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Abstract of the Dissertation

Axioms for Di�erential Cohomology

by

Andrew Jay Stimpson

Doctor of Philosophy

in

Mathematics

Stony Brook University

2011

A di�erential cohomology theory is a type of extension of a cohomology
theory E∗ restricted to smooth manifolds that encodes information that is
not homotopy invariant. In particular, it takes values in graded abelian
groups, and is equipped with natural transformations to both E∗ and
closed di�erential forms with values in the graded vector space V =
E∗(point)⊗R. Di�erential cohomology theories for certain choices of an
underlying cohomolgy theory have been conjectured by Freed to be the
proper home for certain types of quantized B-�elds in superstring theory.

In the case of ordinary integral cohomology, Simons and Sullivan showed
they all were naturally isomorphic via a unique isomorphism. Bunke
and Schick, under the assumptions that E∗ is countably generated in
each degree and rationally even (i. e., E2k+1(point) ⊗ Q = 0), arrive at
the same result only when they also require the di�erential cohomology
theories each have a degree −1 �integration� natural transformation that
is compatible with the integration along the �ber map for forms and
the suspension isomorphism for E∗. We also construct such a natural
isomorphism, and our only requirement of the cohomology theory is that
it be �nitely generated in each degree. However, we also require that
the di�erential cohomology theory be de�ned on a particular type of
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category that is larger than the historical domain of the category of
smooth manifolds with corners.
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Chapter 1

Preliminaries

1.1 Introduction

1.1.1 History and Motivations

The original notion of a di�erential cohomology theory is that of a contravariant
functor from the category of smooth manifolds to graded abelian groups that re�nes
the ordinary integral cohomology H∗ of a manifold. Every element of the di�erential
cohomology of a manifold M naturally determines both an element of H∗(M) and a
closed di�erential form whose de Rham class is the real reduction of the aforemen-
tioned integral cohomology class. The �rst example of such functor was the abelian
group of di�erential characters Ĥ∗ introduced by Cheeger and Simons in [CS85],
de�ned as

Ĥk(M) :=

{
ϕ ∈ Hom(Zk−1(M), R/Z)

∣∣∣∣∣ ∃ω ∈ Ωk(M) s. t. f ◦ ∂ =

[∫
(·)
ω

]
Z

}
.

This functor �ts into a particular diagram of natural transformations:

0

""DD
DD

DD
DD

D 0

. . .

""DD
DD

DD
DD

H∗−1(−; R/Z) //

""D
D

D
D

H∗(−; Z)

""DD
DD

DD
DD

<<zzzzzzzzz
. .
.

H∗−1(−; R)

<<zzzzzzz

""DD
DD

DD
D Ĥ∗

<<z
z

z
z

""D
D

D
D

H∗(−; R)

<<zzzzzzzz

""DD
DD

DD
DD

. .
.

<<zzzzzzzz
Ω∗−1

Ω∗−1
Z

<<z
z

z
z

// Ω∗Z

<<zzzzzzzz

""DD
DD

DD
DD

D
. . .

0

<<zzzzzzzz
0

(1.1)
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The coe�cient short exact sequence

0→ Z→ R→ R/Z→ 0.

induces a long exact sequence in ordinary cohomology, which is the sequence running
along the top of this diagram. Here, Ω∗ are the de Rham di�erential forms and Ω∗Z
are the closed forms with integral periods. The arrows along the bottom are from
the long exact sequence in homology that results from the short exact sequence

0→ Ω∗Z → Ω∗ → Ω∗/Ω∗Z → 0

of chain complexes (where Ω∗Z and Ω∗/Ω∗Z are given the trivial di�erentials). The four
natural transformations indicated with dashed arrows make the diagonal sequences
exact.

A host of other examples of functors that also �t into this diagram were de�ned,
and they were all eventually shown to be isomorphic [GS89, Har89, HLZ03, HL06].
This led to Simons and Sullivan showing in [SS08] that it is indeed the case that any
functor equipped with four natural transformations indicated is naturally isomorphic
to any other via a unique natural transformation that is compatible with the four
given.

As part of an e�ort to build geometric re�nements of intersection pairings, Hop-
kins and Singer show in [HS05] that, for an arbitrary generalized cohomology theory,
there exists an analogue of di�erential cohomology that �ts into a diagram analo-
gous to Diag. (1.1). They state there that the direction of their work was inspired
by a comment of Witten about describing brane partition functions in terms of these
re�nements. It is therefore perhaps not surprising that di�erential cohomology has
in recent years become an object of interest in physics. Distler, Freed, and Moore
postulate in [DFM10] that because of anomaly cancellation in superstring theory,
B-�eld �uxes for the oriented superstring seem to be quantized by certain Postnikov
truncations of K-theory rather than a product of ordinary integral cohomology, and
that the corresponding di�erential cohomology groups are therefore the proper home
for the Dirac quantized B-�eld of the theory. Di�erential K-theory itself has a ge-
ometrically appealing interpretation as the Grothendieck construction applied to
equivalence classes of vector bundles with connection [SS10b].

A natural question is whether or not this diagram of natural transformations
determines a generalized di�erential cohomology theory up to unique natural iso-
morphism. Bunke and Schick answer this in the negative in [BS10] by constructing
an alternate abelian group structure for a given version of di�erential K-theory that
is inequivalent to the original. This holds even though they are using a smaller dia-
gram that doesn't involve the R/Z cohomology1. In the same paper, however, they
obtain a positive result by also requiring that each of the di�erential cohomology

1They show that the kernel of the natural transformation to the analogue of Ω∗Z is isomorphic
to the R/Z cohomology, but potentially non-uniquely.
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theories in question have a �wrong-way� natural transformation∫
: Ê∗+1(S1 ×−, {0} × −) −−−−→ Ê∗

(which they call an �integration structure�) that is compatible with the corresponding
natural transformations for each of the other functors in the diagram. For the
functors along the top sequence, this is the suspension isomorphism. For the bottom
sequence, this is the integration along the �bers map of the projection

p2 : (S1 ×−)→ (−).

Under this condition and the condition that the starting cohomology theory is ra-
tionally even (the groups of a point are concentrated in even degrees after tensor-
ing with Q), there always exists a unique natural isomorphism between any two of
these �di�erential cohomology theories with integration� that commutes with the
wrong-way maps and which is compatible with the analogues of three of four natural
transformations in Diag. (1.1).

1.1.2 Outline

The main technical thrust of [BS10] is approximating spectra by smooth manifolds.
Our approach is to instead consider di�erential cohomology theories on a category
that contains smooth manifolds, but which is also large enough to include all spectra.
This category is equipped with a functor that restricts to di�erential forms on objects
that are manifolds, and which enjoys many of the same properties, including the
sheaf condition. We show that this, together with the half-exactness of a cohomology
theory (which we call the Mayer-Vietoris property), implies that any such di�erential
cohomology theory also satis�es the Mayer Vietoris property. This gives the existence
(but not uniqueness) of di�erential cohomology elements on a space given a coherent
collection of elements on the pieces of a decomposition of the space.

Following the lead of [BS10] with regard to addition structures and the axiom
of an integration natural transformation, we de�ne a slightly di�erent version of an
integration structure and use the Mayer-Vietoris property to show that any natural
transformation between the underlying pointed sets of a pair of di�erential coho-
mology theories with integration that is compatible with (the integration map and
three of the four other natural transformations) must be a homomorphism. For any
cohomology theory E∗, we provide another model for di�erential cohomology with
an integration map that takes values in pointed sets. We show that if E∗(point) is
�nitely generated in each degree, then the functor (that takes values in the underly-
ing pointed set of any di�erential cohomology theory with integration) is naturally
isomorphic to our model. Therefore any pair of di�erential cohomology theories with
integration are naturally isomorphic as pointed sets, and thus as abelian groups as
well.
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1.2 Underlying Category

One of the main innovations of this dissertation is to consider di�erential cohomology
theories de�ned on a larger category C than the traditional ones of smooth manifolds
or smooth manifolds with corners. Since there are many possible categories for
which these constructions work, we describe C axiomatically rather than picking a
particular one.

1.2.1 Given Categories

In a nutshell, we desire a category that contains smooth manifolds with corners,
retains several of the features of smooth manifolds with corners, but which also has
all small colimits2. First we outline the properties of some categories that we wish
to emulate.

We de�ne the the following categories:

Set := sets.

Ab := abelian groups.

Ab• := Z-graded abelian groups.

Mfld := smooth manifolds with corners.

Top := topological spaces that have the homotopy type of a CW complex.

DGCA := di�erential graded-commutative R-algebras.

CC(VectR) := chain complexes of R vector spaces.

∆ := the simplex category.

Let (−)op denote the opposite category of (−). Between these categories we have
the diagram of functors and natural transformations:

∆op σop // Mfldop
Ω∗ //

Uop

��

C∗sm

$$IIIIIIIIIIIIIIIIIIII DGCA

Falg

��

N∫t| qqqqqqq
qqqqqqq

Topop
Nsm

:B||||||
||||||

C∗sing

// CC(VectR)

,

where the functors are de�ned as follows:

2A colimit of (a diagram of objects and arrows in a category) is a universal target object for that
diagram, which means it comes equipped with an arrow from each object in the diagram such that
all the triangles formed from all the arrows in the diagram commute. Disjoint unions, identi�cation
spaces, direct sums, and direct limits are all examples.
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U := the underlying topological space.

Falg := forgets the algebra structure.

Ω∗ := the smooth di�erential forms.

C∗sing(−; R) := the singular R-valued cochains.

C∗sm(−; R) := the smooth singular R-valued cochains.

σ := realizes each n-simplex, ∆n, as a smooth manifold with corners.

The functor C∗sm(−; R) can be built formally out of σ. For M ∈ Mfld,

Cnsm(M ; R) := HomSet(HomMfld(σ(∆n),M), R).

C∗sing(−; R) can be similarly de�ned by replacing σ with U ◦ σ. Because U induces
a map

HomMfld(σ(∆n),M)→ HomTop(U(σ(∆n)), U(M)),

we have the natural transformationNsm : C∗sing(U(−); R)→ C∗sm(−; R). The natural
transformation N∫ is given by integration over simplices. The important point for
Mfld is that both of these natural transformations are quasi-isomorphisms.

Let Ĩ := σ(∆1). Using this, we can express notions of homotopy in all of the
above categories (except ∆) that is compatible with all the above functors . To wit,

• Mfld has HomMfld

(
Ĩ ×X, Y

)
.

• Top has HomTop

(
U
(
Ĩ
)
×X, Y

)
.

• CC(VectR) has chain homotopies.

• DGCA has chain homotopies that respect the algebra structure.

The precise notion of compatibility for Ω∗ is given by the wrong-way natural trans-
formation

(p2)! : Ω∗+1
(
Ĩ ×−

)
−−−→ Ω∗(−)

associated to the projection p2 :
(
Ĩ ×−

)
→ (−) that is given by integration along

the �bers. Then if ι0, ι1 : (−)→
(
Ĩ ×−

)
are the maps that include (−) to ({0}×−)

and ({1} × −) respectively,

ι∗1 − ι∗0 = d(p2)! + (p2)!d.
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1.2.2 Axioms

Let C be a category that satis�es the following:

C1. C has all small colimits and all �nite products, both of which are given func-
torially (e. g., ∀X ∈ C, (−) 7→ (X ×−) is an endofunctor of C).

C2. C is equipped with the functors indicated by dotted arrows in the diagram

Mfldop

Uop

��

mop

%%

Ω∗ // DGCA

Topop Cop
T op

oo

Λ∗

OO

,

such that the compositions on the boundaries of the both triangles are natu-
rally isomorphic.

C3. m : Mfld→ C is faithful, co-continuous (preserves all colimits) and continuous
(preserves all limits3.

C4. T : C→ Top is co-continuous and �nitely continuous4.

C5. Λ∗ : Cop → DGCA is continuous and is non-trivial only in non-negative de-
grees.

With the above, we can de�ne the analogues of both the singular and smooth singular
R-valued cochains, and there will be a natural transformationNsm,C that is analogous
to Nsm. Also, since Λ∗(m(σ(∆n))) ∼= Ω∗(σ(∆n)), we can de�ne an integration-over-
the-simplices natural transformation N∫ ,C from Λ∗ to the analogue of the smooth
singular R-valued cochains. We require that

C6. Nsm,C and N∫ ,C are quasi-isomorphisms. In other words, the cohomology of
our �forms� is the R-valued ordinary cohomology of the underlying space.

We also require the functors in the above diagram be compatible with homotopies.

Let p̃t ∈ Mfld denote the point space, and pt := m
(
p̃t
)
. Let I := m

(
Ĩ
)
.

C7. There exists a natural transformation (p2)∗ : Λ∗+1(I ×−)→ Λ∗(−)

C8. (p2)∗ is strongly surjective. This means the following. Let K be a closed
proper subset of Ĩ that consists of a �nite number of closed intervals and
points. Let ϕK : K ↪→ Ĩ denote the inclusion. We require that for all X ∈ C,
(p2)∗ restricted to the kernel of (m(ϕK)× idX)∗ is surjective.

3Limits are the categorical dual to the concept of a colimit. They are the universal domains for
diagrams. Products, direct products, �ber products, and inverse limits are all examples.

4Preserves �nite limits, i. e., limits involving only �nitely many objects.
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C9. If NΠ : (I ×−) ◦m→ m ◦
(
Ĩ ×−

)
and NΛ∗ : Λ∗ ◦mop → Ω∗ are the natural

isomorphisms described in Axiom C3 (m preserves �nite products) and the
upper triangular cell of the diagram of Axiom C2, then we require that

NΛ∗ ◦ ((p2)∗ ◦2 idmop) = (p2)! ◦
(
NΛ∗+1 ◦2 Nop

Π

)
where �◦2� refers to horizontal composition of natural transformations. Mod-
ulo the identi�cation of the products, this says that (p2)∗◦NΛ∗+1 = NΛ∗◦(p2)!.
In other words, (p2)∗ extends (p2)!.

Since m is co-continuous and p̃t is terminal in Mfld, pt is terminal in C. Thus the
endofunctor on C given by (pt×−) is naturally isomorphic to the identity functor.
Let f0, f1 : p̃t → Ĩ be the face maps of Ĩ = σ(∆1) in Mfld. Then, for every X ∈ C

and for j = 0, 1, we have the map ιj : X → I ×X that corresponds to m(fj)× idX .

C10. In terms of the above, we require that for all X ∈ C,

ι∗1 − ι∗0 = d(p2)∗ + (p2)∗d

To summarize: Axiom 1 states that we have a category that is complete in a
certain sense. Axiom 2 states we have functors relating this category to familiar
ones. Axioms 3-5 state that these functors preserve the completeness. Axioms 6 is
a de Rham theorem. Axioms 7-10 state that the functors are also compatible with
homotopies.

One can build a category that satis�es the above axioms by taking a particu-
lar co-complete subcategory of Chen spaces5 where the Nsm,C and N∫ ,C are quasi-
isomorphisms. The condition that these are so is closed under taking pushouts and
disjoint unions, which generate all colimits, so we can take the co-closure of the full
subcategory of Chen spaces generated by Mfld.

1.2.3 Properties of C

Let SSet denote the category of simplicial sets.

Lemma 1.1. There exists a functor | · |C : SSet→ C that makes the diagram

SSet
| · |C //

| · | ""FFFFFFFF C

T
��

Top

�commute�, where �| · |� denotes the geometric realization functor.

5See [Che73] for a de�nition of Chen spaces.
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Proof. A simplicial set is a presheaf on ∆ (i. e., a functor ∆op → Set). The category
of presheaves (with natural transformations acting as morphisms) is the universal
category with all small colimits that receives a functor from ∆. So the functor
m ◦ σ : ∆→ C extends to a functor | · |C : SSet→ C. Note that

T ◦m ◦ σ ∼= U ◦ σ ∼= | · |
∣∣∣
∆
.

Because T is co-continuous, it must send the image of (every formal colimit added to
∆ to get SSet) under | · |C in C to the corresponding colimit in Top. Thus T ◦ | · |C ∼=
| · |. �

Intuitively, we can think of the geometric realization of simplicial set as taking
the disjoint union of the sets of simplices, and then using the face and degeneracy
maps to make all the identi�cations. This identi�cation spaces is an example of a
colimit. Since we have objects in C that correspond to each simplex (m(∆k) for
each k), and since C has all small colimits, we can form the corresponding colimit
in C. Because T is co-continuous, it must send this colimit to the corresponding one
in Top, which is precisely the geometric realization. In the sequel, all references to
�identi�cation spaces� made out of objects of C will actually mean the corresponding
colimit.

An interesting point about | · | is that it has a right adjoint Sing : Top → SSet.
For X ∈ Top, the set n-simplices of SingX is HomTop(|∆n| , X). A classical result
of Quillen states that S and | · | give an equivalence of homotopy categories [Qui67].
So for X ∈ Top, the adjoint map to id ∈ HomSSet(SingX,SingX) gives a homotopy
equivalence |SingX| → X. This means that

X ' |SingX| ∼= T (|SingX|C).

So |Sing(−)|C is like a homotopy section of T . This suggests that it might be useful
to de�ne a notion of homotopy in C. Let In be the image under | · |C of the simplicial
set constructed from gluing n copies of ∆1 end-to-end.

De�nition 1.2. A homotopy in C is a morphism h ∈ HomC(In × X, Y ) for some
n ∈ Z>0.

If rj : I → In is the inclusion of the jth sub-interval, then we can extend (p2)∗
to (Λ∗+1 applied to objects in C of the form In ×X) by letting

(p2)∗ :=
∑
j

(p2)∗ ◦ (rj × idX)∗

Thus, a homotopy in C is sent by Λ∗ to a chain homotopy in DGCA via this extended
(p2)∗ and Axiom C10, and by T to a topological homotopy in Top.

8



1.2.4 Associated Categories

1.2.4.1 Pointed Categories

The categories Mfld, Top, SSet, and C all have a notion of a point object by looking
at the image of ∆0 ∈ ∆ included into them. Let A denote any of these categories,
and let P ∈ A denote the appropriate point object. We de�ne the category A0 of
pointed objects as the coslice category (P ↓ A) whose objects are pairs consisting
of an object of A together with a morphism from P to the given object, which we
refer to as the base point. Since all these categories have coproducts, we have the
inclusion functor (−)+ : A → A0 de�ned by adding a disjoint base point. There
is also the functor BA : A0 → A that forgets the base point. Since the notion
of the point object in each of these categories is obtained by pushing the point
object through the functors relating these categories, each of these functors induces
a functor between the corresponding pointed categories.

De�nition 1.3. For any abelian category M and any functor F : Aop → M, the
reduced version of F is the functor F̃ : Aop

0 →M de�ned by F̃ (X, b) := ker(F (b)).

For all X ∈ A, let cX be the unique morphism X → P . Then one can see by
purely functorial arguments that for all (X, b) ∈ A0,

F (X) ∼= F̃ (X, b)⊕ im(F (cX)),

and that for any morphism f in A0, the induced morphism BA(f) in A will preserve
this splitting. Moreover, if F preserves �nite products, then F̃ (−)+ is naturally
isomorphic to F . In this way, one can think of F̃ as an extension of F . Since all of
the functors from Cop that we will be dealing with have this property, we will always
be working with the reduced versions of all functors unless it is stated otherwise;
if we apply such a functor to an object of A, we are implicitly composing with the
functor with (−)+.

Remark. What we have done in creating the pointed category is promote P from a
terminal object in A to a zero object in A0. Thus, any su�ciently continuous functor
to an abelian category will send it to the zero object there.

1.2.4.2 Pair Categories

This generalizes the above pointed category.

De�nition 1.4. The category of pairs ofA is de�ned similarly to that ofA0. Namely,
it's the coslice category (C ↓ C) whose objects are pairs of objects in A together
with an (mono)morphism from the �rst to the second. Morphisms of pairs are two
morphism between the corresponding objects of the pairs that make the obvious
square commute.

We denote pairs by either writing the morphism explicitly, e. g.L
f−→ K; or by

just listing the objects (with an implied morphism) when the morphism is clear

9



or not explicitly needed, e. g.(K,L). Since A has products, for any two pairs of
objects in A, (K,L) and (K ′, L′), let (K,L)×p (K ′, L′) denote the product of pairs,
(K ×K ′, L×K ′ tK×K′ K × L′).

De�nition 1.5. For a �xed pair (X,Y ), let G(X,Y ) denote the endofunctor on pairs
of objects in A that takes (K,L) to (K,L)×p (X,Y ).

De�nition 1.6. An non-latching pair is an morphism f : A → X that has a
retraction r : X → A.

Note that GX preserves non-latching pairs for any pair X.
The terminality of P ∈ A makes any pair P → X non-latching. This allowed

us to de�ne the reduced versions of our functors. Similarly, for general non-latching
pairs and any of a functor F : Aop → Ab that we are considering, it makes sense to
de�ne F (X,A) := ker(f), as this will isomorphic to the standard de�nitions for both
cohomology (because the long exact sequence of the pair will have trivial coboundary)
and di�erential forms (because the functor that de�nes them is continuous).

1.2.4.3 Stable Categories

Since Mfld isn't complete or co-complete, we now restrict to the case where A ∈
{Top, SSet,C}. One can de�ne the analogue of the smash product using limits and
colimits (�rst de�ne the wedge sum as the coproduct in A0, then construct a map
from it to the product, and then take the colimit that identi�es its image to a point).
This smash product is both commutative and associative in the sense that there are
natural isomorphisms between all the di�erent orders and parenthesizations of the
factor objects. The analogue of base point preserving homotopies is given by maps
not from the product with an interval object, but from the smash product of (−)+

applied to an interval object (in the case of C, there is potentially more than one
interval object; namely all the In).

All of the above listed categories also have a pointed circle object in A0. We
can thus de�ne a functor S for each of these categories by smashing with this circle.
Commutativity and associativity of the smash product guarantee that this functor
is appropriately compatible with homotopies.

De�nition 1.7. A pre-spectrum of A is a collection {(An, αn) | n ∈ Z≥0} where
An ∈ A and αn ∈ HomA(SAn, An+1). The latter of these are called its structure
morphisms.

De�nition 1.8. If A = {(An, αn)} and B = {(Bn, βn)} are two pre-spectra of A, a
morphism6 f : A → B is a collection of morphisms fn ∈ HomA(An,Bn) such that
βn ◦ (Sfn) = fn+1 ◦ αn.

6Note that this terminology di�ers from the classical de�nition of a morphism of spectra that
involves co�nal subspectra.
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Let psA denote the category of pre-spectra of A. Thus, in particular, we can
form the category psC0 of pre-spectra of C0. Since T0 and (| · |C)0 are continuous and
co-continuous, they preserve all of the above operations. Thus, they induce functors
between the corresponding categories of pre-spectra.

Theorem 1.9. For any cohomology theory E∗ : Topop0 → Ab• whose coe�cients E∗

are countably generated in each degree, we can �nd a classifying spectrum for E∗ ◦T0

in psC0.

Proof. In �2 of [BS10], they construct approximations in to CW spectra for such co-
homology theories by way of increasing unions of smooth manifolds. We can include
this diagram of manifolds into C via m, and take its colimit there. Essentially, this
construction �rst approximates with �nite simplicial complexes, and then includes
each �nite simplicial complex into a Euclidean space, where it is thickened into a
manifold. Since the structure maps restricted to (the suspension of) each �nite piece
will map into a a �nite piece of the target, we can like-wise approximate them by �rst
simplicial and then smooth maps. By taking the base points to be vertices in the
original CW complexes, the above approximations will preserve them as well. �

De�nition 1.10. An object X ∈ C (or C0) is of �nite type if T (X) (respectively,
T0(X)) has the homotopy type of a �nite CW complex.

In the sequel, we will use the notation that if E ∈ psC0, then E
∗ : Cop0 → Ab•

will be the corresponding additive reduced cohomology theory on C0 de�ned by

En := colimk HomhC0(Sk−, En+k)

for �nite type objects in C.

1.3 Cohomology

Let E be a spectrum of C0 such that E
∗(pt) is �nitely generated in each degree, where

E∗ is the generalized reduced cohomology theory de�ned by E. This cohomology
theory is a �xed input of the remainder of this text.

1.3.1 Coe�cients

For any abelian group G, we can de�ne E-cohomology with coe�cients in G, E∗G ( · )
as the cohomology theory associated to the spectrum EG := E∧MG, where MG is
a Moore spectrum for G. EZ is naturally equivalent to E. The short exact sequence
of groups 0→ Z→ R→ R/Z→ 0 yields the triangle of spectra

E→ ER → ER/Z → E[1],

11



which yields the long exact sequence

· · · → E∗−1
R

Nπ−−→ E∗−1
R/Z

NB−−→ E∗
Nι−→ E∗R → · · · .

For any λ ∈ R, the endomorphism of R given by multiplying λ induces an
endomorphism of ER, and thus an endomorphism of E∗R, endowing E∗R with the
structure of a real vector space. For any �nite type spaceX ∈ C0, E

∗
R (X) is naturally

isomorphic to E∗(X)⊗ R.

1.3.2 Di�erential Forms

We refer to elements of the functor Λ∗ described in Axiom C2 as �di�erential forms�.
Because of Axiom C6, H(Λ∗) =: H∗dR

∼= H∗sing(T0(−); R). We de�ne the graded
vector space V by

V ∗ := E∗(pt)⊗Z R ∼= E∗R (pt) .

Let

Λ∗( · ;V ) :=

∞∏
i=0

(
Λi ⊗R V

∗−i)
be the degree-∗ di�erential forms with values in V . Note that when this functor is
composed with m : Mfld0 → C0, the resulting de�nition is naturally isomorphic to
the standard one of di�erential forms with values in a graded vector space V . The
natural di�erential splits with respect to this product, and thus the cohomology of
this complex will be

H∗dR( · ;V ) :=

∞∏
i=0

H i
dR( · ;V ∗−i).

Henceforth, unless otherwise indicated, all forms will have values in V , and we will
denote Λ∗( · ;V ) by Λ∗.

First note that

πi(Ek) ∼= [Si,Ek] ∼= [S0,Ek−i] ∼= Ek−i(pt).

Then because ER splits into a product of Eilenberg-Maclane spaces7, for any X ∈ C0,

EkR (X) ∼=
[
X, ER

k

]
∼=

[
X,

∞∏
i=0

K(πi (Ek)⊗ R, i)

]
∼=

[
X,

∞∏
i=0

K
(
V k−i, i

)]

∼=
∞∏
i=0

[
X, K

(
V k−i, i

)]
∼=
∞∏
i=0

H i
dR

(
X;V k−i

)
= Hk

dR(X;V ).

This establishes a natural isomorphism dR : E∗R → H∗dR( · ;V ). Henceforth, unless

7As an H-space, the k-invariants of ER vanish when tensored with Q; but tensoring a real vector
space with Q doesn't kill anything.
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otherwise stated, H∗dR( · ;V ) will be denoted by H∗dR.

De�nition 1.11. Special forms Λ∗Z are closed forms whose de Rham class is in the
image of dR ◦Nι : E∗ → H∗dR.

Note that this includes all exact forms. This will be a functor because it was
de�ned in terms of natural transformations. The inclusion Λ∗Z ↪→ Λ∗ is a natural
transformation, and thus the quotient Λ∗/Λ∗Z is a functor too. Thus we have the
following short exact sequence of natural transformations:

0→ Λ∗Z → Λ∗ → Λ∗

Λ∗Z
→ 0

If we give the �rst and last functors the zero di�erential, then these are chain maps.
Thus, by the snake lemma, we get the long exact sequence

· · · → H∗−1
dR → Λ∗−1

Λ∗−1
Z

d−→ Λ∗Z → H∗dR → · · · .

13



Chapter 2

Di�erential Cohomology

All of �1.3.1 and �1.3.2 can be summarized with the following diagram of natural
transformations:

· · · // E∗−1
R

Nπ // E∗−1
R/Z

NB // E∗
Nι // E∗R

// · · ·

· · · // H∗−1
dR

//

��

∼=
OO

Λ∗−1

Λ∗−1
Z

d // Λ∗Z
// H∗dR

//
��

∼=

OO

· · ·

(2.1)

De�nition 2.1. A di�erential cohomology theory for E∗ is a functor W ∗E : Cop0 →
Ab•, together with four natural transformations (indicated with dotted arrows) such
that the following diagram commutes and the diagonal sequences are exact:

0

��
??

??
??

? 0

· · · // E∗−1
R

Nπ // E∗−1
R/Z

NB //

i1

��

E∗
Nι //

??��������
E∗R

// · · ·

W ∗E

δ2
??

δ1

��

· · · // H∗−1
dR

//

��

∼=

OO

Λ∗−1

Λ∗−1
Z

d //

i2
??

Λ∗Z
//

��
??

??
??

??
H∗dR

//
��

∼=

OO

· · ·

0

??�������
0

. (2.2)

For the remainder of this section, let W ∗E be any di�erential cohomology theory
for E∗ and i1, i2, δ1, δ2 be the indicated natural transformations.

De�nition 2.2. A
(
3/4
)
-morphism of di�erential cohomology theories is a natural

transformation Ψ : W ∗E → W ′∗E such that Ψ ◦ i2 = i′2, δ1 ◦Ψ = δ′1, and δ2 ◦Ψ = δ′2.
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In other words, it's compatible with three of the four natural transformations.

Proposition 2.3. Every
(
3/4
)
-morphism is an isomorphism.

Proof. Apply the Five Lemma to the diagonal exact sequence of Diag. (2.2) that

involves Λ∗−1

Λ∗−1
Z

and E∗. �

De�nition 2.4. A morphism of di�erential cohomology theories is a
(
3/4
)
-morphism

Ψ : W ∗E →W ′∗E such that Ψ ◦ i1 = i′1 as well.

2.1 Properties

Lemma 2.5. Suppose that u ∈ W ∗E(I+ ∧X), and ι0, ι1 : X → I+ ∧X are induced
by the inclusions of the endpoints into I. Then

(ι∗1 − ι∗0)u = i2[(p2)∗δ1u]. (2.3)

Proof. (This is essentially the same as given the �rst page of [BS10].) The formula
holds when u is in the image of i2, and the general case can be reduced to this by
subtracting o� p∗2ι

∗
0u. �

2.1.1 Mayer-Vietoris

Suppose that X is the homotopy colimit of the diagram

Ã
ρ̃A←− D ρ̃B−−→ B̃

in C0. By this, we mean that if we de�ne

C := C̃ q
ρ̃C

(I ×D)

for C = A,B, we have the following commutative diagram of pointed spaces

D
ρA //

ρB
��

A

ιA
��

B
ιB // X

.

where ρA and ρB are the respective inclusions of D into the unglued ends of I ×D.
If we apply any contravariant functor F , we get the diagram

F (D) F (A)
F (ρA)
oo

F (B)

F (ρB)

OO

F (X)
F (ιB)
oo

F (ιA)

OO

.
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If the target category has limits, then we get a morphism

F (X)
MVF−−−→ F (A)

∏
F (D)

F (B). (2.4)

Remark. We also have a map
γ : X → SD

de�ned by compressing Ã ⊆ X to the vertex of one cone in SD, and B̃ ⊆ X to the
other. Up to homotopy, this is the mapping cone of Ã ∨ B̃ ↪→ X. Thus, if F is a
cohomology theory, then the kernel of MVF will be the image of F (γ).

De�nition 2.6. We say that F has the Mayer-Vietoris property (or MV property)
if for all spaces as given above, the corresponding MVF given in Eq. (2.4) is an
epimorphism.

De�nition 2.7. We say that F has the strong Mayer-Vietoris property (or strong
MV property) if for all spaces as given above, the corresponding MVF given in
Eq. (2.4) is an isomorphism.

A contravariant functor F having the strong MV property is the same as F being
a sheaf. The condition in Axiom C5 that Λ∗ is continuous means precisely that Λ∗

satis�es the strong MV property.

Theorem 2.8. Any di�erential cohomology theory W ∗E for a cohomology theory E∗

has the MV property.

See Appendix A1 for proof. It closely follows [SS10a], which proves this theo-
rem for di�erential cohomology theories on the category of smooth manifolds with
corners.

2.1.2 Homotopy Wedge Sums

Given the setup of spaces from the previous section, suppose that x ∈ ker(MVW ∗E ).
Then δ1x = 0 because Λ∗ has the strong MV property, and hence MVΛ∗Z

is injective.

So x = i1θ for some θ ∈ E∗−1
R/Z (X). Since i1 is injective, we also know that θ ∈

kerMVE∗−1
R/Z

. Because E∗R/Z is a cohomology theory, we know that kerMVE∗−1
R/Z

=

imE∗−1
R/Z (γ). To summarize, we have the diagram of horizontal exact sequences

· · · // E∗−2
R/Z (A tB) // E∗−2

R/Z (D) // E∗−1
R/Z (X) //

� _
i1

��

E∗−1
R/Z (A tB) //

� _
i1

��

E∗−1
R/Z (D)

� _
i1

��

· · · // E∗−2
R/Z (A tB) // E∗−2

R/Z (D) // W ∗E(X) // W ∗E(A tB) // W ∗E(D)

From this, it is easy to see the following.
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Lemma 2.9. If the coboundary map E∗−1
R/Z (D)→ E∗R/Z (X) is trivial, then

W ∗E(X)
MVW∗

E−−−−→W ∗E(A)
∏

W ∗E(D)

W ∗E(B).

is an isomorphism.

In particular, this is true if D is contractible, or if either D → A or D → B are
non-latching pairs.

Corollary 2.10. If D = (pt, idpt), then

W ∗E(X) ∼= W ∗E(A)⊕W ∗E(B).

2.2 Integration

2.2.1 As an additional axiom

For all the functors F in Diag. (2.1), we have an integration natural transformation∫
F

: F ∗+1(SX)→ F ∗(X). (2.5)

For the upper long exact sequence, it's the suspension isomorphism. For the lower
long exact sequence, it's pulling back to m(I) × X and then applying the natural
transformation given in Axiom C7. Because the integration map for Λ∗ realizes
the suspension isomorphism for its de Rham theory, the integral of a special form is
special. Furthermore, all the natural transformations in Diag. (2.1) graded-commute
with the integration maps. Thus, a natural de�nition to make is

De�nition 2.11. A di�erential cohomology theory with integration is a di�erential
cohomology theory W ∗E that has an integration natural transformation,

∫
WE

, as

given in Eq. (2.5) that graded-commutes1 with all the natural transformations in
Diag. (2.2).

Remarks. (1) This is not an unreasonable request to make of a di�erential cohomol-
ogy theory, as the general construction of a di�erential cohomology theory for an
arbitrary cohomology theory given by Hopkins and Singer in [HS05] has an integra-
tion natural transformation.

(2) Because (S1, {0}) is non-latching, GX(S1, {0}) is as well. Since the map
of pairs GX(S1, {0}) → SX induces an isomorphism for E∗−1

R/Z (via a sequence of

applications of excision and homotopy invariance) and Λ∗Z (by continuity), we can

1This integration natural transformation is an odd degree operation. Therefore it anticommutes
with i1 and i2, both of which are odd degree operations, just as it does with the �coboundary� maps
(the Bockstein and d) from Diag. (2.1).
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conclude via the diagonal short exact sequence involving i1 and δ1 of Diag. (2.2)
that it induces an isomorphism for W ∗E . Therefore, we can replace SX in the above
integration natural transformation with GX(S1, {0}) without loss of generality.

De�nition 2.12. A morphism (respectively,
(
3/4
)
-morphism) between di�erential

cohomology theories with integration is a morphism (respectively,
(
3/4
)
-morphism)

between the underlying di�erential cohomology theories that also commutes with
the integration transformation.

Let DCE and DC
(
3/4
)

E denote the category of di�erential cohomology theories with
integration for E∗ with the respective notions of morphisms.

2.2.2 Surjectivity

De�nition 2.13. If X ∈ C0, then a map of pairs f : GX(S1, {0}) → Y is stably
surjective if the compositions(∫

Λ/ΛZ

◦f∗
)

:
Λ∗

Λ∗Z
(Y ) −−−→ Λ∗−1

Λ∗−1
Z

(X)

and (∫
E
◦f∗
)

: E∗+1(Y ) −−−→ E∗(X)

are both surjective.2

Lemma 2.14. If f : GX(S1, {0}) → Y is a stably surjective map of pairs, and

W ∗E ∈ DC
(
3/4
)

E , then the composition∫
WE

◦f∗ : W ∗+1
E (Y )→W ∗E(X)

is surjective.

Proof. Stable surjectivity of f gives the surjectivity of the �rst and third vertical
arrows of the diagram

0 // Λ∗

Λ∗Z
(Y )

i2 //

−
∫
Λ/ΛZ

◦f∗
��

W ∗+1
E (Y )

δ2 //

∫
W
E
◦f∗

��

E∗+1(Y ) //

∫
E ◦f

∗

��

0

0 // Λ∗−1

Λ∗−1
Z

(X)
i2 //

��

W ∗E(X)
δ2 // E∗(X) //

��

0

0 0

.

2Recall De�nition 1.5 for G.
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Chasing this diagram then yields that the middle vertical arrow is also surjective.
Note the minus sign on the �rst horizontal arrow for Λ∗−1

Λ∗−1
Z

which makes the square

of which it is an edge commute. �

Let PP denote the �pair of pants� manifold with boundary. Let L1, L2 ⊂ PP
denote the the two cylinder �legs� whose union is all of PP , arranged such that
L1 ∩ L2 is isomorphic to a closed disk. Let ϕ : S1 → PP be a smooth embedding
that is isotopic to the �input�boundary, i. e., not either of the unglued boundaries of
L1 or L2. Note that this means that it will have some point in it's image that is in
L1 ∩ L2. Lift PP , L1, and L2 to objects in Mfld0 by letting this point be the base
point b0 ∈ PP (and re-parameterize S1 such that ϕ is a base point preserving map).
Let ι1 and ι2 denote the respective inclusions of L1 and L2 into PP .

We also have a base point preserving map ρ1 : PP → L1 that, after identifying
PP and L1 with the respective homotopy equivalent spaces of a wedge of two circles
and a circle, is equivalent to the maps that collapse the circle corresponding to L2

to point. Thus ρ1 ◦ ϕ is a homotopy equivalence, and we chose ρ1 such that this
composition is still a smooth embedding. We have an analogous map ρ2 : PP → L2

where the roles of L1 and L2 are reversed. The compositions ρ1 ◦ ι1 and ρ2 ◦ ι2 are
homotopic to the identity maps on L1 and L2 respectively.

We summarize the above with the commutative diagram

L1
ι1 //

'
��

PP
ρ1

}}{{
{{

{{
{{ ρ2

!!CC
CC

CC
CC

L2
ι2oo

'
��

L1 S1? _
'

oo
?�
ϕ

OO

� �

'
// L2

. (2.6)

Also, ρ1 ◦ ι2 and ρ2 ◦ ι1 are null-homotopic.

Lemma 2.15. For any W ∗E ∈ DC
(
3/4
)

E , and for any X ∈ C0, GX(ρj ◦ ϕ) is stably
surjective for j = 1, 2.

Proof. Because ρj ◦ϕ is a smooth embedding, (ρj ◦ϕ)∗ : Λ∗(Lj)→ Λ∗(S1) is surjec-
tive, and thus

(GX(ρj ◦ ϕ))∗ : Λ∗(GX(Lj))→ Λ∗(GX(S1, {0}))

is surjective. Since the integration along the �bers map∫
Λ

: Λ∗+1(GX(S1, {0}))→ Λ∗(X)

is surjective, the composition
∫

Λ ◦(GX(ρj ◦ ϕ))∗ is surjective. Therefore the corre-

sponding composition for Λ∗

Λ∗Z
is surjective.

In the initial setup of the spaces in Diag. (2.6), it was noted that ρj ◦ ϕ is
a homotopy equivalence. Therefore, GX(ρj ◦ ϕ) will be as well. And since the
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integration map for E∗ is the suspension isomorphism, the composition∫
E
◦(GX(ρj ◦ ϕ))∗

will be an isomorphism. �

2.3 Addition Structure

Let U : Ab• → (Set0)• be the forgetful functor from the category of (Z-graded)
abelian groups to the category of (Z-graded) pointed sets. If W ∗E is a di�erential
cohomology theory for E∗, then U ◦W ∗E still retains most of the original structure.
We still have a diagram analogous to Diag. (2.2) by horizontally obtained composing
all the natural transformations with idU . If W

∗
E has an integration natural transfor-

mation, then so does U ◦W ∗E . The notions of a morphism and and
(
3/4
)
-morphism

of these �pointed-set-valued di�erential cohomology theories with strongly surjective
integration� are analogous to those given earlier in this chapter; namely, a natural
transformation that is compatible with the four natural transformations coming into
or going out of U ◦W ∗E which also graded-commutes with the integration map.

But now consider the forgetful functor that doesn't completely forget the addition
structure as above, but that instead retains the structure of a pointed Λ∗−1

Λ∗−1
Z

-set. In

other words, if a is the addition map, then we only remember the map a ◦ (i2 × id).
The four natural transformations δ1, δ2, i1, i2, and

∫
WE

will now not just be maps

of pointed sets.

• i2 will be a map of pointed Λ∗−1

Λ∗−1
Z

-sets, where Λ∗−1

Λ∗−1
Z

acts on itself by addition.

• Λ∗−1

Λ∗−1
Z

acts on Λ∗ by addition of its image under d. Then δ1 will be a map of

pointed Λ∗−1

Λ∗−1
Z

-sets.

• If we give E∗ the trivial action, then δ2 will be a map of pointed Λ∗−1

Λ∗−1
Z

-sets.

• H∗−1
dR acts on both E∗−1

R/Z and Λ∗−1

Λ∗−1
Z

via addition of its image in each. This turns

a di�erential cohomology theory whose addition structure has been partially
forgotten into a pointed H∗−1

dR -set. Then i1 will be a map of pointed H∗−1
dR -sets.

•
∫
WE

will be a map of pointed Λ∗−1

Λ∗−1
Z

-sets.

All of these will be natural in the following sense. If f : X → Y is a morphism of C,
then all of the above functors applied to X will have the appropriate group action
structures over the functors applied to Y via f∗. The induced morphism for each
functor will be equivariant with respect to the functors applied to Y . Moreover,
because the correction terms added when one changes a map by a homotopy are
always elements of Λ∗−1

Λ∗−1
Z

(see Lemma 2.5), we can still compute those changes.
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De�nition 2.16. Let DCΛ
E denote the following category.

• The objects are (contravariant functors W∗E from C to Z-graded pointed sets)
that are equipped with four natural transformations as in Diag. (2.2) that have

the above algebraic properties that turnW∗E into a Λ∗−1

Λ∗−1
Z

-set. We also require an

integration natural transformation, that the diagonal sequences analogous to
those in Diag. (2.2) are exact3, and that induced morphisms of W∗E transform
under homotopies by the formula given in Eq. (2.3).

• The morphisms are natural transformations preserve all of the above structure,
much as in the de�nition of DCE .

De�nition 2.17. Let DCΛ
E

(
3/4
)
denote the category whose objects are the same as

DCΛ
E , and whose morphisms satisfy all the same properties except for compatibility

with i1.

Let UΛ : DCE → DCΛ
E and U

(
3/4
)

Λ : DC
(
3/4
)

E → DCΛ
E

(
3/4
)
denote the above described

forgetful functors.

Theorem 2.18. Any object in the image of U
(
3/4
)

Λ has a uniquely de�ned addition
structure that makes it into a functor into Ab• such all �ve of its natural transforma-
tions in (pointed sets with the above described algebraic structures) become natural
transformations in Ab.

Proof. Let W ∗E ∈ DCE . Let X ∈ C0. Supposed x1, x2 ∈ W ∗E(X). Our goal is
to reconstruct their sum without ever explicitly adding them. If we apply GX to
Diag. (2.6) we obtain the diagram

GX(L1)
GX(ι1)

//

'

��

GX(PP )

GX(ρ1)

yytttttttttttttt
GX(ρ2)

%%JJJJJJJJJJJJJJ
GX(L2)

GX(ι2)
oo

'

��

GX(L1) GX(S1)? _
'

oo
?�
GX(ϕ)

OO

� �

'
// GX(L2)

.

Because of Lemma 2.15, there exists x̃j ∈W ∗+1
E (GX(Lj)) such that(∫

WE

◦ (GX(ϕ))∗ ◦ (GX(ρj))
∗

)
(x̃j) = xj

for j = 1, 2. Clearly, if we could reconstruct y := (GX(ρ1))∗(x̃1) + (GX(ρ2))∗(x̃2),
we could then apply

∫
WE
◦(GX(ϕ))∗ and have x1 + x2.

The inclusion L1 ∩ L2 ↪→ Lj is non-latching. This remains true after taking
a product with X. Therefore by examining the Mayer-Vietoris sequence for the

3Here, since the category of pointed sets has a zero object, we can de�ne kernels and images.
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decomposition of PP = L1 ∪ L2, we see that

E∗−1
R/Z(GX(PP ))

∼=−−−−→ E∗−1
R/Z(GX(L1))⊕ E∗−1

R/Z(GX(L2)),

which is induced by the maps GX(ι1) and GX(ι2). In particular, we can apply
Lemma 2.9 and conclude that the corresponding map for W ∗E ,

W ∗E(GX(PP ))→W ∗E(GX(L1))⊕W ∗E(GX(L2)), (2.7)

is injective. Thus, the secret value of y ∈ W ∗+1
E (GX(PP )) that we are trying to

reconstruct is uniquely determined by its restrictions to GX(Lj) via GX(ιj) for
j = 1, 2. Because ρ1 ◦ ι1 is homotopic to the identity, and ρ2 ◦ ι1 is null-homotopic,
we compute that

(GX(ι1))∗(y) = (GX(ι1))∗ ((GX(ρ1))∗(x̃1) + (GX(ρ2))∗(x̃2))

= (GX(ρ1 ◦ ι1))∗(x̃1) + (GX(ρ2 ◦ ι1))∗(x̃2)

= x̃1 + i2[η1]

where [η1] ∈ Λ∗−1

Λ∗−1
Z

(GX(L1)) is the sum of the correction terms coming from GX

applied to the above mentioned homotopies. Note that this last line doesn't need
the full addition structure of W ∗E and can be computed using only its pointed Λ∗−1

Λ∗−1
Z

-

set structure. A completely symmetric computation shows that we can compute
(GX(ι2))∗(y) using only this structure as well.

Thus we can construct the appropriate values to which y should pull back in
GX(L1) and GX(L2). By the injectivity in Eq. (2.7), there is a unique element in
W ∗+1
E (GX(PP )) that pulls back thusly, so we can reconstruct y, and thus x1+x2. �

Remarks. (1) This doesn't prove that any object in DCΛ
E

(
3/4
)
has a unique addition

structure. Even if we assumed the contents of Lemma 2.9 (the proof that this prop-
erty holds uses the addition structure), this de�nition of the sum of two elements
depends on the choice of x̃1 and x̃2, as well as the fact that there exists an element
y that restricts to the appropriate values under GX(ιj) for j = 1, 2. Because we are
assuming that our functor came from an actual di�erential cohomology theory that
takes values in Ab•, we know that x1 + x2 will be independent of these choices. So
the addition structure is encoded in a �good� choice of integration natural transfor-
mation.

(2) This entire proof works for di�erential cohomology theories that are only
de�ned on Mfld, or even smooth manifolds if one replaces the pair of pants PP with
its interior. Thus the above and the following theorems hold in those contexts.

Theorem 2.19. The functor U
(
3/4
)

Λ : DC
(
3/4
)

E → DCΛ
E

(
3/4
)
is full.

This should not be a surprise. The previous theorem states that we can recon-
struct the sum of two elements using in a di�erential cohomology theory using only
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its pointed Λ∗−1

Λ∗−1
Z

-set structure, so any natural transformation that preserves said

structure should preserve the sum.

Proof. Let A∗E , B
∗
E ∈ DCE and Ψ : U

(
3/4
)

Λ A∗E → U
(
3/4
)

Λ B∗E be a morphism in DCΛ
(
3/4
)
.

The only question is whether or not Ψ is an additive homomorphism. We assume
the setup and notation from the proof of Theorem 2.18 applied to A∗E and let

y := (GX(ρ1))∗(x̃1) + (GX(ρ2))∗(x̃2) ∈ A∗+1
E (GX(PP )).

Note that

(GX(ι1))∗Ψ(y) = Ψ(GX(ι1))∗(y)

= Ψ(GX(ι1))∗((GX(ρ1))∗x̃1 + (GX(ρ2))∗x̃2)

= Ψ(x̃1 + i2,A[η1]) = Ψ(x̃1) + i2,B[η1],

and similarly, (GX(ι2))∗Ψ(y) = Ψ(x̃2) + i2,B[η2]. Let h(1,1) and h(2,2) be the homo-
topies to the identity of ρ1◦ι1 and ρ2◦ι2 respectively. Let h(1,2) and h(2,1) be the null
homotopies of ρ2 ◦ ι1 and ρ1 ◦ ι2 respectively (note the reversal). These homotopies
are used to compute the correction forms [η1] and [η2]:

[η1] =
[
(p2)∗δ1,A

(
h∗(1,1)x̃1 + h∗(1,2)x̃2

)]
=
[
(p2)∗

(
h∗(1,1)δ1,Ax̃1 + h∗(1,2)δ1,Ax̃2

)]
=
[
(p2)∗

(
h∗(1,1)δ1,BΨ(x̃1) + h∗(1,2)δ1,AΨ(x̃2)

)]
,

and similarly for [η2]. In other words, the correction forms are independent of the
di�erential cohomology theory. Thus

(GX(ι1))∗ ((GX(ρ1))∗Ψ(x̃1) + (GX(ρ2))∗Ψ(x̃2)) = Ψ(x̃1) + i2,B[η1]

and
(GX(ι2))∗ ((GX(ρ1))∗Ψ(x̃1) + (GX(ρ2))∗Ψ(x̃2)) = Ψ(x̃2) + i2,B[η2].

By comparing this to Eq. (2.3) (and its analogue with 1 and 2 exchanged), we can
see that

Ψ(y) = Ψ ((GX(ρ1))∗x̃1 + (GX(ρ2))∗x̃2)

and
GX(ρ1))∗Ψ(x̃1) + (GX(ρ2))∗Ψ(x̃2)

have the sames images when restricted to GX(Lj) via GX(ιj) for j = 1 and j = 2.
As pointed out in the proof of Theorem 2.18, these images uniquely characterize an
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element of B∗+1
E (GX(PP )), and thus they must be equal. So

Ψ(x1 + x2) =

(
Ψ ◦

∫
AE

◦(GX(ϕ))∗

)
(y) =

(∫
BE

◦(GX(ϕ))∗ ◦Ψ

)
(y)

=

(∫
BE

◦(GX(ϕ))∗

)
(GX(ρ1))∗Ψ(x̃1) + (GX(ρ2))∗Ψ(x̃2))

=

(∫
BE

◦(GX(ρ1 ◦ ϕ))∗Ψ(x̃1)

)
+

(∫
BE

◦(GX(ρ2 ◦ ϕ))∗Ψ(x̃2)

)

=

(
Ψ

∫
AE

◦(GX(ρ1 ◦ ϕ))∗x̃1

)
+

(
Ψ

∫
AE

◦(GX(ρ2 ◦ ϕ))∗x̃2

)
= Ψ(X1) + Ψ(x2)

�

Corollary 2.20. The corresponding functor UΛ : DCE → DCΛ
E is full.

Proof. Since both of these categories are subcategories of the corresponding cate-
gories in Theorem 2.19, we can forget the fact that the natural transformation is

compatible with i1, and get a morphism in DCΛ
E

(
3/4
)
. But because the underlying

natural transformation of pointed Λ∗−1

Λ∗−1
Z

-sets commutes with i1, this morphisms in

DCΛ
E

(
3/4
)
will be a morphism in DCΛ

E . �
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Chapter 3

Obstructions

3.1 lim1 in an Abelian Category

Let M be an concrete abelian category1 that has all small products. Then we also
have a category of �inverse systems� of objects in M, which are diagrams in M of
the form

· · · → A3
φ3−→ A2

φ2−→ A1
φ1−→ 0. (3.1)

We denote this category MN. Taking the inverse limit of such a system gives a
functor lim : MN →M. In general, lim is only left-exact, meaning that if we have a
short exact sequence

0→ A→ B → C → 0

in MN, then we only have the exact sequence

0→ limA→ limB → limC

in M (i. e., the second morphism can fail to be an epimorphism). However, one can
de�ne the right-derived functors of lim, denoted limi, so that the above short exact
sequence in MN yields the long exact sequence

0 // lim0A // lim0B // lim0C EDBC
GF@A

//____ lim1A // lim1B // lim1C EDBC
GF@A

//____ lim2A // lim2B // lim2C EDBC
GF@A

//______ · · ·
1The only cases I'm interested in are Ab, topological abelian groups, and functor categories built

out of these where the domain category is small.
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where, lim0 is naturally isomorphic to lim. As is the case for all derived functors, they
are computed by replacing your objects with chain complexes of �nice� objects whose
homology is isomorphic to the original object. Here �nice� means that the functor
in question is exact when restricted to such objects. It turns out that limi = 0 for
i ≥ 2 for this particular diagram shape [Mit73].

Suppose we have an object A ∈MN as in Diag. (3.1). Then all the φis in can be
assembled into a morphism φ :=

∏
i φi :

∏
iAi →

∏
iAi.

Theorem 3.1. lim1A �ts into the exact the exact sequence

0→ limA→
∏
i

Ai
φ−id−−−→

∏
i

Ai → lim1A→ 0. (3.2)

Proof. See Ch. III, �2 of [Rud98]. �

Remark. The content of this section is also true with inverse systems of the form

· · · → A2 → A1 → A0 → A−1 → A−2 → · · · ,

the category of which we denote by MZ, with essentially no modi�cations.

3.2 Extending to pre-spectra

Suppose that F is a functor into a graded abelian groups with integration and A is
any pre-spectrum. Then we get the following diagram:

F ∗+k+1(Ak+1)
F ∗+k+1(αk)−−−−−−−→ F ∗+k+1(SAk)

∫
F−−−−−→ F ∗+k(Ak),

where αk is the k
th structure map of A. We de�ne

F ∗+kstab (α) :=

∫
F
◦F ∗+k+1(αk).

This promotes F to (a functor from pre-spectra to (Ab•)Z). Namely, we de�ne F ∗(A)
to be the following diagram:

· · · → F ∗+k+1(Ak+1)
F ∗+kstab (α)
−−−−−→ F k(A)

F ∗+k−1
stab (α)
−−−−−−−→ F k−1(Ak−1)→ · · ·

We can regain a functor into graded abelian groups by composing with the lim
functor.
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3.3 Equivalent Diagram

Using the functors and natural transformations of Diag. (2.1), we de�ne

L∗ := ker
(
E∗R → E∗R/Z

)
, T ∗ := ker

(
E∗R/Z → E∗+1

)
,

P ∗ := (Λ∗Z)
∏
E∗R

(E∗) , cP ∗ :=

(
Λ∗

Λ∗Z

)∐
E∗R

E∗R/Z,

and
A∗ := Λ∗exact ⊕ E∗tor.

Then we get the following short exact sequences of natural transformations:

0→ T ∗−1 ιT−→ cP ∗−1 πT−−→ A∗ → 0 (3.3)

and
0→ A∗

ιL−→ P ∗
πL−−→ L∗ → 0 (3.4)

IfW ∗E is a di�erential cohomology theory for E∗, it will �t into the following diagram
of natural transformations:

0

��

0

��

0 // T ∗−1

ιT
��

T ∗−1

ι
��

// 0

��

0 // cP ∗−1

πT
��

i // W ∗E
δ

��

π // L∗ // 0

0 // A∗

��

ιL // P ∗

��

πL // L∗

��

// 0

0 0 0

, (3.5)

where all the columns and rows are exact. The four dotted arrows here are deter-
mined by the dotted arrows in Diag. (2.2). In fact, a functor that �ts into this
diagram is equivalent to one �tting into Diag. (2.2). Additionally, all the functors in
Diag. (3.3) and Diag. (3.4) have integration maps. If W ∗E is di�erential cohomology
theory with integration, then all the natural transformations in Diag. (3.5) will be
compatible with it. So di�erential cohomology theories with integration de�ned with
this diagram are all equivalent to the original ones.

Remark. Diag. (3.5) shows the importance of of the functors T ∗ and L∗. The middle
vertical short exact sequence tells us that because of T ∗−1, a di�erential cohomology
theory W ∗E is measuring something more than just an E-cohomology class and dif-
ferential form which satisfy a coherence relation (which is what P ∗ does)2. Similarly,

2For instance, in the case when E∗ is K-theory and using the geometric model given in [SS10b],
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the middle horizontal short exact sequence tells us that because of L∗, neither isW ∗E
just a quotient of E∗−1

R/Z ⊕
Λ∗−1

Λ∗−1
Z

(which is what cP ∗−1 is).

3.4 An Invariant of Di�erential Cohomology Theories

Suppose W ∗E ∈ DCE . Then by promoting the three functors in the middle vertical
short exact sequence of Diag. (3.5) to functors on pre-spectra as described above,
and then applying them to the spectrum E which represents E∗, we get the following
short exact sequence of inverse systems:

0→ T−1(E)
ι−→W 0

E(E)
δ−→ P 0(E)→ 0 (3.6)

This de�nes an element Θ(W ∗E) ∈ Ext1(P 0(E), T−1(E)), in the sense of the iso-
morphism class of this short exact sequence3. An isomorphism between di�erential
cohomology theories gives a morphism of the short exact sequence in Diag. (3.6),
and thus they will have the same Θ.

By taking limits of these inverse systems, we get the following long exact se-
quence:

0→ limT−1(E)
lim ι−−→ limW 0

E(E)
lim δ−−−→ limP 0(E)

∆Θ−−→ lim1T−1(E)→ · · · . (3.7)

Once again, if we have isomorphic di�erential cohomology theories, then they will
induce the same coboundary map ∆Θ in the above sequence. In the �4.3.1, the
non-vanishing of the image of a particular chosen element in limP ∗(E) under the
above coboundary map will be an obstruction to �nding a morphism between two
di�erential cohomology theories.

3.5 Eliminating the Obstruction

3.5.1 Additional constraints

In the following, to make our de�nition of our functor and establish an isomorphism
between it and an arbitrary di�erential cohomology theory, we need to assume some
further restraints on the pre-spectra used to represent underlying cohomology theo-
ries E∗, E∗R and E∗R/Z. We need

1. all the structure maps of the spectra involved to induce surjections for Λ∗, and

2. the adjoints of all the structure maps to be homotopy equivalences.

the functor T ∗ gives the isomorphism classes of trivializable bundles with �at connection, which is
non-trivial itself in general.

3Even though, for all k, T k−1(Ek) is an injective object in Ab, T−1(E) as a whole might not be
an injective object in AbZ, so Θ is not trivially trivial.

28



By using iterated mapping cones, the adjunction between the suspension and loop
space functors, and CW models for the loop space; any pre-spectrum in Top can be
modi�ed to a homotopy equivalent one that satis�es these conditions. We start with
such spectra before plugging them into Theorem 1.9. Since the structure maps were
transformed into simplicial inclusions, their smooth approximations will be smooth
embeddings, and thus induce surjections for Λ∗.

3.5.2 Topologizing cohomology and associated functors

Proposition 3.2. In the case of M = TAb, the continuous homomorphism φ − id
from Diag. (3.2) will have dense image.

Lemma 3.3. For an inverse system A ∈ TAbN, if each Ai is compact and Hausdor�,
then lim1Ai = 0.

Proof. Since the image of of φ− id in Diag. (3.2) is the continuous image of compact
space, it's compact. Since the target is Hausdor�, it's therefore closed. And by the
above proposition, it's dense as well. Therefore φ− id is surjective. �

Recall from [Mil62] that if A∗ is any additive cohomology functor, then for any
increasing union of �nite-type spaces

X1 ↪→ X2 ↪→ X3 ↪→ · · · , (3.8)

we have the following short exact sequence:

0→ lim
i

1A∗−1(Xi)→ A∗(X)→ lim
i
A∗(Xi)→ 0

where X := colimiXi. The lim1 term can be computed from Diag. (3.2) using the
inverse system

· · · → A∗(X3)→ A∗(X2)→ A∗(X1),

where the homomorphisms are induced from the inclusions Xi ↪→ Xi+1.

Lemma 3.4. For every k ∈ Z, EkR/Z restricted to (the full subcategory of �nite-type

spaces and countable colimits (increasing unions) thereof) has a lift to a functor into
compact Hausdor� topological abelian groups.

Proof. Note that for a space X of �nite type, for every k ∈ Z, T k(X) will be canoni-
cally isomorphic to the quotient of the �nite dimensional R vector space Ek(X)⊗R
by the image of Ek(X) inside of it. Thus it will be a �nite dimensional torus. If
Y is also a space of �nite type and f : X → Y , then the induced homomorphism
Ek(Y )⊗R→ Ek(X)⊗R will be continuous with respect to the canonical topology
on a �nite dimensional R vector space. Therefore, the induced homomorphism on
T k will also be continuous.
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Consider the short exact sequence

0→ T k → EkR/Z → Ek+1
tor → 0

of natural transformations. Since T k is a divisible group, this (non-canonically)
splits. For spaces of �nite type, Ek+1

tor will be a �nite abelian group, which we can
give the discrete topology. We use this bijection between EkR/Z and T k × Ek+1

tor to
de�ne a topology on the former, which will be independent of the choice of splitting.
Thus, we have topologized EkR/Z of every �nite type space as a compact Hausdor�
abelian group.

Now suppose we have an increasing union of �nite type spaces, as in Diag. (3.8).
Let X := colimiXi. Our choice of topologies makes EkR/Z applied to each fac-
tor compact and Hausdor�, and thus we can apply Lemma 3.3 in the case of
A∗ = E∗R/Z and conclude that lim1

i E
k−1
R/Z (Xi) = 0. Thus we can identify EkR/Z (X)

with limiE
k
R/Z (Xi). This can in turn be identi�ed with the pre-image of a closed

set (namely {0}) under a continuous map from a compact Hausdor� space (see
Diag. (3.2)), and thus is a compact Hausdor� subspace. We use this series of iden-
ti�cations to topologize EkR/Z (X). �

We can try to carry the same construction through with E∗. Since Ek of a
�nite type space will be a �nitely generated abelian group, we give it the discrete
topology. The density of φ id still holds, but the surjectivity does not in general. One
can then see that the natural topology that one could put on Ek (which will make
the Bockstein continuous) will be non-Hausdor� if the lim1 term is non-trivial. This
term corresponds to the well-known phenomenon of phantom maps, and is indeed
non-trivial in many cases (see Ch. III of [Rud98]). For our purposes, we make the
following de�nition.

De�nition 3.5. An element of some contravariant functor into abelian groups ap-
plied to a space is a phantom if it vanishes when pulled back to any �nite-type
space.

The above lemma proves the non-existence of non-trivial phantoms for the R/Z
cohomology of a certain class of spaces. The closure of {0} ⊆ Ek with respect to the
topology described above will be the set of phantom classes.

De�nition 3.6. If (Bk)∗ : EkR/Z → Ek+1 is the Bockstein,

T
k
(X) :=

{
c ∈ EkR/Z (X) : (Bk)∗c is a phantom.

}
.

Lemma 3.7. For a space X which is a colimit of �nite-type spaces, T
k
(X) is a

closed subspace of EkR/Z (X).

Proof. Recall that for a �nite-type space X, we topologized EkR/Z (X) such that the

Bockstein would be continuous if we endowed Ek+1(X) with the discrete topology.
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Also note that in this case there can be no non-trivial phantoms in Ek+1(X), and

T
k
(X) = T k(X) is obviously closed.
Now suppose that X = colimiXi for an increasing union of �nite-type spaces

X1 ↪→ X2 ↪→ X3 ↪→ · · · .

Then all the arrows in the commutative diagram

0 // limiE
k
R/Z (Xi) //

��

∏
iE

k
R/Z (Xi) //

��

∏
iE

k
R/Z (Xi) //

��

0

0 // limiE
k+1(Xi) //

∏
iE

k+1(Xi) //
∏
iE

k+1(Xi) // limi
1Ek+1(Xi) // 0

are continuous if we topologize lim
i
Ek+1(Xi) as a subspace of

∏
iE

k+1(Xi). Most

importantly, the dotted arrow in the above diagram is continuous. If we let ri :
Xi → X denote the inclusions of the �nite pieces into X, then we have the following
commutative diagram:

0 // EkR/Z (X)
∏
i r
∗
i //

(Bk)∗

��

lim
i
EkR/Z (Xi) //

lim(Bk)∗
��

0

0 // lim
i

1Ek(X) // Ek+1(X)

∏
i r
∗
i // lim

i
Ek+1(Xi) // 0

.

Then T
k
(X) must be closed because

T
k
(X) = ker

(∏
i

r∗i ◦ (Bk)∗

)
= ker

(
lim(Bk)∗ ◦

∏
i

r∗i

)

and because lim(Bk)∗ ◦
∏
i r
∗
i is a continuous map into a Hausdor� space, and hence

the pre-image of the closed set {0} must be closed. �

If we then apply the three previous lemmas, we get

Corollary 3.8. For any spectrum A such that each Ak is a countable colimit of
�nite-type spaces, lim1 T

∗
(A) = 0.
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Chapter 4

Universal Model

The construction of our model was implicit in [BS10], and the natural transformation
Φ together with the proof that it's an isomorphism are essentially direct lifts from
the same.

4.1 Universal forms

For all k ∈ Z≥0, choose a closed form Ω̃k ∈ Λk(ER
k ) whose de Rham class represents

the universal element for EkR. Let Ω0 := Ω̃0. Let σR denotes the structure maps

of ER. Since Λkstab(σR)Ω̃k+1 is in the same de Rham class as Ω̃k, their di�erence
is an exact form dη. Since the integration map for Λ∗ is strongly surjective and
the structure maps are assumed induce surjections under Λ∗, Λkstab(σR) is surjective.
Therefore, there exists η̃ ∈ Λk+1(ER

k+1) such that Λkstab(σR)(η̃) = η. Thus

Λkstab(σR)
(

Ω̃k+1 + dη̃
)

= Ω̃k.

By starting with k = 0 and iterating the previous procedure, we can thus �nd{
Ωk ∈ Λk(ER

k )
}
k∈Z≥0

such that for all k ∈ Z≥0,

Λkstab(σR) (Ωk+1) = Ωk

and Ωk is in the same de Rham class of Ω̃k i. e., we can �nd Ω ∈ lim Λ0(ER). Now let
ωk := ι∗kΩk where ι : E→ ER is the map of spectra induced by the homomorphism
Z→ R. These will satisfy an analogous stability property, and thus de�ne an element
ω ∈ lim Λ0

Z(E).
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4.2 De�nition of model

4.2.1 The functor

For all X ∈ C, we de�ne the pointed set:

M̃k(X) :=

(
colim
`

Maps
(
S`X, Ek+`

))
× Λk−1

Λk−1
exact

(X). (4.1)

Then, with our choice of {ωk ∈ Ek}k∈Z≥0
, we de�ne ∼ to be the equivalence relation

given by

({h1}`, η) ∼

(
{h0}` , η + (p2)∗

(∫
Λ

)`
h∗ωk+`

)
(4.2)

where �{ }`� denotes the stable class of a map from the `th stratum of the colimit
in Eq. (4.1), h : I+ ∧ S`X → Ek+` is a base point preserving homotopy for some
` ≥ 0, (p2)∗ is natural transformation given in Axiom C7, and

∫
Λ is the suspension

map for forms. Note that this really is an equivalence relation. The correction form
that gets added when one changes a map by a homotopy is independent of which
stratum of the colimit in which one takes the homotopy as living.(∫

Λ

)`
h∗ωk+` =

(∫
Λ

)`
h∗
∫

Λ
σ∗k+` ωk+`+1

=

(∫
Λ

)` ∫
Λ

(Sh)∗σ∗k+` ωk+`+1

=

(∫
Λ

)`+1

(σk+` ◦ Sh)∗ ωk+`+1.

If h : I+ ∧ S`X → Ek+` is a homotopy between h0 and h1, then σk+` ◦ Sh is a
homotopy between σk+` ◦ Sh0 and σk+` ◦ Sh1.

Theorem 4.1. The pointed set

Mk := M̃k/ ∼

de�nes an object in DCΛ
E
thf
.

Proof that M∗ is a functor Cop → Set0. If ϕ : X → Y is a map of spaces, then we
have an induced map ϕ∗ : Mk(Y )→Mk(X) de�ned by

ϕ∗[{f}`, η] =
[{
f ◦ S`ϕ

}
`
, ϕ∗η

]
Thus M∗ is contravariant functor into graded pointed sets. �
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4.2.2 The natural transformations

Note that we have a natural transformation∫
M̃

: M̃k+1 ◦ S −−−−→ M̃k

which is the Cartesian product of the underlying operation of the suspension iso-
morphism for cohomology and the negative of integration along the �ber for forms,
i. e. ∫

M̃
({f}`, η) =

(
{f}`+1, −

∫
Λ
η

)
.

This natural transformation descends to an integration natural transformation∫
M

: Mk+1 ◦ S −−−−→ Mk.

The natural transformation δ2 : Mk → Ek is given by letting δ2[f, η] be the
stable homotopy class of f . Since our equivalence relation starts with stable classes
of map, and then only allows them to change by a homotopy, this is obviously well-
de�ned. Also, it is clear that this is compatible with the suspension isomorphism for
E∗.

Let cX,Y : X → Y denote the constant map from X to the base point of Y .

Lemma 4.2. A well-de�ned natural transformation i2 : Λ∗−1

Λ∗−1
Z
→ Mk that is com-

patible with the integration natural transformations is given by the formula i2[η] =
[{cX,Ek}0, η].

Proof. Suppose η ∈ Λk−1
Z (X). Then, η = dε +

(∫
Λ

)`
g∗ωk+`−1 for some map g :

S`X → Ek−1+` and for some ε ∈ Λk−2(X). Since ωk+`−1 =
∫

Λ σ
∗
k+`−1ωk+`, we have

that

η − dε =

(∫
Λ

)`
g∗ωk+`−1 =

(∫
Λ

)`
g∗
∫

Λ
σ∗k+`−1ωk+`

=

(∫
Λ

)`+1

(Sg)∗σ∗k+`−1ωk+` =

(∫
Λ

)`+1

(σk+`−1 ◦ Sg)∗ωk+`.

If we think of σk+`−1 ◦Sg as a homotopy h between the constant map cS`X,Ek+`
and

itself, then

η − dε = (p2)∗

(∫
Λ

)`
h∗ωk+`

which means that, by applying Eq. (4.2),

[{cX,Ek}0, η] = [{cS`X,Ek+`
}`, η] = [{cS`X,Ek+`

}`, dε] = [{cX,Ek}0, 0].

Therefore i2 is well-de�ned. Compatibility with integration is veri�ed by direct
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computation:∫
M
i2[η] =

∫
M

[{cSX,Ek+1
}0, η] =

[
{cSX,Ek+1

}1,−
∫

Λ
η

]
=

[
{cX,Ek}0,−

∫
Λ
η

]
= i2

[
−
∫

Λ
η

]
= i2

(
−
∫

Λ/ΛZ

[η]

)
.

�

This means that we have a well-de�ned an action of Λ∗−1

Λ∗−1
Z

on M∗ via

[η′] · [{f}`, η] := [{f}`, η + η′].

Here we are using [−] to mean two di�erent equivalence classes on two di�erent

sets: [η′] ∈ Λ∗−1

Λ∗−1
Z

is the equivalence class of η′ ∈ Λ∗−1

Λ∗−1
exact

; and [{f}`, η] ∈ M∗ is the

equivalence class of ({f}`, η) ∈ M̃∗.

Lemma 4.3. A well-de�ned natural transformation δ1 : Mk → ΛkZ that is compatible
with integration is given by the formula

δ1[F, η] = dη +

(∫
Λ

)`
f∗ωk+`

where f : S`X → Ek+` is a representative for the stable class of F .

Proof. First we show this formula is independent of the choice of f . Note that

δ1[{σk+` ◦ Sf}`+1, η] = dη +

(∫
Λ

)`+1

(σk+` ◦ Sf)∗ ωk+`+1

= dη +

(∫
Λ

)`+1

(Sf)∗σ∗k+` ωk+`+1

= dη +

(∫
Λ

)`
f∗
(∫

Λ
σ∗k+` ωk+`+1

)
= dη +

(∫
Λ

)`
f∗ ωk+`

= δ1[{f}`, η]

Second, we show that this formula is compatible with the equivalence relation
given in Eq. (4.2). Suppose h : I+ ∧ S`X → Ek+`. Because d and (p2)∗ both
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anticommute with
∫

Λ, their composition commutes. So

δ1[{h1}`, η] = dη +

(∫
Λ

)`
h∗1 ωk+`

= dη +

(∫
Λ

)`
(h∗0 + (d(p2)∗ + (p2)∗d)h∗)ωk+`

= dη +

(∫
Λ

)`
(h∗0 + d(p2)∗h

∗)ωk+`

= δ1[{h0}`, η] +

(∫
Λ

)`
d(p2)∗h

∗ωk+`

= δ1[{h0}`, η] + d(p2)∗

(∫
Λ

)`
h∗ωk+`

= δ1

[
{h0}` , η + (p2)∗

(∫
Λ

)`
h∗ωk+`

]
.

Therefore δ1 is well-de�ned. Compatibility with integration is once again straight-
forward. Let F : S`SX → Ek+1+` and η ∈ Λk(SX). Then∫

Λ
δ1[{f}`, η] =

∫
Λ

((∫
Λ

)`
f∗ωk+1+` + dη

)

=

(∫
Λ

)`+1

f∗ωk+1+` − d
∫

Λ
η

= δ1

[
{f}`+1,−

∫
Λ
η

]
= δ1

∫
M

[{f}`, η].

�

The construction of i1 is more involved, and actually unnecessary for our par-
ticular use for M∗. Therefore, we relegate it to Appendix A2. It is completely
straightforward check that each of the above natural transformations are compatible
with the action of Λ∗−1

Λ∗−1
Z

in the appropriate way. Thus, we have proved Theorem 4.1.

4.3 Universality of M ∗

4.3.1 Stable universal elements

Suppose W ∗E ∈ DCE . Then we get the middle vertical short exact sequence from
Diag. (3.5):

0→ T ∗−1 ι−→W ∗E
δ−→ P ∗ → 0.
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The previous choices of {ωk}k∈Z≥0
give elements (ωk, [idEk ]) ∈ P k(Ek). For all

k ∈ Z≥0, choose Ũk ∈W k
E(Ek) such that δ(Ũk) = (ωk, [idEk ]). Then

δ
(

(W k
EstabŨk+1)− Ũk

)
=
(

Λkstabωk+1 − ωk , Ekstab[idEk+1
]− [idEk ]

)
= 0,

so
(W k

EstabŨk+1)− Ũk = ι(tk)

for a unique tk ∈ T k−1(Ek). The collection of these {tk ∈ T k−1(Ek)}k∈Z determines
an element in lim1 T ∗−1(E) (cf.Diag. (3.2)). In fact, the previous construction is
precisely how one constructs the coboundary map ∆Θ from Diag. (3.7). The fact
that

P kstab(ωk+1, [idEk+1
]) = (ωk, [idEk ])

means that {(ωk, [idEk ])}k∈Z≥0
∈ limP 0(E). ∆Θ(W ∗E) of this element is the afore-

mentioned element of lim1 T−1(E).
If we assume that ∀ k ∈ Z≥0, Ek is a countable colimit of �nite-type spaces, then

we can apply Corollary 3.8 and conclude that lim1 T
∗−1

(E) = 0. This means that

there exists {τk ∈ T
k−1

(Ek)}k∈Z≥0
such that T

k−1
stabτk+1 − τk = tk. So if we recall

that
overlineT k−1 ⊆ Ek−1

R/Z and de�ne Uk := Ũk − i1(τk), then

W k
EstabUk+1 = Uk,

i. e., we have an element U ∈ limW 0
E(E). However, it is not the case that lim δ(U) =

{(ωk, [idEk ])}k∈Z≥0
. We pay for this stability with a change in the value of δ2:

δ2Uk = δ2(Ũk − i1τk) = [idEk ]− (Bk−1)∗τk.

However, (Bk−1)∗τk is a phantom by the de�nition of T
k−1

.

4.3.2 The natural transformation Φ

Let U : Ab• → Set•0 be the forgetful functor from graded abelian groups to graded
pointed sets.

Theorem 4.4. A natural transformation Φ : M∗ → U ◦W ∗E is given by the formula

Φk[{f}`, η] =

(∫
WE

)`
f∗Uk+` + i2,WE

[η].

Proof. Notice that because W ∗E satis�es the homotopy formula in Eq. (2.3), Φ is
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well-de�ned. To wit, if h : I+ ∧ S`X → Ek+`, and η ∈ Λk−1(X), then

Φk[{h1}`, η] =

(∫
WE

)`
h∗1Uk+` + i2[η]

=

(∫
WE

)`
(h∗0Uk+` + i2[(p2)∗h

∗δ1Uk+`]) + i2[η]

=

(∫
WE

)`
(h∗0Uk+` + i2[(p2)∗h

∗ωk+`]) + i2[η]

=

(∫
WE

)`
h∗0Uk+` + i2

[
η +

(
−
∫

Λ

)`
(p2)∗h

∗ωk+`

]

=

(∫
WE

)`
h∗0Uk+` + i2

[
η + (p2)∗

(∫
Λ

)`
h∗ωk+`

]

= Φk

[
{h0}` , η + (p2)∗

(∫
Λ

)`
h∗ωk+`

]
.

Next we prove naturality. Suppose ϕ : X → Y . If [{f}`, η] ∈Mk(Y ), then

Φkϕ
∗[{f}`, η] = Φk

[{
f ◦ S`ϕ

}
`
, ϕ∗η

]
=

(∫
WE

)` (
f ◦ S`ϕ

)∗
Uk+` + i2[ϕ∗η]

= ϕ∗

(∫
WE

)`
f∗ + ϕ∗i2[η]

= ϕ∗Φk[{f}`, η].

Thus, Φ is natural. �

Theorem 4.5. Φ is compatible with δ1, i2, and the integration natural transforma-
tion; it is compatible with δ2 when restricted to �nite-type spaces. I.e,

• δ1Φ = δ1,M ,

• Φi2,M = i2,

• Φk

∫
M =

∫
WE

Φk+1,

• δ2Φ = δ2,M for �nite-type spaces, and

• Φ is equivariant with respect to the action of Λ∗−

Λ∗−Z
.
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The additional �M � subscript refers to the natural transformations de�ned for
M∗.

Proof. It's compatible with δ1 because

δ1Φk[{f}`, η] = δ1

(∫
WE

)`
f∗Uk+` + i2[η]

 =

(∫
Λ

)`
δ1f
∗Uk+` + δ1i2[η]

=

(∫
Λ

)`
f∗ωk+` + dη = δ1,M [{f}`, η].

Φ is compatible with i2 because we're working with the reduced versions of all our
functors, so every element vanishes when restricted to the base point:

Φki2,M [η] = Φk[{cX,Ek}0, η] = c∗X,EkUk + i2[η] = i2[η].

Note that in general, if [{f}`, η] ∈Mk(X) then

δ2Φk[{f}`, η] = δ2

(∫
WE

)`
f∗Uk+` + i2[η]

 =

(∫
E

)`
δ2f
∗Uk+` + δ2i2[η]

=

(∫
E

)`
f∗([idEk+`

]− (Bk+`−1)∗τk+`)

=

(∫
E

)`
([f ]− f∗(Bk+`−1)∗τk+`)

6=
(∫

E

)`
[f ] = δ2,M [{f}`, η].

But if X is of �nite type, then the fact that (Bk+`−1)∗τk+` is a phantom means that
f∗(Bk+`−1)∗τk+` = 0, and thus δ2Φk = δ2,M . Φ is compatible with the integration
homomorphism because

Φk

∫
M

[{f}`, η] = Φk

[
{f}`+1 , −

∫
Λ
η

]
=

(∫
WE

)`+1

f∗Uk+`+1 + i2

[
−
∫

Λ
η

]

=

(∫
WE

)`+1

f∗Uk+`+1 +

∫
WE

i2[η]

=

∫
WE

(∫
WE

)`
f∗Uk+`+1 + i2[η]


=

∫
WE

Φk+1[{f}`, η].
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Note that because

i2[η′] + Φ[{f}`, η] =

(∫
WE

)`
f∗Uk+` + i2[η] + i2[η′]

= Φ[{f}`, η + η′] = Φ
(
[η′] · [{f}`, η]

)
,

Φ is equivariant. �

Theorem 4.6. Φ is an isomorphism of graded pointed sets when the functors are
restricted to the category of �nite-type spaces.

Proof of surjectivity. For any element a ∈ W k
E(X), δ2(a) =

(∫
E

)`
[f ] for some f :

S`X → Ek+`. Then

δ2

a−(∫
WE

)`
f∗Uk+`

 = 0 =⇒ a−

(∫
WE

)`
f∗Uk+` = i2[η]

=⇒ a =

(∫
WE

)`
f∗Uk+` + i2[η] = Φk[{f}`, η]

So Φ is surjective. �

Proof of injectivity. First consider the special case when that

Φk[{f}`, η] = Φk[{f}`, ξ].

Then i2[η − ξ] = 0 ⇐⇒ η − ξ ∈ Λk−1
Z (X) ⇐⇒ η − ξ = dα +

(∫
Λ

)n
ϕ∗ωk−1+n for

some ϕ : SnX → Ek−1+n. Since n > 0 without loss of generality, we can rede�ne
` to be the max(`, n − 1), and stabilize both ϕ and f so that f : S`X → Ek+` and
ϕ : S`+1X → Ek+` for this new value of `.

Think of ϕ as a homotopy between the constant map cS`X,Ek+`
and itself. Then

let h : I+∧S`X → Ek+` be the homotopy obtained by taking the point-wise product
of ϕ and the constant homotopy between f and itself, which results in a non-trivial
homotopy between f and itself.1 Then

(p2)∗

(∫
Λ

)`
h∗ωk+` =

(∫
Λ

)`+1

ϕ∗ωk+` = η − ξ − dα

which implies that

[{f}`, η] =

[
{f}` , ξ + (p2)∗

(∫
Λ

)`
h∗ωk+`

]
= [{f}`, ξ].

1Here we are using the fact that Ek+` can be taken to be a topological group.
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Now consider the general case where

Φk[{f}`, η] = Φk[{g}`, ξ].

Then (∫
WE

)`
f∗Uk+` + i2[η] =

(∫
WE

)`
g∗Uk+` + i2[ξ]

=⇒

(∫
WE

)`
(f∗ − g∗)Uk+` = i2[ξ − η]

=⇒ 0 = δ2

(∫
WE

)`
(f∗ − g∗)Uk+` =

(∫
E

)`
([f ]− [g])

which implies that there is a homotopy h : I+ ∧ SmX → Ek+m such that {h1}m =
{f}` and {h0}m = {g}`. Therefore,

[{f}`, η] = [{h1}m, η] =

[
{h0}m , η + (p2)∗

(∫
Λ

)m
h∗ωk+m

]
=

[
{g}` , η + (p2)∗

(∫
Λ

)m
h∗ωk+m

]
,

and by the previous case,
[
{g}` , η + (p2)∗

(∫
Λ

)m
h∗ωk+m

]
= [{g}`, ξ]. Thus Φ is

injective. �

Theorem 4.7. Suppose E∗ is a cohomology theory such that E∗(pt) is �nitely gener-
ated in each degree. Then, given two di�erential cohomology theories A∗E , B

∗
E ∈ DCE,

there is a natural isomorphism between their restrictions to the full subcategory of
�nite-type spaces that is compatible with i2, δ1, δ2, and their integration natural
transformations.

Proof. Recall the forgetful functor UΛ from �2.3. We have a natural isomorphism
UΛ(A∗E) → UΛ(B∗E) given by appropriately composing the isomorphisms obtained
from the previous theorem. Because of Theorem 2.19, it must actually be a homo-
morphism. �

Theorem 4.8. The set of all such natural isomorphisms is a torsor for limT
−1

(E).

Proof. This group is precisely where the di�erence between any two choices of the
stable universal elements U ∈ limA∗E(E) will lie. And the choice of this element was
the only choice made in constructing Φ. �

Remark. We also made a choice of Ω ∈ Λ0
stab

(
ER), but this choice was made inde-

pendently of any given di�erential cohomology theory and is analogous to a choice
of a basis that controls the formula for an isomorphism. Technically speaking, a
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di�erence choice of Ω leads to a di�erent M∗ and a di�erent Φ. But as Theorem 4.7
shows, this new M∗ will be isomorphic to the original.

4.4 Future Directions

In retrospect, it seems clear that the complexity of the axioms for C could be reduced
by using the language of 2-categories. Since both cohomology and forms have higher
degree integration maps, it might be fruitful to consider di�erential cohomology as
functor of (∞, 1)-categories2, where we take into account all higher homotopies. Co-
completeness would then be replaced with homotopy co-completeness. Hopkins has
conjectured that di�erential cohomology is the homotopy �ber product of E∗ and Λ∗Z
in a category large enough such that both of these functors are representable. The
�homotopy� would then take care of the �torus� T ∗−1 that obstructed di�erential
cohomology from just being the naïve �ber product. A guess for such a category
would be the category simplicial sheaves on a small Grothendieck site.

On the other hand, one also wants C to be small enough that any di�erential
cohomology theory de�ned on Mfld could be extended to C. For a simplicial complex,
we could use the trick of taking a small neighborhood in a large enough dimensional
Euclidean space (cf. Theorem 1.9). The inclusion of the complex has a deformation
retract in Top, and so if one can enlarge Ω∗ to a forms functor Λ∗ that can handle such
non-smoothness at the end of the homotopy, one could use the homotopy formula in
Eq. (2.3) as a guide to extending a di�erential cohomology theory on Mfld to SSet.

2See [Lur09] for an encyclopedic introduction to higher categories.
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Appendix

A1 Proof of Mayer-Vietoris Property

See �2.1.1 for the setup of the problem.
Note that γ ◦ ιA and γ ◦ ιB are null-homotopic, so W ∗E(γ ◦ ιA) and W ∗E(γ ◦ ιB)

lift to homomorphisms from W ∗E (SD) to Λ∗−1

Λ∗−1
Z

(A) and Λ∗−1

Λ∗−1
Z

(B) respectively. This

de�nes a homomorphism

W ∗E (SD)
κ−−−−−−−→ Λ∗−1

Λ∗−1
Z

(A)
∏

Λ∗−1

Λ∗−1
Z

(D)

Λ∗−1

Λ∗−1
Z

(B)

where the target is the �ber product of Λ∗−1

Λ∗−1
Z

(A) and Λ∗−1

Λ∗−1
Z

(B) over Λ∗−1

Λ∗−1
Z

(D), i. e., pairs

of quotient forms on A and B which agree when restricted to D. Given such a pair,
one could take representatives for each quotient form, restrict the representatives to
D, and then take their di�erence. Since this di�erence is zero as a quotient form,
the result must always be an element of Λ∗−1

Z (D). This is well-de�ned up to adding
elements of Λ∗−1

Z (A) and Λ∗−1
Z (B) to the respective original representatives. So we

have a well-de�ned homomorphism

Λ∗−1

Λ∗−1
Z

(A)
∏

Λ∗−1

Λ∗−1
Z

(D)

Λ∗−1

Λ∗−1
Z

(B)
φ−−−−−−−→

Λ∗−1
Z (D)

im
(
Λ∗−1
Z (ρA) + Λ∗−1

Z (ρB)
) .

We have the natural map rD : S1 ×D → SD which collapses ({0} ×D) t (S1 ×
{∗D}) to a point (where ∗D is the base point of D). In terms of all of the above
maps we have
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Lemma A.1. The following diagram commutes:

W ∗E (SD)
κ //

δ1

��

Λ∗−1

Λ∗−1
Z

(A)
∏

Λ∗−1

Λ∗−1
Z

(D)

Λ∗−1

Λ∗−1
Z

(B) φ
//

Λ∗−1
Z (D)

im(Λ∗−1
Z (ρA)+Λ∗−1

Z (ρB))

Λ∗Z (SD)
r∗D // Λ∗Z(S1 ×D)

(p2)∗
// Λ∗−1

Z (D)

OO

(A.1)

Note that the map (p2)∗ : Λ∗closed(S1 ×D)→ Λ∗−1
closed(D) doesn't necessarily send

special forms to special forms, but that (p2)∗ ◦ r∗D does. See �2.2.

Proof. Note that the image of γ ◦ ιA is in the top half of SD, and thus γ ◦ ιA can be
homotoped to the constant map to the top vertex by using the standard deformation
retract of a cone onto its vertex. Then after doing the same thing with γ ◦ ιB and
the bottom half of SD, we can use the homotopy property to provide a lift K of κ:

Λ∗−1(A)⊕ Λ∗−1(B)

��

W ∗E (SD)

K

55kkkkkkkkkkkkkkkkkkkkk
κ //

Λ∗−1

Λ∗−1
Z

(A)
∏

Λ∗−1

Λ∗−1
Z

(D)

Λ∗−1

Λ∗−1
Z

(B)

by letting
K := (p2)∗ (h∗A ⊕ h∗B) δ1

where hA and hB are the two above described homotopies. From this, it is straight-
forward to see that ∀x ∈W ∗E(SD),

φκ(x) =
{(

(p2)∗h
∗
A − (p2)∗h

∗
B

)
δ1(x)

}
= {(p2)∗r

∗
Dδ1(x)}

because integrating out the contractions hA and hB is the same as integrating along
the suspension directions in SD. Integrating over the top cone of SD is taken care
of by hA, and the bottom by hB (though backwards, which takes care of the minus
sign). �

Lemma A.2. (p2)∗r
∗
D from Diag. (A.1) is surjective.

Corollary A.3. φκ is surjective. Or equivalently, for any ξ ∈ Λ∗−1
Z (D), ∃ y ∈

W ∗E(SD) such that ξ = ρ∗Aα− ρ∗Bβ, where i2[α] = (γ ◦ ιA)∗y and i2[β] = (γ ◦ ιB)∗y.

Proof of Mayer Vietoris Theorem (Thm. 2.8). Let a ∈W ∗E(A) and b ∈W ∗E(B)
such that ρ∗Aa = ρ∗Bb. We need to show that ∃x ∈ W ∗E(X) such that ι∗Ax = a and
ι∗Bx = b. Note that

ρ∗Aδ2a = δ2ρ
∗
Aa = δ2ρ

∗
Bb = ρ∗Bδ2b,
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so because E∗ has the MV property, ∃χ ∈ E∗(X) such that ι∗Aχ = δ2a and ι
∗
Bχ = δ2b.

Because δ2 is surjective, ∃ ˜̃x ∈W ∗E(X) such that δ2
˜̃x = χ. Then

δ2ι
∗
A

˜̃x = ι∗Aδ2
˜̃x = ι∗Aχ = δ2a.

So
δ2(ι∗A ˜̃x− a) = 0 =⇒ ι∗Ax̃− a = i2[ηA]

for some [ηA] ∈ Λ∗−1

Λ∗−1
Z

(A); and similarly, ι∗B
˜̃x− b = i2[ηB]. Then since

i2(ρ∗A[ηA]− ρ∗B[ηB]) = ρ∗A(ι∗A ˜̃x− a)− ρ∗B(ι∗B ˜̃x− b) = ρ∗Bb− ρ∗Aa = 0,

and i2 is injective, ρ∗A[ηA] − ρ∗B[ηB] = 0. This implies that ρ∗AηA − ρ∗BηB =: ξ ∈
Λ∗−1
Z (D) (note that now we're dealing with actual forms, not quotient forms).
By Corollary A.3, we can �nd an element y ∈W ∗E(SD) such that (γ◦ιA)∗y = i2[α]

and (γ ◦ ιB)∗y = i2[β] where ξ = ρ∗Aα− ρ∗Bβ. Let x̃ := ˜̃x− γ∗y. Then

ι∗Ax̃− a = ι∗A ˜̃x− (γ ◦ ιA)∗y − a = i2[ηA]− (γ ◦ ιA)∗y = i2[ηA − α]

and similarly, ι∗Bx̃− b = i2[ηB − β]. Because

ρ∗A(ηA − α)− ρ∗B(ηB − β) = (ρ∗AηA − ρ∗BηB)− (ρ∗Aα− ρ∗Bβ) = ξ − ξ = 0,

and because Λ∗ has the strong MV property, ∃! η ∈ Λ∗−1(X) such that ι∗Aη = ηA−α
and ι∗Bη = ηB − β. So let x := x̃− i2[η]. Then

ι∗Ax = ι∗A(x̃− i2[η]) = ι∗Ax̃− i2ι∗Aη = ι∗Ax̃− i2[ηA − α] = a

and similarly, ι∗Bx = b. �

A2 The natural transformation i1 for M ∗

If we use the mapping cone model for ER/Z, then we have the following commutative
diagram of spectrum maps:

ER/Z
γ

//

��

S�ipE

S�ip(ι)
��

CER/Z H // S�ipE
R

(A.2)

where (S�ipι)k = Sιk. Then we de�ne νk ∈ Λk
(
E

R/Z
k

)
by

νk := (p2)∗H
∗
k(σRk )∗Ωk+1
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where

• σRk : S�ipE
R
k = SER

k → ER
k+1 is the structure map for ER.

• We think of the cone point of CE
R/Z
k as being at t = 1. This matters for the

direction of the integration performed by (p2)∗.

Because the H in Diag. (A.2) is a spectrum map,

Hk ◦
(

idI ∧σR/Zk−1

)
= (S�ipσ

R)k−1 ◦ SHk−1 = SσRk−1 ◦
(
ϕ ∧ idER

k−1

)
◦ SHk−1

By using that the Bockstein map Bk : E
R/Z
k → Ek+1 is σk ◦ γk,

B∗kωk+1 = B∗kι
∗
k+1Ωk+1 = γ∗kσ

∗
kι
∗
k+1Ωk+1 = γ∗k(Sιk)

∗(σRk )∗Ωk+1

= γ∗k(S�ipι)
∗
k(σ

R
k )∗Ωk+1 = (Hk)

∗
0(σRk )∗Ωk+1

= (Hk)
∗
1(σRk )∗Ωk+1 − (d(p2)∗ + (p2)∗d) (Hk)

∗(σRk )∗Ωk+1

= 0− d(p2)∗(Hk)
∗(σRk )∗Ωk+1 = −dνk.

This shows that for θk := [{Bk}0, νk] ∈Mk+1
(
E

R/Z
k

)
,

δ1θk = B∗kωk+1 + dνk = 0

Therefore any pullback of θk depends only on the homotopy class of the map. So we
can de�ne a natural transformation i1 : Ek−1

R/Z →Mk by

i1

[
id

E
R/Z
k−1

]
:= θk−1

and extend by naturality.

Lemma A.4. The natural transformation i1 as de�ned above is compatible with
integration.

Proof. A long, tedious, but straightforward computation shows that

θk−1 =

∫
M

(
σ
R/Z
k−1 ◦

(
inv∧ id

E
R/Z
k−1

))∗
θk,

which implies that ∫
M
◦ i1 = i1

(
−
∫
ER/Z

)
.

�
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