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Abstract of the Dissertation

The local isometric embedding problem for

3-dimensional Riemannian manifolds with cleanly

vanishing curvature

by

Thomas Edward Poole

Doctor of Philosophy

in

Mathematics

Stony Brook University

2010

We prove the following result: Let (M, g) be a 3-dimensional C∞ Rie-

mannian manifold for which there exists a p ∈ M and a v ∈ TpM such

that

Riem(p) = 0 and ∇vRiem(p) 6= 0.

Then there exists a C∞ local isometric embedding from a neighbourhood of

p into R6.
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Chapter 1

Introduction

Let (M, g) be an n-dimensional C∞ Riemannian manifold. We say that

(M, g) can be locally isometrically embedded into RN if there exists an open

set Ω ⊂M and a C∞ map u : Ω→ RN such that the induced metric on the

image of u agrees with g. In local coordinates this is equivalent to u solving

the following nonlinear system of partial differential equations

Φij(u) :=
N∑
k=1

∂uk

∂xi
∂uk

∂xj
= gij, 1 ≤ i, j ≤ n. (1.1)

From (1.1) it is evident that the isometric embedding system is a collection

of n(n+ 1)/2 equations in N unknowns. In this paper we will only consider

the determined case when N = n(n+ 1)/2.

Since 1983 there has been much progress on the determined case in di-

mensions 2, 3 and 4. For example in dimension 2, a classical result says that

if the Gaussian curvature does not vanish at a point then smooth embeddings

exist. This result was generalized by Lin in [15] (a simplified proof was also

provided by Han in [6]), where it was proven that if the Gaussian curvature
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vanishes cleanly at a point then sufficiently smooth embeddings exist. In [14]

Lin also reached the same conclusion under the assumption that the Gaussian

curvature is nonnegative. A detailed account of such results may be found

in the book by Han and Hong [8]. Recent work by Han in [7] and Khuri in

[12] has shown that if the Gaussian curvature vanishes to finite order along

a curve, then a sufficiently smooth embedding exists. In the case where the

Gaussian curvature is nonpositive, under suitable nondegeneracy assump-

tions on the gradient of the Gaussian curvature, it has been shown by Han,

Hong and Lin in [9] that there exist smooth embeddings. For 3-dimensional

Riemannian manifolds work by Bryant, Griffiths and Yang in [1], Goodman

and Yang in [4] and Nakamura and Maeda in [16] has shown that if there

exists a point p for which Riem(p) 6= 0 then smooth embeddings exist. In

4-dimensions there exists a finite set of algebraic equations involving the cur-

vature tensor and its covariant derivatives such that if these equations do

not all vanish at a point, then there exist smooth embeddings. These results

follow from the work of [1], together with the Moser estimates proved in [4]

and [16]. To the best of author’s knowledge there are no known local isomet-

ric embedding results for a generic Riemannian manifold in dimensions ≥ 5.

Finally, if the Riemannian metric is analytic, a famous theorem of Cartan

and Janet (c.f. [11]) tells us that we always have an analytic embedding.

The main result of this thesis is the following generalization of the work

carried out in [1] and [15].

Theorem 1.1 (Main theorem). Let (M, g) be a 3-dimensional C∞ Rieman-

nian manifold such that there exists a p ∈ M and a vector v ∈ TpM for
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which

Riem(p) = 0 and ∇vRiem(p) 6= 0.

Then there exists a smooth isometric embedding from a neighbourhood of p

into R6.

From now on (M, g) will always denote a 3-dimensional Riemannian man-

ifold. Without loss of generality we may assume that Ω is a neighbourhood

of the origin in R3 and u : Ω → R6. Let u0 denote a smooth embedding

choosen such that the induced metric ∂iu0 · ∂ju0 is very close to g in the

appropriate norm. The first difficulty encountered in trying to solve (1.1) is

that its linearization is characteristic in every direction. To overcome this

difficulty we follow the strategy of [1], where it was shown that any solution

of (1.1) corresponds to a solution of a 3× 3 system of differential equations

L[u]v = Ai(u)
∂v

∂xi
+B(u) (1.2)

and vice versa. The advantage of this approach is that for a suitably chosen

u, (1.2) admits noncharacteristic directions. Thus to construct a solution

to (1.1) we need only to prove the local solvability of L[u] for u close to

u0, with the solutions satisfying the estimates needed for the Nash-Moser

implicit function theorem. Let σ(x, ξ) denote the determinant of the symbol

of L[u0] at x. If Riem(0) 6= 0 then it was shown in [1] that for a suitable

choice of approximate solution

|∇ξσ(0, ξ)| 6= 0, for all ξ ∈ R3 − {0}. (1.3)

A consequence of this is that L[u] is of real principal type for any u close to

u0. Local solvability for linear operators of real principal type was proven by
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Duistermaat and Hörmander in [2]. In the work of [4] and [16] the solutions

were also shown to satisfy the estimates needed for the Nash-Moser implicit

function theorem. In this paper we are assuming that Riem(0) = 0, therefore

it is not possible to find an approximate solution satisfying (1.3), however, we

show that with the help of the cleanly vanishing property |∇Riem(0)| 6= 0,

it is still possible to construct an approximate solution of real principal type.

This thesis is divided into five chapters. In Chapter §2 we prove that solv-

ing Φ′(u) is equivalent to solving L[u] plus a system of algebraic equations.

In Chapter §3 we prove the lemmas required to construct an approximate

solution u0. In Chapter §4 we show that if we choose u0 with an appropriate

second fundamental form, then we can construct a special normal coordinate

system, such that with respect to these coordinates L[u0] is of real principal

type. In Chapter §5 we use the results of [4] and [16] to prove the desired

Moser estimates. Finally, in Chapter §6, we apply the Nash-Moser implicit

function theorem to solve (1.1).

Remark. Throughout we will use the convention where pairs of repeated

indices in a product are to be summed over.
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Chapter 2

Linearization of the embedding

system

Let Ω be any open neighbourhood around 0 ∈ R3 and let u : Ω → R6 be a

smooth embedding. Let v ∈ C∞(Ω,R6) then the linearization of Φij about u

is

Φ′ij(u)v =
d

dh
Φij(u+ hv)|h=0

=
∂u

∂xi
· ∂v
∂xj

+
∂u

∂xj
· ∂v
∂xi

.

(2.1)

Here X ·Y :=
∑6

k=1X
kY k. Since u is an embedding, it follows that for every

x ∈ Ω the vectors ∂x1u(x), ∂x2u(x) and ∂x3u(x) are linearly independent. For

each x ∈ Ω, let N4(x), N5(x) and N6(x) be an orthonormal set of vectors

perpendicular to {∂xiu(x)}3i=1. It is clear that for every x ∈ Ω the vectors

{∂xiu(x)}3i=1 and {Nλ(x)}6λ=4 span R6, therefore there exist functions Γkij and

hλij such that

∂2u

∂xi∂xj
= Γkij

∂u

∂xk
+ hλijNλ. (2.2)
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This formula is the Gauss formula. The coefficients Γkij are the Christoffel

symbols of the metric induced by u, and hµij are the coefficients of the second

fundamental form for the embedding u. In addition to the Gauss formula we

also have the closely related Weingarten formula

∂Nλ

∂xi
= Akiλ

∂u

∂xk
+ κµiλNµ. (2.3)

In the above formula κµiλ are the coefficients of the connection form on the

normal bundle for the embedding u.

Given any smooth function v : Ω→ R6 we decompose it into its tangential

and normal components with respect to the embedding u as follows

v = vl
∂u

∂xl
+ vλNλ.

Differentiating this equation we find

∂v

∂xj
=
∂vl

∂xj
∂u

∂xl
+ vl

∂2u

∂xl∂xj
+
∂vλ

∂xj
Nλ + vλ

∂Nλ

∂xj
.

Now

∂u

∂xi
· ∂u
∂xl

:= pil

∂u

∂xi
·Nλ = 0

∂u

∂xi
· ∂2u

∂xl∂xj
= Γkljpik

∂Nλ

∂xj
· ∂u
∂xi

= −Nλ ·
∂2u

∂xi∂xj
= −hλij

where the last two equations follow from (2.2). Therefore

∂u

∂xi
· ∂v
∂xj

= pil
∂vl

∂xj
+ vlΓkljpik − vλhλij. (2.4)
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Let {vl}3l=1 be the coordinates of the dual 1-form to the vector field vl∂xlu,

e.g.

vl = plkv
k and vl = plkvk.

Here (plk) = (plk)
−1. Therefore

pil
∂vl

∂xj
=
∂vi
∂xj
− vl∂pil

∂xj
. (2.5)

Plugging (2.5) into (2.4) we get

∂u

∂xi
· ∂v
∂xj

=
∂vi

∂xj
− vl∂pil

∂xj
+ vlΓkljpik − vλhλij. (2.6)

Recalling the formula for the Christoffel symbols in terms of the metric

Γklj =
1

2
pkm(

∂pml
∂xj

+
∂pmj
∂xl

− ∂plj
∂xm

)

we see that

−vl∂pil
∂xj

+ vlΓkljpik = vl(−∂pil
∂xj

+
1

2

∂pil
∂xj

+
1

2

∂pij
∂xl
− 1

2

∂plj
∂xi

)

= −vkplk(
∂pil
∂xj

+
∂plj
∂xi
− ∂pij
∂xl

)

= −vkΓkij.

Therefore (2.6) becomes

∂u

∂xi
· ∂v
∂xj

=
∂vi

∂xj
− Γkijvk − vλhλij

and so

Φ′ij(u)v =
∂vi
∂xj

+
∂vj
∂xi
− 2Γkijvk − 2vλhλij

:= fij.

(2.7)
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From (2.7) we have

f12 =
∂v1

∂x2
+
∂v2

∂x1
− 2Γk12vk − 2vλhλ12

f13 =
∂v1

∂x3
+
∂v3

∂x1
− 2Γk13vk − 2vλhλ13

f23 =
∂v2

∂x3
+
∂v3

∂x2
− 2Γk23vk − 2vλhλ23.

Writing these three equations in matrix form

H


v4

v5

v6

 :=


h4

12 h5
12 h6

12

h4
13 h5

13 h6
13

h4
23 h5

23 h6
23



v4

v5

v6

 = −1

2


f12 − ∂x2v1 − ∂x1v2 + 2Γk12vk

f13 − ∂x3v1 − ∂x1v3 + 2Γk13vk

f23 − ∂x3v2 − ∂x2v3 + 2Γk23vk


(2.8)

we see that if the vectors h12, h13 and h23 are linearly independent, then given

v1, v2 and v3 we can solve the above algebraic equations to find v4, v5 and v6.

This leads us to the following definition (cf. Griffiths and Jensen [3] page

100).

Definition 2.1 (Nondegenerate embedding). Let u : Ω ⊂ R3 → R6 be a

smooth embedding. Let hij denote the second fundamental form of u. We

say that u is a nondegenerate embedding if the vectors h12(x), h13(x), h23(x)

are linearly independent for all x ∈ Ω.

Assuming that u is a nondegenerate embedding it follows that there exists

Cµ
i ∈ C∞(Ω), 1 ≤ i ≤ 3 and 4 ≤ µ ≤ 6, such that

h11(x) = C4
1(x)h12(x) + C5

1(x)h13(x) + C6
1(x)h23(x)

h22(x) = C4
2(x)h12(x) + C5

2(x)h13(x) + C6
2(x)h23(x)

h33(x) = C4
3(x)h12(x) + C5

3(x)h13(x) + C6
3(x)h23(x)

(2.9)
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for all x ∈ Ω. Now

fii = 2
∂vi
∂xi
− 2Γkiivk − 2vλhλii

= 2
∂vi
∂xi
− 2Γkiivk − 2vλ(C4

i h
λ
12 + C5

i h
λ
13 + C6

i h
λ
23),

by (2.7) we have

2hλijv
λ =

∂vi
∂xj

+
∂vj
∂xi
− 2Γkijvk − fij.

Therefore for i = 1, 2, 3

fii = 2
∂vi
∂xi
− 2Γkiivk − C4

i (
∂v1

∂x2
+
∂v2

∂x1
− 2Γk12vk − f12)

− C5
i (
∂v1

∂x3
+
∂v3

∂x1
− 2Γk13vk − f13)

− C6
i (
∂v2

∂x3
+
∂v3

∂x2
− 2Γk23vk − f23).

We write the above linear system as

L[u]y := Ai
∂y

∂xi
+By = g (2.10)

where

A1 =


2 −C4

1 −C5
1

0 −C4
2 −C5

2

0 −C4
3 −C5

3



A2 =


−C4

1 0 −C6
1

−C4
2 2 −C6

2

−C4
3 0 −C6

3



A3 =


−C5

1 −C6
1 0

−C5
2 −C6

2 0

−C5
3 −C6

3 2



(2.11)
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Bik = 2(C4
i Γk12 +C5

i Γk13 +C6
i Γk23 − Γkii), gi = fii +C4

i f12 +C5
i f13 +C6

i f23 and

y = (v1, v2, v3)
T .

We have shown the following: Let (vi)
3
i=1 be a solution to (2.10) and let

(vλ)6
λ=4 be a solution to (2.8), then

v := plkvk
∂u

∂xl
+ vλNλ

is a solution to (2.1). Conversely if v is a solution to (2.1), decomposing v

into its normal and tangential parts gives us solutions to (2.8) and (2.10). It

should be pointed out that a similar reduction was performed for arbitrary

dimensions by Han and Khuri in the recent preprint [10].
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Chapter 3

Construction of u0

In this Chapter we prove the Lemmas required to construct an approximate

solution for the isometric embedding system (1.1). We will work with a

slightly generalized version of normal coordinates.

Definition 3.1 (Normal Coordinates). Let (x1, x2, x3) be a coordinate system

centered at p ∈ M . Let gij denote the components of g in this coordinate

system. We say that (xi) is a normal coordinate system if ∂xkgij(0) = 0 for

1 ≤ k ≤ 3. We do not assume that gij(0) = δij.

From now on (x1, x2, x3) will always denote a normal coordinate system

centered at p. Let Rijkl denote the components of the Riemann curvature

tensor with respect to these coordinates. We now impose the condition that

the curvature tensor vanishes at p, therefore

Rijkl(0) = 0

for all 1 ≤ i, j, k, l ≤ 3. The following Lemma enables us to extend a zeroth

order solution of the Gauss equations to a first order solution.
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Lemma 3.1. Let Hµ
ij, 1 ≤ i, j ≤ 3 and 4 ≤ µ ≤ 6, be constants satisfying

the Gauss equations at 0 and let the vectors H12, H13 and H23 be linearly

independent. Then there exists smooth functions hµij which satisfy the Gauss

equations to 1st order

Rijkl(0) = hµik(0)hµjl(0)− hµil(0)hµjk(0)

and

∂Rijkl

∂xa
(0) =

∂hµik
∂xa

(0)hµjl(0) + hµik(0)
∂hµjl
∂xa

(0)− ∂hµil(0)

∂xa
hµjk(0)− hµil(0)

∂hµjk
∂xa

(0).

Furthermore we may assume that

∂hµij
∂xl

(0) =
∂hµlj
∂xi

(0), 1 ≤ i, j, l ≤ 3 and 4 ≤ µ ≤ 6.

Proof. Define

hµij(x) = Hµ
ij +Hµ

ijax
a (3.1)

where Hµ
ija = Hµ

aji. By the hypothesis of the Lemma we know that the Gauss

equations hold at 0. Differentiating both sides of the Gauss equations we find

∂Rijkl

∂xa
(0) = Hµ

ikaH
µ
jl +Hµ

ikH
µ
jla −H

µ
ilaH

µ
jk −H

µ
ilH

µ
jka. (3.2)

The above equations are a linear system with Hµ
ijk as the unknowns. As

Hµ
ija = Hµ

aji we have 30 unknowns, furthermore by the second Bianchi identity

it follows that (3.2) consists of 15 equations. From linear algebra we expect a

15 parameter solution space to (3.2). Provided H12, H13 and H23 are linearly

independent such a result is true. For a proof see [3], pp. 102-111.

Using a first order solution of the Gauss equations we construct an ap-

proximate solution to (1.1).
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Lemma 3.2. Let hµij, 1 ≤ i, j ≤ 3 and 4 ≤ µ ≤ 6, be smooth functions

satisfying the Gauss equations

Rijkl = hµikh
µ
jl − h

µ
ilh

µ
jk (3.3)

to 1st order, and satisfying the equations

∂hµij
∂xl

(0) =
∂hµlj
∂xi

(0), 1 ≤ i, j, l ≤ 3 and 4 ≤ µ ≤ 6.

Then there exists a smooth embedding u : R3 → R6 such that

1.

∂u

∂xi
· ∂u
∂xj

= gij +O(|x|4) as |x| → 0. (3.4)

2. For each x, there exists a basis {Nλ(x)}6λ=4 spanning the subspace per-

pendicular to {∂xiu(x)}3i=1 such that, the coefficients of the second fun-

damental form for u with respect to Nλ agree to first order with hµij.

3. With {Nλ(x)}6λ=4 defined as above we have

∂Nλ

∂xi
(0) ∈ span{∂xju(0)}3j=1 (3.5)

for all 1 ≤ i ≤ 3 and 4 ≤ λ ≤ 6.

Proof. Let κµij : R3 → R denote the coefficients of the connection form on the

normal bundle for the embedding u. A sufficient condition for solving (3.4)

is that the Gauss-Codazzi-Ricci equations

hµikh
µ
jl − h

µ
ilh

µ
jk = Rijkl Gauss equations

∂hµij
∂xl
−
∂hµlj
∂xi

+ Γkijh
µ
lk − Γkljh

µ
ik + κµlλh

λ
ij − κ

µ
iλh

λ
lj = 0 Codazzi equations

∂κµiλ
∂xj
−
∂κµjλ
∂xi
− gkl(hµkih

λ
jl − h

µ
kjh

λ
il) + kµjεk

ε
iλ − k

µ
iεk

ε
jλ = 0 Ricci equations

(3.6)
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are solved up to first order in a neighbourhood of 0. Let

Hµ
ij := hµij(0)

Hµ
ija :=

∂hµij
∂xa

(0)

Hµ
ijab :=

∂hµij
∂xa∂xb

(0)

therefore

hµij(x) = Hµ
ij +Hµ

ijax
a +

1

2!
Hµ
ijabx

axb +O(|x|3). (3.7)

Define

κµij(x) = Kµ
ijax

a +
1

2!
Kµ
ijabx

axb. (3.8)

From the hypothesis of the Lemma the Gauss equations are solved to first

order at 0. As Rijkl(0) = 0 it follows that

∂xlΓ
k
ij(0) = 0. (3.9)

Substituting (3.7),(3.8) and (3.9) into the Codazzi-Ricci equations we find

(Hµ
ijl −H

µ
lji) + (Hµ

ijla −H
µ
ljia +Kµ

lλaH
λ
ij −K

µ
iλaH

λ
lj)x

a +O(|x|2) = 0 (3.10)

and

Kµ
iλj −K

µ
jλi − g

kl(0)(Hµ
kiH

λ
jl −H

µ
kjH

λ
il)

+ [Kµ
iλja −K

µ
jλia − g

kl(0)(Hµ
kiaH

λ
jl +Hµ

kiH
λ
jla −H

µ
kjaH

λ
il −H

µ
kjH

λ
ila)]x

a +O(|x|2) = 0.

(3.11)

Thus to solve the Codazzi-Ricci equations to first order we must take

Hµ
ijl = Hµ

lji

Kµ
iλj = Kµ

jλi + gkl(0)(Hµ
kiH

λ
jl −H

µ
kjH

λ
il)

Hµ
ijla = Hµ

ljia −K
µ
lλaH

λ
ij +Kµ

iλaH
λ
lj

Kµ
iλja = Kµ

jλia + gkl(0)(Hµ
kiaH

λ
jl +Hµ

kiH
λ
jla −H

µ
kjaH

λ
il −H

µ
kjH

λ
ila).
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By the assumptions of the Lemma the first of these equations are satisfied.

As the remaining equations only involve specifying the 2nd derivatives of the

second fundamental form, the Gauss equations are still satisfied up to 1st

order. Finally (3.5) follows from the Weingarten formula (2.3) and the fact

that κµij(0) = 0.
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Chapter 4

L[uo] is of real principal type

In this Chapter we will use Lemmas 3.1 and 3.2 to construct an approximate

solution u0 to (1.1), such that L[u0] is of real principal type at x = 0.

Let (xi)
3
i=1 denote the standard coordinates on R3 and let L be a linear

partial differential operator of the form

Lu = Ai
∂u

∂xi
+Bu.

Recall that the symbol of L is the map

σ : Ω× (R3 − 0)→ R

(x, ξ) 7→ det(Ai(x)ξi).

Using σ we can define a vector field on Ω× (R3 − 0) as follows

Hσ :=
∂σ

∂xi
∂

∂ξi
− ∂σ

∂ξi

∂

∂xi
.

The vector field Hσ is called the Hamiltonian of σ. If γ is an integral

curve for Hσ, then along γ the value of the symbol σ is constant. Let
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γ : (−s, s)→ Ω× (R3−0) be an integral curve for Hσ such that σ(γ(0)) = 0,

then γ is called a null bicharacteristic. In particular σ(γ(t)) = 0 for all

t ∈ (−s, s).

We define π : Ω×(R3−0)→ Ω to be the projection map where π(x, ξ) :=

x. The following definition is taken from Goodman and Yang in [4].

Definition 4.1 (Differential operator of real principal type). The differential

operator L is of real principal type at 0 if there exists a compact subset K ⊂ Ω

containing 0, such that if γ : (−s, s)→ Ω× (R3−0) is a null bicharacteristic

satisfying π(γ(0)) ∈ K, then there exists a T > 0 such that π(γ(±T )) /∈ K.

That is every null bicharacteristic sitting over K leaves K going forwards

and backwards in time.

Remark. In the paper by Nakamura and Maeda [16] a slightly different

definition of an operator of real principal type is given, there L is said to be

of real principal type at 0 if there exists a 3×3 matrix valued symbol p(x, ξ),

a scalar symbol q(x, ξ), an open set W containing 0 such that

p(x, ξ)(Ai(x)ξi) = q(x, ξ)Id, for all (x, ξ) ∈ W × (R3 − 0)

and the principal symbol q1(x, ξ) of q(x, ξ) satisfies the condition that dq1

and θ := ξidx
i are linearly independent on W × (R3 − 0) ∩ q−1

1 (0).

We claim that Definition 4.1 implies the definition given in [16]: Let

a(x, ξ) = Ai(x)ξi and define

[p(x, ξ)]ij = (−1)i+jdet(aij(x, ξ)), 1 ≤ i, j ≤ 3
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where aij(x, ξ) denotes the ij cofactor of a(x, ξ), obtained by deleting the ith

row and jth column of a(x, ξ). Therefore

p(x, ξ)(Ai(x)ξi) = det(Ai(x)ξi)Id = σ(x, ξ)Id.

Suppose now dσ and θ are linearly dependent. Then

∂σ

∂ξi
(x, ξ) = 0, 1 ≤ i ≤ 3

for all (x, ξ) ∈ W × (R3 − 0) ∩ σ−1(0), therefore if γ(t) = (xi(t), ξi(t)) is a

null bicharacteristic of σ, it follows that

dxi

dt
= − ∂σ

∂ξi
= 0.

Therefore γ gets trapped over every fiber, contradicting Definition 4.1.

Let

H12 = (1, 0, 0)

H13 = (0, 1, 0)

H23 = (0, 0, 1)

H11 = H12 +H13

H22 = H12 +H23

H33 = H13 +H23,

(4.1)

therefore

0 = Hµ
ikH

µ
jl −H

µ
ilH

µ
jk.

As H12, H13 and H23 are linearly independent if follows from Lemma 3.1 and

Lemma 3.2 that there exists a nondegenerate embedding u0 : R3 → R6 such

that

∂u0

∂xi
· ∂u0

∂xj
= gij +O(|x|4).

18



Let {Nλ(x)}6λ=4 denote a basis for the normal bundle of the embedding u0,

such that with respect to this basis the Gauss formula (equation 2.2) becomes

∂2u

∂xi∂xj
= Γkij

∂u

∂xk
+ hλijNλ

where

hλij(0) = Hλ
ij(0) and

∂Nλ

∂xi
(0) ∈ span{∂xju(0)}3j=1. (4.2)

Defining hij = hλijNλ it follows from (4.1) that

h12(0) = N4(0)

h13(0) = N5(0)

h23(0) = N6(0).

A consequence of (4.2) is that

∂hµij
∂xk

(0) =
∂hij
∂xk

(0) ·Nµ(0). (4.3)

From (2.9) and (4.1) it follows that

C4
1(0) = C5

1(0) = 1

C4
2(0) = C6

2(0) = 1

C5
3(0) = C6

3(0) = 1

(4.4)

with all other Cµ
j (0) = 0. Subsituting (4.4) into (2.11) we obtain

A1(0) =


2 −1 −1

0 −1 0

0 0 −1

 , A2(0) =


−1 0 0

−1 2 −1

0 0 −1

 , A3(0) =


−1 0 0

0 −1 0

−1 −1 2

 .
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We now change coordinates in the ξ variable. Let

ξ1 = η2 + η3

ξ2 = η1 + η3

ξ3 = η1 + η2

then the symbol of L[u0] becomes

σ(x, η) = det(η1Ã1 + η2Ã2 + η3Ã3)

where

Ã1 := A2 + A3, Ã2 := A1 + A3, Ã3 := A1 + A2.

A long but straightforward calculation shows that

σ(0, η) = −16η1η2η3

σ(x, η) = 2E1(x)η3
1 + 2E2(x)η3

2 + 2E3(x)η3
3 +

∑
|α|=3

0≤αi≤2

Fαηα1
1 ηα2

2 ηα3
3

(4.5)

where Ei and Fα are quadratic polynomials in Cµ
i . Explicitly

E1 = (C4
1 + C5

1)(C6
2 + C6

3 − 2)− C6
1(C4

2 + C4
3 + C5

2 + C5
3)

E2 = (C4
2 + C6

2)(C5
1 + C5

3 − 2)− C5
2(C4

1 + C4
3 + C6

1 + C6
3)

E3 = (C5
3 + C6

3)(C4
1 + C4

2 − 2)− C4
3(C5

1 + C5
2 + C6

1 + C6
2).

Using (4.4) we see that

1

2

∂E1

∂xk
(0) =

∂C6
2

∂xk
(0) +

∂C6
3

∂xk
(0)− ∂C6

1

∂xk
(0)

1

2

∂E2

∂xk
(0) =

∂C5
1

∂xk
(0) +

∂C5
3

∂xk
(0)− ∂C5

2

∂xk
(0)

1

2

∂E3

∂xk
(0) =

∂C4
1

∂xk
(0) +

∂C4
2

∂xk
(0)− ∂C4

3

∂xk
(0)

for all 1 ≤ k ≤ 3.
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Lemma 4.1. For 1 ≤ k ≤ 3 we have

1

2

∂E1

∂xk
(0) =

∂R2323

∂xk
(0) +

∂R1223

∂xk
(0)− ∂R1213

∂xk
(0)− ∂R1323

∂xk
(0)

1

2

∂E2

∂xk
(0) =

∂R1313

∂xk
(0) +

∂R1223

∂xk
(0)− ∂R1213

∂xk
(0)− ∂R1323

∂xk
(0)

1

2

∂E3

∂xk
(0) =

∂R1212

∂xk
(0) +

∂R1223

∂xk
(0)− ∂R1213

∂xk
(0)− ∂R1323

∂xk
(0).

Proof. By (2.9) we have

hii(x) = C4
i (x)h12(x) + C5

i (x)h13(x) + C6
i (x)h23(x)

for all x ∈ Ω and 1 ≤ i ≤ 3, therefore

∂hii
∂xk

(0) =
∂C4

i

∂xk
(0)h12(0) + C4

i (0)
∂h12

∂xk
(0)

+
∂C5

i

∂xk
(0)h13(0) + C5

i (0)
∂h13

∂xk
(0)

+
∂C6

i

∂xk
(0)h23(0) + C6

i (0)
∂h23

∂xk
(0).

Define Hµ
ijk = ∂xkh

µ
ij(0), by (4.1) and (4.3) it follows that

∂Cµ
1

∂xk
(0) = Hµ

11k −H
µ
12k −H

µ
13k

∂Cµ
2

∂xk
(0) = Hµ

22k −H
µ
12k −H

µ
23k

∂Cµ
3

∂xk
(0) = Hµ

33k −H
µ
13k −H

µ
23k

(4.6)

for all 1 ≤ k ≤ 3 and 4 ≤ µ ≤ 6.

Claim 1

∂C6
2

∂xk
(0)+

∂C6
3

∂xk
(0)− ∂C

6
1

∂xk
(0) =

∂R2323

∂xk
(0)+

∂R1223

∂xk
(0)− ∂R1213

∂xk
(0)− ∂R1323

∂xk
(0).
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Proof of Claim 1:

We prove Claim 1 only for k = 1. The proofs for k = 2, 3 are identical.

From equations (4.6) we have

∂C6
2

∂x1
(0) +

∂C6
3

∂x1
(0)− ∂C6

1

∂x1
(0) = H6

122 +H6
133 − 2H6

123 −H6
111.

Now using the derivatives of the Gauss equations (3.2) we see that

∂R2323

∂x1
(0) = Hµ

122H
µ
33 +Hµ

133H
µ
22 − 2Hµ

123H
µ
23

∂R1223

∂x1
(0) = Hµ

112H
µ
23 +Hµ

123H
µ
12 −H

µ
113H

µ
22 −H

µ
122H

µ
13

∂R1213

∂x1
(0) = Hµ

111H
µ
23 +Hµ

123H
µ
11 −H

µ
113H

µ
12 −H

µ
112H

µ
13

∂R1323

∂x1
(0) = Hµ

112H
µ
33 +Hµ

133H
µ
12 −H

µ
113H

µ
23 −H

µ
123H

µ
13.

(4.7)

Therefore

∂R2323

∂x1
(0) +

∂R1223

∂x1
(0)− ∂R1213

∂x1
(0)− ∂R1323

∂x1
(0)

= (Hµ
122H

µ
33 +Hµ

133H
µ
22 − 2Hµ

123H
µ
23)

+ (Hµ
112H

µ
23 +Hµ

123H
µ
12 −H

µ
113H

µ
22 −H

µ
122H

µ
13)

− (Hµ
111H

µ
23 +Hµ

123H
µ
11 −H

µ
113H

µ
12 −H

µ
112H

µ
13)

− (Hµ
112H

µ
33 +Hµ

133H
µ
12 −H

µ
113H

µ
23 −H

µ
123H

µ
13).

(4.8)

From (4.1) it follows that for all 1 ≤ i, j, k ≤ 3

Hµ
ijkH

µ
11 = Hµ

ijkH
µ
12 +Hµ

ijkH
µ
13 = H4

ijk +H5
ijk

Hµ
ijkH

µ
22 = Hµ

ijkH
µ
12 +Hµ

ijkH
µ
23 = H4

ijk +H6
ijk

Hµ
ijkH

µ
33 = Hµ

ijkH
µ
13 +Hµ

ijkH
µ
23 = H5

ijk +H6
ijk.
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Using the above equations we rewrite (4.8) as

∂R2323

∂x1
(0) +

∂R1223

∂x1
(0)− ∂R1213

∂x1
(0)− ∂R1323

∂x1
(0)

= (H6
112 +H4

123 −H4
113 −H6

113 −H5
122) + (H5

122 +H6
122 +H4

133 +H6
133 − 2H6

123)

− (H6
111 +H4

123 +H5
123 −H4

113 −H5
112)− (H5

112 +H6
112 +H4

133 −H6
113 −H5

123)

= H6
122 +H6

133 −H6
111 − 2H6

123

=
∂C6

2

∂x1
(0) +

∂C6
3

∂x1
(0)− ∂C6

1

∂x1
(0).

Thereby proving Claim 1.

Claim 2

∂C5
1

∂xk
(0)+

∂C5
3

∂xk
(0)− ∂C

5
2

∂xk
(0) =

∂R1313

∂xk
(0)+

∂R1223

∂xk
(0)− ∂R1213

∂xk
(0)− ∂R1323

∂xk
(0).

Proof of Claim 2:

Again we will prove the above claim only for k = 1, as k = 2, 3 are

identical. From equations (4.6) we have

∂C5
1

∂x1
(0) +

∂C5
3

∂x1
(0)− ∂C5

2

∂x1
(0) = H5

111 +H5
133 − 2H5

113 −H5
122.

Equations (4.7) provide us with formulas for ∂x1R1223(0), ∂x1R1213(0) and

∂x1R1323(0) therefore we need only the formula for ∂x1R1313(0) which by equa-

tions (3.2) is

∂R1313

∂x1
(0) = Hµ

111H
µ
33 +Hµ

133H
µ
11 − 2Hµ

113H
µ
13.
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Therefore

∂R1313

∂x1
(0) +

∂R1223

∂x1
(0)− ∂R1213

∂x1
(0)− ∂R1323

∂x1
(0)

= (H5
111 +H6

111 +H4
133 +H5

133 − 2H5
113) + (H6

112 +H4
123 −H4

113 −H6
113 −H5

122)

− (H6
111 +H4

123 +H5
123 −H4

113 −H5
112)− (H5

112 +H6
112 +H4

133 −H6
113 −H5

123)

= H5
111 +H5

133 − 2H5
113 −H5

122

=
∂C5

1

∂x1
(0) +

∂C5
3

∂x1
(0)− ∂C5

2

∂x1
(0).

Thereby proving Claim 2.

Claim 3

∂C4
1

∂xk
(0)+

∂C4
2

∂xk
(0)− ∂C

4
3

∂xk
(0) =

∂R1212

∂xk
(0)+

∂R1223

∂xk
(0)− ∂R1213

∂xk
(0)− ∂R1323

∂xk
(0).

Proof of Claim 3:

Again we prove the above claim only for k = 1. From equations (4.6) we

have

∂C4
1

∂x1
(0) +

∂C4
2

∂x1
(0)− ∂C4

3

∂x1
(0) = H4

111 +H4
122 − 2H4

112 −H4
133.

We already have formulas for ∂x1R1223(0), ∂x1R1213(0) and ∂x1R1323(0) there-

fore we need only the formula for ∂x1R1212(0) which by equations (3.2) is

∂R1212

∂x1
(0) = Hµ

111H
µ
22 +Hµ

122H
µ
11 − 2Hµ

112H
µ
12.
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Therefore

∂R1212

∂x1
(0) +

∂R1223

∂x1
(0)− ∂R1213

∂x1
(0)− ∂R1323

∂x1
(0)

= (H4
111 +H6

111 +H4
122 +H5

122 − 2H4
112) + (H6

112 +H4
123 −H4

113 −H6
113 −H5

122)

− (H6
111 +H4

123 +H5
123 −H4

113 −H5
112)− (H5

112 +H6
112 +H4

133 −H6
113 −H5

123)

= H4
111 +H4

122 − 2H4
112 −H4

133

=
∂C4

1

∂x1
(0) +

∂C4
2

∂x1
(0)− ∂C4

3

∂x1
(0).

Thereby proving Claim 3 and hence the Lemma.

We have not yet used the existence of a v ∈ TpM such that ∇vRiem(p) 6=

0. Using this fact we now show that we can choose our normal coordinate

system (x1, x2, x3) such that

∂Ei

∂x1
(0) and

∂Ei

∂x2
(0) are both non-zero

for i = 1, 2, 3. This will imply that L[u0] is of real principal type at 0.

Let Riem(p) denote the Riemannian curvature tensor at a point p. Then

∇Riem(p) is the linear map

∇Riem(p) : TpM ×
2∧
TpM ×

2∧
TpM → R

where ∇Riem(p)(X, Y, Z) = ∇Riem(p)(X,Z, Y ) for all X ∈ TpM and

Y, Z ∈
∧2 TpM . Let {Ei}3i=1 be a basis for TpM and let {Ei ∧Ej}1≤i<j≤3 be

a basis for
∧2 TpM . We define

∇aRiemαβ := ∇Riem(p)(Ea, Ei ∧ Ej, Ek ∧ El)

where

τij = α and τkl = β.
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Here τ12 := τ21 := 1, τ13 := τ31 := 2, τ23 := τ32 := 3 and τ11 := τ22 := τ33 := 0.

Note that ∇aRiemαβ = ∇aRiemβα. Therefore for a fixed a we can consider

∇aRiem as a symmetric matrix. The following Lemma is a straightforward

consequence of the transformation laws for the covariant derivative of the

Riemann curvature tensor.

Lemma 4.2. Let {Ei} and {Fj} be two bases for TpM and let L : TpM →

TpM be a linear map where Fi = LjiEj. If ∇aRiem denotes the compo-

nents of ∇Riem(p) with respect to the basis {Ei} and ∇aRiem denotes the

components of ∇Riem(p) with respect to the basis {Fj} then

∇aRiem = La
′

a (X · ∇a′Riem ·XT )

where

X =


L1

1 ∧ L2
2 L1

1 ∧ L2
3 L1

2 ∧ L2
3

L1
1 ∧ L3

2 L1
1 ∧ L3

3 L1
2 ∧ L3

3

L2
1 ∧ L3

2 L2
1 ∧ L3

3 L2
2 ∧ L3

3

 . (4.9)

Here Lαi ∧ L
β
j := Lαi L

β
j − L

β
i L

α
j .

Lemma 4.3. Suppose there exists a vector v ∈ TpM such that ∇vRiem(p) 6=

0. Then there exists a basis {Fi} for TpM such that with respect to this basis

the quantities

S1
k := ∇kRiem33 +∇kRiem13 −∇kRiem12 −∇kRiem23

S2
k := ∇kRiem22 +∇kRiem13 −∇kRiem12 −∇kRiem23

S3
k := ∇kRiem11 +∇kRiem13 −∇kRiem12 −∇kRiem23

where k = 1, 2 are all non-zero.
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Proof. We first prove that there exists a basis {Ei}3i=1 for TpM such that

with respect to this basis

(∇1Riemαβ) =


a d e

d b f

e f c

 , a 6= 0. (4.10)

By assumption there exists a v ∈ TpM for which ∇vRiem(p) 6= 0, therefore

we can choose a basis {Ei}3i=1 for TpM such that

(∇vRiemαβ) =


A 0 0

0 B 0

0 0 C


where A 6= 0 and A+B 6= 0 (note that if A+B = 0, B+C = 0 and A+C = 0

then A = B = C = 0). Now let {Fi}3i=1 be a new basis for TpM where

F1 = v = k1E1 + k2E2 + k3E3

F2 = E2 + E3

F3 = E2 − E3.

We have assumed that v /∈ span{E2, E3} and so k1 6= 0. Therefore Fj = LijEi

where

L =


k1 0 0

k2 1 1

k3 1 −1

 .

Now by Lemma 4.2 it follows that

∇1Riemαβ = La1(X · ∇aRiem ·XT )αβ

= (X · ki∇iRiem ·XT )αβ

= (X · ∇vRiem ·XT )αβ
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where

X =


k1 k1 0

k1 −k1 0

k2 − k3 −(k2 + k3) −2

 .

Therefore

∇1Riem11 = (k1)2(A+B) 6= 0

and thus we may assume that (4.10) holds.

Define

L =


1/ε 1/ε 0

0 −ε ε2

0 ε ε2


where ε > 0 is a small number to be chosen later. Note that det L = −2ε2 6= 0

and so L ∈ GL(R3). Substituting L into the matrix (4.9) we get

X =


−1 ε ε

1 ε ε

0 0 −2ε3

 .

By Lemma 4.2 we know that

∇aRiemαβ = La
′

a (X · ∇a′Riem ·XT )αβ.

Now since L1
1 and L1

2 = 1/ε� L2,3
i = O(ε) for i = 1, 2, 3 we have

∇1Riemαβ =
1

ε
(X · ∇1Riem ·XT )αβ

∇2Riemαβ =
1

ε
(X · ∇1Riem ·XT )αβ +O(ε).
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Therefore for k = 1, 2 we have

∇kRiem =
1

ε


a −a 0

−a a 0

0 0 0

 +O(ε),

where a = (k1)2(A+B). It follows that for k = 1, 2

S1
k =

a

ε
+O(ε)

S2
k =

2a

ε
+O(ε)

S3
k =

2a

ε
+O(ε).

Since a 6= 0 by taking ε small enough we can ensure that Sik 6= 0 for k =

1, 2.

Combining Lemma 4.1 and Lemma 4.3 together we obtain the following

Corollary.

Corollary 4.1. There exists a normal coordinate system (see Definition 3.1)

centered at p, (x1, x2, x3) such that for k = 1, 2 the quantities

1

2

∂E1

∂xk
(0),

1

2

∂E2

∂xk
(0),

1

2

∂E3

∂xk
(0)

are all non-zero.

To show that L[u0] is an operator of real principal type we will use the

following Lemma.

Lemma 4.4. Let p ∈ Ω. If no null bicharacteristic of σ is contained in the

fiber {p} × (R3 − 0) then there is a compact neighbourhood K of p such that

no null bicharacteristic of σ remains in π−1(K).
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Proof. See [17] Lemma 7.8 on page 344.

Theorem 4.1. L[u0] is of real principal type at 0.

Proof. Let γ(t) = (x(t), η(t)) be an integral curve for the Hamiltonian vector

field associated to the symbol σ

Hσ :=
∂σ

∂xi
∂

∂ηi
− ∂σ

∂ηi

∂

∂xi

where x(0) = 0 and σ(γ(0)) = 0. That is, γ is a null bicharacteristic of σ

passing through x = 0. Let us now assume that γ gets trapped over the

fibre {0} × (R3 − 0). Therefore there exists a K > 0 such that x(t) = 0 for

−K < t < K. Using equation (4.5) it follows that

0 =
dx1

dt
(t) =

∂σ

∂η1

(γ(t)) = −16η2(t)η3(t)

0 =
dx2

dt
(t) =

∂σ

∂η2

(γ(t)) = −16η1(t)η3(t)

0 =
dx3

dt
(t) =

∂σ

∂η3

(γ(t)) = −16η1(t)η2(t)

(4.11)

for all −K < t < K. Because of this we can find an ε > 0 such that for all

−ε < t < ε only one of the three conditions holds

(i) η1(t) = η2(t) = 0, η3(t) 6= 0

(ii) η1(t) = η3(t) = 0, η2(t) 6= 0

(iii) η2(t) = η3(t) = 0, η1(t) 6= 0.

Note that by assumption η(t) 6= 0. Suppose condition (i) were true. Then

dη1(0)/dt = 0. But by (4.5) and Corollary 4.1 we have

dη1

dt
(0) = − ∂σ

∂x1
(0) = −2

∂E3

∂x1
(0)η3

3(0) 6= 0.
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Therefore we have a contradiction and so condition (i) cannot hold. Likewise

conditions (ii) and (iii) also cannot be true. Therefore there exists a K > 0

such that x(t) 6= 0 for some t = ±K.

By Lemma 4.4 it follows that L[u0] is of real principal type at x = 0.
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Chapter 5

Moser Estimates for Φ′

We now use the results of [4] and [16] to prove the Moser estimates for the

linearization of (1.1).

Let X be a bounded open subset of Rn and let X̄ denote its closure.

Define

C∞(X̄,RN) = {f | f = ϕ|X for some ϕ ∈ C∞(Rn,RN)}.

Given any f ∈ C∞(X̄,RN) let

||f ||k := (
k∑
|α|=0

∫
X

|∂αf |2)1/2.

Let Hk(X̄,RN) denote the completion of C∞(X̄,RN) with respect to || · ||k.

For any f ∈ Hk(X̄,RN) and ε > 0 we define

Bk
ε (f) = {g ∈ Hk(X̄,RN) | ||g − f ||k < ε}.

To prove Moser estimates for Φ′ we use the following result of [4](see also [16]

Theorem 3.2).
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Theorem 5.1. Let X be an open bounded subset of 0 in Rn and let u ∈

C∞(X,RN). Let L[u] be a first order operator of the form

L[u]v := Ai(u)
∂v

∂xi
+B(u)v

where Ai and B are N × N matrices depending smoothly on u and its first

and second derivatives. Suppose there exists a u0 such that L[u0] is of real

principal type at 0, then there exists an open neighbourhood of 0 ∈ W ⊂ X,

an ε > 0 and a J, α, β ∈ N such that for all u ∈ BJ
ε (u0) ∩ C∞(W̄ ,RN)

1. L[u] : C∞(W̄ ,RN)→ C∞(W̄ ,RN) is surjective.

2. If v, f ∈ C∞(W̄ ,RN) such that L[u]v = f then

||v||l ≤ C(||f ||l+α + ||u||l+β||f ||α) (5.1)

for all l ≥ J where C is a constant which does not depend on u or f .

We also need to make repeated use of the following inequality.

Lemma 5.1 (Gagliardo-Nirenberg inequality). Let u, v ∈ L∞(Ω)∩H l(Ω,R)

and let α, β be multi-indices such that |α|+ |β| = l. Then

||uv||l ≤ C(||u||0||v||l + ||u||l||v||0)

where C is a constant which depends on l, but does not depend on u or v.

Proof. See [18].

Let (Ω, x1, x2, x3) be the normal coordinate system constructed in Corol-

lary 4.1. Let u0 : Ω → R6 be the smooth nondegenerate embedding con-

structed in Chapter §4. By Theorem 4.1 we know that L[u0] is of real prin-

cipal type at 0.
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Theorem 5.2. There exists an open neighbourhood of 0, W ⊂ Ω, an ε > 0

and a J, α, β ∈ N such that for all u ∈ C∞(W̄ ,R6) ∩ BJ
ε (u0) the following

hold

1. The linear map Φ′(u) : C∞(W̄ ,R6)→ C∞(W̄ ,R6) is surjective.

2. If v, f ∈ C∞(W̄ ,R6) such that Φ′(u)v = f then

||v||l ≤ C(||f ||l+α + ||u||l+β||f ||α)

for all l ≥ J . Here C does not depend upon the functions u or f .

Proof. Since L[u0] is of real principal type we can apply Theorem 5.1. There-

fore there exists an open neighbourhood of 0, W ⊂ Ω, J ∈ N and ε > 0 such

that if u ∈ BJ
ε (u0) ∩ C∞(W̄ ,R6), L[u] is invertible and the Moser estimates,

inequality (5.1) hold. From now on we assume that u ∈ BJ
ε (u0)∩C∞(W̄ ,R6)

and that for any such u, ||u||J̃ ≤ 1 for some J̃ much larger than J .

We first prove that Φ′(u) : C∞(W̄ ,R6) → C∞(W̄ ,R6) is surjective: Let

f ∈ C∞(W̄ ,R6) and let y := (v1, v2, v3)
T be a solution to the differential

equations

L[u]y =


f11 + C4

1f12 + C5
1f13 + C6

1f23

f22 + C4
2f12 + C5

2f13 + C6
2f23

f33 + C4
3f12 + C5

3f13 + C6
3f23

 := g(u). (5.2)

Such a y exists since L[u] is surjective. Let ỹ := (v4, v5, v6)T be given by the

equations

ỹ = −1

2
H−1


f12 − ∂x2v1 − ∂x1v2 + 2Γk12vk

f13 − ∂x3v1 − ∂x1v3 + 2Γk13vk

f23 − ∂x3v2 − ∂x2v3 + 2Γk23vk

 . (5.3)
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That H−1 exists follows from the fact that u0 is nondegenerate and any

embedding u close to u0 is also nondegenerate. In Chapter §2 it was shown

that if we define

v = plkvk
∂u

∂xl
+ vλNλ

where (plk) = (∂xiu · ∂xju)−1 and Nλ are vectors perpendicular to ∂xlu, then

Φ′(u)v = f.

Therefore Φ′ is surjective. We now prove the Moser estimates.

By Theorem 5.1 we know that

||y||l ≤ C(||g||l+α + ||u||l+β||g||α) (5.4)

for all l ≥ J . Now from (5.2) we have

||gi||l = ||fii + C4
i f12 + C5

i f13 + C6
i f23||l

≤ ||fii||l + ||C4
i f12||l + ||C5

i f13||l + ||C6
i f23||l.

By Lemma 5.1 we have

||C4
i f12||l ≤ C(||C4

i ||0||f12||l + ||C4
i ||l||f12||0).

Since Cµ
j depends only on the second derivatives of u it follows that

||Cµ
j ||l ≤ C||u||l+2.

Therefore

||C4
i f12||l ≤ C(||u||2||f ||l + ||f ||0||u||l+2)

≤ C(||f ||l + ||f ||0||u||l+2).
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Identical estimates also hold for C5
i f13 and C6

i f23. Therefore

||g||l ≤ C(||f ||l + ||f ||0||u||l+2). (5.5)

Substituting estimate (5.5) back into (5.4) gives us

||y||l ≤ C(||f ||l+α + ||f ||0||u||l+α+2 + ||u||l+β(||f ||α + ||f ||0||u||α+2)).

Let α̃ = α and β̃ = max{α + 2, β} then

||y||l ≤ C(||f ||l+α̃ + ||f ||α̃||u||l+β̃), l ≥ J. (5.6)

We now derive similar estimates for ỹ. By equations (5.3) we know that

ỹµ = −1

2

∑
1≤i<j≤3

hijµ (fij −
∂vi
∂xj
− ∂vj
∂xi

+ 2Γkijvk) (5.7)

where hijµ are smooth functions of ∂xixju. Recall that Γkij are also smooth

functions of the second partial derivatives of u. Therefore

||hijµ ||l + ||Γkij||l ≤ C||u||l+2.

Applying Lemma 5.1 to (5.7) we obtain the following inequalities

||ỹµ||l ≤ C
∑

1≤i<j≤3

(||hijµ ||0||fij −
∂vi
∂xj
− ∂vj
∂xi

+ 2Γkijvk||l

+||hijµ ||l||fij −
∂vi
∂xj
− ∂vj
∂xi

+ 2Γkijvk||0).
(5.8)

Using the triangle inequality and Lemma 5.1 we obtain

||fij −
∂vi
∂xj
− ∂vj
∂xi

+ 2Γkijvk||l ≤ C(||f ||l + ||y||l+1 + ||Γkijvk||l)

≤ C(||f ||l + ||y||l+1 + ||Γkij||0||vk||l + ||Γkij||l||vk||0)

≤ C(||f ||l + ||y||l+1 + ||u||2||y||l + ||u||l+2||y||0)

≤ C(||f ||l + ||y||l+1 + ||u||l+2||y||0)
(5.9)
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By estimate (5.6) it follows that

||y||0 ≤ C(||f ||α̃+J + ||f ||α̃||u||β̃+J) ≤ C||f ||α̃+J .

Therefore inequality (5.9) becomes

||fij −
∂vi
∂xj
− ∂vj
∂xi

+ 2Γkijvk||l ≤ C(||f ||l + ||y||l+1 + ||u||l+2||f ||α̃+J) (5.10)

and so setting l = 0 and using estimate (5.6) again gives us the following L2

bound

||fij −
∂vi
∂xj
− ∂vj
∂xi

+ 2Γkijvk||0 ≤ C(||f ||0 + ||y||1 + ||u||2||f ||α̃+J)

≤ C||f ||α̃+J .

(5.11)

Substituting inequalities (5.10) and (5.11) into inequality (5.8) we find that

||ỹµ||l ≤ C(||f ||l + ||y||l+1 + ||u||l+2||f ||α̃+J + ||u||l+2||f ||α̃+J)

≤ C(||f ||l + ||y||l+1 + ||u||l+2||f ||α̃+J).

Finally using inequality (5.6) we obtain

||ỹ||l ≤ C(||f ||l + ||f ||l+α̃+1 + ||f ||α̃||u||l+β̃+1 + ||f ||α̃+J ||u||l+2)

≤ C(||f ||l+α̃+1 + ||f ||α̃+J ||u||l+β̃+1), l ≥ J.

(5.12)

The final step of the proof is to use inequalities (5.6) and (5.12) to estimate

v. Recall that in terms of vk and vλ, v is given by the formula

v = pjkvk
∂u

∂xj
+ vλNλ.

Since pjk and Nλ depend smoothly on the first derivatives of u it follows that

||pjk ∂u
∂xj
||l + ||Nλ||l ≤ C||u||l+1.
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Using the above estimate and Lemma 5.1 we see that

||v||l ≤ ||pjkvk
∂u

∂xj
||l + ||vλNλ||l

≤ C(||pjk ∂u
∂xj
||0||vk||l + ||pjk ∂u

∂xj
||l||vk||0 + ||Nλ||l||vλ||0 + ||Nλ||0||vλ||l)

≤ C(||u||1||y||l + ||u||l+1||y||0 + ||u||1||ỹ||l + ||u||l+1||ỹ||0)

≤ C(||y||l + ||ỹ||l + ||u||l+1(||y||0 + ||ỹ||0)).

Applying inequalities (5.6) and (5.12) to this estimate gives us

||v||l ≤ C(||f ||l+α̃+1 + ||f ||α̃+J ||u||l+β̃+1 + ||u||l+1||f ||α̃+J)

≤ C(||f ||l+α̃+J + ||f ||α̃+J ||u||l+β̃+1).

Remark. A result almost identical to Theorem 5.2 was proved in Section

VI of [1].
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Chapter 6

Proof of main theorem

Theorem 6.1 (Nash-Moser). Let N be a compact manifold with boundary

and let U be an open subset of C∞(N,Rk). If P : U ⊂ C∞(N,Rk) →

C∞(N,Rp) is a nonlinear partial differential operator such that

1. For all u ∈ U and f ∈ C∞(N,Rp) there exists a unique v ∈ C∞(N,Rk)

such that

P ′(u)v = f.

2. There exists α, β, J ∈ N such that if P ′(u)v = f then

||v||l ≤ C(||f ||l+α + ||u||l+β||f ||α)

for all l ≥ J , where C is a constant which does not depend on u or f .

Then P is locally invertible.

Proof. See part III of the survey article by Hamilton [5].
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Proof of main theorem. By Theorem 5.2 there exists an open neighbourhood

W of 0 in R3, J ∈ N and δ > 0 such that if we define

P := Φ

U := C∞(W̄ ,R6) ∩BJ
δ (u0)

N := W̄

k, p := 6

then the assumptions of the Nash-Moser theorem are satisfied. Thus there

exists an ε > 0 and K ∈ N such that for all f ∈ C∞(W̄ ,R6) ∩ BK
ε (Φ(u0))

there exists a u ∈ C∞(W̄ ,R6) such that Φ(u) = f .

Unfortunately, we are not done yet as the metric gij which we want to

isometrically embed may not be in BK
ε (Φ(u0)). To overcome this problem

we use the following trick of [1]. Let ρ be a smooth compactly supported

function on R6 which is identically 1 in a neighbourhood of the origin and

let g be our Riemannian metric on W̄ . Given δ > 0 let

gδ(x) = ρ(δ−1x)g(x) + [1− ρ(δ−1x)]Φ(u0)(x).

Using the formal part of the Cauchy-Kovalevskaya theorem (ignoring con-

vergence) and the Borel theorem, we may extend u0 such that Φ(u0) agrees

with g up to infinite order. It then follows that for δ sufficiently small,

gδ ∈ BK
ε (Φ(u0)) (for a proof of this result see Proposition (6.b.1) in [1]).

Therefore there exists a u ∈ C∞(W̄ ,R6) such that Φ(u) = gδ. Since there

exists an open neighbourhood of 0, Y ⊂ W , such that gδ|Y = g, it follows

that on Y , Φ(u) = g.
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