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Abstract of the Dissertation

Orbifold Degeneration of Conformally Compact

Einstein Metrics

by

Frederico Vale Girao

Doctor of Philosophy

in

Mathematics

Stony Brook University

2010

In his investigation of the Dirichlet problem for conformally compact Einstein met-

rics, Anderson showed that there are (at most) three possibilities for the behavior,

under subsequences, of a sequence of conformally compact Einstein metrics, with con-

trolled conformal infinities, on a four-manifold: convergence, orbifold degeneration,

or cusp formation.

Motivated by this result, we study the phenomenon of orbifold degeneration of a

curve of conformally compact Einstein metrics. We start by presenting some back-

ground material. After this, we survey the known results concerning the Dirichlet

problem, and we address some open questions regarding orbifold degeneration. We

then analyze a concrete example of orbifold degeneration, namely, the Taub-bolt fam-

ily of conformally compact Einstein metrics on the tangent bundle of the two-sphere,

and we show that the orbifold Taub-bolt metric is nondegenerate, that is, the kernel
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of the Bianchi gauged Einstein operator is trivial for this metric. Finally, we obtain

results related to a conjecture of Anderson about the boundary of the completion, in

the pointed Gromov-Hausdorff topology, of the space of conformally compact Einstein

metrics on a four-manifold. These last results give necessary conditions for orbifold

degeneration to occur.
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Chapter 1

Introduction

Conformal compactifications of Einstein metrics were introduced by Penrose in [27]

with the purpose of studying the behavior, at null infinity, of solutions to the vacuum

Einstein equations. In the Riemannian setting, the study of conformally compact

Einstein metrics began with the work of Fefferman and Graham [15], in connection

with their investigation of conformal invariants of Riemannian metrics.

Let M be the interior of a compact manifold M with boundary ∂M . A defining

function on M is a smooth, nonnegative function ρ on M with ρ−1(0) = ∂M and

dρ 6= 0 on ∂M . A complete Riemannian metric g on M is said to be conformally

compact if there is a defining function ρ on M such that the conformally equivalent

metric

ḡ = ρ2g

extends to a metric on M .

Given a conformally compact metric g on M , there is a conformal class [γ] on ∂M

associated with g. This conformal class, called the conformal infinity of g, is obtained

by taking γ as the metric on ∂M induced by a compactification ḡ of g. Since there

are many possible defining functions, there are many conformal compactifications

of the metric g. Notice, however, that the metrics induced on ∂M by two distinct

compactifications of g are conformally equivalent, and so, the conformal class [γ] is

uniquely determined by g.

The study of conformally compact Einstein metrics (also called Poincaré-Einstein

metrics) gained a lot of interest after the introduction, by Maldacena [22], of the

AdS/CFT correspondence in string theory. This correspondence relates gravitational

theories on M with conformal field theories on ∂M , cf. [13], [33] and references

therein.
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Mathematically, an important problem in this area is the Dirichlet problem for

conformally compact Einstein metrics: given the topological data (M,∂M), and a

conformal class [γ] on ∂M , does there exist a conformally compact Einstein metric g

on M whose conformal infinity is [γ]? If such a metric g exists, is it unique?

The answer for the uniqueness question is, in general, no. The first example of

non-uniqueness was found by Hawking and Page [18] in their analysis of the AdS-

Schwarzschild metric.

Let E(M) denote the space of conformally compact Einstein metrics on M and

let D1 denote the space of diffeomorphisms of M fixing the boundary. We denote by

E the moduli space E/D1. Also, we let C denote the space of conformal classes on

∂M . There exists a natural map

Π : E → C, Π(g) = [γ],

that takes a conformally compact Einstein metric g on M to its conformal infinity

[γ] on ∂M . Notice that global existence for the Dirichlet problem corresponds to

surjectivity of the map Π, and that uniqueness corresponds to injectivity of Π.

In [9], Anderson shows that when π1(M,∂M) = 0, then the space E , if non-empty,

is a smooth infinite dimensional manifold. Thus, if M carries some conformally

compact Einstein metric, then it also carries a large set of them. Furthermore, he

showed that the boundary map Π is a C∞ smooth Fredholm map of index 0. This

implies that Π is a local diffeomorphism in a neighborhood of each regular point.

With regard to the global surjectivity question, a basic property that one needs

to understand is whether Π is a proper map. If Π is not proper, it is important

to understand exactly what possible degenerations of Poincaré-Einstein metrics can

occur with controlled conformal infinity.

It is shown in [8] that for a sequence {gi} of Poincaré-Einstein metrics on a fixed

4-manifold M , with conformal infinities γi ⊂ Γ, where Γ is a compact subset of C,
there are (at most) three possibilities for the behavior of {gi} under subsequences:

I. Convergence.

II. Orbifold degeneration.

III. Formation of cusps.

An important remark is that orbifold degeneration can, in fact, occur: the Taub-

bolt family is a 1-parameter family of Poincaré-Einstein metrics on TS2, the tangent
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bundle of the 2-sphere, that degenerates to a Poincaré-Einstein metric on the orbifold

C(RP3), the cone RP3. Furthermore, with the exception of metrics obtained by a

connected sum construction due to Mazzeo and Pacard [24] (see Section 2.6 and

Section 3.5), this is the only known example of orbifold degeneration of a family of

conformally compact Einstein metrics.

As observed in [7], orbifold degenerations of conformally compact Einstein metrics

need to be better understood. The main purpose of this dissertation is to obtain a

better understanding of this type of degeneration. This is accomplished here by

proving some results related to two conjectures of Anderson, which we now explain.

An important differential operator for the study of conformally compact Einstein

metrics is the so called Bianchi gauged Einstein operator (see [9, 11], for example).

Let us denote by Lg the linearization of this operator at some conformally compact

metric g. A Poincaré-Einstein metric g is said to be nondegenerate if the kernel of

Lg is trivial. If the kernel of Lg isn’t trivial, we say that g is degenerate.

A conjecture made by Anderson says that whenever orbifold degeneration of a

sequence of conformally compact Einstein metrics on a 4-manifold occurs, the limit

orbifold Poincaré-Einstein metric is degenerate. For a precise statement, see Conjec-

ture 2.23 on Section 2.7. This conjecture is also discussed in [25].

Before we state the next conjecture, we need to introduce some terminology.

The trichotomy I-III above leads one to consider the following approach: instead

of working with the space E , one can work with an enlarged space that includes the

orbifold and cusps limits. Let then Ē be the completion of the moduli space E of

Poincaré-Einstein metrics with respect to the pointed Gromov-Hausdorff topology.

The map Π extends to a continuous map Π̄ : Ē → C, and Π̄ is proper.

If Ē has roughly the structure of a manifold, then one can define a degree degΠ̄

associated with each component of Ē . If it happened that degΠ̄ 6= 0, one would

conclude (at least) that almost every choice of conformal class in C is the conformal

infinity of a smooth Poincaré-Einstein metric on M .

Regarding the (point set) topology of Ē , it’s conjectured that for any component E0

of E , Π̄(∂E0) has empty interior in C, where ∂E0 = Ē0 \E0. This conjecture is stated in

[7] (Conjecture 4.2). We also give a precise statement in Section 2.7 (Conjecture 2.24).

Let us now explain how the dissertation is organized. In Chapter 2 we review the

background material that will be needed in the later chapters. In Section 2.5 we give

a survey of results regarding the Dirichlet problem for conformally compact Einstein

metrics. In Section 2.7 we give a precise statement of the result in [8] about the

possible behavior under subsequences of a sequence of conformally compact Einstein
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metrics on a 4-manifold. Also in Section 2.7, we give precise statements of the two

conjectures mentioned above.

In Chapter 3 we analyze the orbifold Taub-bolt metric on C(RP3). We show that

this Poincaré-Einstein orbifold has negative sectional curvature. We then conclude,

by invoking a theorem of Koiso [20], that the orbifold Taub-bolt is nondegenerate.

This answers Conjecture 2.23 negatively. We finish that chapter by pointing out how

to use the Taub-bolt family to obtain more examples of orbifold degeneration.

In Chapter 4 we prove some results related to Conjecture 2.24. Let V be a

4-dimensional orbifold such that there exists a smooth resolution π : M → V . Let

now h be a nondegenerate conformally compact Einstein metric on V , and suppose

that there exists a continuous curve gt, t ∈ (0, 1), of conformally compact Einstein

metrics on M such that (M, gt) degenerates to (V, h).

Let [γ] be the conformal infinity of h. Since we are assuming h to be nondegener-

ate, there exists a neighborhood W of [γ] in C such that each [θ] ∈ W is the conformal

infinity of a unique Poincaré-Einstein metric h[θ] on V , h[θ] near h (see Theorem 2.15).

Suppose it is possible to take W in such a way that for each [θ] ∈ W , there exists a

smooth curve g
[θ(t)]
t , t ∈ (0, 1), of Poincaré-Einstein metrics degenerating to (V, h[θ]).

Assuming this set up, we prove some results that give necessary conditions for orbifold

degeneration to occur. Two of these results are Theorem 4.1 and Theorem 4.10.

Theorem 4.1 says that if there exists t0 ∈ (0, 1) such that gt is nondegenerate, for

each t ∈ (0, t0), then there exist continuous curves g1, g2 : (0, 1)→ E(M) with

Π(g1(s)) = Π(g2(s)),

for each s ∈ (0, 1), and g1(s1) 6= g2(s2), for all s1, s2 ∈ (0, 1). In particular, the

boundary map Π is not injective.

Theorem 4.10 says the following: suppose there exists t0 ∈ (0, 1) such that

gt is nondegenerate, for each t ∈ (0, t0). For each t ∈ (0, t0), consider the map

Ψt : Sm,αδ → Sm−2,α
δ (see Definition 2.5), δ = 2, defined by k 7→ Φgt(gt + k), where

Φg denotes the Bianchi gauged Einstein operator with background metric g (see Sec-

tion 2.4). If there exists t1 ∈ (0, t0) such that the map k 7→ Ψ′(k) is µ-Lipschitz, for

each t ∈ (0, t1) (the constant µ independent of t), then the set

{||(Lgt)−1||; t ∈ (0, t0)}

is unbounded, where Lgt is the linearization of Φgt at k = 0.

For each t ∈ (0, t0), denote by ξgt the first eigenvalue of Lgt . We have that
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||(Lgt)−1|| equals ξ−1
gt , and hence, ξgt bounded below by some positive constant cor-

responds to ||(Lgt)−1|| bounded above. Therefore, under the assumptions of Theo-

rem 4.10, we conclude that if (M, gt) degenerates to (V, h), then ξgti → 0 for some

subsequence {ti} ⊂ (0, 1).
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Chapter 2

Background

2.1 Hölder spaces

Let U be an open subset of Rn and let α ∈ (0, 1). Recall that a function f : U → R

is Hölder continuous with exponent α if there exists a constant C such that

|f(x)− f(y)| ≤ C|x− y|α,

for any x, y ∈ U . We say that a function f : U → R is of class Cm,α (written f ∈ Cm,α)

if all of its derivatives up to order m are continuous and if its m-th derivatives are

Hölder continuous with exponent α.

Let M be a smooth manifold (without boundary). A Cm,α symmetric bilinear

form on M is a symmetric bilinear form v on M satisfying the following: for each

p ∈M , there exists a coordinate chart (u1, . . . , un) around p such that the components

vij of v in this coordinate chart are of class Cm,α. A Cm,α Riemannian metric on M

is a positive definite Cm,α symmetric bilinear form.

It may happen that the components of a Cm,α Riemannian metric in a particular

coordinate chart are not of class Cm,α. There are examples, for instance, of Cm,α met-

rics whose components in normal coordinates are not of class Cm,α. It is important,

therefore, to work with coordinates which, besides being adapted to the geometry of

(M, g), have good analytic properties. This leads us to the introduction of harmonic

coordinates.

Let g be a Riemannian metric on M of class Cm,α, m ≥ 1. The coordinates

(u1, . . . , un) are said to be harmonic with respect to the metric g (or g-harmonic) if

∆gu
i = 0
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for each i = 1, . . . , n, where ∆g is the Laplacian of g.

We now state some results regarding harmonic coordinates. The first result con-

cerns the existence of such coordinates, while the second states that, in some sense,

harmonic coordinates have optimal regularity. These results are proved in [14].

Proposition 2.1. Let the metric on a Riemannian manifold (M, g) be of class Cm,α

in a local coordinate chart about some point p. Then there is a neighborhood of p

in which harmonic coordinates exist, these new coordinates being Cm+1,α functions

of the original coordinates. Moreover, all harmonic charts defined near p have this

regularity.

Theorem 2.2. Let the metric g be of class Cm,α in the coordinates (u1, . . . , un). If a

tensor T is of class C l,β, l ≥ m and β ≥ α, in the coordinates (u1, . . . , un), then T is

of class C l,β in harmonic g-coordinates.

Corollary 2.3. If a metric g is of class Cm,α, m ≥ 1, in some coordinate chart, then

it is also of class Cm,α in harmonic coordinates.

Given a Riemannian manifold (M, g), we denote by ζm,α(x) the Cm,α harmonic

radius at x ∈ M , cf. [3]. This is the largest radius such that, for any r < ζm,α(x),

the geodesic ball B(x, r) has harmonic coordinates in which the metric components

gij satisfy

Q−1I ≤ g ≤ QI (2.1)

and ∑
1≤|β|≤m

r|β| sup
y∈B(x,r)

|∂βgij(y)|

+
∑
|β|=m

rm+α sup
y1,y2∈B(x,r)

|∂βgij(y1)− ∂βgij(y2)|
|y1 − y2|α

≤ Q− 1. (2.2)

Here Q > 1 is a constant (close to 1) fixed once and for all.

Let g be a Cm,α metric on the smooth manifold M , and suppose there exist positive

real numbers Λ and i0 such that the following bounds hold:

||∇m−1Ric||L∞ ≤ Λ and inj(M,g) ≥ i0,

where inj(M,g) denotes the injectivity radius of (M, g). It is proved in [3] that for such

a Riemannian manifold, there exists a lower bound ζ0 > 0 for ζm,α(x), that is,

ζm,α(x) ≥ ζ0

7



for each x ∈M . Moreover, the bound ζ0 depends only on the bounds Λ and i0.

Given a smooth manifold M , we say that a family Ωλ of open subsets of M is a

uniformly locally finite covering of M if the following holds: Ωλ is a covering of M

and there exists a positive integer N such that each point x ∈M has a neighborhood

which intersects at most N of the Ωλ’s. One then has the following result (for a proof,

see for example [19]):

Lemma 2.4. Let M be a smooth n-dimensional manifold and let g be a Riemannian

metric of class Cm,α, m ≥ 1. Suppose (M, g) is complete with Ricci curvature bounded

below by some real number κ, and let r0 > 0 be given. There exists a sequence {xi}
of points of M such that for any r ≥ r0, the following hold:

(i) the family (B(xi, r)) is a uniformly locally finite covering of M , and there is a

upper bound for N in terms of n, r0, r and κ;

(ii) for each i 6= j, B(xi, r0/2) and B(xj, r0/2) are disjoint.

Here, B(x, r) denotes the geodesic ball of center x ∈M and radius r.

For a smooth manifold M , let Mm,α, m ≥ 1, denote the space of Cm,α Riemannian

metrics on M with ||∇m−1Ric||L∞ bounded above and inj(M,g) bounded below (by

some positive real numbers depending on g). We are now in a position to define the

Cm,α topology on the space Mm,α.

Let then g be an element of Mm,α. By Lemma 2.4, it is possible to choose a

uniformly locally finite covering of (M, g) consisting of a collection of geodesic balls

B(xi, ζ0/2) such that the balls B(xi, ζ0/4) are pairwise disjoint. Now let g′ be another

element of Mm,α, so that v = g − g′ is a Cm,α symmetric bilinear form. We define

||g′||Cm,α(g) = ||v||Cm,α(g),

with

||v||Cm,α(g) = sup
xi

 ∑
1≤|β|≤m

ζ
|β|
0 sup

y∈B(xi,ζ0)

|∂βvij(y)|

+
∑
|β|=m

ζm+α
0 sup

y1,y2∈B(xi,ζ0)

|∂βvij(y1)− ∂βvij(y2)|
|y1 − y2|α

 ,

where the components vij are taken in local g-harmonic coordinates satisfying the

bounds (2.1) and (2.2).
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The norms || ||Cm,α(g) define the Cm,α topology on the space Mm,α by defining the

open balls centered at g in the usual way.

So far, we were assuming that ∂M = ∅. Let us now briefly discuss the case of a

compact manifold with boundary.

Let then M be a compact manifold with nonempty boundary ∂M , let g be a

Riemannian metric on M , and let γ be the metric that g induces on ∂M . Let p ∈ ∂M
and let (u1, . . . , un) be coordinates, of class at least C1, defined on a neighborhood

U of p. We say that the coordinates (u1, . . . , un) are boundary harmonic coordinates

if ∆gu
j = 0, j = 1, . . . , n; the coordinates (û1, . . . , û(n−1)), where ûj = uj|∂M , are

harmonic coordinates on (∂M, γ); and un = 0 on U ∩ ∂M .

In the context of a compact manifold with boundary (M, g), the injectivity radius

is defined as the supremum, among all positive numbers i for which

expp : B(0, r)→M,

where B(0, r) = {w ∈ TpM ; g(w,w) < r2}, is a diffeomorphism for r = i if

dist(p, ∂M) ≥ i and it is a diffeomorphism for r = dist(p, ∂M) if dist(p, ∂M) ≤ i.

Let us also use the notation Mm,α to denote the space of Cm,α Riemannian met-

rics on M with ||∇m−1Ric||L∞ bounded above and with inj(M,g) bounded below (by

positive constants depending on g). In a way similar to the case of a manifold M

without boundary, we can define the Cm,α(M) topology, m ≥ 1, on the space Mm,α.

For more details, we refer the reader to [3].

2.2 Conformally compact Einstein metrics

Let M be the interior of a compact (n + 1)-dimensional manifold M with boundary

∂M . Denote by Cm,α(M) the space of functions on M with m derivatives that are

Hölder continuous of degree α up to the boundary in each background coordinate

chart.

Recall that a function ρ on M is called a defining function if ρ is a smooth,

nonnegative function on M with ρ−1(0) = ∂M and dρ 6= 0 on ∂M . A complete

Riemannian metric g on M is Cm,α conformally compact if there is a defining function

ρ on M such that the conformally equivalent metric

ḡ = ρ2g (2.3)

extends to a Cm,α metric on the compactification M . The induced metric γ = ḡ|∂M
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is the boundary metric associated to the compactification ḡ. If ρ1 and ρ2 are distinct

defining functions, then

ḡ1 = ρ2
1g and ḡ2 = ρ2

2g

are distinct metrics on M . Consider the function f on M given by

f = (ρ2ρ
−1
1 )2.

The conditions ρ−1
j (0) = ∂M and dρj 6= 0 on ∂M , j = 1, 2, imply that f is well

defined and f > 0 on M . Notice that

ḡ2 = fḡ1.

Thus, γ1 and γ2, the boundary metrics associated with ḡ1 and ḡ2, respectively, satisfy

γ2 = f |∂Mγ1,

that is, γ1 and γ2 are conformally equivalent. This shows that the conformal class [γ]

of γ on ∂M is uniquely determined by (M, g). The conformal class [γ] is called the

conformal infinity of g.

We denote by Metm,α(∂M) the space of Cm,α metrics on ∂M , and we give this

space the Cm,α′ topology, for a fixed α′ < α, so that bounded sequences in the Cm,α′

norm have convergent subsequences. The corresponding space of pointwise conformal

classes is denoted Cm,α. Next, let Sk,β(M) be the Banach space of Ck,β symmetric

bilinear forms on M , and let Sk,β(M) be the corresponding space of symmetric bilinear

forms on the closure M , again with the Ck,β′ topology, β′ < β.

Fix a smooth defining function ρ and define a function r = r(ρ) by

r = − log
(ρ

2

)
.

Consider a complete Riemannian metric g of bounded geometry on M , i.e. g has

bounded sectional curvature and injectivity radius bounded below on M .

Definition 2.5. The weighted Hölder space Sk,βδ (M) = Sk,βδ (M, g) is the Banach space

of symmetric bilinear forms f on M such that

f = e−δrf0,

where f0 ∈ Sk,β(M) satisfies ||f0||Ck,β(M,g) ≤ C, for some constant C < ∞. The
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weighted norm of f is defined by

||f ||Ck,βδ (M) = ||f0||Ck,β(M).

In this dissertation, we are mainly concerned with conformally compact Einstein

metrics g, normalized so that

Ricg = −ng.

By relating the curvatures of g and ḡ, it is not hard to show that if the Einstein metric

g is at least C2 conformally compact, then the sectional curvature Kg of g satisfies

|Kg + 1| = O(ρ2). (2.4)

Thus, conformally compact Einstein metrics generalize the Poincaré model of hyper-

bolic space Hn+1. For this reason, these metrics are frequently called asymptotically

hyperbolic (AH), or also Poincaré-Einstein, and these three different names will be

used interchangeably in this dissertation.

The decay (2.4) suggests that a natural choice for δ is

δ = 2.

We fix this choice of δ for the rest of the dissertation. For more details about weighted

Hölder spaces and this natural choice of δ, see the discussion in Section 4 of [9].

Let Em,α(M) be the space of Poincaré-Einstein metrics on M which admit a C2

conformal compactification as in (2.3), with Cm,α boundary metric γ on ∂M . Here,

0 < α < 1, m ≥ 3, and we allow m =∞. The space Em,α is given the Cm,α′ topology

on metrics on M , for any α′ < α, via a fixed conformal compactification as in (2.3).

Let

Em,α(M) = Em,α(M)/Dm+1,α
1 (M),

where Dm+1,α
1 (M) is the group of Cm+1,α diffeomorphisms of M inducing the identity

on ∂M , acting on Em,α in the usual way by pullback. Similar spaces can by defined

in the case of an orbifold V (our definition of orbifold is given in Section 2.3). We

choose, however, to use the notation Fm,α(V ) and Fm,α(V ) when working with an

orbifold.

The natural map

ΠE : Em,α → Cm,α, Π[g] = [γ],

called Dirichlet boundary map, takes a Poincaré-Einstein metric g on M to its confor-
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mal infinity [γ] on ∂M (when working with orbifolds, we denote the boundary map by

ΠF : Fm,α → Cm,α). Regarding the boundary map Π, a natural question that arises

is the Dirichlet Problem for Poincaré-Einstein metrics: given the topological data

(M,∂M), and a conformal class [γ] on ∂M , does there exist a conformally compact

Einstein metric on M whose conformal infinity is [γ]? If such a metric exists, is it

unique? Of course, the Dirichlet problem can be formulated in terms of the boundary

map Π, with existence corresponding to surjectivity Π and uniqueness corresponding

to injectivity of Π. We will discuss some results related to the Dirichlet problem in

Section 2.5.

2.3 Orbifolds

We introduce now some concepts related to orbifolds. We remark that our definition

of orbifolds (see [8], [9] or [6]) is more restrictive than the general definition due to

Thurston [29].

Definition 2.6. A topological space V (respectively, V ) is an (n + 1)-dimensional

orbifold (respectively, V is an (n+ 1)-dimensional orbifold with boundary) if V is an

(n+ 1)-dimensional manifold (respectively, V is a (n+ 1)-dimensional manifold with

boundary) away from finitely many singular points {q1, . . . , qk} in the interior, each

having a neighborhood homeomorphic to a cone on a spherical space form.

The subset V \ {q1, . . . , qk}, that is, the complement of the singular set, is called

the regular set of V , and is denoted by Vreg.

Definition 2.7. A Cm,α metric on a (n+1)-dimensional orbifold V is a Cm,α metric

h on Vreg such that, in a local uniformization Bn+1 \ {0} of each cone, h extends to a

Cm,α metric on the ball Bn+1.

The metric h is a Cm,α Einstein metric on V if h|Vreg is a Cm,α Einstein metric on

the smooth manifold Vreg.

If V is the interior of a (n+1)-dimensional compact orbifold with boundary, there is

the notion of Cm,α conformally compact metric on V , which is totally analogous to the

case of a smooth manifold M . There are also spaces similar to the spaces Em,α(M)

and Em,α(M) defined previously for a smooth manifold M . We use the notation

Fm,α(V ) and Fm,α(V ) when referring to these spaces, and the natural boundary map

is denoted by

ΠF : Fm,α(V )→ Cm,α(∂V ).
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For the next two definitions, we restrict ourselves to dimension four.

Definition 2.8. A pair (M,π), where M is a 4-dimensional smooth manifold and

π : M → V is a continuous map, is said to be a smooth resolution of V if

π|π−1(Vreg) : π−1(Vreg)→ Vreg

is a diffeomorphism and each π−1(qi) is a connected 2-dimensional CW complex in

M , where {q1, . . . , qk} is the singular set of V .

Definition 2.9. An orbifold singular Einstein metric on a smooth 4-dimensional

manifold M is a symmetric bilinear form of the form π∗(h), where (M,π) is a smooth

resolution of an orbifold V and h an Einstein metric on V .

Before we move to the next section, we would like to consider some explicit ex-

amples of Poincaré-Einstein metrics defined on a orbifold V .

Let D be the unit disk in Rn+1, that is,

D = {x ∈ Rn+1; |x| ≤ 1}.

The group Z2 = {0̄, 1̄} acts on D in the usual way:

0̄ · x = x and 1̄ · x = −x.

By taking the quotient of D by this action, we get an orbifold with boundary. There

is only one orbifold singularity, which corresponds to the origin in Rn+1. The interior

of this orbifold, that is, the points corresponding to the interior D of D, is called cone

RP3, and denoted C(RP3).

One can consider, for example, the “Euclidean” metric h0 on the orbifold C(RP3),

that is, the metric induced from the Euclidean metric g0 on D. An explicit expression

for h0 is

h0 = dr2 + r2gRP3 , (2.5)

where, for [x] ∈ C(RP3), r denotes the Euclidean distance from x to the center

of D, and gRP3 is the metric induced on RP3 by the round metric on the unit

sphere Sn(1).

By considering conformally compact Einstein metrics on D which are symmetric

with respect to the action of Z2, we can find conformally compact Einstein metrics on

C(RP3). One obvious example is then the metric obtained from the Poincaré model
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for the hyperbolic space (D, g−1). We will denote this metric by h−1, and will also

use the terminology hyperbolic metric when referring to it. An explicit expression for

this metric is

h−1 =
4

(1− r2)2
h0,

where h0 is the “Euclidean” metric (2.5). Another example of this type is the orbifold

Taub-bolt metric, denoted by hTB. This metric will be studied in detail in Chapter 3.

2.4 The Bianchi gauged Einstein operator

Consider the operator E : Mm,α → Sm−2,α given by

E(g) = Ricg + ng. (2.6)

We call this operator the Einstein operator.

Suppose we have a Cm,α metric g̃ and we would like to find an Einstein metric g

(that is, a metric g such that E(g) = 0), close to g̃ in the Cm,α topology, and such that

g and g̃ have the same conformal infinity. This corresponds to finding f ∈ Sm,αδ (see

Definition 2.5), δ = 2, with ||f ||Cm,α(g̃) sufficiently small (so that g̃+f is a Riemannian

metric) such that

E(g̃ + f) = 0. (2.7)

Equation (2.7) is a nonlinear, very complicated equation. It is natural then to consider

the linearization of E at g̃.

Recall that if ω is a 1-form, then (δg̃)∗ω is its symmetrized covariant derivative.

In coordinates,

((δg̃)∗ω)ij =
1

2
(ωi;j + ωj;i).

Its formal adjoint acting on symmetric 2-tensors is the divergence operator δg̃,

δg̃kj = −kji;j.

The linearization of the operator E at g̃ is given by

(DE)g̃ · k =
1

2
∆g̃
Lk − (δg̃)∗δg̃k − 1

2
∇g̃d(trg̃k) + nk, (2.8)
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where the Lichnerowicz Laplacian ∆g̃
L is defined by

∆g̃
Lk = (∇g̃)∗∇g̃k + Ricg̃ ◦ k + k ◦ Ricg̃ − 2R̊g̃k.

Here,

(R̊g̃k)ij = Rmipjqk
pq, Ricg̃ ◦ k = Ric p

i kpj, k ◦ Ricg̃ = k p
i Ricpj,

and all curvatures are computed with respect to g̃.

Due to the diffeomorphism invariance of (2.6), the linearization (2.8) is not an

elliptic operator. To remedy this problem, one must choose some gauge condition. A

good choice in this situation is the so called Bianchi gauge. We will then look for a

metric g, close to g̃, such that

Ricg + ng = 0

δg̃g +
1

2
d(trg̃g) = 0. (2.9)

This system is elliptic in the sense of Agmon-Douglis-Nirenberg [1, 2], but it is more

convenient to work with the single equation Φg̃(g) = 0, where

Φg̃(g) = Ricg + ng + (δg)∗
(
δg̃g +

1

2
d(trg̃g)

)
. (2.10)

In the case of interest to us, system (2.9) is equivalent to equation (2.10). Indeed,

(2.9) obviously implies Φg̃(g) = 0. The converse is provided by the following lemma

(for a proof, see [11]).

Lemma 2.10. Suppose Φg̃(g) = 0 and Ricg < 0. If |δg̃g + 1
2
d(trg̃g)|(x) → 0 as

x→ ∂M , then any solution of Φg̃(g) = 0 is a solution of system (2.9).

By considering the linearization of 2Φg̃ at g = g̃, we get an operator

Lg̃ : Sm,αδ → Sm−2,α
δ ,

(recall that we are taking δ = 2) which is given by the simple expression

Lg̃(k) = (∇g̃)∗∇g̃k + Ricg̃ ◦ k + k ◦ Ricg̃ − 2R̊g̃k. (2.11)

This is an elliptic operator. By [16], it is Fredholm, and thus it has finite dimensional

kernel and cokernel. If the metric g̃ is Einstein, that is, if Ricg̃ + ng̃ = 0, equation
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(2.11) simplifies to

Lg̃(k) = (∇g̃)∗∇g̃k − 2R̊g̃k.

Definition 2.11. We say that the Einstein metric g is nondegenerate if the kernel

of the Fredholm operator

Lg : Sm,αδ → Sm−2,α
δ ,

(with δ = 2) is trivial. If the kernel of Lg isn’t trivial, we say that the Einstein metric

g is degenerate.

We now state a theorem of Koiso [20] about the nondegeneracy of Einstein metrics

of negative sectional curvature. The original theorem is stated for compact manifolds,

but it is also true for conformally compact manifolds (see, for example, Chapter 8

of [21]).

Theorem 2.12. Let (M,g) be a (conformally) compact Einstein manifold satisfying

Ricg = λg.

Let β0 be the largest eigenvalue of the operator R̊ on trace-free symmetric 2-tensor

fields. If

β0 < max

{
−λ, λ

2

}
,

then g is nondegenerate.

Corollary 2.13. Let g be a Cm,α conformally compact Einstein metric on the smooth

manifold M . If g has negative sectional curvature, then g is nondegenerate.

Even though the concepts and statements in this section refer to a smooth manifold

M , they also make sense, and are true, in the context of an orbifold V . This is due

to the simple nature of the orbifold singularities.

2.5 Some results about the Dirichlet problem

In this section we survey some important results regarding the Dirichlet Problem for

Poincaré-Einstein metrics. In [16], Graham and Lee proved the following perturbation

result:

Theorem 2.14. Let Bn+1, n ≥ 3, be the (n + 1)-dimensional ball and let γ1 be the

standard metric on the sphere Sn. For any smooth Riemannian metric γ on Sn which
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is sufficiently close to γ1 in C2,α norm if n ≥ 4, or C3,α norm if n = 3, for some

0 < α < 1, there exists a smooth metric g in Bn+1 such that

(i) Ricg = −ng,

(ii) g has [γ] as conformal infinity.

In [11], Biquard generalizes Theorem 2.14 to the setting of asymptotically sym-

metric Einstein metrics. A generalization of Theorem 2.14 was also given by Lee

in [21].

The following result proved by Anderson in [9] generalizes all the results mentioned

on this section so far. This result will be very important for us later on in this

dissertation. We will state here the version of the result for smooth manifolds, but as

observed in [7] (Remark 4.1), the theorem is also valid for orbifolds.

Theorem 2.15. Let M be a compact, oriented 4-manifold with boundary ∂M satis-

fying π1(M,∂M) = 0. If for a given (m,α), m ≥ 3, Em,α is non-empty, then Em,α

is a C∞ smooth infinite dimensional separable Banach manifold. Furthermore, the

boundary map

Π : Em,α → Cm,α

is a C∞ smooth Fredholm map of index 0.

Implicit in Theorem 2.15 is the boundary regularity statement that a conformally

compact Einstein metric with Cm,α conformal infinity has a Cm,α compactification.

Versions of Theorem 2.15 also hold in dimension n > 4; see Theorem 5.5 and Theo-

rem 5.6 in [9] for precise statements.

Let Co be the space of nonnegative conformal classes [γ] on ∂M , in the sense that

[γ] has a non-flat representative γ of nonnegative scalar curvature. Let Eo = Π−1(Co)
be the space of AH Einstein metrics on M with conformal infinity in Co. Thus, one

has the restricted boundary map

Πo = Π|Em,α : Eo → Co.

Theorem 2.16. Le M be a 4-manifold satisfying π1(M,∂M) = 0 and for which the

inclusion ι : ∂M →M induces a surjection

H2(∂M,F)→ H2(M,F)→ 0,
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for all fields F. Then, for any (m,α), m ≥ 4, the boundary map

Πo : Eo → Co

is proper.

The theorem above is proved in [8]. Together with a result of Smale [28], it

implies that Πo has a well-defined mod 2 degree, deg2Πo ∈ Z2, on each component

of Eo. In fact, building on work of Tromba [30] and White [31, 32], Anderson shows

(Theorem 6.1 of [8]) that Πo has a Z-valued degree

degΠo ∈ Z,

again on components of Eo. Of course, if degΠo 6= 0, then Πo is surjective.

Regarding the surjectivity of the boundary map Π, there is the following nice

result, also due to Anderson [8].

Theorem 2.17. Let M = B4 be the 4-ball, with ∂M = S3, and let Co be the com-

ponent of the non-negative Cm,α conformal classes containing the round metric on

S3. Also, let Eo be the component of Π−1(Co) containing the Poincaré metric on B4.

Then

degB4Πo = 1.

In particular, for any (m,α), m ≥ 4, any conformal class [γ] ∈ Co on S3 is the

conformal infinity of a AH Einstein metric on B4.

The previous result ties nicely with a recent result of Marques [23], which we now

state.

Theorem 2.18. The space of positive scalar curvature metrics on the 3-sphere is

path-connected in the C∞ topology.

This theorem is actually a corollary of a more general result. We refer the reader

to [23] for details.

Taken together, Theorem 2.17 and Theorem 2.18 imply that if [γ] ∈ C∞(S3) is

a positive conformal class, that is, a class that has a representative γ of positive

scalar curvature, then there exists a Poincaré-Einstein metric g on B4 such that the

conformal infinity of g is [γ]. In other words, the boundary map

Π : E∞(B4)→ C∞(S3)
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is surjective. It is still an open question to determine if this map is injective.

2.6 A boundary connected sum result

Another important result is the one obtained by Mazzeo and Pacard in [24]. We

explain their result in this section.

Let Mj be the interior of a compact (n+1)-manifold M j with boundary ∂Mj,

j = 1, 2. Fix a point pj ∈ ∂Mj and excise a small open half-ball B+(pj), j = 1, 2.

The boundary connected sum M1#bM2 is the compact manifold M obtained by

identifying the hemispherical portions of the boundaries of B+(p1) and B+(p2). The

interior M of M is denoted by M1#bM2. Notice that the boundary of M1#bM2 is

the connected sum ∂M1#∂M2. For simplicity, we let ρ denote a defining function

for whichever manifold we are considering at a particular moment (i.e. M1,M2 or

M1#bM2).

In the statement of the main result in [24], it is assumed that the conformally com-

pact Einstein metrics there considered are weakly nondegenerate (see the discussion

on pages 392-394 of [24]). The weak nondegeneracy property corresponds to a unique

continuation property at infinity for solutions of the linearized Einstein equations (see

[9], Remark 3.2). Fortunately, the unique continuation property was proved to always

hold [10, 12]. We then have the following version of main theorem in [24]:

Theorem 2.19. If (M1, g1) and (M2, g2) are conformally compact Einstein manifolds,

then the manifold M = M1#bM2 carries a family of Poincaré-Einstein metrics gε with

the following two properties:

(a) the restriction of gε to Mj −B+(pj) converges to gj;

(b) the restriction of ḡε = ρ2gε to ∂Mj − (B+(pj) ∩ ∂Mj) converges to ḡj = ρ2gj.

The convergence in either case is polynomial in a geometrically natural parameter ε.

The convergence in (a) is with respect to some (weighted scale invariant) Hölder

space of order (2, α), and the convergence in (b) is with respect to the C2,α(∂M)

topology.

It is worthwhile to say a few words about the proof of Theorem 2.19. The proof

has two steps. The first step consists of constructing an approximate solution g̃ε.

The second step, which is the technical one, consists of showing that it is possible to

perturb the metric g̃ε to obtain an exact solution gε of the Bianchi gauged Einstein

operator.
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Let γj be a representative of the conformal infinity of (Mj, gj), j = 1, 2. The

metric γ1 determines a unique geodesic defining function x. Fix normal coordinates

y centered at p1 ∈ ∂M1 and consider the boundary normal coordinates u = (x, y)

around p1 ∈ M1. Consider also boundary normal coordinates u′ = (x′, y′) around

p2 ∈M2, constructed in a similar way.

Let Aε and A′ε denote the annuli {ε/2 ≤ |u| ≤ 2ε} and {ε/2 ≤ |u′| ≤ 2ε},
respectively. Identifying these annuli by means of the inversion map u′ = Iε(u), where

Iε(u) is defined by Iε(u) = ε2u/|u|2, we define the smooth manifold with boundary

M ε =
(
M1 −Bε/2(p1)

)⋃
Iε

(
M2 −Bε/2(p2)

)
.

It is convenient to use a rescaling of the coordinate systems u and u′, so that we

may regard the gluing region (also referred to as neck region or connected sum region)

as a fixed annulus A. Consider then the dilation Tε that sends u to εu (and u′ to εu′).

The annuli A and A′ of inner and outer radii 1/2 and 2 in the u, u′ coordinates are

mapped by Tε to Aε and A′ε, respectively, and are identified by the fixed inversion

I(u) = u/|u|2.

The metrics gj,ε = T ∗ε (gj) are defined on the half-ball of radius C/ε for some C > 0;

these are just isometric forms of the initial metrics gj. Let now χ be a nonnegative,

smooth cutoff function which equals 1 for r = |w| ≥ 2 and vanishes for r ≤ 1/2. Our

approximate solution is then the metric g̃ε defined on the interior Mε of M ε by

g̃ε = χ(r)g1,ε + (1− χ(r)) I∗(g2,ε).

The conformal infinity of g̃ε is represented by the metric γε which is obtained by

identifying the annuli 1/2 ≤ |y| ≤ 2 and 1/2 ≤ |y′| ≤ 2 in the rescaled normal coordi-

nates on ∂M1 and ∂M2 using the inversion J(y) = y/|y|2 (which is the restriction of

the inversion I to the boundary) and using the cutoff function χ(|y|) to paste together

the metrics γ1 and γ2.

Now that we have the approximate solution g̃ε, one can prove, using a contraction

mapping principle argument, the existence of a symmetric bilinear form kε in a suit-

able weighted scale invariant Hölder space such that gε = g̃ε + kε is a exact solution

of the Bianchi gauged Einstein operator. The estimates needed are technical and we

refer to [24] for details.
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2.7 Orbifold degeneration of conformally compact

Einstein metrics

In [8], Anderson studies degenerations of Einstein metrics on conformally compact

4-manifolds. There he proves that if {gi} is a sequence of Einstein metrics on a fixed

conformally compact 4-manifold M , with the conformal infinities {[γi]} ∈ Γ, where

Γ is a compact subset of Cm,α, then there are (at most) three possibilities for the

behavior of {gi} in subsequences.

I. Convergence: A subsequence of {gi} converges, modulo diffeomorphisms, to a

limit Poincaré-Einstein metric g on M , with boundary metric γ ∈ Γ. There is

a compactification ḡi = ρ2gi of gi such that the subsequence {ḡi} converges in

the Cm,α topology on M .

II. Orbifolds: A subsequence of {gi} converges, modulo diffeomorphisms, to a limit

Poincaré-Einstein orbifold-singular metric h on M , with boundary metric γ ∈ Γ.

The singular metric h is a smooth metric on a orbifold V , and M is a smooth

resolution of V . There are only a finite number of singularities, each the vertex

of a cone on a spherical space form. Away from the singularities, the convergence

is smooth, as in I. The subsequence (M, gi) converges to (V, h) in the Gromov-

Hausdorff topology.

III. Cusps: A subsequence of {gi} converges, modulo diffeomorphisms, to a limit

Poincaré-Einstein metric with cusps g on a connected manifold N , with bound-

ary metric γ ∈ Γ, possibly with a finite number of orbifold singularities.

Related to (II), we make the following definition:

Definition 2.20. Let M be the interior of a compact, oriented 4-manifold with bound-

ary, and let V be the interior of a 4-dimensional orbifold with boundary. We say that

a sequence {gi} of Cm,α conformally compact metrics on M degenerates to a Cm,α

conformally compact metric h on V if the following hold:

(i) (M, gi) converges to (V, h) in the Gromov-Hausdorff topology;

(ii) there exist a smooth resolution π : M → V and a defining function ρ of M

satisfying the following: for any open subset U of M such that U ⊂ π−1(Vreg),

the sequence of compactified metrics {ḡi = ρ2gi} converges, in the Cm,α(U)

topology, to ρ2π∗h.
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In Chapter 4, we will be working with curves gt, t ∈ (0, t′), where t′ is some

number in (0, 1), of Cm,α conformally compact metrics on M . We say that the curve

gt, t ∈ (0, t′) degenerates, as t→ 0, to a Cm,α conformally compact metric h on V if

for any sequence {ti} ⊂ (0, t′) with ti → 0, we have that {gti} degenerates to h in the

sense of Definition 2.20.

We remark that the phenomenon of orbifold degeneration can, in fact, occur. The

Taub-bolt family [17] is a 1-parameter family of Poincaré-Einstein metrics on TS2

that degenerates to the orbifold Taub-bolt metric hTB, a Poincaré-Einstein metric on

the orbifold C(RP3). With the exception of metrics obtained by a connected sum

construction due to Mazzeo and Pacard [24] (see Section 2.6 and Section 3.5), this

is the only known example of orbifold degeneration of a family of Poincaré-Einstein

metrics.

Based on the comments above, one naturally asks the following question:

Question 2.21. Let h be a (smooth) Poincaré-Einstein metric on a 4-dimensional

orbifold V , and let M be a smooth resolution of V . Does there exist a sequence of

Poincaré-Einstein metrics {gi} on M such that (M, gi) degenerates to (V, h)?

Related to this question, Anderson made some conjectures. One of them is the

following:

Conjecture 2.22. There does not exist a sequence {gi} of conformally compact Ein-

stein metrics on TS2 that degenerates to the hyperbolic metric on C(RP3).

We believe Conjecture 2.22 to be true. We were not able, however, to prove it.

The following is another conjecture of Anderson. For some discussions related to this

conjecture, see the work of Mazzeo and Singer [25].

Conjecture 2.23. Let M be the interior of an oriented 4-dimensional compact man-

ifold M with boundary ∂M , let V be an orbifold such that there exists a smooth

resolution π : M → V , and let h be a Poincaré-Einstein metric on V . If there exists

a sequence {gi} of Poincaré-Einstein metrics on M such that (M, gi) degenerates to

(V, h), then h is degenerate (in the sense of Definition 2.11).

In Chapter 3, we will show that the orbifold Taub-bolt metric hTB on C(RP3) is

nondegenerate. This will give a negative answer to Conjecture 2.23.

There is one more conjecture made by Anderson that we would like to mention.

Before stating this conjecture, we need to introduce some terminology.

The trichotomy I-III above leads one to consider the following approach: instead

of working with the space Em,α, one can work with an enlarged space that includes the
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orbifold and cusps limits. Let then Ēm,α be the completion of the moduli space Em,α

of Poincaré-Einstein metrics with respect to the pointed Gromov-Hausdorff topology;

the base points x being chosen so that

distḡ(x, ∂M) = 1,

for example (here ḡ denotes a compactification of g).

Now one has an extension Π̄ of Π to Ēm,α, and Π̄ : Ēm,α → Cm,α is continuous, cf.

[8]. Moreover, by construction, Π̄ is proper. If Ēm,α has roughly the structure of a

manifold, then one can define a degree degΠ̄ associated with each component of Ēm,α

and

degΠ̄ = degΠ.

If it happened that degΠ̄ 6= 0, one would conclude (at least) that almost every choice

of conformal class in Cm,α is the conformal infinity of a smooth Poincaré-Einstein

metric on M .

We can finally state the following conjecture of Anderson, which is a conjecture

about the point set topology of Ēm,α. This conjecture is stated in [7] (Conjecture 4.2).

Conjecture 2.24. Let E0 be a component of Em,α, and let ∂E0 = Ē0 \ E0. The set

Π̄(∂E0) has empty interior in Cm,α.

It is proved in [4] (see also [5]) that if the conformal infinity [γ] has a representative

of positive scalar curvature, then one can rule out cusp formation. Thus, in this case,

the set ∂E0 corresponds to the orbifold singular Einstein metrics that are the limit,

in the pointed Gromov-Hausdorff topology, of a sequence {gi} of smooth conformally

compact Einstein metrics on M .

In Chapter 4, we obtain some results related to Conjecture 2.24.
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Chapter 3

The Taub-bolt family

3.1 Berger spheres

Recall the Lie group SU(2), which is defined as

SU(2) =

{(
z −w
w̄ z̄

)
; z, w ∈ C and |z|2 + |w|2 = 1

}
.

Clearly, under the identification

C2 =

{(
z −w
w̄ z̄

)
; z, w ∈ C

}
,

SU(2) corresponds to the unit sphere S3 in C2.

Consider the action of S1 on S3 given by multiplication on the left by the matrices(
0 eiθ

eiθ 0

)
∈ SU(2).

This action is smooth, free, and proper, and the orbit space S3/S1 is diffeomorphic

to S2. The quotient map S3 → S2 is known as the Hopf fibration.

The Lie algebra of SU(2) is spanned by

X1 =

(
i 0

0 −i

)
, X2 =

(
0 1

−1 0

)
and X3 =

(
0 i

i 0

)
.

These matrices give rise to left invariant vector fields on SU(2). If we declare them to

be orthonormal, then we get a left-invariant metric on SU(2). If instead we declare
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them to be merely orthogonal, X1 to have length a, and the other two to be unit

vectors, we get a one parameter family of metrics γa on S3. These distorted spheres

are called Berger spheres. Note that X1 is tangent to the orbits of the circle action.

The Berger spheres are, therefore, obtained from the canonical metric by multiplying

the metric on the Hopf fiber by a2. If we let {σ1, σ2, σ3} be the coframe dual to the

frame {X1, X2, X3}, then the Berger metric γa can be written as

γa = a2(σ1)2 + (σ2)2 + (σ3)2.

In many situations it is convenient to consider “spherical coordinates” (ψ, θ, φ)

on S3. In these coordinates we have

σ1 = dψ + cos θdφ,

σ2 = sinψdθ − sin θ cosψdφ,

σ3 = − cosψdθ − sin θ sinψdφ.

3.2 Some bundles over S2

Consider the unit disk bundle over S2. This is the manifold with boundary M given

by

M = {(x, vx) ∈ TS2; |vx| ≤ 1}.

The boundary of this manifold is the unit circle bundle

∂M = {(x, vx) ∈ TS2; |vx| = 1}.

Recall that ∂M is homeomorphic to SO(3). One way to see this is to consider S3 as

a subset of R3 in the usual way, that is,

S3 = {p ∈ R3; |p| = 1},

and to associate to each element (p, vp) of ∂M the element of SO(3) corresponding

to the positively oriented frame (p, vp, p× vp), where × denotes the cross product in

R3. The same argument shows that, for any s > 0, the manifold

{(x, vx) ∈ TS2; |vx| = s}
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is homeomorphic to RP3. Therefore, if N is the manifold obtained by removing the

zero section

{(x, 0x) ∈ TS2;x ∈ S2}

from TS2, then N is homeomorphic to (0,∞)×RP3.

3.3 The Taub-bolt family

We describe now a family of conformally compact Einstein metrics on TS2, known as

the Taub-bolt family [17]. To describe this family of metrics, we will use coordinates

(r, τ, θ, φ), where (θ, φ) are “spherical coordinates” on the base S2, and (r, τ) are polar

coordinates on each fiber TxS
2. In these coordinates, the metric is given by

gTB(s) =
1

4
E[

4(r2 − 1)

F (r)
dr2 +

F (r)

E(r2 − 1)
(dτ + E1/2 cos θdφ)2 (3.1)

+(r2 − 1)(dθ2 + sin2θdφ2)],

where F = Fs(u) is given by

F (u) = Eu4 + (4− 6E)u2

+

[
−Es3 + (6E − 4)s+

3E − 4

s

]
u+ (4− 3E), (3.2)

and E = Es is given by

E =
4

3

1

s+ 1
.

The parameter τ has period 2πE1/2. In order to avoid curvature singularities, we

must take s > 1 and r > s. As s → 1, Es tends to 2/3, and the area of the bolt S2

at {r = s} converges to 0, and vanishes at {r = 1} when s = 1.

When s = 1 and E = 2/3,

F (u) = (2/3)(u4 − 4u+ 3)

= (2/3)(u2 + 2u+ 3)(u− 1)2,

and we get the following expression for hTB = gTB(1):

gTB(1) =
(r + 1)

(r − 1)(r2 + 2r + 3)
dr2 +

(r − 1)(r2 + 2r + 3)

6(r + 1)

(
dτ + (2/3)

1
2 cos θdφ

)2

+
(r − 1)(r + 1)

6

(
dθ2 + sin2 θdφ2

)
.
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This expression gives a conformally compact Einstein metric on the orbifold C(RP3),

called the orbifold Taub-bolt metric, and it is not hard to verify that the metrics

gTB(s) on TS2 degenerate, as s → 1, to the orbifold metric hTB = gTB(1) (in the

sense of Definition 2.20).

Let us now show that the metrics gTB(s) are, in fact, conformally compact. To

do this, we consider the change of variables

ϑ = 1− r−1.

In the coordinates (ϑ, τ, θ, φ), we have the following expression for gTB(s):

gTB(s) =
E

4(1− ϑ)2
[
4(2ϑ− ϑ2)

G(1− ϑ)
dϑ2 +

G(1− ϑ)

E(2ϑ− ϑ2)
(dτ + E1/2 cos θdφ)2

+(2ϑ− ϑ2)(dθ2 + sin2θdφ2)],

where G = Gs(u) is given by

G(u) = (4E − 3)u4 +

[
−Es3 + (6E − 4)s+

3E − 4

s

]
u3

+(4− 6E)u2 + E.

Thus, if we take

ρ = 1− ϑ

as our boundary defining function, we have that

ρ2gTB(s)

extends (at least in the region where r is large), to a smooth metric on the disk bundle

over S2, and hence, gTB(s) is conformally compact. As we will see below, gTB(s) is

an Einstein metric. Therefore, gTB(s) is a Poincaré-Einstein metric on TS2.

To describe the conformal infinity of gTB(s), we first consider the change of vari-

ables τ = E1/2ψ. After this change of variables, we get

gTB(s) =
1

4
E[

4(r2 − 1)

F (r)
dr2 +

F (r)

(r2 − 1)
(dψ + cos θdφ)2 (3.3)

+(r2 − 1)(dθ2 + sin2θdφ2)].

Using the above expression, we find that the conformal infinity of gTB(s) is given by
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a squashed (Berger) metric on RP3.

The metrics that we have just described are part of a more general family (also

called Taub-bolt family) of conformally compact metrics on R2 bundles over S2. We

remark that each member of this family can be obtained as a special case of the

complex metrics given in [26] . Next, we give a description of this more general

Taub-bolt family. For a study of the thermodynamics of these spaces, see [17].

It is a known fact that R2 bundles over S2 are classified by their Chern number

k. Let then Nk, k ≥ 1, be the R2 bundle over S2 of Chern number k. To describe

this family of metrics, we will use coordinates (r, τ, θ, φ) as before, that is, (θ, φ) are

“spherical coordinates” on the base S2, and (r, τ) are polar coordinates on each fiber

R2
x. In these coordinates, the metric is given by the same expression given in (3.1),

that is,

gTB(k, s) =
1

4
E[

4(r2 − 1)

F (r)
dr2 +

F (r)

E(r2 − 1)
(dτ + E1/2 cos θdφ)2

+(r2 − 1)(dθ2 + sin2θdφ2)],

where F = Fs(u) has the same expression as the one given in (3.2), that is,

F (u) = Eu4 + (4− 6E)u2

+

[
−Es3 + (6E − 4)s+

3E − 4

s

]
u+ 4− 3E.

The parameter E, however, depends on k. More precisely,

Es =
2ks− 4

3(s2 − 1)
.

The parameter τ has period β = 4πE1/2/k. In order to avoid curvature singularities,

we must take s > 1, s > 2/k and r > s.

The metric gTB(k, s) is a conformally compact Einstein metric on Nk. The con-

formal infinity is given by the conformal class of a Berger (or squashed) metric on

the lens space S3/Zk. When k = 2, the manifold Nk is diffeomorphic to TS2 and the

metric gTB(k, s) coincides with gTB(s). Moreover, k = 2 is the only value of k for

which orbifold degeneration occurs.
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3.4 The curvatures of the Taub-bolt orbifold

We would like now to compute the curvatures of gTB(s). We will actually compute

the curvatures of a more general family of metrics on C(RP3).

Consider coordinates (r, ψ, θ, φ) on (0,∞) × RP3, where r parametrizes (0,∞)

and (ψ, θ, φ) are “spherical coordinates” on RP3. We then consider metrics of the

following form:

ds2 = A2dr2 +
1

A2
(dψ + cos θdφ)2 + C2(dθ2 + sin2θdφ2), (3.4)

where A and C are functions of r only. We would like to compute the curvatures of

(Nk, ds
2). For this, we take the orthonormal frame given by

X1 =
1

A

∂

∂r

X2 = A
∂

∂ψ

X3 =
1

C
(sinψ

∂

∂θ
− cosψ

sin θ

∂

∂φ
+

cosψ cos θ

sin θ

∂

∂ψ
)

X4 =
1

C
(− cosψ

∂

∂θ
− sinψ

sin θ

∂

∂φ
+

sinψ cos θ

sin θ

∂

∂ψ
).

The coframe dual to the above frame is given by

ω1 = Adr

ω2 =
1

A
(dψ + cos θdφ)

ω3 = C(sinψdθ − sin θ cosψdφ)

ω4 = C(− cosψdθ − sin θ sinψdφ).

After some calculations, we get

dω1 = 0

dω2 =

(
1

A

)′
ω1 ∧ ω2 +

(
1

AC2

)
ω3 ∧ ω4

dω3 =

(
C ′

AC

)
ω1 ∧ ω3 − Aω2 ∧ ω4

dω4 =

(
C ′

AC

)
ω1 ∧ ω4 + Aω2 ∧ ω3,
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where prime denotes derivative with respect to r. The connection forms are given by

ω12 =

(
1

A

)′
ω2 ω13 =

(
C ′

AC

)
ω3

ω14 =

(
C ′

AC

)
ω4 ω23 =

(
− 1

2AC2

)
ω4

ω24 =

(
1

2AC2

)
ω3 ω34 =

(
1

2AC2
− A

)
ω2.

Finally, the curvature forms are given by

Ω12 =

[
1

2

(
1

A

)2
]′′
ω1 ∧ ω2 +

[(
1

A

)′(
1

AC2

)
−
(

1

AC2

)(
C ′

AC

)]
ω3 ∧ ω4

Ω13 =

[(
1

A

)(
C ′

AC

)′
+

(
C ′

AC

)2
]
ω1 ∧ ω3

+

[(
1

A

)′(
1

2AC2

)
−
(

1

2AC2

)(
C ′

AC

)]
ω2 ∧ ω4

Ω14 =

[(
1

A

)(
C ′

AC

)′
+

(
C ′

AC

)2
]
ω1 ∧ ω4

−
[(

1

A

)′(
1

2AC2

)
−
(

1

2AC2

)(
C ′

AC

)]
ω2 ∧ ω3

Ω23 = −
[(

1

A

)(
1

2AC2

)′
+

(
1

2AC2

)(
C ′

AC

)]
ω1 ∧ ω4

+

[(
1

A

)′(
C ′

AC

)
−
(

1

2AC2

)2
]
ω2 ∧ ω3

Ω24 =

[(
1

A

)(
1

2AC2

)′
+

(
1

2AC2

)(
C ′

AC

)]
ω1 ∧ ω3

+

[(
1

A

)′(
C ′

AC

)
−
(

1

2AC2

)2
]
ω2 ∧ ω4

Ω34 =

[(
1

A

)(
1

2AC2
− A

)]′
ω1 ∧ ω2

+

[(
C ′

AC

)2

+

(
1

2AC2

)2

+

(
1

2AC2
− A

)(
1

AC2

)]
ω3 ∧ ω4.

We would like to write the metric (3.1) in the form

ds2 = b2E[A2dr2 +
1

A2
(dψ + cos θdφ)2 + C2(dθ2 + sin2θdφ2)], (3.5)
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where A = A(r) and C = C(r). To accomplish this, we make the following change of

variables: τ = E1/2ψ, which gives dτ = E1/2dψ; and r = r̃/2, which gives 2dr = dr̃.

After these change of variables (and dropping the tilde for convenience), we get that

the metric is in the form (3.5), with

A2(r) =
6(r + 2)

(r3 + 2r2 + 4r − 24)

and

C2(r) =
r2 − 4

4
.

To compute the curvatures, it will be convenient to drop the factor b2E. We then

have a metric in the form (3.4).

Let f(r) = 1/(A2), g(r) = C ′/C and h(r) = 1/(C2), where prime denotes deriva-

tive with respect to r. The following are expressions for some of the components of

the Riemann curvature tensor Rm:

−Rm1212 =
1

2
f ′′(r)

=
r3 + 6r2 + 12r − 24

6(r + 2)3

−Rm1313 = −Rm1414 =
1

2
f ′(r)g(r) + f(r)g′(r) + f(r)(g(r))2

=
r3 + 6r2 + 12r + 24

6(r + 2)3

−Rm2323 = −Rm2424 =
1

2
f ′(r)g(r)− 1

4
f(r)(h(r))2

=
r3 + 6r2 + 12r + 24

6(r + 2)3

−Rm3434 = f(r)(g(r))2 +
3

4
f(r)(h(r))2 − h(r)

=
r3 + 6r2 + 12r − 24

6(r + 2)3

−Rm1234 =
1

2
f ′(r)h(r)− f(r)g(r)h(r)

=
16

3(r + 2)3

−Rm1324 = −Rm1432 =
1

4
f ′(r)h(r)− 1

2
f(r)g(r)h(r)

=
8

3(r + 2)3
.
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All the other components of Rm are either zero or can be found from the above using

the symmetries of the Riemann curvature tensor. It will be used later on that if

#{i, j, k, l} = 3, then Rmijkl = 0, where # denotes the number of elements.

We now prove a very simple (but helpful) algebraic lemma.

Lemma 3.1. Let a, b, c be real numbers, a and c positive, and consider the function

P : R2 → R given by

P (x, y) = ax2 + bxy + cy2.

If 4ac − b2 ≥ 0, then P (x, y) ≥ 0, for all x, y ∈ R. Moreover, if 4ac − b2 > 0, then

P (x, y) = 0 only when (x, y) = (0, 0).

Proof. Just notice that

P (x, y) = a

[(
x+

by

2a

)2

+ (4ac− b2)
( y

2a

)2
]
.

If 4ac− b2 > 0 and P (x, y) = 0, then necessarily(
x+

by

2a

)
= 0 and

( y
2a

)
= 0,

which gives x = y = 0.

Proposition 3.2. The Taub-bolt orbifold metric on C(RP3) has negative sectional

curvature.

Proof. Let z be a point of C(RP3) that is not the orbifold singularity, and let v, w

be orthonormal vectors in the tangent space of C(RP3) at z. Write

v = a1X1 + a2X2 + a3X3 + a4X4

and

w = b1X1 + b2X2 + b3X3 + b4X4,

with ai, bi ∈ R, i = 1, 2, 3, 4.

Since v and w are orthonormal, the sectional curvature of the plane generated by

v and w is given by −Rm(v, w, v, w).

Denote the set {i, j, k, l} by I. Using that Rmijkl = 0 if #I = 3, we have

Rm(v, w, v, w) =
∑
I

aibjakblRmijkl
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=
∑

#I=4

aibjakblRmijkl +
∑

#I=2

aibjakblRmijkl

=
∑

#I=4

(
(aibj)

2Rmijij + aibjakblRmijkl + (akbl)
2Rmklkl

)
.

By Lemma 3.1, if it happens that

4RmijijRmklkl − (Rmijkl)
2 > 0, (3.6)

then Rm(v, w, v, w) will also be nonnegative. To verify the set of inequalities (3.6),

one just needs to consider the following cases: (i, j, k, l) = (1, 2, 3, 4), (i, k, j, l) =

(1, 3, 2, 4), and (i, k, j, l) = (1, 4, 2, 3).

If (i, j, k, l) = (1, 2, 3, 4), then the left hand side of (3.6) equals

1

9

[
(r3 + 6r2 + 12r − 24)2 − 256

(r + 2)2

]
,

which is positive for r ≥ 2. If (i, j, k, l) = (1, 3, 2, 4) or (i, j, k, l) = (1, 4, 2, 3), then

the left hand side of (3.6) equals

1

9

[
(r3 + 6r2 + 12r + 24)2 − 64

(r + 2)2

]
,

which is also positive for r ≥ 2. This implies Rm(v, w, v, w) ≥ 0.

Now, since v and w are linearly independent, it is possible to choose i, j ∈
{1, 2, 3, 4}, i 6= j, such that aibj 6= 0. Lemma 3.1 then gives that, for this partic-

ular choice of i and j, we have

(aibj)
2Rmijij + aibjakblRmijkl + (akbl)

2Rmklkl > 0.

Therefore, Rm(v, w, v, w) > 0.

Now that we know that the Taub-bolt orbifold metric has negative sectional cur-

vature, we can invoke Theorem 2.13 and conclude that this orbifold metric is nonde-

generate.

3.5 More examples of orbifold degeneration

We can use the boundary connected sum result of Mazzeo and Pacard to produce

other examples of curves of conformally compact Einstein metrics degenerating to a
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Poincaré-Einstein metric with orbifold singularities.

Denote by M the smooth manifold `#bTS2 (the boundary connected sum con-

struction is performed ` times). The boundary of M is ∂M = `#RP3. Consider the

Taub-bolt family gTB(s) on TS2, s > 1. Theorem 2.19 guarantees the existence of a

Poincaré-Einstein metric g`(s), on M , and this metric can be taken so that, outside

the “connected sum regions” (see Section 2.6), it satisfies

||g`(s)− gTB(s)|| < s−1, (3.7)

where the norm is with respect to some (weighted scale invariant) Hölder space of

order (2, α). This implies that (M, g`(s)) degenerates to a Poincaré-Einstein metric

h` on the orbifold V` = `#bC(RP3), which has ` orbifold singularities.

Regarding the conformal infinity of g`(s), we have, changing the metrics g` if

necessary (in a way that (3.7) still holds), that outside the “connected sum regions”,

the inequality

||γ`(s)− γTB(s)||C2,α < s−1

holds, where γ`(s) and γTB(s) are suitable representatives of the conformal infinities

of g`(s) and gTB(s), respectively.

Obviously, the construction above, which was done for the Taub-bolt curve, works

for any curve of conformally compact Einstein manifolds (M, gt) degenerating to a

conformally compact Einstein orbifold (V, h). However, the Taub-bolt curve (and the

metrics described above) are the only known examples of orbifold degeneration of a

curve (or sequence) of Poincaré-Einstein metrics. It would be very interesting to find

other examples of orbifold degeneration, especially on manifolds topologically distinct

from the ones described above.
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Chapter 4

Orbifold degeneration

4.1 Orbifold degeneration I

Throughout this chapter, M denotes the interior of a compact, oriented, 4-manifold

M with boundary ∂M , and V is a 4-orbifold such that there exists a smooth resolution

π : M → V . We also assume that the conclusions of Theorem 2.15 hold for M and V .

Consider a nondegenerate Cm,α conformally compact Einstein metric h on V ,

and let (∂M, [γ]) be the conformal infinity of (V, h). Since (V, h) is nondegenerate,

Theorem 2.15 (which is also valid for orbifolds) says that there exist a neighborhood

W of [γ] in Cm,α and a neighborhood Z of h in Fm,α such that ΠF : Z → W is a

diffeomorphism. For [θ] ∈ W , we denote by h[θ] the unique element of Z such that

ΠF(h[θ]) = [θ].

The following theorem implies, in particular, that if a conformally compact Ein-

stein metric h on V is such that some smooth curve gt of nondegenerate Poincaré-

Einstein metrics onM degenerates to h, then the boundary map ΠE(M) is not injective.

We suggest the reader look at Figure 4.1 a few times when reading the proof of this

theorem.

Theorem 4.1. Let h = h[γ] be a nondegenerate Cm,α conformally compact Einstein

metric on the 4-orbifold V . Suppose that, for each [θ] ∈ W , there exists a smooth

curve g
[θ(t)]
t in Em,α(M) that degenerates to h[θ], as t → 0. If there exists t0 ∈ (0, 1)

such that gt = g
[γ(t)]
t is nondegenerate, for each t ∈ (0, t0), then there exist smooth

curves g1, g2 : (0, 1)→ Em,α(M) satisfying the following: g1(s) is nondegenerate, for

each s ∈ (0, 1); Π(g1(s)) = Π(g2(s)), for each s ∈ (0, 1); and g1(s1) 6= g2(s2) for all

s1, s2 ∈ (0, 1).

Proof. We can assume, without loss of generality, that the curve gt = g
[γ(t)]
t is
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parametrized in such way that

sup
x∈M
|Rmgt|(x) = t−1.

Since gt is nondegenerate, for each t ∈ (0, t0), Theorem 2.15 implies that there

exist neighborhoods Yt of gt in Em,α and Xt of [γ(t)] in Cm,α such that Π : Yt → Xt is

a diffeomorphism, for each t ∈ (0, t0). By shrinking the neighborhoods Yt and Xt if

necessary, we can assume that for any ǧ ∈ Yt the inequality

sup
x∈M
|Rmǧ|(x) >

1

2
t−1

holds, for each t ∈ (0, t0).

Let t1 ∈ (0, t0) be such that W ∩ Xt1 isn’t empty. Pick any [θ] ∈ W ∩ Xt1 and

consider the curve g
[θ(t)]
t , t ∈ (0, 1). Since [θ(t)]→ [θ], there exists t2 ∈ (0, t1/2) such

that [θ(t)] ∈ W ∩Xt1 , for each t ∈ (0, t2).

Let now t3 and t4 be such that 0 < t3 < t4 < t2, and consider the restriction of

the curve [θ(t)] to the interval (t3, t4). Theorem 2.15 gives us a curve ǧt, t ∈ (t3, t4),

with conformal infinity [θ(t)], for each t ∈ (t3, t4). Notice that, since t2 < t1/2, the

sets {g[θ(t)]
t ; t ∈ (t3, t4)} and {ǧt; t ∈ (t3, t4)} are disjoint. Thus, after performing the

change of variables s = (t− t3)/(t4 − t3), we obtain curves g1, g2 : (0, 1)→ Em,α(M)

satisfying

Π(g1(s)) = Π(g2(s)),

for each s ∈ (0, 1), and such that g1(s1) 6= g2(s2) for all s1, s2 ∈ (0, 1).

Corollary 4.2. Let h = h[γ] be a nondegenerate Cm,α conformally compact Einstein

metric on the 4-orbifold V . Suppose that, for each [θ] ∈ W , there exists a smooth curve

g
[θ(t)]
t in Em,α(M) that degenerates to h[θ], as t → 0. If W can be taken so that, for

each [θ] ∈ W , there exists t[θ] ∈ (0, 1) with g
[θ(t)]
t nondegenerate, for each t ∈ (0, t[θ]),

then, for any k ∈ N, it is possible to find k smooth curves g1, . . . , gk : (0, 1) → Em,α

such that, for any i, j ∈ {1, . . . , k}, i 6= j, the following hold:

{gi(s); s ∈ (0, 1)} and {gj(s); s ∈ (0, 1)}

are disjoint and

Π(gi(s)) = Π(gj(s)),

for each s ∈ (0, 1).
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Figure 4.1: Visualization of the proof of Theorem 4.1.
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Corollary 4.2 implies that if there exists a conformally compact Einstein metric h

on V satisfying its hypothesis, then the boundary map Π has a very strange behavior.

Theorem 4.1 and Corollary 4.2 lead us to make the following conjecture:

Conjecture 4.3. Let h = h[γ] be a nondegenerate Cm,α conformally compact Einstein

metric on the 4-orbifold V . If there exists a smooth curve g
[γ(t)]
t in Em,α(M) that

degenerates to h, as t → 0, then there exists a sequence {ti} ⊂ (0, 1), ti → 0, such

that each gti is degenerate.

It would be very interesting if one could prove (or find a counterexample to) Con-

jecture 4.3. A proof would be interesting even if it requires the additional hypothesis

that every orbifold metric h[θ] near h is such that some smooth curve g
[θ(t)]
t in Em,α(M)

degenerates to h[θ].

4.2 Some functional analysis

Let (X, || ||X) and (Y, || ||Y ) be Banach spaces. As usual, we denote by L(X, Y ) the

space of bounded linear maps from X to Y .

Let Ψ : X → Y be a map of class C1, and let x ∈ X. We denote by Qx the

remainder obtained when considering the first order expansion of Ψ around x. Thus,

for any k ∈ X, Qx(k) is defined by the equation

Ψ(x+ k) = Ψ(x) + Ψ′(x) · k +Qx(k).

We have that Qx : X → Y is of class C1, Qx(0) = 0 and (Qx)
′(k) = Ψ′(x+k)−Ψ′(x).

In particular, (Qx)
′(0) = 0 ∈ L(X, Y ).

Proposition 4.4. If D is a positive real number, then there exists r > 0 such that

||Qx(u)−Qx(v)|| ≤ D||u− v||, (4.1)

for any u, v ∈ X such that ||u||, ||v|| ≤ r. Moreover, if for some µ > 0 the map

x 7→ Ψ′(x) is µ-Lipschitz, then we can take r to be any number in the interval (0, Dµ−1].

Proof. Let D > 0 be given. Since Qx is of class C1, there exists r > 0 such that

||(Qx)
′(k)|| ≤ D,

for any k ∈ X with ||k|| ≤ r. Inequality (4.1) then follows from the mean value

inequality.
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If Ψ′ is µ-Lipschitz, we can take r to be any number in (0, Dµ−1]. In fact, for

||k|| ≤ Dµ−1 we have

||Q′x(k)|| = ||Ψ′(x+ k)−Ψ′(x)||

≤ µ||k|| ≤ D.

Suppose that Ψ′(x) ∈ L(X, Y ) is an isomorphism. Let C > 0 be such that

||(Ψ′(x))−1|| ≤ C, (4.2)

and let D, r > 0 be such that (4.1) holds for any u, v ∈ X with ||u||, ||v|| ≤ r.

Suppose one would like to find k ∈ X such that

Ψ(x+ k) = 0.

This corresponds to finding a fixed point of the map F : X → X given by

F (k) = − (Ψ′(x))
−1 · (Ψ(x) +Qx(k)) .

Proposition 4.5. Let λ ∈ (0, 1) and let r > 0 be such that

||Qx(u)−Qx(v)|| ≤ λ

C
||u− v||, (4.3)

for any u, v ∈ B̄(r), where

B̄(r) = {k ∈ X; ||k|| ≤ r} .

If the inequality

||Ψ(x)|| ≤ (1− λ)

C
r (4.4)

holds, then the image of B̄(r) under F is contained in B̄(r). Moreover,

F : B̄(r)→ B̄(r)

is a λ-contraction.
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Proof. Let k ∈ B̄(r). We have

||F (k)|| ≤ || (Ψ′(x))
−1 ·Ψ(x)||+ || (Ψ′(x))

−1 ·Qx(k)||

≤ || (Ψ′(x))
−1 || · ||Ψ(x)||+ || (Ψ′(x))

−1 || · ||Qx(k)||.

Using inequalities (4.2), (4.3) and (4.4), we find that

||F (k)|| ≤ C · (1− λ)

C
r + C · λ

C
||k||

≤ (1− λ)r + λr = r.

Thus, F (B̄(r)) ⊂ B̄(r).

Let us now show that F is a λ-contraction. For u, v ∈ B̄(r) we have

||F (u)− F (v)|| = ||(Ψ′(x) · (Qx(u)−Qx(v)) ||

≤ ||(Ψ′(x)|| · || (Qx(u)−Qx(v)) ||.

Now, using (4.2) and (4.3), we find

||F (u)− F (v)|| ≤ λ||u− v||.

4.3 Orbifold degeneration II

Theorem 4.6. Let gt = g
[γ(t)]
t , t ∈ (0, 1), be a smooth curve in Em,α(M), where

γ(t) = ḡt|∂M and ḡt = ρ2gt for some fixed defining function ρ. Suppose gt degenerates,

as t → 0, to a nondegenerate Cm,α conformally compact Einstein metric h on the

4-orbifold V . If there exists t0 ∈ (0, 1) such that gt is nondegenerate for each t ∈
(0, t0), then there exists a family Ut, t ∈ (0, t0), each Ut a neighborhood of γ(t) in

Cm,α(∂M), satisfying the following: given any smooth curve θ : (0, t0)→ Metm,α(∂M)

with θ(t) ∈ Ut, for each t ∈ (0, t0), there exists a smooth curve ǧ : (0, t0)→ Em,α(M)

such that the conformal infinity of ǧt is [θ(t)], for each t ∈ (0, t0).

Remark 4.7. This theorem is, obviously, a direct consequence of Theorem 2.15.

However, the proof below gives us control of the size of the neighborhoods Ut, which

will be important later on.
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Proof. Let gt = g
[γ(t)]
t , t ∈ (0, 1), be a smooth curve in Em,α(M), with gt nondegen-

erate for t ∈ (0, t0), such that (M, gt) degenerates to (V, h) as t → 0, where h is a

nondegenerate Cm,α conformally compact Einstein metric on the 4-orbifold V . Here,

γ(t) = ḡt|∂M and ḡt = ρ2gt for some fixed defining function ρ.

For a background metric g, we let Φg denote the Einstein operator in the Bianchi

gauge and we let Lg denote its linearization. For k ∈ Sm,αδ (δ = 2) such that g + k is

a Riemannian metric (this is guaranteed, for example, if ||k||Cm,αδ (g) < 1), we write

Φg(g + k) = Φg(g) + Lg · k +Qg(k).

This defines, for each background metric g, the remainder Qg.

For the rest of the proof, unless otherwise stated, we use || ||Cm,α , || ||Cm,αδ
and

|| ||Cm−2,α
δ

to denote the norms || ||Cm,α(gt), || ||Cm,αδ (gt) and || ||Cm−2,α
δ (gt)

, respectively.

Since gt is nondegenerate for each t ∈ (0, t0), there exists a smooth function

C : (0, t0)→ (0,∞) such that

||(Lgt)−1|| ≤ 1

2
C(t),

for each t ∈ (0, t0). Also, given a smooth functionD : (0, t0)→ (0,∞), Proposition 4.4

guarantees the existence of a smooth function r : (0, t0)→ (0,∞) such that

||Qgt(u)−Qgt(v)||Cm−2,α
δ

≤ 1

2
D(t)||u− v||Cm,αδ

,

for all u, v ∈ {k ∈ Sm,αδ ; ||k||Cm,αδ
< 2r(t)} and each t ∈ (0, t0). Changing the function

r if necessary, we can suppose

r(t) <
1

2
, (4.5)

for each t ∈ (0, t0).

We consider now a smooth function b : (0, t0)→ (0,∞) such that for any curve ĝt

in Metm,α(M) with ||gt − ĝt||Cm,α(gt) < b(t), the following hold:

||k||Cm,αδ (ĝt) < 1,

whenever k ∈ Sm,αδ is such that ||k||Cm,αδ (gt) < 1/2;

||(Lĝt)−1|| ≤ C(t), (4.6)
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for each t ∈ (0, t0); and

||Qĝt(u)−Qĝt(v)||Cm−2,α
δ

≤ D(t)||u− v||Cm,αδ
,

for all u, v ∈ {k ∈ Sm,αδ ; ||k||Cm,αδ
< r(t)} and each t ∈ (0, t0).

Lemma 4.8. For λ ∈ (0, 1) fixed, it is possible to find a family Ut, t ∈ (0, t0), of

neighborhoods of γ(t) in Cm,α(∂M) satisfying the following: for any smooth function

θ : (0, t0) → Metm,α(∂M) with θ(t) ∈ Ut, there exists a smooth curve g̃t = g̃
[θ(t)]
t in

Metm,α(M), t ∈ (0, t0), such that the inequalities

||gt − g̃t||Cm,α < b(t) (4.7)

and

||Φg̃t(g̃t)||Cm−2,α
δ

<
(1− λ)

C(t)
r(t) (4.8)

hold, for each t ∈ (0, t0). Moreover, if there exist b0, C0, r0 > 0 such that b(t) ≥ b0,

C(t) ≤ C0, and r(t) ≥ r0 for each t ∈ (0, t0), then there exists ε0 > 0 such that the

ball

B(γ(t), ε0) = {θ; ||θ − γ(t)||Cm,α(γ(t)) < ε0}

is contained in Ut, for each t ∈ (0, t0).

We use the terminology approximate solutions to refer to the curves g̃t given by

Lemma 4.8.

The lemma above will be proved in Section 4.4. Assuming it is proved, let us

continue the proof of Theorem 4.6.

Let λ ∈ (0, 1). Choose D(t) = λC(t)−1, for each t ∈ (0, t0), and let Ut, t ∈ (0, t0),

be a family of open sets of Cm,α(∂M) satisfying the conditions of Lemma 4.8.

Let θ : (0, t0) → Metm,α(∂M) be a smooth curve such that θ(t) ∈ Ut, for each

t ∈ (0, t0), and let g̃t = g̃
[θ(t)]
t , t ∈ (0, t0), be a smooth curve on Metm,α(M) satisfying

inequalities (4.7) and (4.8). For each t ∈ (0, t0), we consider the map Ft : B̄t → B̄t

defined by

Ft(k) = −(Lg̃t)
−1 (Φg̃t(g̃t) +Qg̃t(k)) ,

where B̄t is the ball

{k ∈ Sm,αδ ; ||k||Cm,αδ
≤ r(t)}.

Notice that (4.5) implies ||k||Cm,α(gt) < 1/2 for k ∈ B̄t. Therefore, ||k||Cm,α(g̃t) < 1,

and hence, Qg̃t(k) makes sense for k ∈ B̄t.
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Now, by Proposition 4.5, Ft is well defined and it is a λ-contraction. Thus, for

each t ∈ (0, t0), there exists ft ∈ Sm,αδ with

||ft||Cm,αδ
< r(t)

and

Φg̃t(g̃t + ft) = 0.

Notice that, since ft ∈ Sm,αδ (and we are taking δ = 2), the metric g̃t + ft also has

conformal infinity [θ(t)]. Therefore, by taking ǧt = g̃t + ft, for each t ∈ (0, t0), we

have a smooth function in Em,α(M), t ∈ (0, t0), whose conformal infinity is [θ(t)],

t ∈ (0, t0), as wished.

4.4 Construction of the approximate solutions

In this section we prove Lemma 4.8, that is, we explain the construction of the

approximate solutions g̃t.

Proof of Lemma 4.8. Let η : R → R be a smooth function such that 0 ≤ η(s) ≤ 1,

for all s ∈ R; η(s) = 0, if s ≤ 1; and η(s) = 1 if s ≥ 2. For each a > 0, we consider

the function ηa : R→ R defined by ηa(s) = η(s/a), for each s ∈ R. The function ηa

satisfies the following: 0 ≤ ηa(s) ≤ 1, for all s ∈ R; ηa(s) = 0, if s ≤ a; and ηa(s) = 1,

if s ≥ 2a. Furthermore, it is worth noticing that ||ηa||Cm,α → 1 as a→∞.

In order to make the discussion a little more clear, we make the following assump-

tion about (V, h):

(∗) The orbifold V has only one singular point, which we denote by p.

Once the proof is complete under this hypothesis, we will show how to remove it.

Fix a smooth resolution π : M → V (as an example, in the particular case in

which M = TS2 and V = C(RP3), this resolution can be taken to be the map that

collapses the zero section of TS2 to the vertex p of the orbifold), and consider the

function d : M → [0,∞) defined, for each x ∈ M , as the distance, in the metric h,

from π(x) to the singularity p.

Let ` : (0, t0) → (0,∞) be a smooth function. It is possible to pick a smooth

function % : (0, t0)→ (0,∞) such that the region

Mt = {x ∈M ; d(π(x)) > %(t)}
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is homeomorphic to (0,∞)× ∂M and such that, on this region, the inequality

||gt − π∗h[γ(t)]||Cm,α(gt) < `(t) (4.9)

holds, for each t ∈ (0, t0). Also, there exists a family Ut, t ∈ (0, t0), each Ut a

neighborhood of γ(t) in Cm,α(∂M), such that if θ : (0, t0)→ Metm,α(∂M) is a smooth

function with θ(t) ∈ Ut, then, on the region Mt,

||π∗h[θ(t)] − π∗h[γ(t)]||Cm,α(gt) < `(t), (4.10)

for each t ∈ (0, t0). Moreover, if there exists `0 > 0 such that `(t) ≥ `0, then the Ut’s

can be taken so that there exists ε0 > 0 for which the ball

B(γ(t), ε0) = {θ; ||θ − γ(t)||Cm,α(γ(t)) < ε0}

is contained in Ut, for each t ∈ (0, t0).

Let now a : (0, t0) → (0,∞) be a smooth function (which will be chosen later).

For t ∈ (0, t0), let χt : M → [0,∞) be the function given by

χt(x) = ηa(t)(d(x)− %(t)),

for any x ∈ M . We clearly have that 0 ≤ χt ≤ 1, χt(x) = 0 if d(x) ≤ %(t), and

χt(x) = 1 if d(x) ≥ %(t) + a(t).

We can now define the approximate solutions g̃t = g̃
[θ(t)]
t by

g̃t = χth
[θ(t)] + (1− χt)gt,

for each t ∈ (0, t0). We have, using || ||Cm,α to denote || ||Cm,α(gt),

||gt − g̃t||Cm,α = ||gt −
(
χth

[θ(t)] + (1− χt)gt
)
||Cm,α

= ||χt(gt − π∗h[θ(t)])||Cm,α

≤ ||χt(gt − π∗h[γ(t)])||Cm,α + ||χt(π∗h[γ(t)] − π∗h[θ(t)])||Cm,α .

The function a can be chosen in such a way that

||χt(gt − π∗h[γ(t)])||Cm,α ≤ Θ||gt − π∗h[γ(t)])||Cm,α(Mt,gt)
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and

||χt(π∗h[γ(t)] − π∗h[θ(t)])||Cm,α ≤ Θ||(π∗h[γ(t)] − π∗h[θ(t)])||Cm,α(Mt,gt),

for each t ∈ (0, t0), where Θ is a constant not depending on t. Using inequalities (4.9)

and (4.10), we get

||gt − g̃t||Cm,α ≤ 2Θ`(t), (4.11)

for each t ∈ (0, t0).

Finally, it is possible to choose the function ` in a way that inequality (4.11) implies

inequalities (4.7) and (4.8). Furthermore, if for some b0, C0, r0 > 0 the inequalities

b(t) ≥ b0, C(t) ≤ C0 and r(t) ≥ r0 hold, for each t ∈ (0, t0), it is possible to take the

function ` so that for some `0 > 0, the inequality `(t) ≥ `0 holds, for each t ∈ (0, t0).

This finishes the proof under the condition (∗). Let us now show how to remove this

condition.

Suppose then that {p1, . . . , pk}, k ≥ 2, are the orbifold singularities of V . For i ∈
{1, . . . , k}, we define the function di : M → [0,∞) as follows: for each x ∈ M , di(x)

is the distance, in the metric h, between the points π(x) and pi. Let d : M → [0,∞)

be defined by

d(x) = min
i∈{1,...,k}

di(x),

for each x ∈M .

It is not hard to see that the same proof given above goes through.

4.5 Orbifold degeneration III

For all of this section, h[γ] will denote a nondegenerate Cm,α conformally compact

Einstein metric on V with conformal infinity [γ], and W will denote a neighborhood

of [γ] in Cm,α as the one described in the beginning of Section 4.1.

Lemma 4.9. Let gt = g
[γ(t)]
t , t ∈ (0, 1), be a smooth curve in Em,α(M) such that

gt degenerates, as t → 0, to a nondegenerate Cm,α conformally compact Einstein

metric h[γ] on V . Suppose there exists t0 ∈ (0, 1) such that gt is nondegenerate for

each t ∈ (0, t0). If Yt and Xt are neighborhoods of gt in Em,α and [γ(t)] in Cm,α,

respectively, such that Π : Yt → Xt is a diffeomorphism, then the set

{[γ(s)]; s ∈ (0, t]} ∪ {[γ]}

is not contained in Xt, for each t ∈ (0, t0).
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Proof. First, extend the curve γ to a continuous curve defined on [0, 1) by setting

γ(0) = γ. We then have

{[γ(s)]; s ∈ (0, t]} ∪ {[γ]} = {[γ(s)]; s ∈ [0, t]}.

Suppose t1 ∈ (0, t0) is such that Xt1 contains {[γ(t)]; t ∈ [0, t1]} (see Figure 4.2). We

then get, via the diffeomorphism Π : Yt1 → Xt1 , a continuous curve ǧ : [0, t1] → Yt1

such that the conformal infinity of ǧt is [γ(t)], for each t ∈ [0, t1].

Consider now the set

A = {t ∈ (0, t1]; gt = ǧt}.

Using that Π is a local diffeomorphism near the nondegenerate metrics gt, one clearly

finds that the set A is open and closed in (0, t1]. Also, since Π is injective on Yt2 , A

is not empty. Since (0, t1] is connected, we have A = (0, t1]. Thus, gt = ǧt for each

t ∈ (0, t1].

Now, since {[γ(t)], t ∈ [0, t1]} is a compact subset of Cm,α and Π−1 : Xt1 → Yt1 is

continuous, the set {ǧt; t ∈ [0, t1]} ⊂ Yt1 is a compact subset of Em,α. This implies,

on one hand, that

{||ǧt||Cm,α(gt); t ∈ (0, 1]}

is bounded. On the other hand, since gt degenerates to the orbifold metric h,

||gt||Cm,α(gt) →∞ as t→ 0. This contradicts the fact that gt = ǧt, for t ∈ (0, t1].

Theorem 4.10. Let gt = g
[γ(t)]
t , t ∈ (0, 1), be a smooth curve in Em,α(M) such that gt

degenerates, as t→ 0, to a nondegenerate Cm,α conformally compact Einstein metric

h[γ] on V . For each t ∈ (0, 1), consider the map

Ψt : Sm,αδ → Sm−2,α
δ

k 7→ Φgt(gt + k)

where δ = 2 and Φg denotes the Bianchi gauged Einstein operator with background

metric g. Suppose there exists t0 ∈ (0, 1) such that gt is nondegenerate, for each

t ∈ (0, t0). If there exist t1 ∈ (0, t0) and a constant µ (independent of t) such that the

map (Ψt)
′ is µ-Lipschitz, for each t ∈ (0, t1), then the set

{||(Lgt)−1||; t ∈ (0, t0)}

is unbounded.
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Figure 4.2: Visualization of the proof of Lemma 4.9.
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Proof. Suppose, seeking a contradiction, that there exists C > 0 such that

||(Lgt)−1|| ≤ C, (4.12)

for each t ∈ (0, t0). By Proposition 4.4, there exists r0 independent of t such that the

inequality

||Qgt(u)−Qgt(v)|| ≤ λ

C
||u− v|| (4.13)

holds, for any u, v such that ||u||Cm,αδ
, ||v||Cm,αδ

≤ r0. Here, λ ∈ (0, 1) is fixed and Qgt

is the remainder defined by the equation

Ψt(k) = Ψ(0) + Ψ′(0) · k +Qgt(k),

or equivalently,

Φgt(gt + k) = Φgt(gt) + Lgt · k +Qgt(k).

Consider a function b : (0, t1) → (0,∞) as in the proof of Theorem 4.6, that is,

the function b is such that for any curve ĝt in Metm,α(M) with ||gt− ĝt||Cm,α(gt) < b(t),

the following hold:

||k||Cm,αδ (ĝt) < 1,

whenever k ∈ Sm,αδ is such that ||k||Cm,αδ (gt) < 1/2;

||(Lĝt)−1|| ≤ 2||(Lgt)−1||,

for each t ∈ (0, t1); and

||Qĝt(u)−Qĝt(v)||Cm−2,α
δ

≤ 2||Qgt(u)−Qgt(v)||,

for all u, v ∈ {k ∈ Sm,αδ ; ||k||Cm,αδ
< r0/2} and each t ∈ (0, t1).

Now, inequalities (4.12) and (4.13) imply that the function b can be taken so that

b(t) ≥ b0, for each t ∈ (0, t1), for some b0 > 0 independent of t. By Lemma 4.8, the

neighborhoods Ut given by Theorem 4.6 can be taken so that for some ε0 > 0, Ut

contains the ball

B(γ(t), ε0) = {θ; ||θ − γ(t)||Cm,α(γ(t)) < ε0}.

If Xt is the neighborhood in Cm,α corresponding to Ut, we have that some t2 ∈ (0, 1)

48



is such that Xt2 contains

{[γ(s)]; s ∈ (0, t2]} ∪ {[γ]},

which cannot happen due to Lemma 4.9.

For each t ∈ (0, t0), denote by ξgt the first eigenvalue of Lgt . We have that

||(Lgt)−1|| equals ξ−1
gt , and hence, ξgt bounded below by some positive constant corre-

sponds to ||(Lgt)−1|| bounded above. Hence, under the assumptions of Theorem 4.10,

we conclude that if (M, gt) degenerates to (V, h), then ξgti → 0 for some subsequence

{ti} ⊂ (0, 1).

One expects, therefore, the first eigenvalue ξh of Lh to be zero, that is, one expects

Conjecture 2.23 to be true. Surprisingly, as we’ve seen in Chapter 3, this conjecture

is false.
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