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Abstract of the Dissertation

Weighted L2 interpolation on
non-uniformly separated sequences

by

Stanislav Ostrovsky

Doctor of Philosophy

in

Mathematics

Stony Brook University

2009

We define several weighted !2-norms associated to a discrete sequence Γ in C and

a weight function ϕ. We then give a sufficient condition which ensures that we

can always extend weighted-!2 data to global holomorphic functions which are

also weighted-L2. The condition is that the so-called upper density of Γ is strictly

less then one.
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Chapter 1

Introduction

1.1 Motivation for the central problem

A fundamental problem in mathematics is the problem of interpolation: given a set

of points, i.e., values of an independent variable, and a set of numbers associated

to those points, i.e., values of the dependent variable, find a function that realizes

the given values at the given points. Without any further restrictions, this problem

is trivial to solve. But if one restricts the set of possible values and the class of

interpolating functions, it is not clear whether one can find a function for a given

set of values.

1.1.1 Lagrange Interpolation

One of the oldest versions of this problem, which we teach in school today, is

the so-called Lagrange Interpolation Problem: given N points γ1, ..., γN in the
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complex plane, and N complex numbers c1, ..., cN , find a polynomial p of degree

d such that

p(γj) = cj, 1 ≤ j ≤ N.

The problem always has a solution if and only if d ≥ N − 1.

1.1.2 Extension of entire functions

A slightly less classical version of the problem is the following theorem, often

taught in a first course in complex analysis at the graduate level.

THEOREM 1. Let {zj} be a discrete sequence in C and let {aj} be an arbitrary

sequence of complex numbers. Then there exists an entire function f such that

f(zj) = aj .

One way to interpret the above theorem is the following. Fix a discrete se-

quence Γ in C. Any sequence of complex numbers can be considered as a function

on Γ and vice versa. Then Theorem 1 says that any function on Γ can be extended

to an entire function. Note that Theorem 1 is trivially an if and only if statement.

We will come back to this point later.

Remark. The classical proof of Theorem 1 uses the Mittag-Leffler Theorem (see

[15] for the statement of the Mittag-Leffler Theorem and the classical proof of

Theorem 1). We will latter give a different proof using the so-called ∂̄-technique.
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1.1.3 The Fock Space

It is interesting to try to equip the sequences in the hypothesis of Theorem 1 with

more structure and ask if there still exists an interpolating function which behaves

well with respect to that structure.

In the late 1980’s, the following problem arose in the study of laser physics

(see [5]). Find two complex numbers σ and τ that are independent over R, such

that the lattice

Γ := {aσ + bτ ; a, b ∈ Z}

has the following properties.

1. For any set of complex numbers {cγ}γ∈Γ such that

∑

γ∈Γ

|cγ|2e−π|γ|2 < +∞

there is a function f in the Fock space

F (C) :=

{
f ∈ O(C) ;

∫

C
|f(z)|2e−π|z|2dA(z) < +∞

}

such that f(γ) = cγ for all γ ∈ Γ.

2. There are positive constants C and D for every f ∈ F (C),

C

∫

C
|f(z)|2e−π|z|2dA(z) ≤

∑

γ∈Γ

|f(γ)|2e−π|γ|2 ≤ D

∫

C
|f(z)|2e−π|z|2dA(z).

(1.1.1)

3



Note that 2 implies that if one can find the function in 1, then that function is

unique.

Note that the use of a lattice in the statement of the problem just discussed

is not necessary; one can ask the question for any discrete set of points in the

complex plane. In 1992 K. Seip proved that no such set Γ, a lattice or not, can

exist (see [17]).

The results of Seip and his collaborators have even had applications in the

theory of sampling and interpolation— a theory that is central in the storage and

retrieval of data. We refer the reader to [3, 4, 5] for further references on the

applications of these ideas.

In this thesis, we will mostly be concerned with conditions under which a

collection of values can be extended, i.e., generalizations on part 1 of the problem

just stated.

1.2 Extension Problems in Generalized Fock Space

1.2.1 Extension in Generalized Fock space

Let Γ be a discrete sequence in C and let ν : C → R be a continuous function. We

will soon place further restrictions on ν, but for the purposes of the next definitions

continuity is more than enough. Consider the following Hilbert spaces:

H 2
ν (C) :=

{
F ∈ O(C) : ||F ||2ν :=

∫

C
|F |2e−νdA < +∞

}

4



and

!2
ν(Γ) :=

{
{aγ}γ∈Γ :

∑

γ∈Γ

|aγ|2e−ν(γ) < +∞
}

.

We would like to understand what conditions on Γ and ν will ensure that given

any {aγ}γ∈Γ ∈ !2
ν(Γ) there exists an F ∈ H 2

ν (C) such that F (γ) = aγ . Another

way to phrase this requirement is the following. Consider the restriction mapping

RΓ : H 2
ν (C) → !2

ν(Γ)

which sends F to its restriction to Γ. Then the question is, when is RΓ surjec-

tive? Notice that the question of surjectivity is independent of whether RΓ is

well-defined on all of H 2
ν (C). We will also consider the question of whether RΓ

is bounded.

REMARK. Note that in the lattice problem discussed above, Statement 2 is a

stronger version of asking that RΓ be injective; in fact, the inequality (1.1.1) is

equivalent to requiring that RΓ be bounded, injective, and with closed range.

1.2.2 Interpolation in the classical Fock space

The first positive results were obtained by Seip and Wallsten [17, 19], who con-

sidered the case of ν = π|z|2. (The constant π is irrelevant, being a normalization

of sorts. It is only important that π > 0.) To state the results of Seip-Wallsten, we

need to define a notion of density of a sequence— the analog of a concept that A.

Beurling introduced in the case of the Hardy space.
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DEFINITION 1.2.1. The upper Beurling density of Γ is the number

D+(Γ) := lim sup
r→∞

sup
z∈C

nΓ(z, r)

πr2
.

In the last statement, nΓ(z, r) denotes the cardinality of the set Γr(z) := Br(z)∩Γ,

where Br(z) is the disk of radius r centered around z. We shall employ this

notation from here on.

REMARK. Since Γ is discrete, nΓ(z, r) < +∞ for any z and r.

We also need the following notion of separation for a sequence.

DEFINITION 1.2.2. A sequence Γ is said to be uniformly separated if

ρ := inf
γ̃,γ∈Γ
γ̃ %=γ

|γ − γ̃| > 0.

In this case ρ is called the separation constant of Γ.

We then have the following theorem.

THEOREM 2 (Seip, Wallsten). Let ν = π|z|2. The following statements are equiv-

alent.

1. For any {aγ}γ∈Γ ∈ !2
ν(Γ) there exists F ∈ H 2

ν (C) such that F (γ) = aγ for

all γ ∈ Γ, i.e., the restriction map RΓ is surjective.

2. The sequence Γ is uniformly separated and D+(Γ) < 1.

6



The original proof of Theorem 2 used classical results of a one-variable nature

together with much unpublished work of Beurling, and in addition relied heavily

on the translation invariance of the euclidean norm. As mentioned already, we

will employ ∂̄- techniques to prove theorems of the type given above.

1.2.3 Sampling in the classical Fock space

For the sake of completeness, we shall state Seip-Wallsten’s Theorem on the in-

jectivity of the restriction map, though we shall not return to the subject again.

DEFINITION 1.2.3. The lower Beurling density of a sequence Γ is the number

D−(Γ) := lim inf
r→∞

inf
z∈C

nΓ(z, r)

πr2
.

We then have the following theorem.

THEOREM 3 (Seip, Wallsten). Let ν = π|z|2. The following statements are equiv-

alent.

1. The sampling inequality (1.1.1) is satisfied.

2. The sequence Γ can be written as a finite union of uniformly separated

sequences Γ = Γ1 ∪ ... ∪ ΓN such that D−(Γ1) > 1.

1.2.4 Interpolation in the generalized Fock Space

The next results that we discuss are due to Berndtsson, Ortega-Cerdà, and Seip

[2, 13]. These results are direct generalizations of the results of Seip and Wallsten.
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As before, we first need to make a few definitions. Let C2(C) denote the space

of real valued twice-continuously differentiable functions on C. From now on, fix

ϕ ∈ C2(C) such that for some constants M > m > 0,

m ≤ ∆ϕ ≤ M. (1.2.1)

We have set ∆ := 1
π

∂2

∂z∂z̄ , which is off by a factor of 4π from the usual Laplacian.

This normalization is convenient in the formulation of our results. We also need a

notion of density that is adapted to the weight ϕ.

DEFINITION 1.2.4. The upper Beurling density with respect to ϕ is the number

D+
ϕ (Γ) := lim sup

r→∞
sup
z∈C

nΓ(z, r)∫
Br(z) ∆ϕdA

THEOREM 4 (Berndtsson, Ortega-Cerdà, Seip). The following statements are equiv-

alent.

1. For any {aγ}γ∈Γ ∈ !2
ϕ(Γ) there exists F ∈ H 2

ϕ (C) such that F (γ) = aγ for

all γ ∈ Γ, i.e., the restriction map RΓ is surjective.

2. The sequence Γ is uniformly separated and D+
ϕ (Γ) < 1.

REMARK. Theorem 4 has a sampling companion analogous to Theorem 3.

The history of the subject of generalized Fock interpolation is rich and varied, and

we shall not go into it beyond what we have already said. The interested reader

can find more in the papers cited above.
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1.2.5 Other underlying spaces

Some work in higher dimensions has been done [11, 14]. There is also an analo-

gous set of problems that can be formulated in the unit disk. See for example [18]

or the book [6], and [8] for the treatment of the Bergmann ball in higher dimen-

sions. Finally, some work has been done in more general complex manifolds: the

one dimensional case was first treated by Schuster and Varolin in [16], and later

by Ortega-Cerdà in [12], and the higher dimensional case was touched upon by

Forgàcs [7]

1.3 Main results

In this thesis our goal is to investigate what happens when the sequence Γ is no

longer uniformly separated. Because the theorem of Berndtsson et al provides

necessary and sufficient conditions for extension, something must be changed in

the formulation of problem we consider. We have chosen to replace the space

!2
ϕ(Γ) with another weighted-!2 space and seek a positive result.

We associate to every γ ∈ Γ the following numbers:

ργ := min(1, inf
γ̃∈Γ\{γ}

|γ − γ̃|
2

) and nγ := nΓ(γ, 1).

DEFINITION 1.3.1. We define the Hilbert space

H2
ϕ(Γ) :=

{
{aγ}γ∈Γ : ‖{aγ}‖2

ϕ :=
∑

γ∈Γ

|aγ|2
e−ϕ(γ)

ρ2nγ
γ

< +∞
}

.

9



With this notation, we are ready to state our main result.

THEOREM A. Let Γ and ϕ be as above and suppose that D+
ϕ (Γ) < 1. Then the

restriction map

RΓ : H 2
ϕ (C) → H2

ϕ(Γ),

which sends f to its restriction to Γ, is surjective.

Remark. Note that we do not claim the map RΓ is well-defined; in fact Proposi-

tion 2.2.4 shows that it is defined and bounded on all of H 2
ϕ (C) if and only if the

sequence Γ is uniformly separated, i.e., there exists ε > 0 such that

ργ ≥ ε for all γ ∈ Γ.

Remark. If the restriction map is surjective, we say that Γ is interpolating. Note

that the property of being interpolating is always relative to the norms of the

Hilbert spaces under consideration.

Remark. Our theorem does not provide any necessary conditions for interpola-

tion. It is not known at this time (and is likely not the case) wether the density

condition is also necessary and not just sufficient.

For various reasons that originated in higher dimensional considerations, it is

also desirable to understand another kind of !2-norm whose definition may seem

rather unmotivated at first.

10



DEFINITION 1.3.2. Let

λr(z) := exp(
∑

γ∈Γ

log |z − γ|− 1

πr2

∫

B(z,r)

log |ξ − γ|dAξ).

DEFINITION 1.3.3. Let

‖{aγ}‖2
r :=

∑

γ∈Γ

|aγ|2
e−ϕ(γ)

ρ2
γ|∂λr(γ)|2 .

Then define

H2
ϕ,λr

(Γ) := {{aγ}γ∈Γ : ‖{aγ}‖2
r < ∞}.

We then have the following theorem.

THEOREM B. Let Γ and ϕ be as above and suppose that D+
ϕ (Γ) < 1. Then the

restriction map

RΓ : H 2
ϕ (C) → H2

ϕ,λr
(Γ)

is surjective for r sufficiently large.

Throughout, the notation f ! g will be used to mean that there exists a con-

stant C̃ > 0 independent from f and g such that f ≤ C̃g and f * g will mean

that f ! g and g ! f . Furthermore, C will be used to denote an arbitrary posi-

tive constant whose value could change from one occurrence to the next. We will

sometimes write Cr when we wish to emphasize a dependence on some particu-

lar parameter r. Finally, we will use !r and *r to emphasize that the constants

involved might depend on the parameter r.
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Chapter 2

Preliminary facts

2.1 Local estimates

The following Lemmas can be found, in one form or another, in the papers [2] and

[13]. They are fundamental to much of what we do later.

LEMMA 2.1.1. Let ν ∈ C2(C) be a subharmonic function and suppose there

exists a constant M > 0 such that ∆ν ≤ M . Take any z ∈ C and any r > 0.

Then there exists a holomorphic function Hz defined in Br(z), with Hz(z) = 0,

and a constant Cr independent of z such that

|ν(z)− ν(w) + 2 Re Hz(w)| ≤ Cr

for all w ∈ Br(z). Moreover, there exists a constant C (independent of r) such

that Cr ≤ C if 0 < r ≤ 1.

12



Proof. If we define hz in Br(z) by

hz(w) := ν(w)− ν(z) +

∫

Br(z)

(ln|z − ξ|− ln|w − ξ|)∆ν(ξ)dAξ (2.1.1)

then hz is harmonic and hz(z) = 0. Since Br(z) is simply connected there exists

a holomorphic function Hz such that 2 Re Hz = hz and Im Hz(z) = 0. We also

have the following estimates:

1. −Mπ
2 ≤

∫
Br(z) ln|z − ξ|∆ν(ξ)dAξ ≤ Mπr2 ln r

2. −Mπr2 ln 2r ≤ −
∫

Br(z) ln|w − ξ|∆ν(ξ)dAξ ≤ πM
2

To see the upper estimate in (1) we observe that since ln|z− ξ| ≤ 0 for ξ ∈ B1(z)

and 0 ≤ ln|z − ξ| ≤ ln r for ξ ∈ Br(z) \ B1(z) and 0 ≤ ∆ν ≤ M we have that

∫

Br(z)

ln|z − ξ|∆ν(ξ)dAξ ≤
∫

Br(z)\B1(z)

ln|z − ξ|∆ν(ξ)dAξ ≤ Mπr2 ln r.

The lower estimate holds because

∫

Br(z)

ln|z − ξ|∆ν(ξ)dAξ ≥
∫

B1(z)

ln|z − ξ|∆ν(ξ)dAξ

≥ M

∫

B1(z)

ln|z − ξ|dAξ

= 2πM

∫ 1

0

u ln u du

= −πM

2
.
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To see (2) let ∆1 = Br(z) ∩B1(w) and ∆2 = Br(z) \ ∆1. Then

−
∫

Br(z)

ln|w − ξ|∆ν(ξ)dAξ = I1 + I2

where

I1 = −
∫

∆1

ln|w − ξ|∆ν(ξ)dAξ

and

I2 = −
∫

∆2

ln|w − ξ|∆ν(ξ)dAξ.

Note that |w − ξ| ≤ 1 for ξ ∈ ∆1 and 1 ≤ |w − ξ| ≤ 2r for ξ ∈ ∆2. Then just as

above we have the estimates

0 ≤ I1 ≤ −
∫

B1(w)

ln|w − ξ|∆ν(ξ)dAξ

≤ −2πM

∫ 1

0

u ln u du

=
πM

2

and

0 ≥ I2 ≥ −
∫

∆2

ln 2r∆ν(ξ)dAξ

≥ −M ln 2r

∫

Br(z)

dAξ

= −Mπr2 ln 2r.

14



Hence

−Mπr2 ln 2r ≤ I1 + I2 ≤
πM

2
,

which is what (2) claims. If we choose Cr = Mπ(r2 ln 2r + 1
2), the first part of

the claim follows. Since Cr → 0 as r → 0 we can choose a constant C such that

Cr ≤ C for 0 < r ≤ 1. This completes the proof.

Remark. We point out the fact that we do not require a strictly positive lower

bound on ∆ν in Lemma 2.1.1. While we do not use this fact in our work it

becomes important if one tries to relax the positivity assumptions on ν.

LEMMA 2.1.2. Let ν be as in Lemma 2.1.1. Take any z ∈ C and any 0 < r ≤ 1.

Then given any F ∈ H 2
ν (C), the following estimate holds:

|F (z)|2e−ν(z) ! 1

πr2

∫

Br(z)

|F (w)|2e−ν(w)dAw ! 1

πr2
‖F‖2

ν .

Proof. Take any Hz that satisfies the conclusions of Lemma 2.1.1. Using Cauchy’s

Integral Formula and Lemma 2.1.1, we get the estimate

|F (z)|2 = |F (z)e−Hz(z)|2 ≤ 1

πr2

∫

Br(z)

|F (w)|2e−2 Re Hz(w)dAw

! 1

πr2

∫

Br(z)

|F (w)|2e−ν(w)dAweν(z),

which implies the result.
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2.2 Density and separation

We first make a few general comments regarding density. Note that, by definition,

D+
ϕ (Γ) < α if and only if there exists some δ > 0 such that for all z ∈ C and

all r sufficiently large, nΓ(z, r) < (α− δ)
∫

Br(z) ∆ϕdA. Then an upper bound on

∆ϕ implies that if the density is finite, then the number of points of Γ contained

in a disk of radius r can grow at most quadratically as a function of r. Also, we

have defined density by counting the number of points of the sequence contained

in disks (and dividing by their weighted area). In [10], Landau showed that if the

sequence is uniformly separated, then one can measure the density by counting the

number of points contained in translations and dilations of an arbitrary compact

set of measure 1 and whose boundary has measure 0. In particular, we can use

squares instead of disks to compute the density, i.e.

D+
ϕ (Γ) := lim sup

r→∞
sup
z∈C

nΓ(z, r)∫
Br(z) ∆ϕdA

= lim sup
r→∞

sup
z∈C

#{Sr(z) ∩ Γ}∫
Sr(z) ∆ϕdA

where Sr(z) is a square centered at z with side length r and #{Sr(z) ∩ Γ} is the

number of points of Γ lying in Sr(z). Strictly speaking, Landau’s result is for

ϕ = |z|2 but the general case follows since ∆ϕ is uniformly bounded.

We now give several examples of density calculations. We will calculate den-

sity using squares instead of disks which we can do by the comments made above.

EXAMPLE 2.2.1. Let ϕ = π|z|2 and Γ = aZ × bZ a rectangular lattice. Then

16



D+
ϕ (Γ) = 1

ab . To see this observe that for r > 0 we have the estimates

(r

a
− 1

) (r

b
− 1

)
≤ #{Sr(z) ∩ Γ} ≤

(r

a
+ 1

) (r

b
+ 1

)
. (2.2.1)

Dividing (2.2.1) by
∫

Sr(z) ∆ϕdA = r2 and letting r go to infinity we get that

D+
ϕ (Γ) = 1

ab . We also point out that for ε > 0 small enough, the density of a

sequence obtained by perturbing the lattice Γ by ε is equal to the density of Γ, i.e.,

D+
ϕ (Γ + ε) = D+

ϕ (Γ).

EXAMPLE 2.2.2. Using an idea of Ortega and Seip from [13] we now show how

to construct a sequence Γ such that D+
ϕ (Γ) = α for any 0 < α < +∞ for a

general weight ϕ. First partition the plane into horizontal strips Sj defined by

j ≤ Im z ≤ j + 1 with j ∈ Z. Then subdivide each Sj into rectangles Rjk

such that
∫

Rjk
∆ϕdA = α. The length of the rectangles will be bounded above

and bellow by some constants since ∆ϕ is bounded from above and bellow by

constants. We now make a uniformly separated sequence Γ by placing a point

in the center of each rectangle. It is easy to verify that D+
ϕ (Γ) = α. We can

also make a sequence Γ̃ which is a union of n uniformly separated sequences

by placing n points arbitrarily close together clustered around the center of each

rectangle Rjk. It follows from the above construction and the additivity of density

that D+
ϕ (Γ̃) = nα.

The next well known proposition shows that while a priori we do not make any
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restrictions on the separation properties of our sequence Γ in our main theorems,

the assumption that the density of the sequence is finite (less then 1 in our case)

already places a strong restriction on the separation properties of Γ.

PROPOSITION 2.2.3. A sequence Γ is a finite union of uniformly separated se-

quences if and only if D+
ϕ (Γ) < +∞.

Proof. First suppose that Γ is not a finite union of uniformly separated sequences.

Then for any r > 0 and any integer m there exists a point zm ∈ C such that

nΓ(zm, r) > m. But then

sup
z∈C

nΓ(z, r)∫
Br(z) ∆ϕ

= +∞,

which in turn implies that D+
ϕ (Γ) = +∞.

To see the other direction suppose that Γ is a finite union of uniformly sepa-

rated sequences. Then for any δ > 0 there exists some integer Nδ such that any

disk of radius δ contains at most Nδ points of Γ, i.e. nΓ(z, δ) ≤ Nδ for all z ∈ C.

Now, any disk of radius r can be covered by a union of ,2r-2 disks of radius 1√
2
,

where ,x- denotes the ceiling function. If we let δ = 1√
2

we have the estimates

D+
ϕ (Γ) ≤ lim sup

r→∞
sup
z∈C

Nδ,2r-2∫
Br(z) ∆ϕ

≤ lim sup
r→∞

Nδ(2r + 1)2

mπr2
=

2Nδ

mπ
< +∞.

The following Theorem says that the so-called one point interpolation problem

can always be solved with the weight ϕ.
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THEOREM 5. There exists a constant C > 0 with the following property. For any

u, a ∈ C there exists an F ∈ H 2
ϕ (C) such that F (u) = a and

∫

C
|F |2e−ϕdA ≤ C|a|2e−ϕ(u).

Theorem 5 follows from Theorem A since any point u ∈ C is trivially a sequence

with density zero and ρu = 1. The existence of the estimate can be seen from the

proof of Theorem A. However, one can also prove Theorem 5 directly. We will

do so in Section 3.1 since the proof demonstrates some of the techniques we will

use to prove our main theorems but in a simplified setting.

Using Lemma 2.1.2 and Theorem 5 we can prove

PROPOSITION 2.2.4. The map RΓ is defined and bounded on H 2
ϕ (C) if and only

if the sequence Γ is uniformly separated.

Proof. First suppose that Γ is uniformly separated, i.e., there exists ε > 0 such

that ργ ≥ ε for all γ ∈ Γ. Then there exists an integer N such nγ ≤ N for all

γ ∈ Γ. Using Lemma 2.1.2 and the fact that Bε(γ) are disjoint for all γ ∈ Γ, we

have that for any F ∈ H 2
ϕ (C)

RΓ(F ) =
∑

γ

|F (γ)|2 e−ϕ(γ)

ρ2nγ
γ

≤ 1

ε2N

∑

γ

|F (γ)|2e−ϕ(γ)

!
∑

γ

∫

Bε(γ)

|F (w)|2e−ϕ(w)dAw

! ‖F‖2
ϕ.
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It then follows that RΓ is defined and bounded on H 2
ϕ (C).

Now suppose that RΓ is defined and bounded on H 2
ϕ (C). Take any γ ∈ Γ. By

Theorem 5 there exist F ∈ H 2
ϕ (C) such that F (γ) = e

ϕ(γ)
2 and ‖F‖ϕ ≤ C, where

the constant is independent of γ. Since ργ ≤ 1, the following estimate holds :

1

ργ
≤

∑

γ

|F (γ)|2 e−ϕ(γ)

ρ2nγ
γ

≤ C.

Thus Γ is uniformly separated.

2.3 Distributions

We assume that the reader is familiar with the basic notions of distributions. In this

section we introduce the notion of a positive distribution which is not common to

distribution theory but is prevalent in the theory of currents. Let D(C) denote the

space of test functions on C, i.e., smooth functions with compact support and let

D ′(C) denote the space of distributions on C, i.e., continuous, real valued, linear

functionals on D(C).

DEFINITION 2.3.1. A distribution f ∈ D ′(C) is said to be positive if 〈f, α〉 ≥ 0

for any α ∈ D(C) such that α ≥ 0. We use the notation f ≥ 0 to denote a positive

distribution and f ≥ g means that f − g ≥ 0 where g is also a distribution.

EXAMPLE 2.3.2. Any real valued function f ∈ L1
loc(C) defines a distribution by

〈f, α〉 =
∫

C fαdA. This distribution is positive if f is positive almost everywhere.
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EXAMPLE 2.3.3. The point-mass distribution centered as some point z ∈ C, de-

noted by δz and defined by 〈δz, α〉 = α(z) is a positive distribution.

The following two Lemmas will be used to establish the positivity of certain

”singular” weights which we will introduce later.

LEMMA 2.3.4. ∆z log|z − w|2 = δw(z).

Proof. We wish to prove that given any α ∈ D(C) the following equality holds:

∫

C
log|z − w|2∆zα(z)dAz = α(w).

We will use the following version of Green’s Theorem in the plane (see [20] for

a proof) . Let Ω ⊂⊂ C be a smoothly bounded domain and let u and v be two

C2-smooth real valued functions defined in a neighborhood of Ω̄. Then

∫

Ω

u∆v − v∆udA =
1

4π

∫

∂Ω

u
∂v

∂n
− v

∂u

∂n
dS (2.3.1)

where ∂
∂n denotes the derivative in the direction normal to the boundary. The

constant 1
4π arises because of our definition of the Laplacian.

Now take some α ∈ D(C) choose r large enough so that the support of α lies

in the disk Br(w). Since log |z − w|2 is locally integrable at w and harmonic in

C \ {w} it holds that

∫

C
log|z − w|2∆zα(z)dAz = lim

ε→0
Iε
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where

Iε =

∫

Br(w)\Bε(w)

log|z − w|2∆α(z)−∆ log|z − w|2α(z)dAz.

For any given ε > 0, (2.3.1) along with the fact that the support of α lies in Br(0)

gives that

Iε = − 1

4π

∫ 2π

0

log ε2∂α(ρeiθ)

∂ρ

∣∣∣∣
ρ=ε

εdθ +
1

4π

∫ 2π

0

2

ε
α(εeiθ)εdθ

= − 1

4π
ε log ε2

∫ 2π

0

∂α(ρeiθ)

∂ρ

∣∣∣∣
ρ=ε

dθ +
1

2π

∫ 2π

0

α(εeiθ)dθ.

Since ε log ε2 → 0 as ε → 0 and α is C2-smooth we have that

lim
ε→0

Iε = α(0).

LEMMA 2.3.5. ∆z

∫
Br(z) log|ξ−w|2dAξ = 1 for w ∈ Br(z) and ∆z

∫
Br(z) log|ξ−

w|2dAξ = 0 for w 1∈ Br(z) in the sense of distributions.

Proof. The lemma follows if we show that for all α ∈ D(C),

∫

C

(∫

Br(z)

log|ξ − w|2dAξ

)
∆zα(z)dAz =

∫

Br(w)

α(ξ)dA(ξ).

Indeed, the latter statement says that as a distribution, the function ∆z

∫
Br(z) log|ξ−

w|2dAξ is equal to the function 1Br(w)(z). (Since ∂Br(w) has measure zero, the
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two functions 1Br(w)(z) and 1Br(w)(z) induce the same distribution.) To this end,

we have

∫

C

(∫

Br(z)

log|ξ − w|2dAξ

)
∆zα(z)dAz

=

∫

C

(∫

Br(0)

log|z + u− w|2dAu

)
∆zα(z)dAz

=

∫

Br(0)

(∫

C
log|z − (w − u)|2∆zα(z)dAz

)
dAu

=

∫

Br(0)

α(w − u)dAu

=

∫

Br(w)

α(ξ)dAξ.

The first equality follows from a change of variables, the second from Fubini’s

Theorem (see [15]), the third from Lemma 2.3.4 and the fourth from another

change of variables. The proof is finished.

2.4 Singularization of the weight

We will want to modify the weight ϕ to introduce singularities at the points of Γ.

Toward this end, we introduce the function sr : C → [−∞, +∞) defined by

sr(z) :=
∑

γ∈Γ

(log|z − γ|2 −−
∫

Br(z)

log|ξ − γ|2dAξ)

where

−
∫

Br(z)

fdA :=
1

πr2

∫

Br(z)

fdA.
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First note that sr is well defined since log|ξ−γ|2 is locally integrable and harmonic

for ξ 1= γ and so by the mean value property for harmonic functions

sr(z) =
∑

γ∈Γr(z)

(log|z − γ|2 −−
∫

Br(z)

log|ξ − γ|2dAξ).

Recall that Γr(z) = Γ∩Br(z). Similarly, since log|z− γ|2 is subharmonic for all

z ∈ C, we have by the sub-mean value property for subharmonic functions that

sr(z) ≤ 0.

Note that e−sr(z) is not locally integrable at any γ ∈ Γ since 1
|z−γ|2 is not locally

integrable at γ. Furthermore, from Lemma 2.3.4 and Lemma 2.3.5 it follows that

∆zsr(z) =
∑

γ∈Γr(z)

δγ −
nΓ(z, r)

πr2
≥ −nΓ(z, r)

πr2

where δγ is the point mass distribution centered at γ and the inequality is meant

in the sense of positive distributions. Now let

Tγ :=

{
z ∈ C :

ργ

4
≤ |z − γ| ≤ 3ργ

4

}
.
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Then for z ∈ Tγ we have

∑

γ̃∈Γr(z)

log|z − γ̃|2 =
∑

γ̃∈Γr(z)∩Γ1(γ)

log|z − γ̃|2

+
∑

γ̃∈Γr(z)\Γ1(γ)

log|z − γ̃|2

≥ nγ log
(ργ

4

)2

+ log

(
1

16

)
(nΓ(z, r)− nγ)

≥ nγ log ρ2
γ − CnΓ(z, r)

and

−
∑

γ∈Γr(z)

−
∫

Br(z)

log|ξ − γ|2dAξ ≥ −
∑

γ∈Γr(z)

1

πr2

∫

Br(z)\B1(γ)

log|ξ − γ|2dAξ

≥ −
∑

γ∈Γr(z)

1

πr2

∫

Br(z)\B1(γ)

log(2r)2dAξ

≥ −2nΓ(z, r) log 2r.

Thus we have that for z ∈ Tγ

sr(z) ≥ nγ log ρ2
γ − CrnΓ(z, r).

It turns out that rather than working with the weight ϕ itself we will want to

average ϕ over disks and so we define

ϕr(z) := −
∫

Br(z)

ϕ(ξ)dAξ.
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The following Lemma says that we can use the weights ϕ and ϕr interchangeably.

LEMMA 2.4.1. |ϕ− ϕr| ≤ Cr.

Proof. Let

Iz(w) =

∫

Br(z)

(ln|z − ξ|− ln|w − ξ|)∆ϕ(ξ)dAξ.

Then the decomposition in (2.1.1) gives

|ϕ(z)− ϕr(z)| = |−
∫

Br(z)

ϕ(z)− ϕ(w)dAw|

= |−
∫

Br(z)

hz(w)dAw −−
∫

Br(z)

Iz(w)dAw|

= |−
∫

Br(z)

Iz(w)dAw|

where the last equality holds because hz is harmonic and hz(z) = 0. The result

now follows from the estimates done in the proof of Lemma 2.1.1.

A different way to state Lemma 2.4.1 is that e−ϕ *r eϕr . This in particular

implies that the spaces H 2
ϕ (C) and H 2

ϕr
(C) are the same with equivalent norms.

The same is true of H2
ϕ(Γ) and H2

ϕr
(Γ).

Also, since

∆zϕr(z) = ∆z−
∫

Br(z)

ϕ(ξ)dA = −
∫

Br(z)

∆ξϕ(ξ)dA

we have that

m ≤ ∆ϕr ≤ M.
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We now define a new (singular) weight

ψr := ϕr + sr.

What we have shown is:

LEMMA 2.4.2. The functions ψr and ϕr have the following properties:

(1) e−ϕr(z) ≤ e−ψr(z) for all z ∈ C.

(2) for z ∈ Tγ we have that e−ψr(z) ≤ 1

ρ
2nγ
γ

eCrnΓ(z,r)e−ϕr(z).

(3) e−ψr(z) is not locally integrable at any γ ∈ Γ.

2.5 Basic ∂̄-technique

We now give a proof of Theorem 1 using the solvability of the ∂̄-equation. The

method of proof will be a prototype for some of the techniques we will use in the

proof of our main theorems. The starting point is the following result which states

that given smooth data we can always solve the ∂̄-equation in the plane. The proof

may be found in the first chapter of [9].

THEOREM 6. Given any smooth function f defined on C there exists a smooth

function u defined on C such that ∂
∂z̄u = f .

Proof of Theorem 1. Let {zj} be a discrete sequence in C and let {aj} be an

arbitrary sequence of complex numbers. Since the sequence {zj} is discrete there
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exist εj > 0 such that the disks Bεj(zj) are mutually disjoint. Let η : [0,∞) →

[0, 1] be a smooth function which is identically 1 on [0, 1
4 ] and identically 0 on

[34 ,∞). Consider the function

F (z) :=
∑

j

ajηj(z)

where ηj(z) := η( |z−zj |2
ε2
j

). The function F is well-defined and smooth. Moreover,

F is supported in Bεj(zj), holomorphic in B εj
4
(zj), and F (zj) = aj for all j. By

the Weierstrass Theorem (see [9]) the exits an entire function h which vanishes

precisely on the sequence {zj} and all of the zeroes are simple. It then follows

that the function

α :=
1

h

∂F

∂z̄

is smooth everywhere (we define α(zj) = 0). By Theorem 6 there exists a smooth

function u such that ∂
∂z̄u = α. It follows that the function f = F − uh is entire

and f(zj) = aj .

Let us try to briefly summarize what happened in the proof of Theorem 6. We

were looking for a holomorphic function with prescribed values on a sequence

in the plane. We first constructed a smooth function which attained the correct

values on the sequence. This was done by patching together local holomorphic

functions and so the smooth function was holomorphic in a small neighborhood

of each point in the sequence. We then found another function which vanished at

every point of the sequence and the difference of the two functions was holomor-
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phic and had the correct values on the sequence. This second function was found

by solving the inhomogeneous ∂̄-equation. This approach to finding global holo-

morphic functions with prescribed local properties is know as the ∂̄-technique and

we will come back to it several times including in the proof of our main theorems.

2.6 Hörmander’s Theorem

The main technical tool that we will use in the proof of our main theorems is

known as Hörmander’s Theorem. We state and prove of a version of Hörmander’s

Theorem since it is hard to find in the literature in the exact form we require.

We claim absolutely no originality here. The author learned this proof from a

wonderful set of notes by Bo Berndtsson [1] which are available online but are

unfortunately unpublished at this time.

THEOREM 7. Take ψ ∈ C2(C) such that there exists a δ > 0 so that ∆ψ ≥ δ.

Then given any function f ∈ L2
ψ(C) there exist a function u ∈ L2

ψ(C) such that

∂̄u = f in the sense of distributions and

∫

C
|u|2e−ψdA !

∫

C
|f |2e−ψdA.

Recall that D(C) denote the space of test functions on C, i.e., smooth func-

tions with compact support. We remind the reader that given two functions f, u ∈
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L2(C) the distributional equation ∂̄u = f means that given α ∈ D(C)

−
∫

C
u

∂

∂z̄
αdA =

∫

C
fαdA. (2.6.1)

We now introduce an inner product structure on L2
ψ(C) by defining

〈u, v〉ψ :=

∫

C
uv̄e−ψdA

for all u, v ∈ L2
ψ(C). If we define

∂̄∗ψα := −eψ ∂

∂z
[αe−ψ]

for α ∈ D(C) then (2.6.1) becomes

∫

C
u∂̄∗ψαe−ψdA =

∫

C
f ᾱe−ψdA. (2.6.2)

If fact we have that

LEMMA 2.6.1. ∂̄∗ψ is the formal adjoint of ∂̄, i.e.

〈∂̄α, β〉ψ = 〈α, ∂̄∗ψβ〉ψ (2.6.3)

for all α, β ∈ D(C).

Proof. This is an exercise in integration by parts. Unwinding the definitions, the
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statement that we need to prove is that

∫

C

∂α

∂z̄
β̄e−ψdA = −

∫

C
α

∂

∂z̄
[β̄e−ψ]dA

for all α, β ∈ D(C). Consider the (1, 0)-form h = αβ̄e−ψdz. If d denotes the

usual exterior derivative on 1-forms and ∂̄ is its (0,1)-component then

dh = ∂̄h =

(
∂α

∂z̄
β̄e−ψ + α

∂

∂z̄
[β̄e−ψ]

)
dz̄ ∧ dz

= 2i

(
∂α

∂z̄
β̄e−ψ + α

∂

∂z̄
[β̄e−ψ]

)
dA.

Since α and β have compact support, by Stokes Theorem (see [20]) we have that

0 =

∫

C
dh =

∫

C

(
∂α

∂z̄
β̄e−ψ + α

∂

∂z̄
[β̄e−ψ]

)
dA.

The following proposition reduces the proof of Hörmander’s Theorem to prov-

ing an inequality.

PROPOSITION 2.6.2. Take ψ ∈ C2(C) such that ∆ψ ≥ δ for some constant δ > 0.

Suppose that the estimate

∫

C
|α|2e−ψdA !

∫

C
|∂̄∗ψα|2e−ψdA (2.6.4)

holds for all α ∈ D(C). Then given any function f ∈ L2
ψ(C) there exist a function
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u ∈ L2
ψ(C) such that ∂̄u = f (in the sense of distributions) and

∫

C
|u|2e−ψdA !

∫

C
|f |2e−ψdA

Proof. Define the following subspace W ⊂ L2
ϕ(C):

W := {∂̄∗ψα : α ∈ D(C)}.

Take any function f ∈ L2
ϕ(C) and define an anti-linear functional Lf : W → C

by

Lf (∂̄
∗
ψα) :=

∫

C
f ᾱe−ψdA.

Using (2.6.4) and the Cauchy-Schwarz Inequality we have the estimates

|Lf (∂̄
∗
ψα)| = |〈f, α〉ψ| ≤ ||f ||ψ||α||ψ ! ||f ||ψ||∂̄∗ψα||ψ

for all ∂̄∗ψα ∈ W . So we see that on W , the functional Lf is well defined and

of norm ||Lf || ! ||f ||ψ. The Hahn-Banach Theorem (see [15]) then implies that

we can extend Lf to all of L2
ψ(C) and the extension will have the same norm.

Then the Reisz Representation Theorem (see [15]) says that there exists some

u ∈ L2
ψ(C) with ||u||ψ ! ||f ||ψ such that

Lf (v) = 〈u, v〉ψ (2.6.5)

for all v ∈ L2
ψ(C). If we choose v = ∂̄∗ψα then (2.6.5) is exactly the equality in
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(2.6.2).

To finish the proof of Theorem 7 we need to establish an estimate of the type

in (2.6.4) which is accomplished by establishing the following integral identity.

PROPOSITION 2.6.3. Take ψ ∈ C2(C) and α ∈ D(C). Then

∫

C
π∆ψ|α|2e−ψdA +

∫

C
| ∂

∂z̄
α|2e−ψdA =

∫

C
|∂̄∗ψα|2e−ψdA

Proof. First observe that Lemma 2.6.3 implies that

∫

C
|∂̄∗ψα|2e−ψdA =

∫

C
∂̄∂̄∗ψα · ᾱe−ψdA (2.6.6)

where · denotes the usual Euclidean inner product. A calculations shows that

∂̄∗ψα = −∂α

∂z
+ α

∂ψ

∂z

and so

∂̄∂̄∗ψα = − ∂

∂z

[
∂α

∂z̄

]
+

∂ψ

∂z

∂α

∂z̄
+ πα∆ψ = ∂̄∗ψ

[
∂α

∂z̄

]
+ πα∆ψ. (2.6.7)

Plugging in (2.6.7) into (2.6.6) gives

∫

C
|∂̄∗ψα|2e−ψdA =

∫

C
π∆ψ|α|2e−ψdA + 〈∂̄∗ψ

[
∂α

∂z̄

]
, α〉ψ

=

∫

C
π∆ψ|α|2e−ψdA +

∫

C
| ∂

∂z̄
α|2e−ψdA
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where the last equality follows from Lemma 2.6.6.

In many applications of Hörmander’s theorem (including ours) it is important

to be able to relax the regularity assumption on the weight function ψ.

THEOREM 8. Let ψ be a L1
loc real valued function on C such that there exists

a δ > 0 so that ∆ψ ≥ δ in the sense of positive distributions. Then given any

function f ∈ L2
ψ(C) there exist a function u ∈ L2

ψ(C) such that ∂̄u = f in the

sense of distributions and we have the following estimate on its norm:

∫

C
|u|2e−ψdA !

∫

C
|f |2e−ψdA.

Proof. We will deduce the singular version of Hörmander’s theorem by applying

the smooth version plus a smoothing procedure for the weight ψ. Given a ψ

satisfying the assumptions of the theorem and any ε > 0 there exists a smooth

function ψε such that ∆ψε ≥ δ and ψε ↘ ψ as ε ↘ 0. In fact, ψε is a convolution

of ψ with a positive radial bump function (see [9]). Then Theorem 7 asserts that

there exists a family of functions {uε} such that ∂̄uε = f and

∫

C
|uε|2e−ψεdA !

∫

C
|f |2e−ψεdA ≤

∫

C
|f |2e−ψdA. (2.6.8)

If we let Uε := uεe−
1
2ψε , then (2.6.8) says that {Uε} ⊂ L2(C) is a uniformly

bounded family and so has a subsequence which converges weakly to some func-

tion U . It now follows by construction that u = Ue−
1
2ψ solves ∂̄u = f (in the
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sense of distributions) and

∫

C
|u|2e−ψdA !

∫

C
|f |2e−ψdA.
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Chapter 3

Interpolation

3.1 One-point interpolation

We now turn to the proof of Theorem 5. As mentioned already, the proof will

demonstrate the main ideas involved in the proofs of our main theorems but in a

simpler situation.

Proof of Theorem 5. Take any a, u ∈ C. We seek an F ∈ H 2
ϕ (C) such that

F (u) = a and
∫

C
|F |2e−ϕdA ≤ C|a|2e−ϕ(u)

for some constant C > 0 independent of u and a.

To begin, let Hu be the function given by Lemma 2.1.1 (set r = 1). Then the

function F̃ : B1(u) → C defined by

F̃ (z) := aeHu(z) for z ∈ B1(u)
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is holomorphic and F̃ (u) = a. Furthermore, we have the estimates

∫

B1(u)

|F̃ (z)|2e−ϕ(z)dAz = |aγ|2
∫

B1(u)

exp(2 Re Hu(z)− ϕ(z))dAz

≤ C|aγ|2e−ϕ(γ)

Let η : [0,∞) → [0, 1] be a smooth function which is identically 1 on [0, 1
4 ] and

identically 0 on [34 ,∞). Then the function F̂ := ηF̃ is a globally defined smooth

function such that

F̂ (u) = a and
∫

C
|F̂ |2e−ϕdA ≤ C|a|2e−ϕ(u).

Thus F̂ is a smooth solution to our problem. We now want to correct F̂ in some

controlled manner in order to produce a holomorphic solution. There is a standard

way to do this which we now describe.

Consider the function

ψr(z) := ϕ(z) + log |z − u|2 −−
∫

Br(z)

log |ζ − u|2dAζ .

The arguments from section 2.4 show that ψr ≤ ϕ and on the annulus B1(u) \

B 1
4
(u) we have the lower bound

ψr ≥ ϕ + Cr (3.1.1)

where the constant Cr is independent of u. Moreover, Lemma 2.3.4 and Lemma
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2.3.5 imply that

∆ψr = ∆ϕ + δu −
1

πr2
≥ ε

for some ε > 0, so long as r is large enough. The inequality is meant in the sense

of positive distributions. It follows that

∫

C
|∂̄F̂ (z)|2e−ψr(z)dA(z) =

∫

B1(u)

|F̃ (z)∂̄η(z)|2e−ψr(z)dAz

!
∫

B1(u)

|F̃ (z)|2e−ψr(z)dAz

!r |a|2e−ϕ(u).

By Hörmander’s Theorem (Theorem 8) there is a function h such that

∂̄h = ∂̄F̂ and
∫

C
|U |2e−ψrdA !r |a|2e−ϕ(u).

Moreover, we have that h(u) = 0 since e−ψr is not locally integrable at u. Finally,

since ψr ≤ ϕ we have the estimates

∫

C
|U |2e−ϕdA ≤

∫

C
|U |2e−ψrdA !r |a|2e−ϕ(u).

It follows then that the function F = F̂ − h has the desired properties.
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3.2 Proof of Theorem A

We now turn to the proof of our main theorem. Our goal is to take any {aγ} ∈

H2
ϕ(Γ) and to construct an F ∈ H 2

ϕ (C) such that F (γ) = aγ . In order to simplify

the notation a little we define Bγ := Bργ (γ). For each γ ∈ Γ, let Hγ be a function

satisfying the conclusions of Lemma 2.1.1 where r = ργ . Define functions Fγ :

Bγ → C by

Fγ(z) := aγe
Hγ(z).

It then follows that Fγ is holomorphic in Bγ and Fγ(γ) = aγ . Furthermore, we

have that

∫

Bγ

|Fγ(z)|2e−ϕ(z)dAz =

∫

Bγ

|aγ|2 exp(2 Re Hγ(z)− ϕ(z))dAz

! |aγ|2e−ϕ(γ)

∫

Bγ

dAz

! |aγ|2e−ϕ(γ)ρ2
γ.

Let η : [0,∞) → [0, 1] be a smooth function which is identically 1 on [0, 1
4 ] and

identically 0 on [34 ,∞). Define the function F̂ : C → C by

F̂ (z) :=
∑

γ∈Γ

Fγ(z)ηγ(z) (3.2.1)
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where ηγ := η
(

|z−γ|2
ρ2

γ

)
. Then F̂ is well defined, F̂ (γ) = aγ , and we have the

estimates

∫

C
|F̂ (z)|2e−ϕ(z)dAz ≤

∑

γ∈Γ

∫

Bγ

|Fγ(z)|2e−ϕ(z)dAz !
∑

γ∈Γ

|aγ|2e−ϕ(γ)ρ2
γ (3.2.2)

and therefore

∫

C
|F̂ (z)|2e−ϕ(z)dAz !

∑

γ∈Γ

|aγ|2
e−ϕ(γ)

ρ2nγ
γ

< +∞.

Our assumption on D+
ϕ (Γ) implies that for r sufficiently large

(1) nΓ(z, r) ! r2.

(2) there exists δ > 0 such that

∆ψr(z) ≥ ∆ϕr(z)− nΓ(z, r)

πr2

≥ ∆ϕr(z)− (1− δ)−
∫

Br(z)

∆ϕ(ξ)dAξ

≥ mδ > 0.

We fix such an r and δ for the remainder of the proof. From |ϕ − ϕr| ≤ Cr

(Lemma 2.4.1) it follows that the estimates for F̂ given above hold for ϕ replaced
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with ϕr. Observe that ∂̄F̂ is supported on ∪γ∈ΓTγ and so we have that

∫

C
|∂̄F̂ (z)|2e−ψr(z)dAz =

∑

γ∈Γ

∫

Tγ

|∂̄ηγ(z)|2|Fγ(z)|2e−ψr(z)dAz

!
∑

γ∈Γ

1

ρ2
γ

∫

Tγ

|Fγ(z)|2e−ψr(z)dAz

!r

∑

γ∈Γ

1

ρ2+2nγ
γ

∫

Tγ

|Fγ(z)|2e−ϕ(z)dAz

!r

∑

γ∈Γ

1

ρ2+2nγ
γ

∫

Bγ

|Fγ(z)|2e−ϕ(z)dAz

!
∑

γ∈Γ

|aγ|2
e−ϕ(γ)

ρ2nγ
γ

< +∞.

In the second to last inequality we used (3.2.2).

Then by Hörmander’s Theorem (Theorem 8) there exists a function U such that

∂̄U = ∂̄F̂ and

∫

C
|U(z)|2e−ψr(z)dAz !

∫

C
|∂̄F̂ (z)|2e−ψr(z)dAz < +∞.

The fact that e−ψr(z) is not locally integrable at γ forces U(γ) = 0 for all γ ∈ Γ.
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We also have that

∫

C
|U(z)|2e−ϕ(z)dAz !r

∫

C
|U(z)|2e−ϕr(z)dAz

≤
∫

C
|U(z)|2e−ψr(z)dAz

!
∑

γ∈Γ

|aγ|2
e−ϕ(γ)

ρ2nγ
γ

< +∞.

where the first inequality follows from our comment about the equivalence of the

ϕ and ϕr norms and the second from Lemma 2.4.2. We now define the function

F := F̂ − U . We immediately see that F (γ) = aγ and that F is holomorphic.

Finally we have that ∫

C
|F |2e−ϕdA < +∞

since F̂ and U both have finite L2-norms. The proof is complete.

3.3 A different norm

For any r > 0 define the function

λr(z) := e
1
2 sr(z).
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Note that Γ = {z ∈ C : λr(z) = 0}, i.e., λr acts as a defining function for Γ. A

quick calculation shows that given some γ ∈ Γ

|∂λr(γ)|2 =
e

r2

∏

γ̃∈Γr(γ)
γ̃ %=γ

|γ − γ̃|2e−−
R

Br(γ) log|ξ−γ̃|2dAξ

and so
1

|∂λr(γ)|2 *r

∏

γ̃∈Γr(γ)
γ̃ %=γ

e−
R

Br(γ) log|ξ−γ̃|2dAξ

|γ − γ̃|2 . (3.3.1)

Remark. Note that we do not claim that ∂λr(γ) exists. In fact it does not. How-

ever |∂λr(γ)|2 does exist as one can readily check.

We can now define an !2-norm

‖{aγ}‖2
r :=

∑

γ∈Γ

|aγ|2
e−ϕ(γ)

ρ2
γ|∂λr(γ)|2 . (3.3.2)

We point out that in the above proof of Theorem A, given a γ ∈ Γ, we needed to

estimate from above

e−sr(z) =
e−

R
Br(z) log|ξ−γ|2dAξ

|z − γ|2
∏

γ̃∈Γr(z)
γ̃ %=γ

e−
R

Br(z) log|ξ−γ̃|2dAξ

|z − γ̃|2

for z ∈ Tγ . In fact it was this estimate that forced us to define the H2
ϕ-norm the

way we did. The next Lemma will (amongst other things) serve the same purpose

for the H2
ϕ,λr

-norm in the proof of Theorem B.

LEMMA 3.3.1. If D+
ϕ (Γ) < +∞ then for r sufficiently large we have that
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(1) ρ2
γ !r

1
|∂λr(γ)|2 for all γ ∈ Γ.

(2) e−sr(z) !r
1

ρ2
γ |∂λr(γ)|2 for z ∈ Tγ .

Proof. From the estimates done in Section 2.1 and Section 2.4 it is easy to see

that

− 1

r2
≤ −

∫

Br(z)

log|ξ − γ|2dAξ ≤ log 4r2 (3.3.3)

for all z ∈ C and γ ∈ Br(z). Then (3.3.1) and (3.3.3) coupled with the fact that

ργ ≤ 1 show that
1

ρ2
γ|∂λr(γ)|2 "r (Cr)

nΓ(r,γ)−1

where Cr = e
− 1

r2

r2 < 1 for r sufficiently large. As before, the assumption on

density implies that

nΓ(r, γ) ! r2 for r large enough and so we have that

1

ρ2
γ|∂λr(γ)|2 "r 1.

For the second part first observe that since |γ − γ̃| > ργ and |z − γ| ≤ 3ργ

4 for

z ∈ Tγ we have the estimates

|z − γ̃|
|γ − γ̃| ≥

|γ − γ̃|− |z − γ|
|γ − γ̃| ≥ 1−

3ργ

4

|γ − γ̃| ≥
1

4

for all z ∈ Tγ . Thus we have that

1

|z − γ̃|2 ! 1

|γ − γ̃|2
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for all z ∈ Tγ . Note that if γ̃ ∈ Γr(z) \ Γr(γ), then |γ − γ̃| ≥ r and so

1

|z − γ̃|2 ! 1

r2
(3.3.4)

for all γ̃ ∈ Γr(z) \ Γr(γ). From (3.3.3) we get that

−
∫

Br(z)

log|ξ − γ̃|2dAξ −−
∫

Br(γ)

log|ξ − γ̃|2dAξ ≤ log 4r2 +
1

r2
(3.3.5)

for all γ̃ ∈ Γr(z) ∩ Γr(γ). Putting together (3.3.4) and (3.3.5) and using the

assumption on density we get that

e−sr(z) ! CnΓ(r,z)
r

ρ2
γ

∏

γ̃∈Γr(γ)
γ̃ %=γ

e−
R

Br(γ) log|ξ−γ̃|2dAξ

|γ − γ̃|2 !r
1

ρ2
γ|∂λr(γ)|2

for r sufficiently large.

3.4 Proof of Theorem B

The proof now follows the same lines as the proof of Theorem A. We take some

{aγ} ∈ H2
ϕ,λr

(Γ) and first construct a smooth extension. Let F̂ be as in (3.2.1).

Just as before F̂ is well defined and F̂ (γ) = aγ . Then by Lemma 3.3.1 we have
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the estimates

∫

C
|F̂ (z)|2e−ϕ(z)dAz !

∑

γ∈Γ

|aγ|2e−ϕ(γ)ρ2
γ

!r

∑

γ∈Γ

|aγ|2
e−ϕ(γ)

ρ2
γ|∂λr(γ)|2

< +∞

for r sufficiently large.

Continuing as before we now estimate

∫

C
|∂̄F̂ (z)|2e−ψr(z)dAz =

∑

γ∈Γ

∫

Tγ

|∂̄ηγ(z)|2|Fγ(z)|2e−ψr(z)dAz

!
∑

γ∈Γ

1

ρ2
γ

∫

Tγ

|Fγ(z)|2e−ψr(z)dAz

!r

∑

γ∈Γ

1

ρ4
γ|∂λr(γ)|2

∫

Bγ

|Fγ(z)|2e−ϕ(z)dAz

!
∑

γ∈Γ

|aγ|2
e−ϕ(γ)

ρ2
γ|∂λr(γ)|2

< +∞

for r sufficiently large. The rest is identical to the proof of Theorem A.
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3.5 Concluding Remarks

Theorems A and B only provide sufficient conditions for interpolation as opposed

to Theorem 4. As mentioned already, we do not believe that the assumptions in

Theorem A are necessary. This is because we made a choice in the definition

on nγ = nΓ(γ, 1) to count points which are within a distance of 1 from γ. This

choice might not be optimal for a given sequence though. If, for example, we were

dealing with a uniformly separated sequence then there exists some a > 0 such

that nΓ(γ, a) = 1. However, if that sequence has a separation constant ρ 4 1 then

nΓ(γ, 1) is a large and unnecessary overestimate of the number of points close to

γ. We conjecture is that the assumptions of Theorem B are in fact necessary for

interpolation. Finally, we wish to remark that using much more delicate analytical

techniques [21], one can get rid of the 1
ρ2

γ
factor in the definition of the norm in

(3.3.2).
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