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Abstract of the Dissertation

Local Poincag Duality
by
Nathaniel Rounds
Doctor of Philosophy
in
Mathematics
Stony Brook University
2010

This work is part of a project which aims to describe algebsiructures on
the chains and cochains of closed manifolds that charaetdrose manifolds up to
homeomorphism. Once knows from the rational homotopy thebQuillen and
Sullivan, and from the more recent work of Mandell, that tlenlotopy type of a
simply connected space is determined by algebraic streictuthe cochains of the
space. There is an informational gap, however, betweendhetopy type of a
manifold and its homeomorphism type, as there are nonhomgdne manifolds
which have the same homotopy type. Moreover, the surgegryhaf Browder,
Novikov, Sullivan, and Wall tells us that not every spacés$ghg Poincaé duality
has the homotopy type of a manifold.

We represent a Poin@aduality space as a chain complex with a fixed basis
satisfying certain axioms. We use the combinatorial dath@basis to to define an
algebraic notion of locality, which we use to describe maldistructures. Our main
result is that in dimensions greater than 4, simply-coretecdosed topological
manifold structures in the homotopy type of a suitable badedn complex are
in one-to-one correspondence with choices of local invergdbe Poincag duality
map up to algebraic bordism. The proof relies on Ranicki'®latgic formulation
of surgery theory.

We expect that the theory of based chain complexes and algdbcality de-
veloped here can be extended to encoddzthalgebra structure on the cochains of
a space.
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CHAPTER 1

Based Chain Complexes and Polyhedral Spaces

In this chapter we consider categories of chain complextsanfixed basis. We
will restrict our attention to chain complexes which aggular, which means that
basis elements are homology cells. We will show that a regiiain complex de-
termines a simplicial complex, and this determination ighanctorial and unique
up to homotopy. All of the definitions and proofs of the vasquroperties of reg-
ular chain complexes are inspired by the analogous argwmwdmth are familiar
from combinatorial topology; see for exampkR$73.

1.1. Based Chain Complexes

A based chain complex is a nonnegatively graded chain conydldree Z-
modules together with a fixed basis.

Derinition 1.1 (Based Chain Complex). Based chain complgiC, B, 9)
(1) anN-graded finite seB = Bk
(2) a degree-1 differentialdy : Cx — Cy_1, whereCy is the freeZ-module
generated by the sé&.

A based subcomplexf a based chain comple&(B, 9) is a subcomplex generated
by a subset oB.

Let us fix some notation. We will often suppress the basis afidrdntial in
our notation and simply use the symlédbto mean a free chain complex with fixed
basisB and diferentiald. We call the generators € By the k-cellsof C, and we
call the O-cells thevertices This integerk is called thedegreeor dimensionof x
and is denotedx|. The k-skeletonof C is the based subcomplex 6f generated
by the subsell;«B;. We denote thé-skeletonC® and its basiB®. SinceB is
finite, there exists some minimalsuch thatB, = @ for k > n. We call thisn the
dimensiorof C.

To any based chain compléxwe associated a posa, ().

Derinition 1.2 (Associated Poset). LEtbe a based chain complex. Let
(,):C®C—R

be the pairing o€ where the generatorse B are defined to be orthogonal. Now
define a partial ordex on B by settingx < y if and only if one of the following
holds:



(1) x=y
(2) there is a sequence
{y: ZOaZla 9Zk: X}
such that for 0< i <Kk,
<az|’ Zi+l> ?& 0
If X <y, we say thak is afaceof y andy is acofaceof x.
Equivalently, we could defing by saying thatx < y if x = y or if x appears

with nonzero cofficient in the formula foy, and then extend this relation to be

transitive. We will use the notation< y and sometimesg = yto indicate thak < y
andx # .

ExampLE 1.3. The simplicial chain complex of a simplicial complexai®ased
chain complex. More generally, the cellular chain compléa cell complex is a
based chain complex. In each case the associated posepissiieof cells, ang
is the usual face relation.

DermviTion 1.4. Given a subsdf c B, theclosureof E is the set
E:={xeB | x<eforsomeec E}

A subsetE c Bis closedif E = E. Observe thaE generates the minimal subcom-
plex of C which contains every element &f

Similarly, given a chairt of C, let C(C) denote the minimal based subcomplex
of C containing eaclx € B such thatx < y for somey with (c,y) # O.

If xis a cell ofC, thenC(X) is the subcomplex o with basis

fyex | y=x
We call this chain complex the closure xf If X is a cell ofC, dx is a chain, and
there is a based chain complefdx) with basis
{yeB | y=xy#x

We call this chain complex thigoundary of x, and denote i€(x). If E andE’ are
subsets 0B andE c E’, we use the notatio@(E’, E) to denote the chain complex

%. This is a based chain complex with baBfs) E.

DeriniTion 1.5. LetZ denote the based chain complex with a single generator
degree 0, and lef be a based chain complex. Thagmentation mapf C is the
linear mape : C — Z given on on generators by the formula:

(1 =0
dW—{0|w>o

2



Given a cellx € B, let
& :CX) — 2
denote the restriction @to C(X).

Because we wish based chain complexes to model geometrict®lijee cell
complexes, we must introduce an additional axiom. We nowicesur attention
to based chain complexes where the closure of each cell ismalbgy cell, and the
closure of the boundary of each cell is a homology sphere.

Derinition 1.6 (Regular chain complexes). L@be a based chain complex. We
say thaiC is regular if

(1) The augmentation map
e:C—7Z

is a chain map
(2) for eachx € B, & : C(X) — Z induces an isomorphism on homology.

Remark 1.7. Regularity is a hereditary property of based chain cergd. That
is to say, ifC is regular, so any based subcomplexCof

ProrosiTion 1.8. Let C be a regular chain complex and let x be an n-cell of
C. ThenC(x) is a regular chain complex which has the homology of(iar 1)-
dimensional sphere, and the chdir is a representative of th@ — 1)-dimensional
homology class.

Proor. This claim follows from looking at the short exact sequence
0—C(X)—CX)—C(X,x) — 0

By hypothesisC(X) has homology only in degree 0, ad{X, X) is a based chain
complex with a single generator in degnee SinceC(x) has generators only in
degrees 0 through— 1, the claim follows. m|

ExampLE 1.9. The simplicial chain complex of a simplicial complexisegular
chain complex. The cellular chain complex of a regular cethplex is a regular
chain complex.The second example is the reason for the name.

ExampLE 1.10. Consider the chain complex of cellular chains on a CVéihposition
of the circle with one O-cell and one 1-cell. This is a baseaiitkomplex with one
generatore in degree 1, one generaterin degree 0, and zero ftierential. This
chain complex is not regular, &&(€) = Z.

We now establish a basic fact about regular chain complexes.

ProposiTion 1.11. If (C, B, 9) is a regular based chain complex ané &, , then
e has exactly two faces and \, such thave = v; —vy. Thuse is isomorphic to the
simplicial chain complex of the standard interval, and th@mnorphism is canonical
up to sign.



Proor. By assumptionHy(€) = Z andH;(€) = 0. Thuse must have at least one
O-face.

Supposee has only one facg,. Thende = kv, for somek € Z. If k = 0, then
Hi(€) = Z. If k # 0, thenHy(€) = Z/KZ.

Suppose has more than two facég, ..., v.}. Thendeis some wordr = 3 k'v;
in these faces, andy(€) = Z"/a. If n > 2 this quotient cannot be isomorphicZo

Thuse has exactly two faceg, andv, , andde = kyv; + kovp. Since the aug-
mentation mag, : X — Z is a chain map:

0 = oe(e)
= ¢g(0e)
= kid(v1) + koe(Vo)
= ki +ko
Thusode = kv, — kv for somek € Z. We compute thaHy(€) = Z & Z/KZ so
k=+1. O

1.2. Morphisms of Regular Chain Complexes
We now describe two categories of regular chain complexes.

Dermnition 1.12 (Subdivision). LeB be a regular chain complex and ket B
and a cell ofC. An elementary subdivision of is an augmented chain may :
C — C’, whereC’ is a regular chain complex with a decomposition of its b&sis
as follows:

B =(B\({x}) LB
Let B”, denote the cells dB” which have the same dimension»asrlhis data must

X

satisfy:
(1) For ally € B'such thay # X, S,(y) =y

(2) For some choice of signs. B” — {-1, +1},

s() = ) )z

/7
ze B‘ XI

(3) Foreachwe B”,w e C(s((x))

(4) s« is an augmented chain map which is quasi-isomorphism.
A augmented chain map of regular chain complexessslalivisionif it is a com-
position of elementary subdivisions.

Note that a subdivision of regular chain complexes is by d&fmalways a
quasi-isomorphism.



ExampLe 1.13. LetA, denote the standard-simplex, andAétenote the barycen-
tric subdivision of the standamtsimplex. These two simpicial complexes are tri-
angulations of the same topological space, and the idenagy between them is a
linear map which sends each vertexAgfto the corresponding vertex &f,. This
map induces a chain map

b: Ay — A}
which is a subdivision of regular chain complexes. This ex@mnshown in Fig-
ure 1.1, motivates several of the constructions which valldlote thatb is not a
simplicial map, as it does not map simplices to simplices.

TN

Ficure 1.1. The map of geometric simplicial complexes which
sends a simplex to its barycentric subdivision induces digigion
map of regular based chain complexes

Dernition 1.14 (Cellular Map). An augmented chain map C — C’ is cel-
lular if it is induced by a map of posets in the following sense: Ehisra map
f : B— B’ suchthatforxe B

1) () < I

Here|f(x)| denotes the degree ¢{x) in B and|x| denotes the degree &fin B.
such that

f&f(d 1T =Ix
@ f(")‘{ 0 If( %X

for some choice of signs: B — {-1, +1}

ExampLE 1.15. A cellular map of cell complexes induces a cellularircimaap
on cellular chain complexes. This example is the reasorh®aname.

DeriniTion 1.16. Let REG denote the category with objects the regulaincha
complexes and morphisms all compositions of subdivisionscellular maps. Let
CEL denote the subcategory with objects the regular chainpes and mor-
phisms the cellular maps.



Remark 1.17. Note that the identity map is a cellular map, so both REG a
CEL are categories. More generally, any isomorphism of ggehain complexes
which is induced by an isomorphism of bases is a cellular map.

1.3. The Barycentric Subdivision

In this section we describe one of two subdivisions that bellof interest to us,
the barycentric subdivision. All of the definitions a proafg inspired by the famil-
iar geometric barycentric subdivision of simplicial comxes and cell complexes.

1.3.1. The Conical Subdivision of a Cell.We start by introducing an elemen-
tary subdivision, called the conical subdivision. Thisdiulsion replaces a cell by
the cone on the boundary of the cell. Given a gradedBs#te suspensiof B is
the graded se&iB, where EB)y := By,1. There is an evident bijectian : B — *B
which a elemenk € B of degreek to the corresponding elemexite ~B of degree
k+ 1.

Deriniion 1.18 (Conical Subdivision). L&t be regular chain complex and let
x be a cell ofC. If |[x] = 0, then theconical subdivision of xs the isomorphism
sy . C — C which relabelsx by c,. (This triviality is necessary make notation
consistent in the sequel.) %] > O then theconical subdivision of xs the map
s . C — C’, wheres, andC’ are defined as follow<’ is the free chain complex
with basis
B = (B\ X) LI ZX1I {cy}

HereXx s the suspension of the graded set

x={yeB | y=xy#X}
The set{c,} is a singleton in degree .The maps, is defined as follows:

sdy) =y y#X

Sdy) = (1) toox  y=x
The diterentiald : C’ — C’ is defined fory € B\ {x} andoy € Xx as follows:

d(c) =0
d(y) = sx(9y)

_ [ D)Wy+ody x>0

Aoy = { Y-, ¥ =0

The notationd(y) = s(dy) means that we replace each instanca of the expres-
siondx with s,(x).

ProposiTion 1.19. If C is a regular chain complex and«C, the conical subdi-
vision § : C — C’ is an elementary subdivision of x.

IThe letter ‘c’ stands for ‘cone’.



The proposition follows from a series of lemmas. All of thésmmas are in-
tuitively clear, because we are simply carving out a homplog)l and replacing it
with the cone on the boundary homology sphere. A low dimeraiexample is
shown in Figure 1.2.

Ce

UN

Ficure 1.2. The conical subdivision of the edgef an interval.

Lemma 1.20. If C is regular and Cis defined as in Definition 1.18,/ @& a based
chain complex.

Proor. We check thatl? = 0. It sufices to check that?(B") = 0.
Fory € B such thatx is not a codimension 1 or codimension 2 faceof

d*(y) = o’y =0
Fory € B such thaix is a codimension 1 face gf
0y = a + €X
for some chaimr with (@, x) = 0 and some cdgciente. Thus
d*(y) = d( + esx(¥))
=d (a + e(—l)'xl+10'8X)
= da + e(—1)X*1 ((—1)'X"18x + m?zx)
= 0(a + €X)
= 82y
=0
Fory € B such thak is a codimension 2 face §f 9%y = a + ex for some chaim
with (@, X) = 0 and some cd&ciente. Moreover,e = 0 ande = 0 becausé? = 0.
Thus
d*(y) =a+esx) =0
Foroy e Zxwith y| > 1
d’oy = d((-1y + o (dy))
= (-1)ay + (-1)™ay + o(5%)
=0



For oy € £x with |y = 1, we know from Proposition 1.11 thay = v, — v, for
somevy, Vo € By. Thus we compute:

d’oy = d((-D)My + o(dy))
= =0y + do(v1 — Vo)
= —(v1 — Vo) + (Vi — Cx) — (Vo — Cx)
=0

Finally d(cy) := 0. m]

Lemma 1.21. If C is regular and C s as defined as in Definition 1.18, sC —
C’ is an augmented chain map.

Proor. The maps, takes 0-cells to 0-cells and thus commutes with augmenta-
tion. To check thas, is a chain map, we compute:

ds(¥) = d((-1)*'cox)
= (-1 ((-1)™0x + doX)
= 0X
= S(0X)

If y e Bandy # X,
d(sd(y)) = d(y) = s(dy)

Lemma 1.22. If y < X, then the based chain complétry) c C’ has basis
®3) {(we Bw <y} IZyll{c,

Proor. By definition,C(cy) is the based subcomplex 6f with basis
4) (weB | w<oy}

We must show that the sets (3) and (4) are equal.
If we Bandw <y, thenw < oy because < oy. If ow € Xy, thenw < y by
definition ofXZy. We claim that

(5) W<Yy=oW< oy
For if w <y, then by definition there is a sequence
W=Wy<...<Wg=Y

such thatv; appears with nonzero cfieient in the formula fovw;,,. Looking at
the formula fordoy:
doy = (-1)My + oay
8



we see thatrwy_; appears with nonzero cfigient in the formula fodoy. Sim-
ilarly, eachow; appears with nonzero cfiient in the formula fordow;,,, so
oW < oy.

Finally, y has at least one zero fase Thenc, < ov, and by the previous
argumenuv < oy. We have shown that (3) is a subset of (4).

Supposer € B anda < oy. Then by definition ofB’, eithera = w for some
w e B, @ = ow for somew < X, ora = c,. If @ = ¢, there is nothing to show.

We claim that ifw € B,

(6) W<oy=Ww<y

We argue by induction on the dimensionyf If |y| = O, then the only cell oB
which is a face otry is y itself. Supposdy| = k andw < oy. If w =y, then
certainlyw < y. If w £ vy, then by looking at the formula fadoy we see that
eitherw < y or w < oz for somez which appears in the formula féy. If the first
casew < Yy, and in the second case< ozand|z = k— 1. Thus by the inductive
hypothesisv < z<y.

We claim that

(7) CW< oY= W<y

Once again we argue by induction on the dimensioty.ofThe casdy| = O is
vacuous, for ifly] = 0, then the only cell oB which is a face ofry is y itself.
Supposeay| = kandow < oy. Since

doy = (-1)My + ooy

we see thatrw < oz for somez which appears in the formula féy. Thus by the
inductive hypothesis/ < z < y. We have shown that (4) is a subset of (3). O

Lemma 1.23. The based chain compléXs,(x)) has basis
(8) {y € Bly = x} LLEX LI {cy}

Proor. The proof is completely analogous to that of Lemma 1.22. Réta
5(X) = 0dx, s0C(s(¥)) is the based chain complex with basis
(9) {yeC' | y<ozforsomezwith (dx,z) # 0}

We will show that the sets (8) and (9) are equal.
If y € Bandy £ x, theny < zfor somez with (9x, z) # 0. By definition

doz:= (-1)%z+ ooz

S0z < oz, and thereforg < oz If oy € XX, then by definition o, y < zfor some
zwith (0x,2) # 0. Thus by (5)oy < oz Finally, there exists a 0-cell such that
Vv < X. Thency < ov € £x. We have shown that (8) is a subset of (9).

If y € B/, then eithey € B\ {x}, y € X, ory = c,. Suppose that < o-zfor some
zwith (0x,2) # 0. If y € Zx ory = ¢, there is nothing to show. i € B\ {x}, and

9



y < ozfor somez < x, then by (6)y < z < x. We have shown that (9) is a subset of
(8). O

Lemma 1.24. If C is regular and Cis as defined as in Definition 1.18, the aug-
mentation map
o C(SX(X)) —7Z
has a chain homotopy inverse.
Proor. First we must check that is a chain map, that is to say thad :
(C(sx(x)))l — Z is the zero map. We check on the list of generators given in

the statement of Lemma 1.23. For a genergito(B\ {x})1, edy = edy = 0 because
€ is a chain map oB. For a generatary € (£X),

edy = &(y - cy)
=1-1
=0

Next we define a map : Z — C(s{x)) by 7(1) = ¢,. We claim thatr is a
chain homotopy inverse &f Observe thatr = 1 on the nose. We define a chain
homotopy

H : ¢(s(¥) — ¢(s9)
by definingH on the generating set of Lemma 1.23.
H(y) = (-1)oy
H(oy) =0
H(c) =0
We claim that
dH+ Hd = 16‘(%) - TE
We must check several cases.
(1) Fory e B\ {x} with |y| > O,
(dH + Hd)y = d((-1)*'oy) + H(3y)
= (D1 + (~Mo(@y) + (-1 (@y)
=y
= (1-7e)y

10



(2) Foroy e Zxwith |y| > 0,
(dH + Hd)ory = 0+ H((-1)"y + o(ay))

= (- 1)|y| (- 1)Iy|y
=Yy
= (1-7e)y

(3) Fory € B\ {x} with |y = 0,
(dH + Hd)y = doy + 0
=y —Cy
=(1-7e)y
(4) Foroy € Txwith |y| = 0,
(dH + Hd)oy = 0+ H(y - ¢))

= O'y
=1 -r1e)oy
(5) Finally forc,,
(dH+ Hd)c, =0
= Cy — Cx
= (1-1e)cy

CoroLLARY 1.25. The restriction of gto the closure of x
S¢1 C() — C(s(¥)
is a quasi-isomorphism.

Proor. Consider the commutative diagram:

C(®) —= C(s:9)

Z
Since both augmentation maps are quasi-isomorphisms amtigtgram commutes,
51 C(X) — C(s(9)
is a quasi-isomorphism as well. O

Lemma 1.26. If C is regular and C is as defined as in Definition 1.18; S a
regular chain complex.

11



Proor. We must check that for each cglof C’,
e:Cly) mZ

is a quasi-isomorphism.
If ye B\ {x} andx £y, then consider the following commutative diagram:

C(y) —=C(y)

s

Z

The mapey is a quasi-isomorphism, and singef vy, s, restricted to the closure
of y is the identity. The composition of a quasi-isomorphism #dredidentity is a
guasi-isomorphism, so

g :1CY) —Z
is a quasi-isomorphism.
If y e Bandx < ythenC(X) is a based subcomplex 6{y). Thuss, induces a
map of short exact sequences:

0 C(X) C() C(¥. %) 0

| g

0 — C(s(¥) — C(s¥)) — (). s(¥) —=0

The vertical map on the left is a quasi-isomorphism by Corplla25. The based
chain complexe€(y, X) andC(W, m) both have bases isomorphic to

{ze B | z£X
and

S C[¥. %) — C(sdY). (9)
is an isomorphism. Thus
S C(F) — C(sdy))
is a quasi-isomorphism by the Five Lemma.
If oy € X%, the map

e:Cloy) — Z
has a chain homotopy inverse. The proof of this claim is cetaf analogous to
the proof of Lemma 1.24. The chain homotopy inverse

T:7Z — C(oy)

12



is defined byr(1) = c,. Once againgr = 1 on the nose, antk is chain homotopic
to 1. The chain homotop¥ is defined by the same formula as in the proof of
Lemma 1.24. To check that

dH+Hd=1-r7¢

we must check this formula on the generator€@fy). We use the description of
the generators given by Lemma 1.22, and from here the pr@oéipy of the proof
of Lemma 1.24.
Finally
£:C[C) —Z
is an isomorphism. O

Proor or ProrosiTion 1.19. LetC be a regular chain complex and lebe a cell
of C. Let
5.C—C
be the conical subdivision of We are now ready to prove thgtis an elementary
subdivision in the sense of Definition 1.12. The basigdois

(B\ X) LI =X 1 {cy}
which is a decomposition of the form
(B\ x) 1 B”

By Lemma 1.215s, is an augmented chain map. By Lemma 1.26js a regular
chain complex. The conical subdivision mgps defined so that satisfies conditions
(1) an (2) of Definition 1.12. Condition (3) states that forleac

we B” = IX1I {cy}
the cellwis a generator dﬁ(m) By Lemma 1.23, the set
{y € Bly = x} HEX I {cy}
is a basis foc(m). Thus condition (3) is satisfied.

It remains to check that, : C — C’ is a quasi-isomorphism. Sin&(sx(x)) is
a based subcomplex @f, s, induces a map of short exact sequences as follows:

0 C(X) C C(B,X)——0

Lo

0—C(s(x) —=C' —=C (B, 5(x) —=0

The left hand vertical arrow is a quasi-isomorphism by CargiiL.25.
The based chain compl&x(B, X) has basis

B\X=1{yeB | y£x
13



The based chain compl@((B’, sx(x)) has basis

B\ sx(s) = ((B\ {x}) HEX 1L {cx}) \ (fy € Bly = x} L ZX LI {cy})
=B\ X
Thus the right hand vertical arrow is an isomorphism of bagedn complexes.

We conclude that the middle vertical arr@y: C — C’ is a quasi-isomorphism
by the Five Lemma. O

1.3.2. The Barycentric Subdivision. We define the barycentric subdivision of
a regular chain complex by iterating the conical subdivisio

Dernition 1.27 (Barycentric Subdivision). L€t be a regular chain complex of
dimensiom. We define

S(k) C—> C(k)
to be the subdivision map which is the composition of the eletary subdivision
mapss, for eachk-cell x of C. (Note that since each mag modifiesC only in the
interior of X, these elementary subdivision maps all commute.) Then Weedthe
barycentric subdivisioof C to be the composition

80 s §@ S0) )
— C(o) —> C(l) —> C(z). 4 C(n) = C

Since this map is a composition of elementary subdivisitnsa subdivision map
of regular chain complexes; we denoted it9yC — C’.

Remark 1.28. We can give an inductive formula farIf x is ak-cell of C and
k> 0, then

s(k)(x) = (_1)lxl_10'x5(k_1)60(k71)x
wherecoy denotes the element & corresponding tg. Thus

[ (~1)*oysdx X >0
S(x) = { Cx X =0

The barycentric subdivision is a functor from the category @kitself.

Dermviion 1.29 (Barycentric Subdivision of a Cellular Chain Map). Lfet
C — D be a map of regular chain complexes induced by a cellular map — E
of posets. That is to say, létbe given by the formula

_faf®) (X)) =Ix
(10) f(x)‘{ 0 If() £ X

for some choice of signs: B — {-1, +1}
We define a cellular map

fs: s(C) — (D)

14



inductively on thek-skeletonss(C™®). First we define the underlying poset map
fs: s(B) — S(E)
On 5(C©), the barycentric subdivision of the 0-skeletorGfwe define
fs: s(Bo) — (Eo)
CX i CfA(X)
The barycentric subdivision of theskeleton ofC has basis

(11) S(B* ) LI (Lyy=icZX) 1T (Lj-Cx)

Wheres(B("‘l)) is a basis fors(C*Y), the barycentric subdivision of th& ¢ 1)-
skeleton ofC. Suppose inductively thaf, has been defined os(B%). Then
extendf, over thek-skeleton by:

(13) oy { T o0 TsY)  Cioo & fo(V)
fs(y) Cf € fs(Y)

Hereo,y denotes the element &k corresponding tg. The poset ma|cIiAS defines a
chain map in the usual way:

) X=X
fs(x)‘{ 0 If()l %I

Proprosition 1.30. The barycentric subdivision s is a functor from CEL to CEL.

That is to say, given a cellular map:fC — D of regular chain complexes, the map
fs 1 S(C) — s(D) of Definition 1.29 is a cellular chain map.

Proor. There are a number of details to check. In each case we \ilieaby
induction on the barycentric subdivisionlotkeleton ofC.

First let us check thafs is a poset map. Sincg(cy) = Cf(y), fsis a poset map on
the O-skeleton. Suppose inductively tHais a poset map os(B*1), and consider
the basis (11) fois(C®). Supposer,y is a cell of S(CM) which is not a cell of
s(C* ), and leta < oyy. If @ € S(C*Y), then by (6)@ <y. Thus fo(@) < foy)
by the inductive hypothesis. Looking at (13), we see @ < fs(oxy), SO

fy(@) < fo(oyy)

If « is a cell ofS(CM) which is not a cell ofs(C&1), then eithew = o,z for some
z<yora = . If @ = ¢4, then looking at (13) we see that

fAs(Cx) = Cfy = f,\s(o' xY)
15



If @ = oxzthen there are 3 cases.cif,, € fo(oy2) < fs(oyy), then
(02 = o) = f)
If Cfiy ¢ fAs(O'xZ) butcsy € fAS(O'Xy), then

fAs(O' x2) = 0 fy fAs(Z)
fu(oy) = fs(y)
Sincez <, fy(2) < fs(y) by the inductive hypothesis. Sincg,, < fs(oy) as well,
fi(0,d) = 077y <@ < £sy) = filorwy)
Finally, if 7y ¢ fs(cry), then
fAs(O' x2) = 0 f(x fAs(Z)
12-(0' xY) = Ty fAs(Y)
Sincez <y, fy(2) < f4(y) by the inductive hypothesis. Thus by (5),

fAs(O'xZ) < f’;(O' xy)

We have shown tpafs is a poset map. Next we check thatdoes not increase
degree. By definitiorfs maps 0-cells to O-cells. Suppose that for-(1)-cellsa

[fs(@)] < ol
Let oy be ak-cell of S(C). Then looking at (13) we see that

| f(oy)| < [0 7 Fo(Y)]
= |f(y)l + 1
<lyl+1
= |oyyl

Finally we check thafs is a chain map. To do so we need the following Lemma.

Lemma 1.31. Leta € S(B). If |fs(@)| = |al, then|fs(w)| = (| for all w with
(dar, W) # 0.

The contrapositive of Lemma 1.31 is the following stateméithere exists a
cellw € s(B) such thatda,w) # 0 and|fs(w)| < |w]|, then|fs(a)| < |a|. We prove
the contrapositive by induction on the degreexoflf |a| = 0 or|a| = 1, then the
statement is vacuous. Suppose the statement is true ferofelegree less thdg
and leta € s(B) such thata| = k > 1. Thena = oy for somey € s(B) with
lyl = k — 1. By definition

d(oxy) = (-1)"' + ody

16



Thus the codimension 1 faces®fy arey and thek — 2 cellsz such thatdy, z) # 0.
If 1fs(y)l < Iy, then

floy)l < 1)l +1
<lyl+1
= |oyyl
If |f«(2)| < |2l for some codimension 1 face gf then|fs(y)| < |yl by the inductive
hypothesis. Then by the previous argumlég(b—xy)| < |lowyl. We conclude that, as
claimed, |f|fs(w)| < |w| for some codimension 1 face of then|fs(a)| <la|.

We can now show thang is a chain map. Lat be a 1-cell of(B). Thea = oy
for some 0O-cely of B. If [fs(e)| < |al, thenfs(a) = 0, so certainlyd fs(x) = fsd(x).
If | fs(@)| = |a| then we compute:

dfs(a) = dfs(oxcy)
= d (07 fs(c))
= d (0 7Ciy)
= Cfy ~ G
= fs(cy - ¢))
= f;d(o'xcy)

Suppose thats commutes withd for all cells of degree less thdqg and leta
be ak-cell of s(B) with k > 1. Thena = oy for somek — 1-celly of s(B). If
|fAs(a)| < lal, thenfy(a) = 0, so certainlyd fs(x) = fd(x). If |f;(a)| = |a|, then by
Lemma 1.31]f4(y)| = |yl and moreoveffs(z)| = |7 for every codimension 1 face
of y. Then we compute:

dfs(a) = dfy(oyy)
=d (0' f(x) fs(Y))
= (-1 9y + o7 fy)
= (-1)" My + o 9(fsy)
= (1) 0 fsy + 0 f(x fs(0Y)
= (-1)" gy + o7 fs(0Y)
= f5((-1) + oY)
= fd(oxy)

17



Prorosition 1.32. The barycentric subdivision functor is natural in the fello
ing sense. If f: C — D is a cellular map of regular chain complexes, then the
following diagram commutes.

C—5s(C)

e

D —>> s(D)

Proor. Let x be a cell ofC. If 1f(X)] < ||, thenf(X) = 0 and the diagram
certainly commutes. SuppolEXx)| = |x|. If |x| = 0, then

Sf(X) = Ct(x)
= fs(cx)
= fs(s(x))

Suppose that the diagram commutes for all cells in kieX)-skeleton ofC and let
|X| = k. Then we compute:

sf(x) = (-1)" o780 (%)
= (1" o7 s F(0%)
= (- o f fsS(0X)
= f5((-1)* ores(0x))
= fs(s(x))
i
1.3.3. The Nerve.We have defined both the set of cells of the barycentric sub-

division and the boundary map by iterating conical subdwis. It will be more
convenient to have a “closed-form” description of this Suistbn.

Dermnition 1.33 (Nerve). LeC be a based chain complex with ba8is The
nerveof C is the based chain complex with basis

nBc={{X, ....xtCB | Xz...2%

The diferential is given by the formula

k
d(Xo < X1 < ... <X) = Z(—l)‘*l{xo<...<$q<...<xk}
0

If C is regular, the barycentric subdivision that we have coesdd by iterated
cones is isomorphic to the nerve.

18



ProrosiTion 1.34. Let C be a regular chain complex, |3 denote the barycen-
tric subdivision of C, and letC denote the nerve of C. The(C3 andnC are iso-
morphic after relabeling generators. To be more explitie thain map b s(C) —
nC constructed in the proof below is an isomorphism.

Proor. We will inductively define a chain map which is a bijectiongg#ner-
ating sets from barycentric subdivision of tkeskeleton ofC to the nerve of the
k-skeleton ofC.

The 1-skeleton 0§(C) has basis

S(B) I (-1 2X) LT (Ljx=1Cx)

If xis a 1-cell ofC, then by Proposition 1.1X% has two 0-faces andw. Thus for
each 1-cell, the graded seix consists of two generators in dimensiorvky and
oyV. We define a map

b: s(C®) — n(Cc®)
by mapping generators as follows:
veBy— vV
O3V E XX V<X
Cx > X
This map is a bijection of the generating sets. We check tlgtichain map.
d,b(oyv) = d,(v< X)
=V-—X
=b(v-cy)
= bd(oyV)
Now suppose that we have defined
b : S(C* V) — pckb)

such thab is a chain map which is a bijection of generating sets, an that for
cellsx of s(CkD)

(14) b(X) < n(x)
Thek-skeletons(C) has basis

s(B*) I (LX) I (LioiC)
wheres(B%Y) is a basis for the barycentric subdivision of tie-(1)-skeleton of
C. Let

ix 1 nC(X) — nC(X)

be the linear map defined on generators by:

Vo<...<YPYo<...<y <X
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We define a map
b: (Ci)"™ — n(CY)
by mapping the generators as follows:

(15) y € s(B¥Y) 5 by)
(16) oyy € IX = ix(b(y))
a7 Cx — X

We claim thatb is a well-defined bijection. Fary € X, b(y) € nx by assumption
(14). Thusb(y) = yo < ... <Yy, for somey, < x, and it makes sense to define

bloyy) = ix(b(Y) =Yo<... <Yy <X

By the inductive hypothesid is already defined and a bijection snﬁB(k‘l)).

The cells ofp(C¥) that are not cells of(C*) are precisely those of the form
Yo<...<Y <X

such thatx = k. Consider such a cell. If> 0, then by the inductive hypothesis
there exists somge s(B("‘l)) such that

b(y) =Yo <...<¥
Thus

boyy) =Yo<... <y <X
If 1 =0, then
b(cy) = X

Thus all such cells are in the imagelwandb is surjective.

To see thab is injective, observe that (15) is injective by the induetiwpothe-
sis, and similarly (16) is injective becauss injective ons(B(kfl)). (17) is injective
becauseg = xif and only if c, = by.

We check thab is a chain map. The map already commutes itin s(B("‘l))
by the inductive hypothesis. Suppose S(B("‘l)) andb(y) = yo < ... < V. Then:

d,bloxy) =d,(Yo<... <¥ <X)
|
= (1Mo <. <W+ D (D) Yo <. Fi <y <X
i=0

= (=1)"b(y) + ix(d,b(y))
= (=1)"'b(y) + ix(bdy)

= (=1)"b(y) + b(cxdy)
= bd(oxy)
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Finally we must check thdi satisfies (14). Supposas a cell ofCy; we must
check that

b(C(2) c nC(2)
Leta be aface of. If o € s(B“‘—l)), theb(a) € nC(2) by the inductive hypothesis.
If @ = oywyanda < z thenx < z Thus

b(orxy) = ix(b(y)) < z

Finally, if @ = ¢, andcy < z, thenb(cy) = X< z
We conclude thab is an isomorphism of regular chain complexes. ]

The nerve is a functor on the category of regular chain coxegland cellular
maps.

Dermvimion 1.35. Letf : C — D is a cellular map of regular chain complexes
induced by a map : B — E of posets. Thaerveof f is the poset map

A

f, :nB — nE
which maps
Xo < ... < X £(X0) < ... < f(x)
An expression of the form
f(xo) < ... < f(x)
will not designate an element gE if fo,- = fAXj+1 for somej. In this case we define

the expression to mean the elemengBfwhich results from omitting repeats. The
poset mapf, induces a chain map

f, :nC — nD
in the usual way:
f,00 16,091 = Ix
18 f X) = n J
(18) " {o 15,001 # IX

ProposiTion 1.36. The map fis a cellular map of regular chain complexes.

Proor. Note that the faces of the ce} < ... < X, are precisely the subsets of
{Xo, ... X¢}. If

IIA

Xig < ... <X Xo < ... < X¢

then
£, < ..o < %) = (%) <...< f(x,)
< f(x) < ... < f(x)
= f,(X0 < ... < X)

Thusf, is a poset map.
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The mapf, is defined so that

f,(X0 < ... < %) = f,(%) < ... < f,(X)

where the expression on the right is defined to bef@xf) = f(x;.1) for any j. We
check thatf, is a chain map:

df,(%0 < ... < %) = d(f,0%0) < ... < £,(x)

- Z(_l)i+1f”(X°) <. f(6) < (%)

k
i=0

k
B DD %0 < R < X
i=0

f,d(Xo < ... < X)

O

Proposition 1.37. The isomorphism bs(C) — nC of Proposition 1.34 is natu-
ral with respect to cellular maps. If f C — D is a cellular map of regular chain
complexes, then the following diagram commutes:

s(C) b nC

[«
S(D) —— (D)
Proor. We argue by induction on the skeletasf€). The 0-cells ofs(C) are of
the formcy, wherex is a cell ofC.
bfs(cx) = b(Cr(x)
= f(X)
= f,(¥)
= f,(b(cy)
Suppose that the diagram commutes on te ()-skeleton ofs(C). A k-cell of

S(C) is of the formo,y, wherex is ak-cell of C andy is a k — 1)-cell of S(C). If
f(X) = 0, then the diagram clearly commutes. If not:

bfs(ory) = (o T(¥)
= iPfs(y)
= I fb(Y)

f, (ixb(y))

= f,b(oxy)
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From now on, we will not distinguish between the barycergtibdivisions(C)
and the nerveC of a regular chain complex, as we regard them as tvi@mint
combinatorial descriptions of the same subdivisiolf€ofWe will use the notation
C’ to refer to the barycentric subdivision Gf

1.4. Geometric Realization

In this section, we show that every regular chain complexaisimally chain
equivalent to the simplicial chain complex of a simpliciahtplex.

Let SIM be the following category. The objects of SIM are gngimplicial
complexes equipped with a partial order on the set of vertiteeh that the set of
vertices of each simplex is totally ordered. The morphisinSIM are simplicial
maps. To be more explicit, a mdp: K — L is a set map from the set of vertices of
K to the set of vertices df such that image of the set of vertices of each simplex
of K is a simplex ofL. LetS : SIM — CEL be the simplicial chain functor.
Note that added structure of a partial order on the verti€essimplicial complex
such that the vertices of each simplex is totally orderemhadlus to define a functor
from simplicial complexes to chain complexes. Moreovee thain complex of
a simplicial complex is a regular based chain complex, aedtsis is the set of
simplices. A simplicial map induces a cellular map betwdendssociated chain
complexes.

Let PL be the category of PL spaces and PL maps, as defined irké&kand
SandersonRS73. Roughly, a PL space is one which can be given the local struc-
ture of a complex of convex cells in Euclidean space. In paldr, SIM embeds as
a subcategory of PL.

Dermnition 1.38 (Geometric Realization). We define a funcgpr: CEL —
SIM. LetC be a regular chain complex with badts ThenG(C) is the simpli-
cial complexnB, the nerve of the poset @. Let f : C — D be a cellular map
induced by a poset maf): B — E. Theng(f) is the simplicial map

f,: nB— nE
ProrosiTion 1.39. The geometric realization functgf is indeed a functor from
CEL to SIM.

Proor. LetC be a regular chain complex with ba8isA vertex ofpBis simply
a singleton seftx} for somex € B. Then there is a partial order on the set of vertices
of B where we set
Xt<{y}p & x=y
For each simplex

Xo < ... < X
of B, the vertices are totally ordered with respect to this phatider:
{Xo} < -+ < {Xd
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ThusnB is indeed on object of SIM. A
_If f : C — D is a cellular map induced by a poset mbg B — E, then
nf . nB — nE is a indeed simplicial map. O

Lemma 1.40. Let (C, B, d) be a regular chain complex. There is a natural iso-
morphism between the regular chain compley@sandSG(C).

The proof is nearly a tautology, sing€ andSG(C) are based chain complexes
each with basis the nerve of the poBet

Proor. The based chain complexX has basis

nB={{X,....x}CcB | Xz...3X/

The based chain compleXG(C) has basis the set of simplices @(C), which is
the set
{xo, ....xJcB | X=... 3%}
Let 7 denote the identity map between these posets. Thedutes a chain map
i : nC — SG(C) which is isomorphism.
Let f : C — D be a cellular map, and consider the following diagram.

n(C) —> SG(C)

fy i J{SQ(I‘)

n(D) — > SG(D)

Letxg < ... < X be a cell oflyC. Then

(19)

. (X)) << () (X)) <L < (X=X <L <X
'f”(X°<"'<Xk)_{ 0 1f(X0) <...< F(X)I <X < ... <X

Now, the simplicial mapg(f) : G(C) — G(D) induces a chain magg(f) :
SG(C) —» SG(D) in the same way that the poset map of a cellular map of regu-
lar chain complexes induces a chain map. That is to say,

(20)

: (X)) << () (X)) <L < (X=X < oL < X
SQ'(f)(Xo<---<Xk)—{ 0 (%) < ... < T < %0 < -.. < X
Thus,i is natural with respect to cellular maps. O

We now define the sense in whid&(C) is naturally equivalent t€.

Derinition 1.41. LetC be a category and gD be a subcategory. L&t andG
be two functors fromD to D. A natural transformation unde€ betweenfF and
G is, for each objeck of D, a morphismp, € Home (¥ (X), G(y)) such that for all
f € Homy(x,y), the following diagram commutes.
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F(X) —2> G(¥)

T(f)l ig(f)

Fy) —- G(y)

Remark 1.42. A natural transformation under a larger subcategufgrd from
the usual notion of a natural transformation in that the farscare defined on the
smaller subcategory, but the natural transformation lingke larger category.

Tueorem 1.43 (Simplicial Realization TheoremletG : CELL — SIM be the
geometric realization functor. L& : SIM — CEL be the simplicial chain functor.
Let PL be the category of PL spaces and PL maps.

There is a natural transformation under REG frdgg, to SG, described in the
proof, which is a quasi-isomorphism on objects. There is anahtransformation
under PL fromls v to GS, described in the proof, which is a PL homeomorphism
on objects.

Proor. To prove the first assertion, we must show that for everytalimap
f:(C,B,9d) — (D,E,09)
of regular chain complexes, the following diagram commutes

c . SG(C)

f J/Sg(f)

D %~ SG(D)
Hereibs denotes the composition of the maps C — s(C) of Definition 1.27,
b : s(C) —» nC of Proposition 1.34, and : nC — SG(C) of Lemma 1.40. By
Proposition 1.19s is a composition of elementary subdivisions and this thus a
regular map. By Proposition 1.38,is an isomorphism and thus is a regular map.
By Lemma 1.40j is an isomorphism and thus is a regular map. Now consider the
following diagram:

C —2 (C) —>7(C) —= SG(C)

Co T

D — §(D) —— C —'~ SG(D)

The left-hand square commutes by Proposition 1.32. Thelmgifbare commutes
by Proposition 1.37. The right-hand square commutes by Larh#0. Thusbs
is a natural transformation from:g, to SG. Sincesis a quasi-isomorphism arid
andi are isomorphisms, the natural transformatiosis a quasi-isomorphism on
objects.
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To prove the second assertion, we observe that the topalogientity map
from a simplicial complex to its barycentric subdivisiorai$L which is a homeo-
morphism. Moreover, the barycentric subdivision of siraiplicomplexes is natural
with respect to simplicial maps. m]

CoroLLary 1.44.1f f : C — D s a cellular map which induces an isomorphism
on homology, theg/(f) induces an isomorphism on homology.

Proor. When we say that a simplicial map
g(f) : 6(C) - G(D)
induces an isomorphism on homology, we mean that the induegdof simplicial
chain complexes
Sg(f) : SG(C) - SG(D)

induces an isomorphism on homology. Suppose thatC — D is a cellular
map which induces an isomorphism on homology, and considecommutative
diagram

C 2. SG(C)

f SG(f)
D 5. SG(D)

Sinceibs : C —» SG(C) andibs- f : C —» SG(D) induces isomorphisms on
homology, the map

SG(f) : SG(C) — SG(D)
must induce an isomorphism on homology as well. ]

CororrLary 1.45. Every regular chain complex is naturally chain equivalemt t
the simplicial chain complex of a simplicial complex.

Proor. For every regular chain complex is naturally chain eqeingto its barycen-
tric subdivision. m|

1.4.1. Open stars.We now use geometric realization to prove some properties
of regular chain complexes. LEtbe a regular chain complex with ba@sand let
zbe a cell ofB. Define the following subsets af

St(X) ={yeB|x=<y=<Zz
Cx={yeBly=<zx£y)

We call these subsets tbpen stay and thecomplemenof x in z
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Lemma 1.46. Let C be a regular chain complex with basis B, and let z be an
n-cell of B. Let xz z. Ther(,(X) is a closed subset @f and the augmentation map

g C(CZ(X)) -7
is a quasi-isomorphism.
Proor. Supposey € C,(x), and supposg’ < y. If x < y, thenx <y, a

contradiction. Thuy € CAX) and so,(x) is a closed subset @ Now consider
the commutative diagram

C(CZ(X)) ——7Z

s l
n(C(C9)) 2

The lower left-hand chain complep(C(Cz(x))) is the simplicial chain complex of a
triangulation of the complement of the open stakaf z. The geometric realization
of zis a homology cell, and the complement of the open star of pgrrfacex inside
a homology celkis a homology cell. Thus the augmentation map

e n(C(Cz(x))) >7
is a quasi-isomorphism. Sindeis a quasi-isomorphism which commutes with
augmentation,

£:C(C0) - Z
is a quasi-isomorphism as well. m|
CoroLLary 1.47. Let C be a regular chain complex, and letzx B such that

X < Z. TherC(Z Cz(x)) is acyclic if x# z and has a single generator in dimension
|7 if X = z.

Proor. Suppos« = z, and consider the commutative diagram

¢(C0) @

U

Z

Herei denotes the inclusion map. The first augmentation map isg-(g@norphism
becauseaC(Z) is regular, and the second is a quasi-isomorphism by Lemd 1.
Since both augmentation maps are quasi-isomorphisms)¢hesion map must be
a quasi-isomorphism as well. Looking at long exact sequefitie pairC(z C.(x)),

we see thaC(Z Cz(x)) is acyclic.
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Now, suppose = z Then the chain compIaX(Z Cz(z)), has a single generator,
namely the celz in dimensionz O

Remark 1.48. The generators of the chain compﬂje(i Cz(z)) are exactly the
elements of the open star

St(x) ={yeB|x<y=<Zz

While St(x) is not a subcomplex af(z), we may form a chain complax(St,(x))
by restrictingd. This is exactly the chain compl@(Z Cz(z)).

1.4.2. Simply Connected Regular Chain Complexes.

DeriniTion 1.49. A regular chain comple® is connectedf the augmentation
map

e C—o2Z

is an isomorphism ohlg.

Lemma 1.50. A regular chain complex is connected if and only if its gesimet
realization is connected.

Proor. A triangulated spack is connected if and only if the augmentation map
eC(X) - Z
is an isomorphism ohlg. O

Deriniion 1.51. A regular chain compleXis simply connecteid the geometric
realizationg(C) is connected and simply connected. REGandCEL denote the
full subcategories oREG and CEL consisting of the simply connected regular
chain complexes.

CoroLLary 1.52. The quasi-isomorphism type of a simply connected regular
chain complex ilfCEL determines a homotopy type of simply connected toalbgi
spaces.

Proor. A regular chain comple& determines a simplicial complex(C). If
f:C—->D
is a quasi-isomorphism B EL, then by Corollary 1.44,
g(f) : 6(C) —» g(D)

induces an isomorphism on homology. Sigg€) andG(D) are simply connected,
G(f) is a homotopy equivalence. m|
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Remark 1.53. Corollary 1.52 is false without the simply connecyiassump-
tion. Let X be the Poincd dodecahedral space with an open ball removed, so that
X has no homology and a nonzero fundamental group. Then cbaissme trian-
gulation ofX give a regular chain compleéX. The augmentation map: C — Z is
a cellular chain map to the regular chain complgx( 0), the based chain complex
with the basis a one point set. The cellular nagap a quasi-isomorphism, bgi(¢)
is not a homotopy equivalence.
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CHAPTER 2

Categories of Local Chain Complexes

We will now associate to each regular chain complea category of chain
which are “local with respect t8”. We know from the results of Chapter 1 that the
basisB of a regular chain complex is a homology cell decompositiba epace.
The diferential of aB-local chain complex should be “local” with respect to this
decomposition. We the define additional structure on ouggmaly of local chain
complexes so that we can say what it means for such chain eaepto satisfy
local Poincag duality.

The definitions in this chapter are inspired by Ranicki’s écpries over sim-
plicial complexes” Ran92 Chapters 4 and 5]; indeed they specialize to those defi-
nitions in the case wher is the poset of a simplicial complex. Related definitions
are developed inRW90] and RWO09].

2.1. B-local chain complexes

DeriniTion 2.1 (TheB-local Category). Given a regular based chain complex
(C, B, d), we define the categoy-LOC of B-local chain complexes

(1) A B-local module is a finitely generated fréemoduleD with the addi-
tional structure of a decomposition

D= Z D(X)

(2) A B-local map is a module map: D — E such that for alk € B,

f(D(¥) © > E()

Xy

(3) A B-local chain complex is a chain complex of fréenodules D, d) such
that

(a) D isbounded That is to say, there exiat, n € Z such thaDy = 0O for
k < mandk > n.
(b) EachDy is B-local
(c) d: Dy — Dy_; is aB-local map
(4) Amap off : D — E of B-local chain complexes is a map of the underlying
chain complexes satisfying (2).
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(5) A local chain equivalencef B-local chain complexes is a chain equiva-
lence which has 8-local chain homotopy inverse.

We think of a local chain comple® as one which has been decomposed into
piecesD(x), with each piece lying over a ceflof B. The image oD(x) under the
differentiald must be contained in the pieces@fwhich lie over the open star of
X. In most interesting examples, the chain comdlewill be related to the chain
complexC and the geometry of its geometric realization. Note howeteat while
D is a free chain complexB need not be a basis f@.

Remark 2.2. Given a regular chain compl&xthe category oB-local modules
is an additive category. D andE areB-local, thenD & E has an obvious direct
sum decomposition

(D& E)(X) :=D(X)® E(X

The trivial module is the zero object.

Recall that given any additive categaoty there is an additive categoi3(A)
of chain complexes i\. In particular, the expressiai = 0 makes sense in any
additive category, as the set of morphisms between any tyersbis an abelian
group. The categor-LOC of local chain complexes is equivalent to the category
of chain complexes in the additive category of local modules

ExampLe 2.3. LetB = {x} be a one point set in degree 0. Th& £,0) is a
regular chain complex, and the categoryBslocal chain complexes is equivalent
to the ordinary category of chain complexes.

The most important examples Bflocal chain complexes are those that capture
local information about the geometric realization of thgular chain complex.
We discuss a central example in two guises.

ExampLE 2.4. LetC be a regular chain complex with baglsThen the barycen-
tric subdivisionC’ has the followingB-local structure. The summarn@i(x) is gen-
erated by

(Xo<...<X%€eB | X=x
Observe that

k
A< <X)= > (D' <. X...<%C > CY)
i=0

X<y

Thus the diferentiald’ of the barycentric subdivision satisfies property (2) of Def
inition 2.1 As a chain complex¢’(x) is the simplicial chain complex of the open
dual cone of the celk.

We now describe another example oBdocal chain complex which is locally
chain equivalent to Example 2.4.
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Derinttion 2.5 (Pair Subdivision). Given a regular chain compléxg, 9), we
define a new based chain compléX i, d) called thepair subdivisionof C. The
basisE is given by

Ec:={(y.X) eBxB | x=y.M-IX =Kk}
The diferentiald is given by
d(y, ¥) = (dy, ¥) + (1)*(y, 6x)
where

(1) ¢ is the adjoint 0B defined byay, X) = (y, %)
(2) If 9y = 3, @'z , then the expressiody, X) is to be interpreted as the sum
> a'(z, X), where pairsZ, x) are declared to be zero unless z

We will have much more to say about the pair subdivision in @va®; for now
we merely mention it as an example oBdocal chain complex.

ExampLE 2.6. The pair subdivisionR d) of a regular chain comple& has the
following B-local structure.
P=> PX

xeB

whereP(X) is generated by pairs
{(y,X) eBxB | x<vj}
If (y, X) € P(x), then
d(y, X) = (dy, ) + (=1)*"X(x, 6y) € P(x)
Thus @, d) satisfies condition 2 of Definition 2.1.

2.1.1. Mapping Cones.Let A be any additive category, and [Btbe the addi-
tive category of bounded chain complexestinRecall that a chain compleX in
B is contractibleif there a degree-1 maph : D — D such thaidh+ hd = 1p. A
chain complex iscyclicif Hy(D) = 0 for all k.

Derinition 2.7 (Mapping Cone). Let : D — E be a chain map ii®. Then the
mapping cone of fs the chain compleg(f) defined as follows.

C(f)k = Dy_1 ® Ex

The diferential
(dc)k : D1 ® Ex — D2 @ Exq

is given by the matrix
dp 0
(-1)f de
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A B-local map ofB-local chain complexes has a well-defined mapping cone.
To be explicit, iff : D — E is aB-local map, then the mapping cogéf) has the
following B local decomposition.
C(F)(¥)x = D(X-1 & E(X)«
The diferentiald; is aB-local map becausdy, dz, andf are allB-local.

ProrosiTion 2.8. Let A be an additive category an#l be the additive category
of bounded chain complexes4n Then achainmap f D — E in B is a chain
equivalence —i.e. has a chain homotopy inverse — if and btilg mapping cone
C(f) is contractible.

Proor. This proposition is a generalization of the standard facua the cate-
gory of chain complexes in the additive categoriZahodules. See§an85 Propo-
sition 1.1] for an explicit proof. ]

The proof of the following proposition is routine.

ProposiTion 2.9. Let f : D — E be a map of chain complexes in some additive
categoryA. Then inclusion and projection define chain maps

Ec— C(f)

C(f)k = Dics
These maps can be chained together to give a long exact segjoarhomology

. H(D) 5 H(E) 5 H(C(F)) = Hy1(D)..

Prorosition 2.10. If (D, d) is a B-local chain complex, then each{X) forms a
chain complex by restricting d and projecting.

Proor. The map
d
de: D(X) = > D(y) » D(¥)
X<y
squares to 0 becaus® = 0 andd satisfies property (2) of Definition 2.1. Thus
(D(x), dy) is a chain complex. (Here the two-headed arrewdenotes the projection
map from},., D(y) to D(x). We will use this notation in the sequel.) m|

Proposition 2.11. (Compare[RW90, Proposition 2.7) A B-local chain com-
plex D is contractible in the B-local category if and onlyaf fall x € B, the chain
complex ¥x) is acyclic.

Proor. Suppose that, d) is aB-local chain complex which iB-locally chain
contractible. that is to say, suppose there is a degiétal maph: D — D such
that

dh+hd=1p
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By definition of being &B-local map, for allx € B,
h(D(x)) c > D(y)
Xy

Let hy denote the component bfwhich mapsD(x) into D(x):
h
hy : D(X) = Z D(y) - D(X)

X<y
Then the restrictions df andd satisfy
dXhX + hxdx = lDX

Thus each local chain compl&(x) is chain contractible, and thadortiori acyclic.
Suppose conversely that eabkix) is acyclic. We will constructed &-local
chain homotopyh : D — D such that

dh+hd=1p

We argue using a double induction, over the dimensions oféfie of B and over
the degrees of the chains bf EachDy is a finitely generated freéé-module with
a decomposition

Dk = Z Dx(X)

xeB

Choose a bas@' i« for eachDy, wherej denotes the dimension of the cgle B
such thateI € D(x) The based chain compléxis finite, so there exists sonme
such thaIBk = 0 for k < 0 andk > n. FurthermoreD is bounded, so there exists
somer such thaDy = 0 fork < r. Thus the chain mag : D;,; — D, is surjective.
Let e"mr be a generator dd, (x) for somen-cell x € B. By hypothesisH,(D(x)) = 0
Sinced,(e,,) = 0, there is some chaim € Dy,1(X) such thatl(a) = €,,. Sincexis
a top-dimensional cell dE, x is a maximal element of the postand so

> D(y) = D(x)
X<y
Thusdy, = d : D(x) —» D(x). We defind1(e"n’r) = a, SO that
dh+ hd(e"n,r) = da + h(0)
= dya
= el.n,r
SinceD; is a freeZ-module, we may make similar choices for each generator of
eachD(x) with |x| = nand then extend linearly to define a map

h: Z Dr(x) - Z Dr+1(x)

[X=n [X|=n
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such that
(22) dh+hd=1:D, — D,

(22) h(D(x)) ¢ > D(y)
X<y
Now suppose we have defined a niegatisfying (21) and (22) ob(x), for all
X € Bwith |[x] > m. Let x € B be anm-cell and Iete‘mr be a generator dD,(x).
Once again, sinc®,_; = 0, d(g,,;) = 0. SinceH,(D(x)) = 0, there exists some
@ € Dy,1(X) such thatd,(a) = €,,. However, it is no longer the case that= d,
sincex is not a top dimensional cell. Rather,

d(e) = €, +5
where
pe ) Diy)
=Y
By our inductive hypothesi$)3 is defined and satisfies (21) and (22). We define
h(eh,) = a —hB

Now we compute

dh+ hd(e"mr) = d(a — hB) + h(0)
= €, + B - dh(g)
=€, +B8-(1-hd(B)
=€ +B-B
= eimr
Thus by induction we have defined a mapD, — D,,; satisfying (21) and (22)
Now suppose that a mdpsatisfying (21) and (22) has been defined®rfor

| < k, and also foDy(x) with [x| > m. Let x be anm-cell of B, and lete],, be a
generator oDy (X). We compute

d (€l — hd(el,y)) = de,, — dh(dd,,)
= de, — (1 - hd)(d€,,)
= dd,, - dé,, + hddé,,
=0

Sinced(€,,, — hd(€,,,)) = 0, d«(€,,,) = 0 as well. By hypothesigi(D(x)) = 0, so
there must be some € Dy, 1(X) such thatl(a) = 0. Then

d(@) = € +8
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where

pe ) DY)
=Y
Once again we define _
h(e,):=a-hs
By the exact same computation as in the previous paragraph,
dh+ hd(e';m) = eimr

By making similar choices for each generatiqlrr and eachx € B with |[x| = m,
we may extench to -, D«(X). Thus by induction we define a degre¢ map
h: D — D satisfying (21) and (22), that is,Btlocal chain contraction dD. O

If f: D — EisaB-local chain map, let(x) denote the restriction

f() 1 D) - > EY) > E(X)

X<y

CoroLrLary 2.12. Let f: D — E be a B-local chain map. Then f has a B-local
chain homotopy inverse if and only if¥) is a quasi-isomorphism for each x in B.

Proor. By Proposition 2.8f : D — E has has &-local chain homotopy inverse
if and only if its mapping con€(f) is contractible. By Proposition 2.1C(f) is
contractible if and only if eacle(f)(x) is a contractible chain complex. As chain
complexes,

C(f)(x) = C(f(x))
By Proposition 2.8, eact(f(x)) is contractible if and only if eacli(x) is has a
chain homotopy inverse. Since eat{x) : D(x) — E(X) is a map of free chain
complexes over, eachf(x) has a chain homotopy inverse if and only if edch)
is a quasi-isomorphism. m|

2.2. A duality functor on B-LOC

We wish to describe Poinagaduality objects in th&-local category, so we need
a notion of the dual of a local chain complex.BAlocal chain complex, d) has a

decomposition
D= Z D(X)

xeB

Let D~ denote the hom dual chain complex defined by
D" :=Hom(D_, Z)
with differential
d*(@)(X) = a(dX)
Then theB-local structure oD induces a decomposition &f* as follows:
(23) (D7) (¥) =D~
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However, the dierentiald* of D™ need not satisfy property 2 of Definition 2.1, so
(23) does not in general gii@* the structure of &8-local chain complex.

We need a more refined notion of dual on Bwocal category; the structure we
require a chain duality in the sense of Ranicki. Fist let usolesthe following.

Remark 2.13. LetA be an additive category and [Btbe the additive category
of bounded chain complexes . Then, as Ranicki observes, any contravariant
additive functor

T:A—->B
extends to a contravariant additive functor
T:B—B

as follows. Given a chain compléxin B, define a chain complekC as follows.
(TC) = > T(Cp)g
p+0=r
Observe that for each map
dc . Cp - Cp_]_
the functorT defines a chain map
T(dec) : T(Cpoa). — T(Cp).
Thus the following map is a degredl chain map o C:
dre= Y (-1 (drc )+ T(de)) : (TC) = (TC)ry
p+0g=r
Given a chain map : C — D, we define a chain map(f) in the same fashion:
T(f) = > (fp)q: (TD) - (TC),

p+q=r
Similarly, a natural transformatioa: F — G between two functoréd. — B, can
be extended to a natural transformation between the ertensiF andG.

Derinition 2.14. Ran92, Definition 1.1] LetA be an additive category, and let
B be the additive category of bounded chain complexés. iA chain duality(T, €)
onA s

(1) A contravariant functorl : A — B
(2) A natural transformatior: T? — 1

HereT? denotes the composition of the funcowith the extension of toB. The

functor 1 : A — B is the inclusion functor which maps each objé&odf A to the

chain complex which is equal #in dimension 0 and is O in all other dimensions.
These data satisfy:
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(1) The natural transformatiaais a quasi-isomorphism
ea: TAA) — A

for each objech of A.
(2) For each objecA of A, the following diagram commutes:

T(ea)

T(A) —=T3A)
X lew”
T(A)

The most familiar example of such a structure is the usual toah functor on
the ordinary category of chain complexes.

ExampLE 2.15. LetA be the category of finitely generat@dmodules, and let
T : A — A be defined by

T(M) := Hom(M, Z)
Then
T?(M) = Hom(Hom, Z))
For eachx € M, let eva) denote the map
evalk : TM = HomM,Z) - Z
a - a(X)
Then there is a natural isomorphism 1 — T2 given by
eM): M - T?M
X — eval

Then (T, e 1) is a chain duality om\; that is to say, these data satisfy the conditions
of Definition 2.14. We will denote this chain duality¥ £, ;) to indicate that it is
the standard hom duality on the categ@rgf chain complexes.

2.2.1. The FunctorT : B-LOC — B-LOC. We now define a chain duality on
B-LOC.

DeriniTion 2.16. Let C, B,d) be a regular chain complex. Lét denote the
additive category of oB-local modules. We define a contravariant functor

T:A— B-LOC

as follows. LetM be B-local module inA with decomposition

M= M(x)

xeB
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We define a chain complekM in B-LOC as follows:

T M = Z Z Hom(M(y), Z)

xeB x<
X=—k y

This chain complex is defined so as to have a natilalcal decomposition:
TM() := ) Hom(M(y), Z)
XY
For every pair of generatorg,y) with x < y there is an inclusion map:
S M@ S > ME
y=<z X<z

Let 6,y denote the hom dual restriction map:

TM() = > HomM(.2) =% 3" HomM(@@).2) = TM(y)

XY y=<z
We define a dferentiald : TM — T M by
5= (09,2 (6xy 1 TMO) = TM(Y))

x,yeB
IyI=Ix+1

Remark 2.17. Observe that
TMc:= ) Hom(M(y),Z)

Xy
|X|=—k

Thus for eachx <y, the module Hom¥i(y), Z) is contained inT M(x)_x. Since
M(y)~* is standard notation for Horiv{(y), Z), it makes sense to write

TME) = > M(y)
X<y
Remark 2.18. As a chain complex,

T™M = > TM()

xeB

=), 2 My

xeB x<y

=D 2 My

yeB x<y

= > CcEeMy)”

yeB

39



TheB-local decomposition of M is somewhat obscured by this presentation of the
chain complex. However we see that

TMR) = > (x@ M(y)) ™
X<y
wherex denotes the copy &f in degredx| generated by.

Lemma 2.19. T M, 6) is a B-local chain complex. That is to séys a degree-1
map such that

(24) S(TM(X) € > TM(Y)
Xy
(25) 62=0
Proor. SinceM is a module concentrated in degree 0,

TM(X)x = { szy Hona(M(y),Z) :i: ;:& :::

If ly] = |X|+ 1, thenT M(X) is concentrated in degre¢x| andT M(y) is concentrated
in degree-|x| — 1, sodxy : TM(X) — T M(y) is a degree-1 map. Thus

0= Z <8y’ X>5x,y

X<y
Yi=Ix+1

is a degree-1 map.
The map is defined to satisfy (25).
It remains to check tha? = 0. SinceT M := 3,.s TM(X), 62 = 0 if and only if

TM(X) —> TM - T M(y)
for everyx andy.
™M STMY) = Y @y 202 (TMe9 25 TME) 225 TME))

X<Zy
lyl=lz+1=/x+2

The sum
(Y, 2)(0Z X)
X<Zy
lyl=lZ+1=]x+2
is the codicient of x in the formal expressiofi?(y). Sinced? = 0, this codficient
must be 0, and so
62 TM(X) — TM(y)
is identically 0. m|
We have defined an local chain compl@x\{, §) for each local modul&1. We
now extend this correspondence of objects to a contravdtiantor.
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Derinition 2.20. If f © M — N is a morphism ofB-local modules, then by
definition
M(X) = M 5 N - N(y)
is O unlessx < y. Thus restrictingf to M(x) gives a map
Flug : MO — > N(Y)
X<y

For eachx,z € B with x < z, there is a map

fr s M@ 5 STNG) = STN)
=y

X<y

Thus for eachx € B there is a map

fo= ) fat ) M@ — > N(y)

X<z X<z X<y

If f: M — Nisamorphism oB-local modules, we define

fo ™ TN(X) = Z N(y)™ ¥ — Z M@~ ™ = TM(X)

X<y X<z

where f,™ = SXT,(f,) is the hom dual off,, shifted down in degree bix.
Finally, we define:

T(f) =) f M TN—TM
XeB

Lemma 2.21.If f € Homg Loc (M, N), then T(f) € Homg L oc (TN, T M). That is
to say, T(f) is a degree 0 B-local chain map.

Proor. First observe that (f) mapsT N(x) into T M(x), soa fortiori T (f) sat-

isfies the condition
T(F)(TN)) € > TM(y)
X<y

Thus T(f) is a B-local map. Sincel N(x) and T M(x) are both concentrated in
degree-|x|, T(f) is a degree 0 map.

Next we must check that(f) is a chain map, that is, that the following diagram
commutes.

T(f)
TN—TM

J/5TN \L(STM
T(f)
TN—TM
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Since

TN= Z TN(X) = Z Z N(y)

xeB xeB x<y

it suffice to check that the diagram commutes\(y) ™ for eachx <y € B.
Letx <y e B, and leta € N(y)™* ™. Then

a:ST™Ny) - Z
whereS~* denotes desuspension x; ThenT (f)(a) € T M(X) is the composition

(26) 3 s M) S5 > sHNE Sz

XV X<z

Sincea : N(y) — Z, this composition reduces to:

X<V S fx,VA 104
3 s MM() 222 s NG Sz
XV

wherefy,, is the composition

M) =5 3 NE@ - N(Y)

X<z

Sincef is B-local, the composition

Xy

s-IXf a
SMM(V) — SXN(y) > Z
is zero unless <y. Thus (26) can be written as:

fxv, (3
(27) Z s (M(v) — N(y) > z)
XSVLy
Recall thatty : TM(X) = X< T M(w) is defined to be
D (W XS
i+

wheredy,, is the degree-1 map

>IME@TM— Y M@

X<z W=z

hom dual to the degreel inclusion map

> s™MM(2) by > s M@

w=<z X<z

Thusdy,T(f)(a) is the composition:

.XW f)(,V. a
(28) > s™MME Ly > sHMM(v) =5 STINGY) S Z
w<z X2y
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and this composition is 0 unlegs< w, and so can be written more simply as:

_ ix,w _ f><,v,y _ 14
(29) > (s WM (V) =5 STHIM(V) —5 STHN(Y) > Z
W=V<y
Note that
iw : S™M(V) — STM(v)
is simply the suspension map which shifts degree-byThus

StmT(F)(a) € Z TM(W)

XSw

wi=[x+1
is given by:
(30) Z (AW, X) Z (S"""'M(v) LN SMM(v) A SN(y) S z)
W<X y<v<w
wi=]x+1

We check that going around the diagram the other way givesadhe result.
Start with the same : ST™N(y) — Z. Thendtn(@) € Y. TN(W) is given by the
composition:

> <aw,x>(§ SMIN(Z) 2 S'X'N(z)i>Z)
X<w W<z X<z
[wi=[x|+1

Sincea is nonzero only oMN(y), this reduces to:

> (@aw.x [Z SMN@) 2% SHINGY) S Z)
|W|)S|>\<,|V+:L =

This composition is 0 unless < y, and so can be written as:

(31) > owx Y (S"W'N(z) Do gMNGy) 5 R)
|W|)§>¥|v+1 W

Composing withr () gives
T(HEr@ e > TMW)

X<W
Wi=[x+1

which is the composition:

(32) D (@w.x) [Z s 2 > s™MNE LR s-IXN(y)‘—Kz)

XSW w=v w=z<y
wi=[x+1
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Sincef is B-local, this composition is 0 unless< y. Thus (32) can be written
more simply as:

CONDIRUIDY (S"WM(v) T STMINGY) 2 STING) z)
X<W W=SV<y
[wi=|x|+1

We see that (30) and (33) are the same map, because
ix,w o fw,v,y = fx,v,y o ix,W : S_IWIM(V) - S_|X|N(y)
That is to sayf restricted toM(v) commutes with the suspension map. O

ExampLE 2.22. Let Z, B, 0) be the trivial regular chain complex where the basis
consists of a single point. TherBalocal chain comple is just an ordinary chain
complex with no additional structure. In this casb = D™*; that is to say, the local
duality functorT coincides with the “global” hom duality functor.

2.2.2. The Natural Transformation betweenT? and the Identity. Through-
out this section(, B, 9) is a regular chain complex. We now show that the functor
T of Definition 2.16 extends to a chain duality in the sense dfriteon 2.14. Let
M be aB-local module, and |eT; denote the hom duality functor of Example 2.15.
We computel 2M.

T2M(x) = > ST (TM(y))

X<y

=Y s, [Z SMTM(2)

Xy y=<z

- Z SY-MT2M(2)

X<y<z

Now we introduce some notation to simplify computing withM. Letayy, denote
an element o8YMT2M(2). Then

drmaxyz = (_1)‘y|a’5x,y,z + Axoyz

where
a”éX,y,Z = Z <6W, X>6W,X(ax’y’z)

X<W
Iwi=Ix]+1

Note thatoyx(axyz) = 0 unlessw <y. Similarly,
Qxpyz = Z (ay, W>iw,yax,y,z

W=y
Iwi=lyl-1

Note thatiy,y(ayyz) = 0 unlessz < w.
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Derinition 2.23. LetM be aB-local module We define B-local map as follows.

e(M) : T2M(X) = Z SYMT2M(2) — Z M(2)

X<y<z X<z

yi-IXT-2 e(M@)a x=y
a€eS TCM(z)|—>{ 0 X%y

Using the notation established above,

M)z, = { 7M@) Xy
Lemma 2.24. If M is a B-local module, then
eM): T?M - M
is a B-local chain equivalence.

Proor. First we check thae is a chain map. Observe thit is concentrated
in degree 0 and thai(M) is nonzero only on the degree 0 partTofM. SinceM
is concentrated in degree 0, we need only check that for attyaiira in T2M,
e(M)drva = 0. Letayy, be a 1-chain irSY"MTZM(2). Thenly| - x| = 1 andxis a
codimension 1 face of. We compute:

e(M)dT M&xyz = e(M) ((_1)|y|a6x,y,z + axﬁy,z)
= e(M) ((_1)|)’|<ay’ X>ay,y,z + (5}’, X>a'x,x,z)
= (3, (-1 e (M) (@) + (0, )(-1) "2 ec(M(D)(a)

II(iyt+1) (y=Dyl )

= 0y Ve (M@)(@) (-4 + (-1)*F"

=0
To see that the final equation of this computation is trueenkesthat
M+ v +3y

Iyl 5 >
Wy -1yl _ ¥ -y
2 2
Sincey? + 3y = y? — ymod 4,
2 2
y ;3)/ _Y _ y mod 2

Thuse(M) is a chain map.
Next we show thag(M) is a B-local chain equivalence. By Corollary 2.12, it
sufices to show that each

e(M)(X) : T2M(X) = M(X)
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is a quasi-isomorphism. Late B. As previously observed,
T?M(X)k = {axyz | X<y <zl - IX = k a € TAM(2))
The restrictiordy y(X) is the map
drm(X) @ axyz - axey.
ThusT2M(x) splits as a direct sum of chain complexes:
T2M(X) = > faxyz | X<y <z € TAME))

= ) (s™Me(st(x) @ TAM())

Here we have observed that the collection
{a'x,y,z | x<y=<2z
is precisely the basis for the open staxoh z, and the diterential

Qxyz > Uxpyz

is the diferential of the chain complex(St,(x)). However there is a shift in dimen-
sion because the generator correspondinigk,tg, z} has dimensioty| in C(St,(X))
and dimensiory| — x| in T?M(X).

Now, by Corollary 1.47 and Remark 1.48(St,(x)) is acyclic if x # z and
has a single generator in degned x = z Thus all of the summands G?M(x)
are acyclic except for the summand corresponding toz. ThusH,(T2M(X)) is
concentrated in degree 0, and is generated by

S™MC(St(X) ® TAM(X))
whereS™C(St,(X)) is a has one generator in degree 0 correspondirg Thus the
map

em(X) 1 T2M(X) = ) (S™C(SK) ® TAM(@)) — M(X)

X<z

oo | (DT (M@)a x=y=z
.z 0 X#YOry#+z

induces an isomorphism on homology, becaeig®(2)) : TAM(2) — M(2) is an
isomorphism. We have shown tre{fT M)(X) is a quasi-isomorphism for eashso
e(T M) is aB-local equivalence. O

Lemma 2.25. The map
e:T?°>1
is a natural transformation betweer? Bnd the inclusion functor
1:A — B-LOC
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That is to say, for each B-local map:fM — N of B-local modules, the following
diagram commutes:

(34) T2M e M
Tzfi lf
T2N - N

Proor. Letx € B. Since

T(f) (TN(X)) ¢ TM(X)
it follows that
T2(f) (T?M(%)) € T2N(x)
Let T2f(x) denote the map
T?(F)lrzmey : T*M(X) = T2N(X)

Let (T, ;) denote the chain duality on the category of chain complek&xam-
ple 2.15. As in Definition 2.16, let, denote the map

fy = flyme - ) M@ — > NE

y<z y<z

Then we have
(T?£)(x) := S™T((T f))

= ST, [Z SMT, fy]

Xy
= > SUNITA(R) TE| D M@ | — TE| D NE
Xy y<z y<z
Thus
e(N)T*f(X) = &(N) [Z SYHITE() 1 TE| D M@ | — TE| ) N@)
Xy y=<z y=<z
_ DT eM@) (T2 (5 (24 M@) — (ZiN@))) x=
0 X#Y
[ RED T e (M@)TE (e M@) — T2 (54 N@) X =
0 X#Y
= T, (eM)(¥)
= (fe(M))(¥)
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Thus Diagram 34 commutes as claimed. O

Lemma 2.26. The functor T and natural transformation e satisfy the feilog
coherence condition. For any B-local module M, the followdliggram commutes.

T(M) M)

X ler(w

T(M)
Proor. Letx e B. Then
TMR) = > S™TeM(y)

X<y

By definition,

e : T2M(X) = Z SYMTZ(M(2)) - M(2)

X<y<z

LD e M@)a x=y
27700 X#Y

Thus

S_‘X'Tc(e(“")'zxgyTZM(y)

T(ew) : TMR) = > STeM(y) ) D SHTTM(Y) = T3M(X)

X<y X<y

Now, the map

oM): > T2M(@y) = > SYMTZM@) - > M@ » MW)

X<y X<y<z X<z

is nonzero only on the summand where y andz = w. Thus

X(1x+1)

T(e(M) (S™TeMW)) = (-1) 77 Te(ee(MW)) (S TcM(w))
= (-1 T ST TEM(W)
By definition
oTM) i THTM)(X) = > SYMTZTM(@) > TM(2)

X<y<z

DT  eM@)e x=y
27710 X#Y
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Thus the composition

(TM) = T(e(M)) (S TcMW)) = &(T M)(-1)
= (TM)(-1)
= (1))
= STXTM(w)

We have shown tha#(T M) - T(e(M)) mapsS-¥T,M(w) to S ¥T-M(w) via the
map

ST TEM (W)

SMTETcM(w)
S Meo(TM(W) TETM(w)

1X(1x+1)
2

Te(ec(M(W)) » ec(TcM(W))
Since (¢, &) is a chain duality, this map is the identity. Thus

eTM)-T(eM): TM—>TM
is the identity map, as desired. m]

ProposiTion 2.27. The functor T: A — B-LOC and the natural transformation
e : T? — 1 of Definition 2.23 are a chain duality on the additive categar of
B-local modules.

Proor. Lemmas 2.24, 2.25, and 2.26 show that the daje)(satisfy the condi-
tions of Definition 2.14. ]

2.3. Algebraic Bordism Categories

Once again, our goal in the is chapter is tfisiently enrich the category -
local chain complexes so that we can define what it means ébrchain complexes
to satisfy local Poincd@ duality. Roughly, a-dimensional Poincé&rduality object
in a category should something which is equivalent to itd dbdited in dimension
by n. Thus, to define algebraic Poinéatuality, we will need to consider categories
equipped with notions of duality, shift in dimension, andieglence. We now
introduce the definition, due to Ranicki, of such categories.

DeriniTion 2.28. [Ran92 Definition 3.2] Analgebraic bordism categorfA, B, C)
is
(1) An additive category with chain duality T, €)
(2) Afull subcategory of the additive category of bounded chain complexes
in A
(3) Afull subcategoryC of B
These data satisfy

(1) The categorie® andC are closed under the operation of taking mapping
cones.

(2) For each objecB of B, the mapping cone of the identity morphism 1 :
B — Bis an object ofC.
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(3) For each objedB of B, the mapping cone of the morphism
es:T%B)— B
is an object ofC.

ExampLE 2.29. LetA be the category of freE-modules, and letT, ) be
the usual hom duality on this category. Ltbe the category of bounded chain
complexes of fre&-modules, and leC be the subcategory of contractible chain
complexes. Then = (A, B, C) form an algebraic bordism category. We calthe
global algebraic bordism category, as its objects are chain comglthat do not
possess anB-local structure.

Dermnition 2.30. Let C, B, d) be a regular based chain complex. We define two
algebraic bordism categories associate@td_et A(B) be the category oB-local
modules, and letT, €) be the chain duality od of Proposition 2.27. LeB(B)
be the full subcategory @-LOC consisting of those chain complex which have no
local homology in negative degrees. That s to Bag an object irB if D is B-local
and for eaclx € B

Hx(D(x)) =0fork <0
Let C(B) be the full subcategory @ consisting of locally contractible chain
complexes. That is to say,Exlocal chain comple is in C¢(B) if the 0 mapD to
the 0 chain complex hasBtlocal chain homotopy inverse. We define
As(B) = (A(B), B(B), Cs(B))

to be thestrong localalgebraic bordism category dE(B, 9).
Let C,(B) be the full subcategory @ consisting of chain complexd3 which
satisfy

(1) For allx € B,
H(D(X)) =0fork < 1

(2) The chain compleD is globally contractible, that is to say it is chain
contractible after forgetting thB-local structure.

Observe thaC4(B) is a subcategory df,,(B). We define
Aw(B) := (A(B), B(B), Cu(B))
to be theweak localalgebraic bordism category oE(B, 9).

Proposition 2.31. If (C, B, d) is a regular chain complex, thetg(B) and A, (B)
are algebraic bordism categories.

Proor. We have given the data required for an algebraic bordisegoay; we
check that this data satisfies the necessary conditionst I€irus check thas(B),
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Cw(B), andC¢(B) are closed under the operation of taking mapping cones. :If
D — E is a map inB(B) then for eaclhx € B,

Hi(D(X)) = H(E(x)) = 0

for k < 0. It follows immediately from looking at the long exact seque of
Proposition 2.9 thaHy(C(f)(x)) = O fork < O as well. Iff : D —» Eis a map

in C4(B), thenD andE are locally contractible, that is to say, contractible asich
complexes inB-LOC. Thusf must induce an isomorphism on homology. Since
a map of free chain complexes which induces an isomorphistmoomology is a
chain equivalence;(f) is (locally) contractible by Proposition 2.8. A combiraati

of the two previous arguments shows tlg{(B) is closed under mapping cones as
well.

The identity map is 8-local chain equivalence, so the cone of the identity map
is a chain complex irC4(B) and thus inC,,(B) as well. Finally, it follows from
the proof of Proposition 2.27 that the natural transfororagg is a local chain
equivalence for each objeBtin B(B). This its mapping cone is an object@y(B)
and thus also an object it (B). O

2.4. Algebraic Poincagé Complexes

The extra structure that an algebraic bordism categorygssss is exactly the
structure needed to define what it means for a chain complex iadditive cat-
egory to satisfy Poincarduality. The idea is that a chain complex satisfying
dimensional Poinc&rduality should be

(1) A chaincompleXDin B
(2) Amap¢ : 2"TD — D, whereX" denotes-fold suspension, such that the
cone of¢ is a chain complex i€

Let us make this idea precise.

DeriniTion 2.32. LetD be a bounded chain complex in any additive categary
Then letX"D denote the chain complex defined as follows:

(zn D)k = Dk_n
dsnp = (=1)dp : (Z"D)k — (Z"D)k1

We introduce the sign so that the abelian grélygHom, (D, E)) is the group of
chain homotopy classes of chain map® — E.

DeriniTion 2.33. LetA be an additive category with chain dualifly, €), and let
D be a chain complex iA. Let Hom(T D, D) denote the chain complex where

Hom(T D, D)y = Z Hom(T D, D)
a-p=k
Orom(f) = dp f + (-1)fdrp
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Then let7 (D) denote the chain map

7(D) : Hom(TD, D) = » ' Hom(TD,, Dg) — » Hom(T Dy, Dy)
g-p=k g-p=k
f > (-1)"e(D)T(f)

Dermnition 2.34 (Ranicki). Am-dimensional Poincaré compléxan algebraic
bordism categoryA, B, C) is
(1) A chain complexD in B
(2) A sequences of mapgs : Z""TD — D}goin B

These data satisfy
(1) For eachpswith s> 1,

dHom('r D,D)¢s = (-1)"*(ps-1 + (-1)°Tp(¢s-1))

(2) The mappo is a chain map such that the desuspension of the mapping cone
SIC(¢o : ="TD — D) a chain complex iiC

We should caution the reader that what we have defined hergraeRanicki
calls symmetricPoincaé complexes. We will not discuss the relation notions of
quadraticPoincaé complexes.

Remark 2.35. LetC be an ordinary chain complex ovér Then a chain map
¢ . X"C* — Cis equivalent to ar-cycle inC ® C. Thus, specifying a Poincar
duality mapg : £"C™ — C is equivalent to specifying a co-inner prodyct Z —
C ® C. A co-inner product product o€ is the action of a particular properad on
the chain comple. One can work out the definition of a “coherent homotopy co-
inner product” or “infinity co-inner product”. The highemtas ¢ in our definition
of an algebraic Poincarare exactly an extension @§ to be an infinity co-inner
product. This interpretation of the higher terms is not im@ot to us here, so we
will not develop it further.

ExampLE 2.36. LetM be a simplicial complex which is a closed oriented
dimensional manifold, or more generally estlimensional Poincé&rduality space.
Let C.(M) denote the simplicial chain complex bf, and let

Dy : C™*(M) — C.(M)

denote the cap product with the fundamental clasMofThen C.(M), Dy) de-
termine a Poinc& complex in the algebraic bordism category of Example 2.29.
The chain equivalencg, = Dy, is given by the Poincérduality map. The higher
homotopiesps for s > 0 come from the symmetries of the diagonal map, exactly
as in Steenrod’s construction of the Steenrod squares. ®pestion 4.10 for a
construction of the highefs using Steenrod’s method of acyclic carriers.

Just as one can define bordisms between geometric Peicoarplexes, one
can define bordisms between algebraic Poincare complexes.
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Derinition 2.37 (Ranicki). LetD, ¢) and O/, ¢’) be Poincae complexes in an
algebraic bordism categorp (B, C). A cobordismbetween D, ¢) and O’, ¢’) is

(1) Amap inB
fef':DeD — E
(2) A collection of maps irB
{0s 1 Z"STE — E}so
These data satisfy
(1) The mapy, satisfies
dromrer)fo = (—1)" (fgoT(f) — F'goT())
(2) For eachyswith s> 1
dhomree)fs = (=1)"° (051 + (=1)°T(E)(0s-1)) + (=1)" (fgoT () = F9pT(f))
(3) The mapping cone of the following map is a chain comple& in
6o ® poT(F) @ ¢, T(f) : T TE — C(f & ')
whereC denotes the mapping cone.
ExampLE 2.38. Let M. M, M’) be a geometric cobordism of manifolds. Then

(C.(M),Dy) and C.(M"), Dy.) are Poinca& complexes, as discussed in Exam-
ple 2.36 Let

it MW
it M —>W
denote the inclusion maps. Let
Dy : C™77 (W) — C.(W)

denote the cap product map with the relative fundamentas@athe manifold with
boundaryW. This map is not a chain map. However, the relative fundaaietdss
[W] is a homology betweerM] and [M’]. Thus:

dDw + Dwd* = iDyi* = i'Dw/ (i)
That is to say, capping with the relative fundamental cléglsi$ a chain homotopy
between capping withNl] and capping with M’]. Furthermore, the Lefschetz
duality map
Dw:C"™ — C.,WMIM)=C(iai)
is a quasi-isomorphism. The data
iei’:C.,(M)eC. (M) — W
Dw : ™75 (W) — C.(W)
determine a cobordism between the Poiecamplexes.(M), Dy) and C.(M’), Dy.).
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We have now given examples of Poineamomplexes in the “global” algebraic
bordism category of chain complexes and hom duality. We lyavéo give exam-
ples of Poinca@ complexes in the “local” algebraic bordism categories efif-
tion 2.30; such examples are the subject of the next chapter.

PropositioN 2.39 (Ranicki).Let A be an algebraic bordism category. Cobor-
dism is an equivalence relation on n-dimensional Poincaséplexes im\. The
cobordism classes of n-dimensional Poincaré complexesdo abelian group un-
der direct sum, with the 0 chain complex and 0 duality map asdéetity. These
groups are known as theymmetricL-groupsof A.

Proor. This is Proposition 3.2 ofRan804 stated in the language of algebraic
bordism categories. |

Proposition 2.40. Let(D, ¢) and(D’, ¢’) be Poincaré complexes in an algebraic
bordism categorA = (A,B,C). Let f: D — D’ be a chain map iB. Then for
eachgs, let f%¢s denote the map

0, f S f
% TD LTDS DS D!

Then(D’, f%¢) is a Poincaré complex inn. We say f is &nomotopy equivalence
betweern(D, ¢) and(D’, ¢') if

(1) f is a chain equivalence iB

(2) For each s> 0, there exists a maf : 2""STD’ — D’ such that

Ahomrp,0)fs + (—1)" (01 + (—1)°T (D")0s-1) = ¢ — *s
Homotopy equivalent complexes are cobordant.
Proor. [Ran80a Proposition 3.2] m]

2.5. Functors of Algebraic Bordism categories

Suppose that and A’ are two additive categories with chain dualitiesand
T’ which have been given the structure of algebraic bordisegoaies. A functor
F : A — A’ wil not not necessarily induce a map from Poirecaomplexes i to
Poincae complexes id\’. For supposell, ¢) is an-dimensional Poinc&rcomplex
in A. Then
¢ 2" TD—->D
SO
F(¢) : Z"F(TD) —» F(D)

But this is not the data of a Poinéacomplex inA’; we need a map

>"T’(FD) —» F(D)
Thus we need the additional data of a natural map

T(FD) — F(TD)
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in order to define a Poincarcomplex inA’. This need motivates the following
definition.

Dermnition 2.41. [Ran92 Definition 3.7] A functor of algebraic bordism cate-
gories
F:(AB,C)— (A,B,C)
is a covariant additive functdf : A — A’ such that
(1) For each chain compldx of B, F(D) is a chain complex i’
(2) For each chain comple of C, F(D) is a chain complex i’

(3) The chain dualitie3 andT’ are related in the following way. For each
objectAin A, there is a natural transformation

Ga:T'FA— FTA

such that
(a) The mapping con€(G,) is a chain complex i’
(b) The following diagram commutes:

T'FT(A) - FT(A)

lT'GA lFeA

(T'2FA FA

e(FA

ProposiTioN 2.42. [Ran92 Proposition 3.8A functor of algebraic bordism cat-
egories induces a morphism of cobordism groups.

ProposiTionN 2.43. Let C be a regular chain complex. Then the augmentation
mape : C — Z is a cellular map from the regular chain complég, B, 9) to the
regular chain complexz, %, 0) wherex is the one point set. The augmentation map
induces arassemblyfunctor

A:B-LOC—C

whereC the category of ordinary chain complexes with no local st For any
B-local chain complex D, AD is simply the chain complex D vhi B-local struc-
ture forgotten. The functor A extends to functors of algebpardism categories:

A:A(B)— A
A: Ay(B) — A
whereA is the global algebraic bordism category of Example 2.29

Proor. The assembly oB-local chain complex is a chain complex. The as-
sembly of aB-locally contractible chain complex is globally contrdd#, since the
assembly of @&-local chain contraction is a global chain contraction. XeadAto
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a functor of algebraic bordism categories, we must define&shB-local module
M, a natural equivalence

Gwum : Te(AM) — A(T M)
As we observed in Remark 2.18
ATM = Z Te (C(X) ® M(X))

xeB
For eachx, let
ex :CX) - Z
denote the augmentation map. Then we define:
e ®1:C(X) @ M(X) = M(x)
y®a - exy)a

Then
Gum = Te(ex® 1) : TeAM = T (Z M(x)]
xeB
- T [Z C(®) ® M(x)) = ATM
xeB
is a natural chain equivalence. O

ProrosiTioN 2.44. Let C be a regular chain complex There is a forgetful functor
of algebraic bordism categories

F : As(B) — Aw(B)
inducing a morphism of cobordism groups
F : L"(As(B)) — L"(Aw(B))
Proor. Recall that
As(B) := (A(B), B(B), Cs(B))
Aw(B) := (A(B), B(B), C\(B))

whereA(B) is the additive category d@-local modules an#&(B) is the full additive
subcategory oB-LOC consistingB-local chain complexes such that

Hk(D(x)) =0fork <0

The additive category.(B) has the chain dualityT(, €) of Proposition 2.27. Thus
we defineF : A(B) — A(B) to be the identity functor, and

G:TF—FT

to be the identity natural transformation. The only thingreed to check is that for
each chain complek in C¢(B), F(D) = D is a chain complex it©,(B). If D is a

56



chain complex inCy(B), thenD by definition isB-locally chain contractible. Then
by Proposition 2.11H,(D(x)) = O for all k andx. Furthermore, @&-local chain
contraction ofD is, by forgetting theB-local structure, a global chain contraction
of D. ThusD is globally chain contractible andy(D(x)) = O for allk < 1, soD is

a chain complex it,,(B). m|

Dermnition 2.45. Given two Poinc&rcomplexes im\,,(B) we will say that they
areweakly locally cobordarit there is a cobordism between themAg(B). Given
two Poincaé complexes im\(B) we will say that they arstrongly locally cobor-
dantif there is a cobordism between themAg(B), andweakly locally cobordant
if there is a cobordism between their images urfdan A,,(B).

We now show that algebraic bordism categories we have dedireeelquivalent
to certain categories defined by Ranicki.

ProposiTion 2.46. Let (C, B, d) be a simply connected regular chain complex,
and let(C’, B', ) be its barycentric subdivision. Let K G(C), so thatS.(G(C)) =
C’. Then the simplicial chain functor

S:SIM—-CEL
induces an equivalence of categories
K-LOC — B'-LOC
This equivalence extends to equivalences of algebraiddrardategories
Aw(K)—=>Aw(B)
As(K)—A4(B)

This in turn in induces isomorphisms of groups such that tleviing diagram
commutes and the vertical arrows are isomorphisms.

A

(35) Hn(K;L*) VL(K)

L"(As(B)) —— L"(Aw(B'))

Proor. First we explain some of the notation in the statement ofthleerem,
which refers to algebraic bordism categories and groupseldfoy Ranicki. The
categoryK—-LOC is the additive category of chain complexes which are locat a
finite simplicial complexK [Ran92, Definition 4.1]. Ranicki denotes this category
B(Z, K). In the case wherB' is the set of simplicies of a simplicial complex, then
the categorieK—-LOC andB’-LOC are the same. Indeed, all of the definitions in
this chapter are equivalent to Ranicki’s definitions in Chegppteand 5 of Ran92
in the case wher8 is the poset of a simplicial complex. Since every regulaircha
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complex C, B, d) is equivalent to the simplicial chain complé&x(G(C)), we may
associate to every regular chain complex an algebraic frordategories\,(B’)
and A¢(B’) which are equivalent to Ranicki’s categories associated te G(C).
Our A¢(B) is equivalent to Ranicki's
A(A(Z, K), B(O)(Z, K), C(0)(Z).(K))
Our A(B') is equivalent to Ranicki’'s
A(A(Z, K), B(O)(Z, K), C(IN(Z. K))
See Ran92 Chapter 15] for Ranicki’s definitions of these algebraic Imrdcate-
gories.
The (symmetric)L-groups of the algebraic bordism categdr§(As(K)) are
a generalized homology theory, called symmelritheory [Ran92, Proposition
13.7]. Hence the groupls"(As(K)) are equal to the homology groupk,(K;L*)
for a spectruniL® described in Ran92 Chapter 13]. The group L"(K) is the
bordism group oh-dimensional algebraic normal complexesAip(K). However,
by [Ran92 Remark 9.8] andWei92], VL"(K) is isomorphic to the symmetric-
group of n-dimensional algebraic Poin@acomplexed."(A(K)). (This follows
because every chain complex @, is globally contractible.) Furthermore, Ran-
icki's assembly functor
A: H,(K;L*) - VL"(K)
is simply the forgetful functor
F 1 L"(A«(K)) = L (Aw(K))

so Diagram 35 commutes. O
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CHAPTER 3

The Pair Subdivision of a Regular Chain Complex

In this chapter we discuss the pair subdivision of a reguhairccomplex. As
we will see, the pair subdivision isBlocal chain complex. If regular chain chain
complexC satisfies Poinc@rduality, then the pair subdivision &f determines an
Poincaé complex inA,(B). In the next chapter, we will relate lifts of this Poinéar
complex to one iM¢(B) to topological manifold structures in the homotopy type
determined byC.

3.1. The Pair Subdivision

Dermnition 3.1. Let C, B, d) be a regular chain complex, andyet B. LetC*(y)
denote the hom dual cochain complexg).

C* (V) = Hom(C(¥)«.2)
For a facex of y, let x* € C*(y) denote the cocycle defined on generatoesB by
the relations:
(X.2) = 1 x=z
10 x#z
Remark 3.2. The augmentation map
& :C(X) — Z

SX:ZW

V<X
[vi=0

is a element o€*(X). Indeed:

ProprositioN 3.3. Let (C, B, d) be a regular based chain complex, and let B.
Then the map

£:7Z— C(X)
1> e
which sendd € Z to the augmentation magy is a quasi-isomorphism.

Proor. Since
_ 0 >0
Hoc@ ={ 2 370
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the Universal Cofficient Theorem implies that

HY(C* (X)) = { % g z 8

Thus it sdtices to show that the cochain given by the augmentation map
& :C(X)— Z
a cocycle and a generator @P(C*(X)). We compute

58X:52v*

V<X
V=0

= oV

V<X
Iv=0

= Z Z(@e, vye

V<X v<e
M=0lel=1

= Z Z(Ge, vye'

e<x v<e
IVi=1el=0

By Proposition 1.11, for each 1-celle B,
oe=Vvi—\
for somevy, vo € B. Thus we have
Z(ae, V)€ = (de,Vq1)E" + (de, Vp)e"
v=<e .
lef=0 = (V1 — Vo, V1)€ + (V1 — Vp, Vp)€"
=0
Furthermore, the cocycle, is a generator of the cyclic grougg(Hom(C(X) , Z)),
and thus a generator 6f°(C*(X)). o

Recall Definition 2.5 of the pair subdivision of a regular cheomplex. Given
a based chain compleX with basisB, the pair subdivisiorP is the based chain
complex with basis

Ex={(,X)eBxB | x<y,lyl—Ix =k}
and diferential
d(y, X) = (3y, ) + (1" ™(y, 6X)

Remark 3.4. Equivalently, we may think d? as chain complex generated by
pairs {/, X), with y € Bandx € C*(y) a cochain supported in the closureyof
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If C is the regular chain complex of simplical chains on a siniglicomplex,
thenP geometric pair subdivision studied by ZeemZa¢63 and McCrory McC79]
in analyzing the failure of polyhedra to satisfy Poireeduality. The chain complex
P is bigraded, and filtering this chain complex with respecs gmives rise to the
Zeeman dihomology spectral sequence. More recently, thresphdivision has
arisen in the bivariant chains of Chata@hald.

Proposition 3.5. If C is a regular chain complex, then the mapG — P given
on generators by the formula:

X (X &x) = Z (%, V)
fy=

is a chain map from C to the associated pair complex P.

Proor. We must check that for eache B, s(0x) = d9¥x). By definition this
eguation says:

Z (0%, V) = Z(E)x, V) + (=1 M(x, 5v)
[ V0

Because illegal pairs are defined to be 0,

Z (Ox,v) = Z (0%, V)

V=0X V<X
[v|=0 [vi=0
and by Proposition 3.3
Z ov=20
V<X
V=0

O

Remark 3.6. The mapy is the unit cochain of the cup product on the cellular
cochain complex of the cell x. The natural map

F:CeC™"— P

which mapsg/® x to the pair ¥, X) gives the cap product on homology. (This map is
called the Flexnor cap produdicC79].) Then the following diagram commutes:

CeC*iF—p
_T/
C

HereF is the Flexnor cap producs is the pair subdivision map, and : C —
C ® C™* is the coaugmentation map which send® x® €. Thus, the subdivision
maps corresponds to capping with the unit cochain.
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Tueorem 3.7. If (C, B, 9) is a regular based chain complex, then@ — P is
a quasi-isomorphism.

Proor. Observe thaP is bigraded chain complex, Wiﬂhg generated by
{(,9) € Bpx By | x=yj)

with horizontal diferentiald : P — P?_, and vertical diferentials : P} — P§".
Since the basiB is finite, there is am such thaBy is empty fork > n.
Furthermore, the chain complex C has a tautologous biggadin

0O g>0
q _
Cp‘{cp =0

with horizontal diferentiald : C — C‘;‘)_l and vertical diferential 0.
Filtering with respect t@ gives

(1) a spectral sequenéeassociated t&
(2) a spectral sequen&eassociated t€

As the subdivision map : C — P mapsCy into Py, itinduces amap. : E — E
of spectral sequences. To show tkas a quasi-isomorphism, it fiices to show
that:

Lemma 3.8. The induced map;s E; — E; is an isomorphism at the;Fage.
The pageEj|, is generated by
{(,9) € Bpx By | x=yj)
The diterentiald, of this page i$). As a chain complex,

> [Z(y, X), 5)

yeB \ xgy
>.cm
The homology of this chain complex is

EL = Ho(Eo, do) = D He(C'(9))

yeB
yi=p

(Eo, do)

Now let us consider the spectral sequeBaaising from the tautologous bigrading
onC. The first diferentiald, is identically O, so

=a =a | C, q=0
ELP_EO’P_{Op qg#0
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The subdivision map : C — P maps a generatgrto the pair ¢, &,). sinduces
amap

S Eo?p — Eq,
which takesy € Eo?p toey € Eo?p. EachEOc,)p is a freeZ-module which basiy, so
restricting to a single generatggive the coaugmentation map
g :Z— C'(y)
If (C, B, ) is regular, then by Corollary 3.3 this map is a quasi-isorhsm. Thus
the induced map
—0 o
S:Ep=C— H(C*(¥)) = Efp
is an isomorphism, and
=4q
Eip=E}=0
for g > 0. Explicitly, s is given on generators by the formula
su(y) = [&]

where Ey] is the cohomology class of the cochaipnin H°(C*(¥)).

Since bothE andE are concentrated on the horizontal lipe: 0, both spectral
sequences collapse at thg page and

—0
s :H)C)=E,, — Ez?p = Hy(P)

is an isomorphism. O

Remark 3.9. This argument depends crucially on the fact thas regular. If
the closure of any cebk € B has homology in positive degrees, thepwill not
be concentrated in the lirp= 0 ands; need not be an isomorphism. For example

the chain complex of Example 1.10 does not have the same bgsnak its pair
subdivision.

Remark 3.10. Zeeman considered based chain complex&®e®edd, though he
did not define regular based chain complexes. Nevertheasgroof of Theorem
3.7 is essentially the same as Zeemans Theorem Zardd, even though the
statements are flerent. (The author discovered Zeeman'’s proof after writing
one.)

ProposiTion 3.11. Let x be a cell of a regular chain complex C, and 1€CEX))
denote the pair subdivision of the chain compl¥x). Then the augmentation map

P(C(X) - Z
is a quasi-isomorphism.
Proor. Consider the commutative diagram:
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C(x) —> P(C(X))

)

Z

The chain comple(X) is regular, so the following two statements are true.
(1) sis a quasi-isomorphism by Theorem 3.7.
(2) The augmentation map: C(X) — Z is a quasi-isomorphism.
Since the diagram commutes,
e:P(CXX) -2
is a quasi-isomorphism as well. m|

3.2. A Geometric Picture of the Pair Subdivision

Given a regular chain comple® we have described two functorially related
chain equivalent chain complexes, the barycentric sub@dniC’ and the pair sub-
division P. The barycentric subdivision has a geometric descriptgtha simpli-
cial complex of the nerve of the poset Gf In this section, we give a geometric
description of the pair subdivision. More precisely, welkpeove the following
theorem.

Tueorem 3.12. LetdA™! be the simplicial complex which is the boundary stan-
dard n+ 1-simplex inR™2. ThendA™* has a regular cell decomposition such that:

(1) Each k-dimensional cell is labeled by a p&r x), where y and x are faces
of A1 such that x< y andly] — |x| = k

(2) The closure of the celly, X) is the amalgamation of the simplices of the
barycentric subdivision afA™? of the form x< ... <y

(3) The vertices of the celly, x) are the barycenters of all simplices z such
that x<z<y

(4) The codimension 1 faces of the cgllx) are all cells of the form(z x)
where z a codimension 1 face of y and all cells of the form), where x
is a codimension 1 face of z.

Proor. We describe a second triangulationsaf™!, called thedual triangula-
tion. For eachk-faceo of A™1, we define thelual cello* of to be the following
subcomplex of the barycentric subdivisionaaf™?

0= (X0 < ... < X € B(OA™Y) | X0 = o)
If o is ak-simplex, then a simplex in the barycentric subdivisionha&f form
O <X <X

is of dimension at most — k. Thuscs* is an @ — k)-dimensional subcomplex of
b(0A™?). SincedA™! is a closed triangulated manifold, eachis a PL ball, and
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the collection of dual cells form a regular cell decompaositdf A" L. (See RS72
p. 27].) The poset of cells of the dual decompositio@at! is the opposite poset
of the standard triangulation #fA™! . That is to say, for simplices andr of
aAn+1_
o't e 120

We claim that the dual decomposition@£™! is in fact a triangulation. Given
ak-simplexo in 0A™1, o* is a (n— k)-cell with one vertex for* for eachn-simplex
7 such thatr < 7. A k-simplex indA™?! is determined by choosinig+ 1 vertices.
SincedA™?! hasn + 2 vertices, eack-simplexo is a face of

nN+2-(k+1)=n-k+1

n-dimensional simplices. Thus' is an @ — k)-cell with n—k + 1 vertices. Further-
more every subset of those- k + 1 vertices determines a cofacesoofind thus a
face ofc*. Thuso™* is an f — k)-dimensional simplex.

We have described two triangulations of thepheredA™?. The intersection
of two triangulations is a regular cell complex. (S&S[72 p. 15].) LetP denote
the cell complex formed by intersecting the standard trgaigpn and the dual
triangulation ofdA™?!. The cells ofP are the set theoretic intersections

onNt’

whereo is a simplex of the standard triangulation afids a simplex of the dual tri-
angulation. The simplex is made of of all simplices in the barycentric subdivision
b(dA™?) of the form

X<...<0
The simplexr* is made of of all simplices in the barycentric subdivistifAA™?)
of the form

T<...<Xk

We conclude that
(36) CNT' +#@ & 7120

Each nonempty intersectiann 7* is a subcomplex of the barycentric subdivision
of AA™1). If o is ak-simplex andr is anl-simplex, thernr has codimension — k
andr* has codimensioh Thus the codimension of the intersection* isn—k+I,
and so the dimension of the intersectiokis|. Let|o| denote the dimension of.
Then we have:

(37) lo 7| = |or| = I7]

A face ofo N v is of the formn N v*, wheren is a face ol andv is a coface of.
We claim that the cell compleR satisfies all of the conditions listed in Theo-
rem 3.12. We show how each condition is satisfied.
(1) We define the pairf, 7) to be the celb- N v*. Then we have:
@oc=t
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(b) lo N7l = o] = I
(2) Recall thato is the subcomplex of the barycentric subdivisiondaf*?
consisting of all simplices of the form

X< <0

andr* is the subcomplex of the barycentric subdivisiodaf** consisting
of all simplices of the form

T<...< Xk

Thus ¢, 1) := o N 7 is the subcomplex of the barycentric subdivision
consisting of all simplices of the form

T<...<0O0

(3) The faces of, 7) are the pairsi ) such thatr < n, v < o, andr < n.
The vertices are those pairg §) such thaty| — |5 = 0. If v < n and
vl — Inl = 0, we must have = n. The cellv N v* is exactly the barycenter
of v. Thus, the vertices of ofof, 7) are precisely the barycenters of the
simplicesy such thatr < v < o.

(4) A codimension 1 face af N 7 is one of the following two types.
(@) A cell of the formd,o- N v, whered,o is a codimension 1 face of
(b) A cell of the formo- N 9;7*, whereg;7* is a codimension 1 face of,

or equivalentlyr is a codimension 1 face ofr = 9;7*.

Thus the codimension 1 faces of, {) are exactly the cells) (o, 7), where
0io is a codimension 1 face of, and the cellsd, 6i7), wherer is a codi-
mension 1 face of;r.

O

CororLary 3.13. Let K be a finite simplicial complex. The K has a cellular
subdivision P satisfying all of the conditions of Theored?3.

Proor. The set of vertices df is finite; suppos& hasn vertices. A choice of
ordering of the vertices df defines a simplicial embedding Kfinto 6" where we
map the-th vertex ofK to thei-th vertex of ofdZ". We restrict the pair subdivision
of 9X" constructed in the proof of Theorem 3.12 to the imag& oiVe define this
restriction to be the pair subdivision Kf. |

Remark 3.14. Ifxis ann-simplex, then each-cell (x, v) of the pair subdivision
of x is an amalgamation afl simplices of the barycentric subdivision »f

Dermnition 3.15. IfK is a simplicial complex, we define tleellular chain com-
plex of the pair subdivision of Ks follows:

C.(P(K)) = P(S.(K))
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Thatis to say, we define the cellular chain complex of geamte pair subdivision
P(K) to be the algebraic pair subdivision of the simplicial etsadf the simplicial
complexK.

Remark 3.16. LetC be a regular chain complex with basds We have defined
the cellular chain complex oP(K) so that the following diagram commutes.

c—2~36(©)
lb /
C’ s

ls
P(C") < P(G(C))
P(K) is a cell complex with one cell for each generator of the das&in complex

P(S.(K)). To be more explicit, the set of cells B{K) and the set of generators of
P(S.(K)) are both isomorphic to the following set

{(y,X) e B xB | x<vy}

Furthermore, the poset structure on the set of generatoR(#)(K)) is the same
as the poset structure on the cell complRX). Thus the only freedom we have
in defining the chain compleg.(P(K)) is choosing the signs of the boundary map.
By Theorem 3.7, the map

s: S.(K) - P(S.(K))
is a quasi-isomorphism. Thus, the chain comale{P(K)) as we have defined it
computes the homology &#(K).

Remark 3.17. As shown in Figure 3.1, the pair subdivision of a coratonal
manifold M is a decomposition oM that is the coarsest common subdivision of
both the original cell decomposition and the dual cell degosition.

Derinition 3.18. IfK is a finite cell complex and is a cell ofK, then thedual
coneof x, denotedDx, is the contractable subcomplex of the barycentric subdivi
sion of K’ consisting of all cells of the form

{Xo<...< X €K' | X=X}

The boundary of the dual cone wfdenotedDX, is the subcomplex of the barycen-
tric subdivision consisting of all cells of the form

{Xo<...<xX €K' | XZ X}

Dual cones have a simple combinatorial description in thieguébdivision.
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Ficure 3.1. The left-hand picture shows a piece of a cell decom-
position of a surface, with the dual cell decomposition shavith
dashed lines. The right hand picture shows the coarsest oamm
subdivision of the original decomposition and its dual. Tgser
complex is a combinatorial description of this common suisdin.

ProposiTion 3.19. Let K be a simplicial complex, and let P be its pair subdivi-
sion Let x be a cell of K. Then

Dx={(y,X) e P| x< X}
oDx={(y,X) e P| xz2 X}
Proor. The topological identity map fro{’ to P is aPL map which sends
{Xo<...<xeK | X=X} {(y,X)eP|x=zX}
Xo<...<x%eK [ XZx}m{(y.xX)eP|xzX])

3.3. Algebraic Structure on the Pair Subdivision

In this section we describe some algebraic structure on #direspbdivision
of a regular chain complex. All of the algebraic structures describe are well-
defined for the pair subdivision of any regular chain compleeowever, we wish
to make use of the geometric picture of the pair subdivisioergin Section 3.2.
Thus throughout this section we assume thas the simplicial chain complex of
a simplicial complex. By Theorem 1.43, this is no loss of galigt as we may
always replac€ by its barycentric subdivisio@’.

The pair subdivision has been studied previously, as notd&teimark 3.4. To
the author’s knowledge, however, the formulas in this sadtiave not appeared in
the literature. The author learned the formulas for theahadymap and cup product
from Dennis Sullivan.

Proprosition 3.20. Let (C, B, d) be a regular based chain complex, and let P be
its pair subdivision. The map : P — P ® P given on generators by the formula

AY.%) = ), (D@2

X<z<y
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gives P the structure of a fierential graded coassociative coalgebra. The augmen-
tation mape : P — Z given on generators by the formula:

1 y=x
s(y,X)={0 ));;tx

is a conuit for this coalgebra.

Proor. First we check that formula fax defines a dterential graded coalgebra.
We need the following diagram to commute:

P2~PgP
|, e
P2-~PgP
Let (y, X) be a generator d?.
Ads(y, X) = A((3y. X) + (-1)"(y. 6x))
= > (0y.2@@X) + (-1 (y,2) & (2 6))

X=Z<y
We compute going around the diagram the other way:
despA(Y. X) = ese ) (1.2) ® (2.9

X<y

= > (y.2e@X + (-1, 69 (2 X)

x<z<y
+ (=14, 2) ® (62 ) + (~D)"A(-1)"P(y, 2 ® (2 6X)
Now, each term
-1)"(y,69 ® (z ¥)
in the above expansion represents a sum of terms
(D" aw, 2(y, W) ® (2 X)
wherezis a codimension 1 face @f. Similarly, each term
D"y, 29 ® (62 %)
represents a sum of terms
(=1)""aw, 2)(y, w) ® (2 %)

wherezis a codimension 1 face @f. Sincelw| = |7 + 1, these terms are equal but
with opposite signs. Thus all of these cross terms cancdl, an

AdP(y9 X) = dP®PA(y’ X)
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Next we check thah coassociative. We need the following diagram to com-
mute.

P—2 ~PgP

Al \L 1®A
A®1

PP~ PgPaP

We chase an generator around the diagram:

A

(¥, %) Dixawszy(Y> W) @ (W, X)

‘| [1es

Yczzy ¥ D ® (Z X) 2 Y cery (Vs W) ® (W, 2) ® (2 X)

Finally, we check that the augmentation nzaig a conunit. We need the following
diagram to commute.

P—" —~P®P
Ai \\\\\\\\\\\& ll@a
PoP-*%7eP=PgZ

Let (y, X) be a generator. Then

1®e[2(y,z)®(z,x)J

X=<zy
is nonzero only on the term
(. ) ® (%)
Thus
(1®&)AlY.x) = (v.X)

s®l[2(y,z)®(2,x))

X=<zZsy

Similarly

is nonzero only on the term
v.y) ® (¥: %)
and so
(@ DAY, X) = (v, )
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The pair subdivisiorP of a regular chain complexC( B, 9) is itself a based
chain complex, with basis

E={(y,x)eBxB | x<vy}

Let P~ denote the chain complex with
(P™)x = Hom(P_, Z)

The setE also gives a set of generators fr*, where we identify the paiy(x) € E
with the map in HomPX, Z) which is given on generators by the formula:

CERS PR M
We abuse notation and leg, k) denote both an element & and its dual inP~.
The diferential of the chain comple®* is given by the formula
(38) d(y, ) = (&Y, ) = (=1 (y, 9x)

ProrosiTion 3.21. The coalgebra structure on P induces a unitaffehential
graded associative algebra structure on*Pwith the multiplicationu : P™ ®
P~ — P~* given on generators by the formula:

uma={ %2 X

The coaugmentation map
e Z—-P
1l ¢

is the unit. The unit can be written as a sum of generators

E)=2= ) (%X
xeB
This in turn induces a left action ?® P — P given on generators by the
formula:
_f wy) x=1z
(y,X)ﬂ(w,Z)—{ 0 X%z
which gives P the structure of a left/@irential graded P*-module. Note that the
expressior{w, y) is defined to be 0 if ¥ w.

Proor. Both of the statements of this Proposition are formal comeeges of
Proposition 3.20. The hom dual of anyfférential graded coalgebRis a diter-
ential graded algebr®*. Right multiplication in an associatedfi#irential graded
algebraA induces a left action of any hom duat*, giving A~ the structure of a

The minus sign is correct!
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differential graded right module ové&r To be more explicit, we use the following
to define an action oA on A™*:

Hom(A, Hom(A, A)) - Hom(A, Hom(A™, A™))
= HomA® A", A™)

To get a left action oP~* on P, we identify P with its double dual P~*)* in the
canonical way. It is elementary to verify that the providedniulas are the ones
which result from applying these formal constructionatoP® P — P.
We check thatl is a derivation ofu. That is to say, let us check that
d((y,¥) U (zW)) = d(y, ¥) U (zw) + (=1)"(y, x) U d(z w)
First we compute
dly,w) x=z
d((y,x) U (zw)) =
((y, x) U (zw)) {0 < t7

oy, w) = (1) M(y,ow) x=2z
o X#2Z

Next we compute
d(y, ) U (z w) + (=1)""(y, x) U d(z w)
(39) = (6y, X) U (zw) = (=1 (y, %) U (z w)
+ (=1)Y My, x) U (62 W) — (=1, x) U (z aw)
If X =z, then the only the first and the last term are nonzero, and
d(y, ¥) U (zw) + (=1)"(y,w) U d(z w) = (6y, W) + (=1)*™(y, w)

If x # wthen all of the terms of (39) are 0 except possibly whéna codimension
1 face ofx. In that case, the nonzero terms of (39) are

— (C1P"Py, %) U (Zw) + (1Y, ) U (62 w)
= —(=1)P"PUax, wy(y, w) + (=1)PUax, wy(y, w)
=0
Let us check that = £(1) is a unit foru. If (y, X) is a generator oP~*, then

WX Us=(.0)U Y (22

zeB
= (¥, X) U (XX
= (. %)
This shows is a right unit; an analogous computation shows it is a leittaswell.
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Now let us check that givesP the structure of a dlierential graded lefP~
module. That is to say, we check that

(40)  d((y:¥) N (zw) = (~1PEMd(y, X) 0 (2 w) + (v, X) N d(z w)
First we compute

dizy) x=w
0 X#W

d((y.9) n(zw)) = {

_J@zy) + (-1)*M(zsy) x=w
o X # W

Next we compute
(DN, X) N (Z W) + (v, ) N d(z W)
(41) = (-1HEEMSY, ) N (z w) = (=1)FM(y, 6%) N (z w)
+ (¥, %) N (02 W) + (=1)*M(y, x) N (z 6w)
If x =w, then the only the first and the third terms of (41) are nonzamd
(=LA, ) N (2 w) + (v ) N d(zw) = (-1 M(zZ 6y) + (92 )

as desired. Ik # w, then the only way that any of the terms of (41) can be nonzero
is if wis a codimension 1 face of In that case

(=1)YPEMd(y, ) N (Z w) + (v, X) N d(z w)
= ~(=1)"M(y, ) N (zw) + (1) M(y, x) N (z 6w)
= —(=1)"Max, wy(y, w) N (Z W) + (=1)*(ax, wi(y, X) N (z %)
= —(=1)""@ax, Wiz y) + (-1)" Mz )
=0
Thusn satisfies (40).
Now we check that acts by the identity oR. If (y, X) is a generator P, then

WX Ne= (.U (22

zeB
=X U(y.y)
= (¥, %)
i
Remark 3.22. We used right multiplication iR~ to get a left action oP~* on
P. We could have also used left multiplication®ni* to get a right action oP~ on
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P. SinceU is commutative on homology (as we shall show), thesenvpsoducts
induce the same map on homology. Let

T:PeP->P®P
denote the transposition operator which maps
(¥, ¥) ® (W) > (1) HERD(Z w) © (y, X)

A chain homotopy between andTA will induce a chain homotopy between the
two cap products coming from left and right multiplicationR—*. We will develop
this idea further in Chapter 4.

To characterize the algebraic structure we have definedeopain subdivision
of a based chain complex, we introduce some terminologyaWhitney \Whi38].
We will give the definition as Whitney gave it in 1938.

Derinition 3.23. (Whitney) Acomplex admitting a product theoigthe follow-
ing data.

(1) Afinite, nonnegatively graded pos&, ) of cells
(2) For eaclkk, a functioni : B, x By_; — Z called theincidence number

Here By denotes the degrdepart of the graded pos& Theclosureof a cell x is
the poset

{yeBly=x
Given this data, le€y denote the free abelian group generatedBpyand define a
map

0:C¢— C1

Dlaixe Y al ( > i(Xa,Y)y]

yeBy-1

A chain ina € C is boundary-likef either
(1) ais ak-chain anck > 0 _
(2) a=Ya'viisaO-chainang o' =0
This data must satisfy

(1) If xis ak cell andyis a k — 1) cell such that(x,y) # 0, theny < x.
(2) °=0
(3) If a is a boundary-like cycle in the closure of a cell, thers a boundary

ProposiTion 3.24. Let (C, B, d) be a regular based chain complex in our sense.
Then(B, <) is a complex admitting a product theory in Whitney’s sense.
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Proor. To get a complex in Whitney’s sense, we define the incidencebeu
i(X,y) to be(dx,y). Then for ak-cell x and k — 1)-celly, y < x if and only if
i(x,y) # 0. If C is regular, than for each cet|

e:CX) > Z

is a quasi-isomorphism. Thus, every positive dimensiopelecin C(X) bounds. A
0-dimensional; a'v; bounds exactly if

8(Zaivi) = Zai =0

Thus our regularity axiom implies that every boundary-ldgele in the closure of
a cell bounds. O

As the name suggests, complexes admitting a product thelonjt additional
algebraic structure. First observe thaBifs a complex admitting a product theory,
andC is the associated chain complex, then the hom dual con@®téxs a free
chain complex with the same ba8sAs usual, ifx € B is an element of poset, let

St) ==fye B| x<y)

2.
xeB
[x=0
and by abuse of notation letdenote the chain

> x

xeB
[X=0

Let £ denote the cochain

as well. IfE andF are to subsets @, ErF denotes their set-theoretic intersection.

Tueorem 3.25. (Whitney[Whi38]) Let B be a complex admitting a product
structure. Then there exists a degree 0 product

C"eC*—>C™

satisfying the following 3 axioms. For any cells x and y in B.

(42) S(xUY) =d(X) Uy + (=L)X U é(y)
(43) eUX=X
(44) IfxUy+#0,xUye Si{(x)nSiy)

There exists a degree 0 product

C"®C->C
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satisfying the following 3 axioms.

(45) AxNy) = (1)*Ms(x) Ny + xNa(y)
(46) (e, xNxy =1
47 fxNny#0,xNnyeS(x)ny

Any two products satisfying the axioms foigive the same product on coho-
mology. Any two products satisfying the axiomsfogive the same product on
homology and cohomology.

CoroLLarY 3.26. Let (C, B, d) be a regular chain complex, and I&E’, B'9) be
its barycentric subdivision. Let P denote the pair subdoriof C. Then by Propo-
sition 3.12, P is a regular chain complex, and thus a compbixi#ting a product
structure in Whitney’s sense. The productand N of Proposition 3.21 satisfy
Whitney’s axioms.

Proor. We checked in the proof of Proposition 3.21 that (42), (48y (45) are
satisfied. To check (46), we observe that for any gelk);

& XN (Y. X)) = (& (Y, y)
=( Y @wW). ()

(zw)eP
I(zw)|=0

= (062, (%)

xeB’
=X((AYN(A))
=1

Next we check (44) and (47), which assert in a precise wayuhatdn are
local products. First observe that in the pair complex,

xy)<(zw) & x=<zandw<y
SupposeX, y) U (z w) is nonzero. Then
(X y) U (zZw) = (x,w)

andy = z. We havew <y, so (,Y) is a face of §, w). Similarly,z < x, so g w) is a
face of ,w). Thusif (x,y) U (zw) # O,

(X y) U (zWw) € St(x,y) N Stz w)
Next we must show that if y) N (z w) # O,

(X,y) N (zZw) € Stx,y) M (zw)
76



Observe that

zw) (xy)=(zw)

Stx.y)n(zw) = {0 (xy) £ (zw)

zZw) (xy)=(zw)
0 (xy) £ (zw)
SupposeX, y) N (z w) is nonzero. Then
(xy)N(zw) =(z2x)
andy = w. Sincex < zandy = w, (X,y) < (zw). Thus
St(x,y) M (zw) = (zw)

Sincew =y < X, (ZzX) < (zw). Thus € X) € (zw). We have shown that if
(xy)n(zw) =0,

St(x.y) M (zw) = {

(X, y) N (zZw) € Stx,y) M (zw)
O

Remark 3.27. In particular, Corollary 3.26 implies that theandn products
we have defined on the pair subdivision of a simplicial com@gree with the
Alexander-WhitneyJ andn products on homology.
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CHAPTER 4

Local Poincare Complexes and Topological Manifolds

In this chapter, we show how the algebraic structure on tivespadivision of
a regular based chain compleR, B8, d) can be used to descrili2local Poincag
complexes. As we will see, topological manifolds strucsurethe homotopy type
determined by a regular chain complex satisfying Poiaahrality correspond to
choices of local inverse to the Poinéatuality map.

Throughout this chapter, we work with the categ@®#&G of simply connected
regular chain complexes; that is to say, regular chain cexesl whose geometric
realization is connected and simply connectedC I§ a regular chain complexy’
denotes the barycentric subdivision@fandP denotes the pair subdivision Gf.
Furthermore, les denote the composition

s:C->C -P=PC)

Thus, in this ChapteR always denotes the pair subdivision of the barycentric sub-
division of C. SinceP is the pair subdivision of a simplicial complex, we may use
the geometric properties &f developed in section 3.2.

4.1. Acyclic Carriers

We now briefly recall Steenrod’s method of acyclic carrieswe will use it
to construct algebraic Poin@acomplexes. LeK be a connected finite regular cell
complex, in the sense offe53. In particular, the cellular chain complex &t
is a regular chain complex in our sense. Then the usual féagore gives the set
of cells of K the structure of a poset. L&(K) denote the set of all nonempty
subcomplexes dk. Then inclusion of subcomplexes give¢K) the structure of a
poset.

DeriniTion 4.1. (Steenrod) LeK andL be cell complexes. A&arrier from K to
L is is a poset map
: K- P(L)
such that each The carrierasyclicif for eacho € K, the kernel of the augmenta-
tion map
e CT(0)— 2
is acyclic; that is to say the kernel of the augmentation nagprio homology.
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Let Hom(C(K), C(L)) denote the chain complex where
Hom(C(K), C(L))i = Hom(C.(K), C..i(L))
Let f e Hom(C(K),C(L). We sayf is carried byI" : K — L if for eacho € K
f(o) € C(I(0))

Dernition 4.2. (Steenrod) Ldt : K — L an acyclic carrier. Then theperator
complexO(T') is the subcomplex of Horg(K), C(L)) consisting of all map®; :
C.(K) - C.,i(L) such that

(1) T is a carrier for;
(2) Ifi =0, then
(@) ¢o is a cycle
(b) There exists a integdy, called theindex of ¢g, such that for each
vertex 0-chairc of Co(K)

&(#o(c)) = ke(c)
wheree denotes augmentation K andL.
(3) Ifi <Otheng; =0

Note that a chain map : C(K) — C(L) which commutes with augmentation is
exactly a 0-cycle of index 1 in Hor@(K), C(L).

Tueorem 4.3. (Steenrod) Lel : K — L be an acyclic carrier. Then the follow-
ing augmentation map is a quasi-isomorphism.
or) -1z
Inde i=0
P X¢)
0 I>0
In particular this theorem implies:

(1) There exists an augmented chain niapKk — L carried byl

(2) Any two chain maps carried dy are homotopic via a homotopy carried
byT.

(3) Any two homotopies between chain maps are themselvestogic via a
homotopy carried by, and so forth.

Proposition 4.4, Let (C, B, 0) be a regular chain complex. Let £ P(G(C)) be
the pair subdivision of its geometric realization, and byisé of notation, let P also
denote the cellular chain complex ofdRC)). Then

FA ‘P—PxP
(Y, X) = (¥, X) X (¥, X)
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is an acyclic carrier for the chain map
A:P—>P®P

WX P > (28X

X<Zy

Let T denote the transposition operator

T:PeP—P®P

(v, X) ® (W, 2) — (_1)(IWI—|ZI)(|yI—IXI)(W, 2) (Y, X)
ThenI', is an acyclic carrier for the chain mapA.
Proor. P is a regular chain complex, so each augmentation map
e C(m X m) -7

is a quasi-isomorphism. Thig is an acyclic carrier. Ik < z <y, then both Y, 2)

and ¢ x) are faces ofy(, x), SOA is carried byl's. Sincel'x(y, X) is invariant under
the transposition operatdr, I, is a carrier forT A as well. m|

Note thatT? = 1.
CoroLLArY 4.5. Define a chain map, : P —» P ® P as follows:

Ao =TA
Then for each s> O there exists a degree s map
As:P—P®P
such that
(48) As € O(T'p)
(49) doqryAs = (w1)°As 1 + TAg 4

The reason for choosing, = A will become clear in the proof of Proposi-
tion 4.10

Proor. By Proposition 3.20A : P - P® P is a chain map. IfX,x) € Pis

vertex, them(x, xX) = (X, X) ® (X, X). We have
eXX)=e(XX)®(x,x) =1
SO A is a chain map of index 1 in Steenrod’s sense. TAus a degree 0 cycle in
O(T',), the operator complex of the acyclic carrléy. Furthermore, Sincé is an
isomorphismAq = TA is a degree 0 cycle as well. Since the augmentation map
e:0[L) > 2
is a quasi-isomorphisny, — TAg must be a boundary iIQ(I",). Thus there is some
A1 € O(T',) such that
doryA1 = Ao = TAg
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Now suppose inductively that mapg have been constructed flr< s satisfying
the stated conditions. Then

Aoy ((-1)°As1 + TAs4) = (-1)° ((_1)3_1As—2 + TAs—z) + (-1 As 2+ TAs 2
= —Aso+ (-1)°TAg o+ (-1 TAs 2 + T?As
=0
Thus
(-1)°As1+ TAsy

is an 5—1)-cycle inO(T'»). SinceO(I",) has no homology above dimension 0, there
must be somd; € O(I'»)s such that

dO(FA)AS = (_l)SAs—l +TAs

mi
CoroLLARY 4.6. Let ¢ be an n-cycle of P. Then
dpep(As(C)) = (1) (As-1(C) + (-1)°TAs-1(C))
Proor. The operator comple®(I',) is a subcomplex of the hom complex
Hom(P,P® P)
We compute:
(dHom@psr)As) (€) = Astp(C) + (—1)"dpep(As(C))
= (—1)"dpsp(As(C))
By Corollary 4.5
OhomerepAs = (—1)°As 1 + TAg 1
Thus,
dpep(As(C)) = (=1)"(As-1(C) + (=1)°TAs 1(0)
i

4.2. Poincag Duality Spaces

DeriniTioN 4.7. LetX be a compact topological space which has the homotopy
type of a simplicial complex. We say thAtis ann-dimensional Poincaré Duality
spacef there is a cycle X] € C,(X) such that the cap product map

_N[X]: C"™(X) — C.(X)
a an[X]
is a quasi-isomorphism.
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ProrosiTion 4.8. Let C be a regular chain complex, and Jet C,, such that
_Nsu): P —P
(¥, X) = (Y, X) N S(u)

is a quasi-isomorphism. Then the geometric realiza@@) is a Poincaré duality
space.

Proor. The simplicial complexg(C) has a subdivision which satisfies Poiriear
duality with respect to the cap product on the pair complexthe result follows
from Proposition 3.26. m]

Derinition 4.9. If C is a regular chain complex anis ann-cycle satisfying the
hypotheses of Proposition 4.8, we say th#& afundamental cycléor C.

Prorosition 4.10. (Compare[Ran80b, Proposition 1.1) Let C be a regular
chain complex with n-dimensional fundamental cycl@hen the datgP, - N s(u))
can be extended to an global algebraic Poincaré complet,ighto say, a Poincaré
complex in sense of Definition 2.34 in the “global” algebrdiordism category of
Example 2.29.

Proor. The cap product magy := - N s(u) provides the chain equivalence

P — P
We must construct the higher terms: X™T.P — P such that
(50) dHomr.pm®s = (“1M* (@51 + (1T (P)(¢s-1))

We will construct these maps using the higher diagonal mé@swllary 4.5. First
we define the following chain map:

\:P®P — Hom(T.P, P)
¥, @ W,2) = (B, @) = (B, ), (¥, X)H(W, 2)

Here((8, @), (Y, X)) means evaluate the cochajs ¢) on the chainy, x). Let us
abuse notation and let the symbylX) denote both the cell d® and the generator
of P~ which takes the value 1 oy,(x) and O on all other generators. Then we may
write \((Y, X) ® (w, 2)) as follows

W2 y=8x=«a
('B’Q)H{O y#BOrX+p

LetT : P® P —» P ® P denote the transposition operator. Then the following
diagram commutes:

(51) Po P —> Hom(TcP, P)

lT J/TC(P)

P® P ——> Hom(T¢P, P)
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Let (y,X) ® (w,2) € P® P. Then
\T ((y. ) ® (W, 2))
is the map

(=1)W-RW-M(y, x) w=p8,z2=a

(52) (B’Q)H{O W#BOrz+p

The map7¢(P) is defined in Definition 2.33. Fof : TcP; — P,
Tc(P)(f) = (1) ec(P)Tc(f)

W2 y=BX=a
0 y#BOrx+p

(- 1)(|a|—|ﬁ\)(IWI—IZI)(W’ 2 y=BX=a
0 y#BOorx+p

(53) Tc(P)\((y:X) ® (W, 2)) = T¢(P) [(,3, @) = {

=(/3,0z)'—>{

Comparing (52) and (53), we see that (51) commutes.

Now we inductively construct the mapgs for s > 0. Lety : C — D be a
degreen map of chain complexes. The we defineto be the degrea map with
components:

(e)rs : Cr = Dsin
¢ (=1)°y(c)
We claim that
o : (¥>X) = (¥, X) N S{u)

is exactly the map\TA(s(u)). The subdivision of the fundamental cyglas the
cycle (u, ), where
= x

xeB
IX|=0

Thus

(v, ¥) N s() = (v, X) N (. &)

_ (/J’y) X =0
o IX| # 0
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We compute

\TA(s(w) = \T (Z(ﬂ 2)® (X, 8)]

zep

=\ [Z(_ 1)l (7 £) @ (i, z)]

zep’

_ [(y, X) {(—1)'(""'2')('”"8'(#,)/) X = 0]

0 X # 0
= €po(Y, X)
Thusgg = eNTA(u, &) = eAg(u, €). We define
ds = eNAs(u, €)

Using the computation of Corollary 4.6 and the fact that Daagb1 commutes, we
see that fos > 0,

Arom(rpP) (¢#s) = Orom(rrP)€NAs(, £)
= e\pgpAs(u, €)
= eN(-1)"* (As-1(i, &) + (-1)°TAs (1 €))
= (1) (\As-1(1, &) + (-1)°e\TAs 1(u, €))
= (1)"*(¢s-1 + (-1)Tc(P)eNAs-1(u, €))
= (=1)"*(#s1 + (-1)*Tc(P)ps-1)
Thus the map#g, satisfy (50). O
Tueorem 4.11. Given a regular chain compl€C, B, d) and a fundamental cycle

u € Cy, there is a B-local mapg, : X"TP — P such that the following diagram
commutes:

bu
S"TP——P
T ()
P
wheree : X"P~* — X"TP is the natural quasi-isomorphism of Proposition 2.43

andNs(u) is the cap product with the pair subdivisionof The B-local maw, a
global quasi-isomorphism, but not necessarily a B-locagjtisomorphism.

The geometric idea of Theorem 4.11 is as follows. A fundaalecycle u
determines a relative fundamental class of each dual Bondo be more explicit,
if 1 is a fundamental cycle for triangulated geometric Poiachrality space, then
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(u, X) is the relative fundamental class of the dual céne There is a local cap
product map

(54) N[DX] : C"™=*(DX) — ¢(Dx, DX

Recall from Proposition 3.19 that these chain complexes bawple descriptions
in terms of the pair subdivisiot""¥-*(Dx) is generated by pairs of the form

{(y,X) e P x=<x 2y}
andC(E(, 65() is generated by pairs of the form
{(, ) e Pl x=2y}
Thus (54) is given the following formula
N[DX : C"™~*(DX) — ¢(Dx, IDXx)
Zy)~ @Zy)N X
This formula and its geometric meaning motivate the definiof¢,.

Proor or THEOREM 4.11. First we describe thB-local chain complexz"T P.
Recall the local structure oR. P(x) is generated by all pairs of the form, ).
By definition,

TPO) = " Py) ™

X<y

ThusT P(x) is generated by

{zy)e P x=<y}
The generator y) has degree|Z + |yl — |X. By definition,

TP:ZTP(X)

xeB

so the chain compleX P is generated by triples
{(zy,X) e BxBxB|x<y<1Zz

and each generator has degrz+|y|—|x|. From the formula (38) for the fferential
of P and Remark 2.13, we see that thé&elientiald;p is as follows.

dre(z Y, X) = (62 Y, X) — (-1)"M(z 9y, ) + (-1)"P(z y,6%)
Thus the chain compleX"T P is generated by triples
{(zy,X) e BxBxB|x<y=<1Zz

and each generator has degnee|Z + |y| — |X|. Recall from Definition 2.32 that for
a chain compleX,

dZ”D = (—l)de . (ZnD)k — (ZnD)k_l
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Thus the diferentialdsntp is as follows.
(55) dwre(z Y, X) = (-1)"* M ¥ (sz y, X) - (-1)"(z, dy, x) + (-1)"™(z Y, 6%)
Now we define the mag,,.
¢, TP P
Zy.X) = (zy)N WX

This formula makes sense, &) € P, and {1, X) € P. Thus we may multiply
(zy) and {, xX) using the cap product of Proposition 3.21. First obsenat th
¢.(zy,X) # 0, theny = xand

6.(Z Y, X = |(i, 2)]
=n-|Z
=n-1Z+yl-IX
=1(zy, X

thus¢, is a degree 0 map. We claim that for amgycleu € C,, ¢, is a chain map.

A (2 Y, X) = dp (2 Y) N (1, X))

_ dr(u,2) xX=y
0 X#Y

_ 0D + (1), 62) x=y
1o X#Y

D)6 x=y
~]o X#Y

Next we compute:
$ulrrp(Z Y, X) = ¢ (-1 * MM (o2,y, %) - (-1)"M(z Y, X) + (1) (2 ¥, 6X)

= (-1 5z, y) N (1, X)
= (=1"™M(z 3y) N (. ) + (~1)"M(z y) N (w,6%)

If X =y, then only the first term is nonzero, and

¢.Osrrp(z Y, X) = (1) M6z, y) N (1, X)
= (-1)""(u, 62)
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If x #y, then all of the terms aob,dsrrp(z Y, X) are zero unlesg is a codimension
1 face ofy. In that case,

GuOerrr(z Y, X) = —(=1)"™(Z dy) N (1, X) + (-1)"™(Z y) N (u, 6X)
= —(=1)"™May, X)(u, 2) + (1) "3y, x)(u, 2)
=0

Thusg, is a chain map.
Next we claim that, is aB-local chain map.

S"TP(X) = {(zY,X) | X<y=<z
If ¢.(zy,X) #0, theng,(z Y. X) = («, 2). Recall that
P(X) = {(w, X) | Xx < w}

Thus
6. (P9) € )" P(2)

X=zZ

so¢, is aB-local chain map.
Let us consider the chain complBRP~* and the map*. First observe tha®™
is generated by pairy,(x) of degree-|y| + |x|. The dtterential ofP~* is given by

d(y, X) = (Y. ) = (=1)"(y, 6%)

ThusX"P~* is generated by pairy,(x) of degreen — |y| + |x|, and the dterential
dsnp-+ IS given by

d(y, ¥) = (=1)"> — (=1)(y, 6x)
By Proposition 2.43, there is a natural chain equivalence
e€:P">TP

for any B-local chain comple®. This is a map of global chain complexes that does
not consideB-local structure. We have the following explicit formula to.

Y'PT S E"TP
(zy)~ (zY.€)
Heree denotes the cocham: C — Z given by augmentation. Explicitly,
e= 3 v
veB|v|=0
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Recall from the proof of Proposition 3.3 th&at = 0. We check that* gives a chain
map fromXZ"P~ to "TP.

dsnrp€ (2 Y) = dunrp(Z Y, €)
= (1) sz y, 8) — (1) (z Ay, £) + (-1)"M(z Y, 6¢)
= (-1 M5z y, ) ~ (-1)'(z 3y, ©)
= €((-1)"*M(5zZ, y) - (-1)"(z 9y)
= €' dyp-(2Y)
The subdivision map : C — P is given by the formula
S(x) = (%, &)
Thus the mams(u) is given by
Nns(u) : "P* - P
. X) = (v, %) N (i, €)

Note that this map sends the pair subdivisiaref of a cell x to (u, X), the funda-
mental class of the dual cone xf
We check that the diagram commutes. L2y} € X"P~*. Then

¢, (2Y) = $u(2 Y, €)

=(2Zy)N(u &)
=(zy) N S(u)
The coaugmentation mag is always a quasi-isomorphism.fs(u) is an iso-
morphism, the, must be a (global) quasi-isomorphism as well. O

Remark 4.12. If P is the pair subdivision of a simplicial compldk the chain
complexT P is the chain complex of a cellular subdivisionKf called the triples
subdivision. Just as the cells Bfare labeled by pairs, the cells P are labeled
by triples. Figure 4.1 shows the triples subdivision of arigle.

We might now expect an analogue of Proposition 4.10. That &ay, a global
Poincaé duality map gives rise to a global algebraic Poigaaymplex, so we ex-
pect that the local datd(¢,) should extend to a local algebraic Poireaomplex.
And indeed this is almost true. The local map can be extend to a series of
higher mapsps satisfying the conditions of Definition 2.34. Singg is a global
equivalenceS™C(¢,) is globally contractible, soR ¢,) satisfies condition (2) of
Definition 2.30. However, the fact thay, is a global quasi-isomorphism does not
guarantee that for eacte B,

Hi(S™C(#,)(¥9) = 0) fork < 1

Thus @, ¢,) need not satisfy condition (1) of Definition 2.30. We needéditional
hypothesis o€ in order forg, to determine a Poincarcomplex inAy(B’).
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(w,w,w)

w
s
(T.ew) (T,w,w)
\Y f
(T,T,e)
(T,ewV)
(T, T,T)
(e,e,v)
(T,v,v) (T
(v,v,v) (F,v,v) (f,v,v) (f,f,5)

Ficure 4.1. A triangle with some of its faces labeled, and the taple
subdivision of the triangle.

Deriniion 4.13. LetC be a regular chain complex with fundamental cycle
C,. Let (P, ¢,) be as defined in Theorem 4.11. We say ti@&f.] is codimension
two Euclideanf

(1) Each cellx € B’ is a face of some-cell
(2) The cycleu is the sum of all ther-cells:

Y
xeB’

[X=n

(3) forally € B/, , (0x,y) is nonzero for exactly twa € Bj,
(4) for allx € B, the mapF : C" — P(X) given on generators by the formula

(v.%) IX=n
H”:{ 0 IX#n

induces an isomorphism frof,(C) — Hp_x(P(X)).
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Remark 4.14. If (C, ) is a codimension two Euclidean regular cell complex,
then the geometric realization Gfis n-circuit in the sense oNlcC77] and a normal
pseudomanifold in the sense @&180].

ProposiTion 4.15. Let C be a regular chain complex with fundamental cycle
u € Cp. Then(P, ¢,) extends to algebraic Poincaré complexAp(B’).

Proor. Recall thaB’ denotes the basis for chains on the barycentric subdivision
of C, andP denotes the pair subdivision & For eachs > 0, we must give &8'-
local mapgs : Z™°T P — P such that

(1) For eachs > 1,

dHomree®s = (1) (851 + (-1)°T (P)(¢s-1))

(2) ¢o is aB’-local chain map such that
(a) The desuspension of the mapping coneégt globally contractible.
That is to say, thé’-local chain complexs~C(¢y : Z"TD — D) is
contractible after forgetting th®’-local structure.
(b) Foreachxe B,

Hi(S7C(g0)(¥) =0 fork<1

We definegy := ¢,. By Proposition 4.11¢, : Z"TP — P is aB’-local chain
map which is a global quasi-isomorphism. Thus the mappimg co

C(¢o : "TD — D)
is globally contractible. We must check that
Hi (S™C(¢o : Z"TP - P)(x)) = 0

for k < 1 andx € B’. (This is condition (1) of Definition 2.30.) Sinc&'T P and
P are concentrated in nonnegative degrees, the exact segaeRecoposition 2.9
implies that this condition is equivalent to the followinga conditions

(1) The chain mapo(x) induces an isomorphism
Z"T Po(X) — Po(x)

(2) The chain mapo(x) induces a surjection
Z'TP(x) = Py(X)

In order to check these two conditions and construct thednitgrmsps, we give a
geometric description of the local chain compleX€§ P(x) andP(x).

Recall that"T P(x) is generated by triplez(y, X) wherex <y < z, and each
triple has dimension — |Z + |y| — |X|. By (55), the diferential

Ayt (X) 1 Z"TP(X) — Z"T P(X)
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is given by
dzy.¥) = (1) (-1 (52 y) - (z dy))
Let
C"™~*(Dx) := =" MTP(Dx)

denote the chain complex of cochains on the closed dual donéfenC™™-*(Dx)
is generated by pairsz(y) such thatx < y < z and each pair has dimension
n—|X — (|2 - lyl). The dtferential of this chain complex is given by

den @ (2 Y) = (-1 (-1 (52, y) - (2 9y))
Thus the following map is an isomorphism of chain complexes.
(56) C"X=*(Dx) — ="T P(X)
zy) = (zYy.%

Similarly, the chain complef(x) by pairs {, X) with x <y, and the dimension of
each pair igy| — |x. The dtterential of the chain compleX(x), dp(X)) is

dr(X)(y, X) = (9Y, X)

Let C.(Dx, dDx) denote the relative chain complex of chains on the closed du
cone ofx relative to the boundary of the dual conexofThe chain compleg, (Dx)

is exactly the subcomplex of the pair subdivision@fgenerated by cellsy(x’)
with x < X’. The dtferential of this complex is

de. @0 . X) = (3y. X) + (=1)"7¥I(y, 6X)

All of the (y, 6x') terms lie in the bounda§Dx. Thus the diferential ofC,(Dx, dDx)
is the map

dc*(ﬁam)(y’ X) = (Y, X)
and the following map is an isomorphism of chain complexes
(57) C.(Dx, 0Dx) — P(X)
(¥, %) = (¥, %)
Recall thaipg = ¢, is the map
Zy.x) > (Zy) N WX
_ {(u, 2 x=y
0 X#£Y
Recall thatpo(X) is defined to be the composition
Z'TP(X) 5 > PY) > P(X)

X<y
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Thus,

_[wx x=y=z
¢o(x)(z,y,x)—{0 CEyory

Using the isomorphisms (56) and (57), we see that
¢o(x) = _N[DX] : C"™(DX) — C.(Dx.dDX)(zy)  + (zY)N[DX
Here [DX] denotes the fundamental chajn ) of the closed dual conBx.
We will now use this description of the local mapg(x) to show that for each
xe B,
(1) The chain may(x) induces an isomorphism
X"T Py(X) — Po(X)
(2) The chain mapo(x) induces a surjection
E"T Py(X) — P1(X)

Let x in B’. Observe that"™(Dx) is generated by cells of the form, ), where
lcl = n. (Recall thay: = 3., C.)
Supposéx| < n. Then the map

$o(x) : C"M(Dx) — Co(Dx, IDX)
is the 0 map, since
49X = (€ XN (1) = (c.0)
and €, c) = 0in Co(Dx, dDX) sincec # X. Thus we must show that
Ho(Dx,dDx) = 0

This chain complex has a single 0 cell, nametyx), andd(x, X) = 0. Since every
cell of C’ is the face of a-cell by hypothesisx is a codimension 1 face of some
celly. Then

d (=1, %)) = (=1)*(ay, X)(x, X)
= (X, X)
Thus §, X) is a boundary and
Ho(Dx, dDX) = 0

Now suppose thdx| = n. ThenC"™(Dx) has a single generatox,x), Co(Dx, DX)
has a single generatax,(x), andgo(X) is the map

(% X) = (% X) N (X, X) = (X X)
Thusgo(X) is an isomorphism.
Next we show that for eack
Po(X) : C"*"1(Dx) — C1(Dx, IDX)
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is a surjection. Ifx] = n, then
C"™M(Dx) = C1(Dx,0Dx) = 0

If |l = n— 1, then by hypothesig is a face of exactly twan-cells, call themc;
andc,. ThusC"™-%(Dx) is generated by the 3 cell,(x), (c,c1), and €, Cy),
andC.(Dx, dDx) is generated by the 2 cells,(x) and €, X). The chain complex
C~*(Dx) has the homology of a point, because the cbmés contractible, and the
generator of the single homology class in degree 0 is the duati the degree 0
cells. ThusCc™™-%(Dx) is cyclic with generator

(X, X) + (C1, 1) + (C2, C2)
The mappo(X) sends

(%, X) + (C1,C1) + (C2, C2) > (X, X) N (i, X)
= (C1, X) + (C, X)

We must show thap(X) is a surjection orH;. Let

& = (4G, X)
By hypothesis,
o =0 Z c=0
|cl=n

andx is a coface of only the twa-cellsc; andc, So we must have
€ =—6
Thus
dp(x) ((c1, X) + (C2, X)) = e1(X, X) + &(X, X)
=0

Thus €1, X) + (C2, X) generates the group of 0-cycles@f(Dx, Dx) and¢o(X) is
surjective on homology.
If X <n-1,then

¢o(X) : C""(Dx) — C1(Dx, 4DX)

is the 0 map. Fopo(X)(zy) = O unlesgz = n andy = X, and thuspo(X)(zy) = O
for all (z y) in C"¥-1(Dx). Thus we must show that

H.(Dx,dDx) = 0
Recall t@(@s the homology of a point. Looking at the long exact segeiefc
the pair Ox, dDx), we see that
H.(Dx,0Dx) = 0
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if and only if

Ho(0Dx) = Z
By hypothesis, the map
C' - P(X
y= (v, %)
induces an isomorphism
(58) Hn(C’) = Hn-x(P(X))
[1] = [(1, X)]

Let X = G(C) denote the geometric realization ©f so thatC.(G(C)) = C’. Let
cx denote the barycenter of a celbf G(C). Then (58) implies for each ceX the
natural map

(59) Ha(X) — Ha(X, X\ ¢y)

is an isomorphism. By the Proposition @&M80, p. 151], (59) holds for a pseu-
domanifoldX if and only if for each cellx of X with |x] < n— 1, the link ofx is
connected. The link of a ced of G(C) is connected if and only if

Ho(ODX) = Z

Thus
H.(Dx, dDx) = 0
if Xl <n-1.
The higher termgs can be constructed in a manner analogous to the construc-

tion of the globalps maps of Proposition 4.10, using the method of acyclic cesrie
and the diagonal maps

A : C,(Dx) — C.(Dx) ® C.(Dx)
O

Let C be codimension two Euclidean with fundamental cycl&hen we have
aB-local map

¢, Z"TP— P
which is a global chain equivalence. Bt need not be &'-local equivalence —
the mapg, need not have &'-local chain homotopy inverse. As we shall see, the

question of whether or not such a local inverse exists isttheia@ one for detecting
manifold structures in the homotopy type determinedCby
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4.3. Topological Manifold Structures

Lemma 4.16. Let C be codimension two Euclidean with n-dimensional funda-
mental cycle.. The isomorphism

VL"(G(C)) - L"(Aw(B))

of Proposition 2.46 maps™*(G(C)), Ranicki’s “1/2-connective visible symmetric
signature’o-(I'(C)) to the bordism class represented by the algebraic Poincarns-

plex (P, ¢,).

Proor. SinceC is codimension two Euclidean, the geometric realizag(@) is
a normal pseudomanifold in the sense @M80]. Thus the 12-connective visible
symmetric signature af*(G(C)) is equal to the visible symmetric signatut& (¢’)
[Ran92 Remark 16.8]. By Proposition 2.46,

VL"(G(C)) = L"(Aw(B))

The visible symmetric signature(I'(C))(C", ¢’) is aB’-local chain Poincd com-
plex, whereB’ is the basis for the barycentric subdivision®f Let x be a cell of
C’. ThenC”(x) is the chain complex generated by all cells of the forra. .. < X.
That is to sayC”(x) is the chain complex of the relative dual ca@gDx, dDXx) in
barycentric subdivision d8'. TC”(X) is the chain complex of the closed dual cone
of x in the barycentric subdivision d&'.

Cn—IXI—*(m)
The mapy’ : 2"TC” — C” is locally given by the cap product map
[DX]Nn_:Z"TC" - C”
We claim that B,¢,) and C”,¢") are homotopy equivalent in the sense of of
Definition 2.40. Lets: P — C” be a chain equivalence from the chain comgfex

which is the pair subdivision of the barycentric subdivisaf C, to the chain com-
plexC”, which is the second barycentric subdivision®fConsider the diagram

(60) TP~ TC”
o |
p—=-c
We must show that this diagram commutes forsalip to chain homotopieg; in

the sense of Definition 2.40. First observe thaiand s7p¢,,T(s) are both local
cap product maps

[DX] N _: Z"MNeX=+(Dx)C, (Dx, ADX)

The diference is thapy is the Alexander-Whitney cap product, asfipe,,T(S)
is the cap product of Proposition 3.21. Since both of thegepraducts satisfy
Whitney’s axioms, they are chain homotopic. The higher teginand ¢, are
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each constructed using the symmetry of the diagonal map &adrfod’s method

of acyclic carriers. The dlierence is that the; are constructed using Alexander-
Whitney diagonal, and thg,  are constructed using the diagonal map of Proposi-
tion 3.20. However, both of these diagonal maps are caryetidacyclic carrier

I'y of Proposition 4.4. Thus the chain homotopigbetweeny; andsp,,T(s) can

be constructed using the method of acyclic carriers. m|

Now we are ready to state our main result.

Tueorem 4.17. Let (C, B, 9) be a simply connected regular chain complex. Let
u € C, be a fundamental cycle such that>n 4 and (C, u), is codimension two
Euclidean. Then topological manifold structures in the btopy type determined
by C are in one-to-one correspondence with the séPgf.’) such that

(1) (P, ') is weakly B-local cobordant taP, ¢,)
(2) ¢’ has a B-local chain homotopy inverse

up to strong B-local bordism.

Proor. Let X = G(C) denote the geometric realization Gf Observe that if
(P, ¢,) is weaklyB'-local cobordant to somé>(, ") such that ', ") has aB-local
inverse, thenR’, i’) determines an algebraic Poinearomplex inA¢(B’). Further-
more, sinceR’, u’) is weaklyB’-local cobordant toR, ¢,), (P’, ') is a lift of (P, ¢,,)
to As(B’) under the map

F : As(B) — Aw(B)

Thus, the theorem states that topological manifold strestin the homotopy type
of C are in one-to-one correspondence wih, f1') € A¢(B’) such that

F((P'. 1)) = (P.¢y)

By Proposition 2.46 and Lemma 4.16, such lifts are in onerAe-crrespondence
with (P, u’) € H,(X;L*) such thatA((P’, 1)) = o*(X), whereo*(X) denotes the

1/2-connective visible symmetric signatureXf By Ranicki's theory of the total

surgery obstructionRan92 Chapter 17], lifts ofo*(X) to H,(X;L*) correspond

to lifts of the Spivak normal fibration oK to a topological normal bundle with
0 surgery obstruction. By Browder-Novikov-Sullivan-Wallrgary theory, such
lifts are in one-to-one correspondence with topologicahifedds structures in the
homotopy type oiX. |
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