
 

   
SSStttooonnnyyy   BBBrrrooooookkk   UUUnnniiivvveeerrrsssiiitttyyy   

 
 
 

 
 
 
 

   
   
   
   
   

The official electronic file of this thesis or dissertation is maintained by the University 
Libraries on behalf of The Graduate School at Stony Brook University. 

   
   

©©©   AAAllllll    RRRiiiggghhhtttsss   RRReeessseeerrrvvveeeddd   bbbyyy   AAAuuuttthhhooorrr...    



Local Poincaŕe Duality
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Abstract of the Dissertation

Local Poincaŕe Duality

by

Nathaniel Rounds

Doctor of Philosophy

in

Mathematics

Stony Brook University

2010

This work is part of a project which aims to describe algebraic structures on
the chains and cochains of closed manifolds that characterize those manifolds up to
homeomorphism. Once knows from the rational homotopy theory of Quillen and
Sullivan, and from the more recent work of Mandell, that the homotopy type of a
simply connected space is determined by algebraic structure on the cochains of the
space. There is an informational gap, however, between the homotopy type of a
manifold and its homeomorphism type, as there are nonhomeomorphic manifolds
which have the same homotopy type. Moreover, the surgery theory of Browder,
Novikov, Sullivan, and Wall tells us that not every space satisfying Poincaŕe duality
has the homotopy type of a manifold.

We represent a Poincaré duality space as a chain complex with a fixed basis
satisfying certain axioms. We use the combinatorial data ofthe basis to to define an
algebraic notion of locality, which we use to describe manifold structures. Our main
result is that in dimensions greater than 4, simply-connected closed topological
manifold structures in the homotopy type of a suitable basedchain complex are
in one-to-one correspondence with choices of local inverseto the Poincaŕe duality
map up to algebraic bordism. The proof relies on Ranicki’s algebraic formulation
of surgery theory.

We expect that the theory of based chain complexes and algebraic locality de-
veloped here can be extended to encode theE∞ algebra structure on the cochains of
a space.
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CHAPTER 1

Based Chain Complexes and Polyhedral Spaces

In this chapter we consider categories of chain complexes with a fixed basis. We
will restrict our attention to chain complexes which areregular, which means that
basis elements are homology cells. We will show that a regular chain complex de-
termines a simplicial complex, and this determination is both functorial and unique
up to homotopy. All of the definitions and proofs of the various properties of reg-
ular chain complexes are inspired by the analogous arguments which are familiar
from combinatorial topology; see for example [RS72].

1.1. Based Chain Complexes

A based chain complex is a nonnegatively graded chain complex of free Z-
modules together with a fixed basis.

D 1.1 (Based Chain Complex). Abased chain complex(C, B, ∂)
(1) anN-graded finite setB = ∐k∈NBk

(2) a degree−1 differential∂k : Ck −→ Ck−1, whereCk is the freeZ-module
generated by the setBk.

A based subcomplexof a based chain complex (C, B, ∂) is a subcomplex generated
by a subset ofB.

Let us fix some notation. We will often suppress the basis and differential in
our notation and simply use the symbolC to mean a free chain complex with fixed
basisB and differential∂. We call the generatorsx ∈ Bk thek-cellsof C, and we
call the 0-cells thevertices. This integerk is called thedegreeor dimensionof x
and is denoted|x|. The k-skeletonof C is the based subcomplex ofC generated
by the subset∐ j≤kBj. We denote thek-skeletonC(k) and its basisB(k). SinceB is
finite, there exists some minimaln such thatBk = ∅ for k > n. We call thisn the
dimensionof C.

To any based chain complexC we associated a poset (B,�).

D 1.2 (Associated Poset). LetC be a based chain complex. Let

〈 , 〉 : C ⊗C −→ R

be the pairing onC where the generatorsx ∈ B are defined to be orthogonal. Now
define a partial order� on B by settingx � y if and only if one of the following
holds:

1



(1) x = y
(2) there is a sequence

{y = z0, z1, . . . , zk = x}

such that for 0≤ i ≤ k,

〈∂zi , zi+1〉 , 0

If x � y, we say thatx is afaceof y andy is acofaceof x.

Equivalently, we could define� by saying thatx � y if x = y or if x appears
with nonzero coefficient in the formula for∂y, and then extend this relation to be
transitive. We will use the notationx ≺ y and sometimesx � y to indicate thatx � y
andx , y.

E 1.3. The simplicial chain complex of a simplicial complex isa based
chain complex. More generally, the cellular chain complex of a cell complex is a
based chain complex. In each case the associated poset is theposet of cells, and�
is the usual face relation.

D 1.4. Given a subsetE ⊂ B, theclosureof E is the set

E ≔ {x ∈ B | x ≺ e for somee ∈ E}

A subsetE ⊂ B is closedif E = E. Observe thatE generates the minimal subcom-
plex ofC which contains every element ofE.

Similarly, given a chainc of C, letC(c) denote the minimal based subcomplex
of C containing eachx ∈ B such thatx � y for somey with 〈c, y〉 , 0.

If x is a cell ofC, thenC(x) is the subcomplex ofC with basis

{y ∈ x | y � x}

We call this chain complex the closure ofx. If x is a cell ofC, ∂x is a chain, and
there is a based chain complexC

(
∂x

)
with basis

{y ∈ B | y � x, y , x}

We call this chain complex theboundary of x, and denote itC(ẋ). If E andE′ are
subsets ofB andE ⊂ E′, we use the notationC

(
E′,E

)
to denote the chain complex

C(E′)
C(E) . This is a based chain complex with basisE′ \ E.

D 1.5. LetZ denote the based chain complex with a single generator
degree 0, and letC be a based chain complex. Theaugmentation mapof C is the
linear mapε : C→ Z given on on generators by the formula:

ε(y) =

{
1 |y| = 0
0 |y| > 0
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Given a cellx ∈ B, let
εx : C(x) −→ Z

denote the restriction ofe toC(x).

Because we wish based chain complexes to model geometric objects like cell
complexes, we must introduce an additional axiom. We now restrict our attention
to based chain complexes where the closure of each cell is a homology cell, and the
closure of the boundary of each cell is a homology sphere.

D 1.6 (Regular chain complexes). LetC be a based chain complex. We
say thatC is regular if

(1) The augmentation map

ε : C −→ Z

is a chain map
(2) for eachx ∈ B, εx : C(x) −→ Z induces an isomorphism on homology.

R 1.7. Regularity is a hereditary property of based chain complexes. That
is to say, ifC is regular, so any based subcomplex ofC.

P 1.8. Let C be a regular chain complex and let x be an n-cell of
C. ThenC(ẋ) is a regular chain complex which has the homology of an(n − 1)-
dimensional sphere, and the chain∂x is a representative of the(n− 1)-dimensional
homology class.

P. This claim follows from looking at the short exact sequence

0 −→ C(ẋ) −→ C(x) −→ C(x, ẋ) −→ 0

By hypothesisC(x) has homology only in degree 0, andC(x, ẋ) is a based chain
complex with a single generator in degreen. SinceC(ẋ) has generators only in
degrees 0 throughn− 1, the claim follows. �

E 1.9. The simplicial chain complex of a simplicial complex isa regular
chain complex. The cellular chain complex of a regular cell complex is a regular
chain complex.The second example is the reason for the name.

E 1.10. Consider the chain complex of cellular chains on a CW-decomposition
of the circle with one 0-cell and one 1-cell. This is a based chain complex with one
generatore in degree 1, one generatorv in degree 0, and zero differential. This
chain complex is not regular, asH1(e) � Z.

We now establish a basic fact about regular chain complexes.

P 1.11. If (C, B, ∂) is a regular based chain complex and e∈ B1 , then
e has exactly two faces v1 and v0, such that∂e= v1−v0. Thuse is isomorphic to the
simplicial chain complex of the standard interval, and the isomorphism is canonical
up to sign.
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P. By assumption,H0(e) � Z andH1(e) � 0. Thusemust have at least one
0-face.

Supposee has only one facev0. Then∂e = kv0 for somek ∈ Z. If k = 0, then
H1(e) � Z. If k , 0, thenH0(e) � Z/kZ.

Supposeehas more than two faces{v0, ..., vn}. Then∂e is some wordα =
∑

kivi

in these faces, andH0(e) � Zn/α. If n > 2 this quotient cannot be isomorphic toZ.
Thuse has exactly two facesv1 andv0 , and∂e = k1v1 + k0v0. Since the aug-

mentation mapεx : x −→ Z is a chain map:

0 = ∂ε(e)

= ε(∂e)

= k1∂(v1) + k0ε(v0)

= k1 + k0

Thus∂e = kv1 − kv0 for somek ∈ Z. We compute thatH0(e) � Z ⊕ Z/kZ so
k = ±1. �

1.2. Morphisms of Regular Chain Complexes

We now describe two categories of regular chain complexes.

D 1.12 (Subdivision). LetB be a regular chain complex and letx ∈ B
and a cell ofC. An elementary subdivision of xis an augmented chain mapsx :
C → C′, whereC′ is a regular chain complex with a decomposition of its basisB′

as follows:

B′ = (B \ {x}) ∐ B′′

Let B′′
|x| denote the cells ofB′′ which have the same dimension asx. This data must

satisfy:

(1) For ally ∈ B such thaty , x, sx(y) = y

(2) For some choice of signsǫ : B′′ → {−1,+1},

sx(x) =
∑

z∈B′′
|x|

ǫ(z)z

(3) For eachw ∈ B′′, w ∈ C
(
sx(x)

)

(4) sx is an augmented chain map which is quasi-isomorphism.

A augmented chain map of regular chain complexes is asubdivisionif it is a com-
position of elementary subdivisions.

Note that a subdivision of regular chain complexes is by definition always a
quasi-isomorphism.
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E 1.13. Let∆n denote the standard-simplex, and let∆′n denote the barycen-
tric subdivision of the standardn-simplex. These two simpicial complexes are tri-
angulations of the same topological space, and the identitymap between them is a
linear map which sends each vertex of∆n to the corresponding vertex of∆′n. This
map induces a chain map

b : ∆n −→ ∆
′
n

which is a subdivision of regular chain complexes. This example, shown in Fig-
ure 1.1, motivates several of the constructions which follow. Note thatb is not a
simplicial map, as it does not map simplices to simplices.

F 1.1. The map of geometric simplicial complexes which
sends a simplex to its barycentric subdivision induces a subdivision
map of regular based chain complexes

D 1.14 (Cellular Map). An augmented chain mapf : C → C′ is cel-
lular if it is induced by a map of posets in the following sense: There is a map
f̂ : B→ B′ such that forx ∈ B

(1) | f̂ (x)| ≤ |x|

Here | f̂ (x)| denotes the degree of̂f (x) in B′ and |x| denotes the degree ofx in B.
such that

(2) f (x) =

{
ǫx f̂ (x) | f̂ (x)| = |x|

0 | f̂ (x)| , |x|

for some choice of signsǫ : B→ {−1,+1}

E 1.15. A cellular map of cell complexes induces a cellular chain map
on cellular chain complexes. This example is the reason for the name.

D 1.16. Let REG denote the category with objects the regular chain
complexes and morphisms all compositions of subdivisions and cellular maps. Let
CEL denote the subcategory with objects the regular chain complexes and mor-
phisms the cellular maps.
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R 1.17. Note that the identity map is a cellular map, so both REG and
CEL are categories. More generally, any isomorphism of regular chain complexes
which is induced by an isomorphism of bases is a cellular map.

1.3. The Barycentric Subdivision

In this section we describe one of two subdivisions that willbe of interest to us,
the barycentric subdivision. All of the definitions a proofsare inspired by the famil-
iar geometric barycentric subdivision of simplicial complexes and cell complexes.

1.3.1. The Conical Subdivision of a Cell.We start by introducing an elemen-
tary subdivision, called the conical subdivision. This subdivision replaces a cell by
the cone on the boundary of the cell. Given a graded setB, thesuspensionof B is
the graded setΣB, where (ΣB)k ≔ Bk+1. There is an evident bijectionσ : B→ ΣB
which a elementx ∈ B of degreek to the corresponding elementx ∈ ΣB of degree
k+ 1.

D 1.18 (Conical Subdivision). LetC be regular chain complex and let
x be a cell ofC. If |x| = 0, then theconical subdivision of xis the isomorphism
sx : C → C which relabelsx by cx. (This triviality is necessary make notation
consistent in the sequel.) If|x| > 0 then theconical subdivision of xis the map
sx : C → C′, wheresx andC′ are defined as follows.C′ is the free chain complex
with basis

B′ ≔ (B \ x) ∐ Σẋ∐ {cx}

HereΣẋ is the suspension of the graded set

ẋ = { y ∈ B | y � x, y , x }

The set{cx} is a singleton in degree 0.1 The mapsx is defined as follows:

sx(y) ≔ y y, x

sx(y) ≔ (−1)|x|−1σ∂x y= x

The differentiald : C′ → C′ is defined fory ∈ B \ {x} andσy ∈ Σẋ as follows:

d(cx) ≔ 0

d(y) ≔ sx(∂y)

d(σy) ≔

{
(−1)|y|y+ σ∂y |x| > 0
y− cx |y| = 0

The notationd(y) = sx(∂y) means that we replace each instance ofx in the expres-
sion∂x with sx(x).

P 1.19. If C is a regular chain complex and x∈ C, the conical subdi-
vision sx : C→ C′ is an elementary subdivision of x.

1The letter ‘c’ stands for ‘cone’.
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The proposition follows from a series of lemmas. All of theselemmas are in-
tuitively clear, because we are simply carving out a homology cell and replacing it
with the cone on the boundary homology sphere. A low dimensional example is
shown in Figure 1.2.

x ye x yσx σy

c
e

F 1.2. The conical subdivision of the edgeeof an interval.

L 1.20. If C is regular and C′ is defined as in Definition 1.18, C′ is a based
chain complex.

P. We check thatd2 = 0. It suffices to check thatd2(B′) = 0.
Fory ∈ B such thatx is not a codimension 1 or codimension 2 face ofy,

d2(y) = ∂2y = 0

Fory ∈ B such thatx is a codimension 1 face ofy,

∂y = α + ǫx

for some chainα with 〈α, x〉 = 0 and some coefficientǫ. Thus

d2(y) = d (α + ǫsx(x))

= d
(
α + ǫ(−1)|x|+1σ∂x

)

= ∂α + ǫ(−1)|x|+1
(
(−1)|x|−1∂x+ σ∂2x

)

= ∂(α + ǫx)

= ∂2y

= 0

Fory ∈ B such thatx is a codimension 2 face ofy, ∂2y = α+ǫx for some chainα
with 〈α, x〉 = 0 and some coefficientǫ. Moreover,α = 0 andǫ = 0 because∂2 = 0.
Thus

d2(y) = α + ǫs(x) = 0
Forσy ∈ Σẋ with |y| > 1

d2σy = d((−1)|y|y+ σ(∂y))

= (−1)|y|∂y+ (−1)|∂y|∂y+ σ(∂2y)

= 0
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Forσy ∈ Σẋ with |y| = 1, we know from Proposition 1.11 that∂y = v1 − v0 for
somev1, v0 ∈ B0. Thus we compute:

d2σy = d((−1)|y|y+ σ(∂y))

= −∂y+ dσ(v1 − v0)

= −(v1 − v0) + (v1 − cx) − (v0 − cx)

= 0

Finally d(cx) ≔ 0. �

L 1.21. If C is regular and C′ is as defined as in Definition 1.18, sx : C→
C′ is an augmented chain map.

P. The mapsx takes 0-cells to 0-cells and thus commutes with augmenta-
tion. To check thatsx is a chain map, we compute:

dsx(x) = d
(
(−1)|x|−1σ∂x

)

= (−1)|x|−1
(
(−1)|∂x|∂x+ σ∂∂x

)

= ∂x

= sx(∂x)

If y ∈ B andy , x,
d(sx(y)) = d(y) ≔ sx(∂y)

�

L 1.22. If y ≺ x, then the based chain complexC(σy) ⊂ C′ has basis

(3) {w ∈ B|w ≺ y} ∐ Σȳ∐ {cx}

P. By definition,C(σy) is the based subcomplex ofC′ with basis

(4) {w ∈ B′ | w ≺ σy}

We must show that the sets (3) and (4) are equal.
If w ∈ B andw ≺ y, thenw ≺ σy becausey ≺ σy. If σw ∈ Σȳ, thenw ≺ y by

definition ofΣȳ. We claim that

(5) w ≺ y⇒ σw ≺ σy

For if w ≺ y, then by definition there is a sequence

w = w0 ≺ . . . ≺ wk = y

such thatwi appears with nonzero coefficient in the formula for∂wi+1. Looking at
the formula fordσy:

dσy = (−1)|y|y+ σ∂y

8



we see thatσwk−1 appears with nonzero coefficient in the formula fordσy. Sim-
ilarly, eachσwi appears with nonzero coefficient in the formula fordσwi+1, so
σw ≺ σy.

Finally, y has at least one zero facev. Thencx ≺ σv, and by the previous
argumentσv ≺ σy. We have shown that (3) is a subset of (4).

Supposeα ∈ B′ andα ≺ σy. Then by definition ofB′, eitherα = w for some
w ∈ B, α = σw for somew ≺ x, orα = cx. If α = cx there is nothing to show.

We claim that ifw ∈ B,

(6) w ≺ σy⇒ w ≺ y

We argue by induction on the dimension ofy. If |y| = 0, then the only cell ofB
which is a face ofσy is y itself. Suppose|y| = k andw ≺ σy. If w = y, then
certainlyw ≺ y. If w � y, then by looking at the formula fordσy we see that
eitherw ≺ y or w ≺ σz for somez which appears in the formula for∂y. If the first
casew ≺ y, and in the second casew ≺ σz and |z| = k − 1. Thus by the inductive
hypothesisw ≺ z≺ y.

We claim that

(7) σw ≺ σy⇒ w ≺ y

Once again we argue by induction on the dimension ofy. The case|y| = 0 is
vacuous, for if|y| = 0, then the only cell ofB which is a face ofσy is y itself.
Suppose|y| = k andσw ≺ σy. Since

dσy = (−1)|y|y+ σ∂y

we see thatσw ≺ σz for somez which appears in the formula for∂y. Thus by the
inductive hypothesisw ≺ z≺ y. We have shown that (4) is a subset of (3). �

L 1.23. The based chain complexC
(
sx(x)

)
has basis

(8) {y ∈ B|y � x} ∐ Σẋ∐ {cx}

P. The proof is completely analogous to that of Lemma 1.22. Recall that
sx(x) = σ∂x, soC

(
sx(x)

)
is the based chain complex with basis

(9) {y ∈ C′ | y ≺ σz for somez with 〈∂x, z〉 , 0}

We will show that the sets (8) and (9) are equal.
If y ∈ B andy � x, theny ≺ z for somez with 〈∂x, z〉 , 0. By definition

dσz≔ (−1)|z|z+ σ∂z

soz≺ σz, and thereforey ≺ σz. If σy ∈ Σẋ, then by definition of ˙x, y ≺ z for some
z with 〈∂x, z〉 , 0. Thus by (5),σy ≺ σz. Finally, there exists a 0-cellv such that
v ≺ x. Thencx ≺ σv ∈ Σẋ. We have shown that (8) is a subset of (9).

If y ∈ B′, then eithery ∈ B\{x}, y ∈ Σẋ, ory = cx. Suppose thaty ≺ σz for some
z with 〈∂x, z〉 , 0. If y ∈ Σẋ or y = cx there is nothing to show. Ify ∈ B \ {x}, and
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y ≺ σz for somez≺ x, then by (6)y ≺ z≺ x. We have shown that (9) is a subset of
(8). �

L 1.24. If C is regular and C′ is as defined as in Definition 1.18, the aug-
mentation map

ε : C
(
sx(x)

)
−→ Z

has a chain homotopy inverse.

P. First we must check thatε is a chain map, that is to say thatεd :
(C

(
sx(x)

)
)1 → Z is the zero map. We check on the list of generators given in

the statement of Lemma 1.23. For a generatory ∈ (B\ {x})1, εdy= e∂y = 0 because
ε is a chain map onB. For a generatorσy ∈ (Σẋ)1,

εdy= ε(y− cx)

= 1− 1

= 0

Next we define a mapτ : Z → C
(
sx(x)

)
by τ(1) = cx. We claim thatτ is a

chain homotopy inverse ofε. Observe thatετ = 1 on the nose. We define a chain
homotopy

H : C
(
sx(x)

)
−→ C

(
sx(x)

)

by definingH on the generating set of Lemma 1.23.

H(y) = (−1)|y|σy

H(σy) = 0

H(cx) = 0

We claim that

dH + Hd = 1C(sx(x)) − τε

We must check several cases.

(1) Fory ∈ B \ {x} with |y| > 0,

(dH + Hd)y = d((−1)|y|σy) + H(∂y)

= (−1)|y|(−1)|y|y+ (−1)|y|σ(∂y) + (−1)|∂y|σ(∂y)

= y

= (1− τε)y

10



(2) Forσy ∈ Σẋ with |y| > 0,

(dH + Hd)σy = 0+ H
(
(−1)|y|y+ σ(∂y)

)

= (−1)|y|(−1)|y|y

= y

= (1− τε)y

(3) Fory ∈ B \ {x} with |y| = 0,

(dH + Hd)y = dσy+ 0

= y− cx

= (1− τε)y

(4) Forσy ∈ Σẋ with |y| = 0,

(dH + Hd)σy = 0+ H(y− cx)

= σy

= (1− τε)σy

(5) Finally forcx,

(dH + Hd)cx = 0

= cx − cx

= (1− τε)cx

�

C 1.25. The restriction of sx to the closure of x

sx : C(x) −→ C
(
sx(x)

)

is a quasi-isomorphism.

P. Consider the commutative diagram:

C(x)
sx //

ε

$$HHHHHHHHHHH
C
(
sx(x)

)

ε

��
Z

Since both augmentation maps are quasi-isomorphisms and the diagram commutes,

sx : C(x) −→ C
(
sx(x)

)

is a quasi-isomorphism as well. �

L 1.26. If C is regular and C′ is as defined as in Definition 1.18, C′ is a
regular chain complex.

11



P. We must check that for each celly of C′,

ε : C(y) −→ Z

is a quasi-isomorphism.
If y ∈ B \ {x} andx � y, then consider the following commutative diagram:

C(y)
sx //

εy
##FF

FF
FF

FF
F

C(y)

ε′y

��
Z

The mapεy is a quasi-isomorphism, and sincex � y, sx restricted to the closure
of y is the identity. The composition of a quasi-isomorphism andthe identity is a
quasi-isomorphism, so

ε′y : C(y) −→ Z

is a quasi-isomorphism.
If y ∈ B andx ≺ y thenC(x) is a based subcomplex ofC(y). Thussx induces a

map of short exact sequences:

0 // C(x) //

sx
��

C(y) //

sx
��

C(y, x) //

sx
��

0

0 // C
(
sx(x)

)
// C

(
sx(y)

)
// C

(
sx(y), sx(x)

)
// 0

The vertical map on the left is a quasi-isomorphism by Corollary 1.25. The based
chain complexesC(y, x) andC

(
sx(y), sx(x)

)
both have bases isomorphic to

{z ∈ B | z� x}

and

sx : C(y, x) −→ C
(
sx(y), sx(x)

)

is an isomorphism. Thus

sx : C(y) −→ C
(
sx(y)

)

is a quasi-isomorphism by the Five Lemma.
If σy ∈ Σẋ, the map

ε : C(σy) −→ Z

has a chain homotopy inverse. The proof of this claim is completely analogous to
the proof of Lemma 1.24. The chain homotopy inverse

τ : Z −→ C(σy)

12



is defined byτ(1) = cx. Once again,ετ = 1 on the nose, andτε is chain homotopic
to 1. The chain homotopyH is defined by the same formula as in the proof of
Lemma 1.24. To check that

dH + Hd = 1− τε

we must check this formula on the generators ofC(σy). We use the description of
the generators given by Lemma 1.22, and from here the proof isa copy of the proof
of Lemma 1.24.

Finally
ε : C(cx) −→ Z

is an isomorphism. �

P  P 1.19. LetC be a regular chain complex and letx be a cell
of C. Let

sx : C −→ C′

be the conical subdivision ofx. We are now ready to prove thatsx is an elementary
subdivision in the sense of Definition 1.12. The basis forC′ is

(B \ x) ∐ Σẋ∐ {cx}

which is a decomposition of the form

(B \ x) ∐ B′′

By Lemma 1.21,sx is an augmented chain map. By Lemma 1.26,C′ is a regular
chain complex. The conical subdivision mapsx is defined so that satisfies conditions
(1) an (2) of Definition 1.12. Condition (3) states that for each

w ∈ B′′ = Σẋ∐ {cx}

the cellw is a generator ofC
(
sx(x)

)
. By Lemma 1.23, the set

{y ∈ B|y � x} ∐ Σẋ∐ {cx}

is a basis forC
(
sx(x)

)
. Thus condition (3) is satisfied.

It remains to check thatsx : C → C′ is a quasi-isomorphism. SinceC
(
sx(x)

)
is

a based subcomplex ofC′, sx induces a map of short exact sequences as follows:

0 // C(x) //

sx
��

C //

sx

��

C (B, x) //

sx
��

0

0 // C
(
sx(x)

)
// C′ // C

(
B′, sx(x)

)
// 0

The left hand vertical arrow is a quasi-isomorphism by Corollary 1.25.
The based chain complexC (B, x) has basis

B \ x = {y ∈ B | y � x}

13



The based chain complexC
(
B′, sx(x)

)
has basis

B′ \ sx(s) = ((B \ {x}) ∐ Σẋ∐ {cx}) \ ({y ∈ B|y � x} ∐ Σẋ∐ {cx})

= B \ x

Thus the right hand vertical arrow is an isomorphism of basedchain complexes.
We conclude that the middle vertical arrowsx : C→ C′ is a quasi-isomorphism

by the Five Lemma. �

1.3.2. The Barycentric Subdivision.We define the barycentric subdivision of
a regular chain complex by iterating the conical subdivision.

D 1.27 (Barycentric Subdivision). LetC be a regular chain complex of
dimensionn. We define

s(k) : C→ C(k)

to be the subdivision map which is the composition of the elementary subdivision
mapssx for eachk-cell x of C. (Note that since each mapsx modifiesC only in the
interior of x, these elementary subdivision maps all commute.) Then we define the
barycentric subdivisionof C to be the composition

C
s(0)

−−→ C(0)
s(1)

−−→ C(1)
s(2)

−−→ C(2) . . .
s(n)

−−→ C(n) = C′

Since this map is a composition of elementary subdivisions,it is a subdivision map
of regular chain complexes; we denoted it bys : C→ C′.

R 1.28. We can give an inductive formula fors. If x is ak-cell of C and
k > 0, then

s(k)(x) ≔ (−1)|x|−1σxs
(k−1)∂C(k−1) x

whereσxy denotes the element ofΣẋ corresponding toy. Thus

s(x) =

{
(−1)|x|−1σxs∂x |x| > 0

cx |x| = 0

The barycentric subdivision is a functor from the category CEL to itself.

D 1.29 (Barycentric Subdivision of a Cellular Chain Map). Letf :
C→ D be a map of regular chain complexes induced by a cellular mapf̂ : B→ E
of posets. That is to say, letf be given by the formula

(10) f (x) =

{
ǫx f̂ (x) | f̂ (x)| = |x|

0 | f̂ (x)| , |x|

for some choice of signsǫ : B→ {−1,+1}
We define a cellular map

fs : s(C) −→ s(D)

14



inductively on thek-skeletonss(C(k)). First we define the underlying poset map

f̂s : s(B) −→ s(E)

On s(C(0), the barycentric subdivision of the 0-skeleton ofC, we define

f̂s : s(B0) −→ (E0)

cx 7→ c f̂ (x)

The barycentric subdivision of thek-skeleton ofC has basis

(11) s
(
B(k−1)

)
∐

(
∐|x|=kΣẋ

)
∐

(
∐|x|=kcx

)

wheres
(
B(k−1)

)
is a basis fors(C(k−1)), the barycentric subdivision of the (k − 1)-

skeleton ofC. Suppose inductively that̂fs has been defined ons
(
B(k−1)

)
. Then

extend f̂s over thek-skeleton by:

cx 7→ c f̂ (x)(12)

σxy 7→


σ f̂ (x) f̂s(y) c f̂ (x) < f̂s(y)

f̂s(y) c f̂ (x) ∈ f̂s(y)
(13)

Hereσxy denotes the element ofΣẋ corresponding toy. The poset map̂fs defines a
chain map in the usual way:

fs(x) =

{
f̂s(x) | f̂ (x)| = |x|

0 | f̂ (x)| , |x|

P 1.30. The barycentric subdivision s is a functor from CEL to CEL.
That is to say, given a cellular map f: C→ D of regular chain complexes, the map
fs : s(C)→ s(D) of Definition 1.29 is a cellular chain map.

P. There are a number of details to check. In each case we will argue by
induction on the barycentric subdivision ofk-skeleton ofC.

First let us check that̂fs is a poset map. Sincêfs(cx) = c f̂ (x), f̂s is a poset map on
the 0-skeleton. Suppose inductively thatf̂s is a poset map ons(B(k−1)), and consider
the basis (11) fors(C(k)). Supposeσxy is a cell of s(C(k)) which is not a cell of
s(C(k−1)), and letα � σxy. If α ∈ s(C(k−1)), then by (6),α � y. Thus f̂s(α) � f̂s(y)
by the inductive hypothesis. Looking at (13), we see thatf̂s(y) � f̂s(σxy), so

f̂s(α) � f̂s(σxy)

If α is a cell ofs(C(k)) which is not a cell ofs(C(k−1)), then eitherα = σxz for some
z� y or α = cx. If α = cx, then looking at (13) we see that

f̂s(cx) = c f̂ (x) � f̂s(σxy)

15



If α = σxz then there are 3 cases. Ifc f̂ (x) ∈ f̂s(σxz) � f̂s(σxy), then

f̂s(σxz) = f̂s(σxy) = f̂s(y)

If c f̂ (x) < f̂s(σxz) butc f̂ (x) ∈ f̂s(σxy), then

f̂s(σxz) = σ f̂ (x) f̂s(z)

f̂s(σxy) = f̂s(y)

Sincez� y, f̂s(z) � f̂s(y) by the inductive hypothesis. Sincec f̂ (x) � f̂s(σxy) as well,

f̂s(σxz) = σ f̂ (x) f̂s(z) � f̂s(y) = f̂s(σxy)

Finally, if c f̂ (x) < f̂s(σxy), then

f̂s(σxz) = σ f̂ (x) f̂s(z)

f̂s(σxy) = σ f̂ (x) f̂s(y)

Sincez� y, f̂s(z) � f̂s(y) by the inductive hypothesis. Thus by (5),

f̂s(σxz) � f̂s(σxy)

We have shown that̂fs is a poset map. Next we check thatf̂s does not increase
degree. By definition̂fs maps 0-cells to 0-cells. Suppose that for (k− 1)-cellsα

| f̂s(α)| ≤ |α|

Letσxy be ak-cell of s(C). Then looking at (13) we see that

| f̂s(σxy)| ≤ |σ f̂ (x) f̂s(y)|

= | f̂s(y)| + 1

≤ |y| + 1

= |σxy|

Finally we check thatfs is a chain map. To do so we need the following Lemma.

L 1.31. Let α ∈ s(B). If | f̂s(α)| = |α|, then | f̂s(w)| = |w| for all w with
〈∂α,w〉 , 0.

The contrapositive of Lemma 1.31 is the following statement: if there exists a
cell w ∈ s(B) such that〈∂α,w〉 , 0 and| f̂s(w)| < |w|, then| f̂s(α)| < |α|. We prove
the contrapositive by induction on the degree ofα. If |α| = 0 or |α| = 1, then the
statement is vacuous. Suppose the statement is true for cells of degree less thenk,
and letα ∈ s(B) such that|α| = k > 1. Thenα = σxy for somey ∈ s(B) with
|y| = k− 1. By definition

d(σxy) = (−1)|y| + σ∂y
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Thus the codimension 1 faces ofσxy arey and thek−2 cellszsuch that〈∂y, z〉 , 0.
If | f̂s(y)| < |y|, then

| f̂s(σxy)| ≤ | f̂s(y)| + 1

< |y| + 1

= |σxy|

If | f̂s(z)| < |z| for some codimension 1 face ofy, then| f̂s(y)| < |y| by the inductive
hypothesis. Then by the previous argument| f̂s(σxy)| < |σxy|. We conclude that, as
claimed, if| f̂s(w)| < |w| for some codimension 1 face ofα, then| f̂s(α)| < |α|.

We can now show thatfs is a chain map. Letα be a 1-cell ofs(B). Theα = σxcy

for some 0-celly of B. If | f̂s(α)| < |α|, then fs(α) = 0, so certainlyd fs(x) = fsd(x).
If | f̂s(α)| = |α| then we compute:

d fs(α) = d fs(σxcy)

= d
(
σ f̂ (x) f̂s(cy)

)

= d
(
σ f̂ (x)c f̂ (y)

)

= c f̂ (y) − c f̂ (x)

= f̂s(cy − cx)

= f̂sd(σxcy)

Suppose thatfs commutes withd for all cells of degree less thank, and letα
be ak-cell of s(B) with k > 1. Thenα = σxy for somek − 1-cell y of s(B). If
| f̂s(α)| < |α|, then fs(α) = 0, so certainlyd fs(x) = fsd(x). If | f̂s(α)| = |α|, then by
Lemma 1.31,| f̂s(y)| = |y| and moreover| f̂s(z)| = |z| for every codimension 1 facez
of y. Then we compute:

d fs(α) = d fs(σxy)

= d
(
σ f̂ (x) f̂s(y)

)

= (−1)| f̂s(y)| f̂sy+ σ f̂ (x)∂( f̂sy)

= (−1)| fs(y)| f̂sy+ σ f̂ (x)∂( fsy)

= (−1)| fs(y)| f̂sy+ σ f̂ (x) fs(∂y)

= (−1)| fs(y)| f̂sy+ σ f̂ (x) f̂s(∂y)

= fs

(
(−1)|y| + σx∂y

)

= fsd(σxy)

�
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P 1.32. The barycentric subdivision functor is natural in the follow-
ing sense. If f: C → D is a cellular map of regular chain complexes, then the
following diagram commutes.

C

f

��

s
// s(C)

fs
��

D
s // s(D)

P. Let x be a cell ofC. If | f̂ (x)| < |x|, then f (x) = 0 and the diagram
certainly commutes. Suppose| f̂ (x)| = |x|. If |x| = 0, then

s f(x) = cf (x)

= fs(cx)

= fs(s(x))

Suppose that the diagram commutes for all cells in the (k− 1)-skeleton ofC and let
|x| = k. Then we compute:

s f(x) = (−1)| f (x)|−1σ f̂ (x)s(∂ f (x))

= (−1)| f (x)|−1σ f̂ (x)s f(∂x)

= (−1)|x|−1σ f̂ (x) fss(∂x)

= fs

(
(−1)|x|−1σxs(∂x)

)

= fs(s(x))

�

1.3.3. The Nerve.We have defined both the set of cells of the barycentric sub-
division and the boundary map by iterating conical subdivisions. It will be more
convenient to have a “closed-form” description of this subdivision.

D 1.33 (Nerve). LetC be a based chain complex with basisB. The
nerveof C is the based chain complexηC with basis

ηBk ≔ {{x0, . . . , xk} ⊂ B | x0 � . . . � xk}

The differential is given by the formula

dη(x0 ≺ x1 ≺ . . . ≺ xk) ≔
k∑

i=0

(−1)i+1{x0 ≺ . . . ≺ x̂i ≺ . . . ≺ xk}

If C is regular, the barycentric subdivision that we have constructed by iterated
cones is isomorphic to the nerve.

18



P 1.34.Let C be a regular chain complex, let s(C) denote the barycen-
tric subdivision of C, and letηC denote the nerve of C. Then s(C) andηC are iso-
morphic after relabeling generators. To be more explicit, the chain map b: s(C)→
ηC constructed in the proof below is an isomorphism.

P. We will inductively define a chain map which is a bijection ofgener-
ating sets from barycentric subdivision of thek-skeleton ofC to the nerve of the
k-skeleton ofC.

The 1-skeleton ofs(C) has basis

s(B(0)) ∐
(
∐|x|=1Σẋ

)
∐

(
∐|x|=1cx

)

If x is a 1-cell ofC, then by Proposition 1.11,x has two 0-facesv andw. Thus for
each 1-cellx, the graded setΣẋ consists of two generators in dimension 1,σxv and
σxv. We define a map

b : s
(
C(1)

)
−→ η(C(1))

by mapping generators as follows:

v ∈ B0 7→ v

σxv ∈ Σẋ 7→ v ≺ x

cx 7→ x

This map is a bijection of the generating sets. We check that it is a chain map.

dηb(σxv) = dη(v ≺ x)

= v− x

= b(v− cx)

= bd(σxv)

Now suppose that we have defined

b : s(C(k−1)) −→ η(C(k−1))

such thatb is a chain map which is a bijection of generating sets, and such that for
cellsx of s(C(k−1))

(14) b(ẋ) ⊂ η(ẋ)

Thek-skeletons(C(k)) has basis

s
(
B(k−1)

)
∐

(
∐|x|=kΣẋ

)
∐

(
∐|x|=kcx

)

wheres
(
B(k−1)

)
is a basis for the barycentric subdivision of the (k − 1)-skeleton of

C. Let
ix : ηC(ẋ) −→ ηC(x)

be the linear map defined on generators by:

y0 ≺ . . . ≺ yl 7→ y0 ≺ . . . ≺ yl ≺ x
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We define a map
b :

(
C(k)

)(k)
−→ η(C(k))

by mapping the generators as follows:

y ∈ s
(
B(k−1)

)
7→ b(y)(15)

σxy ∈ Σẋ 7→ ix(b(y))(16)

cx 7→ x(17)

We claim thatb is a well-defined bijection. Forσxy ∈ Σẋ, b(y) ∈ ηẋ by assumption
(14). Thusb(y) = y0 ≺ . . . ≺ yl for someyl ≺ x, and it makes sense to define

b(σxy) = ix(b(y)) = y0 ≺ . . . ≺ yl ≺ x

By the inductive hypothesis,b is already defined and a bijection ons
(
B(k−1)

)
.

The cells ofη(Ck) that are not cells ofη(C(k−1)) are precisely those of the form

y0 ≺ . . . ≺ yl ≺ x

such that|x| = k. Consider such a cell. Ifl > 0, then by the inductive hypothesis
there exists somey ∈ s

(
B(k−1)

)
such that

b(y) = y0 ≺ . . . ≺ yl

Thus
b(σxy) = y0 ≺ . . . ≺ yl ≺ x

If l = 0, then
b(cx) = x

Thus all such cells are in the image ofb andb is surjective.
To see thatb is injective, observe that (15) is injective by the inductive hypothe-

sis, and similarly (16) is injective becauseb is injective ons
(
B(k−1)

)
. (17) is injective

becausey = x if and only if cx = by.
We check thatb is a chain map. The map already commutes withd on s

(
B(k−1)

)

by the inductive hypothesis. Supposey ∈ s
(
B(k−1)

)
andb(y) = y0 ≺ . . . ≺ yl. Then:

dηb(σxy) = dη(y0 ≺ . . . ≺ yl ≺ x)

= (−1)l(y0 ≺ . . . ≺ yl) +
l∑

i=0

(−1)i+1y0 ≺ . . . ŷi . . . ≺ yl ≺ x

= (−1)|y|b(y) + ix(dηb(y))

= (−1)|y|b(y) + ix(bdy)

= (−1)|y|b(y) + b(σxdy)

= bd(σxy)
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Finally we must check thatb satisfies (14). Supposez is a cell ofC(k); we must
check that

b(C(ż)) ⊂ ηC(ż)

Let α be a face ofz. If α ∈ s
(
B(k−1)

)
, theb(α) ∈ ηC(z) by the inductive hypothesis.

If α = σxy andα ≺ z, thenx ≺ z. Thus

b(σxy) = ix(b(y)) ≺ z

Finally, if α = cx andcx ≺ z, thenb(cx) = x ≺ z.
We conclude thatb is an isomorphism of regular chain complexes. �

The nerve is a functor on the category of regular chain complexes and cellular
maps.

D 1.35. Let f : C → D is a cellular map of regular chain complexes
induced by a map̂f : B→ E of posets. Thenerveof f̂ is the poset map

f̂η : ηB −→ ηE

which maps
x0 ≺ . . . ≺ xk 7→ f̂ (x0) ≺ . . . ≺ f̂ (xk)

An expression of the form
f̂ (x0) ≺ . . . ≺ f̂ (xk)

will not designate an element ofηE if f̂ x j = f̂ x j+1 for somej. In this case we define
the expression to mean the element ofηE which results from omitting repeats. The
poset mapf̂η induces a chain map

fη : ηC −→ ηD

in the usual way:

(18) fη(x) =

{
f̂η(x) | f̂η(x)| = |x|

0 | f̂η(x)| , |x|

P 1.36. The map fη is a cellular map of regular chain complexes.

P. Note that the faces of the cellx0 ≺ . . . ≺ xk are precisely the subsets of
{x0, . . . xk}. If

xi0 ≺ . . . ≺ xi j � x0 ≺ . . . ≺ xk

then

f̂η(xi0 ≺ . . . ≺ xi j ) = f̂ (xi0) ≺ . . . ≺ f̂ (xi j )

� f̂ (x0) ≺ . . . ≺ f̂ (xk)

= f̂η(x0 ≺ . . . ≺ xk)

Thus f̂η is a poset map.
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The mapfη is defined so that

fη(x0 ≺ . . . ≺ xk) = fη(x0) ≺ . . . ≺ fη(xk)

where the expression on the right is defined to be 0 iff (xj) = f (xj+1) for any j. We
check thatfη is a chain map:

d fη(x0 ≺ . . . ≺ xk) = d
(
fη(x0) ≺ . . . ≺ fη(xk)

)

=

k∑

i=0

(−1)i+1 fη(x0) ≺ . . . ˆfη(xi) ≺ fη(xk)

= fη


k∑

i=0

(−1)i+1x0 ≺ . . . x̂i ≺ xk



= fηd(x0 ≺ . . . ≺ xk)

�

P 1.37. The isomorphism b: s(C)→ ηC of Proposition 1.34 is natu-
ral with respect to cellular maps. If f: C → D is a cellular map of regular chain
complexes, then the following diagram commutes:

s(C)

fs
��

b
// ηC

fη
��

s(D) b // η(D)

P. We argue by induction on the skeletonss(C). The 0-cells ofs(C) are of
the formcx, wherex is a cell ofC.

b fs(cx) = b(cf (x))

= f (x)

= fη(x)

= fη(b(cx))

Suppose that the diagram commutes on the (k − 1)-skeleton ofs(C). A k-cell of
s(C) is of the formσxy, wherex is ak-cell of C andy is a (k − 1)-cell of s(C). If
f (x) = 0, then the diagram clearly commutes. If not:

b fs(σxy) = b
(
σ f̂ (x) fs(y)

)

= i f̂ (x)b fs(y)

= i f̂ (x) fηb(y)

= fη (ixb(y))

= fηb(σxy)

�
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From now on, we will not distinguish between the barycentricsubdivisions(C)
and the nerveηC of a regular chain complex, as we regard them as two different
combinatorial descriptions of the same subdivision ofC. We will use the notation
C′ to refer to the barycentric subdivision ofC.

1.4. Geometric Realization

In this section, we show that every regular chain complex is naturally chain
equivalent to the simplicial chain complex of a simplicial complex.

Let SIM be the following category. The objects of SIM are finite simplicial
complexes equipped with a partial order on the set of vertices such that the set of
vertices of each simplex is totally ordered. The morphisms of SIM are simplicial
maps. To be more explicit, a mapf : K → L is a set map from the set of vertices of
K to the set of vertices ofL such that image of the set of vertices of each simplex
of K is a simplex ofL. Let S : S IM → CEL be the simplicial chain functor.
Note that added structure of a partial order on the vertices of a simplicial complex
such that the vertices of each simplex is totally ordered allows us to define a functor
from simplicial complexes to chain complexes. Moreover, the chain complex of
a simplicial complex is a regular based chain complex, and the basis is the set of
simplices. A simplicial map induces a cellular map between the associated chain
complexes.

Let PL be the category of PL spaces and PL maps, as defined in Rourke and
Sanderson [RS72]. Roughly, a PL space is one which can be given the local struc-
ture of a complex of convex cells in Euclidean space. In particular, SIM embeds as
a subcategory of PL.

D 1.38 (Geometric Realization). We define a functorG : CEL →
S IM. Let C be a regular chain complex with basisB. ThenG(C) is the simpli-
cial complexηB, the nerve of the poset ofC. Let f : C → D be a cellular map
induced by a poset map̂f : B→ E. ThenG( f ) is the simplicial map

f̂η : ηB −→ ηE

P 1.39. The geometric realization functorG is indeed a functor from
CEL to SIM.

P. LetC be a regular chain complex with basisB. A vertex ofηB is simply
a singleton set{x} for somex ∈ B. Then there is a partial order on the set of vertices
of ηB where we set

{x} ≤ {y} ⇔ x � y
For each simplex

x0 ≺ . . . ≺ xk

of ηB, the vertices are totally ordered with respect to this partial order:

{x0} ≤ · · · ≤ {xk}
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ThusηB is indeed on object of SIM.
If f : C → D is a cellular map induced by a poset mapf̂ : B → E, then

η f̂ : ηB→ ηE is a indeed simplicial map. �

L 1.40. Let (C, B, ∂) be a regular chain complex. There is a natural iso-
morphism between the regular chain complexesηC andSG(C).

The proof is nearly a tautology, sinceηC andSG(C) are based chain complexes
each with basis the nerve of the posetB.

P. The based chain complexηC has basis

ηB = {{x0, . . . , xk} ⊂ B | x0 � . . . � xk}

The based chain complexSG(C) has basis the set of simplices ofG(C), which is
the set

{{x0, . . . , xk} ⊂ B | x0 � . . . � xk}

Let ı̂ denote the identity map between these posets. Then ˆı induces a chain map
i : ηC→ SG(C) which is isomorphism.

Let f : C→ D be a cellular map, and consider the following diagram.

η(C) i //

fη
��

SG(C)

SG( f )
��

η(D) i // SG(D)

Let x0 ≺ . . . ≺ xk be a cell ofηC. Then
(19)

i fη(x0 ≺ . . . ≺ xk) =

{
f (x0) ≺ . . . ≺ f (xk) | f (x0) ≺ . . . ≺ f (xk)| = |x0 ≺ . . . ≺ xk|

0 | f (x0) ≺ . . . ≺ f (xk)| < |x0 ≺ . . . ≺ xk|

Now, the simplicial mapG( f ) : G(C) → G(D) induces a chain mapSG( f ) :
SG(C) → SG(D) in the same way that the poset map of a cellular map of regu-
lar chain complexes induces a chain map. That is to say,
(20)

SGi( f )(x0 ≺ . . . ≺ xk) =

{
f (x0) ≺ . . . ≺ f (xk) | f (x0) ≺ . . . ≺ f (xk)| = |x0 ≺ . . . ≺ xk|

0 | f (x0) ≺ . . . ≺ f (xk)| < |x0 ≺ . . . ≺ xk|

Thus,i is natural with respect to cellular maps. �

We now define the sense in whichSG(C) is naturally equivalent toC.

D 1.41. LetC be a category and letD be a subcategory. LetF andG
be two functors fromD toD. A natural transformation underC betweenF and
G is, for each objectx of D, a morphismφx ∈ HomC (F (x),G(y)) such that for all
f ∈ HomD(x, y), the following diagram commutes.
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F (x)
φx //

F ( f )
��

G(x)

G( f )
��

F (y)
φy // G(y)

R 1.42. A natural transformation under a larger subcategory differs from
the usual notion of a natural transformation in that the functors are defined on the
smaller subcategory, but the natural transformation livesin the larger category.

T 1.43 (Simplicial Realization Theorem).LetG : CELL→ S IM be the
geometric realization functor. LetS : S IM→ CEL be the simplicial chain functor.
Let PL be the category of PL spaces and PL maps.

There is a natural transformation under REG from1CEL toSG, described in the
proof, which is a quasi-isomorphism on objects. There is a natural transformation
under PL from1S IM to GS, described in the proof, which is a PL homeomorphism
on objects.

P. To prove the first assertion, we must show that for every cellular map

f : (C, B, ∂)→ (D,E, ∂)

of regular chain complexes, the following diagram commutes:

C
ibs //

f

��

SG(C)

SG( f )
��

D
ibs // SG(D)

Here ibs denotes the composition of the mapss : C → s(C) of Definition 1.27,
b : s(C) → ηC of Proposition 1.34, andi : ηC → SG(C) of Lemma 1.40. By
Proposition 1.19,s is a composition of elementary subdivisions and this thus a
regular map. By Proposition 1.34,b is an isomorphism and thus is a regular map.
By Lemma 1.40,i is an isomorphism and thus is a regular map. Now consider the
following diagram:

C
s //

f

��

s(C) b //

fs
��

η(C) i //

fη
��

SG(C)

SG( f )
��

D
s // s(D) b // ηC i // SG(D)

The left-hand square commutes by Proposition 1.32. The middle square commutes
by Proposition 1.37. The right-hand square commutes by Lemma 1.40. Thusibs
is a natural transformation from 1CEL to SG. Sinces is a quasi-isomorphism andb
and i are isomorphisms, the natural transformationibs is a quasi-isomorphism on
objects.
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To prove the second assertion, we observe that the topological identity map
from a simplicial complex to its barycentric subdivision isa PL which is a homeo-
morphism. Moreover, the barycentric subdivision of simplicial complexes is natural
with respect to simplicial maps. �

C 1.44. If f : C→ D is a cellular map which induces an isomorphism
on homology, thenG( f ) induces an isomorphism on homology.

P. When we say that a simplicial map

G( f ) : G(C)→ G(D)

induces an isomorphism on homology, we mean that the inducedmap of simplicial
chain complexes

SG( f ) : SG(C)→ SG(D)

induces an isomorphism on homology. Suppose thatf : C → D is a cellular
map which induces an isomorphism on homology, and consider the commutative
diagram

C
ibs //

f

��

SG(C)

SG( f )
��

D
ibs // SG(D)

Since ibs : C → SG(C) and ibs ◦ f : C → SG(D) induces isomorphisms on
homology, the map

SG( f ) : SG(C)→ SG(D)

must induce an isomorphism on homology as well. �

C 1.45. Every regular chain complex is naturally chain equivalent to
the simplicial chain complex of a simplicial complex.

P. For every regular chain complex is naturally chain equivalent to its barycen-
tric subdivision. �

1.4.1. Open stars.We now use geometric realization to prove some properties
of regular chain complexes. LetC be a regular chain complex with basisB, and let
z be a cell ofB. Define the following subsets ofz.

Stz(x) ≔ {y ∈ B | x � y � z}

∁zx≔ {y ∈ B | y � z, x � y}

We call these subsets theopen star, and thecomplementof x in z.
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L 1.46. Let C be a regular chain complex with basis B, and let z be an
n-cell of B. Let x� z. Then∁z(x) is a closed subset ofz, and the augmentation map

ε : C
(
∁z(x)

)
→ Z

is a quasi-isomorphism.

P. Supposey ∈ ∁z(x), and supposey′ � y. If x � y′, then x � y, a
contradiction. Thusy′ ∈ ∁z(x) and so∁z(x) is a closed subset ofz. Now consider
the commutative diagram

C
(
∁z(x)

)
ε //

b
��

Z

1

��
η
(
C
(
∁z(x)

))
ε // Z

The lower left-hand chain complexη
(
C
(
∁z(x)

))
is the simplicial chain complex of a

triangulation of the complement of the open star ofx in z. The geometric realization
of z is a homology cell, and the complement of the open star of a proper facex inside
a homology cellz is a homology cell. Thus the augmentation map

ε : η
(
C
(
∁z(x)

))
→ Z

is a quasi-isomorphism. Sinceb is a quasi-isomorphism which commutes with
augmentation,

ε : C
(
∁z(x)

)
→ Z

is a quasi-isomorphism as well. �

C 1.47. Let C be a regular chain complex, and let x, z ∈ B such that
x � z. ThenC

(
z,∁z(x)

)
is acyclic if x, z and has a single generator in dimension

|z| if x = z.

P. Supposex � z, and consider the commutative diagram

C
(
∁z(x)

)
i //

ε

$$II
II

II
II

II

C(z)

ε

��
Z

Herei denotes the inclusion map. The first augmentation map is a quasi-isomorphism
becauseC(z) is regular, and the second is a quasi-isomorphism by Lemma 1.46.
Since both augmentation maps are quasi-isomorphisms, the inclusion mapi must be
a quasi-isomorphism as well. Looking at long exact sequenceof the pairC

(
z,∁z(x)

)
,

we see thatC
(
z,∁z(x)

)
is acyclic.
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Now, supposex = z. Then the chain complexC
(
z,∁z(z)

)
, has a single generator,

namely the cellz in dimensionz. �

R 1.48. The generators of the chain complexC
(
z,∁z(z)

)
are exactly the

elements of the open star

Stz(x) ≔ {y ∈ B | x � y � z}

While Stz(x) is not a subcomplex ofC(z), we may form a chain complexC(Stz(x))
by restrictingd. This is exactly the chain complexC

(
z,∁z(z)

)
.

1.4.2. Simply Connected Regular Chain Complexes.

D 1.49. A regular chain complexC is connectedif the augmentation
map

ε : C→ Z

is an isomorphism onH0.

L 1.50. A regular chain complex is connected if and only if its geometric
realization is connected.

P. A triangulated spaceX is connected if and only if the augmentation map

εC(X)→ Z

is an isomorphism onH0. �

D 1.51. A regular chain complexC issimply connectedif the geometric
realizationG(C) is connected and simply connected. Let̃REGandC̃ELdenote the
full subcategories ofREG and CEL consisting of the simply connected regular
chain complexes.

C 1.52. The quasi-isomorphism type of a simply connected regular
chain complex inC̃EL determines a homotopy type of simply connected topological
spaces.

P. A regular chain complexC determines a simplicial complexG(C). If

f : C→ D

is a quasi-isomorphism iñCEL, then by Corollary 1.44,

G( f ) : G(C)→ G(D)

induces an isomorphism on homology. SinceG(C) andG(D) are simply connected,
G( f ) is a homotopy equivalence. �
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R 1.53. Corollary 1.52 is false without the simply connectivity assump-
tion. Let X be the Poincaré dodecahedral space with an open ball removed, so that
X has no homology and a nonzero fundamental group. Then chainson some trian-
gulation ofX give a regular chain complexC. The augmentation mapε : C→ Z is
a cellular chain map to the regular chain complex (Z, ∗,0), the based chain complex
with the basis a one point set. The cellular mapε is a quasi-isomorphism, butG(ε)
is not a homotopy equivalence.
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CHAPTER 2

Categories of Local Chain Complexes

We will now associate to each regular chain complexC a category of chain
which are “local with respect toC”. We know from the results of Chapter 1 that the
basisB of a regular chain complex is a homology cell decomposition of a space.
The differential of aB-local chain complex should be “local” with respect to this
decomposition. We the define additional structure on our category of local chain
complexes so that we can say what it means for such chain complexes to satisfy
local Poincaŕe duality.

The definitions in this chapter are inspired by Ranicki’s “categories over sim-
plicial complexes” [Ran92, Chapters 4 and 5]; indeed they specialize to those defi-
nitions in the case whereB is the poset of a simplicial complex. Related definitions
are developed in [RW90] and [RW09].

2.1. B-local chain complexes

D 2.1 (TheB-local Category). Given a regular based chain complex
(C, B, ∂), we define the categoryB-LOC of B-local chain complexes.

(1) A B-local module is a finitely generated freeZ-moduleD with the addi-
tional structure of a decomposition

D =
∑

x∈B

D(x)

(2) A B-local map is a module mapf : D −→ E such that for allx ∈ B,

f (D(x)) ⊂
∑

x�y

E(y)

(3) A B-local chain complex is a chain complex of freeZ-modules (D,d) such
that
(a) D is bounded. That is to say, there existm,n ∈ Z such thatDk = 0 for

k < mandk > n.
(b) EachDk is B-local
(c) d : Dk −→ Dk−1 is aB-local map

(4) A map off : D→ E of B-local chain complexes is a map of the underlying
chain complexes satisfying (2).
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(5) A local chain equivalenceof B-local chain complexes is a chain equiva-
lence which has aB-local chain homotopy inverse.

We think of a local chain complexD as one which has been decomposed into
piecesD(x), with each piece lying over a cellx of B. The image ofD(x) under the
differentiald must be contained in the pieces ofD which lie over the open star of
x. In most interesting examples, the chain complexD will be related to the chain
complexC and the geometry of its geometric realization. Note however, that while
D is a free chain complex,B need not be a basis forD.

R 2.2. Given a regular chain complexB, the category ofB-local modules
is an additive category. IfD andE areB-local, thenD ⊕ E has an obvious direct
sum decomposition

(D ⊕ E) (x) ≔ D(x) ⊕ E(x)

The trivial module is the zero object.
Recall that given any additive categoryA, there is an additive categoryB(A)

of chain complexes inA. In particular, the expression∂∂ = 0 makes sense in any
additive category, as the set of morphisms between any two objects is an abelian
group. The categoryB-LOC of local chain complexes is equivalent to the category
of chain complexes in the additive category of local modules.

E 2.3. Let B = {∗} be a one point set in degree 0. The (Z, ∗,0) is a
regular chain complex, and the category ofB-local chain complexes is equivalent
to the ordinary category of chain complexes.

The most important examples ofB-local chain complexes are those that capture
local information about the geometric realization of the regular chain complexC.
We discuss a central example in two guises.

E 2.4. LetC be a regular chain complex with basisB. Then the barycen-
tric subdivisionC′ has the followingB-local structure. The summandC′(x) is gen-
erated by

{x0 ≺ . . . ≺ xk ∈ B′ | x0 = x}

Observe that

d′(x0 ≺ . . . ≺ xk) =
k∑

i=0

(−1)i+1x0 ≺ . . . x̂i . . . ≺ xk ⊂
∑

x�y

C′(y)

Thus the differentiald′ of the barycentric subdivision satisfies property (2) of Def-
inition 2.1 As a chain complex,C′(x) is the simplicial chain complex of the open
dual cone of the cellx.

We now describe another example of aB-local chain complex which is locally
chain equivalent to Example 2.4.
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D 2.5 (Pair Subdivision). Given a regular chain complex (C, B, ∂), we
define a new based chain complex (P,E,d) called thepair subdivisionof C. The
basisE is given by

Ek ≔ {(y, x) ∈ B× B x � y, |y| − |x| = k}

The differentiald is given by

d(y, x) = (∂y, x) + (1)|y|−|x|(y, δx)

where

(1) δ is the adjoint of∂ defined by〈δy, x〉 = 〈y, ∂x〉
(2) If ∂y =

∑
αizi , then the expression (∂y, x) is to be interpreted as the sum∑

αi(zi , x), where pairs (z, x) are declared to be zero unlessx � z.

We will have much more to say about the pair subdivision in Chapter 3; for now
we merely mention it as an example of aB-local chain complex.

E 2.6. The pair subdivision (P,d) of a regular chain complexC has the
following B-local structure.

P =
∑

x∈B

P(x)

whereP(x) is generated by pairs

{(y, x) ∈ B× B | x � y}

If (y, x) ∈ P(x), then

d(y, x) = (∂y, x) + (−1)|y|−|x|(x, δy) ∈ P(x)

Thus (P,d) satisfies condition 2 of Definition 2.1.

2.1.1. Mapping Cones.LetA be any additive category, and letB be the addi-
tive category of bounded chain complexes inA. Recall that a chain complexD in
B is contractibleif there a degree+1 maph : D → D such thatdh+ hd = 1D. A
chain complex isacyclic if Hk(D) = 0 for all k.

D 2.7 (Mapping Cone). Letf : D → E be a chain map inB. Then the
mapping cone of fis the chain complexC( f ) defined as follows.

C( f )k ≔ Dk−1 ⊕ Ek

The differential
(dC)k : Dk−1 ⊕ Ek → Dk−2 ⊕ Ek−1

is given by the matrix (
dD 0

(−1)k f dE

)
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A B-local map ofB-local chain complexes has a well-defined mapping cone.
To be explicit, if f : D → E is aB-local map, then the mapping coneC( f ) has the
following B local decomposition.

C( f )(x)k = D(x)k−1 ⊕ E(x)k

The differentialdC is aB-local map becausedD, dE, and f are allB-local.

P 2.8. LetA be an additive category andB be the additive category
of bounded chain complexes inA. Then a chain map f: D → E in B is a chain
equivalence — i.e. has a chain homotopy inverse — if and only if the mapping cone
C( f ) is contractible.

P. This proposition is a generalization of the standard fact about the cate-
gory of chain complexes in the additive category ofZ-modules. See [Ran85, Propo-
sition 1.1] for an explicit proof. �

The proof of the following proposition is routine.

P 2.9. Let f : D → E be a map of chain complexes in some additive
categoryA. Then inclusion and projection define chain maps

Ek
i
−→ C( f )k

C( f )k
π
−→ Dk−1

These maps can be chained together to give a long exact sequence on homology

. . .Hk(D)
f∗
−→ Hk(E)

i∗
−→ Hk(C( f ))

π∗
−→ Hk−1(D) . . .

P 2.10. If (D,d) is a B-local chain complex, then each D(x) forms a
chain complex by restricting d and projecting.

P. The map

dx : D(x)
d
−→

∑

x�y

D(y)։ D(x)

squares to 0 becaused2 = 0 andd satisfies property (2) of Definition 2.1. Thus
(D(x),dx) is a chain complex. (Here the two-headed arrow։ denotes the projection
map from

∑
x�y D(y) to D(x). We will use this notation in the sequel.) �

P 2.11. (Compare[RW90, Proposition 2.7].) A B-local chain com-
plex D is contractible in the B-local category if and only if for all x ∈ B, the chain
complex D(x) is acyclic.

P. Suppose that (D,d) is aB-local chain complex which isB-locally chain
contractible. that is to say, suppose there is a degree 1B-local maph : D→ D such
that

dh+ hd = 1D
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By definition of being aB-local map, for allx ∈ B,

h(D(x)) ⊂
∑

x�y

D(y)

Let hx denote the component ofh which mapsD(x) into D(x):

hx : D(x)
h
−→

∑

x�y

D(y)։ D(x)

Then the restrictions ofh andd satisfy

dxhx + hxdx = 1Dx

Thus each local chain complexD(x) is chain contractible, and thusa fortiori acyclic.
Suppose conversely that eachD(x) is acyclic. We will constructed aB-local

chain homotopyh : D→ D such that

dh+ hd = 1D

We argue using a double induction, over the dimensions of thecells of B and over
the degrees of the chains ofD. EachDk is a finitely generated freeZ-module with
a decomposition

Dk =
∑

x∈B

Dk(x)

Choose a basis{ei
j,k} for eachDk, where j denotes the dimension of the cellx ∈ B

such thatei
j,k ∈ D(x). The based chain complexC is finite, so there exists somen

such thatBk = 0 for k < 0 andk > n. FurthermoreD is bounded, so there exists
somer such thatDk = 0 for k < r. Thus the chain mapd : Dr+1→ Dr is surjective.
Let ei

n,r be a generator ofDr(x) for somen-cell x ∈ B. By hypothesis,Hr(D(x)) = 0.
Sincedx(ei

n,r) = 0, there is some chainα ∈ Dr+1(x) such thatdx(α) = ei
n,r . Sincex is

a top-dimensional cell ofC, x is a maximal element of the posetB, and so
∑

x�y

D(y) = D(x)

Thusdx = d : D(x)→ D(x). We defineh(ei
n,r) ≔ α, so that

dh+ hd(ei
n,r) = dα + h(0)

= dxα

= ei
n,r

SinceDr is a freeZ-module, we may make similar choices for each generator of
eachD(x) with |x| = n and then extend linearly to define a map

h :
∑

|x|=n

Dr(x)→
∑

|x|=n

Dr+1(x)
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such that

(21) dh+ hd = 1 : Dr → Dr

(22) h(D(x)) ⊂
∑

x�y

D(y)

Now suppose we have defined a maph satisfying (21) and (22) onD(x)r for all
x ∈ B with |x| > m. Let x ∈ B be anm-cell and letei

m,r be a generator ofDr(x).
Once again, sinceDr−1 = 0, d(ei

m,r) = 0. SinceHr(D(x)) = 0, there exists some
α ∈ Dr+1(x) such thatdx(α) = ei

m,r . However, it is no longer the case thatd = dx,
sincex is not a top dimensional cell. Rather,

d(α) = ei
m,r + β

where
β ∈

∑

x�y

Dr(y)

By our inductive hypothesis,hβ is defined and satisfies (21) and (22). We define

h(ei
m,r) ≔ α − hβ

Now we compute

dh+ hd(ei
m,r) = d(α − hβ) + h(0)

= ei
m,r + β − dh(β)

= ei
m,r + β − (1− hd)(β)

= ei
m,r + β − β

= ei
m,r

Thus by induction we have defined a maph : Dr → Dr+1 satisfying (21) and (22)
Now suppose that a maph satisfying (21) and (22) has been defined onDl for

l < k, and also forDk(x) with |x| > m. Let x be anm-cell of B, and letei
m,k be a

generator ofDk(x). We compute

d
(
ei

m,k − hd(ei
m,k)

)
= dei

m,k − dh(dei
m,k)

= dei
m,k − (1− hd)(dei

m,k)

= dei
m,k − dei

m,k + hddeim,k
= 0

Sinced(ei
m,k − hd(ei

m,k)) = 0, dx(ei
m,k) = 0 as well. By hypothesis,Hk(D(x)) = 0, so

there must be someα ∈ Dk+1(x) such thatdx(α) = 0. Then

d(α) = ei
m,r + β
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where
β ∈

∑

x�y

Dk(y)

Once again we define
h(ei

m,r) ≔ α − hβ

By the exact same computation as in the previous paragraph,

dh+ hd(ei
m,r) = ei

m,r

By making similar choices for each generatorei
m,r and eachx ∈ B with |x| = m,

we may extendh to
∑
|x|=m Dk(x). Thus by induction we define a degree+1 map

h : D→ D satisfying (21) and (22), that is, aB-local chain contraction ofD. �

If f : D→ E is aB-local chain map, letf (x) denote the restriction

f (x) : D(x)
f
−→

∑

x�y

E(y)։ E(x)

C 2.12. Let f : D→ E be a B-local chain map. Then f has a B-local
chain homotopy inverse if and only if f(x) is a quasi-isomorphism for each x in B.

P. By Proposition 2.8,f : D→ E has has aB-local chain homotopy inverse
if and only if its mapping coneC( f ) is contractible. By Proposition 2.11,C( f ) is
contractible if and only if eachC( f )(x) is a contractible chain complex. As chain
complexes,

C( f )(x) = C( f (x))
By Proposition 2.8, eachC( f (x)) is contractible if and only if eachf (x) is has a
chain homotopy inverse. Since eachf (x) : D(x) → E(x) is a map of free chain
complexes overZ, eachf (x) has a chain homotopy inverse if and only if eachf (x)
is a quasi-isomorphism. �

2.2. A duality functor on B-LOC

We wish to describe Poincaré duality objects in theB-local category, so we need
a notion of the dual of a local chain complex. AB-local chain complex (D,d) has a
decomposition

D =
∑

x∈B

D(x)

Let D−∗ denote the hom dual chain complex defined by

D−∗k ≔ Hom(D−k,Z)

with differential
d∗(α)(x) ≔ α(dx)

Then theB-local structure onD induces a decomposition ofD−∗ as follows:

(23)
(
D−∗

)
(x) ≔ D(x)−∗
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However, the differentiald∗ of D−∗ need not satisfy property 2 of Definition 2.1, so
(23) does not in general giveD−∗ the structure of aB-local chain complex.

We need a more refined notion of dual on theB-local category; the structure we
require a chain duality in the sense of Ranicki. Fist let us observe the following.

R 2.13. LetA be an additive category and letB be the additive category
of bounded chain complexes inA. Then, as Ranicki observes, any contravariant
additive functor

T : A→ B

extends to a contravariant additive functor

T : B→ B

as follows. Given a chain complexC in B, define a chain complexTC as follows.

(TC)r ≔

∑

p+q=r

T(C−p)q

Observe that for each map
dC : Cp→ Cp−1

the functorT defines a chain map

T(dC) : T(Cp−1)∗ → T(Cp)∗

Thus the following map is a degree−1 chain map onTC:

dTC =
∑

p+q=r

(−1)p
(
dT(C−p) + T(dC)

)
: (TC)r → (TC)r−1

Given a chain mapf : C→ D, we define a chain mapT( f ) in the same fashion:

T( f )r =
∑

p+q=r

( f−p)q : (T D)r → (TC)r

Similarly, a natural transformatione : F → G between two functorsA → B, can
be extended to a natural transformation between the extensions ofF andG.

D 2.14. [Ran92, Definition 1.1] LetA be an additive category, and let
B be the additive category of bounded chain complexes inA. A chain duality(T,e)
onA is

(1) A contravariant functorT : A→ B
(2) A natural transformatione : T2→ 1

HereT2 denotes the composition of the functorT with the extension ofT toB. The
functor 1 :A ֒→ B is the inclusion functor which maps each objectA of A to the
chain complex which is equal toA in dimension 0 and is 0 in all other dimensions.

These data satisfy:
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(1) The natural transformatione is a quasi-isomorphism

eA : T2(A) −→ A

for each objectA of A.
(2) For each objectA of A, the following diagram commutes:

T(A)
T(eA) //

1 ##GG
GG

GG
GG

G
T3(A)

eT(A)

��
T(A)

The most familiar example of such a structure is the usual homdual functor on
the ordinary category of chain complexes.

E 2.15. LetA be the category of finitely generatedZ-modules, and let
T : A→ A be defined by

T(M) ≔ Hom(M,Z)

Then
T2(M) = Hom(Hom(M,Z))

For eachx ∈ M, let evalx denote the map

evalx : T M = Hom(M,Z)→ Z

α 7→ α(x)

Then there is a natural isomorphisme : 1→ T2 given by

e(M) : M → T2M

x 7→ evalx

Then (T,e−1) is a chain duality onA; that is to say, these data satisfy the conditions
of Definition 2.14. We will denote this chain duality (TC,eC) to indicate that it is
the standard hom duality on the categoryC of chain complexes.

2.2.1. The FunctorT : B-LOC → B-LOC. We now define a chain duality on
B-LOC.

D 2.16. Let (C, B, ∂) be a regular chain complex. LetA denote the
additive category of ofB-local modules. We define a contravariant functor

T : A −→ B-LOC

as follows. LetM beB-local module inA with decomposition

M =
∑

x∈B

M(x)
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We define a chain complexT M in B-LOC as follows:

T Mk ≔

∑

x∈B
|x|=−k

∑

x�y

Hom(M(y),Z)

This chain complex is defined so as to have a naturalB-local decomposition:

T M(x) ≔
∑

x�y

Hom(M(y),Z)

For every pair of generators (x, y) with x � y there is an inclusion map:
∑

y�z

M(z)
ix,y
−֒→

∑

x�z

M(z)

Let δx,y denote the hom dual restriction map:

T M(x) =
∑

x�y

Hom(M(z),Z)
δx,y
−−→

∑

y�z

Hom(M(z),Z) = T M(y)

We define a differentialδ : T M −→ T M by

δ =
∑

x,y∈B
|y|=|x|+1

〈∂y, x〉
(
δx,y : T M(x)→ T M(y)

)

R 2.17. Observe that

T Mk ≔

∑

x�y
|x|=−k

Hom(M(y),Z)

Thus for eachx � y, the module Hom(M(y),Z) is contained inT M(x)−|x|. Since
M(y)−∗ is standard notation for Hom(M(y),Z), it makes sense to write

T M(x) =
∑

x�y

M(y)−|x|−∗

R 2.18. As a chain complex,

T M =
∑

x∈B

T M(x)

=
∑

x∈B

∑

x�y

M(y)−|x|−∗

=
∑

y∈B

∑

x�y

M(y)−|x|−∗

=
∑

y∈B

(C(y) ⊗ M(y))−∗
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TheB-local decomposition ofT M is somewhat obscured by this presentation of the
chain complex. However we see that

T M(x) �
∑

x�y

(x⊗ M(y))−∗

wherex denotes the copy ofZ in degree|x| generated byx.

L 2.19. (T M, δ) is a B-local chain complex. That is to sayδ is a degree−1
map such that

δ(T M(x)) ⊂
∑

x�y

T M(y)(24)

δ2 = 0(25)

P. SinceM is a module concentrated in degree 0,

T M(x)k ≔

{ ∑
x�y Hom(M(y),Z) |x| = −k

0 |x| , −k

If |y| = |x|+1, thenT M(x) is concentrated in degree−|x| andT M(y) is concentrated
in degree−|x| − 1, soδx,y : T M(x)→ T M(y) is a degree−1 map. Thus

δ =
∑

x≺y
|y|=|x|+1

〈∂y, x〉δx,y

is a degree−1 map.
The mapδ is defined to satisfy (25).
It remains to check thatδ2 = 0. SinceT M ≔

∑
x∈B T M(x), δ2 = 0 if and only if

T M(x) ֒→ T M։ T M(y)

for everyx andy.

T M(x)
δ2

−→ T M(y) =
∑

x≺z≺y
|y|=|z|+1=|x|+2

〈∂y, z〉〈∂z, x〉
(
T M(x)

δx,z
−−→ T M(z)

δz,y
−−→ T M(y)

)

The sum ∑

x≺z≺y
|y|=|z|+1=|x|+2

〈∂y, z〉〈∂z, x〉

is the coefficient of x in the formal expression∂2(y). Since∂2 = 0, this coefficient
must be 0, and so

δ2 : T M(x) −→ T M(y)

is identically 0. �

We have defined an local chain complex (T M, δ) for each local moduleM. We
now extend this correspondence of objects to a contravariant functor.
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D 2.20. If f : M → N is a morphism ofB-local modules, then by
definition

M(x) ֒→ M
f
−→ N։ N(y)

is 0 unlessx � y. Thus restrictingf to M(x) gives a map

f |M(x) : M(x) −→
∑

x�y

N(y)

For eachx, z ∈ B with x � z, there is a map

fx,z : M(z)
f |M(z)
−−−−→

∑

z�y

N(y) ֒→
∑

x�y

N(y)

Thus for eachx ∈ B there is a map

fx ≔

∑

x�z

fx,z :
∑

x�z

M(z) −→
∑

x�y

N(y)

If f : M → N is a morphism ofB-local modules, we define

f −∗−|x|x : T N(x) =
∑

x�y

N(y)−∗−|x| −→
∑

x�z

M(z)−∗−|x| = T M(x)

where f −∗−|x|x = S−|x|TC( fx) is the hom dual offx, shifted down in degree by|x|.
Finally, we define:

T( f ) =
∑

x∈B

f −∗−|x|x : T N −→ T M

L 2.21. If f ∈ HomB-LOC(M,N), then T( f ) ∈ HomB-LOC(T N,T M). That is
to say, T( f ) is a degree 0 B-local chain map.

P. First observe thatT( f ) mapsT N(x) into T M(x), soa fortiori T ( f ) sat-
isfies the condition

T( f ) (T N(x)) ⊂
∑

x�y

T M(y)

Thus T( f ) is a B-local map. SinceT N(x) and T M(x) are both concentrated in
degree−|x|, T( f ) is a degree 0 map.

Next we must check thatT( f ) is a chain map, that is, that the following diagram
commutes.

T N
T( f ) //

δT N

��

T M

δT M

��
T N

T( f ) // T M
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Since
T N =

∑

x∈B

T N(x) =
∑

x∈B

∑

x�y

N(y)−∗−|x|

it suffice to check that the diagram commutes onN(y)−∗−|x| for eachx � y ∈ B.
Let x ≺ y ∈ B, and letα ∈ N(y)−∗−|x|. Then

α : S−|x|N(y)→ Z

whereS−|x| denotes desuspension by|x|. ThenT( f )(α) ∈ T M(x) is the composition

(26)
∑

x�v

S−|x|M(v)
∑

x�v S−|x| fx,v
−−−−−−−−−→

∑

x�z

S−|x|N(z)
α
−→ Z

Sinceα : N(y)→ Z, this composition reduces to:
∑

x�v

S−|x|M(v)
∑

x�v S−|x| fx,v,y
−−−−−−−−−→ S−|x|N(y)

α
−→ Z

where fx,v,y is the composition

M(v)
fx,v
−−→

∑

x�z

N(z)։ N(y)

Since f is B-local, the composition

S−|x|M(v)
S−|x| fx,v,y
−−−−−−→ S−|x|N(y)

α
−→ Z

is zero unlessv � y. Thus (26) can be written as:

(27)
∑

x�v�y

S−|x|
(
M(v)

fx,v,y
−−−→ N(y)

α
−→ Z

)

Recall thatδT M : T M(x)→
∑

w�x T M(w) is defined to be
∑

x�w
|w|=|x|+1

〈∂w, x〉δx,w

whereδx,w is the degree−1 map
∑

x�z

M(z)−∗−|x| −→
∑

w�z

M(z)−∗−|w|

hom dual to the degree+1 inclusion map
∑

w�z

S−|w|M(z)
ix,w
−−→

∑

x�z

S−|x|M(z)

Thusδx,wT( f )(α) is the composition:

(28)
∑

w�z

S−|w|M(z)
ix,w
−−→

∑

x�v�y

S−|x|M(v)
fx,v,y
−−−→ S−|x|N(y)

α
−→ Z
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and this composition is 0 unlessy � w, and so can be written more simply as:

(29)
∑

w�v�y

(
S−|w|M(v)

ix,w
−−→ S−|x|M(v)

fx,v,y
−−−→ S−|x|N(y)

α
−→ Z

)

Note that
ix,w : S−|w|M(v) −→ S−|x|M(v)

is simply the suspension map which shifts degree by+1. Thus

δT MT( f )(α) ∈
∑

x�w
|w|=|x|+1

T M(w)

is given by:

(30)
∑

w�x
|w|=|x|+1

〈∂w, x〉
∑

y�v�w

(
S−|w|M(v)

ix,w
−−→ S−|x|M(v)

fx,v,y
−−−→ S−|x|N(y)

α
−→ Z

)

We check that going around the diagram the other way gives thesame result.
Start with the sameα : S−|x|N(y) → Z. ThenδT N(α) ∈

∑
x�w T N(w) is given by the

composition:

∑

x�w
|w|=|x|+1

〈∂w, x〉


∑

w�z

S−|w|N(z)
ix,w
−−→

∑

x�z

S−|x|N(z)
α
−→ Z



Sinceα is nonzero only onN(y), this reduces to:

∑

x�w
|w|=|x|+1

〈∂w, x〉


∑

w�z

S−|w|N(z)
ix,w
−−→ S−|x|N(y)

α
−→ Z



This composition is 0 unlessw � y, and so can be written as:

(31)
∑

x�w
|w|=|x|+1

〈∂w, x〉
∑

w�z�y

(
S−|w|N(z)

ix,w
−−→ S−|x|N(y)

α
−→ R

)

Composing withT( f ) gives

T( f )(δT N)(α) ∈
∑

x�w
|w|=|x|+1

T M(w)

which is the composition:

(32)
∑

x�w
|w|=|x|+1

〈∂w, x〉


∑

w�v

S−|w|M(v)
∑

w�v S−|w| fw,v
−−−−−−−−−→

∑

w�z�y

S−|w|N(z)
ix,w
−−→ S−|x|N(y)

α
−→ Z


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Since f is B-local, this composition is 0 unlessv � y. Thus (32) can be written
more simply as:

(33)
∑

x�w
|w|=|x|+1

〈∂w, x〉
∑

w�v�y

(
S−|w|M(v)

fw,v,y
−−−→ S−|w|N(y)

ix,w
−−→ S−|x|N(y)

α
−→ Z

)

We see that (30) and (33) are the same map, because

ix,w ◦ fw,v,y = fx,v,y ◦ ix,w : S−|w|M(v)→ S−|x|N(y)

That is to say,f restricted toM(v) commutes with the suspension mapix,w. �

E 2.22. Let (Z, B,0) be the trivial regular chain complex where the basis
consists of a single point. Then aB-local chain complexD is just an ordinary chain
complex with no additional structure. In this caseT D = D−∗; that is to say, the local
duality functorT coincides with the “global” hom duality functor.

2.2.2. The Natural Transformation betweenT2 and the Identity. Through-
out this section (C, B, ∂) is a regular chain complex. We now show that the functor
T of Definition 2.16 extends to a chain duality in the sense of Definition 2.14. Let
M be aB-local module, and letTC denote the hom duality functor of Example 2.15.
We computeT2M.

T2M(x) =
∑

x�y

S−|x|TC (T M(y))

=
∑

x�y

S−|x|TC


∑

y�z

S−|y|TCM(z)



=
∑

x�y�z

S|y|−|x|T2
CM(z)

Now we introduce some notation to simplify computing withT2M. Letαx,y,z denote
an element ofS|y|−|x|T2

C
M(z). Then

dT Mαx,y,z = (−1)|y|αδx,y,z+ αx,∂y,z

where
αδx,y,z≔

∑

x�w
|w|=|x|+1

〈∂w, x〉δw,x(αx,y,z)

Note thatδw,x(αx,y,z) = 0 unlessw � y. Similarly,

αx,∂y,z≔

∑

w�y
|w|=|y|−1

〈∂y,w〉iw,yαx,y,z

Note thatiw,y(αx,y,z) = 0 unlessz� w.
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D 2.23. LetM be aB-local module We define aB-local map as follows.

e(M) : T2M(x) =
∑

x�y�z

S|y|−|x|T2
CM(z)→

∑

x�z

M(z)

α ∈ S|y|−|x|T2
CM(z) 7→

{
eC(M(z))α x = y

0 x , y

Using the notation established above,

e(M)(αx,y,z) =

{
(−1)

|x|(|x|+1)
2 eC(M(z))(α) x = y

0 x , y

L 2.24. If M is a B-local module, then

e(M) : T2M → M

is a B-local chain equivalence.

P. First we check thate is a chain map. Observe thatM is concentrated
in degree 0 and thate(M) is nonzero only on the degree 0 part ofT2M. SinceM
is concentrated in degree 0, we need only check that for any 1-chainα in T2M,
e(M)dT Mα = 0. Letαx,y,z be a 1-chain inS|y|−|x|T2

C
M(z). Then|y| − |x| = 1 andx is a

codimension 1 face ofy. We compute:

e(M)dT Mαx,y,z = e(M)
(
(−1)|y|αδx,y,z+ αx,∂y,z

)

= e(M)
(
(−1)|y|〈∂y, x〉αy,y,z + 〈∂y, x〉αx,x,z

)

= 〈∂y, x〉(−1)|y|+
y(y+1)

2 eC(M(z))(α) + 〈∂y, x〉(−1)
|x|(|x|+1)

2 eC(M(z))(α)

= 〈∂y, x〉eC(M(z))(α)
(
(−1)|y|+

|y|(|y|+1)
2 + (−1)

(|y|−1)|y|
2

)

= 0

To see that the final equation of this computation is true, observe that

|y| +
|y|(|y| + 1)

2
=

y2 + 3y
2

(|y| − 1)|y|
2

=
y2 − y

2
Sincey2 + 3y = y2 − y mod 4,

y2 + 3y
2

=
y2 − y

2
mod 2

Thuse(M) is a chain map.
Next we show thate(M) is a B-local chain equivalence. By Corollary 2.12, it

suffices to show that each

e(M)(x) : T2M(x)→ M(x)
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is a quasi-isomorphism. Letx ∈ B. As previously observed,

T2M(x)k = {αx,y,z | x � y � z, |y| − |x| = k, α ∈ T2
C(M(z))}

The restrictiondT M(x) is the map

dT M(x) : αx,y,z 7→ αx,∂y,z

ThusT2M(x) splits as a direct sum of chain complexes:

T2M(x) =
∑

x�z

{αx,y,z | x � y � z, α ∈ T2
C(M(z))}

�

∑

x�z

(
S−|x|C(Stz(x)) ⊗ T2

C(M(z))
)

Here we have observed that the collection

{αx,y,z | x � y � z}

is precisely the basis for the open star ofx in z, and the differential

αx,y,z 7→ αx,∂y,z

is the differential of the chain complexC(Stz(x)). However there is a shift in dimen-
sion because the generator corresponding to{x, y, z} has dimension|y| in C(Stz(x))
and dimension|y| − |x| in T2M(x).

Now, by Corollary 1.47 and Remark 1.48,C(Stz(x)) is acyclic if x , z and
has a single generator in degreex if x = z. Thus all of the summands ofT2M(x)
are acyclic except for the summand corresponding tox = z. ThusH∗(T2M(x)) is
concentrated in degree 0, and is generated by

S−|x|C(Stx(x)) ⊗ T2
C(M(x))

whereS−|x|C(Stx(x)) is a has one generator in degree 0 corresponding tox. Thus the
map

eM(x) : T2M(x) =
∑

x�z

(
S−|x|C(Stz(x)) ⊗ T2

C(M(z))
)
→ M(x)

αx,y,z 7→

{
(−1)

|x|(|x|+1)
2 eC(M(z))α x = y = z

0 x , y or y , z

induces an isomorphism on homology, becauseeC(M(z)) : T2
CM(z) → M(z) is an

isomorphism. We have shown thate(T M)(x) is a quasi-isomorphism for eachx, so
e(T M) is aB-local equivalence. �

L 2.25. The map
e : T2→ 1

is a natural transformation between T2 and the inclusion functor

1 : A→ B-LOC
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That is to say, for each B-local map f: M → N of B-local modules, the following
diagram commutes:

(34) T2M
e(M) //

T2 f
��

M

f

��
T2N

e(N) // N

P. Let x ∈ B. Since

T( f ) (T N(x)) ⊂ T M(x)

it follows that
T2( f )

(
T2M(x)

)
⊂ T2N(x)

Let T2 f (x) denote the map

T2( f )|T2M(x) : T2M(x)→ T2N(x)

Let (TC,eC) denote the chain duality on the category of chain complexesof Exam-
ple 2.15. As in Definition 2.16, letfx denote the map

fy ≔ f |∑
y�z M(z) :

∑

y�z

M(z) −→
∑

y�z

N(z)

Then we have

(T2 f )(x) := S−|x|TC((T f)x)

= S−|x|TC


∑

x�y

S−|y|TC fy



=
∑

x�y

S|y|−|x|
T

2
C( fy) : T2

C


∑

y�z

M(z)

 −→ T2
C


∑

y�z

N(z)





Thus

e(N)T2 f (x) = e(N)


∑

x�y

S|y|−|x|
T

2
C( fy) : T2

C


∑

y�z

M(z)

 −→ T2
C


∑

y�z

N(z)







=


(−1)

|x|(|x|+1)
2 eC(M(z))

(
T2
C

(
fx :

(∑
x�z M(z)

)
−→

(∑
x�z N(z)

)))
x = y

0 x , y

=


fx(−1)

|x|(|x|+1)
2 eC(M(z))T2

C

(∑
x�z M(z)

)
−→ T2

C

(∑
x�z N(z)

)
x = y

0 x , y

= fx (e(M)(x))

= ( f e(M))(x)
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Thus Diagram 34 commutes as claimed. �

L 2.26. The functor T and natural transformation e satisfy the following
coherence condition. For any B-local module M, the followingdiagram commutes.

T(M)
T(e(M))//

1 $$IIIIIIIII
T3(M)

eT(M)

��
T(M)

P. Let x ∈ B. Then

T M(x) =
∑

x�y

S−|x|TCM(y)

By definition,

eM : T2M(x) =
∑

x�y�z

S|y|−|x|T2
C(M(z))→ M(z)

αx,y,z 7→


(−1)

|x|(|x|+1)
2 eC(M(z))α x = y

0 x , y

Thus

T(eM) : T M(x) =
∑

x�y

S−|x|TCM(y)
S−|x|TC

(
e(M)|∑

x�y T2M(y)

)

−−−−−−−−−−−−−−−−−→
∑

x�y

S−|x|TCT
2M(y) = T3M(x)

Now, the map

e(M) :
∑

x�y

T2M(y) =
∑

x�y�z

S|y|−|x|T2
CM(z)→

∑

x�z

M(z)։ M(w)

is nonzero only on the summand wherex = y andz= w. Thus

T(e(M))
(
S−|x|TCM(w)

)
= (−1)

|x|(|x|+1)
2 TC(eC(M(w))

(
S−|x|TCM(w)

)

= (−1)
|x|(|x|+1)

2 S−|x|TCT
2
CM(w)

By definition

e(T M) : T2(T M)(x) =
∑

x�y�z

S|y|−|x|T2
C(T M(z))→ T M(z)

αx,y,z 7→


(−1)

|x|(|x|+1)
2 eC(M(z))α x = y

0 x , y
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Thus the composition

e(T M) ◦ T(e(M))
(
S−|x|TCM(w)

)
= e(T M)(−1)

|x|(|x|+1)
2 S−|x|TCT

2
CM(w)

= e(T M)(−1)
|x|(|x|+1)

2 S−|x|T2
CTCM(w)

= (−1)
|x|(|x|+1)

2 (−1)
|x|(|x|+1)

2 S−|x|eC(TCM(w))T2
CTCM(w)

= S−|x|TCM(w)

We have shown thate(T M) ◦ T(e(M)) mapsS−|x|TCM(w) to S−|x|TCM(w) via the
map

TC(eC(M(w)) ◦ eC(TCM(w))
Since (TC,eC) is a chain duality, this map is the identity. Thus

e(T M) ◦ T(e(M)) : T M→ T M

is the identity map, as desired. �

P 2.27. The functor T: A→ B-LOC and the natural transformation
e : T2 → 1 of Definition 2.23 are a chain duality on the additive category A of
B-local modules.

P. Lemmas 2.24, 2.25, and 2.26 show that the data (T,e) satisfy the condi-
tions of Definition 2.14. �

2.3. Algebraic Bordism Categories

Once again, our goal in the is chapter is to sufficiently enrich the category ofB-
local chain complexes so that we can define what it means for such chain complexes
to satisfy local Poincaré duality. Roughly, an-dimensional Poincaré duality object
in a category should something which is equivalent to its dual shifted in dimension
by n. Thus, to define algebraic Poincaré duality, we will need to consider categories
equipped with notions of duality, shift in dimension, and equivalence. We now
introduce the definition, due to Ranicki, of such categories.

D 2.28. [Ran92, Definition 3.2] Analgebraic bordism category(A,B,C)
is

(1) An additive categoryA with chain duality (T,e)
(2) A full subcategoryB of the additive category of bounded chain complexes

in A
(3) A full subcategoryC of B

These data satisfy
(1) The categoriesB andC are closed under the operation of taking mapping

cones.
(2) For each objectB of B, the mapping cone of the identity morphism 1 :

B→ B is an object ofC.
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(3) For each objectB of B, the mapping cone of the morphism

eB : T2(B) −→ B

is an object ofC.

E 2.29. LetA be the category of freeZ-modules, and let (TC,eC) be
the usual hom duality on this category. LetB be the category of bounded chain
complexes of freeZ-modules, and letC be the subcategory of contractible chain
complexes. ThenΛ = (A,B,C) form an algebraic bordism category. We callΛ the
global algebraic bordism category, as its objects are chain complexes that do not
possess andB-local structure.

D 2.30. Let (C, B, ∂) be a regular based chain complex. We define two
algebraic bordism categories associated toC. LetA(B) be the category ofB-local
modules, and let (T,e) be the chain duality onA of Proposition 2.27. LetB(B)
be the full subcategory ofB-LOC consisting of those chain complex which have no
local homology in negative degrees. That is to sayD is an object inB if D is B-local
and for eachx ∈ B

Hk(D(x)) = 0 for k < 0

Let Cs(B) be the full subcategory ofB consisting of locally contractible chain
complexes. That is to say, aB-local chain complexD is in Cs(B) if the 0 mapD to
the 0 chain complex has aB-local chain homotopy inverse. We define

Λs(B) ≔ (A(B),B(B),Cs(B))

to be thestrong localalgebraic bordism category of (C, B, ∂).
Let Cw(B) be the full subcategory ofB consisting of chain complexesD which

satisfy

(1) For allx ∈ B,
Hk(D(x)) = 0 for k < 1

(2) The chain complexD is globally contractible, that is to say it is chain
contractible after forgetting theB-local structure.

Observe thatCs(B) is a subcategory ofCw(B). We define

Λw(B) ≔ (A(B),B(B),Cw(B))

to be theweak localalgebraic bordism category of (C, B, ∂).

P 2.31. If (C, B, ∂) is a regular chain complex, thenΛs(B) andΛw(B)
are algebraic bordism categories.

P. We have given the data required for an algebraic bordism category; we
check that this data satisfies the necessary conditions. First let us check thatB(B),
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Cw(B), andCs(B) are closed under the operation of taking mapping cones. Iff :
D→ E is a map inB(B) then for eachx ∈ B,

Hk(D(x)) = Hk(E(x)) = 0

for k < 0. It follows immediately from looking at the long exact sequence of
Proposition 2.9 thatHk(C( f )(x)) = 0 for k < 0 as well. If f : D → E is a map
in Cs(B), thenD andE are locally contractible, that is to say, contractible as chain
complexes inB-LOC. Thus f must induce an isomorphism on homology. Since
a map of free chain complexes which induces an isomorphism onhomology is a
chain equivalence,C( f ) is (locally) contractible by Proposition 2.8. A combination
of the two previous arguments shows thatCw(B) is closed under mapping cones as
well.

The identity map is aB-local chain equivalence, so the cone of the identity map
is a chain complex inCs(B) and thus inCw(B) as well. Finally, it follows from
the proof of Proposition 2.27 that the natural transformation eB is a local chain
equivalence for each objectB in B(B). This its mapping cone is an object inCs(B)
and thus also an object inCw(B). �

2.4. Algebraic Poincaŕe Complexes

The extra structure that an algebraic bordism category possesses is exactly the
structure needed to define what it means for a chain complex inan additive cat-
egory to satisfy Poincaré duality. The idea is that a chain complex satisfyingn-
dimensional Poincaré duality should be

(1) A chain complexD in B
(2) A mapφ : ΣnT D→ D, whereΣn denotesn-fold suspension, such that the

cone ofφ is a chain complex inC
Let us make this idea precise.

D 2.32. LetD be a bounded chain complex in any additive categoryA.
Then letΣnD denote the chain complex defined as follows:

(ΣnD)k = Dk−n

dΣnD = (−1)kdD : (ΣnD)k → (ΣnD)k−1

We introduce the sign so that the abelian groupHn(HomA(D,E)) is the group of
chain homotopy classes of chain mapsΣnD→ E.

D 2.33. LetA be an additive category with chain duality (T,e), and let
D be a chain complex inA. Let Hom(T D,D) denote the chain complex where

Hom(T D,D)k =
∑

q−p=k

Hom(T Dp,Dq)

dHom( f ) = dD f + (−1)q f dT D
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Then letT (D) denote the chain map

T (D) : Hom(T D,D)k =
∑

q−p=k

Hom(T Dp,Dq)→
∑

q−p=k

Hom(T Dp,Dq)

f 7→ (−1)pqe(D)T( f )

D 2.34 (Ranicki). Ann-dimensional Poincaré complexin an algebraic
bordism category (A,B,C) is

(1) A chain complexD in B
(2) A sequences of maps{φs : Σn+sT D→ D}s≥0 in B

These data satisfy
(1) For eachφs with s> 1,

dHom(T D,D)φs = (−1)n+s (φs−1 + (−1)sTD(φs−1))

(2) The mapφ0 is a chain map such that the desuspension of the mapping cone
S−1C(φ0 : ΣnT D→ D) a chain complex inC

We should caution the reader that what we have defined here arewhat Ranicki
calls symmetricPoincaŕe complexes. We will not discuss the relation notions of
quadraticPoincaŕe complexes.

R 2.35. LetC be an ordinary chain complex overZ. Then a chain map
φ : ΣnC−∗ → C is equivalent to an-cycle inC ⊗ C. Thus, specifying a Poincaré
duality mapφ : ΣnC−∗ → C is equivalent to specifying a co-inner productη : Z →
C ⊗ C. A co-inner product product onC is the action of a particular properad on
the chain complexC. One can work out the definition of a “coherent homotopy co-
inner product” or “infinity co-inner product”. The higher termsφs in our definition
of an algebraic Poincaré are exactly an extension ofφ0 to be an infinity co-inner
product. This interpretation of the higher terms is not important to us here, so we
will not develop it further.

E 2.36. LetM be a simplicial complex which is a closed orientedn-
dimensional manifold, or more generally ann-dimensional Poincaré duality space.
Let C∗(M) denote the simplicial chain complex ofM, and let

DM : Cn−∗(M) −→ C∗(M)

denote the cap product with the fundamental class ofM. Then (C∗(M),DM) de-
termine a Poincaré complex in the algebraic bordism category of Example 2.29.
The chain equivalenceφ0 = DM is given by the Poincaré duality map. The higher
homotopiesφs for s > 0 come from the symmetries of the diagonal map, exactly
as in Steenrod’s construction of the Steenrod squares. See Proposition 4.10 for a
construction of the higherφs using Steenrod’s method of acyclic carriers.

Just as one can define bordisms between geometric Poincaré complexes, one
can define bordisms between algebraic Poincare complexes.
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D 2.37 (Ranicki). Let (D, φ) and (D′, φ′) be Poincaŕe complexes in an
algebraic bordism category (A,B,C). A cobordismbetween (D, φ) and (D′, φ′) is

(1) A map inB
f ⊕ f ′ : D ⊕ D′ −→ E

(2) A collection of maps inB

{θs : Σn+1+sT E −→ E}s≥0

These data satisfy

(1) The mapθ0 satisfies

dHom(T E,E)θ0 = (−1)n
(
fφ0T( f ) − f ′φ′0T( f ′)

)

(2) For eachθs with s> 1

dHom(T E,E)θs = (−1)n+s−1 (θs−1 + (−1)sT (E)(θs−1)) + (−1)n
(
fφ0T( f ) − f ′φ′0T( f ′)

)

(3) The mapping cone of the following map is a chain complex inC

θ0 ⊕ φ0T( f ) ⊕ φ′0T( f ′) : Σn+1T E −→ C( f ⊕ f ′)

whereC denotes the mapping cone.

E 2.38. Let (W,M,M′) be a geometric cobordism of manifolds. Then
(C∗(M),DM) and (C∗(M′),DM′) are Poincaŕe complexes, as discussed in Exam-
ple 2.36 Let

i : M ֒→W

i′ : M′ ֒→W

denote the inclusion maps. Let

DW : Cn+1−∗(W)→ C∗(W)

denote the cap product map with the relative fundamental class of the manifold with
boundaryW. This map is not a chain map. However, the relative fundamental class
[W] is a homology between [M] and [M′]. Thus:

dDW + DWd∗ = iDM i∗ − i′DM′(i
′)∗

That is to say, capping with the relative fundamental class [W] is a chain homotopy
between capping with [M] and capping with [M′]. Furthermore, the Lefschetz
duality map

DW : Cn+1−∗ −→ C∗(W,M ∐ M′) = C(i ⊕ i′)

is a quasi-isomorphism. The data

i ⊕ i′ : C∗(M) ⊕C∗(M
′) −→W

DW : Cn+1−∗(W)→ C∗(W)

determine a cobordism between the Poincaré complexes (C∗(M),DM) and (C∗(M′),DM′).
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We have now given examples of Poincaré complexes in the “global” algebraic
bordism category of chain complexes and hom duality. We haveyet to give exam-
ples of Poincaŕe complexes in the “local” algebraic bordism categories of Defini-
tion 2.30; such examples are the subject of the next chapter.

P 2.39 (Ranicki).LetΛ be an algebraic bordism category. Cobor-
dism is an equivalence relation on n-dimensional Poincarécomplexes inΛ. The
cobordism classes of n-dimensional Poincaré complexes form an abelian group un-
der direct sum, with the 0 chain complex and 0 duality map as theidentity. These
groups are known as thesymmetricL-groupsofΛ.

P. This is Proposition 3.2 of [Ran80a] stated in the language of algebraic
bordism categories. �

P 2.40. Let (D, φ) and(D′, φ′) be Poincaré complexes in an algebraic
bordism categoryΛ = (A,B,C). Let f : D → D′ be a chain map inB. Then for
eachφs, let f%φs denote the map

f %φs : T D′
T f
−−→ T D

φs
−→ D

f
−→ D′

Then(D′, f %φ) is a Poincaré complex inΛ. We say f is ahomotopy equivalence
between(D, φ) and(D′, φ′) if

(1) f is a chain equivalence inB
(2) For each s≥ 0, there exists a mapθs : Σn+sT D′ → D′ such that

dHom(T D,D)θs+ (−1)n+s+1(θs−1 + (−1)sT (D′)θs−1) = φ
′
s− f %φs

Homotopy equivalent complexes are cobordant.

P. [Ran80a, Proposition 3.2] �

2.5. Functors of Algebraic Bordism categories

Suppose thatA andA′ are two additive categories with chain dualitiesT and
T′ which have been given the structure of algebraic bordism categories. A functor
F : A→ A′ wil not not necessarily induce a map from Poincaré complexes inA to
Poincaŕe complexes inA′. For suppose (D, φ) is an-dimensional Poincaré complex
in A. Then

φ : ΣnT D→ D

so
F(φ) : ΣnF(T D)→ F(D)

But this is not the data of a Poincaré complex inA′; we need a map

ΣnT′(FD)→ F(D)

Thus we need the additional data of a natural map

T′(FD)→ F(T D)
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in order to define a Poincaré complex inA′. This need motivates the following
definition.

D 2.41. [Ran92, Definition 3.7] A functor of algebraic bordism cate-
gories

F : (A,B,C) −→ (A′,B′,C′)

is a covariant additive functorF : A→ A′ such that

(1) For each chain complexD of B, F(D) is a chain complex inB′

(2) For each chain complexD of C, F(D) is a chain complex inC′

(3) The chain dualitiesT andT′ are related in the following way. For each
objectA in A, there is a natural transformation

GA : T′FA −→ FT A

such that
(a) The mapping coneC(GA) is a chain complex inC′

(b) The following diagram commutes:

T′FT(A)
GT A //

T′GA

��

FT2(A)

FeA

��
(T′)2FA

e′FA

// FA

P 2.42. [Ran92, Proposition 3.8]A functor of algebraic bordism cat-
egories induces a morphism of cobordism groups.

P 2.43. Let C be a regular chain complex. Then the augmentation
mapε : C → Z is a cellular map from the regular chain complex(C, B, ∂) to the
regular chain complex(Z, ∗,0) where∗ is the one point set. The augmentation map
induces anassemblyfunctor

A : B-LOC→ C

whereC the category of ordinary chain complexes with no local structure. For any
B-local chain complex D, AD is simply the chain complex D with the B-local struc-
ture forgotten. The functor A extends to functors of algebraic bordism categories:

A : Λs(B) −→ Λ

A : Λw(B) −→ Λ

whereΛ is the global algebraic bordism category of Example 2.29

P. The assembly ofB-local chain complex is a chain complex. The as-
sembly of aB-locally contractible chain complex is globally contractible, since the
assembly of aB-local chain contraction is a global chain contraction. To extendA to
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a functor of algebraic bordism categories, we must define foreachB-local module
M, a natural equivalence

GM : TC(AM) −→ A(T M)

As we observed in Remark 2.18

AT M =
∑

x∈B

TC (C(x) ⊗ M(x))

For eachx, let
εx : C(x)→ Z

denote the augmentation map. Then we define:

εx ⊗ 1 : C(x) ⊗ M(x)→ M(x)

y⊗ α 7→ εx(y)α

Then

GM := TC (εx ⊗ 1) : TCAM = TC


∑

x∈B

M(x)



→ TC


∑

x∈B

C(x) ⊗ M(x)

 = AT M

is a natural chain equivalence. �

P 2.44. Let C be a regular chain complex There is a forgetful functor
of algebraic bordism categories

F : Λs(B) −→ Λw(B)

inducing a morphism of cobordism groups

F : Ln(Λs(B)) −→ Ln(Λw(B))

P. Recall that

Λs(B) ≔ (A(B),B(B),Cs(B))

Λw(B) ≔ (A(B),B(B),Cw(B))
whereA(B) is the additive category ofB-local modules andB(B) is the full additive
subcategory ofB-LOC consistingB-local chain complexes such that

Hk(D(x)) = 0 for k < 0

The additive categoryA(B) has the chain duality (T,e) of Proposition 2.27. Thus
we defineF : A(B)→ A(B) to be the identity functor, and

G : T F −→ FT

to be the identity natural transformation. The only thing weneed to check is that for
each chain complexD in Cs(B), F(D) = D is a chain complex inCw(B). If D is a
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chain complex inCs(B), thenD by definition isB-locally chain contractible. Then
by Proposition 2.11,Hk(D(x)) = 0 for all k and x. Furthermore, aB-local chain
contraction ofD is, by forgetting theB-local structure, a global chain contraction
of D. ThusD is globally chain contractible andHk(D(x)) = 0 for all k < 1, soD is
a chain complex inCw(B). �

D 2.45. Given two Poincaré complexes inΛw(B) we will say that they
areweakly locally cobordantif there is a cobordism between them inΛw(B). Given
two Poincaŕe complexes inΛs(B) we will say that they arestrongly locally cobor-
dant if there is a cobordism between them inΛs(B), andweakly locally cobordant
if there is a cobordism between their images underF in Λw(B).

We now show that algebraic bordism categories we have definedare equivalent
to certain categories defined by Ranicki.

P 2.46. Let (C, B, ∂) be a simply connected regular chain complex,
and let(C′, B′, ∂′) be its barycentric subdivision. Let K= G(C), so thatS∗(G(C)) =
C′. Then the simplicial chain functor

S : S IM→ CEL

induces an equivalence of categories

K−LOC→ B′-LOC

This equivalence extends to equivalences of algebraic bordism categories

Λw(K) ˜−→Λw(B′)

Λs(K) ˜−→Λs(B
′)

This in turn in induces isomorphisms of groups such that the following diagram
commutes and the vertical arrows are isomorphisms.

(35) Hn(K;L•) A //

��

VLn(K)

��
Ln(Λs(B′))

F // Ln(Λw(B′))

P. First we explain some of the notation in the statement of thetheorem,
which refers to algebraic bordism categories and groups defined by Ranicki. The
categoryK−LOC is the additive category of chain complexes which are local over a
finite simplicial complexK [Ran92, Definition 4.1]. Ranicki denotes this category
B(Z,K). In the case whereB′ is the set of simplicies of a simplicial complex, then
the categoriesK−LOC andB′-LOC are the same. Indeed, all of the definitions in
this chapter are equivalent to Ranicki’s definitions in Chapters 4 and 5 of [Ran92]
in the case whereB is the poset of a simplicial complex. Since every regular chain
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complex (C, B, ∂) is equivalent to the simplicial chain complexS∗(G(C)), we may
associate to every regular chain complex an algebraic bordism categoriesΛw(B′)
andΛs(B′) which are equivalent to Ranicki’s categories associated toK = G(C).
OurΛs(B′) is equivalent to Ranicki’s

Λ(A(Z,K),B〈0〉(Z,K),C〈0〉(Z)∗(K))

OurΛw(B′) is equivalent to Ranicki’s

Λ(A(Z,K),B〈0〉(Z,K),C〈1〉(Z,K))

See [Ran92, Chapter 15] for Ranicki’s definitions of these algebraic bordism cate-
gories.

The (symmetric)L-groups of the algebraic bordism categoryLn(Λs(K)) are
a generalized homology theory, called symmetricL-theory [Ran92, Proposition
13.7]. Hence the groupsLn(Λs(K)) are equal to the homology groupsHn(K;L•)
for a spectrumL• described in [Ran92, Chapter 13]. The groupVLn(K) is the
bordism group ofn-dimensional algebraic normal complexes inΛw(K). However,
by [Ran92, Remark 9.8] and [Wei92], VLn(K) is isomorphic to the symmetricL-
group of n-dimensional algebraic Poincaré complexesLn(Λw(K)). (This follows
because every chain complex inCw is globally contractible.) Furthermore, Ran-
icki’s assembly functor

A : Hn(K;L•)→ VLn(K)
is simply the forgetful functor

F : Ln(Λs(K))→ Ln(Λw(K))

so Diagram 35 commutes. �
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CHAPTER 3

The Pair Subdivision of a Regular Chain Complex

In this chapter we discuss the pair subdivision of a regular chain complex. As
we will see, the pair subdivision is aB-local chain complex. If regular chain chain
complexC satisfies Poincaré duality, then the pair subdivision ofC determines an
Poincaŕe complex inΛw(B). In the next chapter, we will relate lifts of this Poincaré
complex to one inΛs(B) to topological manifold structures in the homotopy type
determined byC.

3.1. The Pair Subdivision

D 3.1. Let (C, B, ∂) be a regular chain complex, and lety ∈ B. LetC∗(y)
denote the hom dual cochain complex ofC(y).

C∗(y)k ≔ Hom(C(y)k ,Z)

For a facex of y, let x∗ ∈ C∗(y) denote the cocycle defined on generatorsz ∈ B by
the relations:

〈x∗, z〉 =

{
1 x = z
0 x , z

R 3.2. The augmentation map

εx : C∗(x) −→ Z

is a element ofC∗(x). Indeed:
εx =

∑

v≺x
|v|=0

v∗

P 3.3. Let (C, B, ∂) be a regular based chain complex, and let x∈ B.
Then the map

ε̄ : Z→ C∗(x)

1 7→ ε

which sends1 ∈ Z to the augmentation mapεx is a quasi-isomorphism.

P. Since

Hq(C(x)) =

{
0 q > 0
Z q = 0
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the Universal Coefficient Theorem implies that

Hq(C∗(x)) =

{
0 q > 0
Z q = 0

Thus it suffices to show that the cochain given by the augmentation map

εx : C∗(x) −→ Z

a cocycle and a generator ofH0(C∗(x)). We compute

δεx = δ
∑

v�x
|v|=0

v∗

=
∑

v�x
|v|=0

δv∗

=
∑

v�x
|v|=0

∑

v�e
|e|=1

〈∂e, v〉e∗

=
∑

e�x
|v|=1

∑

v�e
|e|=0

〈∂e, v〉e∗

By Proposition 1.11, for each 1-celle ∈ B,

∂e= v1 − v0

for somev1, v0 ∈ B. Thus we have
∑

v�e
|e|=0

〈∂e, v〉e∗ = 〈∂e, v1〉e
∗ + 〈∂e, v0〉e

∗

= 〈v1 − v0, v1〉e
∗ + 〈v1 − v0, v0〉e

∗

= 0

Furthermore, the cocycleεx is a generator of the cyclic groupH0(Hom(C(x) ,Z)),
and thus a generator ofH0(C∗(x)). �

Recall Definition 2.5 of the pair subdivision of a regular chain complex. Given
a based chain complexC with basisB, the pair subdivisionP is the based chain
complex with basis

Ek ≔ {(y, x) ∈ B× B x � y, |y| − |x| = k}

and differential
d(y, x) = (∂y, x) + (1)|y|−|x|(y, δx)

R 3.4. Equivalently, we may think ofP as chain complex generated by
pairs (y, x), with y ∈ B andx ∈ C∗(y) a cochain supported in the closure ofy.

60



If C is the regular chain complex of simplical chains on a simplicial complex,
thenPgeometric pair subdivision studied by Zeeman [Zee63] and McCrory [McC79]
in analyzing the failure of polyhedra to satisfy Poincaré duality. The chain complex
P is bigraded, and filtering this chain complex with respect toδ gives rise to the
Zeeman dihomology spectral sequence. More recently, the pair subdivision has
arisen in the bivariant chains of Chataur [Cha10].

P 3.5. If C is a regular chain complex, then the map s: C→ P given
on generators by the formula:

x 7→ (x, εx) =
∑

v�x
|v|=0

(x, v)

is a chain map from C to the associated pair complex P.

P. We must check that for eachx ∈ B, s(∂x) = ds(x). By definition this
equation says: ∑

v�∂x
|v|=0

(∂x, v) =
∑

v�x
|v|=0

(∂x, v) + (−1)|x|−|v|(x, δv)

Because illegal pairs are defined to be 0,
∑

v�∂x
|v|=0

(∂x, v) =
∑

v�x
|v|=0

(∂x, v)

and by Proposition 3.3 ∑

v�x
|v|=0

δv = 0

�

R 3.6. The mapεx is the unit cochain of the cup product on the cellular
cochain complex of the cell x. The natural map

F : C ⊗C−∗ −→ P

which mapsy⊗ x to the pair (y, x) gives the cap product on homology. (This map is
called the Flexnor cap product [McC79].) Then the following diagram commutes:

C ⊗C−∗
F // P

C

ε̄

OO

s

;;vvvvvvvvvv

HereF is the Flexnor cap product,s is the pair subdivision map, and ¯ε∗ : C −→
C ⊗ C−∗ is the coaugmentation map which sendsx to x ⊗ ε. Thus, the subdivision
maps corresponds to capping with the unit cochain.
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T 3.7. If (C, B, ∂) is a regular based chain complex, then s: C −→ P is
a quasi-isomorphism.

P. Observe thatP is bigraded chain complex, withPq
p generated by

{(y, x) ∈ Bp × Bq | x � y}

with horizontal differential∂ : Pq
p −→ Pq

p−1 and vertical differentialδ : Pq
p −→ Pq+1

p .
Since the basisB is finite, there is ann such thatBk is empty fork > n.

Furthermore, the chain complex C has a tautologous bigrading:

Cq
p =

{
0 q > 0
Cp q = 0

with horizontal differential∂ : Cq
p −→ Cq

p−1 and vertical differential 0.
Filtering with respect top gives

(1) a spectral sequenceE associated toP
(2) a spectral sequenceE associated toC

As the subdivision maps : C→ P mapsCq
p into Pq

p, it induces a maps∗ : E −→ E
of spectral sequences. To show thats is a quasi-isomorphism, it suffices to show
that:

L 3.8. The induced map s1 : E1 −→ E1 is an isomorphism at the E1 page.

The pageE q
0,p is generated by

{(y, x) ∈ Bp × Bq | x � y}

The differentiald0 of this page isδ. As a chain complex,

(E0,d0) =
∑

y∈B


∑

x�y

(y, x), δ



=
∑

y∈B

C∗(y)

The homology of this chain complex is

E q
1,p = Hq(E0,d0) =

∑

y∈B
|y|=p

Hq(C
∗(y))

Now let us consider the spectral sequenceE arising from the tautologous bigrading
onC. The first differentiald0 is identically 0, so

E
q

1,p = E
q

0,p =

{
Cp q = 0
0 q , 0
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The subdivision maps : C −→ P maps a generatory to the pair (y, εy). s induces
a map

s0 : E
q

0,p −→ E q
0,p

which takesy ∈ E
0

0,p to εy ∈ E 0
0,p. EachE

0
0,p is a freeZ-module which basisy, so

restricting to a single generatory give the coaugmentation map

ēy : Z −→ C∗(y)

If (C, B, ∂) is regular, then by Corollary 3.3 this map is a quasi-isomorphism. Thus
the induced map

s1 : E
0

1,p = Cp −→ H0(C∗(y)) = E q
1,p

is an isomorphism, and

E
q

1,p = E q
1,p = 0

for q > 0. Explicitly, s1 is given on generators by the formula

s1(y) = [εy]

where [εy] is the cohomology class of the cochainεy in H0(C∗(y)).
Since bothE andE are concentrated on the horizontal lineq = 0, both spectral

sequences collapse at theE2 page and

s2 : Hp(C) = E
0

2,p −→ E 0
2,p = Hp(P)

is an isomorphism. �

R 3.9. This argument depends crucially on the fact thatC is regular. If
the closure of any cellx ∈ B has homology in positive degrees, thenE1 will not
be concentrated in the lineq = 0 ands1 need not be an isomorphism. For example
the chain complex of Example 1.10 does not have the same homology as its pair
subdivision.

R 3.10. Zeeman considered based chain complexes in [Zee62], though he
did not define regular based chain complexes. Nevertheless,our proof of Theorem
3.7 is essentially the same as Zeemans Theorem 1 in [Zee62], even though the
statements are different. (The author discovered Zeeman’s proof after writingthis
one.)

P 3.11. Let x be a cell of a regular chain complex C, and let P(C(x))
denote the pair subdivision of the chain complexC(x). Then the augmentation map

P(C(x))→ Z

is a quasi-isomorphism.

P. Consider the commutative diagram:
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C(x)
s //

ε
$$JJJJJJJJJJ

P(C(x))

ε

��
Z

The chain complexC(x) is regular, so the following two statements are true.
(1) s is a quasi-isomorphism by Theorem 3.7.
(2) The augmentation mapε : C(x)→ Z is a quasi-isomorphism.

Since the diagram commutes,

ε : P(C(x))→ Z

is a quasi-isomorphism as well. �

3.2. A Geometric Picture of the Pair Subdivision

Given a regular chain complexC we have described two functorially related
chain equivalent chain complexes, the barycentric subdivisionC′ and the pair sub-
division P. The barycentric subdivision has a geometric description as the simpli-
cial complex of the nerve of the poset ofC. In this section, we give a geometric
description of the pair subdivision. More precisely, we shall prove the following
theorem.

T 3.12. Let∂∆n+1 be the simplicial complex which is the boundary stan-
dard n+ 1-simplex inRn+2. Then∂∆n+1 has a regular cell decomposition such that:

(1) Each k-dimensional cell is labeled by a pair(y, x), where y and x are faces
of ∆n+1 such that x� y and|y| − |x| = k

(2) The closure of the cell(y, x) is the amalgamation of the simplices of the
barycentric subdivision of∂∆n+1 of the form x≺ . . . ≺ y

(3) The vertices of the cell(y, x) are the barycenters of all simplices z such
that x� z� y

(4) The codimension 1 faces of the cell(y, x) are all cells of the form(z, x)
where z a codimension 1 face of y and all cells of the form(y, z), where x
is a codimension 1 face of z.

P. We describe a second triangulation of∂∆n+1, called thedual triangula-
tion. For eachk-faceσ of ∂∆n+1, we define thedual cellσ∗ of to be the following
subcomplex of the barycentric subdivision of∂∆n+1

σ∗ ≔ {x0 ≺ . . . ≺ xk ∈ b(∂∆n+1) | x0 = σ}

If σ is ak-simplex, then a simplex in the barycentric subdivision of the form

σ ≺ x1 · · · ≺ xl

is of dimension at mostn − k. Thusσ∗ is an (n − k)-dimensional subcomplex of
b(∂∆n+1). Since∂∆n+1 is a closed triangulated manifold, eachσ∗ is a PL ball, and
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the collection of dual cells form a regular cell decomposition of∂∆n+1. (See [RS72,
p. 27].) The poset of cells of the dual decomposition of∂∆n+1 is the opposite poset
of the standard triangulation of∂∆n+1 . That is to say, for simplicesσ andτ of
∂∆n+1.

σ∗ � τ∗ ⇔ τ � σ

We claim that the dual decomposition of∂∆n+1 is in fact a triangulation. Given
ak-simplexσ in ∂∆n+1,σ∗ is a (n−k)-cell with one vertex forτ∗ for eachn-simplex
τ such thatσ � τ. A k-simplex in∂∆n+1 is determined by choosingk + 1 vertices.
Since∂∆n+1 hasn+ 2 vertices, eachk-simplexσ is a face of

n+ 2− (k+ 1) = n− k+ 1

n-dimensional simplices. Thusσ∗ is an (n− k)-cell with n− k+ 1 vertices. Further-
more every subset of thosen− k + 1 vertices determines a cofaces ofσ and thus a
face ofσ∗. Thusσ∗ is an (n− k)-dimensional simplex.

We have described two triangulations of then-sphere∂∆n+1. The intersection
of two triangulations is a regular cell complex. (See [RS72, p. 15].) LetP denote
the cell complex formed by intersecting the standard triangulation and the dual
triangulation of∂∆n+1. The cells ofP are the set theoretic intersections

σ ∩ τ∗

whereσ is a simplex of the standard triangulation andτ∗ is a simplex of the dual tri-
angulation. The simplexσ is made of of all simplices in the barycentric subdivision
b(∂∆n+1) of the form

x0 ≺ . . . ≺ σ

The simplexτ∗ is made of of all simplices in the barycentric subdivisionb(∂∆n+1)
of the form

τ ≺ . . . ≺ xk

We conclude that

(36) σ ∩ τ∗ , ∅ ⇔ τ � σ

Each nonempty intersectionσ ∩ τ∗ is a subcomplex of the barycentric subdivision
of ∂∆n+1). If σ is ak-simplex andτ is anl-simplex, thenσ has codimensionn− k
andτ∗ has codimensionl. Thus the codimension of the intersectionσ∩τ∗ is n−k+ l,
and so the dimension of the intersection isk− l. Let |σ| denote the dimension ofσ.
Then we have:

(37) |σ ∩ τ∗| = |σ| − |τ|

A face ofσ ∩ τ∗ is of the formη ∩ ν∗, whereη is a face ofσ andν is a coface ofτ.
We claim that the cell complexP satisfies all of the conditions listed in Theo-

rem 3.12. We show how each condition is satisfied.
(1) We define the pair (σ, τ) to be the cellσ ∩ τ∗. Then we have:

(a) σ � τ
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(b) |σ ∩ τ∗| = |σ| − |τ|
(2) Recall thatσ is the subcomplex of the barycentric subdivision of∂∆n+1

consisting of all simplices of the form

x0 ≺ · · · ≺ σ

andτ∗ is the subcomplex of the barycentric subdivision of∂∆n+1 consisting
of all simplices of the form

τ ≺ . . . ≺ xk

Thus (σ, τ) ≔ σ ∩ τ∗ is the subcomplex of the barycentric subdivision
consisting of all simplices of the form

τ ≺ . . . ≺ σ

(3) The faces of (σ, τ) are the pairs (ν, η) such thatν � η, ν � σ, andτ � η.
The vertices are those pairs (ν, η) such that|ν| − |η| = 0. If ν � η and
|ν| − |η| = 0, we must haveν = η. The cellν ∩ ν∗ is exactly the barycenter
of ν. Thus, the vertices of of (σ, τ) are precisely the barycenters of the
simplicesν such thatτ � ν � σ.

(4) A codimension 1 face ofσ ∩ τ∗ is one of the following two types.
(a) A cell of the form∂iσ ∩ τ

∗, where∂iσ is a codimension 1 face ofσ
(b) A cell of the formσ ∩ ∂iτ

∗, where∂iτ
∗ is a codimension 1 face ofτ∗,

or equivalentlyτ is a codimension 1 face ofδiτ = ∂iτ
∗.

Thus the codimension 1 faces of (σ, τ) are exactly the cells (∂iσ, τ), where
∂iσ is a codimension 1 face ofσ, and the cells (σ, δiτ), whereτ is a codi-
mension 1 face ofδiτ.

�

C 3.13. Let K be a finite simplicial complex. The K has a cellular
subdivision P satisfying all of the conditions of Theorem 3.12.

P. The set of vertices ofK is finite; supposeK hasn vertices. A choice of
ordering of the vertices ofK defines a simplicial embedding ofK into∂Σn where we
map thei-th vertex ofK to thei-th vertex of of∂Σn. We restrict the pair subdivision
of ∂Σn constructed in the proof of Theorem 3.12 to the image ofK. We define this
restriction to be the pair subdivision ofK. �

R 3.14. If x is ann-simplex, then eachn-cell (x, v) of the pair subdivision
of x is an amalgamation ofn! simplices of the barycentric subdivision ofx.

D 3.15. If K is a simplicial complex, we define thecellular chain com-
plex of the pair subdivision of Kas follows:

C∗(P(K)) ≔ P(S∗(K))
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That is to say, we define the cellular chain complex of geometric the pair subdivision
P(K) to be the algebraic pair subdivision of the simplicial chains of the simplicial
complexK.

R 3.16. LetC be a regular chain complex with basisB. We have defined
the cellular chain complex of (P(K) so that the following diagram commutes.

C
G //

b
��

G(C)

S
yyssssssssss

s

��

C′

s
��

P(C′) P(G(C))
C∗

oo

P(K) is a cell complex with one cell for each generator of the based chain complex
P(S∗(K)). To be more explicit, the set of cells ofP(K) and the set of generators of
P(S∗(K)) are both isomorphic to the following set

{(y, x) ∈ B′ × B′ | x � y}

Furthermore, the poset structure on the set of generators for P(S∗(K)) is the same
as the poset structure on the cell complexP(K). Thus the only freedom we have
in defining the chain complexC∗(P(K)) is choosing the signs of the boundary map.
By Theorem 3.7, the map

s : S∗(K)→ P(S∗(K))

is a quasi-isomorphism. Thus, the chain complexC∗(P(K)) as we have defined it
computes the homology ofP(K).

R 3.17. As shown in Figure 3.1, the pair subdivision of a combinatorial
manifold M is a decomposition ofM that is the coarsest common subdivision of
both the original cell decomposition and the dual cell decomposition.

D 3.18. If K is a finite cell complex andx is a cell ofK, then thedual
coneof x, denotedDx, is the contractable subcomplex of the barycentric subdivi-
sion ofK′ consisting of all cells of the form

{x0 ≺ . . . ≺ xk ∈ K′ | x � x0}

The boundary of the dual cone ofx, denoted∂Dx, is the subcomplex of the barycen-
tric subdivision consisting of all cells of the form

{x0 ≺ . . . ≺ xk ∈ K′ | x � x0}

Dual cones have a simple combinatorial description in the pair subdivision.
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F 3.1. The left-hand picture shows a piece of a cell decom-
position of a surface, with the dual cell decomposition shown with
dashed lines. The right hand picture shows the coarsest common
subdivision of the original decomposition and its dual. Thepair
complex is a combinatorial description of this common subdivision.

P 3.19. Let K be a simplicial complex, and let P be its pair subdivi-
sion Let x be a cell of K. Then

Dx = {(y, x′) ∈ P | x � x′}

∂Dx = {(y, x′) ∈ P | x � x′}

P. The topological identity map fromK′ to P is aPL map which sends

{x0 ≺ . . . ≺ xk ∈ K′ | x � x0} 7→ {(y, x
′) ∈ P | x � x′}

{x0 ≺ . . . ≺ xk ∈ K′ | x � x0} 7→ {(y, x
′) ∈ P | x � x′}

�

3.3. Algebraic Structure on the Pair Subdivision

In this section we describe some algebraic structure on the pair subdivision
of a regular chain complex. All of the algebraic structures we describe are well-
defined for the pair subdivision of any regular chain complex. However, we wish
to make use of the geometric picture of the pair subdivision given in Section 3.2.
Thus throughout this section we assume thatC is the simplicial chain complex of
a simplicial complex. By Theorem 1.43, this is no loss of generality, as we may
always replaceC by its barycentric subdivisionC′.

The pair subdivision has been studied previously, as noted in Remark 3.4. To
the author’s knowledge, however, the formulas in this section have not appeared in
the literature. The author learned the formulas for the diagonal map and cup product
from Dennis Sullivan.

P 3.20. Let (C, B, ∂) be a regular based chain complex, and let P be
its pair subdivision. The map∆ : P −→ P⊗ P given on generators by the formula

∆(y, x) ≔
∑

x�z�y

(y, z) ⊗ (z, x)
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gives P the structure of a differential graded coassociative coalgebra. The augmen-
tation mapε : P −→ Z given on generators by the formula:

ε(y, x) =

{
1 y = x
0 y , x

is a conuit for this coalgebra.

P. First we check that formula for∆ defines a differential graded coalgebra.
We need the following diagram to commute:

P
∆ //

dP

��

P⊗ P

dP⊗P

��
P

∆ // P⊗ P

Let (y, x) be a generator ofP.

∆dP(y, x) = ∆
(
(∂y, x) + (−1)|y|−|x|(y, δx)

)

=
∑

x�z�y

(
(∂y, z) ⊗ (z, x) + (−1)|y|−|x|(y, z) ⊗ (z, δx)

)

We compute going around the diagram the other way:

dP⊗P∆(y, x) = dP⊗P

∑

x�z�y

(y, z) ⊗ (z, x)

=
∑

x�z�y

(∂y, z) ⊗ (z, x) + (−1)|y|−|z|(y, δz) ⊗ (z, x)

+ (−1)|y|−|z|(y, z) ⊗ (δz, x) + (−1)|y|−|z|(−1)|z|−|x|(y, z) ⊗ (z, δx)

Now, each term
(−1)|y|−|z|(y, δz) ⊗ (z, x)

in the above expansion represents a sum of terms

(−1)|y|−|z|〈∂w, z〉(y,w) ⊗ (z, x)

wherez is a codimension 1 face ofw. Similarly, each term

(−1)|y|−|z|(y, z) ⊗ (δz, x)

represents a sum of terms

(−1)|y|−|w|〈∂w, z〉(y,w) ⊗ (z, x)

wherez is a codimension 1 face ofw. Since|w| = |z| + 1, these terms are equal but
with opposite signs. Thus all of these cross terms cancel, and

∆dP(y, x) = dP⊗P∆(y, x)
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Next we check that∆ coassociative. We need the following diagram to com-
mute.

P
∆ //

∆

��

P⊗ P

1⊗∆
��

P⊗ P
∆⊗1 // P⊗ P⊗ P

We chase an generator around the diagram:

(y, x) � ∆ //
_

∆

��

∑
x�w�y(y,w) ⊗ (w, x)

_

1⊗∆
��∑

x�z�y(y, z) ⊗ (z, x) � ∆⊗1 //
∑

x�w�z�y(y,w) ⊗ (w, z) ⊗ (z, x)

Finally, we check that the augmentation mapε is a conunit. We need the following
diagram to commute.

P
∆ //

∆

�� ''OOOOOOOOOOOOO P⊗ P

1⊗ε
��

P⊗ P
ε⊗1 // Z ⊗ P � P⊗ Z

Let (y, x) be a generator. Then

1⊗ ε


∑

x�z�y

(y, z) ⊗ (z, x)



is nonzero only on the term
(y, x) ⊗ (x, x)

Thus
(1⊗ ε)∆(y, x) = (y, x)

Similarly

ε ⊗ 1


∑

x�z�y

(y, z) ⊗ (z, x)



is nonzero only on the term
(y, y) ⊗ (y, x)

and so
(ε ⊗ 1)∆(y, x) = (y, x)

�
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The pair subdivisionP of a regular chain complex (C, B, ∂) is itself a based
chain complex, with basis

E = {(y, x) ∈ B× B | x ≺ y}

Let P−∗ denote the chain complex with

(P−∗)k ≔ Hom(P−k,Z)

The setE also gives a set of generators forP−∗, where we identify the pair (y, x) ∈ E
with the map in Hom(P−k,Z) which is given on generators by the formula:

(w, z) 7→

{
1 (w, z) = (y, x)
0 (w, z) , (y, x)

We abuse notation and let (y, x) denote both an element ofP and its dual inP−∗.
The differential of the chain complexP−∗ is given by the formula1

(38) d(y, x) = (δy, x) − (−1)|y|−|x|(y, ∂x)

P 3.21. The coalgebra structure on P induces a unital differential
graded associative algebra structure on P−∗, with the multiplication∪ : P−∗ ⊗
P−∗ −→ P−∗ given on generators by the formula:

(y, x) ∪ (w, z) =

{
(y, z) x = w

0 x , w

The coaugmentation map

ε : Z→ P−∗

1 7→ ε

is the unit. The unit can be written as a sum of generators

ε(1) = ε =
∑

x∈B

(x, x)

This in turn induces a left action P−∗ ⊗ P −→ P given on generators by the
formula:

(y, x) ∩ (w, z) =

{
(w, y) x = z

0 x , z

which gives P the structure of a left differential graded P−∗-module. Note that the
expression(w, y) is defined to be 0 if y� w.

P. Both of the statements of this Proposition are formal consequences of
Proposition 3.20. The hom dual of any differential graded coalgebraP is a differ-
ential graded algebraP−∗. Right multiplication in an associated differential graded
algebraA induces a left action of any hom dualA−∗, giving A−∗ the structure of a

1The minus sign is correct!
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differential graded right module overA. To be more explicit, we use the following
to define an action ofA on A−∗:

Hom(A,Hom(A,A))→ Hom(A,Hom(A−∗,A−∗))

� Hom(A⊗ A−∗,A−∗)

To get a left action ofP−∗ on P, we identifyP with its double dual (P−∗)−∗ in the
canonical way. It is elementary to verify that the provided formulas are the ones
which result from applying these formal constructions to∆ : P⊗ P→ P.

We check thatd is a derivation of∪. That is to say, let us check that

d ((y, x) ∪ (z,w)) = d(y, x) ∪ (z,w) + (−1)|y|−|x|(y, x) ∪ d(z,w)

First we compute

d ((y, x) ∪ (z,w)) =


d(y,w) x = z

0 x , z

=


(δy,w) − (−1)|y|−|w|(y, ∂w) x = z

0 x , z

Next we compute

d(y, x) ∪ (z,w) + (−1)|y|−|x|(y, x) ∪ d(z,w)

= (δy, x) ∪ (z,w) − (−1)|y|−|x|(y, ∂x) ∪ (z,w)(39)

+ (−1)|y|−|x|(y, x) ∪ (δz,w) − (−1)|y|−|x|+|z|−|w|(y, x) ∪ (z, ∂w)

If x = z, then the only the first and the last term are nonzero, and

d(y, x) ∪ (z,w) + (−1)|y|−|x|(y,w) ∪ d(z,w) = (δy,w) + (−1)|y|−|w|(y, ∂w)

If x , w then all of the terms of (39) are 0 except possibly whenz is a codimension
1 face ofx. In that case, the nonzero terms of (39) are

− (−1)|y|−|x|(y, ∂x) ∪ (z,w) + (−1)|y|−|x|(y, x) ∪ (δz,w)

= −(−1)|y|−|x|〈∂x,w〉(y,w) + (−1)|y|−|x|〈∂x,w〉(y,w)

= 0

Let us check thatε = ε(1) is a unit for∪. If (y, x) is a generator ofP−∗, then

(y, x) ∪ ε = (y, x) ∪
∑

z∈B

(z, z)

= (y, x) ∪ (x, x)

= (y, x)

This showsε is a right unit; an analogous computation shows it is a left unit as well.
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Now let us check that∩ givesP the structure of a differential graded leftP−∗

module. That is to say, we check that

(40) d ((y, x) ∩ (z,w)) = (−1)|y|−|x|+|z|−|w|d(y, x) ∩ (z,w) + (y, x) ∩ d(z,w)

First we compute

d ((y, x) ∩ (z,w)) =


d(z, y) x = w

0 x , w

=


(∂z, y) + (−1)|z|−|y|(z, δy) x = w

0 x , w

Next we compute

(−1)|y|−|x|+|z|−|w|d(y, x) ∩ (z,w) + (y, x) ∩ d(z,w)

= (−1)|y|−|x|+|z|−|w|(δy, x) ∩ (z,w) − (−1)|z|−|w|(y, ∂x) ∩ (z,w)(41)

+ (y, x) ∩ (∂z,w) + (−1)|z|−|w|(y, x) ∩ (z, δw)

If x = w, then the only the first and the third terms of (41) are nonzero, and

(−1)|y|−|x|+|z|−|w|d(y, x) ∩ (z,w) + (y, x) ∩ d(z,w) = (−1)|z|−|y|(z, δy) + (∂z, y)

as desired. Ifx , w, then the only way that any of the terms of (41) can be nonzero
is if w is a codimension 1 face ofx. In that case

(−1)|y|−|x|+|z|−|w|d(y, x) ∩ (z,w) + (y, x) ∩ d(z,w)

= −(−1)|z|−|w|(y, ∂x) ∩ (z,w) + (−1)|z|−|w|(y, x) ∩ (z, δw)

= −(−1)|z|−|w|〈∂x,w〉(y,w) ∩ (z,w) + (−1)|z|−|w|〈∂x,w〉(y, x) ∩ (z, x)

= −(−1)|z|−|w|〈∂x,w〉(z, y) + (−1)|z|−|w|(z, y)

= 0

Thus∩ satisfies (40).
Now we check thatε acts by the identity onP. If (y, x) is a generator ofP, then

(y, x) ∩ ε = (y, x) ∪
∑

z∈B

(z, z)

= (y, x) ∪ (y, y)

= (y, x)

�

R 3.22. We used right multiplication inP−∗ to get a left action ofP−∗ on
P. We could have also used left multiplication inP−∗ to get a right action ofP−∗ on
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P. Since∪ is commutative on homology (as we shall show), these two∩ products
induce the same map on homology. Let

T : P⊗ P→ P⊗ P

denote the transposition operator which maps

(y, x) ⊗ (z,w) 7→ (−1)(|y|−|x|)(|z|−|w|)(z,w) ⊗ (y, x)

A chain homotopy between∆ andT∆ will induce a chain homotopy between the
two cap products coming from left and right multiplication in P−∗. We will develop
this idea further in Chapter 4.

To characterize the algebraic structure we have defined on the pair subdivision
of a based chain complex, we introduce some terminology due to Whitney [Whi38].
We will give the definition as Whitney gave it in 1938.

D 3.23. (Whitney) Acomplex admitting a product theoryis the follow-
ing data.

(1) A finite, nonnegatively graded poset (B,�) of cells
(2) For eachk, a functioni : Bk × Bk−1→ Z called theincidence number

HereBk denotes the degreek part of the graded posetB. Theclosureof a cell x is
the poset

{y ∈ B | y � x}

Given this data, letCk denote the free abelian group generated byBk, and define a
map

∂ : Ck → Ck−1

∑
αi xi 7→

∑
αi


∑

y∈Bk−1

i(xi , y)y



A chain inα ∈ C is boundary-likeif either

(1) α is ak-chain andk > 0
(2) α =

∑
αivi is a 0-chain and

∑
αi = 0

This data must satisfy

(1) If x is ak cell andy is a (k− 1) cell such thati(x, y) , 0, theny � x.
(2) ∂2 = 0
(3) If α is a boundary-like cycle in the closure of a cell, thenα is a boundary

P 3.24. Let (C, B, ∂) be a regular based chain complex in our sense.
Then(B,�) is a complex admitting a product theory in Whitney’s sense.
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P. To get a complex in Whitney’s sense, we define the incidence number
i(x, y) to be 〈∂x, y〉. Then for ak-cell x and (k − 1)-cell y, y � x if and only if
i(x, y) , 0. If C is regular, than for each cellx,

ε : C(x)→ Z

is a quasi-isomorphism. Thus, every positive dimensional cycle inC(x) bounds. A
0-dimensional

∑
αivi bounds exactly if

ε
(∑

αivi

)
=

∑
αi = 0

Thus our regularity axiom implies that every boundary-likecycle in the closure of
a cell bounds. �

As the name suggests, complexes admitting a product theory admit additional
algebraic structure. First observe that ifB is a complex admitting a product theory,
andC is the associated chain complex, then the hom dual complexC−∗ is a free
chain complex with the same basisB. As usual, ifx ∈ B is an element of poset, let

St(x) ≔ {y ∈ B | x � y}

Let ε denote the cochain ∑

x∈B
|x|=0

x

and by abuse of notation letε denote the chain
∑

x∈B
|x|=0

x

as well. IfE andF are to subsets ofB, E⊓F denotes their set-theoretic intersection.

T 3.25. (Whitney[Whi38]) Let B be a complex admitting a product
structure. Then there exists a degree 0 product

C−∗ ⊗C−∗ → C−∗

satisfying the following 3 axioms. For any cells x and y in B.

δ(x∪ y) = δ(x) ∪ y+ (−1)|x|x∪ δ(y)(42)

ε ∪ x = x(43)

If x ∪ y , 0, x∪ y ∈ St(x) ⊓ St(y)(44)

There exists a degree 0 product

C−∗ ⊗C→ C
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satisfying the following 3 axioms.

∂(x∩ y) = (−1)|x|+|y|δ(x) ∩ y+ x∩ ∂(y)(45)

〈ε, x∩ x〉 = 1(46)

If x ∩ y , 0, x∩ y ∈ St(x) ⊓ y(47)

Any two products satisfying the axioms for∪ give the same product on coho-
mology. Any two products satisfying the axioms for∩ give the same product on
homology and cohomology.

C 3.26. Let (C, B, ∂) be a regular chain complex, and let(C′, B′∂) be
its barycentric subdivision. Let P denote the pair subdivision of C′. Then by Propo-
sition 3.12, P is a regular chain complex, and thus a complex admitting a product
structure in Whitney’s sense. The products∪ and ∩ of Proposition 3.21 satisfy
Whitney’s axioms.

P. We checked in the proof of Proposition 3.21 that (42), (43),and (45) are
satisfied. To check (46), we observe that for any cell (y, x),

〈ε, (y, x) ∩ (y, x)〉 = 〈ε, (y, y)〉

= 〈
∑

(z,w)∈P
|(z,w)|=0

(z,w), (y, y)〉

= 〈
∑

x∈B′

(x, x), (y, y)〉

= 〈(y, y), (y, y)〉

= 1

Next we check (44) and (47), which assert in a precise way that∪ and∩ are
local products. First observe that in the pair complex,

(x, y) � (z,w) ⇔ x � z andw � y

Suppose (x, y) ∪ (z,w) is nonzero. Then

(x, y) ∪ (z,w) = (x,w)

andy = z. We havew � y, so (x, y) is a face of (x,w). Similarly,z� x, so (z,w) is a
face of (x,w). Thus if (x, y) ∪ (z,w) , 0,

(x, y) ∪ (z,w) ∈ St(x, y) ⊓ St(z,w)

Next we must show that if (x, y) ∩ (z,w) , 0,

(x, y) ∩ (z,w) ∈ St(x, y) ⊓ (z,w)
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Observe that

St(x, y) ⊓ (z,w) =


(z,w) (x, y) � (z,w)

0 (x, y) � (z,w)

St(x, y) ⊓ (z,w) =


(z,w) (x, y) � (z,w)

0 (x, y) � (z,w)

Suppose (x, y) ∩ (z,w) is nonzero. Then

(x, y) ∩ (z,w) = (z, x)

andy = w. Sincex � z andy = w, (x, y) � (z,w). Thus

St(x, y) ⊓ (z,w) = (z,w)

Sincew = y � x, (z, x) � (z,w). Thus (z, x) ∈ (z,w). We have shown that if
(x, y) ∩ (z,w) , 0,

(x, y) ∩ (z,w) ∈ St(x, y) ⊓ (z,w)
�

R 3.27. In particular, Corollary 3.26 implies that the∪ and∩ products
we have defined on the pair subdivision of a simplicial complex agree with the
Alexander-Whitney∪ and∩ products on homology.
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CHAPTER 4

Local Poincaré Complexes and Topological Manifolds

In this chapter, we show how the algebraic structure on the pair subdivision of
a regular based chain complex (C, B, ∂) can be used to describeB-local Poincaŕe
complexes. As we will see, topological manifolds structures in the homotopy type
determined by a regular chain complex satisfying Poincaré duality correspond to
choices of local inverse to the Poincaré duality map.

Throughout this chapter, we work with the categorỹREGof simply connected
regular chain complexes; that is to say, regular chain complexes whose geometric
realization is connected and simply connected. IfC is a regular chain complex,C′

denotes the barycentric subdivision ofC, andP denotes the pair subdivision ofC′.
Furthermore, lets denote the composition

s : C→ C′ → P = P(C′)

Thus, in this Chapter,P always denotes the pair subdivision of the barycentric sub-
division ofC. SinceP is the pair subdivision of a simplicial complex, we may use
the geometric properties ofP developed in section 3.2.

4.1. Acyclic Carriers

We now briefly recall Steenrod’s method of acyclic carriers,as we will use it
to construct algebraic Poincaré complexes. LetK be a connected finite regular cell
complex, in the sense of [Ste52]. In particular, the cellular chain complex ofK
is a regular chain complex in our sense. Then the usual face relation gives the set
of cells of K the structure of a poset. LetP(K) denote the set of all nonempty
subcomplexes ofK. Then inclusion of subcomplexes givesP(K) the structure of a
poset.

D 4.1. (Steenrod) LetK andL be cell complexes. Acarrier from K to
L is is a poset map

Γ : K → P(L)

such that each The carrier isacyclic if for eachσ ∈ K, the kernel of the augmenta-
tion map

ε : C(Γ(σ))→ Z

is acyclic; that is to say the kernel of the augmentation map has no homology.
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Let Hom(C(K),C(L)) denote the chain complex where

Hom(C(K),C(L))i = Hom(C∗(K),C∗+i(L))

Let f ∈ Hom(C(K),C(L). We sayf is carried byΓ : K → L if for eachσ ∈ K

f (σ) ∈ C(Γ(σ))

D 4.2. (Steenrod) LetΓ : K → L an acyclic carrier. Then theoperator
complexO(Γ) is the subcomplex of Hom(C(K),C(L)) consisting of all mapsφi :
C∗(K)→ C∗+i(L) such that

(1) Γ is a carrier forφi

(2) If i = 0, then
(a) φ0 is a cycle
(b) There exists a integerk, called theindex of φ0, such that for each

vertex 0-chainc of C0(K)

ε(φ0(c)) = kε(c)

whereε denotes augmentation inK andL.
(3) If i < 0 thenφi = 0

Note that a chain mapf : C(K)→ C(L) which commutes with augmentation is
exactly a 0-cycle of index 1 in Hom(C(K),C(L).

T 4.3. (Steenrod) LetΓ : K → L be an acyclic carrier. Then the follow-
ing augmentation map is a quasi-isomorphism.

O(Γ)→ Z

φi 7→


Index(φ) i = 0

0 i > 0

In particular this theorem implies:

(1) There exists an augmented chain mapf : K → L carried byΓ.
(2) Any two chain maps carried byΓ are homotopic via a homotopy carried

by Γ.
(3) Any two homotopies between chain maps are themselves homotopic via a

homotopy carried byΓ, and so forth.

P 4.4. Let (C, B, ∂) be a regular chain complex. Let P= P(G(C)) be
the pair subdivision of its geometric realization, and by abuse of notation, let P also
denote the cellular chain complex of P(G(C)). Then

Γ∆ : P −→ P× P

(y, x) 7→ (y, x) × (y, x)
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is an acyclic carrier for the chain map

∆ : P→ P⊗ P

(y, x) 7→
∑

x�z�y

(y, z) ⊗ (z, x)

Let T denote the transposition operator

T : P⊗ P −→ P⊗ P

(y, x) ⊗ (w, z) 7→ (−1)(|w|−|z|)(|y|−|x|)(w, z) ⊗ (y, x)

ThenΓ∆ is an acyclic carrier for the chain map T∆.

P. P is a regular chain complex, so each augmentation map

ε : C
(
(y, x) × (y, x)

)
→ Z

is a quasi-isomorphism. ThusΓ∆ is an acyclic carrier. Ifx � z � y, then both (y, z)
and (z, x) are faces of (y, x), so∆ is carried byΓ∆. SinceΓ∆(y, x) is invariant under
the transposition operatorT, Γ∆ is a carrier forT∆ as well. �

Note thatT2 = 1.

C 4.5. Define a chain map∆0 : P→ P⊗ P as follows:

∆0 = T∆

Then for each s> 0 there exists a degree s map

∆s : P −→ P⊗ P

such that

∆s ∈ O(Γ∆)(48)

dO(Γ∆)∆s = (−1)s∆s−1 + T∆s−1(49)

The reason for choosing∆0 = ∆ will become clear in the proof of Proposi-
tion 4.10

P. By Proposition 3.20,∆ : P → P ⊗ P is a chain map. If (x, x) ∈ P is
vertex, then∆(x, x) = (x, x) ⊗ (x, x). We have

ε(x, x) = ε ((x, x) ⊗ (x, x)) = 1

so∆ is a chain map of index 1 in Steenrod’s sense. Thus∆ is a degree 0 cycle in
O(Γ∆), the operator complex of the acyclic carrierΓ∆. Furthermore, SinceT is an
isomorphism,∆0 = T∆ is a degree 0 cycle as well. Since the augmentation map

ε : O(Γ∆)→ Z

is a quasi-isomorphism,∆0−T∆0 must be a boundary inO(Γ∆). Thus there is some
∆1 ∈ O(Γ∆) such that

dO(Γ∆)∆1 = ∆0 − T∆0
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Now suppose inductively that maps∆k have been constructed fork < s satisfying
the stated conditions. Then

dO(Γ∆)((−1)s∆s−1 + T∆s−1) = (−1)s
(
(−1)s−1∆s−2 + T∆s−2

)
+ (−1)s−1∆s−2 + T∆s−2

= −∆s−2 + (−1)sT∆s−2 + (−1)s−1T∆s−2 + T2∆s−2

= 0

Thus
(−1)s∆s−1 + T∆s−1

is an (s−1)-cycle inO(Γ∆). SinceO(Γ∆) has no homology above dimension 0, there
must be some∆s ∈ O(Γ∆)s such that

dO(Γ∆)∆s = (−1)s∆s−1 + T∆s−1

�

C 4.6. Let c be an n-cycle of P. Then

dP⊗P(∆s(c)) = (−1)n+s (∆s−1(c) + (−1)sT∆s−1(c))

P. The operator complexO(Γ∆) is a subcomplex of the hom complex

Hom(P,P⊗ P)

We compute:
(
dHom(P,P⊗P)∆s

)
(c) = ∆sdP(c) + (−1)ndP⊗P(∆s(c))

= (−1)ndP⊗P(∆s(c))

By Corollary 4.5
dHom(P,P⊗P)∆s = (−1)s∆s−1 + T∆s−1

Thus,
dP⊗P(∆s(c)) = (−1)n+s(∆s−1(c) + (−1)sT∆s−1(c)

�

4.2. Poincaŕe Duality Spaces

D 4.7. LetX be a compact topological space which has the homotopy
type of a simplicial complex. We say thatX is ann-dimensional Poincaré Duality
spaceif there is a cycle [X] ∈ Cn(X) such that the cap product map

∩ [X] : Cn−∗(X) −→ C∗(X)

α 7→ α ∩ [X]

is a quasi-isomorphism.
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P 4.8. Let C be a regular chain complex, and letµ ∈ Cn such that

∩ s(µ) : Pn−∗ −→ P

(y, x) 7→ (y, x) ∩ s(µ)

is a quasi-isomorphism. Then the geometric realizationG(C) is a Poincaré duality
space.

P. The simplicial complexG(C) has a subdivision which satisfies Poincaré
duality with respect to the cap product on the pair complex, so the result follows
from Proposition 3.26. �

D 4.9. If C is a regular chain complex anµ is ann-cycle satisfying the
hypotheses of Proposition 4.8, we say thatµ is afundamental cyclefor C.

P 4.10. (Compare[Ran80b, Proposition 1.1].) Let C be a regular
chain complex with n-dimensional fundamental cycleµ. Then the data(P, ∩ s(µ))
can be extended to an global algebraic Poincaré complex, that is to say, a Poincaré
complex in sense of Definition 2.34 in the “global” algebraicbordism category of
Example 2.29.

P. The cap product mapφ0 ≔ ∩ s(µ) provides the chain equivalence

Pn−∗ −→ P

We must construct the higher termsφs : Σn+sTCP→ P such that

(50) dHom(TCP,P)φs = (−1)n+s (φs−1 + (−1)sTC(P)(φs−1))

We will construct these maps using the higher diagonal maps of Corollary 4.5. First
we define the following chain map:

� : P⊗ P −→ Hom(TCP,P)

(y, x) ⊗ (w, z) 7→ (β, α) 7→ 〈(β, α), (y, x)〉(w, z)

Here 〈(β, α), (y, x)〉 means evaluate the cochain (β, α) on the chain (y, x). Let us
abuse notation and let the symbol (y, x) denote both the cell ofP and the generator
of P−∗ which takes the value 1 on (y, x) and 0 on all other generators. Then we may
write�((y, x) ⊗ (w, z)) as follows

(β, α) 7→


(w, z) y = β, x = α

0 y , β or x , β

Let T : P ⊗ P → P ⊗ P denote the transposition operator. Then the following
diagram commutes:

(51) P⊗ P
� //

T
��

Hom(TCP,P)

TC(P)
��

P⊗ P
� // Hom(TCP,P)
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Let (y, x) ⊗ (w, z) ∈ P⊗ P. Then

�T ((y, x) ⊗ (w, z))

is the map

(52) (β, α) 7→


(−1)(|w|−|z|)(|y|−|x|)(y, x) w = β, z= α

0 w , β or z, β

The mapTC(P) is defined in Definition 2.33. Forf : TCPr → Ps,

TC(P)( f ) ≔ (−1)rseC(P)TC( f )

TC(P)� ((y, x) ⊗ (w, z)) = TC(P)

(β, α) 7→


(w, z) y = β, x = α

0 y , β or x , β

(53)

= (β, α) 7→


(−1)(|α|−|β|)(|w|−|z|)(w, z) y = β, x = α

0 y , β or x , β

Comparing (52) and (53), we see that (51) commutes.
Now we inductively construct the mapsφs for s > 0. Let ψ : C → D be a

degreen map of chain complexes. The we defineǫψ to be the degreen map with
components:

(ǫψ)r,s : Cr → Ds+n

c 7→ (−1)rsψ(c)

We claim that

φ0 : (y, x) 7→ (y, x) ∩ s(µ)

is exactly the mapǫ�T∆(s(µ)). The subdivision of the fundamental cycleµ is the
cycle (µ, ε), where

ε =
∑

x∈B
|x|=0

x

Thus

(y, x) ∩ s(µ) = (y, x) ∩ (µ, ε)

=


(µ, y) |x| = 0

0 |x| , 0
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We compute

�T∆(s(µ)) = �T


∑

z∈B′

(µ, z) ⊗ (x, ε)



= �


∑

z∈B′

(−1)|(µ|−|z|)(|z|−|ε|(z, ε) ⊗ (µ, z)



=

(y, x) 7→


(−1)|(µ|−|z|)(|z|−|ε|(µ, y) |x| = 0

0 |x| , 0



= ǫφ0(y, x)

Thusφ0 = ǫ�T∆(µ, ε) = ǫ∆0(µ, ε). We define

φs≔ ǫ�∆s(µ, ε)

Using the computation of Corollary 4.6 and the fact that Diagram 51 commutes, we
see that fors> 0,

dHom(T P,P)(φs) = dHom(T P,P)ǫ�∆s(µ, ε)

= ǫ�dP⊗P∆s(µ, ε)

= ǫ�(−1)n+s (∆s−1(µ, ε) + (−1)sT∆s−1(µ, ε))

= (−1)n+s (ǫ�∆s−1(µ, ε) + (−1)sǫ�T∆s−1(µ, ε))

= (−1)n+s (φs−1 + (−1)sTC(P)ǫ�∆s−1(µ, ε))

= (−1)n+s (φs−1 + (−1)sTC(P)φs−1)

Thus the mapsφs satisfy (50). �

T 4.11.Given a regular chain complex(C, B, ∂) and a fundamental cycle
µ ∈ Cn , there is a B′-local mapφµ : ΣnT P −→ P such that the following diagram
commutes:

ΣnT P
φµ // P

ΣnP−∗

ε

OO

∩s(µ)

<<yyyyyyyyy

whereε : ΣnP−∗ −→ ΣnT P is the natural quasi-isomorphism of Proposition 2.43
and∩s(µ) is the cap product with the pair subdivision ofµ. The B-local mapφµ a
global quasi-isomorphism, but not necessarily a B-local quasi-isomorphism.

The geometric idea of Theorem 4.11 is as follows. A fundamental cycle µ
determines a relative fundamental class of each dual coneDx. To be more explicit,
if µ is a fundamental cycle for triangulated geometric Poincaré duality space, then
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(µ, x) is the relative fundamental class of the dual coneDx. There is a local cap
product map

(54) ∩[Dx] : Cn−|x|−∗(Dx)→ C
(
Dx, ∂Dx

)

Recall from Proposition 3.19 that these chain complexes havesimple descriptions
in terms of the pair subdivision.Cn−|x|−∗(Dx) is generated by pairs of the form

{(y, x′) ∈ P | x � x′ � y}

andC
(
Dx, ∂Dx

)
is generated by pairs of the form

{(y, x) ∈ P | x � y}

Thus (54) is given the following formula

∩[Dx] : Cn−|x|−∗(Dx)→ C
(
Dx, ∂Dx

)

(z, y) 7→ (z, y) ∩ (µ, x)

This formula and its geometric meaning motivate the definition ofφµ.

P  T 4.11. First we describe theB-local chain complexΣnT P.
Recall the local structure onP. P(x) is generated by all pairs of the form (y, x).
By definition,

T P(x) =
∑

x�y

P(y)−|x|−∗

ThusT P(x) is generated by

{(z, y) ∈ P−∗ | x � y}

The generator (z, y) has degree−|z| + |y| − |x|. By definition,

T P=
∑

x∈B

T P(x)

so the chain complexT P is generated by triples

{(z, y, x) ∈ B× B× B | x � y � z}

and each generator has degree−|z|+|y|−|x|. From the formula (38) for the differential
of P−∗ and Remark 2.13, we see that the differentialdT P is as follows.

dT P(z, y, x) = (δz, y, x) − (−1)|z|−|y|(z, ∂y, x) + (−1)|z|−|y|(z, y, δx)

Thus the chain complexΣnT P is generated by triples

{(z, y, x) ∈ B× B× B | x � y � z}

and each generator has degreen− |z| + |y| − |x|. Recall from Definition 2.32 that for
a chain complexD,

dΣnD = (−1)kdD : (ΣnD)k → (ΣnD)k−1
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Thus the differentialdΣnT P is as follows.

(55) dΣnT P(z, y, x) = (−1)n−|z|+|y|−|x|(δz, y, x) − (−1)n−|x|(z, ∂y, x) + (−1)n−|x|(z, y, δx)

Now we define the mapφµ.

φµ : ΣnT P→ P

(z, y, x) 7→ (z, y) ∩ (µ, x)

This formula makes sense, as (z, y) ∈ P−∗, and (µ, x) ∈ P. Thus we may multiply
(z, y) and (µ, x) using the cap product of Proposition 3.21. First observe that if
φµ(z, y, x) , 0, theny = x and

|φµ(z, y, x)| = |(µ, z)|

= n− |z|

= n− |z| + |y| − |x|

= |(z, y, x)|

thusφµ is a degree 0 map. We claim that for anyn-cycleµ ∈ Cn, φµ is a chain map.

dPφµ(z, y, x) = dP ((z, y) ∩ (µ, x))

=


dP(µ, z) x = y

0 x , y

=


(∂µ, z) + (−1)n−|z|(µ, δz) x = y

0 x , y

=


(−1)n−|z|(µ, δz) x = y

0 x , y

Next we compute:

φµdΣnT P(z, y, x) = φµ
(
(−1)n−|z|+|y|−|x|(δz, y, x) − (−1)n−|x|(z, ∂y, x) + (−1)n−|x|(z, y, δx)

)

= (−1)n−|z|+|y|−|x|(δz, y) ∩ (µ, x)

− (−1)n−|x|(z, ∂y) ∩ (µ, x) + (−1)n−|x|(z, y) ∩ (µ, δx)

If x = y, then only the first term is nonzero, and

φµdΣnT P(z, y, x) = (−1)n−|z|+|y|−|x|(δz, y) ∩ (µ, x)

= (−1)n−|z|(µ, δz)
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If x , y, then all of the terms ofφµdΣnT P(z, y, x) are zero unlessx is a codimension
1 face ofy. In that case,

φµdΣnT P(z, y, x) = −(−1)n−|x|(z, ∂y) ∩ (µ, x) + (−1)n−|x|(z, y) ∩ (µ, δx)

= −(−1)n−|x|〈∂y, x〉(µ, z) + (−1)n−|x|〈∂y, x〉(µ, z)

= 0

Thusφµ is a chain map.
Next we claim thatφµ is aB-local chain map.

ΣnT P(x) = {(z, y, x) | x � y � z

If φµ(z, y, x) , 0, thenφµ(z, y, x) = (µ, z). Recall that

P(x) = {(w, x) | x � w}

Thus

φµ (P(x)) ⊂
∑

x�z

P(z)

soφµ is aB-local chain map.
Let us consider the chain complexΣnP−∗ and the mapε∗. First observe thatP−∗

is generated by pairs (y, x) of degree−|y| + |x|. The differential ofP−∗ is given by

d(y, x) = (δy, x) − (−1)|y|−|x|(y, δx)

ThusΣnP−∗ is generated by pairs (y, x) of degreen − |y| + |x|, and the differential
dΣnP−∗ is given by

d(y, x) = (−1)n−|y|+|x| − (−1)n(y, δx)

By Proposition 2.43, there is a natural chain equivalence

e∗ : P−∗ → T P

for anyB-local chain complexP. This is a map of global chain complexes that does
not considerB-local structure. We have the following explicit formula for ε∗.

ΣnP−∗ → ΣnT P

(z, y) 7→ (z, y, ε)

Hereε denotes the cochainε : C→ Z given by augmentation. Explicitly,

ε =
∑

v∈B|v|=0

v
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Recall from the proof of Proposition 3.3 thatδε = 0. We check thatε∗ gives a chain
map fromΣnP−∗ to ΣnT P.

dΣnT Pe∗(z, y) = dΣnT P(z, y, ε)

= (−1)n−|z|+|y|−|ε|(δz, y, ε) − (−1)n−|e|(z, ∂y, ε) + (−1)n−|x|(z, y, δε)

= (−1)n−|z|+|y|(δz, y, ε) − (−1)n(z, ∂y, ε)

= e∗((−1)n−|z|+|y|(δz, y) − (−1)n(z, ∂y)

= e∗dΣnP−∗(z, y)

The subdivision maps : C→ P is given by the formula

s(x) = (x, ε)

Thus the map∩s(µ) is given by

∩s(µ) : ΣnP−∗ → P

(y, x) 7→ (y, x) ∩ (µ, ε)

Note that this map sends the pair subdivision (x, ε) of a cell x to (µ, x), the funda-
mental class of the dual cone ofx.

We check that the diagram commutes. Let (z, y) ∈ ΣnP−∗. Then

φµε
∗(z, y) = φµ(z, y, ε)

= (z, y) ∩ (µ, ε)

= (z, y) ∩ s(µ)

The coaugmentation mape∗ is always a quasi-isomorphism. If∩s(µ) is an iso-
morphism, thenφµ must be a (global) quasi-isomorphism as well. �

R 4.12. If P is the pair subdivision of a simplicial complexK, the chain
complexT P is the chain complex of a cellular subdivision ofK, called the triples
subdivision. Just as the cells ofP are labeled by pairs, the cells ofT P are labeled
by triples. Figure 4.1 shows the triples subdivision of a triangle.

We might now expect an analogue of Proposition 4.10. That is to say, a global
Poincaŕe duality map gives rise to a global algebraic Poincaré complex, so we ex-
pect that the local data (P, φµ) should extend to a local algebraic Poincaré complex.
And indeed this is almost true. The local mapφµ can be extend to a series of
higher mapsφs satisfying the conditions of Definition 2.34. Sinceφµ is a global
equivalence,S−1C(φµ) is globally contractible, so (P, φµ) satisfies condition (2) of
Definition 2.30. However, the fact thatφµ is a global quasi-isomorphism does not
guarantee that for eachx ∈ B′,

Hk

(
S−1C(φµ)(x) = 0

)
for k < 1

Thus (P, φµ) need not satisfy condition (1) of Definition 2.30. We need anadditional
hypothesis onC in order forφµ to determine a Poincaré complex inΛw(B′).
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w

v

e

f

T

(v,v,v)

(w,w,w)

(f,f,f)

(T,T,T)

(F,v,v)

(T,f,f)

(T,w,w)

(T,T,e)

(T,v,v)

(f,v,v)

(e,e,v)

(T,e,v)

(T,e,w)

F 4.1. A triangle with some of its faces labeled, and the triples
subdivision of the triangle.

D 4.13. LetC be a regular chain complex with fundamental cycleµ ∈

Cn. Let (P, φµ) be as defined in Theorem 4.11. We say that (C, µ) is codimension
two Euclideanif

(1) Each cellx ∈ B′ is a face of somen-cell
(2) The cycleµ is the sum of all then-cells:

µ =
∑

x∈B′
|x|=n

x

(3) for all y ∈ B′n−1 , 〈∂x, y〉 is nonzero for exactly twox ∈ B′n
(4) for allx ∈ B′, the mapF : C′ −→ P(x) given on generators by the formula

F(y) =

{
(y, x) |x| = n

0 |x| , n

induces an isomorphism fromHn(C) −→ Hn−|x|(P(x)).
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R 4.14. If (C, µ) is a codimension two Euclidean regular cell complex,
then the geometric realization ofC isn-circuit in the sense of [McC77] and a normal
pseudomanifold in the sense of [GM80].

P 4.15. Let C be a regular chain complex with fundamental cycle
µ ∈ Cn. Then(P, φµ) extends to algebraic Poincaré complex inΛw(B′).

P. Recall thatB′ denotes the basis for chains on the barycentric subdivision
of C, andP denotes the pair subdivision ofP. For eachs ≥ 0, we must give aB′-
local mapφs : Σn+sT P→ P such that

(1) For eachs> 1,

dHom(T P,P)φs = (−1)n+s (φs−1 + (−1)sT (P)(φs−1))

(2) φ0 is aB′-local chain map such that
(a) The desuspension of the mapping cone ofφ0 is globally contractible.

That is to say, theB′-local chain complexS−1C(φ0 : ΣnT D → D) is
contractible after forgetting theB′-local structure.

(b) For eachx ∈ B′,

Hk

(
S−1C(φ0)(x)

)
= 0 for k < 1

We defineφ0 ≔ φµ. By Proposition 4.11,φ0 : ΣnT P→ P is a B′-local chain
map which is a global quasi-isomorphism. Thus the mapping cone

C(φ0 : ΣnT D→ D)

is globally contractible. We must check that

Hk

(
S−1C(φ0 : ΣnT P→ P)(x)

)
= 0

for k < 1 andx ∈ B′. (This is condition (1) of Definition 2.30.) SinceΣnT P and
P are concentrated in nonnegative degrees, the exact sequence of Proposition 2.9
implies that this condition is equivalent to the following two conditions

(1) The chain mapφ0(x) induces an isomorphism

ΣnT P0(x)→ P0(x)

(2) The chain mapφ0(x) induces a surjection

ΣnT P1(x)→ P1(x)

In order to check these two conditions and construct the higher termsφs, we give a
geometric description of the local chain complexesΣnT P(x) andP(x).

Recall thatΣnT P(x) is generated by triples (z, y, x) wherex � y � z, and each
triple has dimensionn− |z| + |y| − |x|. By (55), the differential

dΣnT P(x)(x) : ΣnT P(x)→ ΣnT P(x)
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is given by

d(z, y, x) = (−1)n−|x|
(
(−1)|y|−|z|(δz, y) − (z, ∂y)

)

Let
Cn−|x|−∗(Dx) ≔ Σn−|x|TCP(Dx)

denote the chain complex of cochains on the closed dual cone of x. ThenCn−|x|−∗(Dx)
is generated by pairs (z, y) such thatx � y � z, and each pair has dimension
n− |x| − (|z| − |y|). The differential of this chain complex is given by

dCn−|x|−∗(Dx)(z, y) = (−1)n−|x|
(
(−1)|y|−|z|(δz, y) − (z, ∂y)

)

Thus the following map is an isomorphism of chain complexes.

Cn−|x|−∗(Dx) −→ ΣnT P(x)(56)

(z, y) 7→ (z, y, x)

Similarly, the chain complexP(x) by pairs (y, x) with x � y, and the dimension of
each pair is|y| − |x|. The differential of the chain complex (P(x),dP(x)) is

dP(x)(y, x) = (∂y, x)

Let C∗(Dx, ∂Dx) denote the relative chain complex of chains on the closed dual
cone ofx relative to the boundary of the dual cone ofx. The chain complexC∗(Dx)
is exactly the subcomplex of the pair subdivision ofC′ generated by cells (y, x′)
with x � x′. The differential of this complex is

dC∗(Dx)(y, x
′) = (∂y, x′) + (−1)|y|−|x

′ |(y, δx′)

All of the (y, δx′) terms lie in the boundary∂Dx. Thus the differential ofC∗(Dx, ∂Dx)
is the map

dC∗(Dx,∂Dx)(y, x) = (∂y, x)

and the following map is an isomorphism of chain complexes

C∗(Dx, ∂Dx) −→ P(x)(57)

(y, x) 7→ (y, x)

Recall thatφ0 = φµ is the map

(z, y, x) 7→ (z, y) ∩ (µ, x)

=


(µ, z) x = y

0 x , y

Recall thatφ0(x) is defined to be the composition

ΣnT P(x)
φ0
−→

∑

x�y

P(y)։ P(x)
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Thus,

φ0(x)(z, y, x) =


(µ, x) x = y = z

0 x , y or y , z

Using the isomorphisms (56) and (57), we see that

φ0(x) � ∩ [Dx] : Cn−|x|−∗(Dx) −→ C∗(Dx, ∂Dx)(z, y) 7→ (z, y) ∩ [Dx]

Here [Dx] denotes the fundamental chain (µ, x) of the closed dual coneDx.
We will now use this description of the local mapφ0(x) to show that for each

x ∈ B′,
(1) The chain mapφ0(x) induces an isomorphism

ΣnT P0(x)→ P0(x)

(2) The chain mapφ0(x) induces a surjection

ΣnT P1(x)→ P1(x)

Let x in B′. Observe thatCn−|x|(Dx) is generated by cells of the form (c, x), where
|c| = n. (Recall thatµ =

∑
|c|=n c.)

Suppose|x| < n. Then the map

φ0(x) : Cn−|x|(Dx)→ C0(Dx, ∂Dx)

is the 0 map, since
φ0(x)(c, x) = (c, x) ∩ (µ, x) = (c, c)

and (c, c) = 0 inC0(Dx, ∂Dx) sincec , x. Thus we must show that

H0(Dx, ∂Dx) = 0

This chain complex has a single 0 cell, namely (x, x), andd(x, x) = 0. Since every
cell of C′ is the face of an-cell by hypothesis,x is a codimension 1 face of some
cell y. Then

d
(
(−1)〈∂y,x〉(y, x)

)
= (−1)〈∂y,x〉〈∂y, x〉(x, x)

= (x, x)

Thus (x, x) is a boundary and

H0(Dx, ∂Dx) = 0

Now suppose that|x| = n. ThenCn−|x|(Dx) has a single generator (x, x), C0(Dx, ∂Dx)
has a single generator (x, x), andφ0(x) is the map

(x, x) 7→ (x, x) ∩ (x, x) = (x, x)

Thusφ0(x) is an isomorphism.
Next we show that for eachx,

φ0(x) : Cn−|x|−1(Dx)→ C1(Dx, ∂Dx)
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is a surjection. If|x| = n, then

Cn−|x|−1(Dx) = C1(Dx, ∂Dx) = 0

If |x| = n − 1, then by hypothesisx is a face of exactly twon-cells, call themc1

and c2. ThusCn−|x|−1(Dx) is generated by the 3 cells (x, x), (c1, c1), and (c2, c2),
andC1(Dx, ∂Dx) is generated by the 2 cells (c1, x) and (c2, x). The chain complex
C−∗(Dx) has the homology of a point, because the coneDx is contractible, and the
generator of the single homology class in degree 0 is the sum of all the degree 0
cells. ThusCn−|x|−1(Dx) is cyclic with generator

(x, x) + (c1, c1) + (c2, c2)

The mapφ0(x) sends

(x, x) + (c1, c1) + (c2, c2) 7→ (x, x) ∩ (µ, x)

= (c1, x) + (c2, x)

We must show thatφ0(x) is a surjection onH1. Let

ǫi ≔ 〈∂ci , x〉

By hypothesis,

∂µ = ∂
∑

|c|=n

c = 0

andx is a coface of only the twon-cellsc1 andc2 So we must have

ǫ1 = −ǫ2

Thus

dP(x) ((c1, x) + (c2, x)) = ǫ1(x, x) + ǫ2(x, x)

= 0

Thus (c1, x) + (c2, x) generates the group of 0-cycles ofC1(Dx, ∂Dx) andφ0(x) is
surjective on homology.

If |x| < n− 1, then

φ0(x) : Cn−|x|−1(Dx)→ C1(Dx, ∂Dx)

is the 0 map. Forφ0(x)(z, y) = 0 unless|z| = n andy = x, and thusφ0(x)(z, y) = 0
for all (z, y) in Cn−|x|−1(Dx). Thus we must show that

H1(Dx, ∂Dx) = 0

Recall thatDx has the homology of a point. Looking at the long exact sequence of
the pair (Dx, ∂Dx), we see that

H1(Dx, ∂Dx) = 0
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if and only if

H0(∂Dx) = Z

By hypothesis, the map

C′ → P(x)

y 7→ (y, x)

induces an isomorphism

Hn(C
′)→ Hn−|x|(P(x))(58)

[µ] 7→ [(µ, x)]

Let X = G(C) denote the geometric realization ofC, so thatC∗(G(C)) = C′. Let
cx denote the barycenter of a cellx of G(C). Then (58) implies for each cellx, the
natural map

(59) Hn(X) −→ Hn(X,X \ cx)

is an isomorphism. By the Proposition of [GM80, p. 151], (59) holds for a pseu-
domanifoldX if and only if for each cellx of X with |x| < n − 1, the link of x is
connected. The link of a cellx of G(C) is connected if and only if

H0(∂Dx) = Z

Thus

H1(Dx, ∂Dx) = 0

if |x| < n− 1.
The higher termsφs can be constructed in a manner analogous to the construc-

tion of the globalφs maps of Proposition 4.10, using the method of acyclic carriers
and the diagonal maps

∆ : C∗(Dx)→ C∗(Dx) ⊗C∗(Dx)

�

Let C be codimension two Euclidean with fundamental cycleµ. Then we have
a B-local map

φµ : ΣnT P−→ P

which is a global chain equivalence. Butφµ need not be aB′-local equivalence —
the mapφµ need not have aB′-local chain homotopy inverse. As we shall see, the
question of whether or not such a local inverse exists is the crucial one for detecting
manifold structures in the homotopy type determined byC.
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4.3. Topological Manifold Structures

L 4.16. Let C be codimension two Euclidean with n-dimensional funda-
mental cycleµ. The isomorphism

VLn(G(C))→ Ln(Λw(B′))

of Proposition 2.46 mapsσ∗(G(C)), Ranicki’s “1/2-connective visible symmetric
signature”σ(Γ(C)) to the bordism class represented by the algebraic Poincarécom-
plex(P, φµ).

P. SinceC is codimension two Euclidean, the geometric realizationG(C) is
a normal pseudomanifold in the sense of [GM80]. Thus the 1/2-connective visible
symmetric signature ofσ∗(G(C)) is equal to the visible symmetric signature (C′, φ′)
[Ran92, Remark 16.8]. By Proposition 2.46,

VLn(G(C)) � Ln(Λw(B′))

The visible symmetric signatureσ(Γ(C))(C′′, φ′) is aB′-local chain Poincaré com-
plex, whereB′ is the basis for the barycentric subdivision ofB. Let x be a cell of
C′. ThenC′′(x) is the chain complex generated by all cells of the formx ≺ . . . ≺ xk.
That is to sayC′′(x) is the chain complex of the relative dual coneC∗(Dx, ∂Dx) in
barycentric subdivision ofB′. TC′′(x) is the chain complex of the closed dual cone
of x in the barycentric subdivision ofB′.

Cn−|x|−∗(Dx)

The mapφ′ : ΣnTC′′ → C′′ is locally given by the cap product map

[Dx] ∩ : ΣnTC′′ → C′′

We claim that (P, φµ) and (C′′, φ′) are homotopy equivalent in the sense of of
Definition 2.40. Lets : P→ C′′ be a chain equivalence from the chain complexP,
which is the pair subdivision of the barycentric subdivision of C, to the chain com-
plexC′′, which is the second barycentric subdivision ofC. Consider the diagram

(60) T P

φµs

��

TC′′

φ′s
��

T s
oo

P
s // C′′

We must show that this diagram commutes for alls up to chain homotopiesθs in
the sense of Definition 2.40. First observe thatφ′0 and sTPφµ0T(s) are both local
cap product maps

[Dx] ∩ : Σn−|x|Cn−|x|−∗(Dx)C∗(Dx, ∂Dx)

The difference is thatφ′0 is the Alexander-Whitney cap product, andsTPφµ0T(s)
is the cap product of Proposition 3.21. Since both of these cap products satisfy
Whitney’s axioms, they are chain homotopic. The higher termsφ′s and φµs are
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each constructed using the symmetry of the diagonal map and Streenrod’s method
of acyclic carriers. The difference is that theφ′s are constructed using Alexander-
Whitney diagonal, and theφµs are constructed using the diagonal map of Proposi-
tion 3.20. However, both of these diagonal maps are carried by the acyclic carrier
Γ∆ of Proposition 4.4. Thus the chain homotopiesθs betweenφ′s andsφµ0T(s) can
be constructed using the method of acyclic carriers. �

Now we are ready to state our main result.

T 4.17. Let (C, B, ∂) be a simply connected regular chain complex. Let
µ ∈ Cn be a fundamental cycle such that n> 4 and (C, µ), is codimension two
Euclidean. Then topological manifold structures in the homotopy type determined
by C are in one-to-one correspondence with the set of(P′, µ′) such that

(1) (P′, µ′) is weakly B′-local cobordant to(P, φµ)
(2) µ′ has a B-local chain homotopy inverse

up to strong B′-local bordism.

P. Let X = G(C) denote the geometric realization ofC. Observe that if
(P, φµ) is weaklyB′-local cobordant to some (P′, µ′) such that (P′, µ′) has aB-local
inverse, then (P′, µ′) determines an algebraic Poincaré complex inΛs(B′). Further-
more, since (P′, µ′) is weaklyB′-local cobordant to (P, φµ), (P′, µ′) is a lift of (P, φµ)
toΛs(B′) under the map

F : Λs(B
′) −→ Λw(B′)

Thus, the theorem states that topological manifold structures in the homotopy type
of C are in one-to-one correspondence with (P′, µ′) ∈ Λs(B′) such that

F((P′, µ′)) = (P, φµ)

By Proposition 2.46 and Lemma 4.16, such lifts are in one-to-one correspondence
with (P′, µ′) ∈ Hn(X;L•) such thatA((P′, µ′)) = σ∗(X), whereσ∗(X) denotes the
1/2-connective visible symmetric signature ofX. By Ranicki’s theory of the total
surgery obstruction [Ran92, Chapter 17], lifts ofσ∗(X) to Hn(X;L•) correspond
to lifts of the Spivak normal fibration ofX to a topological normal bundle with
0 surgery obstruction. By Browder-Novikov-Sullivan-Wall surgery theory, such
lifts are in one-to-one correspondence with topological manifolds structures in the
homotopy type ofX. �

96



Bibliography

[Cha10] D. Chataur,Bivariant geometric chains, in preparation, 2010.
[GM80] M. Goresky and R. MacPherson,Intersection homology theory, Topology 19 (1980),

135–162.
[McC77] C. McCrory,A characterization of homology manifolds, J. London. Math. Soc.16 (1977),

no. 2, 149–159.
[McC79] , Zeeman’s filtration of homology, Trans. Amer. Math. Soc.250(1979), 147–166.
[Ran80a] A.A. Ranicki,The algebraic theory of surgery I. foundations, Proc. London. Math. Soc.

3 (1980), no. 40, 87–192.
[Ran80b] , The algebraic theory of surgery II. applications to topology, Proc. London.

Math. Soc.3 (1980), no. 40, 193–283.
[Ran85] , The algebraic theory of finiteness obstruction, Math. Scand.57(1985), 105–126.
[Ran92] , Algebraic L-theory and topological manifolds, Cambridge Tracts in Mathemat-

ics, vol. 102, Cambridge University Press, 1992.
[RS72] C.P. Rourke and B.J. Sanderson,Introduction to piecewise linear topology, Ergebnisse

der Mathematik und ihrer Grenzgebiete, vol. 69, Springer-Verlag, 1972.
[RW90] A.A. Ranicki and M. Weiss,Chain complexes and assembly, Math. Z.204 (1990), 157–

185.
[RW09] , On the construction and topological invariance of the Pontryagin classes, arX-

ive preprint, 2009, math.AT/0901.0819v2.
[Ste52] N.E. Steenrod,Reduced powers of cohomology classes, Ann. Math.56 (1952), no. 1,

47–67.
[Wei92] M. Weiss,Visible L-theory, Forum Math.4 (1992), 465–498.
[Whi38] H. Whitney,On products in a complex, Ann. Math.39 (1938), no. 2, 397–432.
[Zee62] E.C. Zeeman,Dihomology I. relations between homology theories, Proc. London. Math.

Soc.3 (1962), no. 12, 609–638.
[Zee63] , Dihomology III. a generalization of Poincaré duality for manifolds, Proc. Lon-
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