z) satisfies the MPC for some Y € Hi(X[; R)[[A][[A]] with [Y (R, Q)|,] 00 €

R} for all Te¥}], then Z is determined by its ‘mod h~! part’ (see Proposition [(.6);

"See Appendix [Al for the correspondence between the relevant notation in [LLY3] and ours and detailed
references within [LLY3] indicating how [LLY3, Theorem 4.7] together with [LLY3, Section 5.2] implies (5.2]).
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(M3) J>p of (Z.28) and éc of (@Z) are E-recursive in the sense of Definition .2 with € given
by (B:20), while Y, of [Z5) and Z, of [@J) are ¢-recursive with € given by (5.20);

(M4) (P, Fp), (P, D). (21, 2¢), and (24, Z¢) satisfy the MPC;
(M5) the two sides of ([24]) viewed as powers series in A~ !, agree mod A",

The proof of Theorem described below follows the same ideas and extends the proof of
121, (1.17)].

Claims |(M3)| and |(M4)[ concerning ZC and évc follow from Lemmas and 5.13] since
by the string equation of [MirSym, Section 26.3] and (5.21),

Z(h,Q)=hZ,5(h,Q) and Z:(h,Q)=hZ,5(hQ),

if m=3, Bo=0F3=0, no=(, and n3=1.

By Lemmas (.16, 517, and B.7, Y is E-recursive and Y is vQf—recursive, while ()), y) and
(j}, y) satisfy the MPC. This together with the admissibility of transforms @ and @ of
Lemma (.8 proves claims [(M3)|and |[(M4)| for )>p and j}p.

Claims |(M3)| and |(M4)| together with (5.2)), the admissibility of transforms and
of Lemma 5.8 and Proposition 5.6, prove that verifying (£.24]) amounts to showing that the
two sides of each of these equations agree mod i~'; this is in turn equivalent to (ZI4).

Lemma 5.7, Lemma 5.8, and Proposition are proved in Section [5.3} the preparations
for this section and the ones following it are made in Section Lemmas and are
proved in Sections and [B.6l respectively. Both proofs rely on the Virtual Localization
Theorem [GraPa, (1)]. The localization data provided by [Sp] is presented in Section B4l
Lemmas and B.I7 are proved in Section B.71

Proof of [#.34). Define E €Z with pe(Z>°)* by

b [k
(2 KM.AT> = ) E A"
i=1 \r=1 pe(Z>0)k

7

By (1) and (331),

e(E) V(. hq) = > Ep{x+hqdiq}p3>(x,h,q). (5.3)

pe(Z=0)*

Since Y is ¢-recursive by Lemma [5.16l and (y, J}) satisfies the MPC by Lemmas 5.7 and [5.17],
e(E)Y is C-recursive and (Y, e(E~)Y) satisfies the MPC by (5.3) and Lemma [5.§(a)} This
together with Lemma B8 )[8)] implies that the right-hand side of ([@34) is €-recursive and
satisfies the MPC with respect to Y. Since J>p also satisfies these two properties by and
the claim follows from and the fact that both sides of (4.34)) are congruent to zP
modulo A~!. The latter follows from the fact that J'Jp(x, h, Q) and JA/p(m, h, Q) are congruent
to 2P modulo A~ by ([EI4)) together with (£7), ([£32), and (£33). O
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Proof of Theorem [{-3. By (1)), (235), and (2.21)),

i+ ho) 2 (hy B —hih d e(Vr)evirevio, 5.4
(h+h2)Z (P, bz, Q) [1]x[J] ! 2(%%@ Jv[gmo’s(xjfwd)]v” (ha—1) (ha—1)2) (54)

for all I, Je #};. Applying Lemmas and [£.13] for Z, 5(711, Q) with

m:37 ﬁ?zna 53:Oa 772:¢J7 7]3:17

along with Lemma [5 we obtain that the coefficient of h;" (h1+h2)2 (h1, ho, Q) is
¢-recursive with € given by (5.20) and satisfies the MPC with respect to Z1(hy, Q) for all
> 0. Using this, Proposition Z21()] [(M3)] [M4)] and [[M2)] it follows that in order to

prove (£23) it suffices to show that
(b2 (b, P2 Q)| Z (@) Zy(he Q)| mod B (55)

for all I, Je7#y;. By (5.4) and the string equation, the left-hand side of (5.5) mod A; ' is

)+ b Z Qdf e(Vp)eviorevig,
deA—0 imoa (X7, d) UW hy—1s (5 6)
Y f e(Vu)eviorevi, |
Ixl deA—0 Emoz X d) MT ho =12 7

where A: X7, — X7, x X7, A[z]=([2],[2]). The right-hand side of (5.5) mod A; " is
2 ‘ 5 (o, )‘[J]. (5.7)

Applying Lemmas and (.13 for Zn 3(he, Q) with
m:37 62:63:07 772:¢I7 773:17

along with Lemma[5.§(b)} we obtain that (5.6]) is the restriction to [J] of a ¢-recursive formal

power series which satisfies the MPC with respect to Z;(h2, Q). Since (57) also satisfies these
two properties, by Proposition the power series (5.0 and (5.7) agree if and only if they
agree mod h,'. The latter is the case since (5.7) mod A~ is the equivariant Poincaré dual
to the diagonal in X7}, x X7, restricted to the point [I]x[J]. O

5.2 Notation for fixed points and curves
With #}; as in (2.4)) and for all I, Je ¥}, with |[InJ|=k—1, we denote by

IJ=Xj;(IuvJ)= X}, and deglJ=[IJ] e A (5.8)

[X3]
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the P! passing through the points [I] and [J] and its homology class, respectively; see
Corollary Given Ie€¥}; and je[N]—1I, we denote by

=Xy (u{j) and deglj=[Ij] €A

the compact one-dimensional complex submanifold of X7, defined by Remark 2.10 and its
homology class, respectively. Since X7, admits a Kahler form,

deg I.J, deg Ij € A—{0}

by [GriH, Chapter 0, Section 7|. By the last part of Remark 210 there exists a unique
element v([I, j) of ¥} such that

v(l,j)#1 and v (I,75)cTu{j}.
Since v(I, j)ul ={j}ul, jev(I,5) and Tj=Tv(I,j). Let {j}=I—v(l,j5).
Applying the Localization Theorem (222)) to the integral of 1 over Ij =~ P! and using
(234]) and Corollary 220, we find that
ws(I)+us (v (1,5))=0  VIe¥y, je[N]-1. (5.9)

Applying the Localization Theorem (2.22) to the integrals of x;, A", and u, over Ij and
using Corollary 2.20, (2.34]), and (£.9), we find that

wi(I)—wi (v(I,])) = (Hi,deg Ijyu;(I)  VIe¥y, je[N]-1,ie[k], (5.10)
AN =N (v(1,5) = Lif (Tj) (1) VIeVy, je[N]-1,i€[a] (i[0]), (5.11)
us(I)—us (v (I,5)) = Ds (Ij)u;(I)  VIe¥y,je[N]—1I,s€[N]. (5.12)

By (m)> (E:ID, Gm)? and @:53])7
D;(Ij)=D;(Ij)=1,  D.(Ij)=0 Vselnu(l,j). (5.13)

The last five identities are stated in |Gi2].

5.3 Recursivity, polynomiality, and admissible trans-
forms
As in |Gi2], we introduce a partial order on A: if s,de A, we define s<d if d—seA. By

Proposition 2.16],
de A — {se A:s < d} is finite. (5.14)

This implies that for every non-empty subset S of A, there exists de.S such that

sel,s<d = s¢S.
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Definition 5.2. Let R 2 Q be any field and C = (CLj(d))?;}&’je[N]J any collection of
elements of R,. A power series Z € Hiy(Xj; R)[R][[A]] is C-recursive if the following
holds: if d*€ A is such that

[Z (x(v(1,)), B, Q)] s —g.aeg 7€ Bal) ¥ Ie¥yy, je[N]-1,d>1,

and [Z (x(v(1, 7)), B Q)] g.ax —d.aes 75 8 Tegular at h=—u;(I)/d for all 1€ ¥y, je[N]-I, and
d>=1, then

[[ ( h Q ]]Q d*_Z 2 OI ]5]62 ( (U(L])) ’ ha Q)]]Q;d*—ddegTj |ﬁ=_ujT(I) ERa[h7 h_l]v

d=1 je[N d
d-deg I]<d*

for all €V, A power series Z € Hin (X7 R)[[R][[A]] 4s called recursive if it is C-recursive
for some collection C'= (Clvj<d))?€>7£]\7/},j€[]\f]—] of elements of R,.

By Remark 5.3 below, if Ze Hxy (X7, R)[TA]|[[A]] is (CIJ(d))fé&dew]f}—recursive, then
for each e 7}

=2 Z Ziah™ Q"

deA r=—N,
s C Qddeglj ' wi (T
X Sz (e -4
d=1 je[N]-I

for some integers Ng and some ZI(’;()leRa.

Remark 5.3. Let R2Q be any field. If Ze H¥y (X} )Hhﬂ[[ 1] is recursive, then Z|, €

Ro(R)[[A]] and [Z(x(v(1, 5)), b, Q)] g.q is Tegular at h= —7= D for all Ie Yy, deA, je[N]-I,
and d > 1; this follows by induction on d € A. The regulanty claim also uses Remark IBE
below.

The C-recursivity is an R,-linear property (that is, if Z; and Zy are C-recursive, then so
is f1Z1+ f2Z5 for any f1, fo€ R,). By LemmaB.§(b)] C-recursivity is actually an R,[R][[A]]-
linear property.

Remark 5.4. For all [e ¥}, je[N]—1, all deQ—{1}, and all se[N],
uw;(I) + d-us(v(I, 7)) # 0.
Proof. Assume that
uy (1) + dug (o1, ) = 0 (5.15)

for some Ie ¥y, je[N|—1I, deQ—{1}, and se[N]. If d=0 or sev({, ), then u;(I)=0 by
(230) which contradicts (Z33). If d#0 and se (I —v(I, 7)), then u;(I)(1—d) =0 by (EI5)
and (5.9), which again contradicts (2.33)). If d#0 and s¢ (I uv(7, 7)), then setting o; =0 for
all ie (Tuv(l, 7)) in (BI5) and using (2.33]), we find that —da, =0, which is false. O
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For the purposes of Definition and the transforms [(a)] and in Lemma [5.§ below
as well as all statements involving them, we identify Hy(X7;;Z) with Z* via the dual basis
to {Hy,...,Hy} so that AcZ*.

Definition 5.5. For any Y =Y (h,Q),Z = Z(h,Q) € Hix (X7 R)[[RN[[A]], define @y, €
Ro[[A[[z, Al by

by (120 = Y,

M je[N]-1

z(I)-z

Y (2(I),h,Qe") Z (2(I), =h, Q)

k

where z=(z1,...,21), (1) - 2= Y, z;(I)z;, and Qe = (Q1e", ..., Que"™).
—1
]

1Y, Ze Haw (X3 R)THTIIATL,
(M'DC) if (I)Y,ZERa[h][[zaA]]'

Proposition 5.6. Let R2Q be a field. Assume that Z € Hin (X7 R)[[R][[A]] is recursive
and that (Y, Z) satisfies the MPC' for some Y € H¥\(X7; R)[R]|[[A]] with

the pair (Y, Z) satisfies the mutual polynomiality condition

Y (@], Re VI
Then, Z(h,Q) =0 mod h~! if and only if Z(h,Q)=
Proof. By the second statement in Proposition ,
Z(h,Q) =0 <— Z(hQ),=0 VIeV].

Set f; = [[Y —h, Q) \I]]QO and assume that [[Z h, Q) ‘1]] @ = 0 for all 0 < d' < d and all

Ie};. Since Z is recursive and Z(h, )) = 0 modulo A~ 1

[27,Q)]] g0 = ZZYQH‘

for some Ngq=>0 and some Z I(j()ieRa. Thus,

z(I)z Ng
(B2 Qoa=3, n T am (EZX&h—T)eRa[h][[zﬂ.

This implies that

2 (ai_([I u»] <2 ergh ) |l 2] Vm=0.

IeVy,
€ JW N] I

In particular,

[ ° m T

Z —@i%) u?ij)fle(;g:o VO<m<|¥y|—1, Vre[Nal.
J

e[N]
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For each r€[Ny], this is a linear system in the ‘unknowns’ fIZgg/ [T w;(I) with Ie?},.
Its coefficient matrix has a non-zero Vandermonde determinant, since
x(I)#x(J) VI#JeVy,

by Proposition . It follows that Z ) =0 for all 7€)} and all re[Ng]. O

Lemmas [5.7] and b.§ below extend [Zl, Lemmas 2.2, 2.3| from the X}, =P"! case to an
arbitrary X7,. Our proof of the former is completely different from and much simpler than
the one in [Z1]. For the latter, the arguments in |Z1] go through with only two significant
changes required.

Lemma 5.7. Let R2Q be a field and Y, Ze Hiy (X7; R)[R][[A]]. Then,
(I)Y,ZERa[h] [[Z, A]] — CI)Z’yeRa[h][[Z, A]]
Proof. Let Ya(h)=[Y (h, Q)] g.q and Za(h)=[Z(h, Q)] g.q- It follows that [Py z(h, z,Q)]o.q

18

z(1)-z x(I)-z

ey e’ ) ’ _ . hz(d=d') 7 (_
Z u‘ d(h)[ Zd d Z u‘ Yd d(h) Ie Zd( h) I’
0<d’'< 0=<d’<

Ievy, Je —1 Ievy, el ] -1
where e"*=(e"*, ..., ¢"*). The right-hand side is ¢"*¢ times [®zy (~h, 2, Q)] p.q- O
Lemma 5.8. Let R2Q be any field and CE(CIvj<d))?e>‘/zj[,je[N]—] any collection of elements

of Ro. Let Y1,Y5,Yse Hiy(XG R)[RN[A]]. If Yy is C-recursive and (Ya,Y3) satisfies the
MPC, then

(a) if Y; = {{L‘S-FHQS%QS}Y; for all i and s € [k], then Y1 is C-recursive and ®y, v €
Ra[R][[z, Al];

(b) if feR,[R][[A]], then fYi is C-recursive and Py, pyv, € Ro|R][[2, A]];
(¢) if fe R.[[A-0]] and Y;=e!/"Y; for alli, then Yy is C-recursive and ®y; v-€ R [h][[z, A]];
(d) if f, € Ry[[A—0]] for all re[k] and Yi(h, Q) =e/*/"Y;(h, Qef) for all i, where f - x=
k J—
> fox, and Qef =(Q1e1, ... Qre’*), then Y; is C-recursive and y; ;€ Ra[A][[2, A]].
r=1

Proof. For all Ie V],

{<>+h@;Q}<§”@¢f®wY< <u4»rﬂiQ@))=

(5 d
CIJ d-deg Ij\7 j(I) CIJ d) d-deg Tj
e Y €g 1]
L Gl S @) um@

fit i)
. ((m“ﬂft D) Qs+ deg, Tj(1) ~ <v<1,j>)) 1 (e~ Q).
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The first claim in [(a)| now follows from Remark 5.3 and (5.10). The second claim in [(a)] and
the claims in|(b)| follow similarly to the proof of [Z1, Lemma 2.3] for the X7, =P"~! case,

using Lemma 5.7, Remark 53] (5:14)), and (5.10). Equation (5.I0) and property (5.14)) are
used in the proof of the recursivity claim in when showing that

: 1 ~ (edf(Q)-deng+f Qe e_f(Qiﬁ‘&(f’md) e Ro[h, i Y[[A]].
+ %t

Property (5.14) is also used to show that transforms|(c)|and[(d)| preserve Hy (X7,; Ra)[h, A [[A]],

that
ef/h _ o=df/u;(I) 1(Qe")=1(Q)

o © el RTIALL e e Ra[A][[= Q).

in the case of , and that

S ACL Lz)h_ 1@ g A[A] Vreld]

in the case of . O

5.4 Torus action on the moduli space of stable maps

An action of TV on a smooth projective variety X induces an action on My, (X, d) as in
Chapter @] and an integration along the fiber homomorphism as in Section 2.3} The Virtual
Localization Theorem |GraPa, (1)] implies that

1 f s €Qlal  Vne Hiy (Mom(X,d)), (5.16)
J‘[gﬂo,m(x,d)]vlr Z vir € NF/X T ( )

FSMo,m (X,d)™Y
where the sum runs over the components of the T pointwise fixed locus
Mo (X, d)™ < My, (X, d).

This section describes My, (X7, d)Ts the equivariant Euler class e(N};’/’}() of the virtual

normal bundle to each component F of Mg (X7, d)™", and the restriction of e(Vg) to F.
We follow [Sp] where the corresponding statements are formulated in the language of fans
rather than toric pairs.

If f:(2,21,...,2m) — X, is a TN-fixed stable map, then the images of its marked
points, nodes, contracted components, and ramification points are T*-fixed points and so
points of the form [/] for some I € ¥}, by Corollary Each non-contracted component
Y. of ¥ maps to a closed T-fixed curve which is of the form I.J for some I,.J e ¥}, with
[InJ|=k—1 by Corollary Z2U(b)] Since all such curves I.J are biholomorphic to P! by

Corollary [220(b)}, the map

fl %, —1J

is a degree ?(e) covering map ramified only over [I] and [J]. To each such map we associate a
decorated graph as in Definition below; the vertices of this graph correspond to the nodes
and contracted components of ¥ or the ramification points of f; the edges e correspond to
non-contracted components ¥, of ¥, and d(e) describes the degree of f |E .
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Definition 5.9. A genus 0 m-point decorated graph T is a collection of vertices Ver(I'), edges
Edg(T"), and maps

0 : Edg(l) — 777, p: Ver(I') — 7}, dec : [m] — Ver(T')
satisfying the following properties:
1. the underlying graph (Ver(I'), Edg(T")) has no loops;
2. if two vertices v and v' are connected by an edge, then |p(v)n p(v')|=k—1.

Such a decorated graph is said to be of degree de A if

>, ole)deg (p(vIp(v)) =4,

eeEdg(T)
de={v,v'}

where de={v,Vv'} for an edge e joining vertices v and v'.

For a decorated graph I' as in Definition [5.9) we denote by Aut(I") the group of automor-

phisms of (Ver(I'), Edg(I")). It acts naturally on [ Zy); let
eeEdg(T")

n Zoyey » Aut(T)

ecEdg(T")

denote the corresponding semidirect product.
For any ve Ver(T'), let

Edg(v) = |{e e Edg(l') : ve de}| and val(v) = |[dec™"(v)| + Edg(v)

denote the number of edges to which the vertex v belongs and its valence, repectively. A
flag Fin T is a pair (v,e), where e is an edge and v is a vertex of e. For a flag F'=(v,e),
let val(F)=val(v). For a flag F'=(v,e), let wp=e(T-1(v)P"), where f:P'—p(v)p(v') is
the degree d(e) cover of p(v)p(v') corresponding to e, de = {v,v'}, and the T™action on P!
is induced from the action on X7, via f. If {j}=p(v')—p(v),

_ u(p(v))
-0 (5.17)

by [234). If v is a vertex that belongs to exactly 2 edges e; and ey, then we write Fj(v)=

(v,€;).

Given a decorated graph I' as above, let

H 9:)/t() wval(v)s

veVer(T")

where 9y, = point, whenever m <2. For a flag F' = (v,e), let 1p € H2y(Mr) denote the
equivariant Euler class of the universal cotangent line bundle on My corresponding to F
(that is, the pull-back of the 9 class on Mg vai(v) corresponding to e).
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Proposition 5.10 (|[Sp, Lemma 6.9]). There is a morphism ~: M —> Mg (XT3 d) whose
image 1s a component of ﬁoym(XX/[; d)TN and every such component occurs as the image of

such a morphism corresponding to some degree d decorated graph. With || Zye) acting
eeEdg(T)
trivially on Mr, the induced map

’)//AF : DJIF/AF — ﬁo,m(X;\-/[, d)
identifies Mr/Ar with the corresponding component of Mo (X7, d)TN.

Proposition 5.11 (|Sp, Theorem 7.8]). Let ' be a degree d genus 0 m-point decorated graph
and NE™ the virtual normal bundle to ~v:9Mp—> Mg, (X7,,d). Then,

vir 1 ]'
e(NF ): H (wrp—vr) Edg(v)—1 H (wF1(V)+wF2(V)) [T w
flags F of T 1_[ [Cbp(v) (p (V))] veVer(T") a F
val(F)=3 veVer(I) val(v)= aglslf cifll“
dec_l(v):@ val(F)=
T )= 550(0)
e Uy U
T | ERO e )™ ! "

(3(e))2 1 v
ceBdg(T) re[NI-to@i) ] up (1) —<2u; (1)) | 1=p0)=
de={v,v'} " 0

’ s=0(e)Dr(Ij)+1
By (£9) and (512)),
(D (i (D) oy = oy (ODupe) o (0(V)),
{}=p(v)—1
[2(e) Dr (p(Ip(v)) —s]ur ((v)) +sur (b)) (—)
it D, (p(v)p(v'))+#0,
u, (I)— 5 wi(I)| 1) 2(e) Dr (p(V)p(v")) p(Vp(V)

?(e)

W |y (%)) = (p(+)) it D, (p(p(¥)) .5=0:

so the edge contributions to e(NE™) in Proposition f.I1 are indeed symmetric in the vertices
of each edge.

Let f:(P', z1,..., 2m) — IJ be a T -fixed stable map. Thus, f is a degree d cover of I.J
for some deZ>°. By (LI,

Vol oy = H (BT ET) @ HY (P fE7)
By [MirSym, Exercise 27.2.3] together with (5.9) and (5.I1)), and with {j} = J—1I,
a_dL(IJ) b —1
Wl ..n=11 TT [N = Zud]|[] [\ = Zuin]. G.18)
i=1 s=0 =1 s=qL; (IJ)+1

[dL] (TT)—s|\f (D+sA] (1) . —

M) =2y (T) = aran o LT(I_HO,
! A = AS(T) it Li(TJ)=s=0,
&wn—gwpxn::dLﬂf>7£i%§?+s&<ﬂ



5.5 Recursivity for the GW power series

For all deZ7°, Ie ¥}, je[N]—1, let

N _1\d j2d—1 s—dD, (T)+
R e Q. (519
(d!) [u;(1)] eV oty )
DL [ (1) =y ()]
N a AL (Ij) s b —dL; (Ij)-1
Ers(d) = Ey@] ] TT [N (D=Su)|T] [ (D+2u5(1) | €@,
i=1 s=17 i=1 s=0 B (520>
N a AL} (Ij)-1 s b —dL; (Ij) s
&15(d) = E1(d) (=200 | TT [ (D+ S50 | €
=1 s=0 i=1 s=1

Lemma 5.12. If m=>3, ev;: Mo, (XF,, d) —> X, is the evaluation map at the j-th marked
point, n;€ H*\(X},) and B;€Z7° for j=2,...,m, then the power series

2,0(0.Q) = Y Qevs, e%}ﬁ(wﬁfev ) | < Han (GOTATIAY  and
. ) = - (5.21)

Z,ah.Q) = Y Qv | - >f[( evin ) | & Han (X3 TRTIAL

deA

are @- and C-recursive, respectively, with € and ¢ given by (220).

Proof. This is obtained by applying the Virtual Localization Theorem (5.16]) on M ., (X7, d),
using Section [5.4], and extending the proof of |[Z1, Lemma 1.1] from the case of a positive line
bundle over P"! to that of a split vector bundle E=FET@®FE~ as in (LT) over an arbitrary
symplectic toric manifold X7,. By (235), (221)), (516]), and the second equation in (2:34]),
a decorated graph may contribute to Zvnﬂ(h, Q)(I) and Enﬁﬁ(h, Q)(I) only if p(dec(1)) =1.
There are thus two types of contributing graphs: the A; and the B; graphs, where I € 7}].
In an A; graph the first marked point is attached to a vertex vy of valence 2, while in a B;
graph the first marked point is attached to a vertex vy of valence at least 3. If I is a By
graph and Zp the corresponding component of 9, (X7, d)™", then

P=0  Vn>val(vy)—3.

Thus, I' contributes a polynomial in A~ to the coefficient of Q¢ in 227,775(71, Q)(I) and

Z,6(h, Q)(I).
In an A; graph there is a unique vertex v joined to vo by an edge. Let A(;;)(do) be the

set of all A; graphs such that p(v)=v(I,j) and the edge having v, as a vertex is labeled dy.

Thus,
= J UAwn (o).

do=1j¢I
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Figure 5.1: A graph of type A(;;)(do) and its two subgraphs

We fix I'e A(;;(dy) and denote by I'y and T’ the two graphs obtained by breaking I' at v,
adding a second marked point to the vertex v in I'y and a first marked point to v in I'., and
requiring that marked points 2,...,m are in I['.; see Figure 518 Thus, I'y consists only of
the vertices vy and v and the marked points 1 and 2 attached to vy and v, respectively. With
Zr denoting the component in ﬁo,m(XX/[, d)TN corresponding to I,

Zr =~ Zr, x Zr,;
we denote by my and 7, the two projections. Thus,
Ve =miVe®7 Vg and Vg =1V @ Vg (5.22)
These identities are obtained by considering the short exact sequence of sheaves
0— f*E* — ffE* @ f{E" — E¥| — 0,

where f:¥ — X7, is a T-fixed stable map whose corresponding graph is T, while fy and
f. are its restrictions to the components of ¥ corresponding to the edge leaving vy and the

rest of I'. Let .
n’ = H (zﬁfjev;nj) )

=2

e

By (6.22),

e (Vg e(V ,
Ol (20 (e ).
. . (5.23)
e 776 e(V v
Gk (20 (e i

By Proposition 5111 (5.17), and (5.9]),

vl (i) (Tem) e
e(Ng) e(NE) e(Npm) . iYL

8Figure B1lis |Z1, Figure 2] adapted to the toric setting.
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By (5.18) and (5.11]), on Zr,

e(Vr) —ﬁdoﬁml AJ)] ﬁ_doﬁm_l [)\Z_(I)+diou]([)] ,

(5.25)

a doL; (Ij)~1

() =T 11 [w-um]II

By Proposition [5.11]

ety = T npee ] e 6

By (.25), (6.26), (5.17), and (B.20),

J e (VE) evi‘?f _ é[,j(do) and J e (VE> ev’f?f _ 'é[,j(do)‘ (5.27)
zr, (h=11)e (NEr) h+u{i—(01) zp, (h—11)e (Vi) h+uz(‘i_(of)

By ©.23), B.24), and (B.27),

f e(Vg)evigm” L Cr;(do) f e(Vp)eviduryn® 1

Zr h— ¢1 Zr e(le“") A + “]d_(ol) Zr, h — ¢1 e(NIEzT) h= u{iglh (5 28)
f e(Vg)eviom’ L &y(do) f e(Ve)eviduuyn® 1

o b=t lze(NpT) gy u® )z h—dn e(NE) =0

By the first equation in (5.28]) and the Virtual Localization Theorem (5.16)), the contribution
of the A; graphs to the coefficient of Q9 in Znﬁ‘[ is

@
Q;d—do-deg Ij ' '=——1

2 ) %[{%wwu,j»,h,@)ﬂ

do=>1 _]E N] I h+
do-deg Tj=<d

Whenever d = d* satisfies the two properties in Definition (which make evaluation at
h=—ud) meaningful). An analogous statement holds when summing in the second equation

1n(|5:28) O

5.6 MPC for the GW power series

Let Z; and Z, be as in (2) and Znﬂ and Zvn,g be as in (5.21]).
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Figure 5.2: A graph representing a fixed locus in Xq(X},); [, J, K, Le ¥y, I#J, K, L.

Lemma 5.13. For all m > 3,n; € Hix(X3,), B; € Z2°, the pairs (Z,(h,Q), ™22, 3(h,Q))
and (Z,(h, Q), " 2Z, 45(h,Q)) satisfy the MPC.

Lemma extends |Z1, Lemma 1.2] from the case of a positive line bundle over P*~*
to that of a split vector bundle £ = E*@®E~ as in ([L3]) over an arbitrary symplectic toric
manifold X7,. While |[Z1, Lemma 1.2] follows from |Z1, Lemma 3.1], Lemma follows
from Lemma below, which extends |Z1, Lemma 3.1] to the general toric case. The proof
of Lemma [5.15 uses the Virtual Localization Theorem (5.16) instead of the classical one used
in the X7, =P"! case and Lemma [5.14] which is a general toric version of the first displayed
formula in [Z1] after [Z1, (3.32)].

As in |Gil] and [Z1], we consider the action of T! on V' =C? given by &-(2¢, 21) = (20, £ '21)
and the induced action on PV. Let h be the weight of the standard action of T! on C. For
any deA, let

Xa(X5)={feMom(PV x X7, (1,d)) : evi(f)e[1,0]x X7, eva(f)e[0, 1] x XT, } .

By Proposition 510, the components of the fixed locus Xq(X7,)T *™" of the T* x TN
action on Xq(X7J,) are indexed by decorated graphs I' of the following form. Such a graph
I' has a unique edge of positive PV -degree; this special edge corresponds to a degree-one
map f:P! — PV x[I] for some I € ¥;;. Edges to the left (respectively right) of this edge
are mapped into [1,0]x X7, (respectively [0, 1]x X],); see Figure [5.2] where we dropped the
PV-label of the Verticesﬁ Thus, the first marked point is attached to some vertex to the left
of the special edge, while the second marked point is attached to some vertex to the right of
the special edge.

Let

dLEdL<F), dREdR<F)EA

denote the XJ,-degrees of the left- and right-hand side (with respect to the special edge)
sub-graphs, respectively; thus, d = d; +dgr. Let Zr be the component of %d(X&)WXTN
corresponding to I'.

Lemma 5.14. For every i€[k]| and de A, there exists
Qe HZ,  on(Xa(X7,)) such that Qi‘zp =z;(I)+(dp(I")), h

for all graphs ' corresponding to components of f{d(X]Tw)TlXTfV with dr,(T") and I depending
onI' as above.

9Figure 5.2 is |Z1, Figure 3] adapted to the toric setting.
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Proof. We follow the proof in [Gil, Section 11] and [Gi2, Section 2].
Given s€Z>% and n>1, let

Poly? = P ({Pe C[z, z1] : P homogeneous of degree s}®") :
We next define a morphism
0o : Moo (PV <P (1,5)) —> Poly™.
If [3, f] is an element of My (PV x P71 (1,5)), X =SguBuU...uY,, where X is a P!,

f . has degree (1, sg), ¥; is connected for all i€[r], and f‘z has degree (0, s;) for all ie[r].
Thlols, '

f(Ez) - {[AZ, Bz]} X Pn_l for some [Al, Bl] ePV Ve [T’]
Let 6o[%, f1=[P1g, - ., P.g], where

(A’L'Zl —BZ’Z())S'L .

=1

f‘ZOE(f17f2)7 f2off1£[Pla"'7pn]EP01y;LOa g

Let =6, o fgt, where
fgt : Mo (PV x P71 (1,5)) — Moo(PV xP" 1 (1, )

is the forgetful morphism. By |Gil, Section 11, Main Lemmal, is continuous.

The torus T! xT™ acts on Poly” by

(& t1, . tn) - (P20, 21]s - - -5 Pal2o, 21]) = (0P [20,621], - - ta Pal20,€21]) -

This action naturally lifts to the hyperplane line bundle over Poly”. The map 6 is T' x T"-
equivariant and hence so is 6.

Let £ — X, be any very ample line bundle. For any d € A, let £(d) = {ci(£),d).
Consider the canonical lift of the T*-action on X}, to £ given by Proposition 217 together
with (Z23). Thus, there exists n, an injective group homomorphism ¢p : TV — T", and
an (r-equivariant embedding ¢ : X7, —> P""! such that (*Opn-1(1) = L. We consider the
TMaction on P! induced by ¢r. The embedding ¢ induces a T! x T -equivariant embedding

Bl ony

Xa(Xiy) B Xe@(P"H).
The composition
2a(XGp) 5 Xy (B > Polyjg
maps Zr onto [z[f(dR)zf(dL)al? . ,z§(dR)z1’C(dL)an], where [ay, ..., a,]=([I]).
Let Qe HZ, «ov(Polyzq)) be the equivariant Euler class of the hyperplane line bundle and

QL) = F*0*Q e H2y  on(Xa(X7)))-
It follows that

Q(E)‘ZF = Q‘[z(l):(dR)zf(dL)al LER) L@, g = e(L)(I)+<cl(£),dL>h, (5.29)

.....
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where e(£) is the TN-equivariant Euler class of L.

By Proposition [Z10] there exist very ample line bundles £; for all ¢ € [k] such that
{c1(L;) : i€[k]} is a basis for H?(XTF,); so, using the T -action on each £; defined by (2:23),
we find that

Spang {e(L;) : i€ [k]} = Spang {z; : i€ [k]}.

Via Proposition Z22IJ(b)] this shows that {e(L;),; : i€[k],j€[N]} is a basis for H2y(X],).
As in [Gi2], we define a Q-linear map from Hzy (X},) to HZ, v (Xa(X},)) by sending e(L;)
to Q(L;) for all ie[k] and o to o for all je[N]. Let Q€ HZ, x(Xa(X},)) be the image of
x; under this map. The claim now follows from (5.29)). ]

Lemma 5.15. Let n° =[] <1pfjevj-‘nj> in Hiy (Mo, (X5, d)) and let

j=2
™ ﬁo,m(PVXXJ‘\F/D (17 d)) - ﬁo,m(X;\—/b d)

denote the natural projection. With ® as in Definition and €; as in Lemma[5.1J),

k
Q;z; m
(—h)y" sy 6(h,z,Q)=ZQdJ o= [e (V) 77| [ T evie(@en(1)),
il [Xa (X1 -
deA d I ) 7j=3 (530)
0y Q)= R0 B fo (B) ] [[evet0n )
Zl’Z xd(X‘f‘ m.'r i3

.

Proof. We apply the Virtual Localization Theorem (5.10) to the right-hand side of each of
the two equations in (5.30), using Section (4] and extending the proof of [Z1, Lemma 3.1]
from the case of a positive line bundle over P*~! to that of a split vector bundle F = E*T@®E~
as in ([LO) over an arbitrary symplectic toric manifold X7j,. The possible contributing fixed
loci graphs are described above. Given such a fixed locus graph ', we denote by N the
virtual normal bundle to the corresponding component of the fixed locus inside the moduli
space. We denote by Aj the set of all T!xT ﬁxed loci graphs whose unique edge of positive
PV -degree corresponds to a map P! — PV x [I], where I € ¥#};. A graph I'e A; breaks into
3 graphs - I'y, I'g, and I'y - as follows; see also Flgure IE{[EMThe graph I'y, is obtained by
considering all vertices and edges of I" to the left of the special edge (of positive PV -degree)
and adding a marked point labeled 2 at the vertex belonging to the special edge. Given that
all vertices in this “left-hand side graph” are labeled ([1,0], I) for some I € %)}, it defines a
component of My o(X7,, d L)TN. The graph I'y is obtained by considering all vertices of I' to
the right of the special edge and adding a marked point labeled 1 at the vertex belonging to
the special edge. Given that all vertices in this “right-hand side graph” are labeled ([0, 1], I)
for some I €y, it defines a component of M, (X7, dR)TN. Finally, 'y is the special edge
with 2 marked points added. They are labeled 1 in the left-hand side and 2 in the right-hand
side. Thus,
Zr = Zp, x Zp, X Zry;

WFigure (.3 is |Z1, Figure 4] adapted to the toric setting.
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Figure 5.3: The three sub-graphs of the graph in Figure

we denote by 7wy, my, and mr the corresponding projections.
It follows that
W*])E = Wz)')E@WEf}E, W*]'}'E = Wzi}E@TFEi}E,
NET ( g
TinXy Tin X3y

(5.31)

szr
) (‘B?T* (T[ ]XT ) (—BTFLL2®7T§L1 (—BWOLQ ®7TRL1,

where Ly — Zp,,Ly, Ly — Zp,, and L; — Zr, are the tautological tangent line bundles.
The first two equations in (5.31]) follow similarly to (5.22)).

By (5.31) and (2.34),
¥ [ ( ) ] Hev (Opv(1))] ‘Zr =} [e (VE>] Th [e <1>E> n’ (—h)mfz] ’

e(T[]]X;\-/[) _ ev2gz51 " GVT(ﬁI 1
e (Np) e (Ngr) |7 e (Ngn) | (h=miaba) ((—h)—mpen)’

and the first equation in (5.32)) with Ve replaced by Vg also holds. By (5:32)) and Lemma[5.14]

*

k
> iz

o=t e (Vp) 0’| [ evie (Osr (1)), RS
Jj=3 m—2 ©'7
= W)
er e (Np) e(TinX7,) 5.33
v v ( )
S (dy),zih J e(VE> ev3 o1 1 f e(VE> wevior g
X { ei=1 - ' )
z,  h=ts Fie(Ngr) [ |z, (Ch)-vr e (M)

(B33) with VE replaced by VE also holds. In the dy =0 case, the first curly bracket on the
right-hand side of (5.33)) is defined to be 1. By the Virtual Localization Theorem (5.16]) and

.21,

k ¥ *
> (dp),;zih e (VE) evior 1 v 5
QdL ei=1 J ] :Z ha Qe ? )
FZL: Zr, h—1)y |ZFL e (NF’LT) i )‘I

¥ (5.34
dr ° <VE) Wevior . )
FZR:Q | JZFR (=h)—¢1 e (NFZ) :Z””B(_h’Q)Lr’
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where the first sum is taken after all graphs 'y, corresponding to components of ﬁo,z(X 1.d L)TN
and with second marked point mapping to [1], while the second is taken after all graphs cor-
responding to components of My, (X, dR)TN such that the first marked point is mapped

o [I]. The equation obtained from (5.34]) by replacing Ve by Ve, Z, by 21, and Zv',,,ﬁ by 2',7 3
also holds. The claims follow from (5.33) and (5.34) (and their Vg analogues), by summing
the left-hand side of (5.33)) over all graphs I'e A; and all 1€ ¥}]. O

5.7 Recursivity and MPC for the explicit power series

As in |Gi2|, for each € ¥}, we define
A¥={deA:D;(d) >0 Vjel}. (5.35)
By [@.0), (.7), and (2.30),
[V(z(1), B, q)]ga # 0 = deAf and  [Y(z(1),h,q)]qa # 0 —> de AL (5.36)

Lemma 5.16. The power series )/(w, h,q) of ({7) is &-recursive with € given by (220).
The power series Y(x, h,q) of {F1) is C-recursive with € given by (5.20).
Proof. The recursivity of Y in the E = E* case is |Gi2, Proposition 6.3]. The proof of the

recursivity of Y in the general case is similar and so is the proof of the recursivity of V. We

prove below the recursivity of Y extending the proof of (a) in |Z1, Section 2.3] and the proof
of [Gi2, Proposition 6.3]. Let I € ¥)}, je|[N]|—1, J=v(l,j), {j}=1—-J. By (630), (£1),
Remark 5.4, and (5.9),

I I [w()—2u(D)]

d’eAy — S,
D, (5')> d Tel[_J[V] 11 [un(J) = 5u;(D)] (5.37)
Dy (d')20
a Lid)-1 s b —L;(d) 5
IT TT MO=—w|[T T |¥+5u)]
=1 s=0 =1 s=1

dDr(I7)

] ) D,(d")+1+dD,(T5)

Z qd/ DT
Dy (d’)+dD,(Tj)

DC(ILIE’)A> « 1l [T [uD)=5u(D)] (5.38)
re€[N]  s=1+dD,(Tj)
D,(d')>0

o Lf(d)-1+dLf (Tj)

AT o ]ﬁ

s=dLj (1) s=1—

—Ly(d)—d
H
dL; (I5)
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By (513) and (5.10),

0
[T [w()=5u;(I)
~ (—1)dd?d-1 1 s=1+dDT(Ij)[ (D)
A P PRV TE I § WX (5:39)
. ¥ r N s
e[N]-{5.5} U1 [, (I)—2u;(1)]
Ifd>1,d*eA, d=d*—d-degTjeA, then,
[d*eA7 and D;(d) >d] — [d/eAf} and D;(d') > _d] (5.40)

by (513). By (.34), @.1), ©.33), (£.39), and (5.20),

1 e & (d) e (1
ReSZ= ]<1) {h— [{y(x(]>727Q>ﬂq;d*} = h—iI-Ju(J—(I)) Hy <$(J),_UJC(Z >,Q)ﬂq.d* ddeg TS
7 ;d*—d-de

for all d*€ A. Finally, viewing - [[y(:v(l), z, q)ﬂ oy 252 rational function in A, z, and «;
g;d*

and using the Residue Theorem on P!, we obtain

3 2 Q”uj ) H <I<J),—“jflf),q)]]q;d*_d'dew:[[ﬁ(x(f),h,q)ﬂq;d*

d=1je[N
d- deng<d*

—Zz

Res.coe {5 [Platnza]

where Res,—g o F =Res,_oF +Res,_F. Since

vy

Res. . { hiz RG] N } eQalh, 7],

this concludes the proof. O
Lemma 5.17. With ;)> and )'} defined by ({{.7), ()'7, j}) satisfies the MPC.
We follow the idea of the proof of [Gi2, Proposition 6.2] and begin with some preparations.

Let de | A7,
Ievy,

J

J(d) = {j € [N]: Di(d) = 0}, S=|J|+2, D;(d)
jedJ
Let A be the |J| x S matrix giving [ PP/(d as in (Z37). Denote the coordinates of a point
jedJ
yeC?® by
(Z/j;o; Yjsty - - - fyj;Dj(d))jeJ .
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The pair (M;A,7) is toric in the sense of Definition 2.1l It satisfies in Definition 2.1]
since

Via ={ (Gsp1), -, (i pw)) -

5.41
{ila'”?ik}efyl\q/—[v {7:17"'72'k}g‘]7 ng'rngr(d) VTE[I{?]} ( )

by the second statement in Lemma 2Z4[(b)] We identify C° with @@ H°(P', Op:(D;(d))) via

jed

D;(d) D)
(yj;(b Yjts - - vyj%Dj(d))jeJ — ( Z YinZo' ZI)
r=0 jeJ

and set Xq = XJ; 4. The torus T' x T acts on @ H°(P*, Op1(D;(d)) by
jedJ

(& ()0 (B0, 20)) sy = (5P (20, €20)) s (5.42)

while the torus TV acts on @ H(P!, Op1(D;(d))) by restricting this action via
jeJ

TV st — (1,t)eT! x TV
these actions descend to actions on Xgq4.

Lemma 5.18. (a) The fived points of the T* x T!|-action on Xq are
[1;p]= [<Pj(207 zl))jej] : (5.43)

where 1€ ¥y, IS, p=(p;i);e;€ZF, 0<p; < D;(d) for all i€, and

Dj(d)—p; _pj e
Z 2z, if jel,
Pj(ZO7 Zl) E{ 0 1 J

0, otherwise.

(b) Let Ie ¥y, and p=(p;)icr€Z*. Then
0<p;<D;(d) Viel <=  pM;' d—pM;'eA;.

Proof. Let [(P;(z0, 21)jes)] be any fixed point of the T'xT!/l-action on X4 and (&, &)eC? be

such that Pj(&y,&;)#0 whenever P;#0. By Lemma and (541, (P;(&,&1))jes€ Xir,-
Since [(P;(&,&1))jes] is a TV-fixed point in X}, , there exists /€ ¥} with I < J such that
P; #0 if and only if je I; see Corollary This concludes the proof of @ Part @
follows from (5.35) and the identity (D;(r)),er=rM; for r=pM;'; see the second equation

in (ZI7). O
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We consider the T! x T-action on X4 obtained by composing the projection T! x TV —
T! x T induced by J < [N] with the action (542) of T' x TMI on X4. We denote by
&(Tir,p)Xa) the T' x TM-equivariant Euler class of T}y ;X4 and by

(I,p) : H’]T‘lx']I'N(Xd)—) T TN

the restriction map induced by the inclusion [I, p] < Xq, where [I,p] is the T! x T -fixed
point defined by (B.43). Let i denote the weight of the standard action of T* on C.

Lemma 5.19. There exist classes (X;)iepr]s (Wr)re[n], (A )iefa]s (A} )iep) € Hir  pv (Xa) such
that

u, = Zmirxi—ar Vre[N], (5.44)

and such that for all (I,d") with Ie ¥y, I<J, d,d—d' €A}, and all [I,p] as in (5-43),

(x1(I,d'My), ..., xpx(I,d"Myp)) = (x:(1),...,z(I))+hd/ (5.45)
Xg= 1 T[] [tpy-sn (5.46)

jeJ—I0<s<D;(d)
XH H [uj(l7p)_8h]a

JeI 0<s<Dj;(d)
SF#DPj

AF (L, d'M;) = N (I)+hLE(d)  Viela] (Vie[b]). (5.47)
Proof. We define the classes 21, ..., Ty and u;;s in His(Xq) with jeJ and 0<s<D;(d) by
2.217) with (M, 1) replaced by (M;A, 7). By (229),

Uyj:s :Z mz]%’z — Qs (548)

where ;s =7% ¢1(Op» (1)) and ;. : (P*)° — P* is the projection onto the (j; s) component.
By Corollary (54T, and Z34), the T*fixed points in X4 are the points [I, p] and

e H H [ujs ] H H [Uj;s}[l,p]], (5.49)

JEJ =1 0<s<D;( J€I 0<s<Dj(
s;ﬁpj

where €™’ (T1,p1Xa) denotes the T*equivariant Euler class of T}; ;) Xq and
|[[,p] : ;S(Xd) - H;S

the restriction homomorphism induced by [, p]< Xq4. The map

F:(C*—{ophN T — ((COO—{O})S, F(eg,e1,...,en)= (ej,ej . eo,ej~eg, T eé) (d)> L
J
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where
(21,20,...)% = (2§,24,..) Vd=1, (21, 22,...)eC*—{0}, and
(Zl, Z9, .. .)'(yl, Y2, . . ) = (Ziyj)(i,j)€Z>0><Z>0 \ (21, 29, .. .), (yl, Y2, . - .)ECOO—{O}
is equivariant with respect to the homomorphism
FT'STN — T8, f(& b, ty) = (8, 456,682, .. ,tngj(d))jeJ.
It induces a map F: (C*—{0})N+ x i pv Xg— (C* —{0})% x s X,
Fleg,ers. .. en, [(Py)jes]] =[Fleosen, .y en), [(Py)jes]]
v (60, €1,... ,6N)E (COO—O)N+1, [(Pj)jej] EXd,

and thus a homomorphism e Hrs(Xa)— Hr o

(Xa). It follows that
Flaj, = a; + sh V(j;s) with jeJ 0<s<D,(d). (5.50)
We define x; and u, as the T! x TN-equivariant Euler classes of the line bundles
XiaxC/~— Xq and Xj; 4 x C/ ~,— Xq,

where
((Py)jes, ) ~i ("9 P))jes. tic)
((Pj)jEJa c) ~r ((thPj)jeJa tMrC)
with respect to the lifts of the T! x TN-action on X4 given by

(&t tn) [(Pi (20, 21))jes, c] = [(P(20,€21)) jes, ] and
(& trs oo tn) [(Pi (20, 21))jer, c] = [(8:P5(20,§21)) jess trc]

respectively. It follows that

VteTr, ((P))jes, )€ Xf, 4 xC (5.51)

(5.52)

x; = F % (5.53)
and u; satisfy (5.44]). The latter follows similarly to the proof of (Z29)) using equations
analogous to (Z28) and (Z26) with TV replaced by T! x TV. Equation (5.45]) follows from

(553), Proposition and (B.50). Equation (B.55) follows from (5.44]), (5.45), and
229). Equation (5.46]) follows from (5.49) together with (5.48), (5.50), (5.53), and (5.44).

Finally, define
A= iﬁ;xr and A = iér_ixr, (5.54)
r=1 r=1
with £+, 0 as in (3.5). Equations (5.47) then follow from (5.54), (5.45), and (Z.4). O
With u; and (/,d’) as in Lemma [5.19]
u; (I,d'M;) = u;(I)+hD;(d") Vje[N], (5.55)
by (5.44), (5.45), and 2.29).
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Lemma 5.20. There exists a vector bundle Vqg— X4 and a lift of the T x TN-action to Vg4
such that the T x TN-equivariant Euler class €(Vy) satisfies

N —Dj(d)-1

H H [u,;(I,p) + shj

for all T'XTN-fized points [I, p] defined by (5.43) and with u;e H%  .n(Xa) as in LemmalZ13.
Proof. Let

JE[N]|—J

Va= {(pj)je[N]_Je @ H(P', Opi (~D;(d)—1)): P;(1,0)=0 Vje[N]—J},
)?]7\—/[JAX‘7d

Va = —)Xd7 ((P )]eJ ) (P )]e[N] J) ~ <(thPj)jeJ ’ (thPj)je[N]—J> Vie Tk

Since )N(XJJ 4 — Xaq is a principal bundle, Vg — Xy is a holomorphic vector bundle. The
T! x TMaction on Xy lifts to Vg via

(57 t,. .. 7tN)' [(Pj(20> zl))jeJ ) (Pj(zov Zl))je[N]—J] = [(tj]DJ'(ZOa le))jEJ ) (tJ'Pj(ZOa 521))je[N]—J] :
The lemma now follows from the definition of u; in (5.51)) and (G.52]). O
By the Localization Theorem (2:22]), Lemma 518, Lemma (.20, and (5.46)),

~

FOLAMYTT T (L d/My)—sh)

- J=1s=D;(d)+1
FE(Va) = , (5.56)
X4 I;T H H [u](]7 d/MI)_Sh]H H [u](‘[7 d/MI)_Sh]
o ddiean 18I~ 0<s<D; (@) jel OSSED(Q(?)
) s# j !

for all fe H?, .~ (Xa).
Proof of Lemma[5.17. By Definition B3] (5.:30), (L7), (5.50), (5.45), (5.553), and (5.47)),

—D;(d")-1
IR RRTICINS W N TGRR
(@(D)+hd))-z JEN je[N] s=D;(d)+1
e D;(d)<0 D;(d)<0
O5 5 (h,2,Q)= Qd d
Ta1 d/+d” d L je[N]-I D;(d)=0 _D]'(d”)i%ng(d/)
Li(d) b —Li (d”)
]_[ 1] [Aj(1)+sh] [T [ [ +sh] }
i=lg=—LF(d")+ i=lg=p7(d’)+1
a b —L;(d)
= >, f &(Va)e | | H (A +sn] ] | [\ +sh] .
de |y A% Xq i=1s=—L;r(d)+1 i=1 s=1
IeV i,
The last expression is in Q|a, A][[z, A]]. O
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Appendix A
Derivation of (5.2)) from [LLY 3]

[LLY3] our notation
m k
eli qj
R Clay,...,an)[A]
C[T*] Qlau, ..., an]
! h
T T
er e
c1(Lyg) —py € H? (Mo1(XF,. d))
p forgetful morphism Mty 1 (X, d) — Mg o(X, d)
ex evy: Mo (X, d) — X
LTy (d, X) [D0.1(X,d)]™"
Vi Vi — Mpo(X,d)
Ug = p*Vy Vi — Mo (X, d)
(Da)ac(n (145) e

In [LLY3, Section 3.2], we take by = er (that is, ), X = X],, and V = FE. By [LLY3,
Section 3.2],

X p*bT(Vd)ﬂLTg71(d,X>
o Ai=e ( e (Fo/My(X)) )

where {H,} © H2y(X},) is a basis whose restriction to H?*(X7,) is a basis of first Chern
classes of ample line bundles; see [LLY3, Section 3,viii]. By |[LLY3, Lemma 3.5],

ea(Fo/My(X)) = ala—ci1(Lyg)).

Vibr 14\ _ _Hitla e(E™) dt
AVIT () = A(t) =Y [e(E‘>+deAZ_oAde

Thus, in our notation,

— o Ht/h e(E7) odt oy e(Vg)
A(t) {G(E_)+ > s {—h(hwl)]}’ (A.1)



where ev; : 01 (X[, d) — XJ, is the evaluation map at the marked point. By ([@2), (A1),
and the string relation , Section 26.3],

E*t) +
A(t) = e ED 2 (g oy, A2
( ) e e(E—) 1( , € ) ( )
By [@7), Remark 5.1l and (£4), (5.2) is independent of the choice of a Q[a]-basis for
Hiy 2.(X7)) and so it is not necessary to assume that the restrictions of z; to H*(X7},) are
M

Chern classes of amle line bundles. Thus, we may take H = (z1,...,x;) in |. By
LLY3, (5.2)] and [L , Theorem 4.9,

—yn€ET) - t
B(t)=e /hm)} (z,—h,e") (A.3)

in [LLY3, Theorem 4.7]. In the notation of the proof of [LLY3, Theorem 4.7] correlated with
Remark B.1],

szo(q), '’ =—Io ( +Z @;9;(q ) ; Z—io(Q) (fi(@)s -, ful(@),

(A.4)
G+ X aggg(q)] C”
=

e’ , g=——=(filq),. .., fr(q)).

1
Io(q)

Finally, by |[LLY3, Section 5.2] and LLY3, Corollary 4.11], the hypothesis of LLY3,
Theorem 4.7] are satisfied with A(t) and B(¢) as in (A2) and (A3) if ve(d) = 0 for all

de A, since e(E™) and e(E~) are non-zero whenever restricted to any TV-fixed point; see

Proposition 221[(a)l Thus, (5.2) follows from [LLY3, Theorem 4.7), (A2), (A3), and (&).

ef/a eflogcf—a_
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