ENUMERATIVE GEOMETRY
V10

TOPOLOGICAL COMPUTATIONS

A Dissertation Presented

by

Ritwik Mukherjee

to

The Graduate School

in Partial Fulfillment of the
Requirements
for the Degree of
Doctor of Philosophy
in

Mathematics

Stony Brook University

December 2011



Stony Brook University
The Graduate School

Ritwik Mukherjee

We, the dissertation committee for the above candidate for the Doctor of Philosophy degree,
hereby recommend acceptance of this dissertation.

Aleksey Zinger - Advisor
Associate Professor, Department of Mathematics

Dennis Sullivan - Committee Chair
Professor, Department of Mathematics

Jason Starr
Associate Professor, Department of Mathematics

Dusa McDuff
Professor of Mathematics, Columbia University (Barnard College)

This dissertation is accepted by the Graduate School.

Lawrence Martin
Dean of the Graduate School

ii



Abstract of the Dissertation
Enumerative Geometry via Topological Computations
by
Ritwik Mukherjee
Doctor of Philosophy
in
Mathematics

Stony Brook University
2011

Enumerative geometry is a rich and fascinating subject that has been
studied extensively by algebraic geometers. In our thesis however, we
approach this subject using methods from differential topology. The
method comprises of two parts. The first part involves computing the
Euler class of a vector bundle and evaluating it on the fundamental
class of a manifold. This is straightforward. The second part involves
perturbing a section and computing its contribution near the boundary.
This is usually difficult. We have used this method to compute how
many degree d curves are there in CP? that pass through @ —(6+m)
points having § nodes and one singularity of codimension m provided
6 +m < 7. We also indicate how to extend this approach if § +m is

greater than 7.
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Chapter 1

Introduction

Enumerative geometry is a classical subject that dates back to over 150 years ago. The general goal
of this subject is to count how many geometric objects are there that satisfy certain conditions. It
has been an active field of research since the nineteenth century. In fact, Hilbert’s fifteenth problem
was to lay a rigorous foundation for enumerative Schubert calculus. While the problems in this
field are typically easy to state, solutions to almost all of them require various deep concepts from
mathematics.

This subject has been extensively studied by algebraic geometers. An example of a well-known
enumerative problem is:

Question 1.1. What is the number Ny(3) of degree d curves in P? that pass through r(d)—d points
_ d( +3)7

and have 0 simple nodes, where k(d) = =51

Using methods of algebraic geometry, Vainsencher [18] and Kleiman-Piene [9] find explicit formu-
las for Ng(0) with 6 < 6 and § < 8, respectively. Recursive formulas for Ng(d) are derived by
Caporaso-Harris [1] and Ran [13], [14]. They both use algebro-geometric methods.

In [25], the author uses a purely topological method to compute the number of degree d plane
curves with up to 3 nodes passing through the appropriate number of points. In this thesis, we
greatly extend this approach to enumerate curves with up to 7 nodes as well as curves with many
other types of singularities. In fact, one of the main difficulties in extending this approach is the
enumeration of curves with one highly singular point. Our ultimate aim is to enumerate curves
with an arbitrary collection of singularities, provided the degree is sufficiently high.

We present our formulas for enumerating curves with singularities as recursions on the number
and complexity of singular points. We have also created a mathematica program that uses these
formulas to produce formulas expressing the number of degree d curves with specified singularities
in terms of d.

1.1 Plane curves and their singularities
For each d€Z™, let

2
Dy~ P where k(d) = (d; ) -1,



denote space of degree d curves in P2. For any non-negative integer r, denote by
Dy(r)=P" C Dy~ P

the subspace of curves passing through Dy—r general points. We write elements of Dy as [s], with
s denoting a non-zero degree d homogeneous polynomial on C? or equivalently a non-zero element
of HY(P?; O(d)), i.e. a non-zero holomorphic section of the holomorphic line bundle

*d = (7;2)®d — ]P)Za

~

P2

where yp2 — P? is the tautological line bundle. Denote by mprp2 : PTP? — P? the bundle
projection map. Let
yp—Dy and 7 — P(TP?)

be the tautological line bundles over Dy and P(TP?), respectively. We define
Mo=abh) Am—all),  ad A=),

Definition 1.2. Let [s]€Dy. A point p€s~1(0) is of singularity type Ay, with k>0, D, with k>4,
FEg, Er7, or Eg if there exists a coordinate system (x,y): (U,p) — (C2,0) around p on P? such that
~10)NU s given by the equation

Ml_0, y?z+a"1=0, P*+2*=0, PP+y2®>=0, or y3+2°=0,

v+
respectively.

We write y,(p) for the singularity type of p € s71(0). Thus, p is a smooth point of s~1(0) if
Xs(p) = Ao, a simple node if ys(p) = A1, a cusp if x,(p) = Az, a tacnode if xs(p) = As, and a triple
point if ys(p)=Dy4. Let

CA, = CD, = CE, ==k

be the codimension of the singularity.

Fix linear subspaces P’ C P! C P? in general position with respect to the x(d) points used to
define Dy(r). If r€Z=% and o€ Z2°, let

PS40, Ay, 0) = {([s],¢) e Dy r—i—k:)x]PT]P’Q‘PQ,(,: Xs(mprp2 (€)= A1, VZs(v,v)=0 Vvel}.
In addition § € Z=° and y is a singularity type, let

S0, x,0) == {([s],p1,- -+ D611) EDa(r+5+cy) x (P2)° xP*7: p;#p; Vi#j,
Xs(P1), xs(P2), - - Xs(Ps) = A1, Xs(Ps1) =X}

If £>2, let
PSH0, Ay, o) := {([s], ©) € Da(r+k) x PTP?|,,_, : Xs(mprp2(£)) = Ag, V2s(v,-)=0 Yvel}.
Similarly, for y = Dy with k>4 and x= FEg, E7, Eg, let

PS40, x, 0 { 0)eDy r+cX)XPTP ‘PQ o1 Xs(mprp2(0)=x, V3s(v,v,-)=0 Vvef}.



If 6€¢ZT and X:Ak with k>2, x= D with k>4, or x=Fg, E7, Eg, let
PS8, x,0) == {([s],p1, - -, ps, £) EDalr+5+cy) x (P?)° x PTP?: ([s],£) € PSY, 5(0, x,0)
(18], P15 s D6, TprE2 (£)) € SE(S, X,U)}-
The expected dimensions of S4(§, x, o) and PS(6, x, o) are r. Denote by
S, x,0) C Dy(r+34cy)x (P2)°xP?  and
BSY(6,x,0) C Dalr+6+cy) x (P2)° x PTP?
the closures of S%(8, x, o) and PS%(d, x, o), respectively. These are algebraic varieties of the ex-
pected dimension if d is sufficiently high.
If 6,01,00€7Z2°, x=Ay, Dy, and d is sufficiently high, let
NG, x,01) = |S§(5, x, 01)],
Nd(57>27017) = (A7, PS5, (6, x,01)]).
If in addition xy=A with £>2, y=D;, with k>4, or x=Fg, E7, Eg, let
NG x.01,02) = (A2 [BS, (0 x,00))), NG x01) 2= N0, x, 01, 0).
Finally, for any singularity type x as above, let
NG, x) = NS, x,0), N8 := NS, Ay).

Thus, N4(8,x,01) is the number of degree d curves that pass through s(d)—§—c, —o; general
points and have § ordered nodes and another singular point of type x that lies on the intersection
of oy lines, while N'4(8) is the number of degree d curves that pass through (d)—&—1 general
points and have 41 ordered nodes.

1.2 Summary of results

Among the main results of this papers are the following theorems that provide recursion formulas
for some expressing counts of curves with certain collections of singularities in terms of counts of
curves with “simpler” collections (either fewer singular points or less complicated singularities).

Theorem 1. If1 <6 <6 and d > 25+1, the number of degree d curves in CP? with § + 1 distinct
ordered modes with one of them lying on the intersection of o generic lines is given by

NS, Ay, 0) = NU5—1, A1) - N0, Ay, 0) — {5(/\/%5-1, Ay, 0) +dN4(6—1,A1,0 + 1))

3(15)/\/%5—1, Ay, 0) + 4<g>/\/d(5—2, As,0) + 18 <g>/\/d(5—3, Dy, U)}.

Theorem 2. If0 < 6 <5 and d > 20+2, the number of degree d curves in CP? with a A;-node
with a marked direction lying on the intersection of o1 generic lines and one lambda class and 0
other distinct ordered nodes is given by

NS, AL, o,1) = NS, Ay, o) + (d—6)NE(0, A, o+1) — 6(2)/\/(5—2, Dy, 0).



Theorem 3. If0 <6 <6 and d > 20+2, the number of degree d curves in CP? with a cusp lying
on the intersection of o generic lines and § distinct ordered nodes is given by

Nd(é’ A?a U) = QNd((Sa Al,o-) + 2(d_3)Nd(5a A1’0-+1)

- {2 <‘15>Nd(5—1, Az, 0) 412 <g>/\/d(5—2, Dy, 0)}.

Theorem 4. If0 < § < 4 and d > 254+2, the number of degree d curves in CP? with a cusp lying
on the intersection of o generic lines and one lambda class and § distinct ordered nodes is given by

NS, Ay 0,1) = NS, Ay, 0, 1) + (d—3)N(6, A, 04+1,1)

- {2(f)Nd<5—1,A3,a, D +3(7 )NU6-1.D1.0)
+ 4(2) (Nd(5—2,D4, 0,1) + N46—-2, Ds, o)) + 12 <g>/\/d(5—3, DG,U)}.

Theorem 5. If 0 < § < 4 and d > 26+3, the number of degree d curves in CP? with a tacnode
lying on the intersection of o1 generic lines and o9 lambda classes and § distinct ordered nodes is
given by

NS, As, 01,09) = N6, Az, 01, 09) + 3N, A, 01, 02+1) + dN(5, A2, 0141, 02)
— {2<(15>Nd(5—1,144,01,02) + 2<2>Nd(5—2,D5,01702)}.

Theorem 6. If 0 < § < 3 and d > 25+3, the number of degree d curves in CP? with a Dy-node
lying on the intersection of o1 generic lines and § distinct ordered nodes is given by

BN(6, Dy, 01) = N8, Az, 01) — 2N4(6, A3, 01, 1) + (d—6)N(6, Az, 01 +1)

— {2(?)Nd(5—1,175,01) + 2@) (./\/'d(6—2,D6,01)}.

Theorem 7. If0 < 6 < 2 and d > 25+3, the number of degree d curves in CP? with a Dy-node
with a marked direction lying on the intersection of o1 generic lines and one lambda classes and 6§
distinct ordered nodes is given by

Nd(6, D4,0’, 1) = Nd((;’ Dy, U) + (d_g)Nd(é’ Dy, U+1)

Theorem 8. If0 < § < 3 and d > 26+4, the number of degree d curves in CP? with an Ay-node
lying on the intersection of o1 gemeric lines and oo < 3—46 lambda classes and § distinct ordered
nodes is given by

/\/d(é, A4,0’1,0’2) = 2./\/d(5,A3,0'1,0'2) + QNd((S, Ag,o‘l,ag—l—l) + (2d—6)Nd(5,A3,0'1+1,0'2)

oo oo 102D}



Theorem 9. If0 < § < 2 and d > 26+5, the number of degree d curves in CP? with an As-node
lying on the intersection of o1 gemeric lines and oo <2—46 lambda classes and § distinct ordered
nodes is given by

./\/'d(é, A5,0‘1,0‘2) = QNd((S, A4,0‘1,0‘2) + 3Nd(5, A4,0’1,0‘2+1) + (2d—6)Nd(6, A4,0’1—|—1,0’2)
) 1) 0
- {2<1>Nd(6_15 Aﬁa 0-1,0-2) + <1>Nd(5_1’E65 01, 02) + 4<2> (Nd(5_2,D7,O-1,O-2)}‘

Theorem 10. If 0 < § < 2 and d > 26+3, the number of degree d curves in CP? with a Ds-node
lying on the intersection of o1 gemeric lines and oo < 2—46 lambda classes and § distinct ordered
nodes is given by

Nd((S’ D5’O-1’O-2) = Nd((S? D4’O-1’O-2) +Nd(5a B4,O-15 U2+1) + (d_3)Nd(6’ D4,O-1+1,O-2)
)
- 2<1>Nd(5_17D6701702)'

Theorem 11. If§ = 0,1 and d > 26+6, the number of degree d curves in CP? with an Ag-node
lying on the intersection of o1 generic lines and o9 <1—9§ lambda classes and § nodes is given by

J\/d(é, AG,O'l,O'Q) = 3Nd(5, A5,0’1,0’2) + 2Nd(5, As, 0'170'24-1) + (3d—12)]\/d(5, As, O’1+1,0’2)

- {QNd(57 D6701702) +Nd(57 E6701702)

+ 2(?)/\/%5-1, A7, 01,09) + 3(?)/\/%5-1, Fq, 01, ag)}.

Theorem 12. If 6 = 0,1 and d > 25+4, the number of degree d curves in CP? with a Dg-node
lying on the intersection of o1 generic lines and 09 <1—4§ lambda classes and & nodes is given by

N6, Dg,01,02) = N8, D5, 01, 09) + AN*(8, D5, 01, 09+1) + dN*(8, D5, 01 +1, 02)
- {2<(15>Nd(6_1’D750-1,0-2) + (f)Nd(é_l,E%Ulaoé)}'

Theorem 13. If§ = 0,1 and d > 25+3, the number of degree d curves in CP? with an Eg-node
lying on the intersection of o1 gemeric lines and oo <1—46 lambda classes and § distinct ordered
nodes is given by

Nd((S? EG)O-I,O-Q) = Nd((sy D5,0-1,0-2) _Nd((s’ D5,O-150-2+1) + (d_6)Nd(6, D5,0-1+1,0-2)
6
- <1>Nd(5—1,E7,01702).

Theorem 14. If d > 5, the number of degree d curves in CP? with an D7-node lying on the
intersection of o generic lines is given by

N0, D7,0) = 2N%(0, Dg, o) 4+ 4N4(0, Dg, 0, 1) + (2d—6)N(0, D, 1).

Theorem 15. If d > 4, the number of degree d curves in CP? with an E;-node lying on the
intersection of o generic lines is given by

N0, E7,0) = N0, Dg, 0) — N0, Dg, 0, 1) + (d—6)N(0, Dg, 0 +1).



Theorem 16. If d > 7, the number of degree d curves in CP? with an A7-node lying on the
intersection of o generic lines is given by

N0, A7,0) = 5N(0, Ag, 0) — N0, Ag, 0, 1) + (5d—24)N4(0, Ag, o+1)
-{awﬂaxz»,a)+ﬂmvdaxfb,a)}.

The base case for the recursion is provided by the counts of one-nodal curves, obtained in Lemma 4.1:

3(d—1)*7, ifo=0,1;
N 0,A1,0) =41, if o0 =2;

0, otherwise.
Since A2 = —3A)\p2 — 3)\12?2, for every singularity type x we have

Nd((s,x,dl,()'z) = —3Nd((5,x,0'1+1,0'2—1) - 3Nd((5,x,0'1+2,0'2—2) Yoo > 2.

All together these recursions allow us to obtain explicit formulas for the numbers N (4, x) with
0+c, <7. These formulas agree with previous known results:

(1) the formulas for N'¢(8, A1) with 6+1<6 nodes agree with [18, Example 5.1];
(2) the formulas for N'4(d, A;) with §41<7 nodes agree with [9, Theorem 1.1];
(3) the formulas for AN¢(6, D,) with § <3 agree with [9, Theorem 1.2];

(4) the formulas for N'4(8, x) with d+c, <7 agree with [4];

(5) the numbers N'4(0, ) with ¢, <7 agree with [5, Proposition 1.2].

Moreover, our formulas pass all the lower degree checks we could think of; see Appendix A.

1.3 Outline of thesis

The main tool used in the thesis is the following lemma:

Lemma 1.3. Let M C PN be a compact algebraic variety and V. —s PN a rank m holomorphic
vector bundle. Assume that the dimension of M is also m. If s is a holomorphic section which
is transverse to the zero set on every stratum of M, then the number of zeros of s is given by the
Euler class of V' evaluated on the fundamental class of M :

[s7H0)] = (e(V), [M]).
However, the situation we are faced with is as follows:

Question 1.4. Let OM be a (Zariski) closed subset of M. What is the number N of zeros of s
that lie inside M — OM, if s is transverse to the zero set when restricted to M — OM ?

In order to answer this question, we have to look at the following problem:



Question 1.5. Let v be a generic section of V.— M. What is the number Cyps of solutions
(counted with a sign) for the equation

s(m) +tv(m) =0
for “small” t that lie “near” OM ?

It can be shown that Cyys doesn’t depend upon v or t. The number N is therefore
N = (e(V),[M]) = Com-

A global algebro-geometric excess intersection approach is described in [2]; in this thesis instead
we follow the purely topological approach of [25]. In order to enumerate curves with just one node,
we can take M = D x P2, where D ~ P! is a one-dimensional family of degree-d curves and

V=1 @7 & @7 @7 @1y @ TP

where vp and vp2 are the tautological line bundles over D and P2, respectively. A simple application
of the splitting principle and Kunneth formula shows that

(e(V), [M]) = 3(d - 1)%.

Hence the number of degree-d curves through (d) — 1 points and having one node is 3(d — 1)2.
However, to enumerate curves with two distinct nodes we need to count the number of zeros inside

the space
D x (P* x P? — A)

where D ~ P? is a two-dimensional family of degree-d curves and A C P2 x P? is the diagonal.
This space is noncompact! Hence we have to use excess-intersection theory with

M =D x P? x P?, OM =D x A.

In order to compute Cyys, we have to have an understanding of a one-dimensional family of curves
that have a simple node. This family can degenerate into a curve with a cusp (a cusp is locally
given by the equation y? + 23 = 0). The number Cpys consists of two parts: the contribution from
a one-dimensional non-compact family of curves with a simple node and the contribution from a
finite set of cuspidal curves. Hence we have to know how many curves are there through x(d) — 2
points that have one cusp!

In general, to enumerate curves with £ nodes we may have to first enumerate curves with other sin-
gularities of total codimension k, but with fewer singular points. As the number of node increases,
the situation becomes more and more complicated, as more and more of them can sink together
and effect the boundary contribution. However, we believe that the conclusion of Theorems 1-3, 6,
and 7 and the o9 =0 cases of Theorems 5, 8-10 holds for any number of nodes 4, as no new types
of boundary strata occur.

In Chapter 2, we collect a number of preliminary results concerning local structure of holomorphic
maps, which are then used to define the bundle sections that are central to this thesis. We also
show that these bundle sections are generically transverse, even after cutting down by general point
conditions. In Chapter 3, we study closures of spaces of curves with a singular point of certain



types and some number of nodes; this is used to determine boundary contributions in Chapters 4-
7. In Chapter 4, we focus on one-point singularities and in particular prove Theorems 14-16. In
Chapter 5, we continue on to two-point singularities and complete proofs of Theorems 11-13. In
Chapter 6, we finish proofs of Theorems 9 and 10, which involve up to 3 singular points. The
remaining theorems are proved in Chapter 7. In Appendix A, we describe a number of low-degree
checks, in cases when our numbers can be obtained by direct geometric arguments.



Chapter 2

Preliminaries

2.1 Local structure of holomorphic maps

If f=f(x,y) is a holomorphic function defined on a neighborhood of the origin in C? and i, are
non-negative integers, let

9iti f

0210y |0 =0

fij

Lemma 2.1. Let f=f(x,y) be a holomorphic function defined on a neighborhood of the origin in
C? such that foo = 0. If for # 0,

(u,v) = (z, f)

1 a coordinate chart around the origin.
Proof. This follows immediately from the Inverse Function Theorem. O

Proposition 2.2. Let f=f(x,y) be a holomorphic function defined on a neighborhood of the origin
in C? such that foo, for = 0. If foa # 0, there ewist a coordinate chart (z,v=v(x,y)) centered at
the origin in C? and a holomorphic function g on a neighborhood of 0 in C such that

fla,y) = g(z) +v(z,y)*. (2.1)

Furthermore, the germ of g= gy at the origin is uniquely determined by f; if it is nonzero, there
exists a coordinate u=wu(x) centered at the origin in C such that

g(x) = u(z)"

for some k=kjy € 720 determined by f. Finally, if h is a holomorphic function defined around the
origin in C% such that h(0)#0, then kny = ks =k and

dkgf
dzk

d*gn
=h

Proof. (1) Since fop1 = 0 and fpo # 0, there exists a holomorphic function B = B(x) on a neigh-
borhood of the origin in C such that

B(0)=0 and fy(z,B(x)) =0 Va.



With respect to the coordinate chart (z,y = y—B(x)),

ofy  _9of
0y (z,0) Jy

(z,B(z))

Thus, the function f is of the form

f(x,y) = g(x) + h(xag)QQ

for some holomorphic functions g and h defined on neighborhoods of the origin in C and C2,
respectively. Since fy; = 0 and fo2 # 0, h(0,0) # 0; thus, the function

has the desired properties.

(2) If v and g are as in (2.1), the derivatives of g at the origin in C are polynomials in the partial
derivatives of f and of z-partials of y=y(x,v) at the origin in C2. Since f, = fyYv = 2v vanishes
along v =0, fylv=0 = 0 and so

(f:vy + fyyy:v) |v=0 =0.

Since fo2 # 0, this equation expresses the a-partials of y=y(z,v) at (z,v) = (0,0) as polynomial in
the partial derivatives of f at the origin and in fogl. Thus, the germ of the holomorphic function g
is determined by f.

(3) If the germ of g at 0 is nonzero, there exist k € Z=% and a holomorphic function h on a
neighborhood of the origin such that

g(z) = h(z)z*tt, h(0) # 0.

The function
u(x) = "/h(z)x
then has the desired properties.
(4) It is sufficient to prove the last statement for f(z,y) = g(z) + 2. For hf, the function B(z)

in (1) above is of the form g(x)b(z) with b=0b(x) determined by the Implicit Function Theorem
from

b(0) = —w, hy (w,g(m)b(ﬂv)) + 2b(ac)h(x,g(w)b(x)) —l—g(x)b(x)th(x,g(x)b(x)) =0 V.
Thus,
gns(x) = f(z, B(x)) = h(z, g(x)b(x))g(x) + g(x)*h(z)
has the same first nonzero derivative at the origin as g. O

If f and g are as in Proposition 2.2 and k € Z*, let

1 dkgf

f_
Ak_k:!da:k

=0
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If in addition fig, fog, fi1 = 0, we find that

312 fso  B5fafa1 | 5fiafs
Al — Al = f— 228 Al =20 - =
3= f30, 1= fao foz DY 12 foz 81t

af = Joo _ fafa f3 L Jefafs 3f51f22  fosfsi  3fiafh
07120 8fe  12f02 213, 812, 815, 43,

Af_@ Tfoufs1  Tfsifan  Thofafu | Tfafse  Thiefd  Tfafafa

=20 _ - + + + +
TUT20  240for 144 fe 4812, 482, T2f3, 2412,

C Thsfifsn  Tfhfafn Thefsife Thsfs n Tfosfraf3 . Tfa I3
4855 125, 8152 48 £, 165 8152

Thus, the curve f~!(0) has an Ap-node at the origin if and only if A{ = 0 for all + < k and

A}: 41 # 0. By the last statement of Proposition 2.2, the minimal integer & for which A}: #0
depends only on the germ of f at the origin and for this value of k

Al = h(0)A] (2.2)

for any holomorphic function h around the origin in C? such that h(0) # 0. Note that A}: is not
defined if fgo = 0 and k& > 3, but fokj?’A}: is defined even if fgo = 0.

Proposition 2.3. Let f=f(x,y) be a holomorphic function defined on a neighborhood of the origin
in C? such that f(0,0),V flw.0), V>l = 0. If either

Vi floo(w,w,-) #0 Yw € C*~0  or  fao, for =0, fia #0,

there exist a coordinate chart
(#,9) = (+=C(v)y,9)

centered at the origin in C? and a holomorphic function g on a neighborhood of 0 in C such that

flz,y) =2(9(2) +9%) . (2.3)

Furthermore, the germ of g=gy at the origin is nonzero in the first case and is uniquely determined
by f in the second case. In either case, if it is nonzero, there exists a coordinate chart (u,v) centered
at the origin in C? such that

Fla,y) = u@,y) (u@,y) 2+ v(z,y)?) (2.4)

with ky = 4 in the first case and for some ky>5 determined by f in the second case. Finally, if h
is a holomorphic function defined around the origin in C? such that h(0)#0, then knp =k =k
and in the second case

d*gns — h(0) drgs

dxk dak -
Proof. (1) We first show that there exists a holomorphic function C' = C(y) on a neighborhood of
the origin so that

f(Cyy,y) =0  Vy. (2.5)

If V3f](070) (w,w,-) # 0 for all w € C2—0, the cubic term in the Taylor expansion of f has no
repeated factors. Thus,

f(x,y) = 2(0(F,y)y* + Zyc(F,9) + F°d(Z,§)) + e(@)7*

11



where £ = x+ay for some a € C and b=b(Z,y), c=c(Z,y), d=d(Z,y), and e=e(y) are holomorphic
around the origin in C? and C such that b(0,0) # 0 (because the cubic in the Taylor expansion of
f(z,y) is not a multiple of Z). The condition (2.5) on C(y) = —a + D(y)y is equivalent to

D(y)(&(D(y)y*,y) + c(D(y)y*, y)yD(y) + d(D(y)y* y)y*D(y)*) +e(y) =0 Yy.
Since b(0,0) # 0, by the Implicit Function Theorem there exists a holomorphic function D= D(y)
on a neighborhood of the origin in C with D(0) = —e(0)/b(0,0) solving this equation.

If f30, for =0 and fi2 # 0,
fl@,y) = a(z,y)zy® + b(y)y® + c(z)2* + d(z,y)z%y

for some holomorphic functions a, b, c,d with a(0,0) # 0. The condition (2.5) on C' = C(y) is

equivalent to

__b(0)
a(0,0)’

C(0) = a(CW)y,y)C(y) + b(y) + c(C1))yCy)* + d(C W)y, y)yC(y)* =0 Vy.

Since a(0,0) # 0, by the Implicit Function Theorem there exists a holomorphic function C'=C(y)
on a neighborhood of the origin in C with C(0) = —b(0)/a(0,0) solving this equation. In either
case, by the Inverse Function Theorem

(2,y) = (z+ C(y)y,y)

is a coordinate system centered at the origin.

(2) By (25). A

for some holomorphic function f on a neighborhood of the origin in C2. By the assumptions on f,

foo, f10, for = 0, fo2 # 0.

By Proposition 2.2, there exist a coordinate chart (Z,7) centered at the origin in C? and a holo-
morphic function g on a neighborhood of 0 in C such that

flxy) =2f(@,y) =2(9@) + 5%,  9(0),g'(0)=0.

In the first case, ¢”(0) # 0, while in the second case ¢”(0) = 0. Since the germ of C'=C(y) at
the origin is uniquely determined by f, so is the germ of f; Proposition 2.2 then implies that the
germ of gy =g at the origin is also determined by f. It also implies the last claim in Proposition 2.3.

(3) If the germ of g at 0 is nonzero, there exist k > 4 and a holomorphic function h on a neighbor-
hood of the origin such that
g(&) = h()&" 7, h(0) £0.

By the Inverse Function Theorem,

~

_ k-l N4 _ Y
u= "Vh(d), v—72(k_1\)/m,

is a coordinate chart centered at the origin so that (2.4) holds. O

12



If f and g; are as in the second case of Proposition 2.3 and k£ > 6, let

pf_ 1 @
Foo(k=3)! dik—3 |, _,
In particular, we find that
2
Df - pf__n oo
5 = Jao. T T2, 40

By the last statement of Proposition 2.3, the minimal integer k£ for which D,J; # 0 depends only on
the germ of f at the origin and if this value of k>6

D} = h(0)D] (2.6)

for any holomorphic function h around the origin in C2? such that h(0) # 0. Note that the curve
f71(0) has a Dy-node at the origin if and only if Dif =0 for all 4 < k and D,];H £ 0.

Proposition 2.4. Let f=f(x,y) be a holomorphic function defined on a neighborhood of the origin
in C? such that f(0,0),V flo,0), V:fl00) = 0. If f30, fa1, fr2 = 0 and fo3, fao # 0, there exists a

coordinate chart (u,v) centered at the origin in C? such that
flx,y) = ulz,y)* +v(z,y)°. (27)
Proof. By the assumptions on f,
() = az,y)y® + bz, y)a' + aa’y + B’y + ya’y? (2.8)

for some «, 3, € C and holomorphic functions a and b on a neighborhood of the origin in C? such
that a(0,0),b(0,0) # 0. Let A, B,C € C be given by

4booA+a =0,  3agyB + 6byp A%+ 3aA + =0,
3agoC + 3a19B + 10b10A2 + 4b01A + 30[AQB + 4BAB +~v=0.

By the Inverse Function Theorem, the equations
r =1+ Ay, y =+ Bi? + O3
determine a coordinate chart (&,7) centered at the origin in C2. By (2.8),
fla,y) = a(#,9)5” + b(&, §)*

for some holomorphic functions @ and b around the origin in C? such that a(0,0),b(0,0) #0 (the
three defining equations for A, B, C' describe the coefficients of 233, 292, #392 in f(z,y)). Thus,

w=\/b(&,9)z,  v=1/a(@ )i,
is a coordinate chart centered at the origin that satisfies (2.7). O

Proposition 2.5. Let f=f(x,y) be a holomorphic function defined on a neighborhood of the origin

in C* such that f(0,0),V flio,0), V*fl0,0) = 0. If f30, f21, f12, fao = 0 and fo3, f31 # 0, there exists
a coordinate chart (u,v) centered at the origin in C? such that

f@,y) = v(z,9)* + u(z, y)*v(z,y). (2.9)

13



Proof. By the assumptions on f,
f(a,y) = alz,y)y* + b(x,y)z’y + az’y® + B(z)z° (2.10)

for some o € C and holomorphic functions a, b, and 3 on a neighborhood of the origin in C? and
C such that a(0,0),b(0,0) # 0. By the Implicit Function Theorem, there exists a holomorphic
function B=B(z) on a neighborhood of the origin in C such that

b(2, B(2)#*)B(2) + a(#, B(2)3*)2B(#) + #B(2)* + B(2) =0,  B(0) = ———= (2.11)

Let A € C be given by
3b00A + 3(100B(0) +a=0. (212)

By the Inverse Function Theorem, the equations
r==%+A4),  y=7+B(@)37
determine a coordinate chart (#,7) centered at the origin in C2. By (2.10),
flay) = a(@,9)5° + b(z, §)3%)

for some holomorphic functions @ and b around the origin in C? such that a(0,0),5(0,0) #0 (the
LHS of the first equation in (2.11) is f|;—o/#°, while the LHS of (2.12) is the coefficient of £%j? in

f(z,y)). Thus,

ZA) A A
u= (| Dy~ et
val(i, g)
is a coordinate chart centered at the origin that satisfies (2.9). O

2.2 Transversality of sections

Let
Py~ P/{(d)Jrl

denote the space of homogeneous polynomials of degree d on C? or equivalently of polynomials of
degree at most d on C2. Let
P;=Ps—0

be the subspace of nonzero polynomials. If V' — M is any vector bundle over a smooth manifold,
a section ¥ of
vy @ maV — Dy x M

induces a section 1) of w5V — P35 x M by
b(s,p) = {¢([s],p) } ().

We note that 1 is transverse to the zero set at ([s], p) if and only if ) is transverse to the zero set
at (s,p).

14



Lemma 2.6. The sections

¢Ao € F(Dd X ]PQ’TFTW% @ W;V;d)a T;Z)Ao([s]ap) = S(p),
Ya, € D(¢5(0), 7i7p @ w37y © T*P?), Ya,([s],p) = Vslp,
¥p, € T (14, (0), mivp ® w37y @ Sym*(T*P?)),  ¢p,([s],p) = V7slp,

are transverse to the zero set for all [s] € Dy, provided d > 0, 1,2, respectively.

Proof. (1) Suppose ([s],p) € ¢AT; (0). Choose homogeneous coordinates [Xo, X1, X2] on P? so that
p=[1,0,0] and let

X1 Xy

=1 Xp, X1, Xo|: X = — = .
Up = {[Xo, X1, X2]: Xo # 0}, x X, y X,

Viewing P, as the space of polynomials in x,y of degree at most d, we show that the restriction
of the induced section ¥4, to Pj x Uy is transverse to the zero set at (s,0). With respect to the
standard trivialization of ’y;j over Up, 14, is given by

,P;lkXUO—>(C7 (famay)ﬁf(may)
The differential of this map at (s,0) is given by
Pax C? — C, (fsz,y) — foo + s10 + so1y-

The restriction of this linear map to the first component is surjective for any d € Z=°, and so 1/; Ao
is transverse to the zero set at (s, 0).

(2) Suppose ([s],p) € ¢;111(0) C 1#;1;(0); we continue with the setup of (1) above. Since the
restriction of Vs to s71(0) is independent of the choice of V, the restriction of the induced section
Ya, to 1[12;(0) NP x Uy with respect to the standard trivializations of 'yn’:;l and T*P? over U is
given by .

a0 NPixUy — C, (fa,y) — (folx,9), fy(2,y)).

Since the section 14, is transverse to the zero set at (s,0), the transversality of ¢4, at (s,0) is
equivalent to the transversality of the map

PixUp —C°,  (fz,y) — (f(z,9), fo(2,0), fy(2,y)).
The differential of this map at (s,0) is given by
Py x C* — C, (fsz,y) — (foo, fro + s20z + s11Y, for + s11@ + s02y).

The restriction of this linear map to the first component is surjective for any d € Z™, since
foo, f10, fo1 can be chosen arbitrarily then. Thus, 14, is transverse to the zero set at (s,0).

(3) Suppose ([s],p) € wl_)i (0) C 1/1211 (0); we continue with the setup above. Since the restriction of
V2s to the zero set of s and Vs is independent of the choice of V, the restriction of the induced
section ¢p, to ¢le (0)NP;xUy with respect to the standard trivializations of 7;‘5 and T*P? over Uy
is given by

DRH0)NPixUs — € (f,2,9) — (fau(@,y), foy(2,9), fry)-
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Since the sections 1) A, and ¥ A, are transverse to the zero set at (s,0), the transversality of 1ZD4 at
(s,0) is equivalent to the transversality of the map

PaxUp —C%  (fiz,y) — (fz,), fol@,y), fy(@,), fau(@,9), fay(2,9), fyy)-

The restriction of the differential of this map at (s,0) to the first component of the tangent bundle
is given by
Py — CS, ' — (foo, f10, for, f20, f11, fo2)-

This map is surjective if d > 2. O
Let

Vo = 7 @ (nivp @ 75 (7§ ® T*P?)) — Da x P(TP?),

Vs =72 @ 7 (miyp @ w5 (v © T'P?)) — Dy x P(TP?),
where 7: Dy x P(TP?) — Dy x P? is the projection map.

Lemma 2.7. The sections

Ya, € T((DdXP(TPQ))Iw;;(O), Vo), {van(ls]p, )} (v) = Vs (0, ),

¢D5 € P((DdXP(TPZ))WBi(O)a VE’))? {¢D5([3]7P7 6)}(?}2) = V?’s]p(v,v, ')7

are transverse to the zero set, provided d > 2,3, respectively.

Proof. (1) Suppose ([s],p,?) € 1/1221(0). We continue with the setup in the proof of Lemma 2.6

above, but choose the homogeneous coordinates so that £ is the span of the tangent vector % at p.
Let B
Uy = {[w] €P(TP?)|y,: da(w) # 0}.

Since the restriction of V?2s to the zero set of s and Vs is independent of the choice of V, the
restriction of the induced section 14, to (P§XU0)‘i;1(0) with respect to the standard trivializations
1

of ’Y;j , T*P?, and f]o over Uy and of 4* over (70 is given by
(P; on)|¢;;(0) —C%  (fizyen) — (faa(@y) + 0 oy (@), foy(@,y) + nfyy(,y)).

Since the sections ¢ A, and ¥ A, are transverse to the zero set at (s,0), the transversality of ¥ A, at
(s,0,2) is equivalent to the transversality of the map

PixUy — C7,
(faxayan) — (f(x7y)7fx(mvy)7fy(x7y)7fxx(x7y) +77fxy(x7y)afxy($ay) +77fyy(x7y))

The restriction of the differential of this map at (s,0,0) to the first component of the tangent
bundle is given by

Pg — C°, f— (foo, f10, fot, fa0, f11)-
This map is surjective if d > 2.

(2) Suppose ([s],p,¥) € 1/11_);(0); we continue with the setup in (1) above. Since the restriction of
V3s to the zero set of s, Vs, and Vs is independent of the choice of V, the restriction of the
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induced section 1/~)D5 to (P x U0)|1;_1(0) with respect to the standard trivializations of 7;2‘1, T*P2,
and Uy over Uy and of 4* over Uj is given by
(P x Uo)hzgi(m — 2,
(f,2,5,m) — (Faw(2,y) + 0fay(@,y) + 17 fayy, Fay(2,9) + 0fyy(@,9) + 77 Fyyy).

S~ince the sections 1; Ao 1/; A,, and 1[1[)4, are transverse to the zero set at (s,0), the transversality of
¥p, at (s,0,f) is equivalent to the transversality of the map

,PZZX(?Q—>(C8,

(f,x’y) — (f’ fm, fy, fmma f:l:ya fyya f:m::v + anxxy + 772fmyya f:m:y + anxyy + 772fyyy)(m7y)-

The restriction of the differential of this map at (s,0,0) to the first component of the tangent
bundle is given by

Py — C*, J — (foo f10; for, f20, f11, foz, f30, f21)-
This map is surjective if d > 3. U
Let
~ % k% ~\ *¥2 * * %k * ok
5 =7 © (FmTP? /7)™ @ n* (xivp ® ) — Da x P(TP?),
Ly =7 @ n*(nivp @ m37’y) — Da x P(TP?),
Lemma 2.8. The sections
ey TR0, L), {wm(s)p 0} (0 @ w?) = Vs, (v,w, w),
¢E7 € F(¢E51(0)7L£1)7 {¢E7([8]7p7€)}(v4) = V48]p(v,v,v,v),
are transverse to the zero set, provided d > 3,4, respectively.

Proof. (1) Suppose ([s],p,{) € ¢;361(0) C 1#1_);(0); we continue with the setup in the proof of
Lemma 2.7. Since the restriction of V3s to the zero set of s, Vs, and V?s is independent of the choice
of V and V3s vanishes with two inputs from the distinguished tangent direction, the restriction of
the induced section ¢z, to 1;5; (0) N (P xUp) with respect to the standard trivializations of 'y;j,

T*P2, and Uy over Uy and of 3* over Uy is given by
&B;(O) N (P;lk X ﬁO) — (Ca (f’ z,Y, 77) — f:vyy(xa y) + Ufyyy(l", y)

Since the sections 1; Ao 1/; Al 1; D, and 1/; D5 are transverse to the zero set at (s, 0, ), the transversality
of Yg, at (s,0,£) is equivalent to the transversality of the map

,P:ZX(?Q —)(Cg,
(f,x,y,n) — (f7 fxafyafxmfa:wfyyafxxx +nfxxyafxxy+nfxyyafxyy +77fyyy)(

z,y)"

The restriction of the differential of this map at (s,0,0) to the first component of the tangent
bundle is given by

Py — C°, f— (foo, f10, fo1, f20, f11, fo2, f30, fo1, f12).
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This map is surjective if d > 3.

(2) Suppose ([s],p,¥) € ¢;371(0) C Q,Z)E; (0); we continue with the setup as above. Since s vanishes
on %5; (0) and Vs, V2s, and V3s vanish along the distinguished direction, the restriction of the
inducNed section ¥, to Q/;EQ (0) ﬂ~(73§ xUp) with respect to the standard trivializations of 7;265, T*P?,
and Uy over Uy and of 4* over Uj is given by
Pl (0) N (P xUy) — C,
(fsz,y,m) — frzae(®,y) + 477fmmy($,y) + 6772fmyy($,y) + 4773f:vyyy($,y) + 774fyyyy($ay)-

Since the sections 1/7,40, 1;,417 &DM 1;1)5, and &Ea are transverse to the zero set at (s,0,¢), the
transversality of ¥ g, at (s,0,¢) is equivalent to the transversality of the map

TZ)AO D TZ)Al 3] TZ)D4 @ ¢D5 D T;Z)Es D TZ)E7: ’P; X UO — (CIO-

The restriction of the differential of this map at (s,0,0) to the first component of the tangent
bundle is given by

Py — CY, ' — (foo f10, for, f20, f11, fo2, f30, f21, f12, f40) -

This map is surjective if d > 4. O
For each k € ZT, let

~xk * % ~\*(k—=3 * [ % % % kO \k—
Ly = 5" @ (r*m3TP?/3) "2 @ n* (ninp @ miysy ¥ — Dy x P(TP?),

2(k—4)

~ % * % ~\ *2(k—6 * * ok % w9\ —
Ly =% ® (m WZTPQ/’Y) =9 @ x (T17D ® Ty, =5 — Dy x P(TP?).

For k > 3, the maps
{fePs: fo#0} —C, f— 1o AL, (2.13)

of Section 2.1 are locally bounded on P?. Thus, by induction and (2.2), these maps induce sections

Vi, € D051, 0) = (PaxPIl, 1oy L):

For k > 6, the maps
{fePs: 2 #0} —C,  f— f5°D}, (2.14)

are also are locally bounded on P?. Thus, by induction and (2.6), these maps induce sections

Upy, € T(¥p,,(0) = ¢ (0), Li).
Lemma 2.9. (1) For every k > 3, the section

ay €T (W5, ,(0) = (DaxP?)| o), L)

is transverse to the zero set, provided d > k; the section 14, is transverse over 1/)221 (0).
(2) For every k > 6, the section

¥p, € T(¢¥p, _ (0) = ¢ (0), Ly)

is transverse to the zero set, provided d > k — 2; the section ¥p, s transverse over 1/11_);(0).
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Proof. (1) Suppose ([s],p,f) € 1#2;(0), we continue with the setup in the proof of Lemma 2.7.
Since the map (2.13) is a polynomial in the derivatives of f at 0 with one of the directions being
distinguished, the restrictions of the induced sections 4, to 1;21171 (0) N (P xUp) naturally extend
to a map

&AIZIPZEX(?O — C.

Since the sections 12,40, 1;,41, . ,TZJAk71 are transverse to the zero set at (s,0,¢), the transversality

of 1) A, at (s,0,¢) is equivalent to the transversality of the map
Va, ®Va, ... ®ha,: PixUy — CH3, (2.15)

The restriction of the differential of 4, ® ¥4, ® ¥4, at (s,0,0) to the first component of the
tangent bundle is given by

Py — C°, f — (foo, f10, for, f20, f11, fo2)-

The restriction of the differential of v A, with [ > 3 is a linear combination of the maps
Dij:Pg—C,  f— fij,

with ¢ + j < k and the coefficient of D is a nonzero multiple of 5185 3. Thus, the restriction of the
differential of (2.15) at (s,0,0) to the first component of the tangent bundle is surjective if d > k
and either sgo # 0 or k = 3.

(2) Suppose ([s],p, ) € ¢Bi(0); we continue with the setup in (1) above. Since the map (2.14)
is a polynomial in the derivatives of f at 0 with one of the directions being distinguished, the
restrictions of the induced sections ¢p, to ¢1771171 (0) N (P; xUp) naturally extend to a map

¥p,: PixUy — C.

Since the sections 12,40, T,Z;AI,1;D4J;D5 . ,1[)1)1671 are transverse to the zero set at (s,0,¢), the
transversality of ¢p, at (s,0,¢) is equivalent to the transversality of the map

Vay ®Pa, ®Up, B Upy @ ... B Yp,: PyxUy — CH3, (2.16)

The restriction of the differential of T,Z)AO 3] T/;Al D T/;D4 S ¢D5 at (s,0,0) to the first component of
the tangent bundle is given by

Pg — C¥, f— (foo f10, for, f20, f11, foz, f30, f21)-

The restriction of the differential of T/NJDz with [ > 6 is a linear combination of the maps ©;; above
with 7+ j < k—2 and the coefficient of D ,_s)g is a nonzero multiple of 5?56. Thus, the restriction
of the differential of (2.16) at (s,0,0) to the first component of the tangent bundle is surjective if
d > k — 2 and either s19 # 0 or k = 6. O

Lemma 2.10. The section

Up, € T(Wa, (0), (TP?/3)? @ vp @ v @ T*P?), {4, ([s],p, O)} (w?) = V25 ,(w, w),

is transverse to the zero set, provided d > 3.
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Proof. Suppose ([s],p,?) € ¢Bi (0) C ¢231 (0); we continue with the setup in the proof of Lemma 2.7.

Since the restriction of V2s to the zero set of s and Vs is independent of the choice of V and V?2s
vanishes with either input from the distinguished tangent direction, the restriction of the induced
section ¥p, to ¢231 (0) N (P;xUy) with respect to the standard trivializations of 7;‘5, T*P2, and Uy

over Uy and of 4* over Uy is given by
Gar0) N (PixTo) —C,  (fyo,9,m) — fuyla,y).

Since the sections 1;,40, TZJAI, 1,Z~)A2, and TZJAS, are transverse to the zero set at (s,0,¢), the transver-
sality of ¢p at (s,0,¢) is equivalent to the transversality of the map

,PZZX(?Q — (C7,
(f,l“,y,ﬁ) — (fa f:va fya f:m: + foy, f:vy + nfyya f:v:v:v + 377fmmy + 3772fmyy + 773fyyy’ fyy)(Ly)'

The restriction of the differential of this map at (s,0,0) to the first component of the tangent
bundle is given by

Py — C7, [ — (foo, f10, fo1, f20, f11. f30, fo2)-
This map is surjective if d > 3. O

2.3 General position arguments

We first start with the following important lemma

Lemma 2.11. Let A C PV be a smooth variety (not necessarily closed). Then A and A — A are
both algebraic varieties and

dim(A — A) < dim(A),
where the closure is taken inside PN,

Lemma 2.12. Let A C Dy x (P?)° be a smooth variety of dimension k, not necessarily closed.
Then there exists a Zariski open U C (P?)*1 such that

./Tlmel.. H :®7 v (p17"'7pk+1)€U7

< Hppg
where
Hy, == {([s],p1,--.,ps) € Da x (P?)° : s(p) = 0}.
Proof. We use induction on k. By induction assumption there exists an open set U’ such that for

all (p1,...,px) €U’ _
OANH,, ... H, =0.

This is because the boundary 0A is a variety of dimension less than or equal to k — 1 and is
stratified into smooth varieties of dimension k — 1 or less. We can apply the result to each stratum
and the result follows, since a finite intersection of Zariski open sets is again Zariski open. Hence

ANHy, ...Hy =ANH,, ...Hp,.

Choose pg+1 such that A is transverse to Hy, . and A is not a subset Hy, . Hence
dim(A N Hy,,,) < dimA.
Hence by the induction hypothesis
ANH,,  NH, NHy,...H, =0
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Lemma 2.13. Let A C Dy x (P?)° be a smooth variety of dimension k, not necessarily closed.
Then there exists a Zariski open set U C P? such that for all p € U,

dim(AN (H, — Hy)) <k-3
provided a generic element of A has only finitely many singular points.

Lemma 2.14. Let A C Dy x (IF’2)5 be a smooth variety of dimension k, not necessarily closed.
Then there exists a Zariski open U C (P2)*+1 such that
ANHy, ...Hy, =ANH: ...H Y (p1,...,prs1) €U,

and every intersection is transverse where
Hy == {([s}.p1,--.ps) € Da x (P*)° : 5(p) = 0, Vsl # 0},
provided a generic element of every stratum of A has finitely many singular points.

Proof. This follows from lemma 2.11, 2.12 and 2.13 by applying it to every stratum of A.

2.4 Transversality for multiple points

Lemma 2.15. The section
)
v, €T(Da x (P*), b @i @vp @77 @ T*P?)
=1

¢6Al([8],p1, cee ap5) - S(pl) VS‘IH? s ,S(p(;), vs’pé
is transverse to the zero set for all [s] € Dy, provided d > 26 + 1.

Proof. We will show transversality at py, po,...,ps. Let us assume p; = (z;,y;) and consider 3§
vectors in the space of polynomials given by

féo:1+O(x—xi)+0(y—yi)+...
flo=0+1(z—x;) +0(y — i) + ...
for=04+0(x — )+ 1(y —u) + ...

for i =1 to 9. We now define the following vectors
o = (Fio V2 (Fio D2+ (F10)* fas

where a and 8 are 0 or 1. We choose po,ps,...,ps so that f{o(pm) is not zero for any j or m.
We now evaluate the polynomials géﬁ at p; and get 39 vectors (evaluating a polynomial at a point

gives us a vector by looking at the coefficients). Using the fact hat ffo (pm) is not zero, we get that
these 30 vectors are linearly independent.

Lemma 2.16. The section
Yain, € T(¥a1(0) x (B*)?, 7 @~y @ Sym*(T*P? @ T*P?))
,l/}A‘{D4([S]7p17 cee 7p57p5+1) - 3(]91)7 vs’pp .. ,S(p(;), vs‘pa? VQS‘I?6+1

18 transverse to the zero set, provided d > 26 + 4.
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Proof. The proof is similar to the previous Lemma. We consider the vectors
; i—1\3( £i—2)3 113 pi
9&5 = ( fo )°( 120 )7 (fio) (Zxﬁ

instead.

Lemma 2.17. Let
Vo = 7 @ " (nivp @ 75 (7§ ® T*P?)) — Da x P(TP?),
Vs =72 @ 7 (miyp @ w5 (v @ T'P?)) — Dy x P(TP?),
where 7: Dy x P(TP?) — Dy x P2 is the projection map. The section
0
Vasa, € F((P(TW))‘MII(O) x (P%)°, Va)
{wA‘lsAg([stl? v ,p57p5+1,£)}(?}) = S(pl), vs‘plv SR S(p(;), vs’pé’ v28’p6+1(v7 )
and
0
¢A‘15D5 € F(P(T[PQ)WZ;(()) X (P2) s VB»)

2
{@Z)A{D5([5]ap1a -y D5y DS+, 6)}(2}’ ’U) = S(pl)a vs|p1a o as(pé), V8|p57 \Y S|p5+1(v7 v, )
are transverse to the zero set, provided d > 26 + 4,26 + 5, respectively.

Proof. The proof is similar to the previous lemma. We consider the vectors
9ap = (flo VP (F1o ). (flo)* fag
instead for the first case and the vectors
935 = (o' (fa)t ... (fio)* 35
in the second case.
Lemma 2.18. Let
Ly = 7" ® (7 myTP2/7)" "™ @ n* (nfvp ® w2 — Dy x P(TP?),
® (W*WSTIPQ/ﬁ)*Z(k_G)
(1) For every k > 3, the section
Yasa, € F(WZi,l(O) - (DdXPQ)wBi(o)) x (P?)°, L)

18 transverse to the zero set, provided d > 26 +2 + k
(2) For every k > 6, the section

Yasp, € T (0) = ¢5(0) x (P?)°,Ly)

1s transverse to the zero set, provided d > 2 + k.

«2(k—4)

Ly =7 ® 7 (mip ® my )F P — Dy x P(TP?).

Proof. We consider the vectors
; i—1\k+1/ pi—2\k+1 1 \k+1 pi
935 = (ffo ) * (ffo ) AR (fi0) * féﬁ
for the first case and the vectors
i i—1\k—2/ pi—2\k—
935:( fo ) 2( fo ) 2

in the second case.
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Chapter 3

Closure of spaces

Recall that we have defined the following sections

Af = fxo
3 2
Al = i - 222
Jo2
Al fs0  Bfafsi  Sfiafa
5= og — LY
24 12 foo 815
A Joo  fafu oS3 L Jefafs 3f51f22  fosfsi  3fiafh
67120 8fp | 12foe 212, 812, 813 4f3)
A= S0 Tinfst T Thefafu 5 f3 n Thafd L Tafafa
TUT20  240fe  144fp 482, 4812, 23, 2412,
 Tfosfaifa  Tffafa  Thafsife  Thafd
4813 128, 815 4813
n 7 fosf123) . Tfiaf3
16 /g, 8o
Note that A£ is not defined if fpo = 0. We now define the following quantities
sy = f30
an, = foofao — 3f5
on — Joafs0  Bfafs n 5f12.f10
AT Ty 12 24
_ I35, feofoz | fsofizy  [a fiwofos  faifa
aae = foo (=50 500+ 70 )~ % (g 6 )
[t Tfhfafst T fsifa | T fiefafa  Tfafaifse | Tfefa a2 fa
e - - + + +
A7 10 240 144 48 48 24
_ Tefosfsifsr  Tfofiafsifee  Tefiafs n 7fos fraf3
48 8 48 16
 Tfihfia (- I3 n f50f12)
3 24 40 7

Note that if fys # 0 then
ag, =0 Vi<k iff Al=0 Vi<k

7

23



Unlike A£ , g, is defined even when fp2 = 0.

3.1 Closure

3.2 One point singularity

Let us define

Sd(ka Xm) = g(d)_(m+]g)(ka Xm)’ Psd(k, Xm) = P‘Sg(d)—(m-i-k)(ka Xm)'
Lemma 3.1. The element ([f],p) € 0S40, A1) if and only if ([f],p) € S0, As)

Proof. We write the section s in local coordinates and fix the marked point to be (0,0). The Taylor
expansion of a function f vanishing at the origin is

f=f1ox+fo1y+%x2+f11xy+%y“—---

We can think of f € CMd¢. We claim that
{feCMa: f1g=0, for =0, f — faofoz #0} = {f € CM0: f19=0, for =0}
To prove this statement, it suffices to show that if there is a function f such that

F11(0)* = f20(0) fo2(0) = 0,
then there exists a sequence (or curve) f;;(t) such that
fro(t) =0
for(t) =0
fui®)? = fao(t) fo2(t) #0 ¥V t#0

There are three possible cases. For the first case, let us assume that

f20(0) #0

Then we take the sequence

fij(t) = fi;(0) if (4,7) # (2,0)

S (t)?
t) = 4+t
Jool®) Jo(t)
We can construct a similar curve if we assume
f02(0) 75 0

The remaining case is if fy2(0) = f20(0) = f11(0) = 0. Then the curve
fij(t) :fij(o) if (17]) 7é (270)7(171)7(072)

foo=t
fo2=t
fii=2t

This proves the claim.
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Lemma 3.2. The element ([f],p) € 0840, A1) if and only if ([f],p) € S(0, A2)

Proof. This is less obvious, i.e. that after the curve f passes through a certain number of points
the statement will still be true. More precisely consider a subspace

(CMd—T‘ C (CMd
that arises after passing through r generic points. We wish to claim that

{feCMa7: f15=0, for =0, f4 — faofo2 # 0} = {f € CMa™": f10 =0, fo1 = 0}

The place where our previous proof will break down is that the sequence we construct f;;(t) may
not lie in CMa=" even though £i;(0) does. To fix this, we claim that we can perturb the original
sequence f;;(t) to a new sequence fij(t) such that it does lie in in CM4=", More precisely let the r
points be (z1,y1), ... (@, yr). This gives us r linear equations in the coefficients f;;. More explicitly

let the equations be

Li(f(t)) := ex(t)
Lg(f(t)) = eg(t) e
L (f(t)) == (1)

Note that €(0) = 0. If €(¢) = 0 then we would be done. Hence we now modify the coefficients using
each of the equations one by one so that

L(f(#)) =0

and f(0) = f(0). To see why this is so, we explicitly show the procedure. Let us assume that the
first equation L4 is given by

f20(t)
2

fOZ(t) —{——|—A1 fmn(t)

1 1 1 B
Az + Aqp f1(t) + Age 5 mn +...=e(t)

Here Al are the coefficients we get when we plug in the first point (1, ;). More precisely
A = Yy
To avoid confusion with the notation, the author emphasizes that
x

m
T

is the number z,. raised to the power m. Let us choose any of the terms we like, say f,, such that
AL # 0 and define a new quantity

fmn(t) L Jon(t)  e(t)

mln! ~ mln! AL

This of course only makes sense when Al 0. Since
An = 2Yy

we can do this provided z, # 0 and y, # 0. This has full measure in the space of all possible
points (more precisely the complement is a variety of strictly smaller dimension). To fit the next
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equation we can modify another term f,,,. Hence if there are r points through which the curve
should pass, then we modify 7 of the coefficients and get a new function f (t) that agrees with f(t)
when ¢ = 0 and also passes through those points when ¢ # 0. In particular if this is a k parameter
family of curves, then we can choose any k of the f;;(t) we like so that in the end

fii(t) = fi;()

This will be important when we compute multiplicities. We will not want to change the important
fi;(t) that affect the multiplicity. In this example for instance, if it was a one parameter family of
curves with a node degenerating to a cusp, then we could ensure that

foo(t) = foo(t)

Hence, if there was a multiplicity computation, then this new curve would not effect it, unless it
was a triple point, which is to be expected.

Lemma 3.3. The element ([f],p) € OPS(0, Ay) if and only if ([f],p) € PS%(0, A3)
Proof. Consider a path given by
fao(t) =1t

Lemma 3.4. The element ([f],p) € OPS%(0, Ag) and foo # 0 if and only if ([f],p) € PSH(0, A1),
provided k > 3.

Proof. Just consider the path given by
A£+1(t) =1
Lemma 3.5. The element ([f],p) € OPS(0, A3) and foo = 0 if and only if ([f],p) € PS40, Dy).
Proof. Consider a path given by
foo(t) =1t
Lemma 3.6. The element ([f],p) € OPS4(0, Ay) and foo = 0 if and only if ([f],p) € PS%(0, Ds).

Proof. Let us consider two cases. First assume that f40(0) # 0. Then the path given by Consider
a path given by

fij(t) = fij(o) if (Z’]) 7& (0’ 2)’ (2’ 1)
fa=t
3t?

fa0(t) = o0
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If f40(0) = 0 then consider the path given by

fij(t) = fij(O) if (17]) 7é (07 2)7 (27 1)7 (47 O)

fao(t) =1
faa=t
fgo(t) =3t

Lemma 3.7. The element ([f],p) € OPS4(0, A5) and foz = 0 if and only if

([f]ap) € P‘Sd(o’ DG) U P‘Sd(o’ EG)
Proof. Tt is easy to see that PS?(0, As) is given by

aay = f30=0

o, = forfio— 35 =0

oo = d0fso _ dfafs  Shafw _
Y 12 2%

fo2=0

It is easy to see that if fopo = 0 then fo; = 0 and since a4, = 0 we get that either fio =0 or fi12 =0
which corresponds to either a Dg node or Eg node (at least). To prove the other direction we can
construct a path in a way similar to the previous lemma.

Lemma 3.8. The element ([f],p) € OPS4(0, Ag) and foz = 0 if and only if

([f]’p) € Psd(oa D?) U Psd(oa E?) U Psd(oa XS)’
where Xg is a quadruple point.
Proof. If ([f],p) € OPS(0, Ag), then 3 a sequence fi; € Ag such that fi; — fi;.
Case 1: Let us assume fyo = 0 and fy9 = 0. After passing to a subsequence there are two possi-
bilities

Case 1a): The limit

lim 7f02” =L
n—o0 fo1, f10,

exists. Since a4, = 0, that implies that

lim 102 _ 0, (3.1)
n—oo f40n

lim 2 _ g (3.2)
n—-oo f40

Since a4, = 0, using equations (3.2) we get

. L Jo2, /50, | D21, /31,
lim fi5, = lim — +
n—oo" " m—oo 24 fy, 12f40,

=0.
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This corresponds to being an E7-node
Case 1b): The limit
. J21,, f10,,
im —re—r
n—aoo f02n

=0.
Since g, = 0, we get

lim _f§1n n 50, f12, _  feo, fo2, n for, fa0, fo3, f31, fa2,
n—sco 24 40 240 288 foz,, 32 fo2,

=0

since
5
lim == =0.
n—oo f02n

which is a consequence of a4, = 0. This corresponds to being a D7-node.

Case 2): Let us assume fo2 = 0 and fy9 # 0. Since ayq, = 0, that implies

. . 3
lim Joz, = lim Jo1,
n—-oQ f21n n——oQ f40n

= 0. (3.3)

Using equation (3.3) and a4, = 0, we get that

lm fo = 28f02uAn _ 951, oo,
n—c0 " T o Fao, Jfa0,
=0

where

2
_Ia, . J60,, /02, n f50, f12,,

Ay =
24 240 40

this corresponds to being a quadruple point. To prove the other direction we can construct a path
in a way similar to the previous lemmas.

Lemma 3.9. The element ([f],p) € 0S40, Dy) if and only if ([f],p) € S%(0, Ds).
Proof. Consider a path given by

fiy() = fi;(0) if (i,5) #(2,1)

fa(t) =t

Lemma 3.10. The element ([f],p) € OPS%(0, Dy.) and f12 # 0 if and only if ([f],p) € PS%(0, Dy11),
provided k > 5.

Proof. Consider a path given by

fij(t) = fi;(0) if  (4,5) # (k—1,0)
DI];Jrl(t) =1
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Lemma 3.11. The element ([f],p) € OPS4(0, D5) and f12 = 0 if and only if ([f],p) € PS40, Eg).

Proof. Consider a path given by

fis(t) = fi;(0) if  (4,5) # (1,2)
fi2(t) =t

Lemma 3.12. The element ([f],p) € OPS4(0, Dg) and f12 = 0 if and only if ([f],p) € PS(0, E7).

Proof. Consider a path given by

fij(t) = fi;(0) it (4,7) # (1,2)
fi2(t) =

Lemma 3.13. The element ([f],p) € OPSH0, Eg) if and only if

([f]ap) € P‘Sd(o’ E7) U P‘Sd(o’ X8)
Proof. Consider a path given by

fij(t) = fi;(0) it (i,5) # (4,0)
fao(t) =

or consider the path given by
fij(®) = fi;(0) if  (i,4) # (3,0)
fao(t) =t

3.3 Two point singularities

Lemma 3.14. The element ([f],p) € 0S%(1, A1) if and only if ([f],p) € S0, As3).
Proof. The space S%(1, Ay) is given by

f_fgo 2+f11xy+f;2 2+% 3 @xzw%w Jrfgz y? + G(z,y) =0
f30 fi2 o —
fo = f20x+f11y+7x +fazy + 7y + G =0
fy:f1136+f02y+%wz—kfmwy—k%yz‘i‘Gy:0
(z,y) # (0,0)

If (£,0,0) € 0S4(1,A;) then there exists a sequence (fn,Zn,yn) € S%(1,A;) that converges to
(f,0,0). Let us assume that after passing to a subsequence, the limit

lim ﬂ:L

n—»aoo yn

exists. The equations f,, f, = 0 imply that in the limit

fooL + fi1 =0
fuul + fo2=0
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Finally, the equation
tfa _ yfy

=0
2 2

f—
implies that in the limit
f30L? +3f1 L% +3f12aL + fo3 =0

A similar statement holds if

lim @:L

n—>00 I,

exists. Hence (f,0,0) € 8%0,A3) To show the other direction we need to construct a path
(f(t),z(t),y(t)) € S4(1, A1) that converges to SZ(0, Az).

x(t) = Lt

y(t) =t
fij@®) = fi;  if (i,5) # (1,1), (0,3) or (0,2).
foﬁ(t) _ —(@LJr @ f3°L3) 126 — 2G, — yG,
Fua(t) = (f30L2+f I+ f;)y_ %—fzoL
foa(t) = (f21L2+f L—i‘f;g) —%—fnL

is such a path if
lim %=
n—-=o0 yn

exists. We can construct a similar path if

lim Yn = L.

n—»o0 Ty

Lemma 3.15. The element ([f],p) € OPS%(1, Ay) and fo2 # 0 if and only if ([f],

provided k > 2.

p) € ]P)Sd(o’ Ak+2),

Proof. Since fpa # 0, we can find coordinates (u,v) so that the curve is given by

f=v —i—AkHukJrl +Ak+2uk+2 +...

The set of equations we are solving for are

f=v? +Ak+1uk+1+Ak+2uk+2+...:O
fu=(k+ DAL WF + (k+2)A] b+ =0
fo=2v=0

Solving these three equations we get

kE+1

f f

k2 T 4 Ak+3u +0(u?)
S Ak+3 +0(u’)
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Hence in the limit A£ 41 and A£ 4o vanish. The above equations also prove the only if part, i.e

if a (f,0,0) € OPS4(0, Ay 2), and foo # 0 then there exists a curve (f(t),u(t),v(t)) € S%(1, Ax)
converging to (f,0,0).

Lemma 3.16. The element ([f],p) € 0S%(1, Dy) if and only if ([f],p) € S0, D).
Proof. This is completely analogous to the proof of Lemma 3.14. Consider the equations

Ja0 4 f31 3

130 3. f21 2 fi2 fo3 . fo2 9 9 fi3 foa A
_ 30, Jo3 J22 J13 G(z,y) =0
f 5 y+2 +6 +24:U+63:y+4xy+ y+24 + G(x,y)
fm—f;(] 2+f21xy+f12 2+%x3+%x2y+%xy fl?’ v+ Gy =0
(z,y) # (0,0)

If (f,0,0) € 8S4(1,D4) then there exists a sequence (fn,Zn,yn) € S%(1,Dy4) that converges to
(f,0,0). Let us assume that after passing to a subsequence, the limit

lim @:L

n—»aoQ yn

exists. The equations f, f, = 0 imply that in the limit

f30L? +2fo1 L+ f12 =0
fo1L? + 2f19L 4 fo3 =0

Finally, the equation

I

3 3
implies that in the limit

faoL* + 4f31 L3 4 6 foo L + 4f13L + fos =0

A similar statement holds if

lim @:L

n—>00 I,

exists. Hence (f,0,0) € 840, Dg) To show the other direction we need to construct a path
(f(t),z(t),y(t)) € S%(1,D,) that converges to S¢(0, Dg), which we can do in an analogous way
as in Lemma 3.14.

Lemma 3.17. The element ([f],p) € OPS%(1, D) and f12 # 0 if and only if ([f],p) € PS%(0, Dy 2),
provided k > 5.

Proof. This is analogous to the proof of Lemma 3.15. Since f13 # 0, we can find coordinates (u,v)
so that the curve is given by

f=v u+Dk+1uk 1—|—Dk+2u + ...
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The set of equations we are solving for are

f :vzu+D£+1uk_1+D£+2uk+--- =0
fu=v*+ (k- 1)D], u* 2+ (k)D] , ,uf 1 +...=0
fo=2vu=0

The last equation implies that either v or w is zero. But if w is zero then f, = 0 implies that v is
also zero. Hence v is zero. Solving these three equations we get

D}, =0(u)

DIJ:+1 = O(UQ)

Hence in the limit D,J: 41 and D}: 4o vanish. The above equations also prove the only if part, i.e

if a (f,0,0) € OPS?(0, Do), and f12 # 0 then there exists a curve (f(t),u(t),v(t)) € S4(1, Dy)
converging to (f,0,0).

Lemma 3.18. If the element ([f],p) € OPS%(1, A3) and fso, foo = 0, then at least one of the
following holds

Afa1fo3 — 3fiy =0, or fo1 =0,
i.e ([f]ap) € aPSd(Oani)

Proof. Consider the set of equations we are solving

fo2 o f30 5 for o fi2 o foz 3. fiao 4
=Sy Tt = S |
f 2y+6x+2xy+2xy+6y+24x+
fx:@$2+f2196y+@y2+@x3+...:0
2 2 6
fy:f02y+%x2+f12my+%y2+...:O

Since ([f],0,0) is in the closure, there exists a sequence (f,n,yn) € S¥(1, A3) that converges to
([f],0,0). Furthermore we are assuming that in the limit, foo and f3p are 0. We now consider three
cases.

Case 1: Let us assume that after passing to a subsequence

lim ﬂ:L

n—aoo yn

exists. Then the equation f, = 0 will imply that in the limit

f30L? +2fo1L + fi2 =0 (3.4)
The equation
yfy T fyr
_ 2y 2l
/ 2 3
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will imply that in the limit

faaL? +2f12L + fo3 =0
Let us assume fs1 # 0. Combining the fact that f3g = 0, fo1 # 0 and eliminating L we get that

Afo1fo3 — 3f1, =0
If fo1 = 0 then f15 = 0 by equation (3.4), which still satisfies the equation.

Case 2 a): After passing to a subsequence

lim @:0

n—s00 Iy,
but

562

lim -2 =0.
n—oo yn

Recall that we are assuming in the limit fgo, f30 vanish. The equation

yf y T fr
_ Ly 2
/ 2 4
will imply that in the limit fo; vanishes. Note that here the condition

2

lim 22 =0
n—oo yn
is crucial.
Case 2 b): After passing to a subsequence
lim 2° — 0
n—-700 Iy,
but

lim 22—,

n—o0 I

exists. The condition f, = 0 implies that in the limit fo; vanishes (since fy2 vanishes).
Remark: Both the conditions

Afo1fo3 — 3ff =0, or

f21=0.
refer to at least a D5 node. To see that, recall that a D5 node is given by the condition that there
exists a non zero vector v = L10; + L20, such that
V3f(v,v,-) = 0.

This is equivalent to the condition that

L3 fs0 4+ 2L1Lafo + L3f12 =0
L3 fo1 +2L1 Lo f1o + L3 fo3 = 0
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Since f3g = 0, we get that
2L1Lafa1 + Lif12 = 0.

If Ly = 0 then fo; = 0. That is a particular D5 node where the preferred direction is 0. If fo1 # 0

and Ly # 0 then we can eliminate f—; and get

4f221f03 - 3f122f21 =0.

Since fo1 # 0, this implies
4fo1 fos — 3ffy = 0.

More precisely this corresponds to a D5 node, where the preferred direction is
f120 — 2f210y.

Lemma 3.19. If the element ([f],p) € OPS%(1,A3) and foo = 0 then ([f],p) € PS40, D).
Furthermore if

Afo1fo3 —3ffa =0
then ([f],p) € OPSU(L, A3).
Remark: The condition 4fs fo3 — 3f% = 0 corresponds to a D5 node with the preferred direction
J1202 — 2f210y.

There is another D5 node with the preferred direction 9., which corresponds to fo;1 = 0. This D5
node is not necessarily in the closure (unless some other quantity vanishes).

Proof. The proof is similar to the previous Lemma. First we write down the equations

fo2 o for o fi2 o fio 4
= 2y + 2ty + a4 =0
f 2y+2xy+2my+24x+
fx=f21$y+%y2+%x3+...:0
_ far o Jos o _
fy—f02y‘|‘7$ +f1233y+7y +...=0

Since ([f],0,0) is in the closure, there exists a sequence (fn,2n,yn) € S¥(1, A3) that converges to
([f],0,0). Furthermore we are assuming that in the limit, fpo is 0. We now consider three cases.

Case 1: Let us assume that after passing to a subsequence

lim ﬂ:L

n—-aoo yn

exists. Then the equation f, = 0 will imply that in the limit

2fa L+ fi12=0

The equation
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will imply that in the limit
fa1L? +2f12L + fo3 =0

Eliminating L we get that

fo1(4f21 fos — 3f5) =0

Hence we get that, either

f1, f12, f30 =0 or 4fa1 fo3 — 3fh.

Both of these are at least D5 nodes (but with different preferred directions).
Case 2 a): After passing to a subsequence
Yn

lim =— =0
n—>00 I,

but
2

lim =2 =0.
n—oo yn

Recall that we are assuming in the limit fpo vanishes. The equation

f =10
will imply that in the limit fo; vanishes. The equation
yf y Tfy
_ Ly e
/ 2 4

implies that in the limit fi» vanishes. Note that the coefficient of z* gets canceled, which is crucial.
This is at least an Eg node, which lies in the closure of D5 nodes.

Case 2 b): After passing to a subsequence

lim 2% =0
n—->00 Iy,

but

exists. The condition f, = 0 implies that in the limit fo; vanishes (since foo vanishes). Next, the
equation f, = 0 implies that in the limit f;o vanishes, since we have shown that fs; vanishes. This
is at least a Dg node, which lies in the closure of Ds nodes.

We now prove the converse. We need to show that if

Afo1fos —3f5 =0
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then there exists a path (f(t),z(t),y(t)) € PS%(1, A3) that converges to this Ds node. Let

y(t) =t
x(t) =Lt
fi @) = fi;(0) it (i,5) # (1,2),(0,3),(0,2)
—fmT(t):Lfgl—i—... using f, =0
fo%(t) using f — nyy - %fw =0
foo(t) = using f, =0

Note that when we are defining fi2(¢) there is no fo3 or fo2 involved and when we are defining
fos(t) there is no fy2 involved.

Lemma 3.20. If the element ([f],p) € OPS%(1, Ay) and foo = 0, then either

_ 5 fsofiz
fo1, fi2=0 or f21,f40,—24+ 10 =0,

i.e.

([f]’p) € Psd(o’ EG) U Psd(o’ D7)

Proof. Most of the proposition follows from the previous Lemma, since an A4 node is at least an
A3z node. We need to simply consider the case that after passing to a subsequence

Yn

lim — =0
n—s00 Iy,
but
im 22—
n—o0 I

exists. As before, in the limit fo; and f49 will vanish. We need to show that in addition,

fa n Js0/12
24 40

It has been shown by Dmitry Kerner in his paper [7], that the closure of one node and one A4 node
can not be a strict Dg node which proves the claim.

=0.

Lemma 3.21. The element ([f],p) € 0S%(1, As) and fo2 = 0 if and only if

([f]ap) € P‘Sd(o’E7) U P‘Sd(o’D8)

Proof. If fi2 = 0, then by the previous Lemma, it is at least an Fg node. Since the delta invariant
of an Ejg node is 3, it has to be at least an E7 node. If fio # 0 then the curve has to have at least
a D7 node using delta invariants. Dmitry Kerner has shown in his paper [7] that the closure of one
node and one A5 node can not be a strict D7-node, which proves the claim.

Lemma 3.22. The element ([f],p) € OPS%(1,D5) and fi12 =0, then

([f]’p) € Psd(oa E?)

Proof. We have shown in Lemma 3.16 that the curve has at least a Dg node. Since fio = 0, we get
at least an F7 node.
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3.4 Three point singularities

Lemma 3.23. The element ([f],p,p,p) € 0S%(2, A1) if and only if

([f1,p) € 840, Dy) U S0, As).

Proof. We have shown that it has to be at least a As-node. The delta invariant of an Ag is 2.
Hence it has to be more singular. If the Hessian is not zero, then it has to be at least a A4 node.
But the delta invariant of that is again 2. Hence it has to be at least an As node. If the Hessian
is zero, then it has to be at least a D4 node.

We can also show the only if direction by constructing a path.

Lemma 3.24. If the element ([f],p,p,p) € OPS%(2, A2) and f3g = 0 then

([f]ap) € Psd(oa D5) U P‘Sd(oa AG)

Proof. By Lemma (3.18) we know that it has to be at least a Ds-node if the Hessian vanishes and
by Lemma (3.23) if the Hessian is not zero it has to be at least an As-node. We can show that if
the Hessian does not vanish, then it has to be at least an Ag-node using sequences. That completes
the proof. We can also prove the converse by constructing a path.

Lemma 3.25. If the element ([f],p,p,p) € OPS%(2, A3) then

([f]ap) € Psd(oa D6) U P‘Sd(oa A7)

Proof. Using Lemma (3.23), this is easy. We know that it has to be at least an A5 or D4 node.
The total delta invariant has to be 4. Hence if the Hessian is not zero, then it has to be at least
an A7 node. If the Hessian is zero, then it has to be at least a Dg node. It can not be a strict Eg,
since the delta invariant of that is 3.

Lemma 3.26. If the element ([f],p,p,p) € OPS%(2, Ay) then

([f],p) S PSd(O, D7) U BIP’Sd(O, E7) U IP’Sd(O, Ag)

Proof. If the Hessian is zero, then by Lemma 3.20 we know that it is at least an Eg node or a Dy
node. Since the delta invariant of an Fg node is 3, it has to be at least an E7 node. I haven’t been
able to show it can not be a strict E7 node. If the Hessian is not zero then we can show that it has
to at least an Ag node using sequences.

3.5 Four and more point singularities

Lemma 3.27. The element ([f], p,p,p,p) € 0S%(3, A1) if and only if

([f]’p) € Sd(o’ D6) U Sd(O’A'?)'

Proof. Follows easily using delta invariants. If the Hessian is not zero, it has to be at least A;. If
the Hessian is zero, it has to be at least a Dg. We can also show the other direction, by constructing
a path.
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Lemma 3.28. If ([f],p,p,p,p) € OPS(3, Ay) then

([f],p) S PSd(O, D7) U PSd(O, E7) U IP’Sd(O, A7)

Proof. Since four nodes can sink to a strict Dg-node, three nodes and one cusp can not sink to a
strict Dg node.

Lemma 3.29. If ([f],p,p,p,p) € OPS%(3, A3) then

(If],p) € 98%(0, D7) U S%(0, Ay).
Proof. This one is trivial using delta invariants.

The remaining results are trivially true. In particular all the elements of the closure are singularities
of codimension 8 or more. Hence they will not occur in the enumeration of curves with up to 7
nodes.

Lemma 3.30. If ([f],p,p,p,p,p) € 0S%(4, A1) then

([f]7p) € an(07 D7) U an(07 E7) U Sd(07 AQ)
Proof. Follows from lemma 3.29.

Lemma 3.31. If ([f],p,p,p,p,p) € OPS%(4, As) then

([f],p) € 084(0, D7) U 0S4(0, Er) U S(0, Ay).
Proof. Follows from lemma 3.29.

Lemma 3.32. If ([f],p,p,p,p,p,p) € PS5, A1) then

([f],p) € 8840, D7) U 8S%(0, E7) U 840, Ag).

Proof. Follows from lemma 3.29.
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Chapter 4

Enumeration of curves with one
singular point

For each deZ™, let

2
Dy ~ PHd) where k(d) = <d;_ > -1,

denote space of degree d curves in P?. For any non-negative integer r, denote by
Dy(r)~P" C Dy~ PHD

the subspace of curves passing through Dy—r general points. We write elements of Dy as [s], with
s denoting a non-zero degree d homogeneous polynomial on C? or equivalently a non-zero element
of HY(P?;O(d)), i.e. a non-zero holomorphic section of the holomorphic line bundle

Vi = (17,)% — P2,

where yp2 — P? is the tautological line bundle. Denote by 7 : PTPP? — P? the bundle projection
map. Let
> — Dy and 5 — P(TP?)

be the tautological line bundles over Dy and P(TP?), respectively. We define

Ap =c1(Vp), Ap2 = €1 (7;2), and A=c1(7).

4.1 Curves with one A;-node

Lemma 4.1. The number of degree d curves passing through r(d) — 1 generic points and having
one simple node (Ai-node) is

N1) =3(d —1)2.
Proof. Recall that we have defined the space S(0, A1) C Dg(r + 1) x P2, given by
870, A1) = {([s},p) € Dalr +1) x P? : Y, =0, ¢ha, # 0}

where



It is the space of degree d curves [s| € Dy(r+ 1) passing through x(d) — (r + 1) generic points and a
marked point p € P?, such that the curve has a strict node at the point p. The expected dimension
of this space is r. By lemma 3.1 and 3.2

S840, A41) == {([5],p) €Dy(r+1) x P2 apy, = 0}.

A similar fact will later on turn out to be false, i.e. the closure of a space will not be given by the
zero set of a section. The quantity 14, is a section of the rank 3 vector bundle

V=15877®7 @ TP,

We need to compute the cardinality of the set Sg(O, A1). By lemma 2.6, the section 14, is transverse

to the zero set. Since the points are in general position all the elements of 83(0, Ay) are strict nodes
which follows from lemma 2.14. Assuming the claims we made about closure and transversality,
the desired number N%(1) is given by

NU(1) = |S§(0, Ay
= (e(V), [Da(1) x P?))
=3(d—1)?
which can be seen from the splitting principle and Kunneth formula.
Remark: This formula is trivially true for d = 1 and d = 2. It can also be seen to be true for
d = 3 (recall that the number of degree three rational curves through 8 points is 12).

Lemma 4.2. The number of degree d curves passing through Dg — 2 points with a simple node
(A1-node) on a fized line is
N0, A1,1) =3(d —1).

Proof. The proof is similar to that of lemma 4.1. Let [ € P? be a generic line in P2. As before
we consider the space S%(0, A;). Notice that a line in P? is the zero set of a section of v, — P2
Hence the desired number is

N0, A1, 1) = (e(},), [ST(0, Av)])

Note that although the space S{(0, A1) will contain curves with singularities worse than a simple
node, those singular points will not lie on a generic line [. Also note that since

S{(0, A1) = ¥ (0)

the Poincare dual of the homology class [S{(0, A1)] in D(2) x P? is in fact the Euler class of V,
where

V=1787]®7 ey TP,
Hence

’7*2)’ [Sfl(O’Al)D
75)e(V), [Da(2) x P?))



Lemma 4.3. The number of degree d curves passing through Dy — 3 points with a simple node
(A1-node) on a fized point is
N40,41,2) = 1.

Proof. As before we consider the space S?(0, A1). Notice that a point in P2 is the intersection of
two generic lines. In other words, it is the zero set of a section of 7;‘2 <) 7;2 — P2, Hence the
desired number is

N0, A1,2) = (e(7},)%, [85(0, A1)

P2

Note that although the space Sg((), A1) will contain curves with singularities worse than a simple
node, those singular points will not lie on a generic point. As before, since

S4(0, Ay) = 9;1(0)

the Poincare dual of the homology class [S$(0, A1)] in D(3) x P? is in fact the Euler class of V,
where

V=1587]®7 e TP,
Hence

Nd(07A172) 6(7]:2 )27 [Sg(O7A1)]>
2

{
(e(v},)%e(V), [Da(2) x P?))
1

Remark: What we have done here is not simply compute three different numbers. We have
actually been able to “compute the homology class” [S$(0, A1)]. The three results stated above
can be rephrased as follows

(e(vp)?, [S4(0,A1)]) = 3(d — 1) the number of curves with a node
(e(yp)e(,), [84(0, A1)]) = 3(d — 1) the number of curves with a node on a line
<e(7§2)2, [S4(0,47)]) =1 the number of curves with a node on a fixed point

4.2 Curves with one As-node

Lemma 4.4. The number of degree d curves passing through k(d) — 2 points with a cusp (Ag-node)
18

N0, Ag) = 2N4(0, Ay) + 2(d — 3)N(0, Ay, 1).

Proof. We will do this problem in two different ways.

Method 1: A cusp occurs when the determinant of the Hessian is 0. Recall that we have defined

S 1(0, A1) C Dy(r +2) x P?

T

to be the r 4+ 1 dimensional space of curves with a node and

Srd(()?AQ) = {([S],p) € S;lJrl(O?Al) : 1/1142 = 07 1/1143 7é 0}
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where

ha, = det(VQS)

14, = third derivative along kernel of Hessian

It is the space of degree d curves [s] € Dy(r + 2) passing through Dy — (7 + 2) generic points and a
marked point p € P2, such that the curve has a strict cusp at the point p. The expected dimension
of this space is r. Note that

870, A42) = {([s).p) € SL,(0, A1) : a1, = 0}

where the closure is taken inside S¢ +1(0, A1). A reminder to the attentive reader that soon a similar
fact will be false! The quantity 14, is a section of the line bundle

L=(3p @7, @ TP

We need to compute the cardinality of the set S§(0, As). We can show that 1., restricted to
Sg (0, Aq) is transverse to the zero set. Since the points are in general position all the elements of

84(0, Az) are strict cusps, i.e. P4, # 0. Hence the desired number N0, Ay) is given by
N(0, A2) = |S5(0, 45)]
= (e(L), [S{(0,41)])
= 2N40, A1) + 2(d — 3)N(0, A, 1)

which can be seen from the splitting principle and Kunneth formula.

Method 2: A cusp occurs when the Hessian is degenerate, i.e. there exists a non zero vector v
such that V2s(v,-) = 0 and the third derivative along v is non zero. Recall that we have defined

S 1(0, A1) C Dy(r +2) x P?

to be the r 4+ 1 dimensional space of curves with a node. Let

o —

84.,(0, A1) C Dy(r + 2) x PTP?

be the space of curves with a node and a tangent vector on top of it. Note that this is a r + 2
dimensional space. We further define

o —

PS;?(O,AQ) = {([S],p) € SﬁlJrl(O’Al) : TZ)AQ =0, Q;As 7£ 0}
where

1&,42 = st(v, )
&AS = V3S(U7 v, U)

It is the space of degree d curves [s] € Dy(r + 2) passing through Dy — (r + 2) generic points and
a marked point p € P? and marked direction v , such that the Hessian at the point p evaluated on
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v is zero and the third derivative along v is not. The expected dimension of this space is r. Note
that

——

PSﬂ(O,AQ) = {([5]’29) € SﬁlJrl(O’Al) :1&142 = 0}

——

where the closure is taken inside S¢ 11(0,A1). The quantity 1&,42 is a section of a rank 2 vector
bundle

W=7 ®h e, & T"P?

We need to compute the cardinality of the set Psg(O,Ag). We can show that 1&,42 restricted to

89(0, Ay) is transverse to the zero set. Since the points are in general position all the elements of
PS4(0, A9) are strict cusps, i.e. 1&,43 # 0. Hence the desired number N'4(0, Ay) is given by

N0, Az) = [PSE(0, A2)| = (e(W), [S41(0, A1)]).
Note that the dimension of ?dl(o, A1) is two not one.

Remark 1: For this computation it is essential to know the ring structure of H*(P(7TP?)) in ad-
dition to using the splitting principle and Kunneth formula.

Remark 2: Note that S¢(0; A2) and PSZ(0; A2) are subsets of two different spaces. As sets they
are different. They also count two different things. The first one counts the number of degree d
curves with a marked point where the determinant of the Hessian at the marked point vanishes.
The second quantity counts the number of degree d curves with a with a marked point and a
marked direction such that the Hessian at the point evaluated on the marked direction vanishes.
For a strict cusp, there is a unique direction along which the Hessian is degenerate. Hence these
two sets happen to have the same cardinality.

Remark 3: The second method seems to be unnecessarily complicated. In fact for this problem
alone it is. However, it will be necessary to think of a cusp in the second way to proceed to the
next problem, i.e. enumerating curves with a tacnode (As-node).

Remark 4: Let us consider the number

(e(¥"), [PS{(0, A2)])

It is worth pointing out that this number is a signed cardinality of a set and is often negative. The
next question is how do we compute this number? As before, we “expect” it to be

N0, 42,0,1) = (e(3"), [PS{(0, A2)])

— (e
= (e(7)e(W), 840, 41)]

—

De(W), [S5(0, Ay)]

N

This is true, but it requires some care to justify. A quick reminder that the dimension of Sg((), Aq)is

three not two. Let us consider the space S$(0, A;). The boundary of S¢(0, A1) comprises of curves
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with a cusp which can further degenerate to curves with a tacnode. Now consider a representative
of the space

—

89(0, A1) Ne(y")

which we get by taking a generic section of the line bundle 4*. The boundary of this space comprises
of curve with a tacnode with a marked direction that is generic. The section 1& 4, Will not vanish on
that tacnode, since the direction is generic. Let us skip a step ahead and look at the computation
of one node and one cusp on a lambda. The computation of N%(1, Ay,0, 1) is more involved than
the computation of N'4(1, A3,0,0). This is because in the closure of two nodes we get a tacnode,
which is already dealt with in the computation of N%(1, Ay). However in the computation of
N4(1, As,0,1) we have to realize that a tacnode could degenerate to either an Aj-node or a triple
point. The section 1& A, will not vanish along a A4 node because the A4-node is assigned a generic
direction. However the section 1/3 4, will vanish along a triple point, because the section will vanish
no matter what the assigned direction is. We call the number

N0, Az,0,1)

“number of degree d-curves with a cusp on a lambda class.”

4.3 Conditions for A,-node

If f = f(x,y) is a holomorphic function defined on a neighborhood of the origin and i,j are
non-negative integers, let

8i+j f

T 020y (,)=0

Theorem 4.5. Let f(x,y) = 0 be a curve such that foo, f10, fo1, fi1, f20=0. Then the curve has a
singularity of type Ay, (i.e. it can be expressed after a change of coordinates in the form §>+2*+t1 =0
if and only if

QAzs QAo 0p, =0
ap, #0

Jo0 # 0

where the s, are described below.

First we define the following quantities:

_ Joafso  Sfarfs | 5fi2fa0

aaz = fao, aa, = foaf1o — 3f31, ans = =5, ot o
2

60.fo2 . fs0/12 21  faofoz  farfoe
a5 = for( = %Jr f24J:) * f4g )~ f?(fmj; N flg )
o — [t B Tf35 f21f5 B 713 fafn n 712 fiafa1 fa n 713 f3 f2 n 712 f21f22f3

720 240 144 48 48 24
_ Tfoafosfaifsr  Tfoefiafdifor  Thoafiafs n Tfosfiafs1  Tfgafi2 (- IE n M)
48 8 48 16 3 24 40
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Note that if foo # 0 then
ap, =0 Vi<k iff  Al=0 Vi<k
Unlike A£ , g, is defined even when fp2 = 0.

Remark 1: The first three conditions fyo, f10, fo1 implies that the curve has at least a node. The
other two conditions imply that the Hessian is degenerate and the vector (1,0) is in the kernel of
the Hessian.

Remark 2: Note that while ava, = f30, naively we would expect s, = f10 which is not the case!
The expressions for a4, soon become very complicated.

Remark 3: The condition fyo # 0 is identical to saying that the Hessian is not identically zero.
This is the condition that is in some sense makes the entire problem so hard!

Theorem 4.6. Let f(z,y) =0 be a curve such that foo, fi0, fo1, fi1, f20, fo2, f30, fo1=0. Then the
curve has a singularity of type Dy (i.e. it can be expressed after a change of coordinates in the
form 9z + &1 = 0 if and only if

QDg, ADy7y -+ ap, =0, ap,., #0, fi2#0, f3 #0.

The first few values of ap, are

fa . foofiz.

aps = fa1, aps = fa0, ap, = 94 10

Remark 1: Here we are assuming the Hessian is identically zero. The last two conditions imply
that there exists a non zero vector v such that V3 f(v,v,) is zero and we have fixed that vector to

be (1,0).

Theorem 4.7. Let f(z,y) = 0 be a curve such that foo, fi0, fo1, f11, f20, fo2, f30, fo1=0. Then the
curve has a singularity of type Eg (i.e. it can be expressed after a change of coordinates in the form
93 +2* =0) if and only if

Apg = 0) ap, ?é Oa f30 # 0.
where

ags = fi2, ag, = fao.

Theorem 4.8. Let f(x,y) = 0 be a curve such that foo, f10, fo1, fi1, f20, fo2, f30, fo1=0, ag, = 0.
Then the curve has a singularity of type E; (i.e. it can be expressed after a change of coordinates
in the form 93 + 2% = 0 if and only if

ap, =0, ap,#0, f3#0.

where

ap, = fao
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4.4 Curves with one As-node

Lemma 4.9. The number of degree d curves passing through k(d) — 3 points with a tacnode
(As-node) is
N40; Az) = N0, Ag) + dN(0, Ag, 1) 4+ 3N(0, Az, 0,1).

Proof. Recall that we have defined
PS¢ (0, A2) C Da(r + 2) x PTP?

to be the r 4+ 1 dimensional space of curves with a cusp and a preferred direction along which the
Hessian vanishes and

PSH(0, A3) == {([s],p,v) € PS4, (0, A3) : cuay =0, foo # 0,04, # 0}
The expected dimension of this space is r. Note that
PSH(0, As) == {([s], p) € PS/,1(0, A2) : o, = 0}
where the closure is taken inside IP)Sﬁ 11(0, A2). The quantity aa, is a section of the line bundle
"’*3 * *d
L=5" @@,

We need to compute the cardinality of the set PS§(0, A3). We can show that ay, restricted to
IP’S?(O, As) is transverse to the zero set. Since the points are in general position all the elements of

PS4(0, A3) are strict tacnodes. Hence the desired number N4(0, A3) is given by

N0, A3) = [PS§(0, A3)| = (e(L), [PS{(0, A2)])
= 3N(0, Az,0,1) + N0, Ag) 4+ dN(0, A, 1).

Remark: Note that although the number N d(O, A2,0,1) may not be a genuine number, it arises
naturally while computing a perfectly genuine quantity i.e. N'4(0, A3).

Lemma 4.10. The number of degree d curves passing through k(d) — 4 points with a tacnode
(As-node) on a lambda class is

N0, A3,0,1) = N40, Ay,0,1) + dN(0, Az, 1,1) + 3N%(0, A3, 0,2) (4.1)

Proof. This number is what we expect it to be. It requires some justification. We note that a
tacnode can degenerate to a As-node or a triple point with a generic direction. The section a4,
will not vanish along such a point because the third derivative along a generic direction does not
vanish for either a triple point or a As-node. This same argument will hold when we compute
N0, Ay,0,1), N0, A5,0,1), N0, Ag,0,1). They are all what we expect them to be from the
computation of N¢(0, Ax). That is because the section the section a4, will not vanish on the more
degenerate points that arise, because they are assigned a generic direction.
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4.5 Curves with one As;-node
Theorem 4.11. The number of degree d curves through k(d) — 4 points with a Agq-node is
N0, Ay) = 2N%(0, A3,0,1) + N0, A3) + 2(d — 3)N4(0, A3, 1).
Proof. Recall that we have defined
PSZ (0, A3) C Da(r + 2) x PTP?

to be the r + 1 dimensional space of curves with a strict tacnode and a preferred direction along
which the Hessian vanishes and the third derivative vanishes. Also note that

]P)Sg(O? A4) = {([8]71)77}) € ]P)S;l—i—l(owA?)) cpAy = 0,04A5 7& Oa f02 7& O}
The expected dimension of this space is . Note that

P8I0, A1) == {([s].p) € PS{,,(0. A3) : aa, = 0}

where the closure is taken inside PS?, (0, A3). This is the last time this kind of a statement will
be true. Note that, the quantity a4, is a section of the line bundle

~ x4 * x4 ~\ *2 * x4
L=7" @0, © (TP /)" @b @,

We need to compute the cardinality of the set PS§(0, A4). We can show that ay, restricted to
PS¢(0, A3) is transverse to the zero set. Since the points are in general position all the elements of

PS4(0, Ay) are strict Ag-node. Hence the desired number N4(0, A4) is given by
N0, Ag) = [PSF(0, Ag)| = (e(L), [PSH(0, Aq))).

Lemma 4.12. The number of degree d curves passing through r(d) — 5 points with a Ag-node on
a lambda class is

Nd(O,A450’1) :2Nd(O’A3’Oa2) +Nd(0?A350’1) +2(d_3)Nd(0’A351,1) (42)

Proof. This number is what we expect it to be. It requires some justification. We note that a
Aj-node can degenerate to an As-node or a Ds-node with a generic direction. We claim that the
section a4, will not vanish along such a point. Let us consider the behavior of a4, along a Dy
node. It is true that the quantity fpo will vanish. We claim that fs; will not vanish. Let us consider
more carefully what we are claiming. We are claiming that for a generic v € 4% and a w € TP?/7*,
the quantity

V2s(v,v,w) # 0.

This quantity will vanish only for a very specific choice of v € TP?. The v has to be in the kernel
of the Hessian. The same argument holds for the other sections a4, . Hence, the number

N0, Ay, 0,1)

is what we “expect” it to be.
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4.6 Curves with one As-node
Theorem 4.13. The number of degree d curves with a As-node is
N0, As) = N0, Ay, 0,1) + 2N4(0, Ay) + 2(d — 3)N(0, Ay, 1).

Proof. Method 1: This is the first place where the condition fpo # 0 creates a problem. But in
this case we have an alternative method as seen in method 2.

Recall that we have defined
PSe (0, Ay) C Da(r + 2) x PTP?
to be the r + 1 dimensional space of curves with a strict A4-node. Also note that
P50, As) := {([s],p,v) € PSL (0, 4a) : [ AL = 0,45 #0, foz # 0}

The expected dimension of this space is r. Although Ag is not defined when fpo = 0, fngg is well
defined. However

PS(0, 45) # {([s].9) € PST,, (0, 40) : f,4f = 0}
In other words, the closure of the space
Al =f5=0
foa Al = foafao —3f3 =0

o f  [fsofoz  Bfafsifoo | 5fiafs
A - — =
Jo2 A3 24 12 8 0
fn AL #0
fo2 #0
is not the same as
Af = f3 =0
foa Al = foafao —3f3 =0
o f  [fsofoz  Bfafsifoo | 5fiafs
Al = - _
Jo2 A3 24 12 8 0

Hence, although f022A£ is a section of the bundle
~ %2 * x4 2 /~\*2 * *0\\ @2
L=5" @7, ®(TP/7)" @1 ®7,))
the desired number N'4(0, A5) is not the Euler class of L, i.e.

Nd(07 A5) # <6(L)7 []P)Sfl(ov A4)]>
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The reason is that the section fOQZAg vanishes on points that are at the boundary of IP’S?(O, Ay),
that have foo = 0. Hence the the desired number is

N0, As) = (e(L), [PS{(0, Ap)]) — Cpz

This raises three questions.
Question 1: First of all what singularities are there in PS{(0; A4) when foo = 07
Question 2: How many of these are there (an enumerative question)?

Question 3: And finally what is the multiplicity with which the section ngAg vanishes around
these points?

The answer to the question 1 is that if a curve is in the closure of IP’S{Z(O; Ay) and fo2 = 0, then
the curve has a singularity of type at least Ds, i.e.

f30=0, fo=0, fo=0.

Since the points are in general position, it is a strict Ds-node.

The second question has been answered later on in the thesis. The question we need to answer is
“How many degree d-curves are there that pass through x(d) — 5 points and have a Ds-node?” Let
us denote this number by

N0, Ds)

As seen from the above three equations, this number is merely the Euler class of a rank three
bundle defined on top of PS$(0, As).

Finally we need to compute the multiplicity of the section fOQQAg around a Ds-node. To do that let
us construct a path f;(t) € PS¥(0; A4) that converges to a a Ds-node. Let us assume f40(0) # 0,
which will be the case since the points are in general position. Then the curve

falt)=t
3t2
fo2(t) = 0]

fii () = £i;(0) otherwise

does lie in PS%(0; A) for t # 0 and f;;(0) is a Ds-node. The equation ngAg = v can be rewritten
as

5fit>  Bfat®  3fsot!
— = U
8 4 fa0 83
where v is a “small perturbation”. If fio # 0 then for a generic v this has 2 “small” solutions. The

multiplicity is therefore 2, provided f4o and fio # 0. This we can assume since the points are in
general position. Hence the desired number is

N4(0; A5) = (e(L), [PS(0; Ay)]) — 2N4(0; Ds).
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The problem with this computation is that the sequence (or curve) f(¢) we constructed may not
pass through the x(d) — 5 points in general position although f(0) does. Using the same argument
as in the proof of lemma 3.2 we can modify the sequence to f (t) such that it does pass through
the points in general position and f (0) = f(0). Since this is a one parameter, family of curves, we
can choose one of the f;;(t) we like and keep it the same. Let us choose our perturbation so that

for(t) = far(t)
=1
Since the curve has to at least an A4-node we get that

3t2
f1o(t)

foo(t) =

Furthermore
fao(t) = fao(t) + €(t)
= fa0(0) + €(t)

where €(0) = 0. It is easy to see that this perturbation does not affect the multiplicity computation.

Method 2: In this case a simpler solution is available. Recall that the problem we faced was

which was because the section ngAf; vanishes on a Ds-node. But notice that using the fact that
A{ = 0, we can rewrite ngAg as follows

2 2
o «f _ Jsofga  Sfaifaifoe | Sfiafa
A = —
Joz 43 24 12 Ty

= fozua, (using that a4, = 0)

Hence an equivalent condition to have a As-node is that
aa; =0, aq, =0, aa, =0, aa,#0, fo2#0
But now
PSE(0, A5) = {([s],p) S P5g+1(07144) F0As = 0}!
The difference is that a4, is a section of different bundle
L=7" @7 e, @ (TP /7)* v e,
The desired number is therefore

N0, 45) = (e(L), [BS{(0, A4)])
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4.7 Curves with one Ag-node
Theorem 4.14. The number of degree d curves with an Ag node is
Nd(oa AG) = QNd(O, A5a 0’ 1) + 3Nd(05 A5) + (3d - 12)Nd(0’ A5a 1) - 2Nd(05 D6) - Nd(o? EG)

Proof.
Recall that we have defined

PSZ (0, A5) C Da(r + 2) x PTP?
to be the r 4+ 1 dimensional space of curves with a strict As-node. Also note that
IP’Sﬁl(O,AG) = {([s],p,v) S IP’S,?Z+1(0,A5) taag = 0,04, #0, foo # 0}
The expected dimension of this space is r. Again
PSH(0, Ag) # {([s],p) € PS!,1(0, 45) : aue = 0}
Hence, although a4, is a section of the bundle
L=7" @78, @ (TP*7)” @ ©1%))
the desired number N'4(0, Ag) is not the Euler class of L, i.e.
N0, Ag) # (e(L), [PS{(0, 45)))

The reason is that the section a4, vanishes on points that are at the boundary of PS{(0, A5), that
have foo = 0. Hence the the desired number is

N0, Ag) = (e(L), [PS{(0, 45)]) — Cozr
Again we need to answer three questions.
Question 1: What singularities are there in m when fo2 = 07
Question 2: How many of these are there (an enumerative question)?
Question 3: What is the multiplicity with which the section a4, vanishes around these points?

The answer to the question 1 is that if a curve is in the closure of IP’S{Z(O; As) and fo2 = 0, then
the curve has a singularity of type at least Dg or Eg. This is not hard to see. Since the points are
in general position, it is a strict Dg-node or a strict Fg node. The fact that there can not be any
other type of singularity can be seen directly or we can simply use the classification of singularities
in dimension 6. The last argument is essentially “cheating” because beyond dimension 7 there isn’t
a complete classification of singularities available.

Recall that a singularity is at least of type Dg if

f30=0, fo=0, fo1=0, fio=0
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and it is of type at least Fg if
fa0=0, fo=0, fa=0fi2=0.
Since the points are in general position, it is a strict Dg-node or a strict Eg-node.
The second question has been answered later on in the thesis. The question we need to answer is

“How many degree d-curves are there that pass through x(d) — 6 points and have a Dg/FEg-node
?7” Let us denote the numbers by

N0, De), N0, Eg)
As seen from the above equations, both of these numbers are merely the Euler class of a line bundle
defined on top of PS¢(0, Ds).

Finally we need to compute the multiplicity of the section around a Dg-node or a Eg-node.

Let us start with Eg-node. To do that let us construct a path f;;(t) € PS{(0; As) that converges to
an Eg-node. Let us assume that f40(0) # 0. Note that although there will be points in the closure
where fy0 = 0, they won’t be near points that have an Eg-node. The curve

fal(t) =t
32
foa(t) = 0]
Fialt) = — fo2(t) f50 + 10 f21(t) f31

5f40(0)
fii(t) = f£i;(0) otherwise

does lie in PS{(0; As) for t # 0 and f;;(0) is an Eg-node. The equation a4, = v can be rewritten
as

_ Jaofos
288
where v is a “small perturbation”. If f49fo3 # 0 then for a generic v this has 1 “small” solutions.
The multiplicity is therefore 1, provided fi9 and fy3 # 0. This we can assume since the points are
in general position.

t+0(t?) =v

Next we need to compute the multiplicity near a Dg-node. To do that let us construct a path
fij(t) € PS¢(0; As) that converges to a a Dg-node. We will not able to do this explicitly. We will
do this implicitly by “solving” a quadratic equation. Let x = fo2(t), ¥y = fa0(t) and for(¢) = t.
Then x and y can be implicitly written as

zy = 3t?
150 5f12 531
it _J = — —t
T YT 1

One value of ¢ corresponds to 2 solutions for (z,y) (both of which are first order in ¢). The equation
a4, = v can be rewritten as

At +O(t?) = v
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where the coefficient A will be non zero generically. Hence it has one small solution for ¢. Which
means it has two possible solutions for (foe, fa0). The desired number is therefore

N 0; Ag) = (e(L), [PSE(0; A5)])
— 2N4(0; Dg) — N(0; E)

Remark: One must pause to consider the validity of this computation. Let us look at the multi-
plicity computation around a Dg-node. We chose the parametrization

Ty = 3t?
fso  Bfiz _ 5fa

Ut T o YT 19
for=t
fii(t) = £;(0)  otherwise

where x = fo2(t), y = fa0(t). Why could we simply not take the parametrization

foa =1
far=t
fao =3t

fii(t) = f£i;(0) otherwise

The reason is that with this parametrization the f;;(0) would not be arbitrary! The condition that
a4, = 0 would imply that in the limit

foafso _ Sfarfar | Bhafaw _
24 12 24

fs0  5fs1 | She

24 12 8

=0

This is an extra condition on the f;;(0) which generically will not happen. The parametrization
we chose doesn’t impose an extra condition on the coefficients (aside from being a Dg-node).

4.8 Proof of Theorem 16
Recall that we have defined
PSZ (0, Ag) C Da(r + 2) x PTP?
to be the r 4+ 1 dimensional space of curves with a strict Ag-node. Also note that

PS(0, A7) = {([s],p,v) € PSL (0, Ag) : aa, = 0, cuq # 0, fo2 # 0}

The expected dimension of this space is r. Again

PSH0, A7) # {(15],p) € PST,1(0, Ao) : a, = 0}
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Hence, although a4, is a section of the bundle
L=7" @ e, ®(TP*/7)™ ®vp @)
the desired number A'4(0, A7) is not the Euler class of L, i.e.
N0, A7) # (e(L), [PS{(0, Aq)])

The reason is that the section a4, vanishes on points that are at the boundary of PS{(0, Ag), that
have foo = 0. Hence the the desired number is

N0, Ag) = (e(L), [PSE(0, Ag)]) — Conz

Again we need to answer three questions.

Question 1: What singularities are there in m when fog2 = 07

Question 2: How many of these are there (an enumerative question)?

Question 3: What is the multiplicity with which the section a4, vanishes around these points?

The answer to the question 1 is that if a curve is in the closure of PS{(0; Ag) and foa = 0, then
the curve has a singularity of type at least D7 or E7. This is not hard to see. Since the points
are in general position, it is a strict D7-node or a strict £7 node. The fact that there can not be
any other type of singularity is in fact hard to see, but we can show it directly. We can also use
the classification of singularities in dimension 7. That argument is essentially “cheating” because
beyond dimension 7 there isn’t a complete classification of singularities available.

Recall that a singularity is at least of type D7 if

fs0=0, fao=0, fa1=0, fio=0, ap :_fi21+f50f12
) ) 5 s s 24 10

and it is of type at least E7 if

fa0=0, foo=0, fau=0, fi2=0, fi=0,

Since the points are in general position, it is a strict D7-node or a strict E7-node.
The second question has been answered later on in the thesis. The question we need to answer is

“How many degree d-curves are there that pass through x(d) — 7 points and have a D7/E7-node
?” Let us denote the numbers by

N0, D7), N0, Er)

Both of these numbers are merely the Euler class of a line bundle defined on top of PS{(0, Dg) or
PS¢ (0, Eg) respectively.

Finally we need to compute the multiplicity of the section around a Dr7-node or an Er-node.
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Let us start with F7-node. To do that let us construct a path f;;(t) € PS¥(0; Ag) that converges
to an E7-node. The curve

far(t) =%, fot) =t, folt) =3t>
~ —foa(#) fs0 + 10fon(t) f31

f12(t) - 5f40(t) - O(t)

fii () = £i;(0) otherwise

does lie in PS{(0; Ag) for t # 0 and f;;(0) is an E7-node. The equation as, = v can be rewritten as
AT+ 0(t%) = v

where v is a “small perturbation”. For generic values of f;;(0), the coefficient A will be non zero.
The multiplicity is therefore 7, provided A # 0. This we can assume since the points are in general
position.

We can also compute the multiplicity near a D7-node by constructing a path f;;(t) € PSf(O; Ag)
that converges to a a D7-node similar to the proof of lemma 4.6. The multiplicity in terms of ¢ is
3 and hence the total multiplicity is 6. The desired number is therefore

N(0; Ag) = (e(L), [PS{(0; Ag)]) — 6N(0; D7) — TN(0; Er).

4.9 Curves with one D,-node

Lemma 4.15. The number of degree d curves with a (3,3) node is

N0, Dy) = N0, A1) 4 (=9 + 3d)N4(0, A1, 1) + (30 — 18d + 3d*)N(0, Ay, 2)
= —2N(0, A3,0,1) + N0, A3) + (d — 6)N(0, A3, 1)

Proof.
Method 1: Recall that we have defined
S(0; Ay) C Dy(4) x P?
to be the three dimensional space of curves with a node and
S§(0; Da) € S§(05 A1)

is the set of zero dimensional set of curves with a strict triple point (D4-node). Since the points
are all in general position

S(0; Dy) = S¢(0; Dy)
and the desired number is
N(0; Dy) = |SE(0; D)| = (e(Sym?Hom (TP, TP2)),  [SE(0; A7))).

Method 2: This method is conceptually involved. It is similar to the second method of enumer-
ating curves with a cusp.
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Recall that we have defined the space
PS{(0; A3) € Dy(4) x PTP?

to be the one dimensional space of curves with a tacnode (As-node), i.e the third derivative along
the kernel of the Hessian is zero (and the “next” thing is not zero). Let us define 4 to be the
direction along which the third derivative vanishes. We now define

PSE(0; Dy) € PSE(0; A3)

to be the zero dimensional space of curves such that the second derivative along the quotient space
TP? /4 vanishes. In local coordinates we are looking at the zero set of the equations

foo=0, fio=0, fo1=0, fao=0, fi1=0, f3=0, fo2=0.

Note that with the fourth and fifth conditions, we are not merely looking at a cusp (det(V?2s) = 0),
but we are looking at a cusp with a marked direction, which we have fixed here to be (1,0). Note
also that the last condition fys = 0 is well defined on the quotient space. The cardinality of the
set PS4(0; Dy) is therefore

[PSE(0; Da)| = (e((TP?/3)"" @ 75 @773 ), [PSE(0; 45)))

=

= 45(d — 2)?

This number is three times what we would expect. Let us see what we are counting more carefully.
As explained in the remark 2 of enumerating cusps, what we are counting is not a curve with
a singular point, but a curve, with a singular point and a marked direction. Notice that we are
counting on top of a tacnode. Hence what we are counting is the set of curves with a point
along which the Hessian is zero and a marked direction along which the third derivative is zero
(tacnode). But for a given triple point there will be three distinct directions in which the third

derivative vanishes. Hence the cardinality of [PSE(0; Dy)| is indeed three times the cardinality of
N4(0; Dy). Hence

PS%(0; D
Nd(O; D4) _ | 0(3 4)|
1

= (TP /) © 7 @ 7;), [PST(0; 43)).

Theorem 4.16. The number of degree d curves with a triple point on a lambda class is

Nd(oa D4a 0’ 1) = _QNd(O,AZSa 0’ 2) +Nd(OA3’Oa 1) + (d - G)Nd(oa A3’ 15 1)
= N0, Dy) + (d — 9)N(0, Dy, 1)

Proof. This can be done in two ways. The author feels that the second method is the better one.

Method 1: This follows the second method of the previous problem. The desired number is
=~k g *2 * *d Ded(in A\
Nd(07D47071) = <e(7 @(TPQ/’Y) ®7D®7P2)7[P85l(07’43)]>'

Method 2: For this method we have to understand what the number really means. Recall that we
are looking at the space which is the space of curves with a tripe pointed and a marked direction
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along which the third derivative vanishes. In the first method we looked at the zero set of the
section fgo on top of a tacnode. However there is a much simpler way to look at this three to one
cover. Consider the space

S840, Dy) C Dy(r + 4) x PTP?

which is the r dimensional space of curves with a D4-node and an equivalence class of tangent
vector on top of it. A reminder to the reader that the dimension of this space is r+ 1, not r. Notice
that

(e(3*3 @ 7vp @~%), [SH0,Da)]) = N0, Dy)

because
(c(rp). [S§(0. D)) =0
(e(v"), S0, Dy)])) =0
((3), [S2(0,Dy)]) = N4(0, Dy)

The answer is of course not surprising because a generic section of the line bundle

—~

~ %3 * x4
YD @,
is the third derivative along a direction. Hence what we are saying is that
- " d 2 o x2 " d, —a7
(e(¥° @p @), S50, Dy)]) = (e(TP?/7)" ®p @ 7,), [PST(0; A3)])
= 3N(0, Dy)

This shows another way to think of the three to one cover of the space of curves with a triple point.
This of course is of no use if we want to find the number

NY0,Dy)  or  N40,Dy4,0,1).

But once we do know these two numbers, we can use this fact to find the number A¢(0, Dy, 0,1).
In other words

N0, D4,0,1) = (e(7 &7 @ 75 @), [SH(0, Da)])
= N40,Dy) + (d — 9)N(0, Dy, 1)

which of course agrees with the previous answer.

Remark 1: Let us skip one step ahead and consider the computation of one node and one triple
point on a lambda, N'(1, D4,0,1). We could of course compute the contribution from the main
stratum using the first method. That would involve finding the closure of one node and one tacnode
and a multiplicity computation. The second method gives us the answer for free. We claim that
the contribution from the main stratum is in fact the desired number. The price to pay is that
we have to know N4(1, D,) using a different method (using the first method in fact). To see why
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there is no contribution from the boundary we need to see what is going on. We claim that the
desired number is

N1, D1,0,1) = (e(3 &7 ©vp © 770), [SH(L, Do)
= N1, Dy) + (d — 9N (1, Dy, 1)

We need to see what happens in the closure of one node and one Dj-node. We get at least a Dg
node. After we cap with a lambda class, we get a Dg-node with a generic direction assigned. The
third derivative along a generic direction will not vanish. Hence the section does not vanish along
a Dg node. Hence the desired number is simply the Euler class of a bundle. This number therefore
must be correct, assuming that the numbers

N1, D) and  N%1,Dy,1)
are correct. There is no doubt that these numbers are correct. They both pass low degree checks
for d = 4. And the first number agrees with the computation of Kazarian and Kleiman and Piene.
4.10 Curves with one Ds-node
Theorem 4.17. The number of degree d curves with a D5 node is
N0, Ds) = AN“(0, Dg) + (=18 + 4d)N'*(0, Dy, 1)

Proof. Method 1: This computation is almost the “same” as the computing As-node. A Ds-node
occurs when there exists a non zero v such that V2s(v,v, ) is zero. Recall that we have defined

S4(0; Dy) € Dy(5) x P?

to be the one dimensional space of curves with a Dy and

~

S0, Dy) C Dy(5) x PTP?

is the one dimensional space of curves with a Ds-node and an equivalence class of tangent vector
on top of it. Note that this is a two dimensional space. Further recall that

PSJ(0; Ds) € PSH(0; Dy)

is the zero dimensional space of curves with a strict Ds-node with a marked direction in along
which the V2s(v,v,-) vanishes and along which the fourth derivative does not. Since the points
are in general position, the last condition is automatically satisfied and hence

PSJ(0; Ds) = PSE(0; Ds).
The desired number is therefore given by
Dodin. M\ "'*2 * *d * 3,
N(0; Ds) = [PS(0; Ds)| = (e(7" @ p @ 7% @ T*P?), [541(0; Da)))-

Method 2: Recall that we have defined the space

~——

PS{(0; Dy) C Dy(5) x PTP?
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to be the one dimensional space of curves with a triple point (D4-node) with a marked direction.
Further recall that

—~——

PSJ(0; Ds) € PSH(0; Dy)
is the zero dimensional space of curves with a strict Ds-node i.e.
ap; = fa1 =0

but the “next” quantity ap, # 0 and the third derivative tensor is not identically zero. Since the
points are in general position the last two conditions are automatically satisfied. Since ap, is a
section of the bundle

~ %2 ~ K\ * x4
7 e (TP /7)) @ © 7,
the desired number is given by

—

N(0; D5) = [PS§(0; Ds)| = (e(3™" @ (TP*/3")" @ 7vp @775 ), [PSH(0; Da)]).

4.11 Curves with one Dg-node
Theorem 4.18. The number of degree d curves with a Dg-node is
N0, Dg) = 4N4(0, D5,0,1) + N0, D5) + dN(0, D, 1).
Proof. Recall that we have defined the space
PS{(0; D5) C Dy(6) x PTP?

is the one dimensional space of curves with a Ds-node and marked direction v along which
V2s(v, s,-). Note that this is a one dimensional space. Further recall that

PSI(0; Dg) € PSE(0; Ds)

is the zero dimensional space of curves with a strict Dg-node i.e. fy0 = 0, but the “next” thing is
not zero. Since the points are in general position,

PS(0; Dg) = PS(0; D)
The desired number is therefore given by

NU(0; Dg) = [PSE(0; De)| = (7" @ vp ©77%), [PS(0; Ds)).

4.12 Proof of Theorem 14
Proof. Recall that we have defined the space

PS{(0; Dg) C Dy(7) x PTP?
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to be the one dimensional space of curves with a Dg-node. Further recall that
PS§(0; D7) C BS{(0; Dg)
is the zero dimensional space of curves with a strict D7-node, i.e.
ap, =0

but the “next” quantity ap, # 0 and V3£ is not identically zero. Since the points are in general
position the last two conditions are automatically satisfied. Since ap., is a section of the bundle

~ 45 ~ % ~\ %2 * x4
L =7 @7 ® (TP /7)* @ (vp ®1%)%
the desired number is given by

N?(0; D7) = [PS§(0; Dr)| = (e(L), [PS(0; Dr)])

4.13 Curves with one Fs-node
Theorem 4.19. The number of degree d curves with a Eg-node is
N0, Bg) = —N(0, D5,0,1) + N0, Ds) + (d — 6)N(0, Ds, 1)
Proof. Recall that we have defined the space
PS{(0; D5) C Dy(6) x PTP?

is the one dimensional space of curves with a Ds-node and marked direction v along which
V2s(v, s,-). Note that this is a one dimensional space. Further recall that

PSI(0; Eg) € PS4(0; Ds)

is the zero dimensional space of curves with a strict Fg-node i.e. fio = 0, but the “next” thing is
not zero. Since the points are in general position,

PSG(0; Fo) = PSE(0; Ee)
The quantity fi2 is a section of the line bundle
L=7®@P/5)" e e,
The desired number is therefore given by

N0, Eg) = |PS§(0; Eg)| = (e(L), [PS{(0; Ds))).
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4.14 Proof of Theorem 15
Proof. Recall that we have defined the space
PS{(0; Eg) € Dy(7) x PTP?
to be the one dimensional space of curves with a Eg-node. Further recall that
PS§(0; Er) C PS{(0; Eg)
is the zero dimensional space of curves with a strict E7-node i.e.
ap; = fi0 =0

but the “next” quantity ap, # 0 and V3f is not identically zero. Since the points are in general
position the last two conditions are automatically satisfied. Since ag, is a section of the bundle

~ x4 * s
L =5 ®@vp @,
the desired number is given by

N0, Br) = [PS§(0, E7)| = (e(L), [PS{(0, Eg)]).-
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Chapter 5

Enumeration of curves with two
singular points

Recall lemma 3.15 which states that if a curve is in the closure of one node and one Ay node and
the Hessian is not zero, then the curve is at least as singular as an Aj,2 node. We now prove the
following lemma

Lemma 5.1. The multiplicity of the section A£+1 around an Ao node, arising as the closure of
one node and one Ay node is 2, generically.

Proof. Since fpa # 0, we can find coordinates (u,v) so that the curve is given by
f=v+ A£+1uk+1 + A£+2uk+2 + ...

The set of equations we are solving for are

f=ot AL WAl WM =0
fu=(k+ DAL WF + (k+2)A] M+ =0
fo=20=0

Solving these three equations we get

2k +4

foo_
A = 53

A£+3u2 + O(u®)

Generically, A£ 43 will not vanish. Hence

which is two to one.

Similarly, recall lemma 3.17 which states that if a curve is in the closure of one node and one Dy
node and fio is not zero, then the curve is at least as singular as a Do node. We now prove the
following lemma analogously

Lemma 5.2. The multiplicity of the section Dgﬂ around an Dyyo node, arising as the closure of
one node and one Dy node is 2, generically.

62



Proof. Since f12 # 0, we can find coordinates (u,v) so that the curve is given by
f=vu+D}, "'+ D uF ..

The set of equations we are solving for are

f :1)2u+D£+1uk_1+D£+2uk+--- =0
fu=(k—1)D], u" + (k)D] 1+ ... =0
fo=2vu=0

Solving these three equations we get

2k
foo_ fo.2 3
Dk+1_k+1Dk+3u + O(u?)

Generically, D!

43 will not vanish. Hence

D}, (u) = O(u?)

which is two to one.

5.1 Curves with one A;-node and one Aj-node

Theorem 5.3. The number of degree d curves with one node and one As-node is
N1, A3) = 3NY(1, Ag,0,1) + N4(1, Ay) + dN4(1, A1, 1,0) — 2M4(0, Ay).

Proof. This one follows from lemma 5.1. Let us see care fully what is going on. Compare with the
computation of N'4(0, A3). The contribution from the main stratum is

BN4(1, A,0,1) + NU(1, Ag) + dN(1, A, 1)
By lemma 5.1 the contribution from the A4-nodes is

2N4(0, Ay)

The non trivial fact is that the only thing in the closure of PS{(1, As) is a As-node. By lemma
3.18, the singularities that can be in the closure of one node and one cusp when the Hessian is zero
and when f3p = 0 is of codimension 5 or higher. Hence they will not occur (since the points are in
general position). Hence the final number is

Nd(la A3) = 3Nd(1a A2,0’ 1) +Nd(17A2) + de(la A2, 1) - 2Nd(0?A4)

Theorem 5.4. The number of degree d curves with one node and one tacnode with the tacnode on
a lambda is

N1, A3,0,1) = 3N9(1, A3,0,2) + 2N 90, A2,0,1) + 2(d — 3)N4(1, A1, 1,1) — 2M4(0, A4,0,1).

Proof. In analogy with the computation of N d(l, A9,0,1) we expect this computation to be more
involved. However it is not. The answer is in fact what we “expect” it to be i.e.

N9(1,45,0,1) = 3NY(1, A2,0,2) + N4(1, A3,0,1) + dN4(1, Ay, 1,1) — 2M4(0, A4,0,1)

This is because the third derivative section will not vanish along a generic direction for either a Ay4
node or a D4 node.
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5.2 Curves with one A;-node and one A -node

Theorem 5.5. The number of degree d curves with one node and one As-node is
N1, Ag) = 2N(1, 43,0,1) + 2N (1, Ag) + 2(d = 3)N(1, 43,1) — 2N/(0, 45)
Proof. This one follows from lemma 5.1. The non trivial fact is that the only thing in the closure

of PS{(A;, A3) is a As-node which follows from lemma 3.19.

Theorem 5.6. The number of degree d curves with one node and one As-node on a fixed lambda
18

NU1,A4,0,1) =2N9(1, A3,0,2) + 2V%(1, A3,0,1) + 2(d — 3)N(1, A3, 1,1) — 2NV4(0, 45,0, 1)

Proof. Again this number is what we expect it to be. At the boundary, we get a one dimensional
family of curves with a As-node. A As-node can degenerate into a Ag-node or a Dg-node. When
we hit a one dimensional family of As-node with a generic lambda class, we only get Dg. However
the section ¢4, will not vanish on a Dg-node. That gives us the desired result.

5.3 Curves with one A;-node and one As-node

Theorem 5.7. The number of degree d curves with one Aji-node and one As-node is
N1, Ag) = 3NY(1, Ay, 0,1) 4+ 2N4(1, Ag) + 2(d — 3)N4(1, Ay, 1) — 2N4(0, Ag) — N0, Eg).

Proof. This one requires more care. The new thing that happens is that the closure of IP)Sf(l, Ay)
contains Eg-nodes in addition to the obvious Ag-nodes. We claim that the section a4, vanishes
on the Fg-nodes with a multiplicity of 1. To prove this claim we first construct a sequence in
IP’Sﬁl(l, Ay) that converges to an Eg-node. We will merely describe the procedure to construct the
sequence. We write down the Taylor expansion of f that has a As-node at (0,0) and that also has
a node at a point distinct from (0,0). Hence we get three equations

f:07 f$:07 fyzo

Let us say the second node is at the point (Lt3,#*). Solve the equation

Yl whe
2 4 =0
and get
Ji2 = O(1)

Remark: Notice the way the fosy® and fioz* gets canceled, which is crucial.

Next solve

fa: =0
and get

fa1 = 0(t?)
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And finally, solve
fy=0
and get
foa(t) = O(t*)
Since the curve already has an A4-node we get that

_ 3%
fao = Tos

= 0(1)

= Arbitrary, since L is arbitrary.
The rest of the f;; are arbitrary. Hence the equation
apr, =0()=v

is one to one for small ¢.

5.4 Curves with one A;-node and one As-node on a lambda

Theorem 5.8. The number of degree d curves with one Aji-node and one As-node is
N1, A5,0,1) = 3N4(1,A4,0,2) + 2N(1, Ay, 0,1) 4+ 2(d — 3)N4(1, Ay, 1,1) — 2N%(1, 46,0, 1).

Proof. This number is again what we “expect” it to be because the section a4, will not vanish on
a A7, D7 or F7 node with a generic direction assigned.

5.5 Curves with one A;-node and one Ag-node

Theorem 5.9. The number of degree d curves with one Ai-node and one Ag-node is

Nd(l,A6) = 2Nd(1’ A5’Oa 1) + 3Nd(1?A5) + (3d - 12)Nd(15 A5’ 1)
—2N(1, Dg) — N(1, Eg) — 2N(0, A7) — 3N(0, Ex)

Proof. This one requires more care. The new thing that happens is that the closure of IP)Sf(l, As)
contains Er-nodes in addition to the obvious A7-nodes. The section a4, vanishes on the E7 nodes
with a multiplicity of 3. To prove this claim we first construct a sequence in PS%(1, As) that
converges to an Fr7-node. We will merely describe the procedure to construct the sequence. We
write down the Taylor expansion of f that has an As-node at (0,0) and that also has a node at a
point distinct from (0,0). Hence we get three equations

f:07 f$:07 fy:O

Let us say the second node is at the point (L1t2,L2t3), where L7 and Lo are constants to be
determined from the f;;(0). Let us say fao(t) = t. Solve the equation
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and get
fi2=0(t)

Remark: Notice the way the fosy® and fioz* gets canceled, which is crucial.

Next solve
fe=0
and get
far = O(t)
And finally, solve
fy=0

and get
foa(t) = O(t")
This gives us

fo2 = O(t?) since
as, =0

Using the equations

fy:O

aps =0

we can determine the L; and Ly in terms of the remaining arbitrary f;.
Hence the equation

Qpg = O(t3)

=V

is three to one for small ¢.

5.6 Curves with one A;-node and one Ds-node

Theorem 5.10. The number of degree d curves with one node and one D4-node is
1
Nd(17D4) - g{(d - G)Nd(LA?n 1) - 2Nd(17 A3707 1) +Nd(17 A3) - 2Nd(07D5)}

Proof. The reader is urged to refresh his memory by going over the computation for N4(0, Dy). As
before we use the trick that we look at the problem in PTP3 and divide by three. We consider the
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closure of space PS{Z(l,Ag) of curves with one node and one tacnode. The condition for a triple
point is fgpo = 0 which is a section of the line bundle

o\ x2 N d
L= (TP*/3)" ©@vp @,
Hence the contribution from the main stratum is
(e(L), [PS{(1,A3)])

To compute the contribution from the boundary, we need to first see what is in the closure of one
node and one tacnode i.e. we need to know the space Sfl(l, As). We already know that there is an
As-node in the closure. But the section fpo will not vanish there. We also have Ds-nodes in the
closure where the section vanishes with a multiplicity of 2.

Theorem 5.11. The number of degree d curves with one node and one Dy-node with a fixed
lambda is

Nd(la D4a 0’ 1) = Nd(l? D4, 0) + (d - Q)Nd(la D4a 1)
Proof. This follows from the second proof of lemma 4.15. A priori there could be contributions
from a Dg node since the closure of one node and one Dy node is a Dg node. However the third
derivative along a generic direction will not vanish on a Dg node.
5.7 Curves with one A;-node and one Ds-node
Theorem 5.12. The number of degree d curves with one node and one Ds-node is

N1, Ds) = AN9(1, Dy) + (4d — 18)N4(1, Dy, 1,0) — 2N4(0, Dg, 0,0).

Proof. The reader is urged to refresh his memory by going over the computation for A%(0, Ds).
We will interpret a Ds-node as a section of

72 ®vp ® 'yﬂ’:,j ® T*P3

P————

i.e. we will be doing the computation on top of Sf(l, D,). The contribution form the main stratum
is

~ %k * *d * T
(e(7? @vp @7, @ T*P3), [SH(1,Da))

The closure comprises of curves with a Dg-node which will contribute with a multiplicity of 2.

5.8 Curves with one A;-node and one Dg-node

Theorem 5.13. The number of degree d curves with one node and one Dg-node is

N(1,D¢) =4N%(1,Ds5,0,1) + N1, Ds) + dN(1, D5, 1)
—2N4(0, D7) — N0, Ex)
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Proof. The reader is urged to refresh his memory by going over the computation for N¢(0, Dg). A
Dg-node is a section of the bundle

~ % d
¥ @vp ® 7,
on top of S{(1, D5). The contribution form the main stratum is

~ ok * *d od/1 P\
(¥ @rp@n), [SH1,Ds))
The closure comprises of curves with a Dr7-node and FEr-node. We claim they will contribute
with a multiplicity of 2 and 1 respectively. Let us start with a D7-node. We first write down
the Taylor expansion of a function f that has a Ds-node at (0,0). We will construct a sequence
fii (), z(t),y(t) € S{(1, D5) that converges to a D7-node. The sequence is

r=1ILt, y=t* fi;(t)=to be determined
where L is a constant to be determined. We also have three equations
=0, fa=0, f,=0.
Using f, = 0 we get that
fao(t) = O(t?)
Using that
ap, = O(t) provided f19 # 0.
Finally using
fy=0
we get L in terms of f12(0) and fp3(0). Hence the equation
apg = fro =0t =v
is 2 to 1.

Next we consider E7-nodes. The sequence we consider is
r=Lt?, y=1t

The equation

fy=0
gives us
fi2 = O(t)
and the equation
fe=0
gives us
Jao =0(t)

The last equation f = 0 gives the value of L. Hence the equation
ape = fao=O0(t) =v.
is 1 to 1.
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5.9 Curves with one A;-node and one Ez-node

Theorem 5.14. The number of degree d curves with one node and one Dg-node is

N1, Es) =—-N%1,Ds5,0,1) + N1, Ds) + (d — 6)N(1, D5, 1) — N0, Er)

Proof. The reader is urged to refresh his memory by going over the computation for A¢(0, Dg).
An FEg-node is a section of the bundle

~ % ~ *d
7% © (TP3/3)? @ vp © 7,
on top of S{(1, D5). The contribution form the main stratum is
~ ~ 0\ * * d od/1 P\
(e(7? @ (TP3/7)? @ vp @7, ), [S{(1,Ds)])

The closure comprises of curves with a E7-node. We claim they will contribute with a multiplicity
of one. We construct the same sequence as we constructed in the computation of N° d(l, Dg) while
finding the multiplicity around an FE;-node. Since

f12 — O(t)a
the equation
AFs = f12 = O(t) =V

is 1 to 1.
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Chapter 6

Enumeration of curves with three
singular points

6.1 Curves with two A;-nodes and one As-node
Theorem 6.1. The number of degree d curves with two nodes and one tacnode is
N2, A3) = 3NY(2, A2,0,1) + N4(2, A)) + dN4(2, A1,1,0) — AN9(1, Ay) — 2N4(0, Ds).
Proof. Similar to the computation of A%(1, A3), the contribution from the main stratum is
3N4(2, 45,0,1) + N2, A1) + dN4(2, A1,1,0).

Furthermore, when one node and one cusp sink together, we get a A4 node and the contribution
to the boundary is 2 as shown in the computation of N d(l, As). But there are two nodes that
can collapse with a cusp to produce a As-node. hence the total contribution from N(1, Ay) is 4.
The new thing that happens here is that two nodes and one cusp can collapse to a Ds-node. The
multiplicity of the section around that point is 2. To see that let us consider a curve that is a union
of a straight line and a curve with a cusp given by

f022(f)y2 n %

o= o) —t)

Comparing coefficients we get that
f30(t) = faot
Hence the equation

QA3 = Faot + o(t?)
=0(t)

is generically one to one in ¢. But there are two nodes that can permute. Hence the total multiplicity
is 2 to 1 around a Dgs node. Hence the final answer is

N2, A3) = 3NY(2, A2,0,1) + N42, A)) + dN4(1, A1, 1,0) — AN4(1, Ay) — 2N4(0, Ds).
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6.2 Curves with two A;-nodes and one As-node

Theorem 6.2. The number of degree d curves with two nodes and one A4-node is
N2, Ag) = 2N(2, A3,0,1) + 2N4(2, A3) + 2(d — 3N (2, A3, 1) — AN(1, 45) — 4N(0, D).

Proof. The new thing that happens here is that two nodes and one tacnode can collapse to a
Dg-node. The multiplicity of the section around that point is 4. To see that let us consider a curve
that is a union of a straight line and a curve with a tacnode given by
f02(t)2 ]%;2 Ez J/CE);:s J/CZO4
—_ o= (= —_— — — .. —t
5 Y+t (2y+2:cy 6y—|—243:+)(3: )
Comparing coefficients we get that

+ %:@2 +
fao(t) = ~tfa
far(t) = —tfon
foa(t) = tfo2

Hence the equation

aa, = forfio =35 = O(t*) = v

is two to one in ¢. But there are two nodes that can permute. Hence the total multiplicity is 4 to
one.

6.3 Curves with two A;-nodes and one As-node

Theorem 6.3. The number of degree d curves with two nodes and one As-node is
N2, As) = 3NY(2, Ay, 0,1) + 2N4(2, Ay) 4+ 2(d — 3)N4(2, Ay, 1)
— 4N(1, Ag) — 2N(1, Eg) — 4N(0, D7)

Proof. The new thing that happens here is that two nodes and one Aj-node can collapse to a
D7-node. The multiplicity of the section around that point is 4. To see that let us consider a curve
that is a union of a straight line and a curve with a A4-node given by

Oy oy Pray Tegp oy S0y ey
Comparing coefficients we get that
Foat) = —tfoo
Fs0(t) = 5f10 — tfz0
far(t) = —tfn
Fa1(t) = 3fa — tfn
f1a(t) = for = thra
fao(t) = —tfao

Hence the equation
ax. = O(t?) =v

is 2 to one in t. But there are two nodes that can permute. Hence the total multiplicity is 4 to 1.
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6.4 Curves with two A;-nodes and one D,-node

Theorem 6.4. The number of degree d curves with two nodes and one Dy-node is
1
N2, Da) = 2{(d = ON(2, 43, 1) — 2N(2, 43,0,1) + N(2, A3) — AN(1, D5) — 2N(0, Dg) }

Proof. The new thing that happens here is that two nodes and one tacnode can collapse to a
Dg-node. The multiplicity of the section around that point is 4. To see that let us consider a curve
that is a union of a straight line and a curve with a tacnode given by

_f022(t) y2 +4+...=

J10 4

J/CE)’?’ x4+ .) (e —t)

y+%xy2+—y +

for o fo1 o
(v +5e 6 24

2

Comparing coefficients we get that

fiot) = ~tfao
far(t) = —tfar
foa(t) = tfoo

Hence the equation
ap, = fQQ(t) == O(t) =v

is one to one in ¢. But there are two nodes that can permute. Hence the total multiplicity is 2 to 1.

6.5 Curves with two A;-nodes and one Ds-node
Theorem 6.5. The number of degree d curves with two nodes and one Ds-node is
N2, D5) = 4N4(2, Dg) + (4d — 18)N4(2, Dy, 1,0) — 4N(1, Dg)

Proof. Nothing new happens here. One dimensional family of three nodes and one triple point can
not sink together.
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Chapter 7

Enumeration of curves with multiple
singular points

7.1 Proof of Theorem 1

Let
_ —d _ _
X 281(6_15A1)X]P>2 Ja X = {([S]7p1,"'ap5+l)€X: p5+17éplap2,"',p5}'

For any subset I C {1,...,0} and i =1,2,...,6, let

Xr={(s)pr,....ps1)€X: pri=pi Viel}, Xr=Xr—- || Xr,
ICI'C{l,....8} (7.1)

Xi=Xgy, Xi= Xy Xiy =A{Ushp1, - spsp1) €Xit xs(pi) = Ar}
For example, Xy = X. By lemma 3.1, 3.14 and 3.23,

([S]apla s ap(5+1) € XZ_XZ* - Xs(pl) = AQ,
(8,1, o) €Xp, i€l [I1=2 = xs(ps) = As;
([S]apla"'ap(5+1)€XI? ’LGI, |I|:3 — Xs(pz):D4

respectively. In all of the above cases, the remaining points p; are all distinct simple nodes of
571(0). Furthermore, X; = 0 if |I| > 3. Let

0 Ty Tos1: X —> Dy, P2 P2, ... P? 7.2
+

be the projection maps.

We need to determine the cardinality of the set

Sg(57A170) - {([S],pl,...,p5+1)68fl((5—1,A1)XP2ioi Ps+1 #p17p27--- 2D XS(p5+1):A1}
= {([S]vplv--'7p5+1)€X: S(p5+1):07 VS‘P6+1:O};

the last equality is a special case of Proposition 3.1. By Lemma 2.15 the restriction of the sections

Usrra0 € DX, m00p @ m50vs)s Wspnay ([P, -5 ps41) = s(psi1) s
Vo4 € T (W50, (0), 767D © W§+1(VES®T*P2)) Vs11:4, (81,15 D541) = Vs, s
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to X are transverse to the zero set. Thus,

NS, Ay, o) = |S§(6, A1, 0)]
— (el @y e(mp Oty (IS T B), [R]) — Cox (bss s @¥srriar) 0
where the last term is the 1514, ®1s41.4,-contribution to the Euler class from

é
(9X:X—X:UX1‘: |_|XI-
i:1 @#IC{17"'75}

The first term on the right-side side of (7.3) gives the first term on the right-hand side of the
expression in Theorem 1.

For each i = 1,2,...,6, a neighborhood of X; in X can be identified via the exponential with a
neighborhood of the zero section in 7 TP?. For any identification of the bundles,

{541,140 B¥ss1,4, }([8], P15 - s, pi30) — (0, V25|, (v, )| < Clo)?
for some C' > 0, dependent only on the identification. Since the bundle map
a: mTP? — moyp@ms7s © movp@my (Vi 0T P?),
([sl:p1s- -, ps, i3 v) — (0, Vs|p, (v,-)),

over X; is injective over X/, by [23, Proposition 2.18B] the contribution of X/ is the number of
zeros of a generic affine bundle map with linear map «,

Cx; (V541,40 0%s541:4,) = N(a).
Since o maps to the first component,
Cx; (V11300 SVs1,41) = N(@) = (e(mip@ms, 17, X))
= NU6—1,A1,0) + dN(5, Ay, o+1).

It remains to compute the contribution from the finite sets X; — X and X with |I|=2, 3.

If ([s],p1,---,pspi) € Xi— X}, s71(0) has a cusp at p;. Thus, we can choose coordinates (x,y)
centered at p; so that s =y?+23. Since the section ;. 4, 1s transverse over X; by Lemma 2.17, a
neighborhood of ([s],p1,...,ps,pi) in X; can be parametrized by t€C,

t— ([s"],p0,...,p5,pf)  sothat  si,.(p}) =2t

Thus,

siy) = > fi®a'y?| < Ol (lz]*+]ylY),

i+=2.3
st (@,y) — (2foa(Oy+ fr1(O)z+ far ()2 +2fro(t)my+3 fos(t)y®) | < ClE|(|=1>+[y[?), (7.5)

for some C' € R and holomorphic functions f;; on a neighborhood of the origin in C such that

J2o(t) = t, f02(0), f30(0) =1, fi;(0) =0 otherwise.
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Similarly to the proof of Proposition 2.2, by (7.5) and the Implicit Function Theorem there exists
a holomorphic function B=B(t,z) on a neighborhood of the origin in C2 so that

B(t,0) =0, sy (z,B(t,z)) =0 Va.

This function satisfies
|B(t,z)| < Clt]|=]

for some C' €R™. Let
g=y— B(t, ).
By the definition of ¢,
s'(z,y) = h(t,2,9)5% + g(t, @)

for some holomorphic functions h and ¢ on neighborhoods of the origin in C3 and C?, respectively.
These functions satisfy

h(0,0,0) =1,  |g(t,z) — (tg2(t)2® + g3(t)2®)| < C|t]|=[*

for some C € RT and some holomorphic functions go, g3 on a neighborhood of the origin in C such
that g2(0), g3(0)=1. Thus, after the change of variables

(t7 €, y) — (92 (t)g?) (t)72/3t7 3/93 (t).%', \/h(t7 Z, g)@)7

we can assume that a neighborhood of ([s],p1,...,ps, pi) in X; can be parametrized by t€C,

t— (s ph . ophpl) st [ ) = (v7 + 2t + ta?)] < Cftlf (7.6)

for some C eR™.

Let pt(u,v) =pt+(u,v) € C2. The contribution of each point of X;— X7 to the Euler class in (7.3)
is the number of small solutions (¢, u,v) of the system

st (py(u,v)) = T, st (p1(u,v)) = 110, sg(pl(u,v)) = Tl1, (7.7)

for a generic choice of (1,10, v01) € C3 and 7 €RY sufficiently small. By (7.6), the last equation
in (7.7) is just
2v = TV01 5

it has a unique solution. By (7.6),
| (8" (p1 (u, v)) = 2usg, (p1 (u, v)) =2}, (p1 (u, ), usg (p1 (w,v))) — (u®, 3u® +u?)]
< C]t]!(u3,3u3+tu3)|.

Thus, by a rescaling and cobordism argument as in [21, Section 3.1], the number of small solu-
tions (t,u) of the first two equations in (7.7) with 2v=7uyp; is the number of solutions (¢, u) of the
system

ud = 10, 2tu’+3u? = 0,

for a generic choice of vy €C. Since this number is clearly 3,

Cx,—xr (51540 BW61134,) = 3| X —X[| = BN (61, Ay, 0). (7.8)
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We next compute the contribution of each element ([s], p1,...,ps, Ps+1) € X1 with |[I|=2. We can
assume that I={1,2}. By lemma 3.14, p; =py=ps1 is a tacnode of s71(0). Thus, we can choose
coordinates (z,y) centered at p; so that s=y?+z*. We will first describe a neighborhood of

ﬁ = ([S]?pl’ s ’p5,p1,c@0) € P(WTTIPQ)

inside of the one-dimensional space X of curves with § nodes and a choice of a branch at the first
node, which we can take to be the z-axis.

Since thg sections 1.4, and 91,4, are transverse over X; by lemma 2.17 and 2.14, a neighborhood
of § in X; can be parametrized by t = (t1,t5) € C?,
t— ([St]’pia s apg’pg) s.t. Stmm(pi) =0, Stmy(pi) =21y, Sfm::v(pi) = Gta.

Thus,

siay) = D fiit)a'y| < Clel(j2fP+1yl?),
i+j=2,3,4
sh(zy)— Y fi(t)aty’ !

i+j=2,3,4

< Clel(Jf*+lyl"), (7.9)

for some C' € R and holomorphic functions f;; on a neighborhood of the origin in C such that

f20=0, fn(t) = 2t1, fgo(t) = tQ, fOQ(O), f40(0) = 1, fij(O) =0 otherwise.

By replacing +/ fo2(t)y with y above, we can assume that fopo =1 above. Similarly to the proof of
Proposition 2.2, by (7.9) and the Implicit Function Theorem there exists a holomorphic function
B=B(t,x) on a neighborhood of the origin in C? so that

B(t,0) =0, SZ(x,B(t,x)) =0 V.
This function satisfies
|B(t,z) + tiz| < C|¢t||z|*

for some C €eR*. Let
g =y — B(t, .%')
By the definition of g,
s'(z,y) = h(t,z,9)5* + g(t,z)

for some holomorphic functions h and ¢g on neighborhoods of the origin in C3 and C?, respectively.
These functions satisfy

h(0,0,0) =1,  |g(t,z) — (—t2® + g3(t)z® + ga(t)z*)| < CJt||z|

for some C € RT and some holomorphic functions g3, g4 on a neighborhood of the origin in C
such that
94(0) =1, |g3(t) — t2| < CJt[*.
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Thus, after the change of variables

(t,t2, x,y) — (= it1ga(t) ™% tags(t)ga(t) ™%, V/ga(t)z, /R(t, 2, 9)9),

we can assume that a neighborhood of ([s],p1,...,ps,p;) in X; can be parametrized by (¢1,t2) €C,

t=(t1,t2) — ([s'], L, ..., 05, Pl {y=itiz}) st
s (p}) — (° + 2* + t12® + t2a®)| < Cltf|f? (7.10)

for some C eR*.

Let pt (u,v)=p;+u+veC?. The complement of p in a small neighnorhood in X is the set of small
solutions (¢, z,y) of the system

s'(i(zy) =0, sL(i(2,y) =0,  s,(pi(2,y)) =0 (7.11)

with (z,y)#0. By (7.10), the last equation is equivalent to y=0. Since
272 (22, (P (2,0)) — ' (1 (2, 9)) — (22" +t22%)) )| < O[],
by the Implicit Function Theorem the equation
2% (225, (pi (2, 0)) — 5" (P (2,9)) = 0
has a unique small solution x=ux(t); it satisfies
22 + to| < Clt|[ta]*.

The first equation in (7.11) is then equivalent to
2
4

for some holomorphic function h on a neighborhood of the origin in C such that

t2— 2h(t) =0
|h(t) — 1] < C[t||ta]-

In particular, the first equation in (7.11) has two families of solutions, each parameterized by f;.
We conclude that a neighborhood of p in X consists of two copies of C, each parametrized by t € C,

t — ([s'],pl,.... 0501, {y=2ita}) st
st () — (v + 2t + 4622? + t2%)| < C(|t]|2]° + |t]?|2[?) (7.12)

for some C €R*. A neighborhood of p in X is parametrized by either of the two copies of C.

The contribution of each point of X; to the Euler class in (7.3) is the number of small solutions
(t,u,v) of the system

st (p! (u,v)) = T, st (p} (u,v)) = Tv10, sg(ptl(u,v)) = T101. (7.13)

for a generic choice of (vg, v19,01) € C? and 7 € RY sufficiently small. By (7.12), the last equation
in (7.13) is just
2v = TVO1 5
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it has a unique solution. Let
ao(t, u) = u?(u?+4t* +tu), a1o(t, u) = u? (4u®+8t>+3tu).
Since the second factors in the two expressions have no common factors,
]u\Q + \t\Q < C|(a0(t,u),a10(t,u))|.
Thus, by (7.10),
| (5" (p1(w,0)), usg, (p1(w, 0))) — (ao(t, u), aro(t, w))| < Cltl|(ao(t, u), aro(t, u))|.

Thus, by a rescaling and cobordism argument as in [21, Section 3.1], the number of small solu-
tions (t,u) of the first two equations in (7.13) with 2v = 71; is the number of solutions (¢,u) of
the system

ap(t,u) = v, aqp(t,u) =0,

for a generic choice of vy € C. Dividing the second equation by u? and then factoring it, we find
that it has two solutions u=u(ty) for each value of t. Thus, the total number of solutions of this
system and the system (7.13) is 4. We conclude that

Cx, (Vsi1,40 BWsi;a,) = 4 X 7| = ANU(5-2, A3, 0). (7.14)

Finally, we compute the contribution of each element ([s],p1,...,ps,ps+1) € X1 with [I|=3. We
can assume that I ={1,2,3}. By lemma 3.23, p; = ps = p3 = ps;1 is a Dy-node of s~1(0). Thus,
we can choose coordinates (z,y) centered at p; so that s = 22y +xy?. We will first describe a
neighborhood of

ﬁ = ([S]’pl’ s ,p5,p5+1’(c@0) € P(WTTPQ)
inside of the one-dimensional space X of curves with § nodes and a choice of a branch at the first
node, which we can take to be the z-axis.

Since the sections ¥1.4,, ¥1.4,, and 1/)1;[)4, are transverse over X; by Lemma 77, a neighborhood
of p in X7 can be parametrized by t= (t1,t2,t3)€C3,
t— ([s", P, ..., 05, ph) so that
soy(P1) =11, sy (P1) =2, siu,(ph) = 6ts.
Thus,
|s'(z,y) — (tiay+toy +t3a® + far ()2?y + fr2(O)zy® + fo3(£)y®)| < Ol (Jz]* + [y|*)

for some C' € C and holomorphic functions fa1, fi2, fog on a neighborhood of the origin such that

f21(0), f12(0) =1, fo3(0) =0

We first change the coordinates in order to turn these three functions into constants. Since the
polynomial z?y+zy? has three distinct factors, there exist functions gs1, g12, goz on a neighborhood
of the origin in C? so that

921(0),912(0) =1, go3(0) =0,
t3x + for () 2?y + fra(t) vy + fos ()Y
= (z+g03(t)y) (t3(x+903(t)y)* + (4903 (H)y+g12(t)y)g21 (t)y).-
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We make the change of variables

= zigg 1, To= gzggtg, T3 =1t3, u=2x+go3(t)y, v=g2(t)y, s = ziEgSt
By the above, a neighborhood of $ in X; can be parametrized by t=(t,ty,t3) € C3,
t— ([s', 0, ..., 05 p) so that
S;y(lﬁ) = t1, Sﬁ,y(p'i) = 21, Spaa (1) = 63, ngy, Sgcyy =2, Sgyy =0.
Let
Pl (u,v) = pl + (u,v) € C?, ao(t,u) = tyuv + tov?

ano(t, u,v) = t1v + 3tzu® + 2uv + v?, o1 (t,u,v) = tiu + 2tov + u? + 2uw.

In particular,

‘(3st(p’i(u,v))—usi(p§(u,v))—vsf}(pﬁ(u,v))) - Oéo(t,U,U)‘ < C‘t‘(‘u’4 + ’U’4)7 (7'15)
{si(pﬁ(u,v)) — alo(t,u,v){ < C\t\(\u!g + ]vlg), (7.16)
|5t (P} (w,0)) — aor (t, u,0)| < Clt[(Jul® + [0]*) (7.17)

for some C' € R*. The intersection of a neighborhood of § with the main stratum of X (where all
the nodes are distinct) is the set of small solutions (¢, x2,y2, 3, y3) of the system of 6 equations,

s'(P1(zi,9:) = 0, so(i(zi,9:) =0, se(Pi(zip)) =0, =23, (7.18)
with (zi,3:) # (0,0) and (22,y2) # (v3,¥3).

We first show neither of the two triples of equations has such a solution with ¢; = 0. Suppose
(t,24,y;) is such a solution. If y; = z;xz; with |z;| <1 and thus x; #0, (7.16) gives

(zit+2)z| <Cltl = |al <Ol
Combining this with (7.17) and then with (7.15), we obtain

ol < Cltallzsl = [tz < Cltl|ail® < Cltlltal - [t22]]
- toz; =0 — x; =0,

which is impossible. If z; =z;y; with |z;| <1 and thus y; #0, (7.15) and (7.17) give
to] < Cltllysl* = |al < Cltlluil-

However, by (7.16),
12z; + 1] < Clt|,

which contradicts the previous conclusion if ¢ is sufficiently small.
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Suppose next that (¢, z;,y;) is a solution of one of the triples of equations with y; = z;x; and |z;| <4.
Since z; #0 in this case, (7.15)-(7.17) give

‘tlzi + tQZZ‘Q‘ < C]tHxi]Q, (7.19)
‘tlzi + 3tsx; + 222 + ,IZZZQ‘ < C|t||$i|2, (720)
‘tl +2t22i+xi+2xizi‘ < C|t||$z|2 (721)

If in addition 4|z;| > 1, these inequalities give

1 Zi 0 t1
1 0 2+Zi 752 < C’t”.%'Z’
1 2z 142z X;

Computing the determinant of the above matrix, we find that this implies that |1+z;| < CJ¢,
provided t is sufficiently small. By (7.19) and (7.21),

‘ — 11+ (1—|—221)$Z‘ < C|t||$l|2 (722)

Thus, by (7.15), (7.17), and the Implicit Function Theorem, the equation

oy sl (P (@i, ziws)) — 227 w7 (38" (P (@i, 26m4) ) — wasl (D (w3, 20)) — ziwasty (ph (w4, z3w3))) = 0

with |14+ 2;| < CJt| has a unique small solution z; = x;(¢, z;); it satisfies |z;| < Clt;|. By (7.20)
and (7.22),
|3t3 + 3(1+2:)2| < Clt]|2s)-

Thus, by (7.15)-(7.17) and the Implicit Function Theorem, the equation
x; % (vt (Pl (24, ziwi)) + zixisty(pﬁ (i, ziz;)) — 28" (P (21, 2w;))) = 0
with z; =x;(t, z;) has a unique solution z; = z;(t) with 142z; small; it satisfies
|(1+2) — t3] < CJt]*.
Finally, by (7.15) and the Implicit Function Theorem, the equation
2 a2 (388 (0 (w4, 2im0)) — 8L (D) (2, 2i%;)) — 28, (P (%5, 21;))) = 0
with x; =x;(t, 2;) and z;=z;(t) has a unique small solution to=t5(t1,13); it satisfies

[t — t1] < C(Ita]*+t3]) [1a]- (7.23)

We next consider the case with y; =z;x;, 4]z| <1, z;=wu;x;, and |u;| <1. Since x; #0,

|t1ui + tzu?.%'i| < C]tHxZ], (7.24)
tru; + 3t + 2uiz; + ulay| < Clt||a, (7.25)
‘tl + (1+2t2u1—|—2u1xl)xz{ < C|t||$z|2 . (726)
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By (7.17), (7.26), and the Implicit Function Theorem, the equation

z; sl (Pl (i, ugzf)) = 0

has a unique small solution x; = x;(t,w;); it satisfies |z;| < C|t1]. Thus, (7.15), (7.24), and the
Implicit Function Theorem, the equation

ty (3 (P (2, 2imi)) —wist (P (2, wi} ) ) —wi b (pf (i, wiw?))) = 0

with x; =x;(t,u;) has a unique small solution u; =wu;(t); it satisfies |u;| < C|t|. Finally, by (7.17),
(7.26), and the Implicit Function Theorem, the equation

x5 sh(ph (s, wixd)) = 0

with x; =x;(t,u;) and u; =w;(t) has a unique small solution t3=t3(t1,t2); it satisfies

lta| < C([tr]+]t2])]t1]. (7.27)

Suppose next that y; = z;x;, 4|z;| <1, x;=w;z;, and |u;|<1. Since x; #0, by (7.19)-(7.21)

‘tl + t22i| < C|t||ui|2|zi|, (728)
|t1 + 3t3u; + 2u;2; + u,zﬂ < C]tHul\z\zl\, (7.29)
{tl + 2t9z; + u;z; + QUZZZQ{ < C|t||uz|2|zz| . (730)

Since
-1,-2

sl (s (0 (i, 2m0)) + ziwsy (] (24, 2610)) — 25" (p] (24, 2i24)) ) = O,

(7.15)-(7.17) and (7.28)-(7.30) give

u

|1 +4z + 27| < Ot
Since 4|z;| <1, this is impossible if ¢ is sufficiently small.

Finally, suppose x; = z;y; with 4|z;| <1. Since y; #0, (7.15)-(7.17) give

|t12’i —i—tz‘ < C\tHyi]Q, (7.31)
|ty + Btszly: + 22y + yi| < CJt[|yil?, (7.32)
|7f12i + 2ty + Z?yi + QZiyi‘ < C|t||yz|2 . (733)

By (7.16), (7.32), and the Implicit Function Theorem, the equation
y; 8% (P (wiyi, yi)) = 0

has a unique small solution y; = y;(t,w;); it satisfies |y;| < C|t;|. Thus, by (7.15)-(7.17), (7.31)-
(7.33), and the Implicit Function Theorem, the equation

yi* (zyist (P8 (2w i) + vash (01 (2 ) — 25" (04 (23w, 94))) = 0

81



with y; = (¢, z;) has a unique solution z; = z;(t) with 4|z;| <1; it satisfies |z;| < C|t||[t1|. Finally,
by (7.15), (7.31), and the Implicit Function Theorem, the equation

y 2 (3" (08 (2w, yi)) — zvss (Y (2w, i) — sty (0 (2393, i) = 0O
with y; =y;(t, z;) and z;=z;(t) has a unique solution to =t5(t1,t3); it satisfies

[ta| < C(|ta|+t3]) [t2]>. (7.34)

In summary, there are 3 possible types of solutions (¢, xz;,y;) for each of the two triples of equa-
tions (7.18). In each case, (z;,y;) is determined by the values of t. Since (z2,y2)# (3,¥3), (T2,Y2)
and (z3,ys3) are of two different types. By (7.23) and (7.34), the two corresponding types of pairs
are not compatible. Thus, (z2,y2) must be of the type corresponding to (7.27), while (x3,y3) of
the type corresponding to (7.23) or (7.34), or vice versa. If t3=t3(¢1,2) as in (7.27), it remains to
solve the equation

ty = to(t1,t3(t1,t2)),

where to =t9(t1,t3) is as in (7.23) and (7.34), respectively. By the Implicit Function Theorem, this
has equation has a unique small solution t9 =t5(¢1) in either case; it satisfies

lta—t1| <Clta]*  and  |to] < C|taf? (7.35)

in the two respective cases. We conclude that the intersection of a neighborhood of p with the
main stratum of X is 4 copies of a punctured disk inside of a neighborhood of p in X (which is
isomorphic to C?). Since there are 3 choices of a branch at a Dj-node and 2 at a simple node, the
intersection of a neighborhood of a D4-node with X is 6 copies of a punctured disk.

It remains to determine the number of solutions of the system of equations

§' (P (u,0)) = 35" (P (u,v)) — s5.(P) (1, 0)) — ysy, (Pl (u, v)) = T,

u?
; u,v)) = TV, Sty(pi(uav)) = TVo1

7.36
i (738)

s
for a generic choice of vy, 119, 91 €C, 7 €RT sufficiently small,
t = (t1,t2(t1), t3(t1, t2(t1))),
and for each of the copies of a punctured disk around p. Let
Dt u,v) = (8" (p1(u, v)), s5(Pi (1, ), sy (P (u, 0))).
For a punctured disk for which the second inequality in (7.35) holds, let

a(ty, u,v) = (truv, v(t +2u+v), u(ts +u+2v)),
Yo=a"10),Zy = {1¥(t1,u,v): (t1,u,v)€Y,, T€EC}UOXC

Since Y, consists of four lines through the origin, the closure Z, C C3 of Z,, is an algebraic subvariety
of dimension at most 2. We show below that for a generic choice of

v = (vo,vo1,v10) €C*—Z,,
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there exists d,, such that the number of solutions of the system (7.36) with |t1],|ul, |v],7 < 0, is
the cardinality of the set a~!(vp,0,0); the latter is easily seen to be 3.

For any reR™, let
B, = {(tl,’U,,U)GCBZ ‘(thuﬂ})lgr}'

It can be assumed that o~ !(1p,0,0) C By /3. Choose a precompact neighborhood
K, C (C*-Y,) N By
of a=1(1,0,0) and let
m,, = min {|a(t1, u,v) = (1,0,0)|: (t1,u,v)eB1—K,} > 0. (7.37)
If TeR™, let
tr = (T3, ta (731, t3 (71311, ta (71/311))),

Ur(t1,u,v) = (7’7152&7 (p’if (7'1/3u,7'1/3v)),7'72/35? (p’if (7'1/3u,7'1/3v)),7'72/3527 (p’if (7'1/3u,7'1/3v))),

er(t1, u,v) = ¥ (t1, u,v) — a(ty, u,v), vy = (1/0,7'1/31/10,7'1/31/01).
By (7.15)-(7.15), (7.27), and (7.35),

[ (t1,u,0) = alty, u,v)| < Coplt] (Jul? [0+ [¢][uf* + ¢ o])

7.38
< 8Cy (Jt|* + ul*+v[*) < 8C¢\(t1,u,v)‘4. (7:38)

For any precompact open subset K C C3—Z,, C*K C C3—Z, is closed in C*>—0. Since the proper
transform of 1 ~!(C*K) in the blowup of C? at the origin is disjoint from the proper transform
of Y, the closure of

_f (t1,u,v) _ i
S’C:{m- (t1,u,v) € K, Uy (C IC)ﬂBl}

is disjoint from Y,. Thus, there exists Cx € R™ such that
|(t1,u,’0)|3 < C’C|a(t1’u’v)‘ v (tl,u’v) € (C*S’CHBI- (739)
Since Cx depends only on C*K, it can be assumed that 3(Ci|v|)Y/?<1. Let

1
~ 16C,Cx

o
By (7.38) and (7.39),
|(t1, u,0) > < C;C|a(t1,u,v)| < 2Ck|viT V (t1,u,v) € w_l(Tu)ﬂBg,C
for any v €K and T€R™. Since
Y(ty,u,v) =TV <— U, (7’71/3t1,771/3u,771/3v) = (V0,71/31/10,71/3V01),
it follows that

{(tl,u,v)eBT_1/35)C: U (t1,u,v) = I/T} C B2(CK’U|V‘)1/3 C Byys.
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By (7.38), )
|er(t1,u,v)| < 80¢71/3‘(t1,u,v)‘ V (t1,u,v) € B, _1/s . (7.40)

For any smooth map ¢: I x B —C3, where =0, 1], and 7 €R, define
U, 4:IxB — C* by
\I]T7¢(77,t1,u,’0) = a(tl’u’v) + nﬁr(tl,%v) - (VOanTl/SVIOanTl/gy(]l) - ¢(n,tlauav)'
If (max @), [v|T1/3,8Cy|T|'/? < m, /3,
woL(0) € IXK,

by (7.40) and (7.37). Thus, if v, is a regular value for v, for a generic choice of small ¢ vanishing
on {0,1}x By, \If;;(O) is a cobordism between ¥ !(v;) and a~ (v, 0,0). It follows that the signed
cardinalities of the sets 1! (7v) and a~!(14,0,0) are the same for all 7€ R" sufficiently small, as
claimed.

For a punctured disk for which the first inequality in (7.35) holds, we replace the variables (u,v)
by (z,y) = (u+v,—v) and the (s, s, s,)-equations by the (—s, s, s, —s;) equations. This reduces
the problem of finding the number of solutions of (7.36) to the case just considered, and so the
number of solutions is again 3. Since every point of X, with |I| =3, is a 6-fold point in X, we
conclude that

Cx; (V541,40 BVs4154,) = 18| X | = 18 NU(5—3, Dy, 0). (7.41)

Taking into account the number of possibilities for ¢ and I in (7.4), (7.8), (7.14), and (7.41) and
plugging these equations in (7.3), we obtain Theorem 1.

7.2 Proof of Theorem 3

Let
— _d —
X:81(57A170)7 X = { p17"'7p5+1)€X: p5+17ép17p27---7p5}
and define the spaces X7 and X; as in (7.1) and the maps 7; as in (7.2). By lemma 3.14, 3.23,

([s],p15- - ps41) € X — Xs(Pst1) = As;
([sl,p1,-. ps1)€Xy, [I| =2 = Xs(Ps4+1) = Da.

In both cases, the remaining points p; are all distinct simple nodes of s71(0). Furthermore, X; = ()
if [I| > 2.

We need to determine the cardinality of the set

S35, Az, o) = {([s],p1, .- ps+1) EX: Xs(psy1)=Az}
= {([5],p1,...,p5+1)6X det V25|p5+1 0}

the first equality is a special case of Proposition 3.1. By Lemma 2.17, the restriction of the section
1/}5+1;A2 € P(X7 7(-67%2 ® 7T§+1(7;22d®A2T*P2))7 ¢5+1;A2 ([s]aph cee 7p5+1) - det(vzs‘pg_H) P
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to X is transverse to the zero set. Thus,

N8, Az, 0) = |S{(6, Az, 0)]

D e . 7 (7.42)
= (e(m7p © T (V@ N T*P?)), [X]) — Cox (V511,42),

where the last term is the vs.1.4,-contribution to the Euler class from

oIX=X-x= |]x.
0#£1C{1,...,6}

The first term on the right-side side of (7.42) gives the first two terms on the right-hand side of
the expression in Theorem 3.

If i=1,2,...,6 and ([s],p1,...,ps, Ps+1) € Xi, Pi=Ds+1 is a tacnode of s~1(0) by Proposition 3.14.
By the proof of Theorem 1, a neighborhood of this point in X can be parametrized by t € C,

t— ([StLpzi? s 7pgvpg+1) s.t. stmm(pg-i-l) = 8t27 sfvy(pg—f—l) =0, SZy(pfS+1) = 2;
see (7.12). Thus, it is immediate that the equation
2 _
det (V St|pg+l) =25t (phq) =TV
has 2 small solutions for all »€C* and all 7€ R™ sufficiently small. We conclude that

CXZ' (¢5+1;A2) = 2|XZ| = 2Nd(6_1a A3’ J)' (743)

Finally, we compute the contribution of each element ([s],p1,...,ps,ps+1) € X7 with |[I| =2. We
can assume that I ={1,2}. By lemma 3.23, p; = ps =ps,1 is a Dg-node of s~1(0). By the proof
of Theorem 1, a neighborhood of this point in X consists of 6 copies of C, each of which can be
parametrized by t€C,

t— ([s'Lp1s D5 Do1) st se(Phyn) =0, sg(P5y) =t
Thus, it is immediate that the equation
det (V2st\pg+1) = Si.y(pg+1)2 =TV
has 2 small solutions for all »€C* and all 7€ R™ sufficiently small. We conclude that
Cx, (Vsi1.4,) = 62| X/| = 12N (51, Ay, 0). (7.44)

Taking into account the number of possibilities for ¢ and [ in (7.43) and (7.44) and plugging these
equations into (7.42), we obtain Theorem 3.
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7.3 Proof of Theorem 2

Let
_ —d _
XZSl((SaAl)O-)a X = { pla"'ap5+1)€X: p5+17ép1ap2,"'ap(5},

define the spaces X; and X; as in (7.1) and the maps 7; as in (7.2), and let
7 P(nj TP?) — X (7.45)
be the bundle projection map. By lemma 3.14 and 3.23,

([S]7p17' .. 7p5+1)€Xi - Xs(p5+1) = Ag,
([s],p1,---sps+1)€Xr, |[I|=2 = xs(ps+1) = Da.

In both cases, the remaining points p; are all distinct simple nodes of s71(0). Furthermore, X; = ()
if |[I| > 2. Choose a generic section ¢ of the hyperplane line bundle

_—d
y — PS1(0, A1, 0) = P(n},,TP?),

and let X¢ = ¢71(0).

We need to determine the cardinality of the set

PSE(8, A1, 0,1) = {([s],p1, - -1 Ps11, ) € Xglx: V28|ps,, (v,0)=0 YveL}

this equality is a special case of Proposition ?7. By Lemma 3.1 and 2.14, the restriction of the
section

V514, € F(X,’7*2®7T*(7T§’Y%®7T§+1’Y;§l))’
{¢5+1;A1 ([8],]917 e 7p5+17£) }(U®2) = VQS‘IMH (U7 ’U) bl

to X¢| x is transverse to the zero set. Thus,
N, Ay, 0,1) = |PSE(5, A1, 0,1)|
= <€ G ‘@ 77071)®7T5+17 )), [X¢]> - Caf% (¢5+1;A1)’ (7.46)

* * Ad
= (A2 + T (T Ap+dms  Ap2)), [PS1 (6, A1, 0)]) — Cox, (Vs11.4,)>
where the last term is the ¢g ;. Al—contribution to the Euler class from
0Xy=Xo— Xolx = || Xolx,-
0#A1C{1,...,6}

The first term on the right-side side of (7.46) gives the first two terms on the right-hand side of
the expression in Theorem 3.

Ifi=1,2,...,6 and
]5 = ([S]7p17' . 7p57p5+17£) S Xd)’X, 5
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pi =ps41 is a tacnode of s7(0) by lemma 3.14, while ECTMHIP’2 is a line determined by ¢. Since
X; C X is a finite collection of points, £ is not tangent to s~1(0) at psy1 and thus ¢6+1;A1 does not
vanish at p. We conclude that

CX¢‘X1. (w(s-i-l;Al) = 0. (747)

If |I|=2 and
]5 = ([S]’pl" .. apéap(s-i-lag) € X¢|X1 )

ps+1 is a Dy-node of s71(0) by lemma 3.23, while ¢ C T}, +1IP’2 is a line determined by ¢. By the

proof of Theorem 1, a neighborhood of this point in X¢ consists of 6 copies of C, each of which
can be parametrized by t€C,

L — ([stLptl? s 7pg7pg+1) s.t. stxx(ngrl) = 07 Siy(ngrl) = t? |S§/y(pg+1)| < Ct.

Thus, it is immediate that for a generic choice of n€ C (corresponding to a generic choice of ¢) the
equation
2
\Y st]ng (ne1+ez,ne1+ez) = v,

where e, ea € C? are the two standard coordinate vectors, has 1 small solution for all ¥ € C* and
all TeR™ sufficiently small. We conclude that

CXI (1/}6+1;A~1) =6- |XI| = 6Nd(5_17A47 U) (748)

Taking into account the number of possibilities for I in (7.48) and plugging these equations
into (7.46), we obtain Theorem 3.

7.4 Proof of Theorem 4

Let 7 be as in (7.45). Choose a generic section ¢ of the hyperplane line bundle
5 — B8y(6, A1, 0) C P(m}, TP?).

Let
X =¢(0), X ={([s],p1,---,ps+1,0) €EX: psy1#p1,p2,---,Ds }

and define the spaces X7 and X; as in (7.1). By lemma 3.14, 3.23 and 3.27,

([sl,p15- -+, psy1,0) €X; = Xs(Ps4+1) = A3, Ay, Dy ;
([S]7p17"'7p5+17£)€X17 ’I’ =2 = Xs(p5+1):D4aA5aD5;
([S]’pl"",p&i—l’é)eXIa |I| =3 = Xs(p5+1):D6-

In all cases, the remaining points p; are all distinct simple nodes of s~1(0). Furthermore, X; = ()
if [I| > 3.

We need to determine the cardinality of the set

PSE(8, Ay, 0,1) = {(s],p1,-- - ps41, ) EX: V25|p5+1(v,w):0 Vvel, wETpHII[ﬂ/E};
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this equality is a special case of lemma 3.1. By Lemma 2.17, the restriction of the section
Ysi1,4, € D(X, 7@ (r* 75, TP?/3)" @ 77*(”37%®7T§+1’Y;j))7
{14, ([8],P1, - - -, Ps41, 0) (0, w) = Vs, (v, W),
to X is transverse to the zero set. Thus,
N6, Ay, 0,1) = [PSE(3, As, 0, 1)|

~ % * % ~ 0\ ok * * % * * v (749)
= (e(¥@(r*m5 TP /3)" @7 (W07D®775+17P2d)),[X]> _CaX¢(¢6+1;A2)a

where the last term is the vs1.4,-contribution to the Euler class from

X=X-X= |_| X7,
P£IC{1,...,6}

The first term on the right-side side of (7.49) gives the first two terms on the right-hand side of
the expression in Theorem 4.

Ifi=1,2,...,6 and
]5 - ([S]7p17' .. 7p57p5+17£) S Xia

pi = ps41 is a tacnode, Ay, or Dy-node of s71(0) by lemma 3.14, while £ C Tp(SHPZ is in the zero

set of ¢. If xs(pst1) = A4, Y541.4, does not vanish at p for a generic choice of ¢, and so p does

not contribute to (7.49). If x,(pss1)=As, £ CTp,, s 1(0). Thus, the set of points of this type is

isomorphic to IP’Sg(&—l,Ag, 0,1). By the proof of Theorem 1, a neighborhood of p in X can be
parametrized by t€C,

t— ([St]’ptl’ s ’pg’pg-i-l’ {y=2itz}) s.t. Sgcac(pg-i-l) = 8t2’ Sgcy(pg—f—l) =0, SZy(pg—f—l) =2
see (7.12). Thus, it is immediate that the equation

v25t|p3+1 ((1,2it),(0,1)) = 1v

has 1 small solution for all » € C* and all 7 € R™ sufficiently small. We conclude that the contribution
of the subset of points of type As in X; is

CXi,Ag (T;Z)5+1;A2) = 2Nd(6_15 A3’ J)' (750)

Suppose next that xs(psi1)=Ds, Cx0 is one of the tangent directions of s71(0) at ps. 1, £=]a, 1]

for some generic a € C*. By the proof of Theorem 1, a neighborhood of p in X is isomorphic a
hypersurface in C3 with coordinates t= (t1,t2,t3) such that

t— ([St]aptla s apg’pg—f—l’ [a’t’ 1]) with S;x(pg—i—l) = 0’ Siy(Psz) = tlﬂ SZy(pg—i—l) = 2t2'

Furthermore, either t3=t3(t1,t2) and (7.27) holds or to=ta(t1,t3) and (7.23) or (7.34) holds. Since
[a,1] is a tangent direction to s~1(0) at pgﬂ =0,

2t1a’ + 2ty = 0. (7.51)
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Unless a=a" =1, this equation and (7.23) imply that ¢; =0; unless a =0, this equation and (7.34)
imply that ¢; =0. However, by the proof of Theorem 1, the triple of equations (7.18) has no small
solutions (¢, x;,y;) with ¢t =0 and (z;, y;) #0; thus, neither of these two cases occurs. On the other
hand, if t3=1t3(t1,t2) is as in the case corresponding to (7.27), by the Implicit Function Theorem
the equation (7.51) with t=(t1,t2,t3(t1,%2)) has a unique small solution ¢y =t2(¢1). In particular,
a neighborhood of p inside of X is parametrized by 3 copies of C (one copy for each choice of a
branch of s~1(0) at ps,1 to be identified with Cx0, not for each of the 3 cases just considered). It
is immediate that the equation

shy(P511) — (2t1a" + 2t9) = —a'ty = 710,

with t=(t1,t2(t1),t3(t1,t2(t1))) has 1 small solution for all »v€C* and all T€R™ sufficiently small.
We conclude that the contribution of the subset of points of type Dy in X; is

Cx;,ps (V5+1,4,) = 3N (0—1, Dy, 0).

Combining this with (7.50), we find that

Cx; (Y511.4,) = 2N (01, 43,0) + 3N (61, Dy, 0). (7.52)

If |I| =2 and
]5 - ([S]7p17' .. 7p57p5+17£) S Xfa

ps+1 is a Dy, As, or Ds-node of s~1(0) by lemma 3.23, while ¢ C TpHIPQ is in the zero set
of ¢ If xs(ps+1) = As, ¥s4+1,4, does not vanish at p for a generic choice of ¢, and so p does not
contribute to (7.49). If Xs(pst1) = Da, £ CTps,, s '(0); so, the set of such points is isomorphic to
PS4(5—2, Dy, 0,1). By the proof of Theorem 1, a neighborhood of such a point in X consists of

4 copies of C, each of which can be parametrized t€C,

t— ([St]api, cee ,Pfs,Ple, (c XO) s.t. Sfm:(pg—l—l) = 0’ vay(pg—i—l) =t.

Since the equation
t (ot
s:vy(péJrl) =TV

has 1 small solution for all v € C* and all 7 € R sufficiently small, the contribution of the subset
of points of type Dy in X7 is

CX]7D4 (1/}54»17,42) = 4Nd(5_27 D47 g, 1)

The contributions from the other two types of boundaries are computed similarly. They do not
arise when enumerating curves with up to 5 nodes.
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Appendix A

Low-degree checks

A.1 Curves with one singular point

1. Curves with 1 node

there are no nodal lines;

ST Y
I

1:
2: the number of line pairs that pass through 4 general points is %(3) =3;
3:

the nodal cubics passing through 8 general points are the rational cubics passing through
these points; their number, 12, can also be computed through Kontsevich’s recursion
[16, Theorem 10.4].

e Curves with a node on a fixed line

d=1: there are no nodal lines;

d=2: the number of line pairs that pass through 3 general points and meet on a general
line is (g‘) =3.

These are all special cases of theorem 1 with § = 0.

2. Curves with a cusp.

1: There are no lines with a cusp.

d=2: The only way a conic can have a cusp is if its a double line. There are no double lines
through three generic points

d=4: The number of quartics with a cusp is 72. This is same as the number of genus two
curves with a cusp. This is given to be 72 in page 19 of [19].

These are all special cases of theorem 3 with § = 0.
3. Curves with a tacnode.

d=3: The number of conics that pass through four points and tangent to a fixed line is 2.
The number of lines that pass through a given point and tangent to a given conic is 2.
Hence the number of cubics passing through 6 points having a tacnode is

() <2+()-e

92



These are all special cases of theorem 5 with § = 0.

4. Curves with an As-node.

d=3: There are no cubics with a A4-node.

These are all special cases of theorem 8 with § = 0.

5. Curves with a D4-node.

2: There are no conics with a (3, 3) node.

3: The only way a cubic can have a (3,3) node is, if it breaks into three distinct lines

intersecting at a common point. The number of such configurations passing through 5

points is
1
- X o X s = 15.
3 2 2

6. Curves with D4-node on a line

d=2: There are no conics with a D4 node on a line.

d=3: The number of triple lines, having a common point at a given line and passing through

four points is

(-

That verifies the claim.

These are all special cases of theorem 6 with § = 0.

A.2 Curves with two singular points

1. Curves with 2 nodes.

: The only way a conic can have 2 nodes is if it is a double line. There are no double lines

through 3 generic points.

: The only way a cubic can have 2 nodes is if it breaks into a line and a conic. Hence the

number of cubics with 2 unordered nodes is

)

2. Curves with two nodes, one on a line.

3. Curves with one node and one cusp.

d=3: There are no cubics with one node and one cusp.

4. Curves with one node and one tacnode.

d=23: There are no cubics with one node and one tacnode.

93



d=4: There are two possibilities here. The curve could break into a line and a cubic. The
number of lines through a given point and tangent to a fixed cubic is 6. The number of
cubics through through 8 points, tangent to a given line is 4. Hence the total number
of quartics with one node and one tacnode that breaks into a line and a cubic is

10 10
4 = 240.
<1>x6+<2>x 0

It is also known that the number of genus zero quartics with one node and one tacnode
is 1296. Hence the total number of quartics with one node and one tacnode is 1536.

These are all special cases of theorem 1 with § = 1.

A.3 Curves with three singularities

1. Curves with three nodes.

d=3: The only way a cubic can have three nodes is if it breaks into three distinct lines. The
number of such configurations through six points is

5 (o) ()< () -m

Hence the number of cubics with three unordered nodes is 15.
These are all special cases of theorem 1 with § = 2.

2. Curves with two nodes and one cusp.

d=3: There are no cubics with two nodes and one cusp.

d=4: It is known that the number of genus zero quartics with two unordered nodes and one
cusp is 2304. That verifies the claim.

3. Curves with two nodes and one tacnode.

d = 4 : This passes through 9 points. A smooth quartic has genus 3. Since a tacnode contributes
2 to the genus, the curve has to break. There are three possibilities here.

e It could break into two conics tangent to each other. The number of conics through 4
points, tangent to a given conic is 6. Hence the total number of ways is

9
6 = 756.
()"

e A nodal cubic could go through 8 points and a line through the remaining point tangent
to the cubic. The number of lines through a given point tangent to a nodal cubic is 4.
The number of nodal cubics through 8 points is 12. Hence the total number is

(2) x4 x 12 = 432.
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e A line could pass through two points and a nodal cubic through the remaining 7 points,
tangent to the given line. The number of nodal cubics through 7 points tangent to a
given line is 36. Hence the total number is

(Z) x 36 = 1296.

756 + 432 4 1296 = 2484.

Hence the total number is

These are all special cases of theorem 3 with § = 2.

A.4 Curves with four singularities

1. Curves with four nodes.

d=23: There are no cubics with four nodes.

d=4: There are two possibilities here. The curve could break into two conics. The possible

L X 10 = 126.
2 5

It could also break into a nodal cubic and a line. The possible configurations for that

10
12 = 540.
(+)-

Hence the total number of quartics with four unordered nodes is

configurations for that are

are

126 4 540 = 666.

2. Curves with four nodes, one on a line.

d=4: There are four possibilities here. First of all we observe that there are nine points.

e The curve could break into two conics. One of the conic passes through 5 points, the
remaining one has two choices. Hence the total possibilities are

9
2 = 252.
()"

The curve could break into a nodal cubic and a line. There are three ways this could
happen.

e The nodal cubic goes through eight points. The line has three choices. Hence the total

(2) x 12 x 3 = 324.

e The line goes through two points. The cubic goes through seven points, with the node
on the given line. Hence the total possibilities are

9
6 = 216.
(»)"
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e The line goes through two points. It meets the given line at some point p. The nodal
cubic goes through the remaining seven points and p. Hence the total possibilities are

9
12 = 432.
(»)"

Hence the total number of quartics with four nodes one of them on a line is

252 4 324 4 216 + 432 = 1224.

These are all special cases of theorem 1 with § = 3.
3. Curves with three nodes and one cusp.

d=4: The curve has to break. This goes through nine points. A cubic with a cusp goes
through 7 points and a line passes through the remaining point. The number of cubics
with a cusp through 7 points is 24. Hence the total number is

9
24 = 864.
()

d=>5: The number of degree five, genus two curves with one cusp is given to be 239400 in page
19 of [19]. This agrees with our computation.

These are all special cases of theorem 3 with § = 3.

A.5 Curves with five singular points

e Curves with five nodes.

d=>5: There are two possibilities here. The curve could be genus one. By the theorem in page
212 of [3], the number of degree 5 genus one curves is 87192. The other possibility is
that the curve could be nodal quartic and a line. The number of such curves is

15
(13> x 27 = 2835.

87192 + 2835 = 90027.

Hence, the total number is

This also agrees with the number stated in page 5 of [1].

These are all special cases of theorem 1 with § = 4.
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