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Abstract of the Dissertation

The local isometric embedding problem for
3-dimensional Riemannian manifolds with cleanly
vanishing curvature

by
Thomas Edward Poole
Doctor of Philosophy
in
Mathematics
Stony Brook University

2010

We prove the following result: Let (M, g) be a 3-dimensional C'* Rie-
mannian manifold for which there exists a p € M and a v € T,M such
that

Riem(p) =0 and V,Riem(p) # 0.

Then there exists a €' local isometric embedding from a neighbourhood of

p into RS.
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Chapter 1

Introduction

Let (M,g) be an n-dimensional C'*° Riemannian manifold. We say that
(M, g) can be locally isometrically embedded into RY if there exists an open
set Q C M and a C*® map u : 0 — RY such that the induced metric on the
image of u agrees with ¢. In local coordinates this is equivalent to u solving

the following nonlinear system of partial differential equations

N
ouF ouF
Dyj(u) =

k=1

From (1.1) it is evident that the isometric embedding system is a collection
of n(n+1)/2 equations in N unknowns. In this paper we will only consider
the determined case when N = n(n +1)/2.

Since 1983 there has been much progress on the determined case in di-
mensions 2, 3 and 4. For example in dimension 2, a classical result says that
if the Gaussian curvature does not vanish at a point then smooth embeddings
exist. This result was generalized by Lin in [15] (a simplified proof was also

provided by Han in [6]), where it was proven that if the Gaussian curvature



vanishes cleanly at a point then sufficiently smooth embeddings exist. In [14]
Lin also reached the same conclusion under the assumption that the Gaussian
curvature is nonnegative. A detailed account of such results may be found
in the book by Han and Hong [8]. Recent work by Han in [7] and Khuri in
[12] has shown that if the Gaussian curvature vanishes to finite order along
a curve, then a sufficiently smooth embedding exists. In the case where the
Gaussian curvature is nonpositive, under suitable nondegeneracy assump-
tions on the gradient of the Gaussian curvature, it has been shown by Han,
Hong and Lin in [9] that there exist smooth embeddings. For 3-dimensional
Riemannian manifolds work by Bryant, Griffiths and Yang in [1], Goodman
and Yang in [4] and Nakamura and Maeda in [16] has shown that if there
exists a point p for which Riem(p) # 0 then smooth embeddings exist. In
4-dimensions there exists a finite set of algebraic equations involving the cur-
vature tensor and its covariant derivatives such that if these equations do
not all vanish at a point, then there exist smooth embeddings. These results
follow from the work of [1], together with the Moser estimates proved in [4]
and [16]. To the best of author’s knowledge there are no known local isomet-
ric embedding results for a generic Riemannian manifold in dimensions > 5.
Finally, if the Riemannian metric is analytic, a famous theorem of Cartan
and Janet (c.f. [11]) tells us that we always have an analytic embedding.
The main result of this thesis is the following generalization of the work

carried out in [1] and [15].

Theorem 1.1 (Main theorem). Let (M, g) be a 3-dimensional C™ Rieman-

nian manifold such that there exists a p € M and a vector v € T,M for



which
Riem(p) =0 and V,Riem(p) # 0.

Then there exists a smooth isometric embedding from a neighbourhood of p

into RS,

From now on (M, g) will always denote a 3-dimensional Riemannian man-
ifold. Without loss of generality we may assume that €2 is a neighbourhood
of the origin in R* and u : Q — RS Let uy denote a smooth embedding
choosen such that the induced metric Qjup - d;ug is very close to g in the
appropriate norm. The first difficulty encountered in trying to solve (1.1) is
that its linearization is characteristic in every direction. To overcome this
difficulty we follow the strategy of [1], where it was shown that any solution
of (1.1) corresponds to a solution of a 3 x 3 system of differential equations

Llu]v = A’(u)% + B(u) (1.2)

and vice versa. The advantage of this approach is that for a suitably chosen
u, (1.2) admits noncharacteristic directions. Thus to construct a solution
to (1.1) we need only to prove the local solvability of L[u| for u close to
ug, with the solutions satisfying the estimates needed for the Nash-Moser
implicit function theorem. Let o(z, &) denote the determinant of the symbol
of Llug] at z. If Riem(0) # 0 then it was shown in [1] that for a suitable

choice of approximate solution
Ve (0,€)] #0, for all £ € R® —{0}. (1.3)

A consequence of this is that L[u] is of real principal type for any u close to

ug. Local solvability for linear operators of real principal type was proven by
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Duistermaat and Hérmander in [2]. In the work of [4] and [16] the solutions
were also shown to satisfy the estimates needed for the Nash-Moser implicit
function theorem. In this paper we are assuming that Riem(0) = 0, therefore
it is not possible to find an approximate solution satisfying (1.3), however, we
show that with the help of the cleanly vanishing property |VRiem(0)| # 0,
it is still possible to construct an approximate solution of real principal type.

This thesis is divided into five chapters. In Chapter §2 we prove that solv-
ing ®'(u) is equivalent to solving L[u] plus a system of algebraic equations.
In Chapter §3 we prove the lemmas required to construct an approximate
solution ug. In Chapter §4 we show that if we choose ug with an appropriate
second fundamental form, then we can construct a special normal coordinate
system, such that with respect to these coordinates L]ug] is of real principal
type. In Chapter §5 we use the results of [4] and [16] to prove the desired
Moser estimates. Finally, in Chapter §6, we apply the Nash-Moser implicit

function theorem to solve (1.1).

Remark. Throughout we will use the convention where pairs of repeated

indices in a product are to be summed over.



Chapter 2

Linearization of the embedding

system

Let € be any open neighbourhood around 0 € R3 and let v : Q — R® be a
smooth embedding. Let v € C*(£2,R®) then the linearization of ®;; about u
is
d

q)ij (U + h/U) |h:0

~dh
ou Ov ou Ov

T or o0 0w ow
Here XY := 320, X*Y*. Since u is an embedding, it follows that for every

Oy (u)v
(2.1)

x € () the vectors 0,1u(z), d,2u(x) and d,su(x) are linearly independent. For

each x € Q, let Ny(x), N5(z) and Ng(z) be an orthonormal set of vectors

perpendicular to {9 u(z)}3_,. It is clear that for every z € 2 the vectors

{Opiu(z)}l ) and {Ny(x)}5_, span R®, therefore there exist functions I'}; and

h?j such that
Pu I ou
Oxidxi Y oxk

+ ;N (2.2)



This formula is the Gauss formula. The coefficients Ffj are the Christoffel
symbols of the metric induced by u, and hj; are the coefficients of the second
fundamental form for the embedding u. In addition to the Gauss formula we

also have the closely related Weingarten formula

ONy _ 4 O
R

+ RN, (2.3)

In the above formula néf\ are the coeflicients of the connection form on the

normal bundle for the embedding w.
Given any smooth function v :  — RS we decompose it into its tangential

and normal components with respect to the embedding u as follows

ou
o A
v—v—axl+v N,.

Differentiating this equation we find

dv ' Ou Ly 0*u +8UAN N L ON,
ori  0r 07 | 0xtor | 0w 0ad
Now
Ou Ou _
oxrt orl P
ou
oxt M=0

ou  0%u L

o' Datgw P
ONy Ou _ Pu
Ozl Ox'

Y Oriowi
where the last two equations follow from (2.2). Therefore

ou Ov o'
e V'Tpik — v R (2.4)




Let {v;}?_, be the coordinates of the dual 1-form to the vector field v'd,u,
e.g.

v = plkvk and ol = plkvk.

Here (p'*) = (py.)~". Therefore

Py = 0w ¥ 0w

l ) .
O _ Qv _ 9P (2.5)

Plugging (2.5) into (2.4) we get

Recalling the formula for the Christoffel symbols in terms of the metric

L gm Opmi OPm; Opy;
Fécj:_ k ( J ])

oV Voui T o T Gam
we see that
Opir Opa  10py 10p;; 10p;
— l—. le- ik = b~ - — - — J - j
ox7 tULyPin =V ( oxd  20x7  20xt 2 0x )

lk(apil aplj apij)

T 9 T ai T g
= —kafj.
Therefore (2.6) becomes
ou v ', AL
ort Ori  Oxi Lijoe = vhy
and so P 5
P (u)y = —— L — T Yo — 207h)
A R i (2.7)

= fz]



From (2.7) we have

81)1 8112

f12 = w + % — 2].1];21)]€ — QUAhi\Q
81}1 8’03

fiz3 = % + % — 2F11€3Uk — 2U)‘hi‘3
81]2 8113

f23 = % =+ @ — 2F§3Uk — 2?])\h;3.

Writing these three equations in matrix form

vt hiy,  hdy S vt fia = Op2v1 — Opivg + 200
1
H»|=]hnly h} nf | = ) fi3 — Opavy — Opivz + 2050
V8 hi,  h3y S, V8 foz — Opsvg — Opov3 + 2050
(2.8)

we see that if the vectors hio, hi3 and hog are linearly independent, then given
v1,v9 and v3 we can solve the above algebraic equations to find v*,v® and 5.
This leads us to the following definition (cf. Griffiths and Jensen [3] page
100).

Definition 2.1 (Nondegenerate embedding). Let u : Q C R® — R® be a
smooth embedding. Let h;; denote the second fundamental form of u. We
say that u is a nondegenerate embedding if the vectors his(x), hiz(x), hos(x)

are linearly independent for all x € ().

Assuming that u is a nondegenerate embedding it follows that there exists
CteC>®(),1<i<3and4 < pu <6, such that
hi(z) = Cf(2)hia(x) + CF () g (w) + CF(x)has(x)
haa(2) = Gy (x)haa(x) + C5 () g () + C3(x)has(x) (2.9)

hgs(w) = C3 () hnz(w) + CF () haz(2) + C5(2) has ()



for all z € Q2. Now

fii = 200 _ 2T v, — 20 b
83:'
v,
by (2.7) we have
ov;  0Ov;
2]1;\]-1}/\ = 8_U + —= O — 2Fk /Uk fzg
Therefore for ¢t = 1,2, 3
ov; ov ov
f 28 - 2F7,7, k— 04(8 : 8.T2 2F11€2Uk‘ f12)
v v
— 05(6—1 + 8_3 2F1f31]k — f13)
v ov
’(8_37?3+ O z Qstvk f23).
We write the above linear system as
_ 1YY
Lluly e (2.10)
where
2 —Ct -
1
A=1l0 -C; -C3
0 —Ci —C3
~-Cf 0 —-C¢
A= |_ct 2 —c¢ (2.11)
—ct 0 Y
_Cv 05 0
A =1_c; —C§ 0
_C3 —Ct 2



Bi, = 2(C/TY, + Ty 4+ OPTSs = T%), gi = fii + Cf fia + CF frz + G fa3 and
y - (,Ula V2, U3)T'
We have shown the following: Let (v;)7_; be a solution to (2.10) and let

(v))$_, be a solution to (2.8), then

ou
V= plkvk@ + v Ny

is a solution to (2.1). Conversely if v is a solution to (2.1), decomposing v
into its normal and tangential parts gives us solutions to (2.8) and (2.10). It
should be pointed out that a similar reduction was performed for arbitrary

dimensions by Han and Khuri in the recent preprint [10].
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Chapter 3

Construction of wu

In this Chapter we prove the Lemmas required to construct an approximate
solution for the isometric embedding system (1.1). We will work with a

slightly generalized version of normal coordinates.

Definition 3.1 (Normal Coordinates). Let (z', 2%, 2%) be a coordinate system
centered at p € M. Let g;; denote the components of g in this coordinate
system. We say that (z") is a normal coordinate system if 9,.g;;(0) = 0 for

1 <k < 3. We do not assume that g;;(0) = d;;.

rom now on (x,z~, x°) will alw n norm rdin m
From now on (2!, 22, 23) will always denote a normal coordinate syste

centered at p. Let R;ji denote the components of the Riemann curvature
tensor with respect to these coordinates. We now impose the condition that

the curvature tensor vanishes at p, therefore
Rijkl(o) - 0

for all 1 <14, 75,k,1 < 3. The following Lemma enables us to extend a zeroth

order solution of the Gauss equations to a first order solution.

11



l’L . . . .
Lemma 3.1. Let Hi;, 1 < 1,5 < 3 and 4 < p < 6, be constants satisfying
the Gauss equations at 0 and let the vectors His, Hi3 and Hag be linearly
independent. Then there exists smooth functions hfj which satisfy the Gauss

equations to 1°¢ order
Rijua(0) = hi (0)h;(0) — Ry (0)R,(0)
and

OR;; on, on; On(0 on’;
Tkt ) = P i 0) + 1ty (052 (0) — P (o) — i) T )

Furthermore we may assume that

ont: ol
S (0) = 52 (0),

1<, 5,0 <3 and4 < pu <6.

Proof. Define
hi(x) = H + HL 2 (3.1)

ija

— H"

o
where H| aji-

ja

By the hypothesis of the Lemma we know that the Gauss

equations hold at 0. Differentiating both sides of the Gauss equations we find

OR;ji

o (0) = Hjj, HY + HHYy, — Y H
xa

jla ila” " jk

— H'H"

jka*

(3.2)

The above equations are a linear system with Hz’jk as the unknowns. As

H"

ja

— H*

o;i We have 30 unknowns, furthermore by the second Bianchi identity
it follows that (3.2) consists of 15 equations. From linear algebra we expect a
15 parameter solution space to (3.2). Provided Hio, Hy3 and Has are linearly

independent such a result is true. For a proof see [3], pp. 102-111. ]

Using a first order solution of the Gauss equations we construct an ap-

proximate solution to (1.1).

12



Lemma 3.2. Let hﬁ;, 1 <i,5 <3and4d < u < 6, be smooth functions
satisfying the Gauss equations

to 1%¢ order, and satisfying the equations

Oht Oht'
ij _ lj
o' (0) = ox’ (0),

1<4,5,0 <3 and 4 < u <6.
Then there exists a smooth embedding u : R? — RS such that

1.
Ou Ou _
oxi opi U

+O(z[*) as|z| — 0. (3.4)

2. For each x, there exists a basis {Ny(x)}S_, spanning the subspace per-
pendicular to {0u(z)}2_, such that, the coefficients of the second fun-

damental form for u with respect to Ny agree to first order with hfj

3. With {Nx(z)}$_, defined as above we have

ON,,
ox?

foralll1 <i<3 and 4 <\ <6.

(0) € span{d,u(0)}7-; (3.5)

Proof. Let mﬁ‘j :R? — R denote the coefficients of the connection form on the
normal bundle for the embedding u. A sufficient condition for solving (3.4)

is that the Gauss-Codazzi-Ricci equations

hé‘khﬁl — hﬁhﬂ = Riju Gauss equations
ont.  Oh!
axzzj - alej + Ffjhﬁc - Ffjh?]@ + K/;A)\hi\j - Hf,\hl)} =0 Codazzi equations
KL, B (9115/\

— g™ (hjo;hy — Wi hiy) + Kioksy — KikSy = 0 Ricci equations

axj axz JeVIA €'Vg
(3.6)

13



are solved up to first order in a neighbourhood of 0. Let

HY == bt (0)

p
i3, = 20 0)
7
Hu= i)
therefore
() = -+ H 4 g+ O’ (3.7)
Define
Ki;(z) = Kjj, 2" + %Kfjabxaxb. (3.8)

From the hypothesis of the Lemma the Gauss equations are solved to first

order at 0. As R;j;(0) = 0 it follows that
915 (0) = 0. (3.9)
Substituting (3.7),(3.8) and (3.9) into the Codazzi-Ricci equations we find

— H*

ljia

(H", — H!"

ijl 1) + (HJ;

ijla

+ Kjy H

ij

— K;;aHg)xa +O0(]z[*) =0 (3.10)

and
Kg\j - Ké‘i\z‘ - gkl(0)<HIgiHj/\l - HI/:jHi)l\)

— K"

jAia

+ [KX

iNja

— g"(0)(Hj,

kia

Hj) + H{H, — HY. H) — H H;)

jla kja ila

(3.11)

Thus to solve the Codazzi-Ricci equations to first order we must take

H = H

ijl lji
KiNAj = K]H)\i + gkl(0>(H5iHjAl - ngHﬁ)
HYy, = Hiji, — Kp G + Kf H
K}jja = Kjio + 9™ (0)(Hyg Hjy + HigH, — Hi Hy — HGH;).

14

)]z + O(|z]*) = 0.



By the assumptions of the Lemma the first of these equations are satisfied.
As the remaining equations only involve specifying the 2"¢ derivatives of the
second fundamental form, the Gauss equations are still satisfied up to 1%
order. Finally (3.5) follows from the Weingarten formula (2.3) and the fact

that #;;(0) = 0. O
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Chapter 4

Llu,| is of real principal type

In this Chapter we will use Lemmas 3.1 and 3.2 to construct an approximate
solution ug to (1.1), such that L[uo] is of real principal type at x = 0.
Let (z;)3_, denote the standard coordinates on R? and let L be a linear

partial differential operator of the form

o

Lu=A"—
Y ox?

+ Bu.
Recall that the symbol of L is the map

J:QX(R?’—O)—JR

(z,8) = det(A'(2)&).

Using o we can define a vector field on 2 x (R* — 0) as follows

0o 0 B do 0
7 oxt 852 85@ ze

The vector field H, is called the Hamiltonian of o. If v is an integral

curve for H,, then along + the value of the symbol ¢ is constant. Let

16



v :(—s,s) = Qx (R®—0) be an integral curve for H, such that o(y(0)) = 0,
then 7 is called a null bicharacteristic. In particular o(y(t)) = 0 for all

t € (—s,s).

We define 7 : 2 x (R3—0) — Q to be the projection map where 7(x, ) :=

x. The following definition is taken from Goodman and Yang in [4].

Definition 4.1 (Differential operator of real principal type). The differential
operator L is of real principal type at 0 if there exists a compact subset K C )
containing 0, such that if v : (—s,s) — Q x (R*—0) 4s a null bicharacteristic
satisfying w(v(0)) € K, then there exists a T > 0 such that w(y(£T)) ¢ K.
That is every null bicharacteristic sitting over K leaves K going forwards

and backwards in time.

Remark. In the paper by Nakamura and Maeda [16] a slightly different
definition of an operator of real principal type is given, there L is said to be
of real principal type at 0 if there exists a 3 x 3 matrix valued symbol p(z, ),

a scalar symbol ¢(x, &), an open set W containing 0 such that
p(z, &) (A'(2)&;) = q(z,&)Id,  for all (z,£) € W x (R® - 0)

and the principal symbol ¢ (z, &) of g(z, &) satisfies the condition that dg;
and 0 := &dx® are linearly independent on W x (R® — 0) N ¢;*(0).

We claim that Definition 4.1 implies the definition given in [16]: Let
a(z, &) = Al(z)¢&; and define

p(z,8))i; = (—1)det(ay;(x,€), 1<i,j<3

17



where a;;(z, £) denotes the ij cofactor of a(z,£), obtained by deleting the i

row and j column of a(x,£). Therefore

p(z, &) (A (2)&) = det(A"(2)&)Id = o(z, £)1d.

Suppose now do and 6 are linearly dependent. Then

do
—_— = 1 <1<

for all (x,£) € W x (R* — 0) N o~*(0), therefore if y(t) = (z(t),&(t)) is a
null bicharacteristic of o, it follows that

dz’ oo

i~ on

Therefore v gets trapped over every fiber, contradicting Definition 4.1.

Let
H12 == (17 07 0)
H13 - (Oa ]-7 0)
H23 - (O, 0, 1)
(4.1)
Hyy = Hyo+ Hys
Hyy = Hi9 + Hog
Hss = Hy3 + Has,
therefore

0= HﬁgHj“l — HﬁH;‘k.
As Hyo, Hi3 and Hsg are linearly independent if follows from Lemma 3.1 and

Lemma 3.2 that there exists a nondegenerate embedding ug : R* — R® such

that
Qg Ouo _ -
oxi Oxi 94

+ O(|z|h).

18



Let {Ny(z)}$_, denote a basis for the normal bundle of the embedding uy,

such that with respect to this basis the Gauss formula (equation 2.2) becomes

d%u ou
Tk L AN
OxrtoxI Y Oxk N
where
hi(0) = H)) a M 0 ; 4.2
ij(0> = z'j(o) aln oz (0) € span{d,;u(0) j=1- (4.2)

Defining h; = hjy Ny it follows from (4.1) that

h12(0) = Ny (0)
hlg(O) — N5<O)

h23(0) — N6<O)

A consequence of (4.2) is that

Ohy;

8hz‘j
ok (

~ Ozk

0) = S(0) - N, (0). (4.3)

From (2.9) and (4.1) it follows that
C1(0) = Cr(0) =1
C3(0) = C%(0) =1 (4.4)
C3(0) = C4(0) = 1

with all other C'(0) = 0. Subsituting (4.4) into (2.11) we obtain

9 -1 —1 10 0 1 0 0
A0)y={o =1 o |, 220)=|=-1 2 =1, 220 =0 -1 0
0 0 -1 0 0 —1 1 -1 2

19



We now change coordinates in the £ variable. Let

S =m+mn
Sa=m+mn
§=m+1n

then the symbol of L[ug] becomes
o(z,m) = det(n Al + np A2 + 13 A3)
where
Al = A2 + A%, A2:= A' 4+ A3, A3 .= A' + A%
A long but straightforward calculation shows that

a(0,m) = —16m1m213

o (0% (0% 4'5
o(w,m) = 2B ()} + 2B (@)nd + 283yt + 3 Fenegrg (49

|e|=3
0<a; <2

where E* and F* are quadratic polynomials in C¥. Explicitly
E'= (C} + C)(CS + C§ —2) — C¥(Cy + Cy + C5 + CF)
E? = (Cy + CH(CY + C5 —2) — C3(C} + Cf + C% + CF)
E? = (O3 +C(CH+Cy —2) — C3(CF + C5 + C% + CF).

Using (4.4) we see that

10FE! B oCS (9C’§ oCS
2 Oxk (0) = oxk (0) + oxk (0) - @(O)
10E? oc? oC3 oC3
§8xk< )= 8:1:’1( )+ 8;1:2( )_(9_11:’3«))
10E? 0) — oC oCy 8C§

§8xk< )= 8xk(0)+8xk( )_@(O)

foralll1 <k <3.

20



Lemma 4.1. For 1 <k < 3 we have

10FE! ORa393 OR1293 OR1213 OR1323
5%(0) T Ok (0) oxk (0)— oxk (0) - oxk (0)
10E? OR OR OR OR
700 = g O+ 5 (0 = 5 (00 = 5= 0)

10E3 R OR oR R
om0 - o G - G - s

Proof. By (2.9) we have
hii(z) = Cf () haa(x) + CF (2)hag(2) + CF () has()

for all z € Q and 1 <7 < 3, therefore

4
Tt 0) =0 (0)naf0) + CH(O)
aCs
Oxk
aCs
Oxk

Ohis
oxk (0)
(0)h15(0) + C2(0) 722 0)

Ohas
Dk (0).

+

_I_

(0)h23(0) + C7(0)

Define HJ}; = 0,xh;;(0), by (4.1) and (4.3) it follows that

oct

8_90’1(0) = Hfm - Hka - Hfg)k

oct

a_xi(o) = ngk - Hka - ng,k (4‘6)
aCk

Ok (0) = Hg?)k - H{L:ak - H;?)k

foralll1 <k <3and 4 <pu<6.

Claim 1

oCS oCs 0CY  ORass ORy923 ORy213 ORy323

21



Proof of Claim 1:
We prove Claim 1 only for k = 1. The proofs for k = 2,3 are identical.

From equations (4.6) we have

aCs aCs aCs

%( ) %( ) - %(O) = H1622 + H1633 - 2H?23 - H1611-

Now using the derivatives of the Gauss equations (3.2) we see that

8?;?23 (O) = Hf22H§L3 + Hf33H52 - 2Hf23H53
R 0) = M+ Hipllty— HiHE, — HEHG
8—5;13 (O) = H{Llng?) + Hf23Hfl - HflSHfz - HﬁzHﬁs
('92{;23 (0) = HiyoHiy + Hiss Hiy — Hij3Hyy — Hips His.
Therefore
5?;?123 (0) + 3?;2123 (0) — 8?;2113 (0) — a];;zs (0)
= (Hf22H§3 + H533H§2 - 2H523H53>
+ (Hme;?) + HfQ?)Hfz - H{L13H52 - Hme{L:s) (4.8)

— (H{y Hys + HiggHYy — Hiy3Hiy — Hyj, Hi)
— (H{\yHjs + HisgHiy — HY 3Hys — Hioz Hi3).

From (4.1) it follows that for all 1 <4, j,k <3

4 5
Hngﬁ = Hfijé + HZkH{L?, = Hyjy + Hpjy,

Hi};'ngQ = H

zijfQ + HJ, H53 = H%’;‘kz—{_Hﬁ

ijk i ijk

HY\ HYy = HE HYy + HE Hyy = HYy + HYy

ijk ijk g
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Using the above equations we rewrite (4.8) as

OR9393 OR1223 ORi213 OR1323
Ozt (0) + ozt (0) - ozt (0) - ozt (0)

= (HYyy + Hiyy — Hiyg — HYjg — Hipy) + (Higy + Higy + Hiss + Hisy — 2Hp)s)
— (HYyy + Higs + Hipg — Hiyg — Hiyy) — (HPyy + HYyy + Hisg — HYyg — Hiyg)

- H1622 + H1633 - H?n - 2H1623
_ace - acs aCs
= 0t O+ 5 (0 = 550

Thereby proving Claim 1.

Claim 2

8015 6C’?,5 8025 o 8R1313 aR1223 aR1213 aR1323
o O e 0= 0 = S O+ =50 0= =5 (0=~ ()

Proof of Claim 2:
Again we will prove the above claim only for £k = 1, as k = 2,3 are

identical. From equations (4.6) we have

oc? oc? oC3
8_51}1( )+ 8_:;)( ) — 8—5;(0) = H}yy + Higy — 2H g — Higy.
Equations (4.7) provide us with formulas for 0,1 R1203(0), 0,1 R1213(0) and
01 R1323(0) therefore we need only the formula for 9,1 R1313(0) which by equa-
tions (3.2) is

OR1313
oxl

(0) = anHéLza + Hfs:stl - 2H513H{L:3‘
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Therefore

ORi313 OR1223 ORi213 OR1323
Ozt (0) + ozt (0) - ozt (0) - ozt (0)

= (H1511 + Hfll + Hil33 + H{)33 - 2H§)13> + (H?IQ + Hi123 - Hil13 - H?13 - H1522)

— (HYyy + Higs + Hipg — Hiyg — Hiyy) — (HPyy + HYyy + Hisg — HYjg — Hiyg)
- H1511 + H1533 - 2Hf13 - H1522

oCy oCe oC3
= %00y 4 T30y — L2,

axl()+ax1() 8x1()

Thereby proving Claim 2.

Claim 8

oCt oC4 dC5  ORian ORy223 ORy213 ORy323
o O g 0= 0 = 5= O+ =50 0= =5 (0 =5~ (0

Proof of Claim 3:
Again we prove the above claim only for £ = 1. From equations (4.6) we

have

aC aC aC

%( ) + %( ) — %(O) = Hi\, + Hiy, — 2H}}, — Hiss.

We already have formulas for 0,1 R123(0), 9,1 R1213(0) and 0,1 R1323(0) there-

fore we need only the formula for 9,1 R1212(0) which by equations (3.2) is

8R1212

W(O) - anHéLQ + Hmeﬁ - 2H512Hfz‘
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Therefore

a-R1212 aR1223 aRlQlB 8R1323
ot O+ gt O 50 0= 0)

= (Hfll + H1611 + HfQZ + H1522 - 2Hf12) + (H1612 + Hil23 - H?lS - H1613 - Hi:’22)
- (Hfll + Hil23 + H1523 - Hle - Hle) - (H1512 + Hfl? + Hf33 - H1613 - H1523)

- an + Hilm - 2Hﬁz - Hil33

Cach o act ooy
= 90 O e (0= 50 )

Thereby proving Claim 3 and hence the Lemma. O

We have not yet used the existence of a v € T, M such that V,Riem(p) #
0. Using this fact we now show that we can choose our normal coordinate
system (2!, 22, 23) such that

OE" OF"
Il (0) and 92

(0) are both non-zero

for i = 1,2,3. This will imply that L[uo] is of real principal type at 0.
Let Riem(p) denote the Riemannian curvature tensor at a point p. Then

VRiem(p) is the linear map
2 2
VRiem(p) : T,,M x /\TpM X /\TpM — R

where VRiem(p)(X,Y,Z) = VRiem(p)(X,Z,Y) for all X € T,M and
Y,Z € N’ T,M. Let {E;}2_, be a basis for T,M and let {FE; A E;},<i<j<3 be
a basis for \>T,M. We define

V.Riem,3 := VRiem(p)(E,, E; A\ E;, Ex N\ E))

where

i =a and Ty = [0.
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Here 15 := 191 := 1,713 := 731 := 2, To3 := T30 := 3 and 7y := Top := 733 := 0.
Note that V,Riem,3 = V,Riemg,. Therefore for a fixed a we can consider
V.Riem as a symmetric matrix. The following Lemma is a straightforward
consequence of the transformation laws for the covariant derivative of the

Riemann curvature tensor.

Lemma 4.2. Let {E;} and {F;} be two bases for T,M and let L : T,M —
T,M be a linear map where F; = Lij. If V,Riem denotes the compo-
nents of VRiem(p) with respect to the basis { E;} and V,Riem denotes the

components of VRiem(p) with respect to the basis {F;} then
V.Riem = L¥ (X - V,Riem - X7)
where
LiNL3 LiANLE  LiIANL2
X=|L'ALd L'ALd LIANLE|- (4.9)
I3INLY  LAANLYS L3NS
Here L¢ ALY = LYL] — L7 L3.
Lemma 4.3. Suppose there exists a vector v € T,M such that V,Riem(p) #

0. Then there ezists a basis {F;} for T,M such that with respect to this basis

the quantities

S,i = VkRiemgg + VkRiemlg - VkRiemlg — VkRiemQ?,
S? .= V;Riemy, + V,Riem;; — V,Riem;; — V;Riemy;

S .= ViRiem,; + V;Riem;3 — V;Riem; — V,Riem,s
where k = 1,2 are all non-zero.
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Proof. We first prove that there exists a basis {E;}?_, for T,M such that

with respect to this basis

a d e
(ViRiemus) = |d b f|, a#0. (4.10)
e f ¢

By assumption there exists a v € T,M for which V,Riem/(p) # 0, therefore

we can choose a basis {F;}?_, for T,M such that
A 0 0
(V,Riem,3)=|0 B 0
0 0 C
where A # 0 and A+ B # 0 (note that if A+ B =0,B+C =0and A+C =0
then A = B=C =0). Now let {F;}?_; be a new basis for T, M where
Fi=v=FkE +KkF+k'E;
Fy = B, + Ej

Fs = Ey — Ej.

We have assumed that v ¢ span{Fs, F3} and so k' # 0. Therefore F; = L}E;

where
EL0 0
L=k 1 1
o1 —1

Now by Lemma 4.2 it follows that
leiemag = L?(X : VaRiem : XT)O{Q
= (X - k'V,;Riem - X7),5

= (X : VURiem . XT)aﬁ
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where

k2 — Kk —(K*+ k%) -2
Therefore

VlRiemH = (k’l)2(A + B) 7é 0

and thus we may assume that (4.10) holds.

Define
1/e 1/e O

where € > 0 is a small number to be chosen later. Note that det L = —2¢% # 0

and so L € GL(R?). Substituting L into the matrix (4.9) we get

By Lemma 4.2 we know that
V.Riem,s = L% (X - VyRiem - X7),5.
Now since L} and L} = 1/e > L?* = O(e) for i = 1,2,3 we have

VlRiemaﬂ = (X : VlRiem . XT)aﬁ

A==

ViRiem,; = —(X - V Riem - X7),5 + O(e).
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Therefore for k = 1,2 we have

a —a 0

- 1
Vleern = -1 —a a O] + O(E),

€

0 0 O

where a = (k')?(A + B). It follows that for k = 1,2

st="224 00
€
2

Sh ==+ 0()

Since a # 0 by taking e small enough we can ensure that S # 0 for k =
1,2. O

Combining Lemma 4.1 and Lemma 4.3 together we obtain the following

Corollary.

Corollary 4.1. There exists a normal coordinate system (see Definition 3.1)

centered at p, (z', 2%, 23) such that for k = 1,2 the quantities

10E" 1 0E2 10E°3
7000 59+ 5550

are all non-zero.

To show that L[ug| is an operator of real principal type we will use the

following Lemma.

Lemma 4.4. Let p € Q2. If no null bicharacteristic of o is contained in the
fiber {p} x (R —0) then there is a compact neighbourhood K of p such that

no null bicharacteristic of o remains in 7 (K).
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Proof. See [17] Lemma 7.8 on page 344. O
Theorem 4.1. L{ug| is of real principal type at 0.

Proof. Let y(t) = (x(t),n(t)) be an integral curve for the Hamiltonian vector

field associated to the symbol o

0o 0 B do 0
70 QxiOn;  Om; Oxt

where z(0) = 0 and o(y(0)) = 0. That is, v is a null bicharacteristic of o
passing through x = 0. Let us now assume that v gets trapped over the
fibre {0} x (R® — 0). Therefore there exists a K > 0 such that z(t) = 0 for

—K <t < K. Using equation (4.5) it follows that

0= %“) _ %W)) — —16m(t)ns(t)
0= ddit@) _ g_;w(t)) — —16m (1) (1) (4.11)
_ ddit(t) _ g—?;‘g(fy(t)) = 16 (t)a(t)

for all —K < t < K. Because of this we can find an € > 0 such that for all

—e < t < € only one of the three conditions holds

(i) m(t) =m(t) =0, mns(t) #0
(i) nu(t) =ns(t) =0, na(t) #0
(iii) 72(t) = ns(t) =0, m(t) # 0.
Note that by assumption n(t) # 0. Suppose condition (i) were true. Then
dni(0)/dt = 0. But by (4.5) and Corollary 4.1 we have

d 1 80' (9E3
—E(0) = = 57(0) = ~25-(0)n(0) # 0.
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Therefore we have a contradiction and so condition (i) cannot hold. Likewise
conditions (ii) and (iii) also cannot be true. Therefore there exists a K > 0
such that z(t) # 0 for some t = £ K.

By Lemma 4.4 it follows that L[ug] is of real principal type at x = 0. O
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Chapter 5

Moser Estimates for @’

We now use the results of [4] and [16] to prove the Moser estimates for the
linearization of (1.1).
Let X be a bounded open subset of R® and let X denote its closure.

Define
C®(X,RY) ={f | f = ¢|x for some ¢ € C>(R",R")}.

Given any f € C®°(X,R"Y) let

k

1f 1k = (D [ 0" )2

laj=07 X
Let H*(X,RY) denote the completion of C*(X,RY) with respect to || - ||x.

For any f € H*(X,RY) and ¢ > 0 we define
BI(f) = {g € H*X,RY) | [lg — fllx < ¢}.

To prove Moser estimates for @ we use the following result of [4](see also [16]

Theorem 3.2).
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Theorem 5.1. Let X be an open bounded subset of 0 in R" and let u €
C>(X,RY). Let L[u] be a first order operator of the form

ov

Llu)v := A*(u) o

+ B(u)v

where A* and B are N x N matrices depending smoothly on w and its first
and second derivatives. Suppose there exists a uy such that Lluo] is of real
principal type at 0, then there exists an open neighbourhood of 0 € W C X,
an € >0 and a J,«, 8 € N such that for all u € B (ug) N C=(W,RYN)

1. Lu] : C*(W,RY) — C>=(W,R") is surjective.
2. Ifv, f € C®°(W,RY) such that Ljulv = f then
vl < CUf o + [ullesl flla) (5.1)
for all 1l > J where C' is a constant which does not depend on u or f.

We also need to make repeated use of the following inequality.

Lemma 5.1 (Gagliardo-Nirenberg inequality). Let u,v € L>(Q)N H' (2, R)

and let o, B be multi-indices such that |o| + |5] =1. Then

[lwolls < C([[ullol o]l + [[ulli]v]]o)
where C' 1s a constant which depends on 1, but does not depend on u or v.
Proof. See [18]. O

Let (Q, 2!, 2%, 23) be the normal coordinate system constructed in Corol-
lary 4.1. Let ug : © — R® be the smooth nondegenerate embedding con-
structed in Chapter §4. By Theorem 4.1 we know that L[uo] is of real prin-

cipal type at 0.
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Theorem 5.2. There exists an open neighbourhood of 0, W C §2, an € > 0
and a J,a, 3 € N such that for all uw € C®°(W RS N B/ (ug) the following
hold

1. The linear map @' (u) : C®(W,R) — C°(W,R®) is surjective.
2. Ifv, f € C°(W,R%) such that ®'(u)v = f then

o]l < CUf o + [lulleesl flla)

for alll > J. Here C does not depend upon the functions u or f.

Proof. Since L[uyg] is of real principal type we can apply Theorem 5.1. There-
fore there exists an open neighbourhood of 0, W C Q, J € N and € > 0 such
that if u € B (ug) N C=(W,RY), L[u] is invertible and the Moser estimates,
inequality (5.1) hold. From now on we assume that u € B/ (ug) NC>®(W,R®)
and that for any such u, ||u||; < 1 for some J much larger than .J.

We first prove that ®(u) : C°(W,R%) — C=(W RS) is surjective: Let
f € C*(W,R%) and let y := (vy,v2,v3)7 be a solution to the differential

equations

fir+ Clfia+ CYfis + CP fas
Lluly = | for + C3 fra+ C frs + CS fos | = 9(u)- (5.2)
fas + C3 fra + C3 fi3 + CF fas
Such a y exists since L[u] is surjective. Let ¢ := (v, v°,v%)T be given by the

equations

f12 — Op2v1 — Opivg + 2F’f21)k
. 1.
y=-5H Y s = e — Bprv + 2T, | - (5.3)

foz — 09 — Op2v3 + 2F’§3vk
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That H™! exists follows from the fact that wuy is nondegenerate and any

embedding u close to ug is also nondegenerate. In Chapter §2 it was shown

that if we define

ou
v = plkvk% + v N,

where (p*) = (0, - O,5u)~! and N, are vectors perpendicular to 0,u, then

O (u)v = f.

Therefore @’ is surjective. We now prove the Moser estimates.

By Theorem 5.1 we know that

[yl < CUlglliva + lullirsllglla)

for all I > J. Now from (5.2) we have

gille = |1 fis + Cf fiz + CF f1s + C7 fos|li

< falle + |G frzlle + [1C7 frslle +11C7 fas] i
By Lemma 5.1 we have
1C2 frzlle < CUICH loll fralle + I frzllo)-
Since Cj‘»‘ depends only on the second derivatives of u it follows that
HCH e < Cllulfi42-

Therefore

1C3 frzlle < Cllull2l1 11+ [1£]lo] el li4-2)

< C([[f1le+ 11 ol Tl l14-2)-
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Identical estimates also hold for C? fi3 and C? f3. Therefore

lglle < CAF1 A+ 1ol eellir2)- (5.5)

Substituting estimate (5.5) back into (5.4) gives us

[yl < CUIfleva + 1L lollullivate + [ullees(Lf e + [1f olulla+t2))-

Let @ = a and § = max{a + 2, 5} then

[yl < CULf s + LA lallulliyg), 1= (5.6)

We now derive similar estimates for §. By equations (5.3) we know that
1 y ov;  Ov;
~p_ glf. [ J k
9 =3 E ' b (fi 90 i T 2'5ur) (5.7)
1<i<y<3

where hff are smooth functions of 0, 5u. Recall that Ffj are also smooth

functions of the second partial derivatives of u. Therefore
121l + 105 < Cllallivs-

Applying Lemma 5.1 to (5.7) we obtain the following inequalities

; ov;  Ov;
7l C S UAglhllfis — 5o — 52+ 2Tk ol
1<i<j<3 5 5 (5.8)
i V; (%
IR — 5 = 5% + 2Chulo)
Using the triangle inequality and Lemma 5.1 we obtain
ov;  O0v;
I fi5 — 95 Bn —Z ol ulle < CUIFIN A+ Nylligs + [1TEvl])

< CAAL Nyl + 1T o velle + T3l vl o)
< C(IA1l + Nyllier + [lullallylli + lulli+2]yllo)

< C([Lf e+ Nyl + [lellir2llyl]o)
(5.9)
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By estimate (5.6) it follows that

lyllo < C[[fllavs + I fllallellzy,) < Cllfllars

Therefore inequality (5.9) becomes

1fis =55~ a0 T U5l < CULA A+ yllies + llullisell fllass)  (5.10)

and so setting [ = 0 and using estimate (5.6) again gives us the following L?

bound
i T A T - 217 <(C &
1= G5 =t + 2l < OO+ o+ e

< Cl[f|la+s-

Substituting inequalities (5.10) and (5.11) into inequality (5.8) we find that

g1l < CUL e+ Tyllien + Hellial [ fllass + ullisellfllars)

< CU A Nyl + Hulleel [ fllars)-
Finally using inequality (5.6) we obtain

gl < CULFIL 4 11 evarn + 11 allulliyga + el lullie)

< Ol lrars + A larsllulliygen), 12

(5.12)

The final step of the proof is to use inequalities (5.6) and (5.12) to estimate

v. Recall that in terms of v, and v*, v is given by the formula

o Ou
v = p]kvk% + 0N,

Since p’* and Ny depend smoothly on the first derivatives of u it follows that

o Ou
Hp]ka—Hz + [Nl < Cllulfita

I
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Using the above estimate and Lemma 5.1 we see that

, ou
< ||p*vp— AN
lolle < Il 1l + 110 Nall
o Ou o Ou
k k A A
< C(|lp —alelollvkllﬂrllp’ —8xj||z||vk||o+IINAIIzIIU o + [[Nxlfol[v™]]2)

< C([Jullullylle + [lullivallyllo + lull gl + wlleallg]lo)

< CUlylle + Mgl + [lulleea(yllo + [1gllo))-

Applying inequalities (5.6) and (5.12) to this estimate gives us

ol < CUlivars + L larsllulliy g+ Hulliallfllas)

< CUIMevars + A ar sl i)
[l

Remark. A result almost identical to Theorem 5.2 was proved in Section

VI of [1].
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Chapter 6

Proof of main theorem

Theorem 6.1 (Nash-Moser). Let N be a compact manifold with boundary
and let U be an open subset of C*°(N,R¥). If P : U C C*°(N,RF) —

C®(N,RP) is a nonlinear partial differential operator such that

1. For allu € U and f € C®(N,RP) there exists a unique v € C®(N,RF)
such that
P'(u)v = f.

2. There exists o, 3, J € N such that if P'(u)v = f then

1ol < CAUf e + lullivsl]F1le)

for alll > J, where C' is a constant which does not depend on u or f.

Then P 1is locally invertible.

Proof. See part III of the survey article by Hamilton [5]. O
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Proof of main theorem. By Theorem 5.2 there exists an open neighbourhood

W of 0in R3, J € N and § > 0 such that if we define

P=®
U= C®(W,R% N B (u)
N:=W

k,p:=6

then the assumptions of the Nash-Moser theorem are satisfied. Thus there
exists an € > 0 and K € N such that for all f € C°(W ,RS) N BX(®(up))
there exists a u € C*(W,R%) such that ®(u) = f.

Unfortunately, we are not done yet as the metric g;; which we want to
isometrically embed may not be in BX(®(ug)). To overcome this problem
we use the following trick of [1]. Let p be a smooth compactly supported
function on R® which is identically 1 in a neighbourhood of the origin and

let g be our Riemannian metric on W. Given § > 0 let

gs(x) = p(0~"w)g(x) + (1 — p(6~"2)]®(uo) ().

Using the formal part of the Cauchy-Kovalevskaya theorem (ignoring con-
vergence) and the Borel theorem, we may extend wug such that ®(ug) agrees
with g up to infinite order. It then follows that for ¢ sufficiently small,
gs € BE(®(ug)) (for a proof of this result see Proposition (6.b.1) in [1]).
Therefore there exists a u € C°°(W,R°) such that ®(u) = g;. Since there
exists an open neighbourhood of 0, Y C W, such that gs|y = g, it follows
that on Y, ®(u) = g. O
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