
 

   
SSStttooonnnyyy   BBBrrrooooookkk   UUUnnniiivvveeerrrsssiiitttyyy   

 
 
 

 
 
 
 

   
   
   
   
   

The official electronic file of this thesis or dissertation is maintained by the University 
Libraries on behalf of The Graduate School at Stony Brook University. 

   
   

©©©   AAAllllll    RRRiiiggghhhtttsss   RRReeessseeerrrvvveeeddd   bbbyyy   AAAuuuttthhhooorrr...    



Symplectic Geometry of

Rationally Connected

Threefolds

A Dissertation Presented
by

Zhiyu Tian
to

The Graduate School
in Partial fulfillment of the

Requirements
for the Degree of

Doctor of Philosophy
in

Mathematics

Stony Brook University
May 2011



Stony Brook University
The Graduate School

Zhiyu Tian

We, the dissertation committee for the above candidate for the Doctor of
Philosophy degree,

hereby recommend acceptance of this dissertation.

Jason Starr, Dissertation Advisor
Associate Professor, Department of Mathematics

Aleksey Zinger, Chairperson of Defense
Associate Professor, Department of Mathematics

Radu Laza
Assistant Professor, Department of Mathematics

Dusa McDuff
Professor, Department of Mathematics, Barnard College

This dissertation is accepted by the Graduate School

Lawrence Martin
Dean of the Graduate School

ii



Abstract of the Dissertation

Symplectic Geometry of
Rationally Connected Threefolds

by
Zhiyu Tian

Doctor of Philosophy
in

Mathematics

Stony Brook University
2011

We study the symplectic geometry of rationally connected 3-folds. The
first result shows that rational connectedness is a symplectic deformation in-
variant in dimension 3. If a rationally connected 3-fold X is Fano or has
Picard number 2, we prove that there is a non-zero Gromov-Witten invari-
ant with two insertions being the class of a point. Finally we prove that many
other rationally connected 3-folds have birational models admitting a non-zero
Gromov-Witten invariant with two point insertions.
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1 Introduction

In this thesis we study the symplectic geometry of smooth projective ratio-
nally connected 3-folds over the complex numbers. First recall the following
definitions.

Definition 1.1. A varietyX is called rationally connected if two general points
in X can be connected by a rational curve.

A related notion is uniruledness.

Definition 1.2. A variety X is called uniruled if there exists a rational curve
through a general point.

The motivation of this thesis is the following theorem, proved indepen-
dently by Kollár and Ruan.

Theorem 1.3 ([Kol98], [Rua99]). Let X be a smooth projective uniruled vari-
ety. Then there is a non-zero Gromov-Witten invariant of the form 〈[pt], . . .〉X0,β.

If X and X ′ are two smooth projective varieties, then they can also be
considered as symplectic manifolds with symplectic form ω and ω′ given by the
polarizations. We say that X and X ′ are symplectic deformation equivalent if
there is a family of symplectic manifolds (Xt, ωt) diffeomorphic to each other
such that (X0, ω0) (resp. (X1, ω1)) is isomorphic to (X,ω) (resp. (X ′, ω′))
as a symplectic manifold. Since Gromov-Witten invariants are symplectic
deformation invariants, Kollár and Ruan’s result has the following immediate
corollary.

Corollary 1.4 ([Kol98], [Rua99]). Let X and X ′ be two smooth projective
varieties which are symplectic deformation equivalent. Then X is uniruled if
and only if X ′ is.

The proof of the theorem and its corollary will be given at the end of this
chapter. We will now discuss two generalizations of these results to the case
of rationally connected varieties.
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1.1 Symplectic topology of rationally connected vari-
eties

In dimensions 1 and 2, rational connectedness is a topological property in
the sense that a smooth projective variety of dimension at most 2 is rationally
connected if and only if it is diffeomorphic to a rationally connected variety.
However this fails in higher dimensions. For more details and many other
interesting problems about rationally connected varieties, see [Kol98].

Motivated by Corollary 1.4, Kollár conjectured the following.

Conjecture 1.5 (Kollár, [Kol98]). Let X and X ′ be two smooth projective
varieties which are symplectic deformation equivalent. Then X is rationally
connected if and only if X ′ is.

The first evidence of this conjecture in higher dimensions is the following
theorem of Voisin [Voi08].

Theorem 1.6 ( [Voi08]). Let X and X ′ be two smooth projective 3-folds which
are symplectic deformation equivalent. If X is Fano or rationally connected
with Picard number 2, then X ′ is also rationally connected.

The idea of the proof in [Voi08] is the following. It suffices to show that
the maximal rationally connected quotient (MRC-quotient) of X ′ is a point.
By the result of Kollár and Ruan (Theorem 1.3), the MRC quotient is either
a surface, a curve or a point. For topological reasons, it cannot be a curve. If
it is a surface, then X is birational to a conic bundle over a rational surface.
Then the condition of being Fano or having Picard number 2 enables one to
show that X is actually a conic bundle over a surface. Then Voisin shows that
there is a non-zero (higher genus) Gromov-Witten invariant of the form

〈[C], . . . , [C]︸ ︷︷ ︸
≥(g+1)[C]

, [A]2, . . . , [A]2〉Xg,β,

where [C] is the curve class of a general fiber and [A] is the class of a very
ample divisor. Thus the MRC quotient surface has to be uniruled, which is
impossible by results in [GHS03].

In this thesis we attack this problem in dimension 3 using the same strat-
egy as [Voi08] together with techniques of handling Gromov-Witten invariants
under blow-ups and blow-downs. We first construct a smooth birational model
Y which is “almost” a conic bundle over a smooth rational surface. On this
new threefold, there is a non-zero genus zero Gromov-Witten invariant of the
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form 〈[C], . . .〉Y0,β. By weak factorization, we can factorize the birational map
from Y to X by a number of blow-ups and blow-downs. Then using the ideas
developed in [MP06] and [HLR08], we show that there is a similar non-zero
descendant Gromov-Witten invariant on X, hence on X ′. So the MRC quo-
tient of X ′ cannot be a surface. In this way we have verified Conjecture 1.5
for 3-folds.

Theorem 1.7. Let X and X ′ be two smooth projective 3-folds which are sym-
plectic deformation equivalent. Then X is rationally connected if and only if
X ′ is.

1.2 Symplectic birational geometry

Next we would like to mention the so called “symplectic birational geometry
program”. The ultimate goal of this program is to carry out a “birational”
classification of symplectic manifolds. In this thesis we will restrict ourselves
to the study of a particular class of symplectic manifolds.

Definition 1.8. A symplectic manifold is symplectic uniruled (resp. symplec-
tic rationally connected) if there is a non-zero Gromov-Witten invariant of the
form 〈[pt], . . .〉X0,β (resp. 〈[pt], [pt], . . .〉X0,β).

There are two basic questions about these definitions.

1. Are these conditions symplectic birational invariant?

2. Is a smooth projective uniruled (resp. rationally connected) variety sym-
plectic uniruled (resp. symplectic rationally connected)?

For symplectic uniruledness, the answer is positive by the work of Kollár,
Ruan, and Hu-Li-Ruan ([Kol98], [Rua99], [HLR08]). It is not known if sym-
plectic rational connectedness is a (symplectic) birational invariant, although
we do expect this to be true. And it is not known if rationally connected
projective manifolds are symplectic rationally connected. Note that Kollár’s
conjecture would follow if we could show that rational connectedness implies
symplectic rational connectedness.

Every one dimensional rationally connected variety is just P1, and thus
symplectic rationally connected. It is also easy to prove rational connected-
ness is equivalent to symplectic rational connectedness in dimension 2 (c.f.
Proposition 4.16).
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In general, this question is very difficult since the moduli space of stable
maps might be reducible and there might be components whose dimensions
are higher than the expected dimension. Then one has to introduce the vir-
tual fundamental class in order to define the Gromov-Witten invariants. The
components of dimension higher than the expected dimension can contribute
negatively, thus making the Gromov-Witten invariant zero, see Example 42 in
[Kol09].

Our second theorem addresses this question in some special cases.

Theorem 1.9. Let X be a smooth projective rationally connected 3-fold. If
X is Fano or has Picard number 2, then there is a non-zero Gromov-Witten
invariant of the form 〈[pt], [pt], . . .〉X0,β.

Here is one possible way to prove that every rationally connected variety
is symplectic rationally connected. First show that symplectic rational con-
nectedness is a birational invariant and then find in each birational class a
“good” representative which is symplectic rationally connected. In this thesis,
we partly carry out the second part in dimension 3.

By the minimal model program (MMP) in dimension 3, every rationally
connected variety is birational to one of the following:

1. a conic bundle over a rational surface,

2. a fibration over P1 with general fiber a Del Pezzo surface, or

3. a Q-Fano threefold.

Here is our third theorem.

Theorem 1.10. Let Y be a rationally connected 3-fold with at worst terminal
singularities and π : Y → S be a fiber type contraction of some KY -negative
extremal face (equivalently, Y is a Mori fiber space). Assume one of the fol-
lowing holds.

1. dimS ≥ 1, that is, Y is a conic bundle or a Del Pezzo fibration.

2. dimS = 0, that is, Y is a Q-Fano 3-fold, and the smooth locus of Y is
rationally connected.

Then there is a resolution of singularities X → Y such that X is symplectic
rationally connected.
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Note that we do not assume the relative Picard number ρ(Y/S) is 1 in the
above theorem.

In general, it is difficult to determine if the smooth locus of a singular
variety is rationally connected. However, in this thesis we note that Gorenstein
Q-Fano 3-folds satisfy this condition.

1.3 Proof of Theorem 1.3 and Corollary 1.4

We conclude this introduction by giving the proof of Theorem 1.3 in [Kol98]
and [Rua99] and by explaining why the same strategy does not work for the
case of rationally connected varieties.

We need to introduce some terminology.

Definition 1.11. Let X be a smooth variety. A curve f : P1 → X is called
free (resp. very free) if f ∗TX ∼= ⊕OP1(ai) with ai ≥ 0 (resp. ai ≥ 1).

A smooth projective variety is uniruled (resp. rationally connected) if and
only if there is a free (resp. very free) curve.

Proof of Theorem 1.3. We first choose a polarization of X. Then there
exists a free curve C of minimal degree with respect to the polarization. Note
that every rational curve through a very general point p in X is free. So if we
choose such a point and consider all the curves mapping to X of class [C] and
passing through p, then we get a proper family (by minimality) of expected
dimension (since the deformation is unobstructed). Therefore the Gromov-
Witten invariant 〈[pt], [A]2, . . . [A]2〉X0,[C] is non-zero, where [A] is the class of
a very ample divisor. Clearly, this is the number of curves meeting all the
constraints. �

Proof of Corollary 1.4. Assume X is uniruled. Then by Theorem 1.3,
there is a non-zero Gromov-Witten invariant of the form 〈[pt], . . .〉X0,β. Since
Gromov-Witten invariants are symplectic deformation invariant, we have a
similar non-vanishing Gromov-Witten invariant on X ′. Then the moduli space
of rational curves passing through a general point is non-empty, otherwise the
Gromov-Witten invariant is zero. Thus X ′ is also uniruled. �

One may want to prove a similar result for rationally connected varieties
by choosing the minimal curve class such that a curve in this curve class
connects two general points. However it may happen that every such curve is
reducible and disappears even after an algebraic deformation. For example, in
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a Hirzebruch surface Fn with n large, we can choose a suitable polarization such
that the minimal such curve is the union of two general fibers and the section
at infinity. If n is large, this curve disappears after an algebraic deformation.
Thus, it cannot give a non-zero Gromov-Witten invariant.

If one insists in choosing a minimal very free curve, then there may be
reducible curves in the same curve class that lie in a component whose di-
mension is higher than the expected dimension. For example, in the case of
the Hirzebruch surface Fn, the curve class of the minimal very free curve is
S∞ + nF , where S∞ is the section at infinity and F is a general fiber. Then
the union of the multi-covers of two general fibers and S∞ gives a component
whose dimension is higher than the expected dimension. There is no known
general methods to determine the contribution of such components other than
by an explicit computation.
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2 Symplectic deformation
invariance for rationally
connected threefolds

In this chapter we will prove symplectic deformation invariance for ratio-
nally connected 3-folds. As indicated in the introduction, we need to study the
change of Gromov-Witten invariants under blow-ups/blow-downs. We first re-
view the degeneration formula and relative Gromov-Witten invariants needed
in the proof. Then we prove a blow-up/blow-down correspondence similar to
the one in [HLR08]. And finally we give the proof of the symplectic deforma-
tion invariance.

2.1 Descendant GW-invariants, Relative GW-invariants,
and the Degeneration formula

In this section we recall some variants of Gromov-Witten invariants.

Definition 2.1. Let MX,β

0,n be the moduli stack of genus 0, n-pointed stable

maps to X whose curve class is β. Let Li be the line bundle on MX,β

0,n whose
fiber over each point (C, p1, . . . , pn) is the restriction of the sheaf of differentials
of the curve C to the point pi. Let ψi be the first Chern class of Li. Then the
descendant Gromov-Witten invariant is defined as

〈τk1γ1, . . . , τknγn〉X0,β =

∫
[MX,β

0,n ]virt

∏
i

ψkii ev
∗
i γi,

where evi is the evaluation map given by the i-th marked point, and γi ∈
H∗(X,Q).

For 〈τk1γ1, . . . , τknγn〉X0,β, we can associate a decorated graph Γ of one vertex
decorated by β and a tail for each marked points, decorated by (ki, γi). The
resulting graph Γ({(ki, γi)}) is called a decorated weighed graph.

Next we discuss relative Gromov-Witten invariants, which were first in-
troduced in the symplectic category by Li-Ruan [LR01] and in the algebraic
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category by Jun Li [Li01], [Li02]. We will not recall the precise definition here
since it is not needed. The reader should refer to the above-mentioned papers
for more details.

Intuitively, the relative Gromov-Witten invariants count the number of sta-
ble maps satisfying certain incidence constraints and having prescribed tan-
gency condition with a given divisor. Let X be a smooth projective variety
and D ⊂ X be a smooth divisor. Fix a curve class β such that the in-
tersection number D · β = m is non-negative. The relative Gromov-Witten
invariants are not defined if the number D · β is negative. Also choose a par-
tition {mi, i = 1, 2, . . . , s} of m. Then the relative Gromov-Witten invariants
count the number of stable maps f : (C, p1, . . . , pr, q1, . . . , qs)→ X with r + s
marked points such that the first r points (absolute marked points) are mapped
to cycles in X and the last s points (relative marked points) are mapped to
some cycles in D and f ∗D =

∑
miqi. We can also define descendant relative

Gromov-Witten invariants. We write such invariants as

〈τd1γ1, . . . , τdrγr|(m1, δ1), . . . , (ms, δs)〉(X,D)
0,β

where γi ∈ H∗(X,Q), δj ∈ H∗(D,Q). We also use the abbreviation

〈Γ{(di, γi)}|Ts〉X,Dβ

following [HLR08], where

Ts = {(m1, δ1), . . . , (ms, δs)}

is called the weighted partition. In the degeneration formula, we have to con-
sider stable maps from disconnected domains. The corresponding relative in-
variants are defined to be the product of those of stable maps from connected
domains. Such invariants are denoted by

〈Γ•{(di, γi)}|Ts〉X,Dβ .

We use • to indicate that the invariant is for a disconnected curve as [HLR08]
and [MP06]. Finally we note that we can represent these invariants by dec-
orated weighted graphs (c.f. Section 3.2 in [HLR08]), which is the disjoint
union of the graphs described in Definition 2.1.

Now we describe the degeneration formula. Let W → S be a projective
morphism from a smooth variety to a pointed curve (S, 0) such that a general
fiber is smooth and connected and the fiber over 0 is the union of two smooth ir-
reducible varieties (W+,W−) intersecting transversely at a smooth subvariety
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Z. Let γi be cohomology classes in a general fiber. Assume that the special-
ization of γi in W0 can be written as γi(0) = γ+

i + γ−i , where γ+
i ∈ H∗(W+,Q)

and γ−i ∈ H∗(W−,Q).
We first specify a map from a curve of genus 0 to W+ ∪ W− with the

following properties:

(i) Each connected component is mapped to either W+ or W− and carries
a degree 2 homology class;

(ii) The marked points are not mapped to Z;

(iii) Each point mapped to Z carries a positive integer representing the order
of the tangency.

The above data gives two graphs describing relative stable maps from possibly
disconnected domains to (W+, Z) and (W−, Z), the graph of which are denoted
by Γ•+ and Γ•−. From (iii) we get two partitions T+ and T−. Call the above
data a degenerate (β, l) graph if the resulting pairs (Γ•+, T+) and (Γ•−, T−)
satisfies the following: the total number of marked points is l, T+ = T−, and
the identification of relative tails produces a connected graph of W with total
homology class [β] and genus 0.

Denote by Aut(Tk) the automorphism group of such partitions. Let {δi}
be a self-dual basis of H∗(Z,Q). By (iii), we have a weighted partition Tk =
{(tj, δaj)} and its dual partition Ťk = {(tj, δ̌aj)}, where δ̌aj is the Poincaré
dual of δaj . Let β+ (resp. β−) be the total homology class of the curves
mapped to W+ (resp. W−) in a degenerate (β, l) graph. Then β = β+ + β−.
The degeneration formula expresses the Gromov-Witten invariants of a general
fiber in terms of the relative Gromov-Witten invariants of the degeneration in
the following way:

〈
∏
i

τdiγi〉Wt

0,[β] =
∑

∆(Tk)〈Γ•{(di, γ+
i )}|Tk〉W

+,Z
0,β+

〈Γ•{(di, γ−i )}|Ťk〉W
−,Z

0,β−
,

where the summation is taken over all possible degenerate (β, l) graphs, and

∆(Tk) = |Aut(Tk)| ·
∏
j

tj.

By convention, if β+ or β− is the zero homology class, the relative invariant is
defined to be 1.

In this paper we are mainly interested in the following special case of such
degenerations: the deformation to the normal cone. Namely, letX be a smooth
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projective variety and S ⊂ X be a smooth subvariety. Then we take W to be
the blow-up of X ×A1 with blow-up center S × 0. In this case, W− ∼= X̃, the
blow-up of X along S, and W+ ∼= PS(O ⊕NS/X).

2.2 A partial ordering

Let X be a smooth projective 3-fold and S ⊂ X be a smooth subvariety
of codimension k(= 1, 2, 3). Denote by X̃ the blow-up of X along S and by
E the exceptional divisor. Here we allow S to be a codimension 1 subvariety,
i.e. a divisor. In this case X̃ is isomorphic to X and E is isomorphic to S.

In the following we will define a partial ordering on certain Gromov-Witten
invariants. The partial ordering is basically the same as the one in [HLR08].
The major difference is that we choose a different self-dual basis of E ( c.f.
Remark 2.2).

Let θ1, θ2, . . . , θmS ∈ H∗(S,Q) be a self dual basis of S, where θ1 (resp. θmS)
is the generator of the degree 0 (resp. 2(3− k)) cohomology. We now describe
a self dual basis of the exceptional divisor E. Note that E = PS(NS/X) is
a Pk−1-bundle over S. Let [E] be the first Chern class of the relative O(−1)
bundle over PS(NS/X). If k is 2, i.e. S is a smooth curve in X, then πS : E → S
is a ruled surface over S. In this case, define

λ = [E]− [E] · [E]

2
π∗SθmS ,

so that λ2 = 0. Otherwise just take λ to be [E]. Then the cohomology classes

π∗Sθi ∪ λj, 1 ≤ i ≤ mS, 0 ≤ j ≤ k − 1,

form a self-dual basis of E. Denote it by Θ = {δi}.

Remark 2.2. In [HLR08], the authors claim {π∗Sθi ∪ [E]j} to be self dual,
which is not true if NS/X is not a trivial bundle over S. However, this has
been fixed and the proof is essentially the same since only the degree of the
[E] part is important in the proof.

Definition 2.3. A standard (relative) weighted partition µ is a partition

µ = {(µ1, δd1), . . . , (µl(µ), δdl(µ))},

where µi and di are positive integers with di ≤ kmS. l(µ) is called the length
of the partition.
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For δ = π∗Sθ ∪ λj ∈ H∗(E,Q), with j ≤ k − 1, define

degS(δ) = deg θ, degf (δ) = 2j.

For a standard weighted partition µ, define

degS(µ) =

l(µ)∑
i=1

degS(δdi), degf (µ) =

l(µ)∑
i=1

degf (δdi).

We define a partial ordering on the set of pairs Z+ ×H∗(E,Q) by setting

(m, δ) > (m′, δ′), if

1. m > m′, or

2. m = m′ and degS(δ) > degS(δ′), or

3. m = m′, degS(δ) = degS(δ′), and degf (δ) > degf (δ
′).

We define a partial ordering on the set of weighted partitions by setting

µ > µ′

if after the pairs of µ and µ′ are arranged in decreasing order, the first pair for
which µ and µ′ are not equal is larger for the µ, or if all the pairs of µ′ appear
in µ and µ has more pairs.

Let σ1, . . . , σmX be a basis of H∗(X,Q). Then the set of cohomology classes

γj = π∗σj, 1 ≤ j ≤ mX ,

γj+mX = ι∗(δj), 1 ≤ j ≤ kmS

generate a basis of H(X̃,Q), where π : X̃ → X is the blow-up along S,
ι : E → X̃ is the inclusion and ι∗ is the induced Gysin map.

Notation 2.4. A connected standard relative Gromov-Witten invariant of
(X̃, E) is of the form

〈ω|µ〉X̃,E0,A = 〈τkiγL1 , . . . , τknγLn|µ〉
X̃,E
0,A ,

where A is an effective curve class on X̃, µ is a standard weighted partition
with

∑
µj = E · A, and γLi = π∗σLi .
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We write Γ(ω)|µ for the decorated graph of such invariants.

Definition 2.5. Define c(Γ) to be the number of connected components of the
curve corresponding to the graph Γ and ‖ω‖ to be the number of insertions in
ω.

Definition 2.6. For two effective curve classes β and β′ in H2(X̃,Z), we say
β < β′ if the difference π∗(β

′)− π∗(β) is an effective curve class in X; β ∼ β′

if π∗(β) = π∗(β
′).

Definition 2.7. We define the partial ordering on the set of decorated graphs
of the standard relative invariants of X̃ by setting

Γ(ω)|µ < Γ(ω′)|µ′, if

1. β < β′, or

2. β ∼ β′ and c(Γ) > c(Γ′), or

3. β ∼ β′, c(Γ) = c(Γ′), ‖ω‖ < ‖ω′‖, or

4. β ∼ β′, c(Γ) = c(Γ′), ‖ω′‖ = ‖ω‖, degS(µ) > degS(µ′), or

5. β ∼ β′, c(Γ) = c(Γ′), ‖ω′‖ = ‖ω‖, degS(µ) = degS(µ′), µ > µ′.

We have the following observation:

Lemma 2.8. Given a standard relative invariants, there are only finitely many
non-zero standard relative invariants smaller than it in the partial ordering
defined above.

Proof. For a curve class β of X̃, there are only finitely many curve classes of
the form π∗(β

′) in X such that π∗(β)− π∗(β′) is an effective curve class in X.
Two different curve classes in X̃ gives the same curve class in X if and only if
the difference is a multiple of L, where L is a line or a ruling in the exceptional
divisor. And once β′ is fixed, k is bounded below since β′ + kL has to be an
effective curve class, and bounded above since E · (β′ + kL) is non-negative
and E · L is −1. Thus such classes are bounded. For every such curve class,
there are only finitely many non-zero relative invariants. �
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2.3 From relative to absolute

We relate absolute invariants of X to relative invariants of X̃ in this section.
To a relative insertion (m, δ) with δ = π∗Sθi ∪ λj, we associate the absolute

insertion τd(m,δ)(δ̃), where

δ̃ = ι∗(θi), d(m, δ) = km− k + j.

Given a weighted partition µ = {(µi, δki)}, we define

di(µ) = d(µi, δki) = kµi − k +
1

2
degf (δki),

µ̃ = {τd1(µ)(δ̃k1), . . . , τdl(µ)(µ)(δ̃kl(µ))}.

Given a standard relative invariant 〈Γ•(ω)|µ〉X̃,E, we define the absolute de-
scendant invariant associated to the relative invariant to be

〈Γ•(ω, µ̃)〉X

Here all the insertions ω in the relative invariants are of the form π∗σi; the
corresponding insertions in the absolute invariants are just σi.

Definition 2.9. An absolute descendant invariant of X is called a colored
absolute descendant invariant relative to S if its insertions are divided into
two collections ω and µ̃ such that each insertion in ω is of the form τdiσi and
each insertion in µ̃ is of the form τdk δ̃k.

Remark 2.10. An absolute invariant may give different colored invariants
depending on how one groups the insertions.

Definition 2.11. If k = 1, then a colored absolute descendant invariant of X
relative to S (with curve class β) is called admissible if

∑
µj = E · β.

The following lemma is essentially Lemma 5.14 in [HLR08]. Note that in
their paper they only consider the case of primary Gromov-Witten invariants.
But the proof is actually the same.

Lemma 2.12. If µ 6= µ′, then µ̃ 6= µ̃′. Therefore there is a natural bijection
between the set of colored weighted absolute graphs relative to S and the set of
weighted relative graphs in X̃ relative to E if k > 1. The same is true if we
restrict to the admissible ones when k = 1.
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Remark 2.13. Notice that different relative invariants may give the same
absolute invariants. But these absolute invariants are different as colored ab-
solute invariants.

Finally, let C be a curve in X̃ which does not intersect E. Then the image
of C under the map X̃ → X is a curve in X, also denoted by C. Note that
[C] as an element of H4(X̃) is just the pull back of [C] in H4(X). Let I be
the partially ordered set of standard weighted relative graph Γ•([C], ω)|µ.

Define RI
X̃,E

to be an infinite dimensional vector space whose coordinates

are ordered in the same way as the partial ordering in I. A standard weighted
relative invariant 〈Γ•([C], ω)|µ〉X̃,E gives a vector vX̃,E in RI

X̃,E
. By Lemma 2.12,

I is also the set of colored standard weighted absolute graphs relative to S.
Thus we also have an infinite dimensional vector space RI

X,S whose coordinates
are also ordered by the partial ordering in I. Similarly, an absolute invariant
〈Γ•([C], ω, µ̃)〉X gives a vector vX,S in this vector space.

Theorem 2.14. Let π : X̃ → X be the blow-up of a 3-fold along a smooth
center S. Then there is an invertible lower triangular linear map

AS : RI
X̃,E
→ RI

X,S,

given by the degeneration formula such that AS(vX̃,E) = vX,S and AS only
depends on S and its normal bundle.

Proof. In the setup of the degeneration formula, we take W to be the blow-up
of X ×A1 along the smooth subvariety S × 0. Then W− ∼= X̃,W+ ∼= PS(O⊕
NS/X) and they intersect transversely at E. We will apply the degeneration
formula in this setting.

We start with a connected standard weighted relative invariant

〈Γ([C], ω)|µ〉(X̃,E)
0,β

with vertex decorated by β. Then the associated absolute invariant is

〈Γ([C], ω, µ̃)〉X0,π∗(β).

In order to apply the degeneration formula, we have to specify the specializa-
tion of the cohomology classes. Since C does not intersect E, we may specialize
C to lie entirely in W−, i.e. we set [C]− = [C] and [C]+ = 0. The Poincaré
duals of the cohomology classes in µ̃ are supported in S. So we specialize
these cohomology classes to the W+ side and set the cohomology classes in
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the W− side to be zero. Finally, classes in ω are of the form σi. Therefore we
set σ−i = γi = π∗σi with appropriate classes σ+ in W+ side.

Then the degeneration formula in this case gives:

〈[C], ω, µ̃〉Xπ∗(β)

=
∑
〈Γ•−([C], ω1)|T 〉(X̃,E)∆(T )〈Γ•+(ω2, µ̃)|Ť 〉PS(O⊕NS/X),E.

We view ∆(η)〈Γ•+(ω2, µ̃)|Ť 〉PS(O⊕NS/X),E as the coefficients of the linear
map AS.

We show that 〈Γ•−([C], ω)|µ〉(X̃,E) is the largest term with non-zero coeffi-
cient on the right hand side.

First we show that its coefficient 〈Γ•+(µ̃)|µ̌〉PS(O⊕NS/X),E is non-zero. This
is basically step II in the proof of Theorem 5.15 in [HLR08]. With our choice
of the self-dual basis, the coefficient is the product of the relative invariants

〈τnd−1−j[pt]|Hj〉P
k,Pk−1

0,dL ,

where j = degf (δki) and H is the hyperplane class. These invariants are
computed in [HLR08] via virtual localization and are shown to be non-zero.
So the diagonal of the linear map AS is non-zero.

Notice that this is the only step in [HLR08] where the form of self dual
basis matters since we need to know the diagonal is non-zero. For the rest
part, the proof proceeds exactly as the proof of Theorem 5.15 in [HLR08]. �

2.4 Birational invariance

In this subsection we prove the following theorem.

Theorem 2.15. Let π : X̃ → X be the blow-up of a smooth projective 3-
fold along a smooth subvariety S. Also let C be a curve in X̃ which does
not intersect the exceptional divisor E. Then there is a non-zero descendant
Gromov-Witten invariant on X̃ of the form

〈[C], τd1γ1, . . . , τdnγn〉X̃0,β̃

if and only if there is a non-zero descendant Gromov-Witten invariant on X
of the form

〈[C], τd1γ1, . . . , τdmγm〉X0,β.

Here we use C to denote both the curve on X̃ and its image in X.
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Proof. Suppose there is a non-zero descendant Gromov-Witten invariant on
X of the form

〈[C], τd1γ1, . . . , τdnγn〉X0,β.

We may assume that all the γi are of the form σi. We degenerate X into X̃
and PS(O⊕NS/X) and apply the degeneration formula. So there is a non-zero
relative invariant:

〈[C], τd1γ1, . . . , τdkγk|µ〉
X̃,E
0,β .

Then apply Theorem 2.14 to (BlEX̃, E) and (X̃, E). Note that the blow-up
of X̃ with center E is X̃ itself. So Theorem 2.14 gives a non-zero absolute
invariant of X̃ of the desired form.

Conversely, suppose there is a non-zero descendant Gromov-Witten invari-
ant on X̃ of the form

〈[C], τd1γ1, . . . , τdnγn〉X̃0,β̃.

We may assume that γi, 1 ≤ i ≤ m are of the form π∗σji and γi,m+ 1 ≤ i ≤ n
are of the form ι∗(δji). Then we degenerate X̃ into X̃ and PE(O⊕NE/X) and
specialize γi, for m + 1 ≤ i ≤ n, to the projective bundle side. Then there is
a non-zero relative invariant of the form:

〈[C], τd1γ1, . . . , τdkγk|µ〉
X̃,E
0,β ,

with k ≤ m. In particular, all the γi, 1 ≤ i ≤ k are of the form π∗σji .
Again apply Theorem 2.14 to (X̃, E) and (X,S). We get a non-zero absolute
descendant invariant of desired form. �

Remark 2.16. We may get a non-vanishing Gromov-Witten invariant of a
disconnected curve in using the invertible map AS. However this is sufficient
since this invariant is the product of the Gromov-Witten invariants for the
connected components and we only need to keep track of one insertion. This is
also the reason that the same argument cannot prove the birational invariance
of rational connectedness since then we need to keep track of two insertions.

2.5 Proof of Theorem 1.7

Assume X is rationally connected. We show that X ′ is also rationally
connected.

By Theorem 1.3, X ′ is uniruled. Let X ′ 99K S be the maximal rationally
connected (MRC) quotient of X ′. This is a rational map such that the closure
of a general fiber (in X ′) is the equivalence class of points in X ′ that are
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connected by a chain of rational curves. X ′ is rationally connected if and only
if S is point. In our case, the dimension of S is at most 2.

We will use proof by contradiction. So assume S is not a point. By
Corollary 1.4 in [GHS03], S is not uniruled.

If S is a curve, it cannot be a rational curve. A non-zero section of
H0(S,ΩS) pulls back to a non-zero section of H0(X ′,ΩX′). But X ′ is sim-
ply connected since X and X ′ are diffeomorphic and X is simply connected.
Then by Hodge decomposition, H0(X ′,ΩX′) = 0. This is a contradiction.

So S has to be a non-uniruled surface. The closure of a general fiber of
the rational map X ′ 99K S is a rational curve passing through a general point
in X ′, and thus free. The rational map can be extended to the complement
of a codimension 2 locus. Therefore it is actually well-defined on the closure
of a general fiber since a free rational curve can be moved away from any
codimension 2 locus.

Furthermore, a general fiber C has to be the minimal free curve of X ′;
otherwise S is uniruled. So,

〈[pt]〉X′0,[C] = 1,−KX′ · C = 2.

Both of these conditions are symplectic deformation invariant. Thus,

〈[pt]〉X0,[C] = 1,−KX · C = 2.

Clearly [C] is also the minimal free curve class on X otherwise the minimal
free curves in X give rise to rational curves in X ′ not in the fiber of X ′ 99K S.
We have seen that this Gromov-Witten invariant is enumerative. So there is
exactly one minimal free curve passing through a general point in X. Let

π : C → Σ

be the universal family of the minimal free curves and

f : C → X

be the universal map. Then the morphism f is birational. Thus there is a
rational map X 99K Σ. That is, X is birational to a conic bundle over a
rational surface.

Let Γ ⊂ X × Σ be the closure of the rational map X 99K Σ. By the same
argument proving the map X ′ 99K S is well-defined along a general fiber, the
map X 99K Σ is also well-defined along a general fiber. Then the exceptional
divisors of Γ→ X do not dominate Σ. So there is an open subset U of X and a
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smooth open subset V of Σ such that U → V is a well defined proper morphism
and a general fiber is P1. we can choose smooth projective compactifications
of U and V , denoted by Y and Σ′, together with a morphism Y → Σ′ such
that a general fiber is P1. By Theorem 0.1.1 in [AKMW02], we can factorize
the birational map X 99K Y by blow-ups and blow-downs

X = X0 99K X1 . . . 99K Xn = Y

such that every birational map is an isomorphism over U . In particular, there
is a free curve C in every Xi away from every exceptional divisor.

By Theorem 4.15, there is a non-zero Gromov-Witten invariant on Y of
the form 〈[C], . . . , [C], [A]2, . . . , [A]2〉Y0,β with [A] ∈ H2(Y,Q) being the class of
a very ample divisor of Y . Then by the proof of Theorem 2.15, there is a de-
scendant Gromov-Witten invariant on X of the form 〈[C], τd1γ1, . . . , τdnγn〉X0,β′
with γj ∈ H≥4(X,Q). Since X ′ is symplectic deformation equivalent to X,
〈[C], τd1γ1, . . . , τdnγn〉X

′

0,β′ 6= 0. If a curve of class [β′] in X ′ were supported in
a general fiber of X ′ 99K S, we would have that [β′] is a multiple of [C] and
−KX′ · β′ ≥ 2. So there are other insertions in the descendant invariant. But
we can choose representatives of the cycles γi disjoint from a general fiber C.
Then the invariant should be zero since a curve supported in a fiber cannot
meet the cycles representing γi. Thus the curves with curve class [β′] are not
supported in the fibers of the rational map X ′ 99K S and S is uniruled by their
images. This is a contradiction.
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3 Fano Varieties

The main result in this chapter is the following theorem.

Theorem 3.1. If X is a Fano threefold, then there is a non-zero Gromov-
Witten invariant of the form 〈[pt], [pt], [A]2, . . . , [A]2〉X0,β, where [A] is the class
of a very ample divisor.

We begin by reviewing some results from birational geometry which allows
us to construct low degree very free curves in a Fano 3-fold. Then we prove that
these low degree curves give non-zero Gromov-Witten invariants we want. The
key observation is that bend-and-break give some control on the deformations
of low degree curves in a Fano variety (Lemma 3.7).

Throughout the chapter we will use terminology in birational geometry
freely without defining them. The reader is referred to Section 1.3 of [KM98]
for precise definitions.

3.1 Some results from birational geometry

In this subsection we collect some results on the classification of KX-
negative extremal contractions on a smooth projective 3-fold.

Theorem 3.2 ([KM98] [Kol91]). Let X be a smooth threefold and contr :
X → Y be the contraction of a KX-negative extremal ray. Then one of the
followings holds.

(E1) Y is smooth and X is the blow-up of Y along a smooth curve;

(E2) Y is smooth and X is the blow-up of Y along a point;

(E3) Y is singular and locally analytically isomorphic to x2 +y2 +z2 +w2 = 0,
and X is the blow-up at the singular point;

(E4) Y is singular and locally analytically isomorphic to x2 +y2 +z2 +w3 = 0,
and X is the blow-up at the singular point.

(E5) contr contracts a smooth P2 with normal bundle OP2(−2) to a point of
multiplicity 4 in Y ;
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(C) Y is a smooth surface and X is a conic bundle over Y ;

(D) Y is a smooth curve and X is a fibration of Del Pezzo surfaces;

(F) X is a Fano 3-fold with Picard number one and Y is a point.

It is easy to workout what the exceptional divisors are in the cases of
exceptional contractions and we have the following corollary.

Corollary 3.3. In the case of (E2)-(E5), the exceptional divisor is rationally
connected and the following is the list of very free curves of minimal degree in
the exceptional divisor and their normal bundles in X.

(E2) A line L in P2, NL/X
∼= O(1)⊕O(−1);

(E3) A conic C in a smooth quadric hypersurface. NC/X
∼= O(2)⊕O(−2);

(E4) A conic C in a quadric cone. NC/X
∼= O(2)⊕O(−2);

(E5) A line L in P2, NL/X
∼= O(1)⊕O(−2).

In particular, the −KX degree of these curves is at most 2.

We also need the following result from [MM82] and [MM86].

Proposition 3.4. Let X be a Fano threefold and contr : X → Y be the blow-
up along a smooth curve in Y . Then Y is Fano unless X is the blow-up along
a smooth P1 whose normal bundle in Y is O(−1) ⊕ O(−1). In this case, the
exceptional divisor E is isomorphic to P1 × P1 and the normal bundle of the
curve of bi-degree (1, 1) is O(2)⊕O(−2).

Definition 3.5. Let X be a Fano 3-fold. We say that X is primitive if it is
not the blow-up along a smooth curve of another smooth Fano 3-fold.

3.2 Construction of low degree very free curves

We first show the following theorem.

Theorem 3.6. Let X be a Fano threefold. Then there is very free curve whose
−KX degree is at most 6.
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Proof. We may assume that X is a primitive Fano 3-fold. Otherwise there is a
birational morphism X → Y such that Y is a primitive Fano 3-fold. Then the
very free curve in Y can be moved away from the blow-up centers and gives a
very free curve in X with the same anticanonical degree.

We first consider the case X has Picard number 1. Fix a polarization on
X. Let C be a general minimal free rational curve. We know 2 ≤ −KX ·C ≤ 4
by Theorem 2.10 in Chapter IV, [Kol96].

If −KX · C = 4, then NC/X
∼= O(1)⊕O(1) (c.f. Theorem 2.10 in Chapter

IV, [Kol96]). We are done in this case.
If −KX ·C = 3, then we can fix a general point in X and the deformation

of C fixing that point sweeps out a surface S. Since ρ(X) = 1, the divisor S
is ample. If we take a minimal free curve through another general point, S
intersects that curve in a finite number of points. So we have a reducible curve,
which is the union of two free curves passing through two general points in X.
A general deformation of this curve is an irreducible curve passing through
two general points, thus very free. The anti-canonical degree of the very free
curve is 6.

If −KX · C = 2, then it is proved in Corollary 4.14, Chapter IV and
Proposition 2.6, Chapter V of [Kol96] that there is a chain of free curves of
length at most 3(= dimX) connecting two general points. Thus a deformation
of this chain gives a very free curve whose anti-canonical degree is at most 6.

Next assume ρ(X) ≥ 2. Under the assumption that X is primitive, ev-
ery exceptional divisor is rationally connected by Corollary 3.3 and Proposi-
tion 3.4.

It is proved in [MM86] that there is an extremal ray R1 corresponding to
a contraction of type (C) (c.f. Theorem 7.1.6 in [Sha99]). Let F be a general
fiber. Then −KX · F = 2 and F is a free curve. In the following we will try
to construct a very free curve using F and some other curves coming from
contractions of other extremal rays.

The discussion is divided into three parts according to the type of contrac-
tions given by other extremal rays.

If there is an extremal ray corresponding to a divisorial contraction with
exceptional divisor E, then E ·F > 0. In fact, we may find a possibly reducible
curve of class [F ] which intersects E by specializing a general curve F . But
then E ·F > 0 since [F ] spans an extremal ray and the class of every irreducible
component of the specialization of F lies in that extremal ray. So we can
assemble a chain of rational curves in the following way. Take two fiber curves
of class F , each through a general point and a minimal very free curve in E
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connecting the two curves. This chain of rational curves deforms to a very free
rational curve with −KX degree at most 6 (c.f. Corollary 3.3 and Proposition
3.4).

If there is an extremal contraction of type (D), X is a Del Pezzo fibration
over P1. We can assemble a connected reducible curve by gluing a free curve F
to a minimal very free curve in a general fiber. It is easy to see that a general
deformation of this curve is very free with −KX degree at most 6.

Finally, assume all the extremal contractions are of type (C). Then there
are at least two free curves C1 and C2 through a general point (one coming
from this contraction and one in class F ). A general deformation of the union
of these two curves is a free curve of −KX degree 4. If it is not very free,
we may deform this curve fixing a point and get a divisor H. We are done if
H intersects either C1 or C2. If H · C1 = H · C2 = 0, then ρ(X) ≥ 3. Note
that H is nef since we can move H by changing the point so that it does not
contain any pre-specified curve. Thus some multiple of H is base-point-free
and defines a morphism π : X → P1. This morphism contracts both C1 and
C2 and a general fiber is a Del Pezzo surface. There is a third extremal ray,
necessarily of type (C) by our assumption. Then we get a very free curve with
anticanonical degree no more than 6 by the same argument as above. �

We will need the following observation later.

Lemma 3.7. Let X be a Fano 3-fold. Let C = C1 ∪ C2 ∪ C3 be a chain of
P1s and f : C → X be a stable map. Assume that −f ∗KX · C2 = 1 and
Ci passes through a very general point for i = 1, 3. Then a general point of
any irreducible component of the Kontsevich moduli space containing (C, f)
corresponds to an irreducible very free curve.

Proof. Notice that C2 only deforms in a surface S. Both C1 and C3 intersect
the surface S at finitely many points and C2 has to pass through at least two
of them. Then C2 does not move once we make the choice of the two points.
Otherwise we can deform C2 fixing two points and, by bend-and-break, C2

breaks into a reducible or non-reduced curve. But this cannot happen since
−KX · C2 = 1 and −KX is ample.

We claim that a general deformation of the stable map f : C → X smooths
at least one of the nodes. If not, then a general deformation is given by the
deformation of the two free curves and the deformation of the degree 1 curve.
By the above argument, up to finitely many choices, the deformation of the
degree 1 curve is determined by the deformation of the two free curves. So
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the deformation space has dimension equal to the sum of the dimension of
deformation space of C1 and C3, which is (−f ∗KX) · C1 + (−f ∗KX) · C3. But
every irreducible component containing the point (f : C → X) has dimension
at least −f ∗KX · C, which is greater than (−f ∗KX) · C1 + (−f ∗KX) · C3. So
at least one of the nodes can be smoothed out and we get a reducible curve,
which is the union of two irreducible curves each passing through a very general
point. Then it is easy to see that a general deformation of this new curve is
very free. �

3.3 Proof of Theorem 3.1

Let C be a very free curve with minimal −KX degree. Since C is very free,
−KX · C ≥ 4. By Theorem 3.6, −KX · C ≤ 6. We consider Gromov-Witten
invariants of the form 〈[pt], [pt], [A]2, . . . , [A]2〉X0,C , where [A] is the class of a
very ample divisor. The number of [A]2-insertions is −KX ·C−4. Note that in

any case, the components of the Kontsevich moduli space MX,[C]

0,n whose gen-
eral points parametrize very free curves contribute positively to this Gromov-
Witten invariant.

We first choose two very general points such that any irreducible rational
curve through them is very free and any irreducible rational curve through
one of them is free. In particular, the anti-canonical degree of any irreducible
rational curve through one of them is at least 2.

We show that if the constraints are general enough, then no reducible curve
meets all the constraints. We only need to consider reducible curves that pass
through the two general points.

If a reducible curve passes through the two general points and is smooth-

able, then it lies in a irreducible component of MX,[C]

0,n , whose general points
parametrize irreducible very free curves passing through 2 general points.
Thus, this irreducible component has expected dimension and the constraints
can be chosen so that such reducible curves do not meet all of the constraints.

We will use this observation in the following two situations. If the reducible
curve is a union of free curves, then it is certainly smoothable. Another case
is the curve in Lemma 3.7.

Note that the two points are not connected by a single irreducible compo-
nent of the reducible curve by minimality of the very free curve.

We discuss 3 different cases according to the anti-canonical degree of C.

1. −KX · C = 4. Then the only reducible curve that can pass through 2
general points is the union of two free curves. We are done in this case.
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2. −KX · C = 5. There is one additional constraint, a curve which is
complete intersection of two very ample divisors. Notice that for degree
reasons, every possible reducible curve is either a union of free curves or
a curve as in Lemma 3.7. So we are done in this case.

3. −KX ·C = 6. In this case we add two more constraints, both of which are
complete intersections of pairs of very ample divisors. By Lemma 3.7,
we only need to consider 2 cases: a curve with four irreducible compo-
nents whose −KX degrees are 2, 2, 1, 1, and a curve with 3 irreducible
components with −KX degree 2 each.

First consider the former case. Denote the two degree 1 curve by D1 and
D2 and the degree 2 curves by C1 and C2. Note that by Lemma 3.7,
neither D1 or D2 connects both C1 and C2, otherwise we have a very
free curve with smaller −KX degree. Assume that Ci is connected to Di

for i = 1, 2 and D1 and D2 are also connected to each other.

Assume that D1 and D2 deform in two different surfaces. Denote the
corresponding surface by S1 and S2. We first choose one of our constraint
curves to avoid the degree 2 curves. Then one of the degree one curves,
say D1, has to pass through the intersection point of this constraint curve
with the surface S1. Notice that there are only finitely many such choices
by bend-and-break (c.f. the first paragraph of the proof of Lemma 3.7).
Also once we make the choice for D1, there are only finitely many choices
for D2 since it has to pass through the intersection of C2 and D1 with
the surface S2. So we can choose the last constraint to avoid all of four
components.

Now assume the two degree one curves deform in the same surface S.
We may choose the constraint curves to intersect the surface S at general
points. Note that the degree 2 curves cannot deform once the two points
are fixed. Thus they cannot meet the other constraints. If the two degree
1 curve meet all the other constraints, then one of them, say D1, has to
pass through both the intersection of C1 with the surface and a general
point in the surface (i.e. the intersection of one constraint curve with the
surface). Thus we get a smoothable chain of rational curves consisting
of C1, D1, and C2 as in Lemma 3.7. Then we get a very free curve with
−KX degree 5. This contradicts our choice of C.

We now consider the case where the curve consists of 3 irreducible com-
ponents with −KX degree 2 and one of them is not free.
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If the non-free curve is the specialization of a free curve, then it lies in a
component of dimension 2. But if we choose the two points to be general,
the two free curve of −KX degree 2 cannot both meet this non-free curve.
So the non-free curve only deforms in a surface.

Once the two points are chosen, the two free curves cannot meet any more
constraints. Thus, if this reducible curve meets all the constraints, then
the non-free curve passes through at least 4 general points of the surface
coming from the intersections of the two free curves and the constraints
with the surface. So after we fix three general points, the curve deforms
in a positive dimensional family. Then by bend-and-break it breaks into
two irreducible components or a non-reduced curve. In this way we get a
rational curve with −KX degree 1 and passing through 2 general points
in the surface. In particular, there is a chain of curves of −KX degree 5
as in Lemma 3.7. Then we can smooth them and get a very free curve
of −KX degree 5. This is a contradiction.

Remark 3.8. For another proof, see Section 4.1.

Corollary 3.9. Let X be a Fano threefold and f : Y → X a birational mor-
phism. Then Y is symplectic rationally connected.

Proof. The images under f of the exceptional divisors have codimension at
least 2 in X. Thus the minimal very free curve in X can be deformed away
from them. We can also choose the constraints in Theorem 3.1 to be away
from the blow-up centers. Then the very free curves in X meeting all the
constraints are all away from the images of the exceptional divisors. We choose
the constraints in Y to be the inverse image of the constraints in X. Observe
that the image of any curve satisfying the constraints in Y also satisfies the
constraints in X. Thus the images of such curves are irreducible curves not
intersecting the exceptional locus. Then it follows that no components are
contracted by the map f : Y → X and the curves in Y that meet these
constraints are again irreducible very free curves. �
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4 Mori fiber spaces and
rationally connected 3-folds
of Picard number 2

In this chapter we first discuss rationally connected threefolds which are
Mori fiber spaces. Then we finish the proof Theorem 1.9 in the Picard number
2 case.

Throughout the chapter, we will use X to denote a smooth projective
rationally connected 3-fold. Usually X is a resolution of singularities of a
singular projective variety Y with some special properties. The precise relation
of X and Y should be clear from the context in each section.

4.1 Q-Fano varieties

The proof of symplectic rational connectedness of Fano 3-folds could be
greatly simplified if we could choose the constraints to be 3 points in the
case of −KX degree 6. Indeed, if we could, then the delicate bend-and-break
argument is not necessary since the no irreducible components meet the third
point. But in order to have positive contributions from some component, we
need to know that a general very free curve constructed in the proof has normal
bundle O(2)⊕O(2). This idea works in a more general context as below.

We begin with some preliminary definitions and observations.

Definition 4.1. A normal projective variety Y is a Q-Fano variety if Y has
terminal singularities, and −KY is ample.

Lemma 4.2. Let Y be a projective variety of dimension n with terminal sin-
gularities. Then for any irreducible rational curve C passing through r very
general points, the intersection number −KY ·C is at least (n−1)(r−1)+2. If
this lower bound is achieved, then C is a curve contained in the smooth locus
of Y .

Proof. Let f : X → Y be a resolution of singularities such that X and Y are
isomorphic over the smooth locus of Y . by definition of terminal singularities,
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we have KX = f ∗KY +
∑
biEi where Ei’s are exceptional divisors of f and bi

are positive rational numbers. The normal bundle of an irreducible rational
curve C through r very general points is

NC/X
∼= ⊕iO(ai), ai ≥ r − 1.

So
−KY · C ≥ −KX · C ≥ (n− 1)(r − 1) + 2.

The first inequality follows from the fact that Ei ·C ≥ 0 and equality holds if
and only if C does not intersect Ei, or equivalently, f(C) is contained in the
smooth locus of Y . �

The importance of these very free curves is clear from the following obser-
vation.

Proposition 4.3. Let Y be Q-Fano 3-fold and let f : X → Y be a resolution
of singularities. Assume that there is a very free curve in the smooth locus of
Y whose normal bundle is O(a)⊕O(a), a ≥ 1. Then X is symplectic rationally
connected.

Proof. Let C be such a very free curve in the smooth locus of Y . We can move
C away from the locus where f is not an isomorphism. So we get a very free
curve C in X with normal bundle O(a)⊕O(a), for a ≥ 1.

We choose the constraints to be a+1 general points. Any irreducible curve
in X through k general points has −f ∗KY degree at least 2k by Lemma 4.2 and
equality holds if and only if its image in Y is contained in the locus where X
and Y are isomorphic, which is contained in the smooth locus of Y . Note that
−f ∗KY is nef and the −f ∗KY degree of C is 2a. This forces every irreducible
component passing through one of the general points to lie in the locus where
X and Y are isomorphic. Then no components can be contracted by the map
X → Y . Thus every irreducible component contains one of the chosen point
and is free. Now the proposition follows immediately. �

Therefore the problem is reduced to the existence of such curves. Fortu-
nately there is a way to show the existence in dimension 3.

Definition 4.4. Let Ci ⊂ Xi be a curve on a variety Xi, i = 1, 2. We say
(X1, C1) is equivalent to (X2, C2) if there is an open neighborhood Vi of Ci
in Xi and an isomorphism f : V1 → V2 such that f |C1 : C1 → C2 is also an
isomorphism.
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Theorem 4.5. Let Y be a Q-Fano 3-fold. Assume the smooth locus of Y is
rationally connected. Then there is a very free curve in the smooth locus with
normal bundle O(a)⊕O(a), a ≥ 1.

We start with the following construction in [She10] for smooth rationally
connected 3-folds.

Let f : X → Y be a strong resolution of singularities which is isomorphic
over the smooth locus of X. Let C be a very free curve in the smooth locus and
general in an irreducible component of the moduli space of very free curves.
We may assume that −KY · C is an even number (otherwise take a two-
fold cover and a general deformation). Assume the normal bundle of C is
O(a + 2b) ⊕ O(a), a, b ≥ 1. In the following we will not distinguish between
−KY and −f ∗KY .

Choose a+ 1 points in C and deform C with these points fixed. Then the
deformation of C sweeps out a surface Σ in X. Let Σ′ be the normalization
and Σ̃ be the minimal resolution of Σ′.

The following results are proved in Section 2.2, 2.3 of [She10].

Proposition 4.6 ([She10]). Keep the same notation as above.

1. Σ is independent of the choice of the points. Σ′ is smooth along C and
NC/Σ′

∼= O(a+ 2b).

2. There is a neighborhood U of C in Σ̃ such that the map φ : Σ̃→ X has
injective tangent map. And the normal sheaf NΣ̃/X is locally free along
C and NΣ̃/X |C ∼= O(a).

3. The pair (Σ̃, C) is equivalent to (P2, conic) or (Fn, σ), where Fn is the
n-th Hirzebruch surface and σ is a section of Fn → P1.

4. If the pair is equivalent to (Fn, σ), where σ is a section of Fn → P1, then
there is a (reducible) curve D in Σ̃ such that D2 = −n and D · F = 1,
where F is a fiber of Fn → P1. If C ·D > 0, then a general fiber F lies
in U . And the sheaf NF/X cannot be O ⊕O(1).

Our goal is to start with this curve C and produce another very free curve
with balanced normal bundle. The case where the pair (Σ̃, C) is equivalent to
(P2, conic) is straightforward.

Lemma 4.7. If the pair (Σ̃, C) is equivalent to (P2, conic), then there is a very
free rational curve C in the smooth locus of Y such that NC/Y

∼= O(1)⊕O(1).
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Proof. In this case, NC/X
∼= O(4) ⊕ O(2). So −KX · C = −KY · C = 8. C

may degenerate in Σ̃ into two “lines” Ci, i = 1, 2 which can pass through 2
very general points in Σ̃, thus 2 general points in X. Hence they are very free
with normal bundle (in X) O(1) ⊕ O(1). Note that a general such “line” is
necessarily contained in the smooth locus since the intersection number with
−KX is 4, the same as the intersection number with −KY . �

Now assume that the pair is equivalent to (Fn, σ), where σ is a section.
Let D in Σ̃ be the (reducible) curve such that D2 = −n and D · F = 1 as in
Proposition 4.6. Then C = D + cF .

Lemma 4.8. Keep notations as above. Then

n ≤ c ≤ a+ b, c− n = a+ 2b− c ≥ b.

Proof. First note that 0 ≤ C ·D = c− n.
We know that NC/Σ̃

∼= O(a+ 2b) and NΣ̃/X |C ∼= O(a). Thus,

C · C = 2c− n = a+ 2b,

c(−KY · F ) = 2 + 2a+ 2b− (−KY ·D) ≤ 2 + 2a+ 2b.

Since a general fiber F is free, −KY · F ≥ −KX · F ≥ 2. Thus,

n ≤ c ≤ 1 + a+ b.

If c = 1 + a+ b, then

−KY · F = 2,−KY ·D = 0.

The first equality implies that a general fiber F is mapped to a free curve in
the smooth locus. The second one implies that D is either mapped to a point
in X or into the exceptional divisors of f : X → Y . But F and D intersect in
Σ̃. So do their images in Y . Thus, D is contracted to a point in the smooth
locus of Y . Then there are two free curves (i.e. images of two general fibers)
meet in the smooth locus of Y , each having −KY degree 2 and passing through
a very general point. But if we choose the two points to be general enough,
any two irreducible curve of −KY degree 2 through these points cannot not
meet each other. Therefore

c ≤ a+ b

and thus
c− n = a+ 2b− c ≥ b.

�
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Lemma 4.9. Keep notation as above. Then −KX ·F = 2 and NF/X = O⊕O
for a general fiber F .

Proof. Note that

−KX · F ≤ −KY · F ≤
2 + 2a+ 2b

c
=

2(2 + 2a+ 2b)

a+ 2b+ n
≤ 4(a+ b+ 1)

a+ b+ 1
= 4.

Thus, −KX ·F is at most 4. On the other hand, it is at least 2 since a general
fiber F passes through a very general point.

If −KX · F = 4, then every inequality above is an equality. Thus,

n = 0, b = 1,−KY · F = −KX · F,−KY ·D = 0.

So F is a free curve in the smooth locus of Y and D is contracted to a point
in the smooth locus. Furthermore, the pair (Σ̃, σ) is equivalent to P1 × P1

with one ruling. Then D is a moving curve in Σ̃ and −KY ·D > 0 since some
deformation of D is not contracted. This is a contradiction.

Since C ·D > 0, a general fiber F is contained in U and the normal bundle
NF/X is not O ⊕O(1) by Proposition 4.6. Thus −KX · F is not 3. �

Now we are ready to finish the proof of Theorem 4.5.

Proof. It remains to consider the case where the pair (Σ̃, C) is equivalent to
(Fn, σ). By Lemma 4.8, c− n ≥ b. Thus C specializes in Σ̃ to the union of a
section C ′ whose curve class is D + (c − b)F and b general fibers. Also note
that C ′ passes through a+ 1 general points in Σ̃ since its normal bundle in Σ̃
is O(a). Since C passes through a + 1 general points in X, the same is true
for C ′. Also notice that

−KY · C ′ = −KY · C − b(−KY ) · F ≤ −KY · C − b(−KX) · F = 2 + 2a.

For the last equality, we use Lemma 4.9. Then the equality has to hold by
Lemma 4.2 and C ′ is a very free curve in the smooth locus with normal bundle
O(a)⊕O(a). �

Corollary 4.10. On every smooth Fano 3-fold, there is an embedded very free
curve with normal bundle O(a)⊕O(a), a ≥ 1.

Combining Proposition 4.3 and Corollary 4.10, we get a new proof that
every smooth Fano 3-fold is symplectic rationally connected.

In general, it is not an easy task to determine if the smooth locus of a
Q-Fano variety is rationally connected. By the following Lemma, this is true
for a large class of Q-Fano varieties we are interested in.
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Lemma 4.11. Let Y be a Gorenstein Q-Fano 3-fold. Then the smooth locus
of Y is rationally connected.

Proof. By a result of Namikawa [Nam97], there is a smoothing of Y , π : Y → S
such that a general fiber is a smooth Fano 3-fold and the central fiber X0 is
X.

By Corollary 4.10, there is a very free curve D in a general fiber whose
relative normal bundle is O(a) ⊕ O(a), for a ≥ 1. So this curve can pass
through a + 1 general points in a general fiber. Choose a + 1 general points
in Y . We can find a + 1 sections of Y → S passing through these points in
Y , possibly after a base change. Then consider the specialization of the curve
D passing through these sections in the relative Kontsevich moduli space. We
get a stable map to Y whose image contains the chosen a + 1 general points.
But as observed in the proof of Proposition 4.3, the domain of this stable map
is irreducible and its image is contained in the smooth locus. �

Remark 4.12. A 3-fold Gorenstein terminal singularity is an isolated hyper-
surface singularity, in particular, a locally complete intersection singularity.
Then Lemma 4.11 can be proved easily by comparing the deformation space
of a very free curve in a resolution and that of its image in Y . But the proof
presented here gives more information about minimal very free curves in the
smooth locus. For example, we know that their anticanonical degree is no
more than 8 by looking at the construction of low degree very free curves in
the proof of Theorem 3.6.

4.2 Del Pezzo fibrations

Let Y be a normal projective threefold with at worst terminal singularities.
And let π : Y → P1 be a contraction of some KX-negative extremal face.
Then a general fiber of f is a smooth Del Pezzo surface. Let f : X → Y be a
resolution of singularities that is isomorphic near a general fiber. Note that all
the exceptional divisors are supported in special fibers of π ◦f : X → Y → P1.
The main result in this section is the following.

Theorem 4.13. There is a non-zero Gromov-Witten invariant 〈[pt], [pt], . . .〉X0,β
for some class β which is a section of the fibration X → P1.

Proof. We proceed in two steps. First we construct a section satisfying certain
properties and then show that this section give rise to the non-zero Gromov-
Witten invariant.
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Step 1. Construction
By Theorem 1.1 in [GHS03], there exists a section of X → P1. By definition

of terminal singularities, we have KX ∼Q f
∗KY +

∑
aiEi, ai > 0.

Let
dE = min{e | (

∑
aiEi) · s = e, s is a section}.

Once we have a section, we can attach very free curves in general fibers to it and
deform the reducible curve to get a section which is a free curve. This operation
will not change the intersection numbers with the exceptional divisors as long
as the very free curves are disjoint from the exceptional divisors. So there is a
free section s such that (

∑
aiEi) · s = dE.

Define

B1 = min{b ≥ 0 : s is a section, s · (
∑

aiEi) = dE,

Ns/X
∼= O(a)⊕O(a+ b), a, b ≥ 0}.

A general fiber of X → P1 is a Del Pezzo surface. So it is either P1 × P1,
P2 or the blow-up of P2 at d(1 ≤ d ≤ 8) general points.

Proposition 4.14. If a general fiber is not P1 × P1, then there is a section
whose normal bundle is O(a)⊕O(a) with a arbitrarily large.

If a general fiber is P1 × P1, and B1 > 0, then there is a very free section
whose normal bundle is O(a)⊕O(a+B1) with a arbitrarily large.

If a general fiber is P1 × P1, and B1 = 0, then there is a very free section
whose normal bundle is O(a) ⊕ O(a + b) with a arbitrarily large and b is at
most 2.

Proof. In the first case, take a section s with normal bundle O(a)⊕O(a+ b)
for some a ≥ 0, b > 0. We attach (the strict transform of) a line L in a general
fiber to s along a general direction. Let N be the normal sheaf of this reducible
curve in X. Choose a point p in the line L and a divisor D = q1 + . . . + qa+2

in s. Let E = N (−p−D). Then

E|L ∼= O ⊕O, E|s ∼= O(−1)⊕O(b− 2).

We have the short exact sequence of sheaves

0→ E|L(−n)→ E → E|s → 0,

where n is the node of L∪ s. Thus, H1(E) = 0. The same is true for a general
deformation of s ∪ L by semi-continuity. Thus a general deformation is again
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a free section s′ with Ns′/X
∼= O(a′)⊕O(a′+ b′), a′ ≥ a+ 2, b′ < b. Continuing

with this process, we obtain free sections whose normal bundle is O(a)⊕O(a)
with a arbitrarily large.

When a general fiber is P1 × P1, we run a similar argument as above. We
start with a free section s whose normal bundle is O(a) ⊕ O(a + B1) and
attach curves of bi-degree (1, 0) or (0, 1) in a general fiber to s along a general
normal direction. The tangent directions of these two types of curves at a
point span the tangent space of P1×P1 at that point. So the above analysis of
the normal bundle is still valid provided that we choose the appropriate type
of curve. If B1 > 0, in the end we can find very free sections whose normal
bundle is O(a) ⊕ O(a + B1) with a arbitrarily large. However, if B1 = 0, we
can only guarantee a very free curve with normal bundle O(a)⊕O(a+ b) with
b ≤ 2. �

In every case, there is a number B2 such that there is a very free section s
whose normal bundle is O(a)⊕O(a+b) with a arbitrarily large and b bounded
above by B2.

There exist a positive rational number ε such that π∗O(1)− εKY is ample
on Y . So there are positive rational numbers bi such that

H =f ∗(π∗O(1)− εKY )−
∑

biEi

=f ∗π∗O(1)− εKX +
∑

(εai − bi)Ei

is ample on X.
Let s̃ be a section such that (−KX) · s̃ is at most B2. Then

H · s̃ ≤ 1 + εB2 +
∑
|εai − bi|

since Ei · s̃ is either 0 or 1. So there are only finitely many such curve classes.
Then there is an integer M such that any such section meets at most M general
free rational curves with −KX degree 2 and there are only finitely many such
sections. We also have a lower bound N of −KX · s̃ for all such sections.

The above discussion shows that there is a very free section s such that

(
∑

aiEi) · s = dE, (1)

Ns/X
∼= O(a)⊕O(a+ b), a > 0, b ≥ 0, (2)

2M + 3(a+ 1−M) +N > 2 + 2a+B2. (3)
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b ≤ B2. (4)

Define

B = min{b | there is a section which satisfies (1), (2) and (3) above}.

Clearly B ≤ B2.
Denote by s a section of minimal degree with respect to some polarization

in the set of all the very free sections with the above properties and whose
normal bundle is of the form O(a)⊕O(a+B).

Step 2. Analyzing reducible curves in the curve class [s].
We will prove that this curve class [s] gives a non-zero Gromov-Witten

invariant with two point insertions.
A general such section passes through a + 1 general points. So we add

a + 1 point constraints. If B > 0, then we need to add B curve constraints.
We take these curves to be general curves in a general fiber which is also an
ample divisor in the fiber. They all lie in general fibers not containing any
exceptional divisors. Then a general section will meet all of these constraints
and contribute positively to the Gromov-Witten invariant

〈[pt], . . . , [pt]︸ ︷︷ ︸
a+1

, [Curve], . . . , [Curve]︸ ︷︷ ︸
B

〉X0,s.

Now we show that no reducible curve in this curve class meets all of the
constraints. Write the reducible curve as C ∪Ce∪Cg, where C is a section, Ce
the vertical components supported in the fibers containing exceptional divisors,
and Cg all the other vertical components.

Since Ei · Cg = 0,

−KX · Ce = (−f ∗KY −
∑

aiEi) · Ce

= −f ∗KY · Ce − (
∑

aiEi) · (s− C − Cg)

= −f ∗KY · Ce − (
∑

aiEi) · (s− C) ≥ 0,

with equality if and only if (
∑
aiEi) ·C = dE and every irreducible component

of Ce is mapped to a point in Y . There are three different cases according to
what kind of curve C is.

Case 1. The section C is a free curve.
Suppose C meets a′ general points and b′(0 ≤ b′ ≤ B) general curves in

the fiber. Then

−KX · C = dimM(X, [C]) ≥ 2a′ + b′.
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We also have
−KX · Cg ≥ 2(a+ 1− a′) + (B − b′)

and
−KX · Ce ≥ 0.

Adding all of these together we get

−KX · (C + Cg + Ce) ≥ 2a+ 2 + b′ + (B − b′) = 2a+ 2 +B.

So equality has to hold in each inequality. This implies that (
∑
aiEi) · C =

A and Cg is the union of (a + 1 − a′) free curves with −KX degree 2 and
(B − b′) curves of −KX degree 1. Then the reducible curve consisting of C
and (a + 1 − a′) free curves in Cg deforms to an irreducible section curve C̃,
which passes through all a+ 1 general points.

Therefore the normal bundle of the new section curve C̃ is O(a′′)⊕(a′′+b′′),
for some a′′ ≥ a. Since (

∑
aiEi) · C̃ = A, C̃ satisfies (1), (2) and (3) above.

So b′′ ≥ B. But we also have the reverse inequality, since

2a+B + 2 = −KX · C ≥ −KX · C̃ = 2a′′ + b′′ + 2.

Hence equality holds and b′ = b′′ = B. Then by the minimality of [s], Ce = ∅.
Thus, C ∪ Ce ∪ Cg = C ∪ Cg is in the boundary of an irreducible compo-
nent of expected dimension. So we can choose the constraints to miss such
configurations.

Case 2. The section C is not a free curve and −KX · C > B.
We may choose the a + 1 points to lie in different general fibers and any

irreducible curve through them is free. Then neither C or Ce passes through
any of them. So

−KX · Cg ≥ 2(a+ 1), −KX · (Ce + Cg + C) > 0 + 2a+ 2 +B.

This is impossible.
Case 3. The section C is not free and −KX · C ≤ B.
Again C does not meet any point constraints. So Cg has at least a + 1

curves Di in different fibers and −KX · Di ≥ 2. If −KX · Di = 2, Di is an
irreducible free curve. There are at most M such curves and only finitely many
sections meet all of these curves. So if we choose the other points to be general,
then every curve through those points with −KX degree 2 will not meet these
sections. Thus, for all the other Di’s (which are possibly reducible),

−KX ·Di ≥ 3.
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But then

−KX · (Ce + Cg + C) ≥ 0 + 2M + 3(a+ 1−M) +N

> 2 + 2a+B2 ≥ 2 + 2a+B = −KY · s.

This is impossible. �

4.3 Conic bundles

In this section we prove the following theorem.

Theorem 4.15. Let X → Σ be a surjective morphism from a smooth pro-
jective rationally connected 3-fold X to a smooth projective surface Σ such
that a general fiber is isomorphic to P1. Then X is symplectic rationally
connected. There is also a non-zero Gromov-Witten invariant of the form
〈[C], . . . , [C], [A]2, . . . , [A]2〉X0,β, where [C] is the class of a general fiber and [A]
is the class of a very ample divisor.

As a preparation, we prove the following proposition. There are easier
ways to prove the result. But here we present a proof which only depends on
MMP on surfaces and requires no further knowledge about the classification
of rational surfaces. This proof actually motivates the results in Section 4.2.

Proposition 4.16. Let Σ be a rationally connected surface. Then there is a
non-zero Gromov-Witten invariant of the form 〈[pt], [pt], . . . , [pt]〉Σ0,β.

Proof. We can run the MMP for Σ. Then we have a sequence of contractions
of (−1)-curves:

Σ = X0 → X1 → . . .→ Xn,

where Xn is either a geometrically ruled surface over P1 or a Fano surface of
Picard number 1 (thus is P2, but we do not need this).

In the former case, we may choose a section s0 of the ruled surface and
take the curve class to be s0 + kF , where F is a fiber class. If we take k large
enough, a general curve in this class is an embedded very free curve passing
through m(≥ 3) general points. Now one can use a similar argument as in
Step 2 of the proof of Theorem 4.13 to show that this section curve gives a
non-zero enumerative Gromov-Witten invariant on Xn.

In the latter case, first choose a minimal free rational curve. If it is already
very free, then we are done (here we pretend that we do not know Xn is P2).
If not, then notice that we can take the union of two such general curves and a
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general deformation is a very free curve of −KX degree 4. It is easy to see that
we get a non-zero enumerative Gromov-Witten invariant in this case using a
similar but much easier argument as the proof of Theorem 3.1 for the case of
smooth Fano 3-folds.

Then the proposition follows by comparing Gromov-Witten invariants on
X and Xn as in Corollary 3.9. �

The proof of Theorem 4.15 is similar to the proof of Theorem 2.4 in [Voi08].
We only point out the necessary changes.

Proof of Theorem 4.15. By Proposition 4.16, there is a non-zero enumera-
tive Gromov-Witten invariant of the form

〈[pt], [pt], . . . , [pt]︸ ︷︷ ︸
r [pt]

〉Σ0,β.

We can choose [β] such that a general curve of class [β] is an embedded curve.
Here we need to know that a Del Pezzo surface of Picard number one is P2.
The curve class corresponds to a free linear system. So we may choose the
constraints in Σ to be general such that if Γ is the curve through these points,
then Z = π−1(Γ) is a smooth surface.

Let s0 be a section of Z → Γ. Choose k large enough. Then it is easy to
see that any curve in X in the class s0 + kC which meets 2 general points and
r − 2 general fibers (or r general fiber C) has to be mapped to an irreducible
curve in Σ through r general points. Thus the curve lies in Z. We may take
other constraints to be curves meeting the surface Z at finitely many points.
There are some positive contributions to the Gromov-Witten invariant coming
from these irreducible section curves.

The issure here is that the map i∗ : H2(Z,Z)→ H2(X,Z) is not injective.
So we have to consider the contributions coming from curves classes in Z whose
image under i∗ is also s0 + kC, but are different as a curve class in H2(Z,Z).
This has been done in Lemma 2.8 and Lemma 2.9 of [Voi08]. By deforming
Z to be the blow-up of some Hirzebruch surface at distinct points in distinct
fibers, it is shown there that all such contributions are non-negative. �

Remark 4.17. We need this theorem in three situations, in the proof of
Theorem 1.7, the Picard number 2 case of Theorem 1.9, and the conic bundle
case of Theorem 1.10. For our purpose, we can avoid doing such a deformation
as in [Voi08].
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In the first and third case, we are allowed to make a birational modifica-
tion. And we can use relative MMP to get a “better” birational model in the
following way. In the first case, first run a relative MMP to get a conic bundle
over the base (which is smooth). In the third case, first take a resolution of
singularities of the base, then a base change and a resolution of singularities
of the total space, and finally a relative MMP over the base. Thus we are
in the following situation: Y is a rationally connected 3-fold with terminal
singularities and Y → Σ is a conic bundle coming from the contraction of a
KY -negative extremal ray and Σ is smooth. The 3-fold Y has only isolated
singularities. Take a strong resolution of singularities X → Y which is iso-
morphic over the smooth locus of Y . The exceptional divisors of X → Y are
mapped to isolated points in Σ. Then Z is the blow-up of some Hirzebruch
surface at distinct point in distinct fibers.

In the second case X is a smooth 3-fold and X → Σ is a contraction of type
(C), then Σ is smooth. In this case Z is also the blow-up of some Hirzebruch
surface at distinct point.

4.4 Rationally connected 3-folds with Picard number 2

In this section we prove the following theorem.

Theorem 4.18. Let X be a smooth projective rationally connected 3-fold X
with Picard number 2. Then X is symplectic rationally connected.

There is at least one KX-negative extremal ray of X since X is rationally
connected. Let f : X → Y be the corresponding contraction. Then the case
of contractions of type (E1) and (E2) are coved by Corollary 3.9, of type (E3)
and (E4) by Theorem 4.5, Proposition 4.3, and Lemma 4.11, of type (C) by
Theorem 4.15, and of type (D) by Theorem 4.13. The only remaining case
is the (E5) contraction, where the exceptional divisor E is a smooth P2 with
normal bundle O(−2). In this case the variety Y is a non-Gorenstein Q-Fano
3-fold of Picard number 1.

We introduce some notation first. Let A = −f ∗KY − εE, with 0 < ε � 1
be an ample Q-divisor. Let C be a minimal free curve first with respect to
−f ∗KY and then with respect to A. By abuse of notation we write KY instead
of f ∗KY below.

If E · C = 0, then C give rise to a free curve in the smooth locus of Y .
Thus, the smooth locus of Y is rationally connected and the result follows
from Proposition 4.3 and Theorem 4.5.
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In the following we assume E · C > 0. First we have the following obser-
vation.

Lemma 4.19. If E · C > 0, then −KX · C = 2.

Proof. If −KX ·C ≥ 3, then we can deform such a curve with one point fixed.
The deformation of the curve C in X also gives a deformation of its image
in Y . Since E · C ≥ 1, the deformation in Y fixes the chosen point and the
unique singular point of Y . So by bend-and-break, we get a curve through the
fixed point with smaller −KY degree. If the fixed point is chosen to be a very
general point, then this curve with smaller −KY degree gives a free curve in
X. This is a contradiction to our choice of C. �

Take a reducible curve Γ to be a union of two such free curves passing
through two very general points and a line in E ∼= P2. We can smooth the
nodes of Γ and get a very free curve Γ′ with −KX · Γ′ = 5.

Lemma 4.20. Let D be a reducible curve passing through 2 general points
such that the two points are not connected by an irreducible component of the
curve D. If −KY ·D ≤ −KY · Γ′ and A ·D ≤ A · Γ′, then one of the following
holds:

1. the curve D consists of 3 irreducible components, two of which are the
free curves of class [C] and one of which is a line in the exceptional
divisor E;

2. the curve D consists of 2 irreducible components, both of which are free
curves with −KX degree 2 and 3.

Furthermore, [D] = [Γ′].

Proof. Write D = D1 ∪ D2 ∪ D3, where D1 and D2 are the irreducible com-
ponents through the two general points and D3 (possibly empty) is the rest of
the irreducible components. Then

−KY · (D1 +D2) ≤ −KY ·D ≤ −KY · Γ′ = 2(−KY · C).

We also have the reverse inequality by our choice of C. Thus

−KY ·D1 = −KY ·D2 = −KY · C

and all the irreducible components of D3 are supported in the exceptional
divisor E.
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Write D1 = C + λ1L and D2 = C + λ2L, where L is the class of a line
in the exceptional divisor E. Note that λ1 and λ2 are non-negative rational
numbers. Since −KX · L = 1, they are actually integers. Since A ·D ≤ A · Γ′,
λ1 + λ2 ≤ 1.

If λ1 +λ2 = 0, then D1 and D2 have the same curve class as C and we can
choose the two points so that D1 and D2 do not intersect each other. In this
case it is easy to see that D3 is a line in the exceptional divisor E.

If λ1 + λ2 = 1, then D1 and D2 are the only components of D.
In both cases, −KY ·D = −KY ·Γ′ and A ·D = A ·Γ′. Since X has Picard

number 2, [D] = [Γ′]. �

Proposition 4.21. If there is a very free irreducible curve C ′ such that −KX ·
C ′ = 4, −KY · C ′ ≤ −KY · Γ′ and A · C ′ ≤ A · Γ′, then there is a non-zero
Gromov-Witten invariant of the form 〈[pt], [pt]〉X0,D.

Proof. Choose a very free curve D whose −f ∗KY degree is minimal among all
very free curves C ′ satisfying the conditions

−KX · C ′ = 4,−KY · C ′ ≤ −KY · Γ′, A · C ′ ≤ A · Γ′.

Any curve satisfying these conditions and having minimal A-degree has the
same curve class as D, since b2(X) = 2. We show that 〈[pt], [pt]〉X0,D 6= 0.

First notice that there exists no reducible curve F passing through 2 general
points such that

(1) the two points are not connected by an irreducible component of F ,

(2) −KY · F ≤ −KY ·D, and

(3) A · F ≤ A ·D.

If there were such a curve, we could apply Lemma 4.20 since−KY ·F ≤ −KY ·Γ′
and A · F ≤ A · Γ′. Then the curve classes [F ], [D], and [Γ′] would all be the
same. This is impossible since −KX ·D = 4 but −KX · Γ′ = 5.

We claim that if F is an irreducible curve through the two points satisfying
(2) and (3) above, then [F ] = [D]. If −KX · F = 4, then this follows from
our choice of D. If −KX · F ≥ 5, then we may deform this curve with two
points fixed to a reducible curve. By the previous paragraph, there is again an
irreducible curve F1 passing through 2 general points; it still satisfies (2) and
(3) above. If −KX ·F1 ≥ 5, deform F1 with two points fixed. This process will
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terminate at some point, and we get an irreducible curve Fn passing through
the two very general points (thus very free) such that −KX · Fn = 4.

Then,
−KY · Fn ≤ −KY ·D ≤ −KY · Fn.

Here we get the first inequality by the construction of Fn and the second
inequality by the choice of D. Thus, Fn = D. This is a contradiction since by
construction A · Fn < A ·D.

The above discussion shows that no reducible curve of class [D] meets all
of the constraints. Thus, we are done. �

Next assume that there is no irreducible curve C ′ such that

−KX · C ′ = 4,−KY · C ′ ≤ −KY · Γ′, and A · C ′ ≤ A · Γ′.

Choose a very free curve D with −KX degree 5 and minimal with respect to
A. Choose the constraints to be two very general points and a moving curve
G which meets very divisor but E (e.g. the strict transform of the intersection
of two very ample divisors in Y ).

The following lemma will conclude the proof of Theorem 4.18.

Lemma 4.22. The Gromov-Witten invariant 〈[pt], [pt], G〉X0,D is non-zero.

Proof. The proof is similar to that of Proposition 4.21.
First we claim that there is no irreducible curve D′ connecting the two

general points with smaller A-degree and −KY -degree. If D′ were such a
curve, then −KX ·D′ would be at least 5 by assumption. So we could deform
D′ with the points fixed and break D′ into a reducible or non-reduced curve.
Continue this process until we end up with a reducible/non-reduced curve with
no irreducible components containing the two chosen points. Thus the curve
has two components which are free curves and each passes through one chosen
point. Then Lemma 4.20 gives a contradiction.

Thus, we only need to consider the case where there are two irreducible
components, which are free curves passing through the two chosen general
points. We are then in the situation of Lemma 4.20. Clearly we can choose G
to avoid all such configuration of curves. �
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