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Abstract of the Dissertation

The Ahlfors Iteration for Conformal Mapping

by

Christopher Michael Green

Doctor of Philosophy

in

Mathematics

Stony Brook University

2011

The Riemann Mapping Theorem states that for any proper, simply connected planar

domain there exists a conformal mapping from the disk onto the domain. But can this

map be explicitly described? For general domains, there is no obvious answer. However,

if the domain is the interior of a simple polygon, a convenient formula for the Riemann

map was discovered independently by Schwarz and Christoffel. In this dissertation, we

present a local quadratically convergent algorithm, the Ahlfors Iteration, based on the theory

of quasiconformal maps in the plane, to compute the Schwarz-Christoffel mapping. This

algorithm will also apply to a larger collection of simply connected Riemann surfaces. The

Ahlfors Iteration improves upon current algorithms that compute the Schwarz-Christoffel

map, in that, it is proven to converge, has a simple iterative form, and is easy to implement.
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CHAPTER 1

Introduction

1.1. Conformal Mappings and the Riemann Mapping Theorem

In this dissertation we seek to describe a certain class of conformal mappings defined on

the complex plane, C, or the Riemann sphere, Ĉ = C ∪ {∞}. A C1 mapping f : U → V of

domains in C is called conformal if for all z = x+ iy ∈ U ,

∂

∂z
f(z) = fz :=

1

2
(fx(z)− ify(z)) 6= 0,

and

∂

∂z
f(z) = fz :=

1

2
(fx(z) + ify(z)) = 0.

We say f is conformal in a neighborhood of ∞ if f(1/z) is conformal in a neighborhood of

0. Thus, f is a holomorphic function whose complex derivative is everywhere nonzero. As

a consequence, conformal mappings are homeomorphisms onto their images. An alternative

and more geometric definition of conformality states that a C1 function, f , is conformal at

z if for every pair of oriented curves intersecting at z, the oriented angle is preserved under

the image of f . Then f is said to be conformal in the whole domain if it preserves angles at

every point. For a simple example of a conformal map, see Figure 1.1.

f HzL = z2

Figure 1.1. The conformal map z2.
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Möbius transformations are a class of conformal maps defined on all of Ĉ. Fixing

a, b, c, d ∈ C such that ad− bc 6= 0, the Möbius transformation

z 7→ az + b

cz + d

is conformal. One can easily show that any Möbius transformation is a composition of a

translation, a rotation, and a scaling, and that the image of circles and lines must also be

circles or lines. Furthermore, the inverse of a Möbius transformation is still Möbius and so

is the composition of two such maps.

An important Möbius transformation is the Cayley transform defined by

(1.1) C(z) = z − i

z + i
.

When C is restricted to H = {z ∈ C : Imz > 0}, it sends H conformally onto D. We say that

two domains, U and V , are conformally equivalent if there exists a conformal mapping from

U onto V . Therefore, C gives us the conformal equivalence of H and D.

The preservation of angles definition of conformality allows the concept of conformal maps

to be extended to higher dimensional Euclidean space, Rn with n ≥ 3. We can also extend

Möbius transformations by defining them to be the composition of translations, scalings,

orthogonal transformations, and inversions. In 1850, Liouville characterized conformal maps

in R
n, for n ≥ 3, by proving that any conformal map defined on a domain in R

n must be a

Möbius transformation [25]. As a result, the unit ball in R
n is conformally equivalent only

to other balls and half-spaces. However, the equivalence issue is quite different in C.

Riemann considered conformal equivalence of domains in C in his 1851 thesis and gave a

flawed proof that any simply connected domains other than C and Ĉ are conformally equiv-

alent [19]. However, the statement is still true. It was not until Osgood’s 1900 paper, [29],

that a rigorous proof was given of what is now called the Riemann Mapping Theorem. The

modern formulation states that for any simply connected domain, U, in Ĉ, whose boundary

has at least two points, there exists a surjective conformal mapping f : D → U . Furthermore,
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f is unique up to specifying that f(0) = w0 ∈ U and fz(0) > 0. This is quite a remarkable

result considering the infinite complexities one could construct for the boundary of U .

The downside of Riemann’s theorem is that it proves the existence of such mappings but

doesn’t give any closed form solutions. However, from the work of Christoffel and Schwarz

we have a convienent formula if our simply connected domain is the interior of a polygon.

1.2. The Schwarz-Christoffel Formula

Edwin Christoffel (1867) and Herman Amandus Schwarz (1869) independently discovered

the explicit conformal map from the disk or the upper half plane to any simple polygon in

the plane [13]. Any such mapping will be called a Schwarz-Christoffel (SC) map or formula.

Let P denote the interior of a simple polygon with n vertices taken in counterclockwise order.

Let αjπ > 0 be the interior angle at the jth vertex so that we must have

n∑

j=1

αj = n− 2.

Then the conformal map from D to P must be given by

(1.2) S(z) = A

∫ z

0

∏n

j=1

(
1− ζ

pj

)αj−1

dζ + B,

for some pj ∈ ∂D, A ∈ C \ {0}, and B ∈ C. The integral can be taken along any path from

0 to z because the integrand is holomorphic in D. Using the Cayley transform (1.1), we get

a similar Schwarz-Christoffel formula from H to P given by

(1.3) S(z) = A

∫ z

0

∏n

j=1
(ζ − xj)

αj−1 dζ + B,

where xj ∈ R. The constants may, of course, be different than those in (1.2). For proofs

that these formulas do in fact give the correct conformal maps see [32].

The pj (or xj) above are called the prevertices or the Schwarz-Christoffel parameters

for the polygon P . By Carathéodory’s Theorem [16], S has a continuous extension to the

boundary and, in fact, is a homoeomorphism of the boundary of the domain onto ∂P . If vj
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is the jth vertex, then S(pj) = vj. Also, note that if H is the domain of S, then ∞ can also

be a paramter and, in this case, the corresponding term in the product in (1.3) is left out.

Suppose two SC maps, S1 and S2, have image polygons, P1 and P2, that differ by a

Euclidean similarity, i.e. there are complex numbers a and b such that m(P1) = P2, where

m(z) = az + b. Then S−1
2 ◦ m ◦ S1 is a mapping of H onto itself and can be extended

to a conformal mapping of Ĉ by the Schwarz reflection principle. The resulting map must

be a Möbius transformation. Therefore, the parameters of S1 and S2 differ by a Möbius

transformation. Conversely, if S is a SC transformation onto P and m is Möbius and sends

H to itself. Then S ◦ m is a conformal mapping of H onto P and must be equal to a SC

mapping with different parameters.

As an example of a SC mapping, let P be a square, then up to solving for the correct

scaling constants, the SC map from the D to P is

S(z) =

∫ z

0

√
(1− ζ)(1 + ζ)(1− ζ/i)(1 + ζ/i)dζ,

with parameters 1, i,−1, and −i. The image of D under this map is shown in Figure 1.2. A

more compicated SC mapping is seen in Figure 1.3.

Figure 1.2. A Schwarz-Christoffel map to a square.

The Schwarz-Christoffel formula gives a compact and explicit expression for the Riemann

map to a polygon if the parameters are known beforehand. However, this is almost never

the case. Finding these parameters for a given polygon is known as solving the parameter

problem and it is this problem that shall be considered in this dissertation. Note by the

comments above, in order to find the parameters, it is enough to know them up to a Möbius

transformation. Any Möbius transformation is uniquely determined by where it sends three
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Figure 1.3. A Schwarz-Christoffel map to a 12-gon.

points, so fixing three points in the set of parameters uniquely determines the others. So

instead of solving for the n parameters of an n-gon, we only need to find n − 3 parameters

after fixing three.

Given a polygon and a fixed normalization of its parameters, one may wonder about the

separation between parameters in ∂D. It turns out that if the polygon is highly elongated, as

in Figure 1.4, or has multiple “sections” connected by small pathways, as in Figure 1.5, the

distance between parameters can become arbitrarily small, which poses an obvious difficulty

if one wants to work with SC maps on a finite-precision computer. This bunching up of

parameters is referred to as crowding in the literature.

−L− i

−L+ i

L− i

L+ i

0

Figure 1.4. Polygon with crowded parameters for large L.

Parameter separation is intricately connected to the concept of harmonic measure (See

Appendix A.3). Consider the polygon, PL, in Figure 1.4 and suppose the SC mapping from

the disk to PL sends 0 to 0. Then the distance between consecutive parameters, measured in

∂D so that whole circle has length 1, is precisely the probability that a particle undergoing

Brownian motion starting at 0 in PL hits the side, E, of PL corresponding to the chosen
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Figure 1.5. Another polygon that has crowded parameters.

consecutive parameters before hitting any other part of the boundary. This probability is also

called the harmonic measure of E in PL at 0. Furthermore, there are explicit estimates for

the harmonic measure in this special case. Namely, let E be either of the vertical sides of PL,

then the harmonic measure at 0 of E and, hence, the parameter separation of the prevertices

of E is O(e−
π
2
L) [16]. In other words, the parameters converge together exponentially fast

in L.

Similarly, for the polygon in Figure 1.5, if 0 was sent to the distinguished point in the left

section of the polygon, then, qualitatively, the probability that a particle starting at 0 and

undergoing Brownian motion would hit any of the sides in the right section of the polygon

should be very small. And, hence, the parameters corresponding to the right section should

be very close together on ∂D. The new algorithm to be introduced below will attempt to

avoid this crowding problem.

Other algorithms have been devised in the past to solve the parameter problem and a

few will be reviewed in the next section. Each of the algorithms that follow suffer from one

of two drawbacks; either the algorithm is easy to implement numerically but not proven

to converge, or proven to converge but very difficult to implement. The new algorithm

presented in this disseration will be shown to converge and can be easily implemented on a

computer.

1.3. Other Methods

Davis’s Method [10] is a simple iterative scheme to find the SC parameters. Fix a

polygon, P , with vertices v1, . . . , vn. Suppose θ
(j)
1 , . . . , θ

(j)
n are a guess for the arguments of
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the SC parameters on ∂D. Then using this guess and the angles from P , applying a SC map

gives us another polygon with vertices v
(j)
1 , . . . , v

(j)
n . We update the guess parameters by

θ
(j+1)
k+1 = θ

(j+1)
k + k

(
θ
(j)
k+1 − θ

(j)
k

) |vk+1 − vk|
|v(j)k+1 − v

(j)
k |

,

where k is a normalization constant used in order to have the differences in consecutive

angles sum to 2π. So, if a side of the guess polygon is too long (or too short) then the

iteration compresses (or expands) the distance between the corresponding parameters. If

one fixes a normalization of the parameters, then Davis’ method can diverge, which was

shown by Howell in [24]. However, it is not known if Davis’s method converges if one allows

a renormalization of the parameters.

The CRDT algorithm of Driscoll and Vavasis [14] is a very robust method for solving the

parameter problem. It has not been proven to converge but there has yet be a case when it

diverges, unlike Davis’s method. CRDT stands for cross-ratios and Delaunay triangulations.

Delaunay triangulations are a special kind of polygonal triangulation that maximizes the

angles in the triangles (See Section 4.1). Cross-ratios are also important to the algorithm

presented in this dissertation and are detailed in Section 2.4. In short, a cross-ratio is a

unique complex number assigned to an ordered 4-tuple of distinct points in Ĉ.

The CRDT algorithm utilizes cross-ratios in the following way. Suppose we have a n-gon,

P , with a fixed triangulation. Then from the n−2 triangles one can form n−3 quadrilaterals

(See Section 2.4). Taking the cross-ratios of the prevertices of each quadrilateral gives

n− 3 real numbers. It is enough to know these numbers and the quadrilateral structure to

recreate the polygon and prevertices. So, for a given polygon and quadrilateral decomposition

solving the parameter problem is the same as solving for the appropriate cross-ratios. Let F

denote the function from the parameter cross-ratios to the cross-ratio of the corresponding

quadrilateral in the approximate polygon. If z0 is the set of cross-ratios of the quadrilaterals

in P and c0 is the correct parameter cross-ratios, then c0 is a solution to the nonlinear

equation F (c) − z0 = 0. One can then use generic numerical nonlinear solvers to find the

solution.

7



Q3

Q1

Q2

Figure 1.6. Avoiding the effects of crowding by using cross-ratios.

CRDT avoids the crowding problem described above by renormalizing the paramters in

∂D as follows. Suppose we have an n-gon, P , with quadrilaterals, Q1, . . . , Qn−3, and we know

the corresponding cross-ratios of the prevertices of each Qj. From these cross-ratios, we can

construct P up to a similarity. To do so, for each Qj, normalize three of its prevertices in ∂D.

Then from the cross-ratios, the fourth prevertex, as well as the rest of the parameters of P ,

are uniquely determined (See Section 2.4). Furthermore, one can compute an accurate image

of the vertices of Qj. Fixing Q1, we can then reassemble overlapping quadrilaterals using

affine maps to construct an accurate image of P . See Figure 1.6. This may not have been

possible if we had fixed one normalization of the prevertices of P because severe crowding

could cause some parameters to be indistinguishable to a finite-precision computer.

Bishop’s Fast Mapping Algorithm [6] (FMA) solves the parameter problem for an n-

gon in O(n) time in a much different way than CRDT and Davis’s method. Both of the

previous schemes take a parameter guess, apply a SC mapping to get another polygon, and

use some geometric characteristic to compare it to the target polygon in order to update

the guess. For CRDT, the characteristic is the cross-ratio of quadrilaterals, and for Davis’s
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method it’s side length. Instead of taking a conformal map to a guess polygon, the FMA

creates a quasiconformal map (See Section 2.2 for an overview of quasiconformal mappings

in the plane) from H to the target polygon sending the prevertex guess to the corresponding

vertex in P . Let f : H → P be the constructed map and S : H → P is the correct SC

mapping. Then g = S−1 ◦ f : H → H is a quasiconformal mapping of H that sends the

guess prevertices to the true prevertices and satisfies a partial differential equation called the

Beltrami equation (2.7). The FMA partially solves this equation to obtain an approximation

g̃ to g such that g̃ maps the guess prevertices closer to the true ones in a quasiconformal

sense. A new mapping f is then constructed and the algorithm iterates again.

The FMA has many advantages over the previous algorithms. For one, Bishop proves

that it globally converges to the correct parameters, which makes it the only proven globally

convergent algorithm for the parameter problem. Another advantage is that it is a linear

time algorithm depending only on the number of vertices. However, the FMA is highly

complex and has yet to be implemented.

The algorithm presented in this dissertation, the Ahlfors Iteration, will draw from the

advantages of each of the three previously presented methods. Like Davis’s method, it

will have a simple iterative structure. It will incorporate cross-ratios of quadrilaterals as

in CRDT, which will avoid reliance on a fixed embedding of prevertices and, thus, avoid

crowding. Like the FMA, it will be quadratically convergent and rely heavily on the theory

of quasiconformal mappings. However, the convergence will be local in the sense that it will

depend on the particular target polygon.

We would be remiss not to mention some of the myriad applications of Schwarz-Christoffel

mappings. The classical use of SC mappings is the solution of Laplace’s equation in mathe-

matical physics, solutions to which are invariant under conformal mappings [30], [13]. Other

physical applications include electromagnetics, heat transfer, and fluid flow [30]. SC maps

can also be used in meshing problems by first meshing the disk and then transforming the

mesh using a SC map [7]. Schwarz-Christoffel mappings can even be used for shape analysis

in computer vision [31]. Of course, in order to use a SC map one needs the parameters and

9



before detailing our new algorithm to find them we must review some background material.
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CHAPTER 2

Background

2.1. Polygonal Riemann Surfaces

The classical Schwarz-Christoffel formula describes the conformal map from the disk or

half-plane to the interior of any simple polygon in the plane. However, we do not need

to restrict ourselves to planar domains but can apply the algorithm to come to a class of

Riemann surfaces, whose construction we now discuss. For general background on Riemann

surfaces see Appendix A.2. The surfaces we create will be assembled from triangles in C. A

triangle in the plane has two possible orientations based upon the ordering of its vertices.

We will always use counterclockwise oriented triangles with respect to its interior.

Suppose two triangles, T1 and T2, in C share two vertices such that T1∩T2 is the common

line segment between those vertices. We identify points along these corresponding edges to

create a quadrilateral. Continuing in this way we “glue” other triangles to the boundary

of the surface already constructed such that only one edge of a new triangle is identified

with the previous surface. See Figure 2.1. The interior of the resulting space is a Riemann

surface. See [3] for a slight generalization.

Figure 2.1. Two Riemann surfaces constructed from overlapping triangles.
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A natural graph structure arises from these surfaces if each triangle represents a node

and nodes are connected if triangles share an edge. In fact, we can embed such a graph in

the surface by letting the centroid, the average of the vertices in C, of each triangle be the

node and connect centroids if edges intersect. See Figure 2.2. For a given surface, P , denote

this graph by GP .

Figure 2.2. A surface, P , with its embedded graph.

We now define the set of surfaces we will use throughout this dissertation. For positive

integers n ≥ 3, let Pn denote the set of all Riemann surfaces constructed as above with

n − 2 triangles such that for all P ∈ Pn, GP is a tree. A surface in Pn will be called a

polygonal Riemann surface. Recall that by definition a graph is a tree if any two nodes can

be connected by a unique non-self-intersecting path.

Lemma 2.1.1. If P ∈ Pn, then P is simply connected.

Proof. This lemma follows from a quick induction argument. If n = 3, then P ∈ Pn is

just a planar triangle so must be simply connected. If n > 3, then P ∈ Pn can be written as

a union T ∪ S where T is a triangle and S ∈ Pn−1 such that only one edge of T is identified

with a side of the boundary of S. Assume for induction that S is simply connected. T ∩ S

is a line segment and, hence, path connected. Since P is the union of simply connected sets

whose intersection is path connected, P must also be simply connected by the van Kampen

theorem [21]. �

12



As a consequence of the lemma, the boundary of any polygonal Riemann surface must

be a closed polygonal curve. The angle at any vertex is the sum of the angles of the triangles

that share the vertex in the construction of the surface. Furthermore, note that every simple

n-gon is also in Pn because every polygon can be triangulated into n− 2 triangles.

Why is it necessary to know that every surface in Pn is simply connected? Well, it follows

from the Uniformization Theorem that every P in Pn must be conformally equivalent to

either the open unit disk, the complex plane, or the Riemann sphere. For a proof of the

Uniformization Theorem see [15] and for its history see [19]. Since P is not compact it

cannot be conformally equivalent to Ĉ. Furthermore, there can’t exist a conformal mapping

from P to C. To see this note that P is constructed from finitely many planar triangles.

Each of these triangles can be projected back onto C such that its angles are preserved and

overlapping edges are still overlapping in C. Denote this projection by πP : P → C. If

there was a conformal mapping from C to P , then composing with πP would give a bounded

holomorphic function on C. By Liouville’s theorem on bounded entire functions, such a

function must be constant, which gives us a contradiction. We conclude that for every

P ∈ Pn there must be a conformal mapping S : D → P .

For most simply connected domains we don’t have an explicit equation for the confor-

mal mapping guaranteed by the Uniformization Theorem. The classical Schwarz-Christoffel

formula gives such an equation for P ∈ Pn if P is a planar polygon. Luckily, the Schwarz-

Christoffel formula (1.3) extends to all P ∈ Pn. For a general P , the interior angles are

not restricted to be less than 2π but can be arbitrarily large. The generalization of the

Schwarz-Christoffel formula to Riemann surfaces was proved independently by Gilbarg [17]

and Goodman [18].

The goal of the Ahlfors Iteration is to find the correct Schwarz-Christoffel parameters

for a given polygon P ∈ Pn up to a Möbius transformation. Therefore, normalizing the

parameters to some convenient choices will not affect the outcome. We will often use D as

our domain for a map S : D → P and normalize three of the parameters to the three third

roots of unity, ξk.
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If we make a guess of the true parameter values we most likely will not have the correct

ones or be correct up to a Möbius transformation. But how can we measure how poor our

guess is? We could use the Euclidean distance from a fixed normalization. But this requires

that the target parameters are known beforehand, which is certainly not always true. There

is a generalization of conformal mappings, called quasiconformal mappings, that will not

only give us a practical way of measuring the error of a particular guess, but also, it is from

the theory of such mappings that leads to the Ahlfors Iteration.

2.2. Quasiconformal Mappings

There are three common and equivalent ways to define a quasiconformal mapping of do-

mains in C. They are referred to as the metric, analytic, and geometric definitions. Suppose

f : Ω → Ω′ is a homeomorphism. The metric definition says that f is K-quasiconformal (or

K-QC) for some K ≥ 1 if for all x ∈ Ω

(2.1) lim sup
r→0

sup{|f(x)− f(y)| : |x− y| ≤ r}
inf{|f(x)− f(y)| : |x− y| ≤ r} ≤ K.

The metric definition intuitively states that quasiconformal mappings send small circles to

small ellipses with bounded eccentricity, which is an obvious generalization of conformal

mappings, which send small circles to small circles.

The map f is K-quasiconformal by the analytic definition if f is absolutely continuous on

almost every horizontal and vertical lines with respect to Lebesgue measure of any rectangle

contained in Ω and

(2.2) |fz̄| ≤ k |fz| ,

where k = K−1
K+1

, holds almost everywhere.

For the geometric definition, we first define the modulus of a family of curves, Γ, in Ω by

(2.3) mod(Γ) = inf
ρ

A(ρ)

L(ρ)2
,
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where ρmust be a non-negative Borel measurable real-valued function on Ω such that A(ρ) =
∫
Ω
ρ2dA is positive and finite, and L(ρ) = infγ∈Γ

∫
γ
ρds. Then f is K-quasiconformal if for

every family of curves Γ in Ω, we have

(2.4) K−1mod(f(Γ)) ≤ mod(Γ) ≤ Kmod(f(Γ)).

The geometric definition is certainly not as intuitive as the metric definition, but from

it, simple properties of quasiconformal mappings are easily deduced [1]. First, composi-

tion with conformal mappings preserves K-quasiconformality. Second, the composition of

a K1-QC mapping and a K2-QC mapping gives a K1K2-QC mapping. Finally, if f is K-

quasiconformal, then f−1 is as well. Also, being a 1-QC map is equivalent to conformality,

justifying the claim that quasiconformality generalizes conformality.

Since the algorithm will apply not only to planar polygons, but also to polygonal Rie-

mann surfaces, we need to define quasiconformal mappings of Riemann surfaces. A home-

omorphism f between two Riemann surfaces, P1 and P2, is called K-quasiconformal if for

charts h1 and h2 on P1 and P2, respectively, the mapping h2 ◦ f ◦ h−1
1 is K-quasiconformal

in the domain in C where it is defined. Thus, if the surfaces are planar, then h1 and h2 are

the identity and we are left with the planar definition of quasiconformality.

Given a K-QC mapping, f , define its complex dilatation, µf , by

(2.5) µf =
fz̄
fz
.

The analytic definition tells us that µf satisfies

(2.6) ‖µf‖∞ ≤ K − 1

K + 1
,

where ‖·‖∞ is the usual essential supremum norm. Conversely, if we are given a measurable

function, µ, on C such that ‖µ‖∞ ≤ k < 1, then there exists a quasiconformal mapping, f ,

satisfying the Beltrami equation

(2.7) fz̄ = µfz.
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The existence of such an f is called the Measurable Riemann Mapping Theorem and was

first proved by Morrey in [28]. The solution to (2.7) is unique if we require it to fix three

points (See Section V in [1]).

Let’s take a look at a simple yet fundamental example of a quasiconformal map.

Example 2.2.1. Given two triangles, T and T ′, we can always find a conformal mapping

from one to the other which sends the vertices to the vertices by composing a SC map with

the inverse of another. If we allow the mapping to be quasiconformal instead, then a simple

formula results. In particular, it takes the form of an affine complex mapping

(2.8) L(z) = az + bz + c,

where a, b, c ∈ C. To see that such a function is QC assume by composing with linear Möbius

transformations that the vertices of T are 0, 1, and w, and they are mapped by L to 0, 1,

and w′, respectively. We assume the vertices are listed in a counterclockwise order so that

w and w′ lie in H. Then c = 0, a + b = 1, and w′ = aw + bw. Solving for a and b yields

a = (w′ − w)/(w − w) and b = (w − w′)/(w − w). Then the dilatation of L satisfies

(2.9) |µL| =
∣∣∣∣
b

a

∣∣∣∣ =
|w − w′|
|w′ − w| < 1

since w,w′ ∈ H. We conclude that affine mappings between triangles are in fact quasicon-

formal.

It also follows that affine complex mappings send quadrilaterals to quadrilaterals. In fact,

if we have two rectangles R and R′ with lower left corners at the origin with side lengths a, b

and a′, b′, respectively, and assume that a/b ≤ a′/b′, then the quasiconformal mapping from

R to R′ is given by

f(z) =
1

2

(
a′

a
+
b′

b

)
z +

1

2

(
a′

a
− b′

b

)
z.

It is easy to show that f is a (a′/b′)/(a/b)-QC mapping. See [1] for a more detailed discussion.

It is often useful to extend QC mappings of H onto itself to the lower half plane by a

reflection. Let f : H → H be QC and define for z ∈ H
−, f(z) = f(z) . Then the resulting
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mapping has dilatation, µf , in H and in H
−, it is given by µf (z). The map f must also

be continuous up to the real line, which follows easily from Mori’s Theorem on the Hölder

continuity of QC mappings [1].

Suppose f is a quasiconformal mapping of the plane fixing 0, 1, and ∞. In [1], Ahlfors

derives the following expansion of f on D from the generalized Cauchy integral formula. If

|w| < 1 then

(2.10) f(w) = w − 1

π

∫∫

|z|<1

fz(z)R(z, w)dxdy −
1

π

∫∫

|z|<1

f̌z(z)

f̌(z)2
zS(z, w),

where

(2.11) R(z, w) =
1

z − w
− w

z − 1
+
w − 1

z
=

w (w − 1)

z (z − 1) (z − w)
,

S(z, w) = w2

1−zw
− w

1−z
, and f̌(z) = 1/f(1

z
). From (2.10) Bishop arrives at the following result.

Lemma 2.2.2 (Bishop [4]). Fix ρ ≥ 1. There is a 0 < k1 < 1 and a C1 = C1(ρ) < ∞ so

that the following holds. Suppose that f is a quasiconformal mapping of the plane to itself

fixing 0, 1, and ∞, and the Beltrami coefficient of f is µ with ‖µ‖∞ ≤ k1. Then

(2.12)

∣∣∣∣f(w)−
[
w − 1

π

∫

C

µ(z)R(z, w)dxdy

]∣∣∣∣ ≤ C1 ‖µ‖2∞ ,

for all |w| ≤ ρ, where R is as in (2.11).

Inequality 2.12 plays a central role in the Ahlfors Iteration described below because the

term in brackets gives a first approximation to the actual QC map f . So, if we can compute

the integral we’ll have an approximation to the map. However, this lemma leaves something

to be desired because it says that the bracketed term and f are close in the Euclidean metric

but this tells us little if we don’t already know the values of f(w). One deduces from Lemma

2.2.2 that if our quasiconformal constant is small enough, then there exists a C2 > 0 such

that for every |w| ≤ ρ,

(2.13) |f(w)− w| ≤ C2‖µf‖∞.
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It will also be necessary to know how a quasiconformal mapping of the disk to itself

behaves on the boundary if it fixes the third roots of unity.

Lemma 2.2.3. There exists a 0 < k2 < 1 and C3 < ∞ such that if f : D → D is

a (1 + ǫ)-quasiconformal mapping fixing the third roots of unity with ǫ ≤ k2, then for all

ζ ∈ ∂D

(2.14) |f(ζ)− ζ| ≤ C3ǫ.

Proof. The proof is easier if we assume f fixes −1,−i, and 1 instead. We can make this

assumption since we can always apply möbius transformations of the disk to itself, which

can distort points on the boundary by a bounded amount.

Let k2 = k1 from Lemma 2.2.2 and assume f is a (1 + ǫ)-QC mapping with ǫ ≤ k2.

Further, let C3 = 2C2 from (2.13). Recall from (1.1) that the Cayley transform, C, sends H

to D and 0, 1,∞ to −1,−i, 1, respectively. We may write f = C ◦F ◦ C−1, where F : H → H

fixes 0, 1, and ∞, and is also (1 + ǫ)-q.c. Given ζ ∈ ∂D, we write ζ = C(x) for x real. Then

|f(ζ)− ζ| = |C (F (x))− C(x)|

=
2 |F (x)− x|

|F (x) + i| |x+ i| .

If |x| ≤ 1, then the denominator above is at least 1 since x and F (x) are both real, and we

can apply (2.13) to the numerator to get our result.

Assume |x| > 1 and consider F̌ (z) = 1/F (1/z). Then F̌ is (1 + ǫ)-QC from H to H and

fixes 0, 1, and ∞. So

∣∣F̌ (1/x)− 1/x
∣∣ = |1/F (x)− 1/x|

=
|F (x)− x|
|F (x)| |x|

≤ C2ǫ,
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where the inequality follows from (2.13). We conclude

|f(ζ)− ζ| = 2 |F (x)− x|
|F (x) + i| |x+ i|

≤ 2
|F (x)− x|
|F (x)| |x|

≤ C3ǫ.

�

Quasiconformal mappings come up in many areas of mathematics including geometric

function theory, dynamics, and low-dimensional topology (See the supplemental chapters in

[1] and the references presented there or [23]). The definition of quasiconformality can even

be extended to arbitrary metric spaces [22]. For the origins of the theory of 2 dimensional

quasiconformal mappings see [1] or [27] and for higher dimensions see [35]. For a modern

treatment of planar QC mappings see [2].

2.3. Approximations and Triangulations

We claimed earlier that quasiconformal maps could provide a way to measure the error

between a guess of the SC parameters and the true parameters for a polygonal Riemann

surface. In order to accomplish this we must define a metric on Pn. Suppose P,Q ∈ Pn and

define

dQC(P,Q) = inf{ logK : ∃K-QC

f : P → Q sending vertices to vertices}.
(2.15)

It follows that dQC is a metric on Pn if we identify surfaces up to conformal transformations.

It is clear that dQC is non-negative. If dQC(P,Q) = 0, then there is a 1-QC map between

them, otherwise known as a conformal map between our two surfaces. But we identified

conformally equivalent surfaces, so P = Q. Since inverse mappings are also quasiconformal

with the same constant, dQC is reflexive. Using the fact that composing QC maps results in

multiplying their QC constants gives the triangle inequality.
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Let P ∈ Pn and ǫ > 0, we say that P̃ ∈ Pn is an ǫ-approximation of P if there exists a

(1 + 2ǫ)-quasiconformal mapping from P̃ to P sending the vertices of P̃ to the vertices of

P and the interior angles at corresponding vertices are equal. Using our metric defined in

(2.15), an ǫ approximation satisfies dQC(P, P̃ ) ≤ log(1 + 2ǫ). If f is (1 + 2ǫ)-QC, then using

inequality (2.6) we have ‖µf‖∞ ≤ ǫ.

If P ∈ Pn and we have a guess for the SC parameters, then applying a SC mapping using

the guess and the corresponding angles of P gives some other P̃ ∈ Pn. If we can construct

a QC mapping, f : P̃ → P , then we will have an upper bound on dQC(P, P̃ ). If the QC

constant is not too big, then Lemma 2.2.3 gives a uniform approximation on how close the

guess SC parameters are to the true parameters for P .

To construct a QC map between polygonal Riemann surfaces we will first need to de-

compose the surfaces into triangles. This is easy since we first constructed the surfaces from

triangles. A triangulation, T , of P ∈ Pn is a set of n − 2 triangles in C from which the

surface P can be reconstructed. A triangulation does not have to be unique because the

same surface can be constructed from different triangles, as we can see in Figure 2.3.

Figure 2.3. The same surface with two triangulations.

Example 2.2.1 shows how easy it is to write down (and compute) a quasiconformal

map between triangles. We want to do the same thing with polygonal Riemann surfaces.

Given P,Q ∈ Pn with vertices {vj} and {wj}, respectively, and a triangulation T of P ,

a triangulation T ′ of Q will be called compatible with T if for each triangle Tj ∈ T with

vertices vj1 , vj2 , vj3 , the triangle with vertices wj1 , wj2 , wj3 is in T ′. It is certainly not true
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that Q must have a compatible triangulation with T even if they have the same interior

angles as Figure 2.4 shows.

QP

Figure 2.4. Q does not have a valid compatible triangulation.

If P and Q have a compatible triangulation, then we may define a piecewise affine map,

L : P → Q, sending the triangles of P to the compatible triangles in Q. It is easy to check

that individual maps must agree on overlapping edges. Then L is quasiconformal and

dQC(P,Q) ≤ log

(
1 + ‖µL‖∞
1− ‖µL‖∞

)
.

So, if we have a guess for the SC parameters and the resulting surface has a compatible

triangulation with some fixed triangulation of the target surface, we can use the mapping L

to get an explicit estimate for how far away our guess is to being a conformal image of the

target.

The importance of a compatible triangulation of an ǫ-approximation should be apparent

and a simple condition is needed to guarantee compatibility. Let P ∈ Pn and consider

its image in C under the projection map, πP . Since πP sends the triangles in P to their

original images in C, one could rebuild P from πP (P ). But if a vertex of a triangle in

πP (P ) is perturbed, can we still construct a polygonal Riemann surface from the collection

of triangles? If so, then the resulting surface has a compatible triangulation with P . Now,

all that was required in the construction of our surfaces was that adjacent triangles be non-

overlapping when we “glue” them in C. Therefore, if a vertex is perturbed the only way we

could go wrong is if one of the triangles changes orientation as was the case in Figure 2.4.
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We’ve proved the following lemma.

Lemma 2.3.1. Let P1, P2 ∈ Pn and fix a triangulation T of P1. Suppose that for every

triangle in T with counterclockwise vertices v1, v2, and v3, and corresponding vertices w1, w2,

and w3 in P2, the triples {πP1
(vj)} and {πP2

(wj)} have the same orientation. Then there

exists a compatible triangulation of P2 with T .

2.4. Quadrilaterals and Cross-Ratios

Let P ∈ Pn and fix a triangulation T . Consider the n−3 diagonals, dj, in P corresponding

to the sides in the interior of P of the triangles in T . Let Qj be the quadrilateral formed by

taking the union of the two triangles in T that share the diagonal dj. We see the set up in

Figure 2.4.

d1

d2

d3

d4 d5

d9

d6 d8

d7

Figure 2.5. A triangulated P ∈ P12 with Q4 shaded.

Each quadrilateral will be assumed to be positively (counterclockwise) oriented. It is easy

to see that if vj1 , vj2 , vj3 , and vj4 are the vertices of Qj in counterclockwise order such that vj1

and vj3 are the endpoints of dj then, vj2 and vj4 lie on separate components of ∂P \{vj1∪vj3}.

From this we deduce, that if the prevertices of vj1 , vj3 , and vj4 are normalized to 0, 1, and ∞,

respectively, then we must have vj2 ∈ (0, 1), a fact that will be used often in the algorithm to
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come. We take the time to note that if we fix P ∈ Pn and letQ denote its set of quadrilaterals

with respect to a fixed triangulation, then if P̃ ∈ Pn has a compatible triangulation, P̃ can

be given the same quadrilateral structure.

Another concept needed is that of the cross-ratio of four points. If P ∈ Pn and S : H → P ,

then, as seen earlier, we can describe S fully if we know the prevertices of P up to a Möbius

transformation. There is another equivalent means by which to encode the prevertex data

and, hence, the Riemann map. We follow closely the method in [14]. Consider distinct

points a, b, c, d ∈ C and define the cross-ratio of a, b, c, and d as

(2.16) ρ(a, b, c, d) =
(d− a)(b− c)

(c− d)(a− b)
.

This definition extends to Ĉ. If d = ∞, then ρ(a, b, c,∞) = −(b − c)/(a − b) and we get

analogous formulas if any of the other terms are ∞.

Basic facts about cross-ratios make them of use to the parameter problem. First, the

cross-ratio of four points is invariant under a Möbius transformation of Ĉ. In other words,

for Möbius m,

ρ(a, b, c, d) = ρ(m(a),m(b),m(c),m(d)).

Second, if a, b, c, and d lie in counterclockwise order on ∂D, then their cross-ratio is necessarily

a negative real number. Third, if a, b, and c are on ∂D in counterclockwise order and

x is a negative real number, then there is a unique point d ∈ ∂D clockwise from a and

counterclockwise from c that satisfies ρ(a, b, c, d) = x. The second and third facts are proven

in [14] and the first can be shown easily by first proving it for translations, scalings, and

inversions and then using the fact that any Möbius transformation is a composition of these

three maps.

Using the Cayley transform we get similar results for points on the real line. That is, if

a, b, c, d are in order on the extended real line, then their cross-ratio is negative, and if a, b, c

are in order on the real line and x < 0, then there is a unique d ∈ R ∪ {∞} to the right of c

such that ρ(a, b, c, d).
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Suppose we had a triangulation T of P ∈ Pn and the corresponding collection of quadri-

laterals Q. For j = 1, . . . , n− 3 normalize three of the prevertices of Qj ∈ Q to 0, 1,∞ and

have the third, call it aj, in (0, 1). Then letting

(2.17) ρj = ρ(0, aj, 1,∞) = 1− 1

aj

we get n− 3 cross-ratios. These cross-ratios along with Q are enough to reconstruct the SC

parameters. To do so, fix the three of the prevertices of Q1 to 0, 1,∞ in the appropriate way

that preserves the orientation. ρ1 uniquely determines the prevertex of the fourth vertex

of Q1, which will be −1/(ρ1 − 1). Now take a Qj that shares a triangle with Q1. They

share three vertices and so three of Q′
js prevertices have already been determined and since

we have a corresponding cross-ratio we uniquely determine its fourth. We can continue

on in this manner until we have exhausted all of the quadrilaterals in Q. The n points

obtained are the SC parameters for P precisely because the cross-ratios are preserved under

Möbius transformations. Therefore, solving for the cross-ratios is equivalent to solving for

the parameters.

Now that we have the necessary background material we can move on to a description

of the Ahlfors Iteration and to the proof of its convergence.
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CHAPTER 3

The Ahlfors Iteration

3.1. Description of the Algorithm

We are now ready to outline the algorithm in detail. In order to increase the accuracy

of ǫ-approximations to a target polygonal Riemann surface we will employ the first order

approximation of a QC mapping in Lemma 2.2.2. In particular, suppose P ∈ Pn with SC

mapping S : H → P , whose parameters are normalized such that three are 0, 1, and ∞. Let

P̃ ∈ Pn be an approximation to P , with mapping S̃ : H → P̃ . Assume ǫ > 0 and F : P̃ → P

is quasiconformal with ‖µF‖∞ ≤ ǫ ≤ k1 from Lemma 2.2.2 and F sends vertices to vertices.

Assume 0, 1 and ∞ are parameters of S̃ and correspond to the 0, 1,∞ parameters of S. That

is, F (S̃(0)) = S(0) and similar equalities for 1 and ∞. Finally, let f = S−1 ◦ F ◦ S̃ and

extend f to the lower half plane by reflection. Define the Ahflors map, Af , by

(3.1) Af (z) = z − 1

π

∫

C

µf (w)R(w, z)dA,

where R(w, z) = z(z−1)
w(w−1)(w−z)

. If pj is a parameter of P and qj is the corresponding guess

from the ǫ-approximation, P̃ , then by Lemma 2.2.2

|pj − Af (qj)| ≤ Cǫ2,

where the constant only depends on |qj|.

We will update guess parameters using the Ahlfors map, where the quasiconformal map-

ping F will be a piecewise affine mapping of triangles. One might ask if we can evaluate µf

easily, but using the composition formulas in Appendix A.1 shows

(3.2) µf (z) = µF (S̃(z))

(∣∣S̃ ′(z)
∣∣

S̃ ′(z)

)2

.
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This will be no trouble to calculate since µF will be piecewise constant and since we know

the guess SC map we can easily evaluate its derivate, which is just a product of complex

power functions. Below is a step-by-step description of the algorithm.

The Ahlfors Iteration

Step 1 Let P ∈ Pn. Fix a triangulation, T , of P and the collection of quadrilaterals, Q, as

in Section 2.4. Let P̃0 be an ǫ-approximation, T̃0 its triangulation compatible with

T , and Q̃0 the corresponding quadrilaterals in P̃0.

Step 2 Fix a SC mapping S̃ : H → P̃k and calculate the piecewise affine mapping L : P̃k → P .

Step 3 Normalize the prevertices of P̃k such that three of the prevertices of Q̃j ∈ Q̃k are

0, 1, and ∞ and the third, aj, is in (0, 1), such that the three normalized to 0, 1 and

∞ are either vertices of an overlapping quadrilateral already processed or j = 1, in

which case, Q̃1 is the first quadrilateral to be operated on. Calculate the Schwarz-

Christoffel mapping S̃j : H → P̃k. Let Sj : H → P be the corresponding SC map

whose parameters are normalized in the same way as S̃j’s.

Step 4 Let fj = S−1
j ◦ L ◦ S̃j. Then fj is a quasiconformal mapping of H on itself fixing

0, 1, and ∞, and we extend it to all of C by reflection. Apply the Ahlfors Mapping,

Afj , to aj and record the cross-ratio

ρj = ρ(0, Afj(aj), 1,∞).

Step 5 Repeat Steps 3 and 4 for each Q̃k until all n− 3 quadrilaterals are exhausted.

Step 6 From the collection {ρj}n−3
j=1 construct an O(ǫ2)-approximation, P̃k+1 of P , as de-

scribed in Section 2.4 with the appropriate compatible triangulation and set of

quadrilaterals. Repeat Steps 2-6 to the desired accuracy.

Denote one iteration of the algorithm above by A, so that for k = 0, 1, 2, . . ., P̃k+1 =

A(P̃k). We shall prove the following theorem.
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Theorem 3.1.1. Let P ∈ Pn with triangulation T . Then there is a 0 < k3 < 1 and a

C4 < ∞ such that following holds. If P̃0 is an ǫ-approximation of P with ǫ ≤ k3, then the

Ahlfors Iteration converges quadratically to the correct Schwarz-Christoffel parameters of P .

In other words, for k = 0, 1, 2, . . . ,

(3.3) dQC(P,A(P̃k)) ≤ C4dQC(P, P̃k)
2.

The constants depend on P and T .

We will prove Theorem 3.1.1 using the Lemmas and Propositions below. First, we need

to know that we can create a compatible triangulation of an approximating surface. This will

be proven in Proposition 3.2.7. Next, we need Proposition 3.3.3 to bound the dilatation of

the QC affine map, L, by a constant times the dilatation of the approximation. This bound

will allow us to apply Lemma 2.2.2 to get an estimate on the updated parameter guess in

Step 4.

If we started with an ǫ-approximation then each new guess parameter Afj(aj) obtained

in Step 4 is now O(ǫ2) away from the true parameter. But applying Proposition 3.3.3 again

allows us to conclude that the updated approximation, A(P̃k), is O(ǫ
2) from P in the dQC

metric, which proves the theorem.

3.2. Controlling Side Lengths

The keys to proving Theorem 3.1.1 are showing that we can take ǫ > 0 small enough such

that each of our ǫ-approximations have a compatible triangulation with our target polygon’s

triangulation and that the affine mapping between polygons is bounded above by a fixed

constant times ǫ. In order to prove these key points, we will look at the lengths of the sides

of the triangulation and how they change if we perturb the SC parameters by ǫ.

Suppose l is the length of a side of some T ∈ T for a fixed SC map S : D → P .

We may normalize the prevertices of T to the third roots of unity, ξk. Then l is equal to

|S(ξk1)− S(ξk2)| for some ξk1 and ξk2 . Perturbing the vertices of S and renormalizing the

parameters corresponding to T back to the ξk gives us a new mapping S̃ : H → P̃ . Then if
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l̃ = |S̃(ξk1)− S̃(ξk2)|, we have

∣∣∣l − l̃
∣∣∣ =

∣∣∣|S(ξk1)− S(ξk2)| − |S̃(ξk1)− S̃(ξk2)|
∣∣∣

≤
∣∣∣S(ξk1)− S̃(ξk1)

∣∣∣+
∣∣∣S(ξk2)− S̃(ξk2)

∣∣∣ .
(3.4)

So, estimating the difference between two SC integrals gives an upper bound on the difference

in lengths. This is how we will proceed.

To guarantee that the difference of the two SC integrals in (3.4) above is small, one will

need to know that all the corresponding parameters are close and that they are bounded

away from the ξk. In order to get a lower bound on the distance of the parameters to the

ξk, we will employ the concept of harmonic measure, ω, which the reader can review in

Appendix A.3.

We remark that when we measure length on ∂D we will use normalized Lebesgue measure

so that the length of ∂D is 1. If E is a measurable set in ∂D, then let |E| denote its length.

Lemma 3.2.1. Let I1, I2, I3 be disjoint open arcs in ∂D with |Ij| = 1/3. If w < ω(z, Ij,D) <

W for each j, then there exists an r depending only on w and W such that z ∈ B (0, r).

Proof. Without loss of generality, we may assume I1 = (exp(4πi/3), 1), I2 = (1, exp(2πi/3)),

and I3 = (exp(2πi/3), exp(4πi/3)). This lemma follows from the fact that if I is an arc on ∂D

then the level set {z : ω(z, I,D) = c} is the arc of a circle in D intersecting the endpoints of

I in an angle of πc [16]. Figure 3.1 depicts the shaded set Q1 = {z : w < ω(z, I1,D) < W}.

We know that the possible values of z will lie in ∩Qj. To get an explicit estimate it is

easiest to conformally map D to H so that 0 is sent to i, 1 to ∞, exp(2πi/3) to −
√
3/3 and

exp(4πi/3) to
√
3/3. The mapping is

D(z) = i
1 + z

1− z
,

the inverse of the Cayley transform.

Under D, the domain Q1 ∩Q2 is sent to a domain in H contained in the set bounded by

the lines tan(πw)(x +
√
3/3) and − tan(πw)(x −

√
3/3), which intersect at i tan(πw)

√
3/3.
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I

2I

1I

3

Figure 3.1. The set Q1 in gray.

It remains to bound D(Q3) away from ∞. The lower bound on the harmonic measure of

I3 gives us this. The set {z ∈ H : ω(z, [−
√
3/3,

√
3/3],H) > w} is the interior of the circle

intersecting the endpoints in the angle πw intersected with H. Our set must be inside this

domain and D(Q1 ∩Q2). It is easy to check that this intersection is always non-empty. See

Figure 3.2.

πw

−
√
3/3

√
3/3

Figure 3.2. D(z) must lie in the shaded region if z ∈ ∩Qj.

So, D(Q1 ∩ Q2 ∩ Q3) is bounded away from the real axis and away from ∞. Therefore,

there exists an R′ > 1 such that D(Q1 ∩Q2 ∩Q3) is contained inside of the circle C ′
R given

by x2 + (y − (R′2 + 1)/2R′)2 = (R′2 − 1)2/4R′2. These circles all lie in the upper half plane,

if R1 > R2 then CR2
is contained in the interior of CR1

, and D−1(CR) = x2 + y2 =
(
R−1
R+1

)2
.

Therefore, letting r = (R′ − 1)/(R′ + 1) proves the lemma. �
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For T ∈ T , denote its centroid by cT , which we recall is the average of the vertices of T

in C. Let I1T , I
2
T , and I

3
T be the closure of the open arcs on the boundary of P created when

we remove the vertices of T and s1, s2, and s3 the sides of ∂T such that the endpoints of

sj are the endpoints of IjT . A side of the polygonal boundary not in T but containing one

of T ’s vertices will be called a neighboring side of T . See Figure 3.2. If S : D → P is the

cT

Figure 3.3. The neighboring sides of T are highlighted.

SC mapping sending the third roots of unity, ξk, to the vertices of T , our next lemma will

tell us how close a prevertex can be to the ξk. The estimate will depend upon the harmonic

measure at cT of T ’s sides and the neighboring sides of T . Thus, for a fixed normalization of

the prevertices of T , the other parameters are bounded away by a constant depending only

on the local geometry of P near T .

Lemma 3.2.2. Let P ∈ Pn with triangulation T . Fix T ∈ T and the SC mapping

S : D → P sending the third roots of unity, ξk, to the vertices of T . Then there exists a

C5 > 0 such that any other prevertex of P is at a distance of at least C5 away from each of

the ξk. C5 depends only on the harmonic measure in P at cT of T ’s neighboring sides and

the harmonic measure at cT in T of the sides of T .

Proof. First, we want to find upper and lower bounds on ω(cT , I
j
T , P ) in order to apply

Lemma 3.2.1 to get an r > 0 such that S−1(cT ) ∈ B(0, r). For a neighboring side L ⊂ IjT ,

we have ω(cT , I
j
T , P ) ≥ ω(cT , L, P ). Let w be the smallest ω(cT , L, P ) over all neighboring

sides of T . For our upper bound, if sj is the side of T corresponding to IjT , then note that
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ω(cT , I
j
T , P ) ≤ ω(cT , sj, T ) by the maximum principle. Letting W be the largest ω(cT , sj, T ),

we apply Lemma 3.2.1 to find r.

If I is an arc on ∂D we can use Harnack’s inequality, Lemma A.3.1, to compare its length

to its harmonic measure at S−1(cT ),

|E| = ω(0, I,D)

≥ 1− |S−1(cT )|
1 + |S−1(cT )|

ω(S−1(cT ), I,D)

≥ 1− r

2
ω(S−1(cT ), I,D)

=
1− r

2
ω(cT , S(I), P ).

A neighboring side Lj not in T is the preimage of an arc Ij in ∂D with one endpoint ξk

for some k. The other endpoint is a prevertex q. See Figure 3.2. Let m be the minimum

S L1

L4

L3
L2

cT

I4

I2

I1

I3

S−1(cT )

0

Figure 3.4. Bounding the parameter separation. The squares in ∂D are the
third roots of unity.

harmonic measure at cT of all the neighboring sides of T . Then we have

|q − ξk| = 2 sin (π |Ij|)

≥ 2 sin

(
πm(1− r)

2

)
,

where the first inequality follows from the fact that 2π |I| is the euclidean length of I and the

second follows from the fact that the sine function is increasing from 0 to π/2. Therefore,

the lemma holds with C5 = 2 sin (πm (1− r) /2). �
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Estimating the difference of two SC integrals will come down to estimating the difference

of their integrands, which are just products of complex power functions. We will need the

following elementary facts to analyze the difference of the products. The proofs of (3.5) and

(3.6) can be found in [20].

Lemma 3.2.3. If 0 < x ≤ 1 then

(3.5) 1 + x < ex < 1 + 2x.

Furthermore, if Pn =
∏n

j=1 (1 + aj), where aj ∈ C, then

(3.6) |Pn − 1| ≤
n∏

j=1

(1 + |aj|)− 1.

An estimate on binomial coefficients will also be necessary in the proofs that follow.

Lemma 3.2.4. Suppose β ∈ R and β < 1. Then there exists a C6 = C6(β) > 0 such that

for all k ∈ {1, 2, 3, . . .},

(3.7)

∣∣∣∣
(−β
k

)∣∣∣∣ ≤
C6

k1−β
.

Proof. We first take the square of the left hand side in (3.7) and use that fact that the

geometric mean is always less than or equal to the arithmetic mean,

∣∣∣∣
(−β
k

)∣∣∣∣
2

=
k∏

j=1

∣∣∣∣
−β − j + 1

j

∣∣∣∣
2

=
k∏

j=1

∣∣∣∣1−
1− β

j

∣∣∣∣
2

≤
(
1

k

k∑

j=1

∣∣∣∣1−
1− β

j

∣∣∣∣
2
)k

.
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Expanding out the terms in the sum gives

∣∣∣∣
(−β
k

)∣∣∣∣
2

≤
(
1

k

k∑

j=1

1− 2

(
1− β

j

)
+

(
1− β

j

)2
)k

=

(
1 +

1

k

(
−2 (1− β)

k∑

j=1

1

j
+ (1− β)2

k∑

j=1

1

j2

))k

≤
(
1 +

1

k

(
−2 (1− β) log k + (1− β)2 · 2

))k

.

The inequalities above follow from the fact that the quantity in the outer parentheses is

positive and from the series inequalities

k∑

j=1

1

j
≥ log k ,

k∑

j=1

1

j2
≤ 2,

which follow by comparisons with
∫ k

1
1/jdx and

∫∞

1
1/j2dx, respectively.

It is easy to show by induction that for all positive integers, k if 1 + x/k ≥ 0, then

(1 + x/k)k ≤ ex. We then have

∣∣∣∣
(−β
k

)∣∣∣∣
2

≤
(
1 +

1

k

(
−2 (1− β) log k + (1− β)2 · 2

))k

≤ exp
(
−2 (1− β) log k + 2 (1− β)2

)

=

(
e(1−β)2

k(1−β)

)2

.

The lemma then holds with C6 = e(1−β)2 . �

Using Lemmas 3.2.3 and 3.2.4 we prove the following lemma that will allow us to estimate

the difference between the integrands of Schwarz-Christoffel integrals.

Lemma 3.2.5. Fix a positive integer, n, and βj ∈ R satisfying βj < 1 for j = 1, . . . , n.

Then there exists a 0 < k4 = k4(n,minj βj) < 1 and C7 = C7(n,minj βj) > 0, such that if
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zj ∈ C satisfies |zj| ≤ ǫ ≤ k4 for j = 1, . . . , n, then

(3.8)

∣∣∣∣∣

n∏

j=1

(1 + zj)
−βj − 1

∣∣∣∣∣ ≤ C7ǫ.

Proof. Letm denote the index of the smallest βj and set C = C6(βm) from Lemma 3.2.4.

Then let k4 = 1/(1 + Cn), C7 = 4Cn and note that k4 < 1/2. Assume that |zj| ≤ ǫ ≤ k4.

We use the binomial series expansion and Lemma 3.2.4 to get for all j,

∣∣∣(1 + zj)
−βj − 1

∣∣∣ =
∣∣∣∣∣

∞∑

k=1

(−βj
k

)
zkj

∣∣∣∣∣

≤
∞∑

k=1

∣∣∣∣
(−βj

k

)∣∣∣∣ |zj|
k

≤
∞∑

k=1

Cǫk

= Cǫ/(1− ǫ).

Combining (3.6), the inequalities above, and (3.5) we conclude

∣∣∣∣∣

n∏

j=1

(1 + zj)
−βj − 1

∣∣∣∣∣ ≤
n∏

j=1

(
1 +

∣∣(1 + zj)
−βj − 1

∣∣)− 1

<
n∏

j=1

(1 + Cǫ/(1− ǫ))− 1

≤
n∏

j=1

exp (Cǫ/(1− ǫ))− 1

= exp (Cnǫ/(1− ǫ))− 1

≤ 2Cnǫ

1− ǫ
≤ C7ǫ. �

With the preliminaries complete, we can now show that if we have a polygonal Riemann

surface, P , with a triangulation, T , such that the SC parameters of S : D → P are normalized

so the vertices of T ∈ T are the images of the third roots of unity and if the other vertices

are perturbed by some ǫ > 0 to get a new SC map S̃, then we can make the distance between

the vertices of T and the corresponding images of S̃ close up to O(ǫ).
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Proposition 3.2.6. Let P ∈ Pn with triangulation T and fix T ∈ T . Let S : D → P

be the SC mapping with parameters, {pj}, where p1, p2, and p3 are the third roots of unity,

ξj, and the prevertices of T . Then there is a k5 < 1 and C8 > 0 such that if qj = pj, for

j = 1, 2, 3, and qj ∈ ∂D for j = 4, . . . , n satisfy

|qj − pj| ≤ ǫ ≤ k5,

then the SC mapping S̃ with parameters, {qj}, and same angles as S satisfies

(3.9)
∣∣∣S(ξj)− S̃(ξj)

∣∣∣ ≤ C8ǫ,

for j = 1, 2, 3.

Proof. By applying a change of variables in the integrals below, we only need to consider

the case when ξj = 1. We’ll take k5 and C8 to be the smallest and largest, respectively, that

works for each of the ξj. Let αjπ be the interior angles and βj = 1− αj.

By Lemma 3.2.2 there exists a C5 > 0 such that for each j ≥ 2, |pj − 1| > C5. From

this, we immediately know there exists a C9 ≤ 1 such that for all x ∈ [0, 1] and j ≥ 2,

|pj − x| > C9. Let k5 = C9k4, where k4 is from Lemma 3.2.5 using β2, . . . , βn. Let I denote

the integral

(3.10) I =

∫ 1

0

(1− x)−β1 dx.

Note that I is always finite since β1 < 1. Finally, assume for ǫ > 0, |pj − qj| ≤ ǫ ≤ k4. Then

∣∣∣S(1)− S̃(1)
∣∣∣ =

∣∣∣∣∣

∫ 1

0

(
n∏

j=1

(
1− x

pj

)−βj

−
n∏

j=1

(
1− x

qj

)−βj

)
dx

∣∣∣∣∣

≤
∫ 1

0

(1− x)−β1

n∏

j=2

∣∣∣∣1−
x

pj

∣∣∣∣
−βj

s(x)dx

=

∫ 1

0

(1− x)−β1

n∏

j=2

|pj − x|−βj s(x)dx,
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where

s(x) =

∣∣∣∣∣

n∏

j=2

(
1 + x

1− pj/qj
pj − x

)−βj

− 1

∣∣∣∣∣ .

For all j = 2, . . . , n and x ∈ [0, 1] we have

∣∣∣∣x
1− pj/qj
pj − x

∣∣∣∣ ≤
|qj − pj|
|pj − x| ≤ ǫ

C9

≤ k4.

Lemma 3.2.5 gives s(x) ≤ C7ǫ for all x ∈ [0, 1].

The term
n∏

j=2

|pj − x|−βj

is bounded above by a constant C <∞ because the terms with negative powers are bounded

by C
−βj

9 and the terms with positive powers are bounded by 2−βj .

Letting C8 = ICC7 gives

∣∣∣S(1)− S̃(1)
∣∣∣ ≤

∫ 1

0

(1− x)−β1

n∏

j=2

|pj − x|−βj s(x)dx

≤
∫ 1

0

(1− x)−β1CC7ǫdx

= C8ǫ. �

We may use the previous lemma to prove the existence of compatible triangulations.

Proposition 3.2.7. Fix P ∈ Pn and a triangulation T . Then there exists a k6 =

k6(P, T ) such that if P̃ is an ǫ-approximation of P with ǫ ≤ k6, there exists a compatible

triangulation of P̃ .

Proof. Recall from Lemma 2.3.1 that if for each triangle in T the corresponding vertices

in P̃ have the same orientation, then there is a compatible triangulation.

Fix S : D → P such that S(ξk) are the vertices of T ∈ T , and let a denote T ’s least

altitude. If the corresponding vertices of P̃ are at most a/3 away from those of T , then

they’ll have the same orientation. See Figure 3.2. We can guarantee this holds using Lemma
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a/3

a

Figure 3.5. Preserving the orientation of the triangle.

2.2.3 and Proposition 3.2.6. Indeed, let

k = min (k2, k5/C3, a/(3C8C3)) .

and assume there exists a (1 + ǫ)-QC mapping, f , of the disk to itself fixing the third roots

of unity, which are the prevertices of T , and sends all the SC parameters of P to those of P̃ .

If ǫ ≤ k then we know for all ζ ∈ ∂D

|f(ζ)− ζ| ≤ C3ǫ ≤ k5.

By Proposition 3.2.6
∣∣∣S(ξj)− S̃(ξj)

∣∣∣ ≤ C8C3ǫ ≤ a/3,

which implies that the vertices of P̃ corresponding to those of T are in the same orientation.

Therefore, let k6 be the smallest k that works for every T ∈ T . �

Now that we know we can make the distance between corresponding vertices as close as

we want, and hence, the difference between side lengths of triangles, we need to know how

this relates to the dilatation of a piecewise affine mapping between surfaces.
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3.3. Triangles

When we construct the piecewise mapping of an approximate polygonal Riemann surface

to the target surface we need to know estimates on the dilatations. In particular, does a

small ǫ > 0 imply that the affine map from an ǫ-approximation has a dilatation bounded

by O(ǫ)? The answer to this is yes, and will be confirmed by showing how the lengths of

triangles quantitatively relate to the angles, and then how the angles relate to the dilatation

of the affine maps.

Lemma 3.3.1. Let T and T ′ be triangles in C with vertices {vi} and {v′i}, respectively,

and let l be the minimum of the side lengths of T ′. Denote the interior angles by {θi} and

{θ′i}. There exists a k7 = k7(l) > 0 and C10 = C10(l) <∞ such that if ǫ ≤ k7 and

|vi − v′i| ≤ ǫ,

then for all i,

(3.11) |θi − θ′i| ≤ C10ǫ ≤ 1.

Proof. Let k7 = l/10, C10 = 10/l and assume that for all i, |vi − v′i| ≤ ǫ ≤ k7. By

translating both triangles so v1 = v′1 = 0 and rotating both by − arg v′2, we may assume v′2

is a positive real number and for i = 2, 3, |vi − v′i| < 2ǫ. Let γ = arg v2, β = θ′1 − γ, and

α = arg v3 − θ′1. Then θ1 = α + β and θ1 − θ′1 = α− γ. See Figure 3.6.

We’ll derive an estimate for sin γ, which also hold for sinα by symmetry.

|sin γ| = |Im v2|
|v2|

≤ 2ǫ

|v′2| − 2ǫ

≤ 2ǫ

l − 2ǫ

≤ 5ǫ

2l
.
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γ

α

v3
v′3

β

v′2
v2

0

Figure 3.6. Triangles and angles in Lemma 3.3.1.

This gives |sin γ| ≤ 1/4, since ǫ ≤ l/10. Furthermore, γ must be acute. If not then

2ǫ > |v2 − v′2| > v′2 ≥ l, which contradicts our assumption on ǫ. Since γ is acute and

|sin γ| ≤ 1/4, we must have |γ| /2 ≤ |sin γ|, which immediately implies that |γ| ≤ 5ǫ/l.

Therefore, |θ1 − θ′1| = |α− γ| ≤ C10ǫ. We get the same estimates for the other angles

depending on which vertex we translate to the origin, which allows us to conclude that (3.11)

holds for our choice of k7 and C10. �

Our next lemma relates the angles of two triangles to the dilatation of the affine linear

mapping between them.

Lemma 3.3.2. Let T and T ′ be triangles in C with vertices {vi} and {v′i}, respectively,

in counterclockwise order. Denote the interior angles by {θi} and {θ′i}, and let θ′m = min θ′i.

Let L : T → T ′ be the complex affine map sending vi to v
′
i and denote its complex dilatation

by µL. Then there exists a 0 < k8 = k8(θ
′
m) < 1 and C11 = C11(θ

′
m) <∞ such that if

|θi − θ′i| ≤ ǫ ≤ k8

then

(3.12) ‖µL‖∞ ≤ C11ǫ.

39



Proof. By applying Möbius transformations, we may assume v1 = v′1 = 0 and v2 =

v′2 = 1. Let z = v3, ζ = v′3, and η = sin(θ′m/2). Assume z, ζ ∈ H. Let k8 = η and assume

|θi − θ′i| ≤ ǫ ≤ k8. We will need to estimate the difference of the sine and cosine of our

L

0 1 0 1

θ′2θ′1

θ′3θ3

z ζ

θ1 θ2

Figure 3.7. Triangles T and T ′.

angles. Using trigonometric identities and the fact that the difference between our angles is

small, we have

|sin θi − sin θ′i| =
∣∣∣∣2 sin

(
θi − θ′i

2

)
cos

(
θi − θ′i

2

)∣∣∣∣

≤
∣∣∣∣2
θi − θ′i

2

∣∣∣∣ = |θi − θ′i| ,

|cos θi − cos θ′i| =
∣∣∣∣−2 sin

(
θi + θ′i

2

)
sin

(
θi − θ′i

2

)∣∣∣∣

≤
∣∣∣∣2
θi − θ′i

2

∣∣∣∣ = |θi − θ′i| .

We have θi ≥ θ′i − ǫ ≥ θ′m/2. If θi ≤ π/2, then certainly sin θi > η. Suppose we had

θ1 > π/2, and sin θ1 ≤ η. If this were true, then we must have θ2 < π/2, sin θ2 > η and

|z − 1| is the length of the longest side of T . By the law of sines we have |z − 1| = sin θ1
sin θ2

|z|.

|z − 1| < η
η
|z| = |z|, which contradicts maximality of |z − 1|. So, sin θi > η for every i.

From (2.9) the complex dilatation, µL, is given by

µL =
z − ζ

ζ − z
.

Using our estimate for sin θ1 and the fact that z, ζ ∈ H, we have
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|µL| =
∣∣∣∣
z − ζ

ζ − z

∣∣∣∣ ≤
|z − ζ|
|Im z|

≤ |z − ζ|
|z| sin θ1

≤ |1− ζ/z|
η

.

We would like to estimate the numerator of the last term above. By the law of sines,

|ζ| = |sin θ′2/sin θ′3| and |z| = |sin θ2/sin θ3|. So, |ζ/z| = |(sin θ′2/sin θ2)(sin θ3/sin θ′s)|. We

have
∣∣∣∣
sin θ′2
sin θ2

∣∣∣∣ =
∣∣∣∣
sin θ′2 − sin θ2

sin θ2
+ 1

∣∣∣∣

≤ |sin θ′2 − sin θ2|
|sin θ2|

+ 1

≤ ǫ

η
+ 1.

Similarly,
∣∣∣ sin θ′

2

sin θ2

∣∣∣ ≥ 1 − ǫ
η
. The same inequalities hold if we use θ3 and θ′3 for θ′2 and θ2,

respectively. So,

1− 3ǫ

η
≤
(
1− ǫ

η

)2

≤
∣∣∣∣
ζ

z

∣∣∣∣ ≤
(
1 +

ǫ

η

)2

≤ 1 +
3ǫ

η
.

Using these estimates we have

∣∣∣∣
ζ

z
− 1

∣∣∣∣ =
∣∣∣∣
∣∣∣∣
ζ

z

∣∣∣∣ e
i(θ′

1
−θ1) − 1

∣∣∣∣

≤
∣∣∣∣
∣∣∣∣
ζ

z

∣∣∣∣ cos (θ
′
1 − θ1)− 1

∣∣∣∣+
∣∣∣∣
ζ

z

∣∣∣∣
∣∣∣∣sin (θ

′
1 − θ1)

∣∣∣∣

≤
∣∣∣∣cos (θ

′
1 − θ1)− 1

∣∣∣∣+
∣∣∣∣
∣∣∣∣
ζ

z

∣∣∣∣− 1

∣∣∣∣ ·
∣∣∣∣cos (θ

′
1 − θ1)

∣∣∣∣

+

(
1 +

3ǫ

η

)
· ǫ

≤ ǫ+
3ǫ

η
+

(
1 +

3ǫ

η

)
· ǫ

≤
(
5 +

3

η

)
ǫ.
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Finally,

|µL| ≤
1

η

∣∣∣∣
ζ

z
− 1

∣∣∣∣ ≤
(
5η + 3

η2

)
ǫ.

Therefore, letting C11 =
(

5η+3
η2

)
proves the lemma. �

Combining Proposition 3.2.7 with Proposition 3.2.6 and Lemmas 3.3.1 and 3.3.2 gives

the following result.

Proposition 3.3.3. Let P ∈ Pn with a fixed triangulation T . There exists a 0 < k9 < 1

and a C12 <∞ such that the following holds. Fix any T ∈ T and normalize the prevertices,

{pj}, of P in ∂D such that T ’s prevertices are the third roots of unity, ξj. Suppose that we

have an approximation to the SC parameters, {qj}, such that the ones corresponding to the

vertices of T are also normalized to ξj and the rest satisfy

|pj − qj| ≤ ǫ ≤ k9.

Then letting P̃ denote the approximating surface, there exists a compatible triangulation of

P̃ , and the piecewise affine mapping L : P̃ → P satisfies

(3.13) ‖µL‖∞ ≤ C12ǫ.

Proposition 3.3.3 was the last piece for the proof of Theorem 3.1.1. In summary, for a

fixed P ∈ Pn with triangulation, T , we can take ǫ > 0 small enough to ensure the existence

of a compatible triangulation of an ǫ-approximation and that the affine mapping between

the two surfaces is 1 + O(ǫ)-quasiconformal. We then can choose ǫ to be small enough to

apply Lemma 2.2.2 and conclude that the updated approximating surface from the Ahlfors

Iteration is an O(ǫ2)-approximation Continual application of the iteration gives quadratic

convergence.

The last chapter will now detail how to implement the algorithm and present some

numerical results.
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CHAPTER 4

Implementing the Iteration

4.1. Delaunay Triangulations

Triangulations of polygonal Riemann surfaces are necessary in order to define the piece-

wise affine mappings in the Ahlfors Iteration. Furthermore, given a P ∈ Pn, the radius of

convergence, k3 > 0, in Theorem 3.1.1 depends on the angles in the initial triangulation of

P , in that, larger angles imply a larger radius of convergence. Thus, it is desired to have as

large angles as possible in the triangulation.

Suppose Q is a quadrilateral. Then there are only two ways Q can be triangulated by

choosing its diagonal. Let’s fix a diagonal, so that Q is now decomposed into triangles T1

and T2. Consider the circle C such that the vertices of T1 are inscribed in it. Let v be the

vertex of T2 not in T1. Then either v is contained inside C, v is also inscribed in C, or v is

outside of C. We call a diagonal of a quadrilateral illegal if the interior of the circle through

the vertices of one of the triangles contains the vertex of the other. In such a case, one can

flip the diagonal to obtain a legal one. See Figure 4.1

We say that a triangulation is Delaunay if none of the diagonals are illegal. A Delaunay

triangulation always exist and this is easy to show by flipping illegal diagonals (See [11]).

Furthermore, if no 4 vertices of P lie on the same circle, then the Delaunay triangulation

is unique. If P is a planar n-gon, then there are O(n log n) algorithms that compute the

Delaunay triangulation [8].

A Delaunay triangulation maximizes angles in the following way. Suppose T is a tri-

angulation of P ∈ Pn and denote by A(T ) the ordered sequence of 3(n − 2) angles, αj, of

the triangles in T . If T ′ is another triangulation, then we say A(T ′) > A(T ) if there is a

j such that α′
i = αi for i < j and α′

j > αj. If TD is a Delaunay triangulation of P and T
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Figure 4.1. Flipping the diagonal.

is any other, then A(TD) ≥ A(T ) [11]. So, we see that the Delaunay triangulation in fact

maximizes the smallest angle in the triangulation.

4.2. Evaluating SC Mappings

In any implementation of the Ahlfors Iteration it is essential to be able to evaluate

Schwarz-Christoffel integrals fast and accurately. A SC integral is a one dimensional line

integral and there are Gaussian quadrature methods to approximate such integrals. We will

mostly follow the treatment of Chapter 3 in [33].

We wish to approximate integrals of the form

(4.1)

∫ b

a

f(x)ω(x)dx,

where f and ω are real-valued functions defined on (a, b) ⊂ R, f is smooth, and ω ≥ 0. ω is

called a weight function. Consider the following operator

(4.2) (f, g) :=

∫ b

a

f(x)g(x)ω(x)dx.

Then (·, ·) is an inner product on the vector space, Πn, of polynomials of degree ≤ n. So, we

may use the Gram-Schmidt process to find n + 1 orthonormal polynomials, pj, of degree j
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for j = 0, . . . , n with leading coefficients of 1. Note that p0 must be the constant 1. Consider

the following proposition whose proof can be found in [33].

Proposition 4.2.1. Let p0, . . . , pn be the orthonormal polynomials defined above. Then

the following holds.

(1) The n roots, x1, . . . , xn, of pn are real, simple, and lie in (a, b).

(2) The system of n-equations

n∑

i=1

pk(xi)wi =





(p0, p0) if k = 0

0 if k = 1, 2, . . . , n− 1

has a solution w1, . . . , wn such that wi > 0 for all i and for all p ∈ Π2n−1,

∫ b

a

p(x)ω(x)dx =
n∑

i=1

wip(xi).

(3) If f ∈ C2n[a, b], then

∫ b

a

f(x)ω(x)dx−
n∑

i=1

wif(xi) =
f (2n)(ξ)

(2n)!
(pn, pn)

for some ξ ∈ (a, b).

The roots, xi, and values, wi, above are called the quadrature nodes and weights, respec-

tively.

If we are to evaluate a SC mapping at one of its parameters, the integral may have a

singularity. We employ a convenient weighting function as above to handle this case. In

particular, let a = −1, b = 1, and ω(x) = (1− x)α(1 + x)β, where α, β > −1. The resulting

Gauss quadrature method obtained from the above proposition with this weight is known as

Gauss-Jacobi quadrature. By applying a change of variables to any of the SC integrals we

may use the resulting Gauss-Jacobi quadrature weights and nodes to approximate the SC

mapping. As a special case we can also consider the situation when α = β = 0. We will use

this whenever a SC integral needs to be evaluated at some point inside of D or H, in which

case the integrand has no singularities at the end point.
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As we shall see in the next section, the implementation also requires the ability to invert

SC mappings. Away from the vertices, where there may be singularities, we can use two

methods, either numerically solve an ODE or use Newton’s Method.

Suppose we have S : D → P . Let w = S(z). Then

dw

dz
= C

N∏

k=1

(
1− z

pk

)−βk

for some nonzero C ∈ C, where βkπ is the exterior angle at the kth vertex. But then

z = S−1(w) and

(4.3)
dz

dw
=

1

C

N∏

k=1

(
1− z

pk

)βk

.

This is the ODE that will allow us to calculate S−1(w). To do this say we know some

w0 = S(z0) and the line connecting w0 and w stays inside of P . Then (4.3) can be solved

using standard numerical ODE solvers to obtain S−1(w). See [34].

Since we saw how to evaluate SC integrals with Gaussian quadrature, we can also use

Newton’s method to evaluate the inverse map. Suppose we want to find S−1(w), or equiva-

lently, we want to find z such that S(z) = w. Given some initial guess, z0, we can iteratively

apply

zk+1 = zk −
S(zk)− w

S ′(zk)

to solve for the inverse. Newton’s method is, of course, not always convergent for an arbitrary

initial guess. In order to accurately solve for the inverse, Trefethen [34] advises first applying

the ODE to get near the correct solution and then apply Newton’s method to increase the

accuracy.

Both the ODE and Newton methods for inverting a Schwarz-Christoffel map may behave

poorly near vertices because near a vertex, vk, with interior angle αkπ, the derivative of the

inverse satisfies

(S−1)′(ζ) = O
(
(ζ − vk)

1

αk
−1
)
,
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which yields a singularity if αk > 1. To avoid this we can derive a representation by utilizing

power series.

Say we have a vertex, v, with interior angle, απ, of a polygonal Riemann surface, P , and

let r > 0 be small enough so that the sector, sv,r, of B(v, r)∩P of angle απ is in the interior

of P . Letting w be the immediate vertex counterclockwise from v, define a conformal map,

g, from D ∩H to sv,r by

(4.4) g(z) = ηrzα + v,

where η = exp(i arg(w − v)). By applying the appropriate Möbius transformations we may

assume that P is the image of S : H → P and 0 is the prevertex of v. Then f = g ◦ S−1

maps the upper half-disk to a neighborhood of 0 intersected with H. See Figure 4.2

f

w

g S−1

v

0 0

Figure 4.2. Defining S−1 near corners.

The map f is conformal and extends to the whole disk by the Schwarz reflection principle.

Then f has a power series expansion about 0. Write f =
∑∞

j=1 ajz
j, then

(4.5) S−1(ζ) =
∞∑

j=1

aj

(
ζ − v

ηr

)j/α

.

Therefore, it is necessary to know the values for aj, or at least an approximation to them,

and the discrete Fourier transform accomplishes this approximation. The following power

series discussion comes mostly from [5].
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Fix a positive integer N and let RN denote the N -roots of unity, wk = ei2πk/N , for

k = 0, . . . , N − 1. Let w = w1, so that wk = wk and wj
k = wk

j . Let VN be the vector space

of complex-valued functions defined on the N roots of unity. Define 〈·, ·〉 : VN × VN → C by

(4.6) 〈f, g〉 = 1

N

N−1∑

k=0

f(wk)g(wk).

It is easy to show that (4.6) is an inner product on VN and that the functions, ek(z) = zk,

for k = 0, . . . , N − 1, form an orthonormal basis of VN with respect to this inner product.

Therefore, given f ∈ VN , we may write f(z) =
∑N−1

k=0 akz
k, where

(4.7) ak =
1

N

N−1∑

j=0

f(wj)w
k
j =

1

N

N−1∑

j=0

f(wj)w
j
k.

The discrete Fourier transform (DFT) is defined to be the function sending a sequence

of N numbers x0, . . . , xN−1 to another sequence

{N−1∑

j=0

xjw
j
k

}N−1

k=1

.

This is equivalent to applying the Fourier matrix




1 1 1 . . . 1

1 w1 w2
1 . . . wN−1

1

1 w2 w2
2 . . . wN−1

2

...
...

...
. . .

...

1 wN−1 w2
N−1 . . . wN−1

N−1




to the vector (x0, . . . , xN−1)
T . Naive multiplication would take time O(N2), but there are

algorithms called fast Fourier transforms (FFT) that only take time O(N logN) [9]. So,

the coefficients (4.7) can be found by taking applying the DFT to f(w0), . . . , f(wN−1) and

dividing each result by N .

The goal is to use a power series expansion in order to approximate the inverse of a SC

mapping near a vertex. Recall the definition f = g ◦ S−1, where g is from (4.4), and recall
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that f extends to all of D by a reflection. Assume that f is defined on B(0, 2), which we

may do by taking r smaller in the definition of g. Then f is defined on ∂D, so we may

use the DFT to obtain a power series f0(z) =
∑N−1

k=1 akz
k. For an arbitrary holomorphic

function defined on D(0, 2), this power series does not have to come close to approximating

the function. Luckily, because of the conformality of f , it will approximate f .

Lemma 4.2.2. Fix a positive integer, N , and suppose g is a conformal map on D(0, 2).

Let gN be the degree N − 1 polynomial obtained from g using the discrete Fourier transform.

If r < 1 and |z| ≤ r, then

(4.8) |g(z)− gN(z)| ≤ O(
1

N
(logN +

1

1− r
)).

Proof. See [5] page 102. �

Now that we know how to evaluate SC integrals and their inverses we can move on to

evaluating the Ahlfors map (3.1).

4.3. Computing the Integral

The difficulty in implementing the Ahlfors Iteration lies with the integral in the Ahlfors

map (3.1). Let P denote the target surface with SC map Σ : H → P , and let S : H → P̃

be a fixed SC map of an ǫ-approximation. The notation for the SC maps has been changed

here to ease the calculations that follow. Suppose P and P̃ have compatible triangulations,

T and T̃ , and corresponding piecewise affine mapping, L. Assume that three corresponding

parameters of the SC maps are normalized to 0, 1, and ∞. Then letting f = Σ−1 ◦L ◦S and
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extending it to H
−, the integral in the Ahlfors map, Af , is

∫

C

µf (z)R(z, w)dAz

= 2Re

∫

H

µf (z)R(z, w)dAz

= 2Re

∫

H

µL(S(z))

( |S ′(z)|
S ′(z)

)2

R(z, w)dAz

= 2Re

∫

P̃

µL(ζ)

( |S ′(S−1(ζ))|
S ′(S−1(ζ))

)2

R(S−1(ζ), w)JS−1(ζ)dAζ ,

where we have made a change of variables, ζ = S(z), and JS−1 is the Jacobian of S−1. For a

C1 homeomorphism, f , of domains in the plane, Jf = |fz|2 − |fz|2. S−1 is conformal, hence,

infinitely differentiable and holomorphic, so

JS−1(ζ) =
∣∣(S−1)′(ζ)

∣∣2 = 1/
∣∣S ′
(
S−1(ζ)

)∣∣2 .

Using this in the integral above gives

∫

C

µf (z)R(z, w)dAz

= 2Re

∫

P̃

µL(ζ)
((
S−1

)′
(ζ)
)2
R(S−1(ζ), w)dAζ

= 2Re
∑

T∈T̃

µT

∫

T

((
S−1

)′
(ζ)
)2
R(S−1(ζ), w)dAζ ,

where µL(z) is a constant µT on triangle T ∈ T̃ .

The integral has been simplified by changing the domain from C to the surface, and then

using the fact that µL is piecewise constant, the integral over the whole polygon has been

rewritten as a sum of integrals of holomorphic functions on the triangles in the triangulation.

We can use the holomorphic property of the integrand on triangles to further ease the

evaluation of the Ahlfors map. Take a triangle T ∈ T̃ and consider T as an open set in C.

Decompose T into four pieces as follows. Let s1, s2, and s3 be disjoint sectors at each vertex

of T such that the power series decomposition of S−1 is defined at each and let M = T \∪si
as in Figure 4.3.
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s1
s2

s3

M

Figure 4.3. Decomposing triangles for integration.

Let

(4.9) I(ζ, w) =
((
S−1

)′
(ζ)
)2
R(S−1(ζ), w).

Then, since I is holomorphic in T , we have

I(ζ, w) =
∂

∂ζ

[
ζI(ζ, w)

]
.

This allows the two dimensional integral overM to be reduced to a line integral by appealing

to the complex form of Green’s formula.

Proposition 4.3.1 (Green’s Formula, [2]). Let Ω be a bounded domain with boundary

∂Ω consisting of a finite number of disjoint rectifiable Jordan curves. Suppose that f and g

are continuous on Ω and have continuous partial derivatives in Ω. Then

(4.10)

∫

Ω

(
∂f

∂z
+
∂g

∂z

)
dA =

i

2

∫

∂Ω

fdz − gdz.

So,

∫

T

I(ζ, w)dAζ =

∫

M

I(ζ, w)dAζ +
∑

i

∫

si

I(ζ, w)dAζ

= − i

2

∫

∂M

ζI(ζ, w)dζ +
∑

i

∫

si

I(ζ, w)dAζ .

Evaluating the line integral can be done by breaking up the boundary of M into 6 pieces

corresponding to the arcs and the line segments and applying regular Gaussian quadrature,
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where the weights are the constant 1. Regular Gauss quadrature is used here because I(ζ, w)

is smooth on ∂M .

To calculate the remaining integrals, suppose s is on of the si with vertex v and the

interior angle of P , not s, is απ. Assume that the mapping, g−1, in (4.4) sends s to a sector,

s′, in D with radius 1/2. Recall that in s we can write S−1(ζ) = h(g−1(ζ)), where h is a

conformal mapping of the disk to a neighborhood of S−1(v). So,

∫

s

(
(S−1)(ζ)

)2
R(S−1(ζ), w)dAζ =

∫

s

h′(g−1(ζ))2((g−1)′(ζ))2R(h(g−1(ζ)), w)dAζ

=

∫

s′
h′(z)2R(h(z), w)

|g′(z)|2
g′(z)2

dAz.

Since

R(h(z), w) =
1

h(z)− w
− w

h(z)− w
+
w − 1

h(z)
,

we can assume R(h(z), w) = 1/h(z) in the integral and consider the cases when h(0) = 0

and h(0) 6= 0. Recall g(z) = ηrzα + v, for real r > 0 and η ∈ ∂D. We get

∫

s′

h′(z)2

h(z)

|g′(z)|2
g′(z)2

dAz =
1

η2

∫

s′

h′(z)2

h(z)

(
z

|z|

)2−2α

dAz.(4.11)

Now, h(z) can be uniformly approximated using the FFT. This also gives an approximation

to h′(z) by simply taking the derivative of the complex polynomial. One can also use the

FFT to multiply and divide power series. See Appendix B in [6]. Thus, if h(0) 6= 0, we can

approximate the integral in (4.11)

(4.12)
1

η2

∫

s′

N∑

j=0

ajz
j

(
z

|z|

)2−2α

dAz,

which can be evaluated explicitly over the sector s′ by converting the integral to polar form.

If h(0) = 0, then h(z) =
∑∞

j=1 bjz
j, where b1 6= 0 since h is conformal. Then H(z) =

z/h(z) is holomorphic in D and can be approximated by a power series by first approximating

h(z) using the FFT, factoring out a z, and taking the reciprocal of the resulting polynomial.
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Then we can approximate h′(z)2H(z) by a power series
∑N

j=0 ajz
j and estimate (4.11) by

(4.13)
1

η2

∫

s′

N∑

j=0

ajz
j 1

z

(
z

|z|

)2−2α

dAz,

which can also explicitly evaluated by using polar coordinates.

We end this section with a note on the computational complexity of the Ahlfors Iteration

for planar n-gons. It is easy to see that, as presented, the Ahlfors Iteration is O(n2) algo-

rithm. This follows from the fact that for each n − 3 cross-ratio we need to calculate O(n)

integrals. But do we really have to perform all the O(n) integrals? Because of the crowding

of prevertices in polygons with many vertices, some of the line and sector integrals detailed

above may add negligible amounts to the total Ahlfors integral and, thus, can be ignored.

This is an area where further analysis and study is possible.

4.4. Numerical Results

We now present some numerical results from the implementation of the Ahlfors Iteration.

The algorithm was written in Matlab and utilizes Driscoll’s Schwarz-Christoffel Toolbox [12].

We compare the Ahlfors Iteration with Davis’s Method and CRDT. In order to estimate the

accuracy of each method, we calculate the affine mapping between the triangulations of the

approximate and target polygons, take the largest absolute value of the dilatations (call this

value m), and then plot − log10(m) against the step of each iteration. This roughly tells us

how many digits of accuracy each approximations has.

Each method requires an initial guess of the parameters. We use the starting guess of

CRDT, which takes the cross-ratios of the quadrilaterals of the triangulated target polygon.

As seen earlier, these cross-ratios give us a unique initial guess for the parameters.

Each of the examples below shows the quadratic convergence of the Ahlfors Iteration as

guaranteed by Theorem 3.1.1. Furthermore, the Ahlfors Iteration converges in fewer steps

than CRDT and Davis’s Method. However, the running time of the Ahlfors Iteration is much

slower because of the O(n2) integrals that need to be calculated at each step and because

many SC inverses must be found to accurately compute those integrals.
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Figure 4.4. Above are the approximating polygons for each step of the
Ahlfors Iteration and the target polygon. Below is the accuracy of the methods
at each iteration.
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Figure 4.5. The quadratic convergence of the Ahlfors Iteration is very pro-
nounced for the polygon above.
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Figure 4.6. Again, the Ahlfors Iteration converges in fewer steps.
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Appendix

A.1. Useful Formulas

When using quasiconformal maps, one often encounters the composition of such mappings

and needs to know the complex dilatations. Here we compile some useful formulas on the

composition of QC mappings found in [1].

Let ζ = f(z) for a complex-valued f and let g also be complex-valued. Assume both

functions are C1. Then we have the following chain rules

(g ◦ f)z = (gζ ◦ f)fz + (gζ ◦ f)f z

(g ◦ f)z = (gζ ◦ f)fz + (gζ ◦ f)f z.

(A.1)

Recall that for a function h, µh = hz/hz. From the above equations one derives the

following result,

(A.2) µg ◦ f =
fz

f z

µg◦f − µf

1− µfµg◦f

.

Therefore, if g is conformal, then

(A.3) µg◦f = µf ,

and if f is conformal,

(A.4) µg ◦ f =

(
f ′

|f ′|

)2

µg◦f .

Suppose we have a quasiconformal mapping F and two conformal mappings S and T .

Let f = T ◦ F ◦ S. Then using equations (A.3) and (A.4) we see

(A.5) µf = (µF ◦ S)
( |S ′|
S ′

)2

.
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The equality (A.5) is essential in computing the Ahlfors Iteration.

A.2. Riemann Surfaces

A Riemann surface is a two-real-dimensional connected manifold S with a maximal set

of charts, {Uα, zα}α∈A, such that the transition functions

fαβ = zα ◦ z−1
β : zβ(Uα ∩ Uβ) → zα(Uα ∩ Uβ)

are holomorphic whenever Uα ∩ Uβ 6= ∅. The set {Uα}α∈A must be an open cover and each

Uα is homeomorphic to an open set in C.

Let f : S → T be a continuous mapping between Riemann surfaces. By definition, f

is holomorphic if for every chart {U, z} on S and {V, ζ} on T , with U ∩ f−1(V ) 6= ∅ the

mapping

ζ ◦ f ◦ z−1 : z(U ∩ f−1(V )) → ζ(V )

is a holomorphic mapping in the classical sense of domains in C.

A.3. Harmonic Measure

In this section, we compile information about harmonic measure, the tool with which we

are able to get estimates in the Ahlfors Iteration based on local geometry of the polygonal

Riemann surface.

Let Ω be a simply connected domain in the plane such that ∂Ω is a Jordan curve. Fix

z ∈ Ω and let ϕ : Ω → D be a conformal map guaranteed by the Riemann mapping theorem

such that ϕ(z) = 0. By Carathéodory’s Theorem, [16], ϕ has a continuous extension to ∂Ω

and ϕ is a homeomorphism of ∂Ω onto ∂D. Let E ⊂ ∂Ω. Then we define the harmonic

measure of E at z ∈ Ω by

(A.6) ω(z, E,Ω) =
1

2π
|ϕ(E)| ,
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where |ϕ(E)| denotes the Lebesgue measure of ϕ(E) in ∂D. ω(z, E,Ω) is well-defined since

if ψ is any other conformal map of Ω to D such that ψ(z) = 0, then ψ and ϕ differ by a

rotation which does not change |ϕ(E)|.

If we fix z ∈ Ω, then the function E 7→ ω(z, E,Ω) is a Borel measure on ∂Ω. On the other

hand, if we fix E ⊂ Ω and allow z to vary, then the function z 7→ ω(z, E,Ω) is harmonic,

that is, satisfies

∆ω =

(
∂2

∂x2
+

∂2

∂y2

)
ω = 0,

for all z ∈ Ω. We use this fact when we apply Harnack’s inequality in Lemma 3.2.2.

Lemma A.3.1 (Harnack’s Inequality). Let u be a nonnegative, harmonic function on a

neighborhood of D(0, R). Then, for any z ∈ D(0, R),

R− |z|
R + |z|u(0) ≤ u(z) ≤ R + |z|

R− |z|u(0).

Proof. See Chapter 7 in [20]. �

If Ω = D and z ∈ D, then letting ϕ(w) = (w − z)/(1− zw) we have

ω(z, E,D) =
1

2π
|ϕ(E)|

=
1

2π

∫

E

∣∣ϕ′(eiθ
∣∣ dθ

=

∫

E

1− |z|2

|eiθ − z|2
dθ

2π
.

Applying a change of variables to formula above gives the harmonic measure on ∂H

ω(x+ iy, E,H) =

∫

E

y

(t− x)2 + y2
dt

π
.

There is a seemingly unrelated yet equivalent way of defining harmonic measure of a

Borel set E ⊂ ∂Ω. In [26], Kakutani proves that for z ∈ Ω, ω(z, E,Ω) is the same as

the probability that a Brownian motion starting at z will hit E before hitting any other

boundary component.
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For a thorough and captivating treatment of harmonic measure see the book by Garnett

and Marshall [16].
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