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Abstract of the Dissertation

D-bar Spark Theory and Deligne Cohomology

by

Ning Hao

Doctor of Philosophy

in

Mathematics

Stony Brook University

2009

The purpose of this dissertation is to study secondary geometric in-

variants of smooth manifolds like Cheeger-Simons differential char-

acters, Deligne cohomology and Harvey-Lawson spark characters.

Our approach follows Harvey-Lawson spark theory. In particular,

we study these secondary geometric invariants via the presentation

of smooth hypersparks and give a new description of the ring struc-

ture of differential characters. We also study d̄-spark theory and

the ring functor Ĥ∗(•, p) of complex manifolds which is a natural

extension of Deligne cohomology. We represent Deligne cohomol-

ogy classes by d̄-sparks and give an explicit product formula for

Deligne classes. Massey higher products of secondary geometric
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invariants are also studied. Moreover, we show a Chern-Weil-type

construction of Chern classes in Deligne cohomology for holomor-

phic vector bundles over complex manifolds. Many applications

of our theory are given. Generalized Nadel invariants are defined

naturally from our construction of Chern classes and Nadel’s con-

jecture is verified. Studying Chern classes for the normal bundles of

holomorphic foliations, we establish an analogue of the Bott van-

ishing theorem. Applying our representation of analytic Deligne

cohomology classes, we give a direct proof of the well known cycle

map ψ : CH∗(X)→ H2∗
D (X,Z(∗)).
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Chapter 1

Introduction

The purpose of this thesis is to study secondary geometric invariants of smooth

manifolds like Cheeger-Simons differential characters, Deligne cohomology and

Harvey-Lawson spark characters.

In this thesis, by secondary geometric invariants associated to a mani-

fold, we mean some kind of invariants refining the primary topological invari-

ants. Not only do they depend on the topological structure of the manifold,

but also the smooth, complex or algebraic structure of the manifold. Over

the category of smooth manifolds with smooth maps, such invariants were

discovered by Chern-Simons [ChS] and Cheeger-Simons [CS], and are called

Chern-Simons invariants and differential characters. Invented by Deligne and

developed by Beilinson, Deligne cohomology or Deligne-Beilinson cohomology

plays the same role over the category of complex analytic manifolds with holo-

morphic maps. We may also add the Chow ring over the algebraic category

to the family of secondary invariants. All these invariants have the following

common properties.

• They are equipped with ring structures.
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• From them, there are ring homomorphisms to the integral cohomology

ring—the primary topological invariants.

• Characteristic classes can be established in these secondary invariants

which refine the topological characteristic classes.

The first two of these three invariants, i.e. differential characters and an-

alytic Deligne cohomology, are the main objects that we shall study in this

thesis. In particular, we are interested in the following aspects.

• Different representations of these invariants, especially, in terms of sparks.

• Ring structures and Massey higher products.

• Relations between differential characters and Deligne cohomology.

• The theory of characteristic classes.

Our approach employs the spark theory of Harvey-Lawson [HL2] and [HL3].

1.1 Background

The theory of secondary geometric invariants has been discovered and devel-

oped over the last four decades. Here we only review a very small part of the

development which directly related to this thesis.

Differential Characters. In 1973 Cheeger and Simons [CS] introduced

the graded ring of differential characters associated to a smooth manifold

X, which is closely related to the famous Chern-Simons invariants in [ChS].

Roughly speaking, a differential character of degree k is a homomorphism from

the group of smooth singular k-cycles to R/Z, whose coboundary is the mod

Z reduction of some degree k + 1 smooth form. The group of differential

characters of degree k is denoted by Ĥk
CS(X). A ring structure was also in-
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troduced on Ĥ∗
CS(X). From the ring of differential characters, there are two

epimorphisms to integral cohomology ring and the ring of smooth closed forms

with integral periods respectively. Cheeger and Simons developed a theory of

characteristic classes for vector bundles with connections in differential char-

acters, which encompasses both the theory of topological characteristic classes

and the Chern-Weil homomorphism. They also showed applications of their

theory to conformal geometry, foliation theory and more.

In [HLZ], Harvey, Lawson and Zweck studied the theory of differential

characters from a de Rham-Federer viewpoint. A spark was defined to be

a current whose exterior differentials can be decomposed into smooth forms

and rectifiable currents. An equivalence relation among sparks was introduced

and the group of de Rham-Federer spark classes, denoted by Ĥ∗
spark(X), was

established. Using a transversality theorem for currents, they established a

ring structure on the group of de Rham-Federer spark classes. Moreover, this

ring was shown to be isomorphic to the ring of Cheeger-Simons differential

characters.

Spark theory, developed by Harvey and Lawson in [HL2], unifies and ex-

pands the approaches to differential characters of Gillet-Soulé [GS], Harris

[Har] and Harvey-Lawson-Zweck [HLZ]. Central to their theory are spark com-

plexes, sparks and rings of spark characters which are analogues of cochain

complexes, cocycles and cohomology rings in the usual cohomology theory.

Roughly speaking, a spark complex is a triple of cochain complexes, two of

which are contained in the main one with trivial intersection. A spark is

an element in the main complex such that its differential can be represented

(uniquely) as the sum of elements from the other two complexes. An equiv-
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alence relation among sparks is introduced and the group of spark classes

is established. Many examples of spark complexes in geometry, topology and

physics were shown in [HL2]. One basic example is the de Rham-Federer spark

complex associated to a smooth manifold X, which was introduced in [HLZ].

Another important one is the smooth hyperspark complex, which we shall

study in §3.2. We refer to [HL2] for other interesting examples of spark com-

plexes. Furthermore, all these spark complexes are compatible, i.e. connected

by quasi-isomorphisms, which implies the groups of spark classes associated

to them are all isomorphic. We call these groups the Harvey-Lawson spark

characters collectively, denoted by Ĥ∗(X). The ring structure on Ĥ∗(X) can

be defined through the de Rham-Federer spark complex. A striking fact is that

the classical secondary invariants, Cheeger-Simons differential characters, can

be realized as the groups of spark classes associated to these different spark

complexes, i.e. Ĥ∗(X) ∼= Ĥk
CS(X). Therefore, these spark complexes give

many different presentations of differential characters just as there are many

different presentations of cohomology.

Deligne Cohomology. Let X be a complex manifold and Ωk denote the

sheaf of holomorphic k-forms on X. Deligne cohomology H∗
D(X,Z(p)), intro-

duced by Deligne in 1970’s, is defined to be the hypercohomology of Deligne

complex

ZD(p) : 0→ Z→ Ω0 → Ω1 → · · · → Ωp−1 → 0.

From the definition, it is easy to seeHq
D(X,Z(0)) = Hq(X,Z) andHq

D(X,Z(1)) =

Hq−1(X,O∗).

In [B], Beilinson studied an analogue of Deligne cohomology, usually called
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Deligne-Beilinson cohomology, over open algebraic manifolds. Moreover, he

defined a ring structure on Deligne cohomology and Deligne-Beilinson coho-

mology. Explicitly, Beilinson defined a cup product

∪ : ZD(p)⊗ ZD(p′)→ ZD(p+ p′)

by

x ∪ y =


x · y if deg x = 0;

x ∧ dy if deg x > 0 and deg y = p′;

0 otherwise.

The cup product ∪ induces a ring structure on

⊕
p,q

Hq
D(X,Z(p)).

Furthermore, Chern classes for algebraic bundles were defined in Deligne

cohomology. A good reference on this topic is [EV].

Chow Ring. The Chow ring, invented by Chow [Chow], plays a very

important role in algebraic geometry and has been well studied during the

last half century. The Chow group CHk(X) of an algebraic variety X is the

abelian group of formal sums of subvarieties of X of codimension k modulo

rational equivalence. Grothendieck [Gr] established a theory of Chern classes

in Chow ring. We refer to Fulton’s famous book [Fu] for more details on the

Chow ring.

Relations among Them. Although the definitions of differential charac-

ters, Deligne cohomology and Chow ring are very different, they share many
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common properties as we state earlier. The following facts indicate some of

close relations among them.

• Smooth Deligne cohomology H∗
D(X,Z(∗)∞), an analogue of Deligne co-

homology in the smooth category, is equivalent to Differential characters.

• Deligne cohomology is a subquotient of differential characters.

• There is a well-known cycle map from Chow ring to Deligne cohomology

CH∗(X)→ H2∗
D (X,Z(∗)).

• There is a cycle map from higher Chow groups to Deligne cohomology

CHp(X,n)→ H2p−n
D (X,Z(p)).

• The theories on Characteristic classes are compatible.

These invariants have been studied by many different groups of mathe-

maticians and physicists via many different methods. It is very interesting to

compare them and to study one of them from the viewpoint of another.

1.2 What Is New?

Differential characters via smooth hypersparks. The smooth hyper-

spark complex, defined from the Čech-de Rham double complex, is another

important spark complex besides the de Rham-Federer spark complex. It is

closely related to n-gerbes with connections in physics and smooth Deligne co-

homology. Representing differential characters by smooth hyperspark classes,

we get a very nice description of differential characters. For instance, we have

• Degree 0: Ĥ0
smooth(X) = {g : X → S1 : g is smooth }.

• Degree 1: Ĥ1
smooth(X) = the set of ( equivalent classes of ) hermitian

line bundles with hermitian connections.
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• Degree 2: Ĥ2
smooth(X) =the set of 2-gerbes with connections.

• Degree n = dimX : Ĥn
smooth(X) ∼= R/Z.

In §3, we focus on this spark complex and give a new description of the

ring structure on Ĥ∗(X). Explicitly, we introduce a cup product in the Čech-

de Rham double complex which determines a ring structure on the associated

group of spark classes. As an application of the product formula, we calculate

the product for spark characters on the unit circle Ĥ0
smooth(S

1)⊗Ĥ0
smooth(S

1)→

Ĥ1
smooth(S

1). Moreover, this ring of smooth hyperspark classes is shown to be

isomorphic to the rings of de Rham-Federer spark classes, Cheeger-Simons

differential characters and smooth Deligne cohomology, which unifies these

theories of secondary geometric invariants.

Theorem. H∗
D(X,Z(∗)∞) ∼= Ĥ∗

smooth(X) ∼= Ĥ∗
spark(X) ∼= Ĥ∗

CS(X).

Deligne cohomology via d̄-sparks. In §4, we study the Harvey-Lawson

spark characters of level p, denoted by Ĥ∗(X, p), on a complex manifold X.

We may consider Ĥ∗(•, p) as a contravariant ring functor over the category of

complex manifolds with holomorphic maps. In fact, Ĥ∗(X, p) can be obtained

as the group of spark classes associated to either the Dolbeault-Federer spark

complex or the Čech-Dolbeault spark complex, which is the truncated version

of the de Rham-Federer spark complex or smooth hyperspark complex. On

one hand, Ĥ∗(X, p) is a quotient ring of spark characters Ĥ∗(X). On the

other hand, Ĥk−1(X, p) contains analytic Deligne cohomology Hk
D(X,Z(p)) as

a subgroup. Therefore, we can represent a Deligne cohomology class by a

spark of level p. Then applying previous work, we give an explicit geometric

formulas for the product in Deligne cohomology.
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Theorem. For any Deligne classes α ∈ Hk
D(X,Z(p)) and β ∈ H l

D(X,Z(q)),

choose spark classes [a] ∈ Π−1
p (α) ⊂ Ĥk−1(X), [b] ∈ Π−1

q (β) ⊂ Ĥl−1(X), where

Πp : Ĥ∗(X)→ Ĥ∗(X, p) is the projection. We define

α · β ≡ Πp+q([a] · [b]) ∈ Hk+l
D (X,Z(p+ q)).

Then the product is independent of the choices of spark classes [a] and [b] and

coincident with product defined by Beilinson in [B].

In particular, the product α · β can be represented explicitly in terms of

representing sparks a and b by formulas discussed above.

Assuming X is a complex manifold, it is transparent to see that a sub-

variety represents a Deligne cohomology class through the spark presentation

of Deligne cohomology. Applying the product formula above, it is easy to see

that the intersection of two subvarieties represents the product of their Deligne

classes if they intersect properly. In particular, when X is algebraic, we have

a direct way to construct the cycle map CH∗(X)→ H2∗
D (X,Z(∗)).

A theory of characteristic classes. Cheeger and Simons [CS] con-

structed Chern classes in differential characters for complex vector bundles

with connection which refined the usual Chern classes. Two equivalent theo-

ries on characteristic classes in secondary invariants were developed by Harvey-

Lawson [HL1] and Brylinski-McLaughlin [BrM]. For holomorphic vector bun-

dles over a complex manifold, we show a construction for Chern classes in

Deligne cohomology via Cheeger-Simons theory.

Denote by Vk(X) the set of isomorphism classes of holomorphic vector

bundles of rank k on X, and by V(X) =
∐

k≥0 Vk(X) the additive monoid

8



under Whitney sum.

Theorem. On any complex manifold there is a natural transformation of func-

tors

d̂ : V(X)→
⊕
j

H2j
D (X,Z(j))

with the property that

1. d̂ : V1(X)→ 1 +H2
D(X,Z(1)) is an isomorphism,

2. For any short exact sequence of holomorphic vector bundles 0 → E ′ →

E → E ′′ → 0 one has d̂(E) = d̂(E ′) · d̂(E ′′),

3. under the natural map κ : H2j
D (X,Z(j)) → H2j(X,Z), κ ◦ d̂ = c (the

total integral Chern class).

The kth Chern character d̂chk(E) for a holomorphic vector bundle E can

be defined in rational Deligne cohomology in the same way.

In [Z], Zucker indicated that the splitting principle works well in defining

Chern classes in Deligne cohomology. In contrast to Zucker’s method, our

method is constructive since it is possible to explicitly construct representatives

of Cheeger-Simons Chern classes via methods of [HL1] or [BrM].

Applications. Two interesting applications follow our construction of

Chern classes in Deligne cohomology. The first one is on the Bott vanishing

theorem. In 1969, Bott [Bo] constructed a family of connections on the normal

bundle of any smooth foliation of a manifold and established the Bott vanishing

theorem which says the characteristic classes of the normal bundle are trivial

in all sufficiently high degrees. In §7.1, we prove an analogue of the Bott
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vanishing theorem for Chern classes of the normal bundle of a holomorphic

foliation.

Theorem. Let N be a holomorphic bundle of rank q on a complex manifold

X. If N is (isomorphic to) the normal bundle of a holomorphic foliation of

X, then for every polynomial P of pure degree k > 2q, the associated Chern

class in Deligne cohomology satisfies

P (d̂1(N), ..., d̂q(N)) ∈ Im[H2k−1(X,C×)→ H2k
D (X,Z(k))].

The second one is on Nadel invariants. In 1997, Nadel [N] introduced inter-

esting relative invariants for holomorphic vector bundles. Explicitly, for two

holomorphic vector bundles E and F over a complex manifold X which are C∞

isomorphic, Nadel defined invariants E k(E,F ) ∈ H2k−1(X,O)/H2k−1(X,Z).

He also conjectured that these invariants should coincide with a component

of the Abel-Jacobi image of k!(chk(E) − chk(F )) ∈ CHk
hom(X) when the

setting is algebraic. In §7.2, we construct Nadel-type invariants Ê k(E,F )

in intermediate Jacobians. Moreover, Ê k(E,F ) is represented by a smooth

2k − 1-form whose (0, 2k − 1) component represents Nadel class E k(E,F ) ∈

H2k−1(X,O)/H2k−1(X,Z). In particular, this gives a proof of Nadel’s conjec-

ture in a more general context.

Theorem. E and F are holomorphic vector bundles over complex manifold

X. If they are isomorphic as C∞ complex vector bundles, define

Ê k(E,F ) ≡ k!(d̂chk(E)− d̂chk(F )) = [πk(k

∫ 1

0

tr(η ∧ (Ωt)
k−1)dt)] ∈ J k.

10



The kth Nadel invariant E k(E,F ) is the image of Ê k(E,F ) under the projec-

tion π : J k → H2k−1(X,O)/H2k−1(X,Z). In particular, Nadel’s conjecture is

true.

Massey higher products. Massey products were introduced by Massey

[M1] in 1958 as higher order cohomology operations, which generalize the

cup product in cohomology theory. For example, the Massey triple product

M(α, β, γ) of three cohomology classes α, β and γ is defined up to some inde-

terminacy when both the products αβ and βγ vanish. In 1968, Massey gave

a first geometric interpretation of higher products. He calculated the triple

product in the cohomology of a space associated to the Borromean rings and

showed that the Borromean rings can not be unlinked. A graph of this example

can be found in [GM]. In their famous paper [DGMS], Deligne, Griffiths, Mor-

gan and Sullivan proved that all Massey higher products are trivial in the de

Rham cohomology of Kähler manifolds. In an elegant paper [FG], Fernández

and Gray showed that the Iwasawa manifold I(3) has no Kähler structure by

calculating a nontrivial Massey triple product in the de Rham cohomology. In

§3.5, we establish the Massey higher products in secondary geometric invari-

ants via spark theory. Nontrivial examples are also given. Moreover, in §5.2,

we give a new construction of Massey products in analytic Deligne cohomology

( c.f. Deninger [De] ).

Organization of the thesis. This thesis consists of eight chapters. In §2,

we study homological algebra which plays a big role in spark theory. We study

secondary geometric invariants over the smooth category in §3. In particular,

we focus on the smooth hypersparks and introduce a product formula for

11



smooth hyperspark classes. Then we show an explicit isomorphism between the

ring of smooth hyperspark classes and smooth Deligne cohomology. In §4, we

study d̄-spark theory and the ring functor Ĥ∗(•, p) of complex manifolds which

is a natural extension of analytic Deligne cohomology. In §5, we represent

Deligne cohomology classes by d̄-sparks and give an explicit product formula

for Deligne classes. In §6, we show a Chern-Weil-type construction of Chern

classes in Deligne cohomology for holomorphic vector bundles over complex

manifolds. In §7, we give two applications of our theory. First, we establish a

version of the Bott vanishing theorem for holomorphic foliations. Second, we

define generalized Nadel invariants and give a short proof of Nadel’s conjecture.

Massey products of secondary geometric invariants are studied in §2.5, §3.5

and §5.2. In the §8, we study the product on hypercohomology, which helps

us to prove Theorems 3.4.7 and 5.1.11. You may find a short introduction at

the beginning of each chapter.

This thesis has been divided into three papers [H1], [H2] and [H3]. An

alternative order to read this thesis may be the following.

§2.3 // §4 // §5.1 //

��

§5.3, 6, 7

§2.1, 2.2, 2.4 //

��

OO

§3.1–3.4

��

OO

§2.5 // §3.5 // §5.2

The rows 1, 2 and 3 are corresponding to [H2], [H1] and [H3] respectively.

12



Chapter 2

Basic Algebra

Homological algebra plays a big role in spark theory just as it does in the the-

ory of algebraic topology. In the first part of this chapter, we summarize the

homological apparatus invented by Harvey and Lawson to study secondary ge-

ometric invariants of manifolds. Explicitly, in §2.1, we introduce the concepts

of a spark complex and its associated group of spark classes. The basic 3× 3

grid of short exact sequences associated the group of spark classes, as well as

other properties, is established. In §2.2, we define quasi-isomorphism between

two spark complexes, which induces an isomorphism between the groups of

spark classes associated to these spark complexes. It turns out that there are

various examples of spark complex appeared naturally in geometry, topology

and physics, which will be shown in the next chapter. The generalized spark

complex, which will play a key role in §4, is introduced in §2.3. The read-

ers may skip §2.3 at the first time and read it right before reading §4. In

the second part of this chapter, we refine our algebraic model and study the

spark complex of differential graded algebras. In particular, we focus the ring

structure on the group of spark classes. In §2.4, we show explicit product

13



formulas of two spark classes. Moreover, we study Massey higher products in

§2.5, which is the main contribution of the author in this chapter.

2.1 Homological Spark Complexes

We introduce the definitions of a homological spark complex and its associated

group of homological spark classes. Note that all cochain complexes in this

thesis are bounded cochain complexes of abelian groups.

Definition 2.1.1. A homological spark complex, or spark complex for

short, is a triple of cochain complexes (F ∗, E∗, I∗) together with morphisms

given by inclusions

I∗ ↪→ F ∗ ←↩ E∗

such that

1. Ik ∩ Ek = 0 for k > 0, F k = Ek = Ik = 0 for k < 0,

2. H∗(E∗) ∼= H∗(F ∗).

Definition 2.1.2. In a given spark complex (F ∗, E∗, I∗), a spark of degree k

is an element a ∈ F k which satisfies the spark equation

da = e− r

for some e ∈ Ek+1 and r ∈ Ik+1.

Two sparks a, a′ of degree k are equivalent if

a− a′ = db+ s

14



for some b ∈ F k−1 and s ∈ Ik.

The set of equivalence classes is called the group of spark classes of

degree k and denoted by Ĥk(F ∗, E∗, I∗), or Ĥk for short. Let [a] denote the

equivalence class containing the spark a.

Lemma 2.1.3. Each spark a ∈ F k uniquely determines e ∈ Ek+1 and r ∈

Ik+1. Moreover, de = dr = 0.

Proof. Uniqueness of e and r is from the fact Ik ∩Ek = 0. Taking differential

on the spark equation, we get de− dr = 0 which implies de = dr = 0.

This is the reason that we represent a spark by only a single a ∈ F k.

We may denote a spark by a triple (a, e, r) or a double (a, r) in the future,

especially in the case of generalized sparks in §2.3.

We now show the fundamental exact sequences associated to a spark com-

plex (F ∗, E∗, I∗). Let Zk
I (E

∗) denote the space of cycles e ∈ Ek which are

F ∗-homologous to some r ∈ Ik, i.e. e− r is exact in F k.

Lemma 2.1.4. There exist well-defined surjective homomorphisms

δ1 : Ĥk → Zk+1
I (E∗) and δ2 : Ĥk → Hk+1(I∗)

given by

δ1([a]) = e and δ2([a]) = [r]

where da = e− r.

Proof. If a′ is equivalent to a, i.e. a−a′ = db+s, then we have da′ = e−(r+ds).

So it is easy to see these maps are well-defined.
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Consider e ∈ Zk+1
I (E∗), by definition, there exists r ∈ Ik+1 such that e−r is

exact in F k+1, i.e. ∃a ∈ F k with da = e−r. So δ1([a]) = e. For [r] ∈ Hk+1(I∗),

r also represents a class in Hk+1(F ∗) ∼= Hk+1(E∗). Choosing a representative

e ∈ Ek+1 of this class, we have e− r = da for some a ∈ F k, hence δ2([a]) = [r].

Both δ1 and δ2 are surjective.

Let Ĥk
E denote the space of spark classes that can be represented by a

spark a ∈ Ek. Let us also define

Hk
I (F

∗) ≡ Image{Hk(I∗)→ Hk(F ∗)} ≡ Ker{Hk(F ∗)→ Hk(F ∗/I∗)},

Hk+1(F ∗, I∗) ≡ Ker{Hk+1(I∗)→ Hk+1(F ∗)} ≡ Image{Hk(F ∗/I∗)→ Hk+1(I∗)}.

Proposition 2.1.5. Associated to any spark complex (F ∗, E∗, I∗) is the com-

mutative diagram

0

��

0

��

0

��
0 // H

k(F ∗)

Hk
I (F ∗)

//

��

Ĥk
E

//

��

dEk //

��

0

0 // Hk(F ∗/I∗) //

��

Ĥk
δ1 //

δ2
��

Zk+1
I (E∗) //

��

0

0 // Hk+1(F ∗, I∗) //

��

Hk+1(I∗) //

��

Hk+1
I (F ∗) //

��

0

0 0 0
whose rows and columns are exact.

Proof. To show the exactness of the middle row and column, by Lemma 2.1.4,
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it suffices to show ker δ1 = Hk(F ∗/I∗) and ker δ2 = Ĥk
E. First, by the defini-

tion,

Hk(F ∗/I∗) ≡ {a ∈ F k | da ∈ Ik+1}/{Ik + dF k−1}

= {[a] | da = 0− r for some r ∈ Ik+1} = ker δ1.

Second, it is trivial that Ĥk
E ⊂ ker δ2. If [a] ∈ ker δ2, then da = e − r with

[r] = 0 ∈ Hk+1(I∗). So ∃s ∈ Ik with ds = r, and d(a + s) = e − 0, i.e.

[a+s]=[a]. By Lemma 2.2.2 in the following section, we can choose ã ∈ Ek

such that [ã] = [a+ s] = [a] ∈ Ĥk
E. It is straightforward to show the exactness

of other rows and columns.

2.2 Quasi-isomorphism of Spark Complexes

Definition 2.2.1. Two spark complexes (F ∗, E∗, I∗) and (F̄ ∗, Ē∗, Ī∗) are quasi-

isomorphic if there exists a commutative diagram of morphisms

I∗
� � i //

� _

i
��

F ∗
� _

i
��

E∗? _ioo

Ī∗
� � i // F̄ ∗ Ē∗? _ioo

inducing an isomorphism

i∗ : H∗(I∗)
∼=−→ H∗(Ī∗).

Lemma 2.2.2. Suppose (F ∗, d) is a subcomplex of (F̄ ∗, d). Then the following

conditions are equivalent:

1. H∗(F ∗) ∼= H∗(F̄ ∗),
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2. Given g ∈ F p+1 and a solution α ∈ F̄ p to the equation dα = g, there

exists γ ∈ F̄ p−1 with f = α+ dγ ∈ F p and df = g,

3. H∗(F̄ ∗/F ∗) = 0.

Proof. (1) ⇒ (2). Since H∗(F ∗) → H∗(F̄ ∗) is injective, g is also exact in F ∗,

i.e. ∃h ∈ F p with dh = g. Thus, α−h is closed in F̄ ∗. SinceH∗(F ∗)→ H∗(F̄ ∗)

is surjective, ∃γ ∈ F̄ p−1 such that α − h + dγ ∈ F p. Let f = α + dγ ∈ F p,

then df = g.

(2)⇒ (3). If [α] ∈ F̄ p/F p is closed, then dα = g ∈ F p+1. Hence ∃γ ∈ F̄ p−1

with f = α+ dγ ∈ F p, i.e. [a] = [−dγ] ∈ F̄ p/F p is exact.

(3)⇒ (1) is trivial.

Proposition 2.2.3. A quasi-isomorphism of spark complexes (F ∗, E∗, I∗) and

(F̄ ∗, Ē∗, Ī∗) induces an isomorphism

Ĥk(F ∗, E∗, I∗) ∼= Ĥk(F̄ ∗, Ē∗, Ī∗)

of the associated groups of spark classes. Moreover, it induces an isomorphism

of the 3× 3 grids associated to the two complexes.

Proof. Assume (i, id, i) : (F ∗, E∗, I∗) −→ (F̄ ∗, Ē∗, Ī∗) is a quasi-isomorphism

between these two spark complexes, it is plain to see it induces a homomor-

phism

i∗ : Ĥk(F ∗, E∗, I∗) −→ Ĥk(F̄ ∗, Ē∗, Ī∗).

To see it is surjective, let ā ∈ F̄ k is a spark with dā = e − r̄ where e ∈

Ēk+1 = Ek+1 and r̄ ∈ Īk+1. Since dr̄ = 0 and Hk+1(I∗) = Hk+1(Ī∗), there
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exists s̄ ∈ Īk such that r = r̄ + ds̄ ∈ Ik+1. Therefore, d(ā − s̄) = e − r. Now

e − r ∈ F k+1 and H∗(F ∗) ∼= H∗(F̄ ∗), the lemma above implies there exists

b̄ ∈ F k−1 with a = ā− s̄+ db̄ ∈ F k and hence da = e− r.

Suppose that a ∈ F k is an (F ∗, E∗, I∗)-spark which is equivalent to zero as

an (F̄ ∗, Ē∗, Ī∗)-spark, i.e. da = e− r with e ∈ Ek+1, r ∈ Ik+1 and a = db̄ + s̄

with b̄ ∈ F̄ k−1, s̄ ∈ Īk. Then e−r = da = ds̄ which implies e = 0 and ds̄ = −r.

Applying the lemma to I∗ ⊂ Ī∗, there exist t̄ ∈ Īk−1, s ∈ Ik with s = s̄ + dt̄.

Therefore, a − s = d(b̄ − t̄). Since Hk(F ∗) ∼= Hk(F̄ ∗), there exists b ∈ F k−1

with a− s = db. That is, a is equivalent to zero as an (F ∗, E∗, I∗)-spark also,

and the map is injective.

It is routine to verify that the associated 3× 3 grids are isomorphic.

2.3 Generalized Spark Complexes

We define a generalized spark complex and its associated group of spark

classes, which are generalizations of a spark complex and its associated group

of spark classes. When we mention a spark complex in this section, Chapter

4 and after, we mean this generalized spark complex defined below.

Definition 2.3.1. A generalized homological spark complex, or spark

complex for short, is a triple of cochain complexes (F ∗, E∗, I∗) together with

morphisms

I∗
Ψ→ F ∗ ←↩ E∗

such that

1. Ik ∩ Ek = 0 for k > 0, F k = Ek = Ik = 0 for k < 0,
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2. H∗(E∗) ∼= H∗(F ∗),

3. Ψ|I0 : I0 → F 0 is injective.

Definition 2.3.2. In a given spark complex (F ∗, E∗, I∗), a spark of degree k

is a pair (a, r) ∈ F k ⊕ Ik+1 which satisfies the spark equations

1. da = e−Ψ(r) for some e ∈ Ek+1,

2. dr = 0.

Two sparks (a, r), (a′, r′) of degree k are equivalent if there exists a pair

(b, s) ∈ F k−1 ⊕ Ik such that

1. a− a′ = db+ Ψ(s),

2. r − r′ = −ds.

The set of equivalence classes is called the group of spark classes of

degree k and denoted by Ĥk(F ∗, E∗, I∗), or Ĥk for short. Let [(a, r)] denote

the equivalence class containing the spark (a, r).

In the case of spark complexes in §2.1, as Harvey and Lawson introduced

in [HL2], we require I∗ → F ∗ to be injective. Therefore, e and r are uniquely

determined by a. We usually denote a spark by a single element a for short.

The generalized spark complex was introduced in [HL3], where Ψ : I∗ → F ∗

was not required to be injective. Hence, r is not determined uniquely by a

and we have to remember r for a spark and denote a spark by (a, r).

We now derive the fundamental exact sequences associated to a spark com-

plex (F ∗, E∗, I∗). Let Zk(E∗) = {e ∈ Ek : de = 0} and set

Zk
I (E

∗) ≡ {e ∈ Zk(E∗) : [e] = Ψ∗([r]) for some [r] ∈ Hk(I∗)}
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where [e] denotes the class of e in Hk(E∗) ∼= Hk(F ∗).

Lemma 2.3.3. There exist well-defined surjective homomorphisms

δ1 : Ĥk → Zk+1
I (E∗) and δ2 : Ĥk → Hk+1(I∗)

given by

δ1([(a, r)]) = e and δ2([(a, r)]) = [r]

where da = e−Ψ(r).

Proof. If (a′, r′) is equivalent to (a, r), i.e. a−a′ = db+Ψ(s) and r−r′ = −ds,

then we have da′ = e − Ψ(r + ds). So it is easy to see these maps are well-

defined.

Consider e ∈ Zk+1
I (E∗), by definition, there exists r ∈ Ik+1 such that

e−Ψ(r) is exact in F k+1, i.e. ∃a ∈ F k with da = e−Ψ(r). So δ1([(a, r)]) = e.

For [r] ∈ Hk+1(I∗), Ψ(r) also represents a class in Hk+1(F ∗) ∼= Hk+1(E∗).

Choosing a representative e ∈ Ek+1 of this class, we have e − Ψ(r) = da for

some a ∈ F k, hence δ2([(a, r)]) = [r]. Both δ1 and δ2 are surjective.

Lemma 2.3.4. Define Ĥk
E ≡ ker δ2, then Ĥk

E
∼= Ek/Zk

I (E
∗).

Proof. Let α ∈ Ĥk
E be represented by (a, r) with spark equations da = e−Ψ(r)

and dr = 0. Then we have [r] = δ2(α) = 0, i.e. r = −ds for some s ∈ Ik. So

d(a−Ψ(s)) = e, by Lemma 2.2.2 and the fact H∗(F ∗) ∼= H∗(E∗), there exists

b ∈ F k−1 such that a′ ≡ a − Ψ(s) + db ∈ Ek. Hence α can be represented by

spark (a′, 0) with a′ ∈ Ek. If (a′, 0) is equivalent to 0, then a′ = db′ +Ψ(s′) for

some b′ ∈ F k−1 and s′ ∈ Ik with ds′ = 0, i.e. a′ ∈ Zk
I (E

∗).
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Remark 2.3.5. From last proof, it is easy to see that Ĥk
E is the space of spark

classes that can be represented by sparks of type (a, 0) with a ∈ Ek.

Definition 2.3.6. Associated to any spark complex (F ∗, E∗, I∗) is the cone

complex (G∗, D) defined by setting

Gk ≡ F k ⊕ Ik+1 with differential D(a, r) = (da+ Ψ(r),−dr).

Consider the homomorphism Ψ∗ : Hk(I∗)→ Hk(F ∗) = Hk(E∗), and define

Hk
I (E

∗) ≡ Image{Ψ∗} and Kerk(I∗) ≡ ker{Ψ∗}.

Proposition 2.3.7. [HL3] There are two fundamental short exact sequences

1. 0 −→ Hk(G∗) −→ Ĥk δ1−→ Zk+1
I (E∗) −→ 0;

2. 0 −→ Ĥk
E −→ Ĥk δ2−→ Hk+1(I∗) −→ 0.

Moreover, associated to any spark complex (F ∗, E∗, I∗) is the commutative

diagram

0

��

0

��

0

��
0 // H

k(E∗)

Hk
I (E∗)

//

��

Ĥk
E

//

��

dEk //

��

0

0 // Hk(G∗) //

��

Ĥk
δ1 //

δ2
��

Zk+1
I (E∗) //

��

0

0 // Kerk+1(I∗) //

��

Hk+1(I∗) //

��

Hk+1
I (E∗) //

��

0

0 0 0
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whose rows and columns are exact.

Proof. The proof is similar to the proof of Proposition 2.1.5. See [HL3] for

details.

We can also talk about quasi-isomorphism between two generalized spark

complexes.

Definition 2.3.8. Two spark complexes (F ∗, E∗, I∗) and (F̄ ∗, Ē∗, Ī∗) are quasi-

isomorphic if there exists a commutative diagram of morphisms

I∗
Ψ //

ψ
��

F ∗
� _

i
��

E∗? _ioo

Ī∗
Ψ̄ // F̄ ∗ Ē∗? _ioo

inducing an isomorphism

ψ∗ : H∗(I∗)
∼=−→ H∗(Ī∗).

Proposition 2.3.9. [HL3] A quasi-isomorphism of spark complexes (F ∗, E∗, I∗)

and (F̄ ∗, Ē∗, Ī∗) induces an isomorphism

Ĥ∗(F ∗, E∗, I∗) ∼= Ĥ∗(F̄ ∗, Ē∗, Ī∗)

of the associated groups of spark classes. Moreover, it induces an isomorphism

of the 3× 3 grids associated to these two complexes.

Proof. We omit the proof which is similar to the proof of Proposition 2.2.3.

23



2.4 Ring Structure

In this section, we define the ring structure on the group of spark classes Ĥ∗.

For simplicity, we first assume all cochain complexes in a spark complex are

differential graded algebras.

Definition 2.4.1. By a differential graded algebra, or DGA for short,

we mean a cochain complex F ∗ with a graded commutative product which is

compatible with the differential (the Leibniz rule), i.e.

1. a · b = (−1)klb · a,

2. d(a · b) = da · b+ (−1)ka · db.

where a ∈ F k and b ∈ F l.

If a cochain complex F ∗ is a DGA, then there is an induced ring structure

on the cohomology group H∗(F ∗) and the product [a] · [b] can be represented

by the element a · b. ( We may omit · and write ab for the product in the

future. )

A well-known example for DGA is the de Rham complex associated to a

smooth manifold with wedge product.

Definition 2.4.2. We say a spark complex (F ∗, E∗, I∗) is a spark complex

of differential graded algebras, if F ∗ is a differential graded algebra, and

E∗, I∗ are differential graded subalgebras of F ∗.

We show in the following theorem that the product in F ∗ induces a product

in Ĥ∗.
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Theorem 2.4.3. If (F ∗, E∗, I∗) is a spark complex of differential graded alge-

bras, then there is an induced ring structure on Ĥ∗ with the formula

[a] · [b] = [af + (−1)k+1rb] = [as+ (−1)k+1eb] ∈ Ĥk+l+1

where [a] ∈ Ĥk with da = e− r and [b] ∈ Ĥl with db = f − s.

Proof. It is easy to verify

d(af + (−1)k+1rb) = d(as+ (−1)k+1eb) = ef − rs,

(af + (−1)k+1rb)− (as+ (−1)k+1eb) = (−1)kd(ab).

So af+(−1)k+1rb and as+(−1)k+1eb are sparks and represent the same spark

class.

To show that the product is independent of the choices of representatives,

we assume that the spark a′ ∈ F k represents the same spark class with a and

da′ = e′ − r′. Then ∃c ∈ F k−1 and t ∈ Ik with a− a′ = dc+ t. We have

(af + (−1)k+1rb)− (a′f + (−1)k+1r′b) = d(cf + (−1)k(tb)) + ts.

By the same calculation we can show the product is also independent of the

choices of representatives of the second factor.

Corollary 2.4.4. Ĥ∗ is a graded commutative ring, for α ∈ Ĥk and β ∈ Ĥl,

we have

α · β = (−1)(k+1)(l+1)β · α.
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Proof.

[a] · [b] = [af + (−1)k+1rb] = [(−1)k(l+1)fa+ (−1)k+1+(k+1)lbr]

= (−1)(k+1)(l+1)[br + (−1)l+1fa] = [b] · [a].

Corollary 2.4.5. From the formula

d(af + (−1)k+1rb) = ef − rs,

it is easy to see the group homomorphisms

δ1 : Ĥ∗ → Z∗+1
I (E∗) and δ2 : Ĥ∗ → H∗+1(I∗)

are ring homomorphisms.

It is reasonable to shift the index of our notation Ĥ∗ from the last two

corollaries. However, we keep our notation for the consistency with historical

papers [CS] [HL2].

Corollary 2.4.6. A quasi-isomorphism of differential graded spark complexes

(F ∗, E∗, I∗) and (F̄ ∗, Ē∗, Ī∗) induces an ring isomorphism

Ĥ∗(F ∗, E∗, I∗) ∼= Ĥ∗(F̄ ∗, Ē∗, Ī∗).

Remark 2.4.7. In our future examples, the product on F ∗ may not be well-

defined in general. However, if for any two spark classes in Ĥ∗, there always
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exist good representatives such that their products are well-defined, then we

can define the ring structure on Ĥ∗ as well. The case we will meet is similar

to the case when cap product of singular homology is defined: the intersection

of two cycles may not be well-defined, but we can always deform one a little

bit such that they meet transversally and then the intersection is well-defined.

2.5 Massey Products

If F ∗ is a DGA, then H∗(F ∗) is a graded ring with the induced product.

Moreover, we can define higher operations on H∗(F ∗).

Definition 2.5.1. Assume α ∈ H i(F ∗), β ∈ Hj(F ∗) and γ ∈ Hk(F ∗) with

αβ = 0 ∈ H i+j(F ∗) and βγ = 0 ∈ Hj+k(F ∗). Choose representatives a ∈ α,

b ∈ β and c ∈ γ, then there exist A ∈ F i+j−1 and B ∈ F j+k−1 such that

ab = dA and bc = dB. We define the Massey triple product

M(α, β, γ) , [aB + (−1)i+1Ac] ∈ H i+j+k−1/(αHj+k−1 +H i+j−1γ).

Proposition 2.5.2. The Massey triple product is well-defined.

Proof. First, d(aB + (−1)i+1Ac) = (−1)iadB + (−1)i+1dAc = (−1)iabc +

(−1)i+1abc = 0, so aB + (−1)i+1Ac ∈ F i+j+k−1 is a cocycle and represents a

class in H i+j+k−1(F ∗).

It is easy to verify that the class [aB+(−1)i+1Ac] ∈ H i+j+k−1(F ∗) is inde-

pendent of choices of representatives a, b and c. Considering different choices

of A and B, the Massey triple product is well-defined in H i+j+k−1/(αHj+k−1 +

H i+j−1γ).
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The Massey triple product in the cohomology of a DGA is a special case

of Massey higher products in the cohomology of twisted complexes which we

refer to [K] [De] for interested readers.

Example 2.5.3. Let X be a smooth manifold and E∗(X) denote the de Rham

complex on X. E∗(X) is a graded differential algebra. Hence we define the

Massey triple product in de Rham cohomology H∗
DR(X).

A famous result in [DGMS] says E∗(X) is formal when X is Kähler. In

particular, all Massey higher products in H∗
DR(X) are trivial.

Let (F ∗, E∗, I∗) be a spark complex of differential graded algebras. We

define the Massey triple product in the ring of spark classes Ĥ∗ as follows.

Let α ∈ Ĥi, β ∈ Ĥj and γ ∈ Ĥk be three spark classes. Choose represen-

tatives a ∈ α, b ∈ β and c ∈ γ with the spark equations

da = e− r, db = f − s, dc = g − t.

Assume αβ ∈ Ĥi+j+1
E ⊂ Ĥi+j+1 and βγ ∈ Ĥj+k+1

E ⊂ Ĥj+k+1, i.e.

αβ = [a][b] = [af + (−1)i+1rb] = [φ], βγ = [b][c] = [bg + (−1)j+1sc] = [ψ]

for some φ ∈ Ei+j+1 and ψ ∈ Ej+k+1.

Then there exist A ∈ F i+j, B ∈ F j+k, X ∈ I i+j+1 and Y ∈ Ij+k+1 such

that

af + (−1)i+1rb = dA+X + φ, bg + (−1)j+1sc = dB + Y + ψ.
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At the same time,

d(af + (−1)i+1rb) = d(dA+X + φ)

⇒ ef − rs = dX + dφ,

hence

ef = dφ, −rs = dX.

Similarly, we have

fg = dψ, −st = dY.

Consider the element aψ + (−1)irB + (−1)i+1Ag + (−1)jXc ∈ F i+j+k+1.

d(aψ) = daψ + (−1)iadψ

= eψ − rψ + (−1)iafg

d((−1)irB) = (−1)i+i+1rdB

= −r(bg + (−1)j+1sc− Y − ψ)

= −rbg + (−1)jrsc+ rY + rψ

d((−1)i+1Ag) = (−1)i+1dAg

= (−1)i+1(af + (−1)i+1rb−X − φ)g

= (−1)i+1afg + rbg + (−1)iXg + (−1)iφg
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d((−1)jXc) = (−1)j(dXc+ (−1)i+j+1Xdc)

= (−1)j(−rsc+ (−1)i+j+1X(g − t))

= (−1)j+1rsc+ (−1)i+1Xg + (−1)iXt

Finally, we have

d(aψ + (−1)irB + (−1)i+1Ag + (−1)jXc) = eψ + (−1)iφg + rY + (−1)iXt,

where eψ + (−1)iφg ∈ Ei+j+k+2 and rY + (−1)iXt ∈ I i+j+k+2.

So aψ+(−1)irB+(−1)i+1Ag+(−1)jXc ∈ F i+j+k+1 represents a spark class.

We define the Massey triple product of α, β and γ, denoted byM(α, β, γ), by

this spark class.

In fact, the Massey triple product is well-defined in Ĥi+j+k+1 up to the

subgroup αĤj+k + Ĥi+jγ.

First, it is routine to verify that the triple product is independent of the

choices of representatives a, b and c. Moreover, we may consider the different

choices of A, B, X, Y , φ and ψ. Explicitly, if we have af + (−1)i+1rb =

dA+X + φ = dA′ +X ′ + φ′, then

aψ+(−1)irB+(−1)i+1Ag+(−1)jXc−(aψ+(−1)irB+(−1)i+1A′g+(−1)jX ′c)

= (−1)j(X −X ′)c+ (−1)i+1(A− A′)g.

Notice that d(A−A′) = −(φ−φ′)− (X−X ′), hence A−A′ represents a spark
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class. Moreover

[A− A′][c] = [(A− A′)g + (−1)i+j+1(X −X ′)c],

hence the difference (−1)j(X−X ′)c+(−1)i+1(A−A′)g ∈ (−1)i+1[A−A′][c] ∈

Ĥi+jγ.

Similarly, if bg + (−1)j+1sc = dB + Y + ψ = dB′ + Y ′ + ψ′, then

aψ+(−1)irB+(−1)i+1Ag+(−1)jXc−(aψ′+(−1)irB′+(−1)i+1Ag+(−1)jXc)

= a(ψ − ψ′) + (−1)ir(B −B′).

B−B′ is a spark satisfying the spark equation d(B−B′) = −(ψ−ψ′)−(Y −Y ′).

The product

[a][B−B′] = [−a(ψ−ψ′)+(−1)i+1r(B−B′)] = [−(a(ψ−ψ′)+(−1)ir(B−B′))],

Therefore,

a(ψ − ψ′) + (−1)ir(B −B′) ∈ −[a][B −B′] ∈ αĤj+k.

Theorem 2.5.4. Let (F ∗, E∗, I∗) be a spark complex of differential graded

algebras and Ĥ∗ be the ring of associated spark classes. If three classes α ∈ Ĥi,

β ∈ Ĥj and γ ∈ Ĥk satisfy that αβ ∈ Ĥi+j+1
E ⊂ Ĥi+j+1 and βγ ∈ Ĥj+k+1

E ⊂

Ĥj+k+1, then the Massey triple product of α, β and γ, denoted byM(α, β, γ),

is well-defined in Ĥi+j+k+1/(αĤj+k + Ĥi+jγ).
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The Massey triple product is well-defined in H∗(I∗). Also, it is easy to see

that we can define the Massey triple product in Z∗I (E
∗) formally. Explicitly,

let B∗(E∗) ⊂ Z∗I (E
∗) be groups of boundaries, then

M(e, f, g) ≡ e·d−1(fg)+(−1)i+1d−1(ef)·g ∈ Zi+j+k−1
I (E∗)/(eZj+k−1

I +Zi+j−1
I g)

is well-defined for e ∈ Zi
I(E

∗), f ∈ Zj
I (E

∗) and g ∈ Zk
I (E

∗) provided that

ef ∈ Bi+j(E∗) and fg ∈ Bj+k(E∗). By d−1(fg) we mean any element whose

boundary is fg.

Corollary 2.5.5. The Massey triple product is compatible with the ring ho-

momorphisms

δ1 : Ĥ∗ → Z∗+1
I (E∗) and δ2 : Ĥ∗ → H∗+1(I∗).

Proof. In the proof of the last theorem, we see αβ ∈ Ĥi+j+1
E and βγ ∈ Ĥj+k+1

E

imply

ef = dφ, fg = dψ and − rs = dX, −rt = dY.

SoM(e, f, g) andM([r], [s], [t]) are well-defined, and

M(e, f, g) = eψ + (−1)iφg,

M([r], [s], [t]) = [−(rY + (−1)iXt)].

From the formula

d(aψ + (−1)irB + (−1)i+1Ag + (−1)jXc) = eψ + (−1)iφg + rY + (−1)iXt,
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we have

δ1([aψ + (−1)irB + (−1)i+1Ag + (−1)jXc]) = eψ + (−1)iφg,

δ2([aψ + (−1)irB + (−1)i+1Ag + (−1)jXc]) = [−(rY + (−1)iXt)].

This shows the compatibility of the Massey triple product with ring homo-

morphisms δ1 and δ2.

We can construct the Massey quadruple product or even higher prod-

ucts following the same idea. Here we sketch a construction of the quadruple

product.

First recall the Massey quadruple product in the cohomology ring H∗(F ∗)

of a differential graded algebra F ∗. Assume αi ∈ Hki(F ∗) (i = 1, 2, 3, 4) satisfy

that the cup products αiαi+1 = 0 for i = 1, 2, 3 and that the Massey triple

productsM(αi, αi+1, αi+2) for i = 1, 2 vanish simultaneously (see [O]). Then

we can define the Massey quadruple productM(α1, α2, α3, α4). It follows the

vanishing condition above that ∃ representatives ai ∈ F ki for αi and a12, a23,

a34, a13, a24 ∈ F ∗ such that

da12 = a1a2, da23 = a2a3, da34 = a3a4

and

da13 = a1a23 + (−1)k1+1a12a3, da24 = a2a34 + (−1)k2+1a23a4.
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Then we defineM(α1, α2, α3, α4) ∈ Hk−2(F ∗) as the class represented by

a1a24 + (−1)k1+1a12a34 + (−1)k1+k2a13a4 ∈ F k−2

up to some indeterminacy, where k = k1 + k2 + k3 + k4.

Now we show a construction of the Massey quadruple product in Ĥ∗ as-

sociated to a spark complex (F ∗, E∗, I∗). Let αi ∈ Ĥki (i = 1, 2, 3, 4) be four

spark classes satisfying that the products αiαi+1 ∈ Ĥ∗
E for i = 1, 2, 3 and that

M(αi, αi+1, αi+2) for i = 1, 2 are well-defined and in Ĥ∗
E. Then there exist

ai ∈ F ki representing αi with spark equation dai = ei − ri and Ai,j ∈ F ∗,

φi,j ∈ E∗, Xi,j ∈ I∗ (i, j) ∈ {(1, 2), (2, 3), (3, 4), (1, 3), (2, 4)} satisfying the

following equations

aiei+1 + (−1)ki+1riai+1 = φi,i+1 + dAi,i+1 +Xi,i+1, i = 1, 2, 3,

and

aiφi+1,i+2 + (−1)kiriAi+1,i+2 + (−1)ki+1Ai,i+1ei+2 + (−1)ki+1Xi,i+1ai+2

= φi,i+2 + dAi,i+2 +Xi,i+2, i = 1, 2.

We define the Massey quadruple productM(α1, α2, α3, α4) in Ĥk−2 (up to

some indeterminacy) represented by the spark

a1φ24+(−1)k1r1A24+(−1)k1+1A12φ34+(−1)k2+1X12A34+(−1)k1+k2+1A13e4+(−1)k3X13a4.
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By direct calculation, its differential equals

e1φ24+(−1)k1φ12φ34+(−1)k1+k2φ13e4+r1X24+(−1)k1+1X12X34+(−1)k1+k2X13r4.

It follows that the quadruple product is compatible with δ1 and δ2.

In §3.5, we shall study Massey higher products in secondary geometric

invariants. Moreover, a theory on the Massey products in Deligne cohomology

will be developed in §5.2.
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Chapter 3

Secondary Geometric Invariants: From the

Viewpoint of Spark Theory

In this chapter, we study secondary geometric invariants of smooth manifolds

from the viewpoint of Harvey-Lawson spark theory. In §3.1, we study sev-

eral examples of spark complex associated to a smooth manifold X and define

Harvey-Lawson spark characters Ĥ∗(X). In §3.2, we focus on the smooth

hyperspark complex and define the ring structure on Ĥ∗(X) via the smooth

hyperspark complex. This ring structure is shown to be equivalent to the

one introduced in [HLZ] via the de Rham-Federer spark complex. We study

explicit examples for low dimensional manifolds in §3.3. In particular, we

calculate the product of two spark characters of degree 0 on the unit circle.

In §3.4, we study smooth Deligne cohomology and show an explicit construc-

tion of the isomorphism between groups of spark classes and the (p, p) part of

smooth Deligne cohomology groups associated to a smooth manifold. More-

over, we show that this is an isomorphism of ring structures. Since Harvey

and Lawson [HL2] showed the ring isomorphism between Ĥ∗(X) and Cheeger-
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Simons differential characters, we conclude that spark characters, differential

characters and smooth Deligne cohomology ( (p, p) part ) are equivalent ring

functors over the category of smooth manifolds. In the last section, we study

Massey higher products in these secondary geometric invariants. We mainly

discuss (R/Z)-characters in this chapter, but all theorems are still true for

(C/Z)-characters. All spark complexes in this chapter are spark complex in

the sense of Definition 2.1.1.

3.1 Spark Characters

We show our main examples of homological spark complexes and define the

Harvey-Lawson spark characters associated to a smooth manifold.

Let X be a smooth manifold of dimension n. Let Ek denote the sheaf of

smooth differential k-forms on X, Dk the sheaf of currents of degree k on X.

Let Rk and IFk denote the sheaf of rectifiable currents of degree k and the

sheaf of integrally flat currents of degree k on X respectively. Note that

IFk(U) = {r + ds : r ∈ Rk(U) and s ∈ Rk−1(U)}

3.1.1 de Rham-Federer Sparks

Definition 3.1.1. The de Rham-Federer spark complex associated to a

smooth manifold X is obtained by taking

F k = D′k(X), Ek = Ek(X), Ik = IFk(X).
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Remark 3.1.2. The condition Hk(D′∗(X)) = Hk(E∗(X)) = Hk(X,R) is stan-

dard. For a proof of the fact Ek(X) ∩ IFk(X) = {0} for k > 0, we refer to

[HLZ, Lemma 1.3].

Definition 3.1.3. A de Rham-Federer spark of degree k is a current a ∈

D′k(X) with the spark equation

da = e− r

where e ∈ Ek+1(X) is smooth and r ∈ IFk+1(X) is integrally flat.

Two sparks a and a′ are equivalent if there exist b ∈ D′k−1(X) and s ∈

IFk(X) with

a− a′ = db+ s.

The equivalence class determined by a spark a will be denoted by [a] and

the group of de Rham-Federer spark classes will be denoted by Ĥk
spark(X).

Let Zk0 (X) denote the group of closed degree k forms onX with integral pe-

riods. Note that Hk(IF∗(X)) = Hk(X,Z). By Lemma 2.1.4 and Proposition

2.1.5, we have

Proposition 3.1.4. [HLZ] There exist well-defined surjective homomorphisms

δ1 : Ĥk(X)→ Zk+1
0 (X) and δ2 : Ĥk(X)→ Hk+1(X,Z)

given by

δ1([a]) = e and δ2([a]) = [r]

where da = e− r.
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Associated to the de Rham-Federer spark complex is the commutative dia-

gram

0

��

0

��

0

��
0 // Hk(X,R)

Hk
free(X,Z)

//

��

Ĥk
∞(X) //

��

dEk(X) //

��

0

0 // Hk(X,R/Z) //

��

Ĥk(X)
δ1 //

δ2
��

Zk+1
0 (X) //

��

0

0 // Hk+1
tor (X,Z) //

��

Hk+1(X,Z) //

��

Hk+1
free(X,Z) //

��

0

0 0 0

where Ĥk
∞(X) ∼= Ek(X)/Zk0 (X) denote the group of spark classes of degree k

which can be represented by smooth forms.

3.1.2 Hypersparks and Smooth Hypersparks

Suppose U = {Ui} is a good cover ofX (with each intersection UI contractible).

We have the Čech-Current bicomplex
⊕

p,q≥0C
p(U ,D′q). Now we are con-

cerned with the total complex of Čech-Current bicomplex
⊕

p+q=∗C
p(U ,D′q)

with total differential D = δ + (−1)pd.

Definition 3.1.5. By the hyperspark complex we mean the spark complex

defined as

(F ∗, E∗, I∗) = (
⊕
p+q=∗

Cp(U ,D′q), E∗(X),
⊕
p+q=∗

Cp(U , IF q)).

Remark 3.1.6. We should verify the triple of complexes above is a spark
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complex. There is a natural inclusion E∗(X) ↪→
⊕

p+q=∗C
p(U ,D′q), given by

E∗(X) ↪→ D′∗(X) ↪→ C0(U ,D′∗) ↪→
⊕
p+q=∗

Cp(U ,D′q).

For k > 0, Ek(X)∩
⊕

p+q=k C
p(U , IF q)) = Ek(X)∩C0(U , IFk)) = Ek(X)∩

IFk(X) = {0}.

And it is easy to see H∗(F ∗) = H∗(D′∗(X)) = H∗(X,R) = H∗(E∗), and

also H∗(I∗) = H∗(C∗(U ,Z)) = H∗(X,Z).

Definition 3.1.7. A hyperspark of degree k is an element

a ∈
⊕
p+q=k

Cp(U ,D′q)

with the spark equation

Da = e− r

where e ∈ Ek+1(X) ⊂ C0(U ,D′k+1) and r ∈
⊕

p+q=k+1C
p(U , IF q).

Two hypersparks a and a′ are said to be equivalent if there exist b ∈⊕
p+q=k−1C

p(U ,D′q) and s ∈
⊕

p+q=k C
p(U , IF q)) satisfying

a− a′ = Db+ s.

The equivalence class determined by a hyperspark a will be denoted by [a],

and the group of hyperspark classes will be denoted by Ĥk
hyper(X).

Proposition 3.1.8.

Ĥk
spark(X) ∼= Ĥk

hyper(X).
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Proof. It is easy to see that there is a natural inclusion from the de Rham-

Federer spark complex to the hyperspark complex which is a quasi-isomorphism.

We may consider the de Rham-Federer spark complex as a spark subcom-

plex of the hyperspark complex, now we introduce another spark subcomplex

of the hyperspark complex, which is called the smooth hyperspark complex.

Definition 3.1.9. By the smooth hyperspark complex we mean the spark

complex

(F ∗, E∗, I∗) = (
⊕
p+q=∗

Cp(U , Eq), E∗(X), C∗(U ,Z)).

Definition 3.1.10. A smooth hyperspark of degree k is an element

a ∈
⊕
p+q=k

Cp(U , Eq)

with the spark equation

Da = e− r

where e ∈ Ek+1(X) ⊂ C0(U , Ek+1) and r ∈ Ck+1(U ,Z).

Two smooth hypersparks a and a′ are equivalent if there exist

b ∈
⊕

p+q=k−1

Cp(U , Eq) and s ∈ Ck(U ,Z)

satisfying a− a′ = Db+ s.

The equivalence class determined by a smooth hyperspark a will be de-

noted by [a], and the group of smooth hyperspark classes will be denoted by

Ĥk
smooth(X).
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One can easily verify that the smooth hyperspark complex is quasi-isomorphic

to the hyperspark complex. Hence, we have

Proposition 3.1.11.

Ĥk
smooth(X) ∼= Ĥk

hyper(X).

Corollary 3.1.12.

Ĥk
spark(X) ∼= Ĥk

smooth(X).

We can consider the hyperspark complex as a bridge which connects the

de Rham-Federer spark complex and the smooth hyperspark complex.

3.1.3 Harvey-Lawson Spark Characters

We defined three homological spark complexes associated to a smooth man-

ifold X, and showed the natural isomorphisms between the groups of spark

classes associated to them. We refer to [HL2] for more very interesting spark

complexes whose groups of spark classes are all isomorphic to each other. We

denote the groups of spark classes by Ĥ∗(X) collectively, and call them the

Harvey-Lawson spark characters associated to X.

An important fact is that Ĥ∗(X) has a ring structure which is functorial

with respect to smooth maps between manifolds. This ring structure on Ĥ∗(X)

was defined in [HLZ] via the de Rham-Federer spark complex. The main

technical difficulty is that the wedge product of two currents may not be well-

defined. However, we can always choose good representatives in the following

sense:
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Proposition 3.1.13. [HLZ, Proposition 3.1] Given classes α ∈ Ĥk
spark(X)

and β ∈ Ĥl
spark(X) there exist representatives a ∈ α and b ∈ β with da = e− r

and db = f − s so that a ∧ s, r ∧ b and r ∧ s are well-defined flat currents on

X and r ∧ s is rectifiable.

Theorem 3.1.14. [HLZ, Theorem 3.5] Setting

α ∗ β ≡ [a ∧ f + (−1)k+1r ∧ b] = [a ∧ s+ (−1)k+1e ∧ b] ∈ Ĥk+l+1
spark (X)

gives Ĥ∗
spark(X) the structure of a graded commutative ring such that δ1 :

Ĥ∗
spark(X) → Z∗+1

0 (X) and δ2 : Ĥ∗
spark(X) → H∗+1(X,Z) are ring homomor-

phisms.

Proof. It is easy to verify

d(a ∧ f + (−1)k+1r ∧ b) = d(a ∧ s+ (−1)k+1e ∧ b) = e ∧ f − r ∧ s,

(a ∧ f + (−1)k+1r ∧ b)− (a ∧ s+ (−1)k+1e ∧ b) = (−1)kd(a ∧ b).

So a∧ f + (−1)k+1r ∧ b and a∧ s+ (−1)k+1e∧ b are sparks and represent the

same spark class.

To show that the product is independent of the choices of representatives,

assume the spark a′ ∈ D′k(X) represent the same spark class with a and

da′ = e′ − r′. Then ∃c ∈ D′k−1(X) and t ∈ IFk(X) with a− a′ = dc+ t. We

have

(a∧f +(−1)k+1r∧ b)− (a′∧f +(−1)k+1r′∧ b) = d(c∧f +(−1)k(t∧ b))+ t∧s.
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By the same calculation we can show the product is also independent of the

choices of representatives of the second factor.

We can calculate

β∗α = [b∧e+(−1)l+1s∧a] = (−1)(k+1)(l+1)[a∧s+(−1)k+1e∧b] = (−1)(k+1)(l+1)α∗β,

i.e. the product is graded commutative.

It is easy to show the product is associative.

The following theorems on the functoriality were shown in [HLZ].

Theorem 3.1.15. [HLZ] Any smooth map f : X → Y between two smooth

manifolds induces a graded ring homomorphism

f ∗ : Ĥ∗(Y )→ Ĥ∗(X)

compatible with δ1 and δ2. Moreover, if g : Y → Z is smooth, then (g ◦ f)∗ =

f ∗ ◦ g∗.

Therefore, we can consider Ĥ∗(•) as a graded ring functor on the category

of smooth manifolds and smooth maps.

Theorem 3.1.16. [HLZ](Gysin map) Any smooth proper submersion f : X →

Y between two smooth manifolds induces a Gysin homomorphism

f∗ : Ĥ∗(X)→ Ĥ∗−d(Y )

compatible with δ1 and δ2, where d = dimX − dimY .
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3.1.4 Cheeger-Simons Differential Characters

Cheeger and Simons introduced differential characters in their remarkable pa-

per [CS].

Let X be a smooth manifold. And let Ck(X) ⊃ Zk(X) ⊃ Bk(X) denote

the groups of smooth singular k-chains, cycles and boundaries.

Definition 3.1.17. The group of differential characters of degree k is

defined by

Ĥk
CS(X,R/Z) = {h ∈ hom(Zk(X),R/Z) : dh ≡ ω mod Z, for some ω ∈ Ek+1(X)}.

Similarly, we can define Ĥk
CS(X,C/Z). We write Ĥk

CS(X) when the coeffi-

cient is clear in the context.

Remark 3.1.18. For any σ ∈ Ck+1(X), (dh)(σ) = h ◦ ∂(σ). In the definition

above, dh ≡ ω mod Z means h ◦ ∂(σ) ≡
∫

∆k+1
σ∗(ω) mod Z, ∀σ ∈ Ck+1(X).

Cheeger and Simons also defined the ring structure on Ĥ∗
CS(X) and showed

the functoriality of Ĥ∗
CS(X). Harvey, Lawson and Zweck [HL2][HLZ] estab-

lished the equivalency of differential characters and spark characters.

Theorem 3.1.19. [HL2] [HLZ]

Ĥ∗(X) ∼= Ĥ∗
CS(X).

Therefore, we may consider that de Rham-Federer spark classes, hyper-

spark classes and smooth hyperspark classes are different representations of

Cheeger-Simons differential characters.
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3.2 Ring Structure via the Smooth Hyperspark

Complex

We introduced the Harvey-Lawson spark characters and established the ring

structure. In this section, we give a new description of the ring structure via

the smooth hyperspark complex.

Consider the smooth hyperspark complex

(F ∗, E∗, I∗) = (
⊕
p+q=∗

Cp(U , Eq), E∗(X), C∗(U ,Z)).

Recall there is a cup product on the cochain complex C∗(U ,Z) which induces

the ring structure on H∗(X,Z).

Proposition 3.2.1. For a ∈ Cr(U ,Z) and b ∈ Cs(U ,Z), we define cup product

(a ∪ b)i0,...,ir+s ≡ ai0,...,ir · bir,...,ir+s .

This product induces an associative, graded commutative product on Ȟ∗(U ,Z) ∼=

H∗(X,Z).

Proof. It is easy to verify that δ(a ∪ b) = δa ∪ b + (−1)ra ∪ δb (the Leibniz

rule), so the product descends to cohomology. The associativity is trivial.

However, a direct proof of graded commutativity is quite complicated, see

[Br1, Proposition 1.3.7] and [GH].
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Now we want to define a cup product on the cochain complex

(
⊕
p+q=∗

Cp(U , Eq), D = δ + (−1)pd)

which is compatible with products on E∗(X) and C∗(U ,Z) and descends to its

cohomology. A first try is to define

(a ∪ b)i0,...,ir+s ≡ ai0,...,ir ∧ bir,...,ir+s for a ∈ Cr(U , Ep) and b ∈ Cs(U , Eq).

But it turns out that this cup product does not satisfy the Leibniz rule. We

modify the product and define

(a ∪ b)i0,...,ir+s ≡ (−1)jsai0,...,ir ∧ bir,...,ir+s for a ∈ Cr(U , E j) and b ∈ Cs(U , Ek).

Proposition 3.2.2. We define a cup product on the complex
⊕

p+q=∗C
p(U , Eq)

as

(a ∪ b)i0,...,ir+s ≡ (−1)jsai0,...,ir ∧ bir,...,ir+s ∈ Cr+s(U , E j+k),

for a ∈ Cr(U , E j) and b ∈ Cs(U , Ek). This product is associative and satisfies

the Leibniz rule, hence it induces a product on its cohomology.

Proof. Associativity: for a ∈ Cr(U , E j), b ∈ Cs(U , Ek) and c ∈ Ct(U , E l), we

have

((a ∪ b) ∪ c)i0,...,ir+s+t = (−1)(j+k)t(a ∪ b)i0,...,ir+s ∧ cir+s,...,ir+s+t

= (−1)jt+kt+jsai0,...,ir ∧ bir,...,ir+s ∧ cir+s,...,ir+s+t ,
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and

(a ∪ (b ∪ c))i0,...,ir+s+t = (−1)j(s+t)ai0,...,ir ∧ (b ∪ c)ir,...,ir+s+t

= (−1)js+jt+ktai0,...,ir ∧ bir,...,ir+s ∧ cir+s,...,ir+s+t .

Hence, the associativity follows.

The Leibniz rule: We want to check the Leibniz rule D(a ∪ b) = Da ∪ b+

(−1)r+ja ∪Db for a ∈ Cr(U , E j) and b ∈ Cs(U , Ek). We fix the notation

(a ∧ b)i0,...,ir+s ≡ ai0,...,ir ∧ bir,...,ir+s ,

i.e. a ∪ b = (−1)jsa ∧ b.

It is easy to check that

d(a ∧ b) = da ∧ b+ (−1)ja ∧ db

and

δ(a ∧ b) = δa ∧ b+ (−1)ra ∧ δb.

Furthermore, we verify that D(a ∪ b) = Da ∪ b+ (−1)r+ja ∪Db.

D(a ∪ b)

= (δ + (−1)r+sd)(a ∪ b)

= (δ + (−1)r+sd)(−1)js(a ∧ b)

= (−1)jsδ(a ∧ b) + (−1)r+s+jsd(a ∧ b)

= (−1)js(δa ∧ b+ (−1)ra ∧ δb) + (−1)r+s+js(da ∧ b+ (−1)ja ∧ db)

= (−1)jsδa ∧ b+ (−1)js+ra ∧ δb+ (−1)r+s+jsda ∧ b+ (−1)r+s+j+jsa ∧ db,
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Da ∪ b+ (−1)r+ja ∪Db

= (δ + (−1)rd)a ∪ b+ (−1)r+ja ∪ (δ + (−1)sd)b

= δa ∪ b+ (−1)rda ∪ b+ (−1)r+ja ∪ δb+ (−1)r+j+sa ∪ db

= (−1)jsδa ∧ b+ (−1)r+(j+1)sda ∧ b+ (−1)r+j+j(s+1)a ∧ δb+ (−1)r+j+s+jsa ∧ db

= (−1)jsδa ∧ b+ (−1)r+s+jsda ∧ b+ (−1)js+ra ∧ δb+ (−1)r+s+j+jsa ∧ db.

So the Leibniz rule is verified.

Remark 3.2.3. It is easy to see this product is compatible with products on

subcomplexes E∗(X) and C∗(U ,Z).

The main result of this section is the following theorem.

Theorem 3.2.4. For two smooth hyperspark classes α ∈ Ĥk
smooth(X) and

β ∈ Ĥl
smooth(X), choose representatives a ∈ α and b ∈ β with spark equations

Da = e− r and Db = f − s, where

a ∈
⊕
p+q=k

Cp(U , Eq), e ∈ Ek+1(X) ⊂ C0(U , Ek+1), r ∈ Ck+1(U ,Z) ⊂ Ck+1(U , E0),

b ∈
⊕
p+q=l

Cp(U , Eq), f ∈ E l+1(X) ⊂ C0(U , E l+1), s ∈ C l+1(U ,Z) ⊂ C l+1(U , E0).

The product

α ∗ β ≡ [a ∪ f + (−1)k+1r ∪ b] = [a ∪ s+ (−1)k+1e ∪ b] ∈ Ĥk+l+1
spark (X)

is well-defined and gives Ĥ∗
smooth(X) the structure of a graded commutative
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ring such that δ1 : Ĥ∗
smooth(X)→ Z∗+1

0 (X) and δ2 : Ĥ∗
smooth(X)→ H∗+1(X,Z)

are ring homomorphisms.

Proof. Since the cup product satisfies the Leibniz rule:

D(a ∪ b) = Da ∪ b+ (−1)deg aa ∪Db,

we have

D(a ∪ f + (−1)k+1r ∪ b)

= Da ∪ f + (−1)ka ∪Df + (−1)k+1Dr ∪ b+ (−1)k+1+k+1r ∪Db

= (e− r) ∪ f + r ∪ (f − s)

= e ∪ f − r ∪ f + r ∪ a− r ∪ s

= e ∧ f − r ∪ s.

Similarly, we can check

D(a ∪ s+ (−1)k+1e ∪ b) = e ∧ f − r ∪ s,

and

(a ∪ f + (−1)k+1r ∪ b)− (a ∪ s+ (−1)k+1e ∪ b) = (−1)kd(a ∪ b).

Therefore, a∪f+(−1)k+1r∪b and a∪s+(−1)k+1e∪b are sparks and represent

the same spark class.

Assume the spark a′ represent the same spark class with a and da′ = e′−r′.
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Then ∃c ∈
⊕

p+q=k+1C
p(U , Eq) and t ∈ Ck(U ,Z) with a − a′ = Dc + t. We

have

(a∪f +(−1)k+1r∪b)− (a′∪f +(−1)k+1r′∪b) = D(c∪f +(−1)k(t∪b))+ t∪s.

By the same calculation we can show the product is also independent of the

choices of representatives of the second factor. It is easy to check the associa-

tivity. It is not easy to give a direct proof of graded commutativity. However,

we can see the graded commutativity as a corollary of next theorem.

Remark 3.2.5. Since f ∈ C0(U , E l+1) and r ∈ Ck+1(U , E0), we have

α ∗ β ≡ [a ∪ f + (−1)k+1r ∪ b] = [a ∧ f + (−1)k+1r ∧ b].

Theorem 3.2.6. The products for de Rham-Federer spark classes in Theo-

rem 3.1.14 and for smooth hyperspark classes in Theorem 3.2.4 give the same

ring structure. Hence, the isomorphism Ĥ∗
spark(X) ∼= Ĥ∗

smooth(X) is a ring

isomorphism.

Proof. We can define a cup product on the cochain complex
⊕

p+q=∗C
p(U ,D′q)

as

(a ∪ b)i0,...,ir+s ≡ (−1)jsai0,...,ir ∧ bir,...,ir+s ,

for a ∈ Cr(U ,D′j) and b ∈ Cs(U ,D′k) whenever all ai0,...,ir ∧ bir,...,ir+s make

sense.

For two spark classes

α ∈ Ĥk
hyper(X) ∼= Ĥk

spark(X) ∼= Ĥk
smooth(X)
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and

β ∈ Ĥl
hyper(X) ∼= Ĥl

spark(X) ∼= Ĥl
smooth(X).

We can choose representatives of α and β by two ways. First, we choose a

smooth hyperspark a ∈
⊕

p+q=k C
p(U , Eq) ⊂

⊕
p+q=k C

p(U ,D′q) representing

α; Second, we choose a de Rham-Federer spark a′ ∈ D′k(X) ⊂
⊕

p+q=l C
p(U ,D′q)

representing α. We may choose b and b′ correspondingly as well. Moreover we

can choose a′ and b′ to be ”good” representatives in the sense of Proposition

3.1.13.

Assume the spark equations for a, b, a′ and b′ are

Da = e− r, Db = f − s,

and

Da′ = e− r′, Db′ = f − s′

where e ∈ Ek+1(X), r ∈ Ck+1(U ,Z), f ∈ E l+1(X), s ∈ C l+1(U ,Z), r′ ∈

IFk+1(X) and s′ ∈ IF l+1(X). Note that all cup products a ∪ b, a ∪ f , r ∪ b,

a′ ∪ b′, a′ ∪ f , r′ ∪ b′, etc. are well-defined in
⊕

p+q=∗C
p(U ,D′q). Then we

can define product via hyperspark complex by choosing all representatives in

either the smooth hyperspark complex or the de Rham-Federer complex.

Moreover, the product does not depend on the choices of representatives.

In fact, since a and a′, b and b′ represent the same spark classes, there exist

c ∈
⊕

p+q=k−1C
p(U ,D′q), t ∈

⊕
p+q=k C

p(U , IF q), c′ ∈
⊕

p+q=l−1C
p(U ,D′q)

and t′ ∈
⊕

p+q=l C
p(U , IF q) such that a − a′ = Dc + t and b − b′ = Dc′ + t′.
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Then

(a ∪ f + (−1)k+1r ∪ b)− (a′ ∪ f + (−1)k+1r′ ∪ b′)

= (a ∪ f + (−1)k+1r ∪ b)− (a ∪ f + (−1)k+1r ∪ b′)

+(a ∪ f + (−1)k+1r ∪ b′)− (a′ ∪ f + (−1)k+1r′ ∪ b′)

= (−1)k+1r ∪ (b− b′) + (a− a′) ∪ f + (−1)k+1(r − r′) ∪ b′

= (−1)k+1r ∪ (Dc′ + t′) + (Dc+ t) ∪ f + (−1)k+1(−Dt) ∪ b′

= (−1)k+1r ∪ t′ +D(r ∪ c′) +D(c ∪ f) + t ∪ f + (−1)kD(t ∪ b′)− t ∪ (f − s′)

= D(r ∪ c′ + c ∪ f + (−1)kt ∪ b′) + (−1)k+1r ∪ t′ + t ∪ s′

The calculation above shows (a∪f+(−1)k+1r∪b) and (a′∪f+(−1)k+1r′∪

b′) represent the same spark class whenever the cup products in the sums

r ∪ c′ + c ∪ f + (−1)kt ∪ b′ ∈
⊕

p+q=k+l C
p(U ,D′q) and (−1)k+1r ∪ t′ + t ∪ s′ ∈⊕

p+q=k+l+1C
p(U , IF q) are well-defined. On one hand, it is trivial to see r∪c′,

c ∪ f and (−1)k+1r ∪ t′ are well-defined. On the other hand, because t is only

related to a and a′, we can change b′ and s′ if necessary, so that (−1)kt ∪ b′

and t ∪ s′ are well-defined.

3.3 Examples

Using the representation of secondary invariants by the smooth hyperspark

classes, we give a concrete description of secondary invariants of low degrees.

Moreover, applying the product formula in the last section, we calculate the

product of smooth hyperspark classes explicitly when the manifold is simple.
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Degree 0: A smooth hyperspark of degree 0 is an element a ∈ C0(U , E0)

satisfying the spark equation

Da = e− r with e ∈ E1(X) and r ∈ C1(U ,Z).

Moreover,

Da = e− r ⇔ δa = −r ∈ C1(U ,Z) and da = e ∈ E1(X)

⇔ δa ∈ C1(U ,Z).

Two smooth hypersparks a and a′ are equivalent if and only if a − a′ ∈

C0(U ,Z). Consider the exponential of a smooth hyperspark g ≡ e2πia. δa ∈

C1(U ,Z) implies g is a global circle valued function, and a− a′ ∈ C0(U ,Z)⇔

e2πia = e2πia
′
. Therefore, we have

Ĥ0
smooth(X) = {g : X → S1 : g is smooth }.

Degree 1: A smooth hyperspark of degree 1 is an element

a = a0,1 + a1,0 ∈ C0(U , E1)⊕ C1(U , E0)

satisfying the spark equation

Da = e− r with e ∈ E2(X) and r ∈ C2(U ,Z)
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which is equivalent to equations


δa1,0 = −r ∈ C2(U ,Z)

δa0,1 − da1,0 = 0

da0,1 = e ∈ E2(X)

.

If g = e2πia
1,0

then the spark equation is equivalent to


δg = 0

δa0,1 − 1
2πi
d log g = 0

da0,1 = e ∈ E2(X)

.

Note that we can write a0,1 = {a0,1
i } where a0,1

i ∈ E1(Ui), and g = {gij}

where each gij is a circle valued function on Uij. Then

δg = 0 ⇔ gjkgkigij = 1

i.e. gij are transition functions of a hermitian line bundle, and

δa0,1 − 1

2πi
d log g = 0 ⇔ a0,1

j − a
0,1
i =

1

2πi

dgij
gij

which means a0,1
i is the connection 1-form on Ui.

Therefore, it is easy to see Ĥ1
smooth(X) = the set of ( equivalent classes of

) hermitian line bundles with hermitian connections.

Degree 2: Roughly speaking, Ĥ2
smooth(X) is the set of 2-gerbes with con-

nections. The descriptions of spark classes of degree 2 or more are complicated.

We refer to [Br1] for interested readers.

Degree n = dimX: From Proposition 3.1.4, we have Ĥn
smooth(X) ∼=

Hn(X,R/Z) ∼= R/Z. Furthermore, every spark class of top degree can be

represented by a global top form. And integrating this form over X (modulo

Z) gives the isomorphism Ĥn
smooth(X) ∼= R/Z.
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Ring structure on Ĥ∗
smooth(S

1).

Now we calculate the product Ĥ0
smooth(S

1)⊗ Ĥ0
smooth(S

1)→ Ĥ1
smooth(S

1).

Let X be the unit circle S1. Fix a small number ε > 0 and an open cover

U = {U1, U2, U3} where

U1 = {e2πit : t ∈ (−ε, 1
3
)}, U2 = {e2πit : t ∈ (

1

3
−ε, 2

3
)}, U3 = {e2πit : t ∈ (

2

3
−ε, 1)}.

Let a = (a1, a2, a3) ∈ C0(U , E0) = E0(U1) ⊕ E0(U2) ⊕ E0(U3) be a smooth

hyperspark representing a spark class α ∈ Ĥ0
smooth(S

1). Since δa ∈ C1(U ,Z),

we have

(a2 − a1) |U12∈ Z, (a3 − a1) |U13∈ Z, (a3 − a2) |U23∈ Z.

Moreover, two smooth hypersparks represent the same spark class if and only

if the difference of them is in C0(U ,Z), so we can choose the representative a

to be of form:

a1 = a2 |U12 , a2 = a3 |U23 , a1 +N = a3 |U13 , a1(x0) ∈ [0, 1)

where N is an integer and x0 = e2πi·0 ∈ U1. It is easy to see the representative

of this form is unique for any class. Assume the spark equation for a is Da =

e − r for e ∈ E1(S1), r = (r12, r23, r13) ∈ C1(U ,Z). Then da = e is a global

1-form and δa = (0, 0, N) = −r. If we have another smooth hyperspark b

of this form representing spark class β with db = f , δb = (0, 0, N ′), then by

the product formula in the last section, the product αβ can be represented by

a ∪ f − r ∪ b. In the case r = 0, i.e. N = 0, a is a global function and the
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product is represented by the global 1-form af . Evaluating the integral
∫
S1 af

mod Z, we get a number in R/Z which representing the product under the

isomorphism Ĥ1
smooth(S

1) ∼= R/Z. To calculate the general product, we need

the following lemma.

Let S̃ be the set {f ∈ C∞(R) : f(x+1)− f(x) ∈ Z}. In fact, S̃ is a group.

We say f ∼ g if and only if f(x)− g(x) ≡ N ∈ Z. Define the quotient group

S = S̃/ ∼. Note that we can identify S with the set {f ∈ C∞(R) : 0 ≤ f(0) <

1, f(x+ 1)− f(x) ∈ Z}.

Lemma 3.3.1. There exists a group isomorphism Ĥ0
smooth(S

1) ∼= S. More-

over, for any f(x) ∈ S, we have the decomposition

f(x) = Nx+ C +
∞∑
k=1

(Ak sin(2πkx) +Bk cos(2πkx)).

Hence, we have the corresponding decomposition of a spark class.

Proof. For any spark class α ∈ Ĥ0
smooth(S

1), there exists a unique representa-

tive a = (a1, a2, a3) ∈ C0(U , E0) with

a1 = a2 |U12 , a2 = a3 |U23 , a1 +N = a3 |U13 , a1(x0) ∈ [0, 1).

We can lift a to a smooth function ã ∈ S uniquely, and establish a 1 − 1

correspondence between Ĥ0
smooth(S

1) and the set S.

For any smooth function f ∈ S with f(x+1)− f(x) = N for some N ∈ Z,

f(x)−Nx is periodic. Hence we have the Fourier expansion

f(x)−Nx = C +
∞∑
k=1

(Ak sin(2πkx) +Bk cos(2πkx)).
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On the other hand, under the 1 − 1 correspondence, every component of the

Fourier expansion is still in S, and hence represents a spark class.

Now let us calculate the product Ĥ0
smooth(S

1)⊗Ĥ0
smooth(S

1)→ Ĥ1
smooth(S

1).

We use identification Ĥ0
smooth(S

1) ∼= S and Ĥ1
smooth(S

1) ∼= R/Z, and represent

the product as S ⊗ S → R/Z.

Theorem 3.3.2. For a, b ∈ S with decompositions

a = Nx+ C +
∞∑
k=1

(Ak sin(2πkx) +Bk cos(2πkx))

and

b = N ′x+ C ′ +
∞∑
k=1

(A′k sin(2πkx) +B′
k cos(2πkx)),

the product

a ∗ b =
NN ′

2
+ CN ′ − C ′N +

∞∑
k=1

(A′kBk − AkB′
k)πk mod Z.

Proof. First, we calculate the product [sin 2πkx] ∗ [cos 2πk′x]. Since sin 2πkx

corresponds to a smooth hyperspark

ak = (sin 2πkx |U1 , sin 2πkx |U2 , sin 2πkx |U3)

with spark equations

dak = d sin 2πkx = 2πk cos 2πkxdx and δak = (0, 0, 0) = 0.
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Similarly, cos 2πk′x corresponds a smooth hyperspark bk′ with

dbk′ = −2πk′ sin 2πk′xdx and δbk′ = 0.

Then by the product formula we have

[sin 2πkx] ∗ [cos 2πk′x]

=

∫ 1

0

sin 2πkxd cos 2πk′x

= −2πk′
∫ 1

0

sin 2πkx sin 2πk′xdx

= −2πk′
∫ 1

0

1

2
(cos 2π(k − k′)x− cos 2π(k + k′)x)dx

=

 −πk, k = k′

0, otherwise.

Similarly, we can calculate

[C] ∗ [Nx] =

∫ 1

0

CNdx = CN

[C] ∗ [sin 2πkx] =

∫ 1

0

Cd sin 2πkx = 0

[C] ∗ [cos 2πkx] =

∫ 1

0

Cd cos 2πkx = 0

[C] ∗ [C ′] = 0

[sin 2πkx] ∗ [sin 2πk′x] =

∫ 1

0

sin 2πkxd sin 2πk′x = 0

[cos 2πkx] ∗ [cos 2πk′x] =

∫ 1

0

cos 2πkxd cos 2πk′x = 0
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[sin 2πkx] ∗ [Nx] =

∫ 1

0

sin 2πkxNdx = 0

[cos 2πkx] ∗ [Nx] =

∫ 1

0

cos 2πkxNdx = 0

Nx corresponds to a smooth hyperspark zn = (Nx |U1 , Nx |U2 , Nx |U3)

with spark equations

dzn = dNx = Ndx and δzn = (0, 0, N).

So the product of Nx and N ′x can be represented by smooth hyperspark

NxdN ′x+(−1)1(−(0, 0, N))N ′x = NN ′xdx+(0, 0, NN ′x) ∈ C0(U , E1)⊕C1(U , E0).

Let 1
2
NN ′x2 denote the element

(
1

2
NN ′x2 |U1 ,

1

2
NN ′x2 |U2 ,

1

2
NN ′x2 |U3) ∈ E0(U1)⊕E0(U2)⊕E0(U3) = C0(U , E0).

Then

D(
1

2
NN ′x2) = d(

1

2
NN ′x2) + δ(

1

2
NN ′x2) = NN ′xdx+ (0, 0, NN ′(x+

1

2
)).

Hence, NN ′xdx+ (0, 0, NN ′x) is equivalent to

NN ′xdx+ (0, 0, NN ′x)−D(
1

2
NN ′x2) = 0− (0, 0,

1

2
NN ′).

And −(0, 0, 1
2
NN ′) ∈ C1(U ,R) equals −1

2
NN ′ ≡ 1

2
NN ′ mod Z under the
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isomorphism

H1(S1,R)/H1(S1,Z) ∼= H1(S1,R/Z) ∼= R/Z.

So we have

[Nx] ∗ [N ′x] =
NN ′

2

Finally, by distributivity and graded commutativity of the product, we

have

[Nx+C+
∞∑
k=1

(Ak sin 2πkx+Bk cos 2πkx)][N ′x+C ′+
∞∑
k=1

(A′k sin 2πkx+B′
k cos 2πkx)]

=
NN ′

2
+ CN ′ − C ′N +

∞∑
k=1

(A′kBk − AkB′
k)πk mod Z

The next example that we shall discuss is the product of two smooth hyper-

sparks of degree 1 on a 3-dimensional manifold X. Since Ĥ1
smooth(X) is the set

of hermitian line bundles with hermitian connections and Ĥ3
smooth(X) ∼= R/Z,

the product associates a number modulo Z to two hermitian line bundles with

hermitian connections.

For two smooth hyperspark classes α, β ∈ Ĥ1
smooth(X), assume

a = a0,1+a1,0 ∈ C0(U , E1)⊕C1(U , E0) and b = b0,1+b1,0 ∈ C0(U , E1)⊕C1(U , E0)
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are representatives of α and β respectively with spark equations

Da = e− r and Db = f − s.

Then we have


δa1,0 = −r ∈ C2(U ,Z)

δa0,1 − da1,0 = 0

da0,1 = e ∈ E2(X)

and


δb1,0 = −s ∈ C2(U ,Z)

δb0,1 − db1,0 = 0

db0,1 = f ∈ E2(X)

.

By the product formula, we have αβ = [a ∪ f + r ∪ b] where

a ∪ f + r ∪ b = a0,1 ∧ f + a1,0 ∧ f + r ∧ b0,1 + r ∧ b1,0

∈ C0(U , E3)⊕ C1(U , E2)⊕ C2(U , E1)⊕ C3(U , E0).

a∪f+r∪b is a cycle in
⊕

i+j=3C
i(U , E j) representing a class in H3(X,R) ∼= R.

In general, it is hard to identify this class under the isomorphism Ĥ3
smooth(X) ∼=

R/Z. However, when one of α and β represents a flat bundle, it is easier to

calculate the product.

Lemma 3.3.3. If β ∈ H1(X,R/Z) ⊂ Ĥ1
smooth(X) represents a flat bundle on

X, then their exists a smooth hyperspark b = b0,1 + b1,0 representing β with

b0,1 = 0 and b1,0 ∈ C1(U ,R).

Proof. For any flat line bundle, there exists a trivialization with constant tran-

sition functions and zero connection forms (with respect to a local basis).

By the lemma, if β is flat, we have αβ = [a ∪ f + r ∪ b] = [r ∧ b1,0] where

r ∧ b1,0 ∈ C3(U ,R) ⊂ C3(U , E0) is a Čech cycle representing a cohomology

class in H3(X,R). Hence, we proved the following proposition.
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Proposition 3.3.4. X is a 3-dimensional manifold. Let α ∈ Ĥ1
smooth(X) and

β ∈ H1(X,R/Z) ⊂ Ĥ1
smooth(X). Choosing representatives as above, we have

αβ = [r ∧ b1,0] ∈ H3(X,R/Z) ∼= R/Z.

Remark 3.3.5. It is easy to generalize this proposition to the product

Ĥn−2
smooth(X)⊗ Ĥ1

smooth(X)→ Ĥn
smooth(X)

for an n-dimensional manifold X when the second factor β ∈ H1(X,R/Z) ⊂

Ĥ1
smooth(X).

Remark 3.3.6. From this proposition, we see the product αβ only depends

the first Chern class [r] of α. We can also see this fact from the next lemma.

Moreover, the product coincides with the natural product

H2(X,Z)⊗H1(X,R/Z)→ H3(X,R/Z).

Lemma 3.3.7. X is a smooth manifold. If α ∈ Ĥk
∞(X) ⊂ Ĥk

smooth(X) and

β ∈ H l(X,R/Z) ⊂ Ĥl
smooth(X), then αβ = 0.

Proof. Note that H l(X,R/Z) = ker δ1 and Ĥk
∞(X) = ker δ2. So we can choose

representatives a and b with spark equations Da = e− 0 and Db = 0− s. By

the product formula we have αβ = 0.

3.4 Smooth Deligne Cohomology

Deligne cohomology, which was invented by Deligne in 1970’s, is closely related

to spark characters and differential characters. In this section, we introduce
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“smooth Deligne cohomology” [Br1], a smooth analog of Deligne cohomology

and establish its relation with spark characters.

Definition 3.4.1. Let X be a smooth manifold. For p ≥ 0, the smooth

Deligne complex ZD(p)∞ is the complex of sheaves:

0→ Z i→ E0 d→ E1 d→ · · · d→ Ep−1 → 0

where Ek denotes the sheaf of real-valued differential k-forms on X. The hy-

percohomology groups Hq(X,ZD(p)∞) are called the smooth Deligne coho-

mology groups of X, and are denoted by Hq
D(X,Z(p)∞).

Example 3.4.2. It is easy to see Hq
D(X,Z(0)∞) = Hq(X,Z) and Hq

D(X,Z(1)∞) =

Hq−1(X,R/Z).

There is a cup product [Br1] [EV]

∪ : ZD(p)∞ ⊗ ZD(p′)∞ → ZD(p+ p′)∞

by

x ∪ y =


x · y if deg x = 0;

x ∧ dy if deg x > 0 and deg y = p′;

0 otherwise.

The cup product ∪ is a morphism of complexes and associative, hence induces

a ring structure on ⊕
p,q

Hq
D(X,Z(p)∞).

We may calculate the smooth Deligne cohomology groups of a manifold X
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with dimension n by the following two short exact sequences of complexes of

sheaves:

1. 0→ E∗<p[−1]→ ZD(p)∞ → Z→ 0,

2. 0→ E∗≥p[−p− 1]→ ZD(n+ 1)∞ → ZD(p)∞ → 0

where E∗<p[−1] denotes the complex of sheaves E0 d→ E1 d→ · · · d→ Ep−1 shifted

by 1 position to the right, and E∗≥p[−p − 1] denotes the complex of sheaves

Ep d→ Ep+1 d→ · · · d→ En shifted by p+ 1 positions to the right.

It turns out Hp
D(X,Z(p)∞) is the most interesting part among all the

smooth Deligne cohomology groups.

Theorem 3.4.3. We can put Hp
D(X,Z(p)∞) into the following two short exact

sequences:

1. 0 −→ Ep−1(X)/Zp−1
0 (X) −→ Hp

D(X,Z(p)∞) −→ Hp(X,Z) −→ 0

2. 0 −→ Hp−1(X,R/Z) −→ Hp
D(X,Z(p)∞) −→ Zp0 (X) −→ 0

Proof. (1) From the short exact sequence 0→ E∗<p[−1]→ ZD(p)∞ → Z→ 0,

we get the long exact sequence of hypercohomology:

· · · → Hp−1(Z)→ Hp(E∗<p[−1])→ Hp(ZD(p)∞)→ Hp(Z)→ Hp+1(E∗<p[−1])→ · · · .

First, we have Hp(Z) = Hp(X,Z). Since the sheaf Ek is soft for every

k, it is easy to see Hp(E∗<p[−1]) = Hp−1(E∗<p) = Ep−1(X)/dEp−2(X) and

Hp+1(E∗<p[−1]) = Hp(E∗<p) = 0. And Hp(ZD(p)∞) = Hp
D(X,Z(p)∞) by nota-

tion. So we have

· · · → Hp−1(X,Z)→ Ep−1(X)/dEp−2(X)→ Hp
D(X,Z(p)∞)→ Hp(X,Z)→ 0.
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Note that the map Hp−1(X,Z)→ Ep−1(X)/dEp−2(X) is induced by morphism

of complexes of sheaves i : Z → E∗<p which is composition of i : Z → E∗

and projection p : E∗ → E∗<p. Hence Hp−1(X,Z) → Ep−1(X)/dEp−2(X)

factors through Hp−1(E∗) = Hp−1(X,R), and the image is Zp−1
0 (X)/dEp−2(X).

Finally, we get the short exact sequence

0 −→ Ep−1(X)/Zp−1
0 (X) −→ Hp

D(X,Z(p)∞) −→ Hp(X,Z) −→ 0.

(2) From the short exact sequence 0 → E∗≥p[−p − 1] → ZD(n + 1)∞ →

ZD(p)∞ → 0, we get the long exact sequence of hypercohomology:

· · · → Hp(E∗≥p[−p− 1])→ Hp(ZD(n+ 1)∞)→ Hp(ZD(p)∞)→

Hp+1(E∗≥p[−p− 1])→ Hp+1(ZD(n+ 1)∞)→ · · · .

The complex of sheaves ZD(n + 1)∞ is quasi-isomorphic to R/Z[−1], so

Hp(ZD(n+1)∞) = Hp−1(X,R/Z). Also, it is easy to see Hp+1(E∗≥p[−p−1]) =

H0(E∗≥p) = Zp(X), and Hp(E∗≥p[−p− 1]) = 0. Thus, we get

0→ Hp−1(X,R/Z)→ Hp
D(X,Z(p)∞)→ Zp(X)→ Hp(X,R/Z)→ · · · .

To complete our proof, we have to determine the kernel of the map Zp(X)→

Hp(X,R/Z). Note this map is induced by i : E∗≥p[−p − 1] → ZD(n + 1)∞,

which is composition of i : E∗≥p[−p−1]→ E∗[−1] and i : E∗[−1]→ ZD(n+1)∞.

So the map Zp(X)→ Hp(X,R/Z) is composition of Zp(X)→ Hp(X,R) and

Hp(X,R)→ Hp(X,R/Z), and it is easy to see the kernel is Zp0 (X).
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Remark 3.4.4. By similar calculations, it is easy to determine other part of

the smooth Deligne cohomology groups:

Hq
D(X,Z(p)∞) =

 Hq−1(X,R/Z), when (q < p);

Hq(X,Z), when (q > p).

In the last theorem, we saw the (p, p)-part of smooth Deligne cohomology

satisfies the same short exact sequences with spark characters in Proposition

3.1.4. It is not surprising we have the isomorphism:

Theorem 3.4.5.

Hp
D(X,Z(p)∞) ∼= Ĥp−1(X).

Proof. It suffices to show the isomorphism Hp
D(X,Z(p)∞) ∼= Ĥp−1

smooth(X).

Step 1: Choose a good cover {U} of X and take Čech resolution for the

complex of sheaves ZD(p)∞ −→ C∗(U ,ZD(p)∞).

Then

Hq
D(X,Z(p)∞) ≡ Hq(ZD(p)∞) ∼= Hq(Tot(C∗(U ,ZD(p)∞)))

∼= Hq(Tot(C∗(U ,ZD(p)∞)))

where C∗(U ,ZD(p)∞) are the groups of global sections of sheaves C∗(U ,ZD(p)∞)

and look like the following double complex.
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...
...

...
...

...

Cp(U ,Z)
(−1)pi//

δ

OO

Cp(U , E0)
(−1)pd//

δ

OO

Cp(U , E1)
(−1)pd//

δ

OO

Cp(U , E2)
(−1)pd //

δ

OO

· · · (−1)pd// Cp(U , Ep−1)

δ

OO

...

δ

OO

...

δ

OO

...

δ

OO

...

δ

OO

...

δ

OO

C2(U ,Z)
i //

δ

OO

C2(U , E0)
d //

δ

OO

C2(U , E1)
d //

δ

OO

C2(U , E2)
d //

δ

OO

· · · d // C2(U , Ep−1)

δ

OO

C1(U ,Z)
−i //

δ

OO

C1(U , E0)
−d //

δ

OO

C1(U , E1)
−d //

δ

OO

C1(U , E2)
−d //

δ

OO

· · · −d // C1(U , Ep−1)

δ

OO

C0(U ,Z)
i //

δ

OO

C0(U , E0)
d //

δ

OO

C0(U , E1)
d //

δ

OO

C0(U , E2)
d //

δ

OO

· · · d // C0(U , Ep−1)

δ

OO

Step 2:

Let M∗
p ≡ Tot(C∗(U ,ZD(p)∞)) denote the total complexes of the double

complex C∗(U ,ZD(p)∞) with differential

Dp(a) =


(δ + (−1)ri)(a), when a ∈ Cr(U ,Z);

(δ + (−1)rd)(a), when a ∈ Cr(U , E j), j < p− 1;

δa, when a ∈ Cr(U , Ep−1).

Now, we show Hp(M∗
p )
∼= Ĥp−1

smooth(X).

Let ã = r + a = r + Σp−1
i=0 a

i,p−1−i ∈ Mp
p where r ∈ Cp(U ,Z) and ai,p−1−i ∈

Ci(U , Ep−1−i). We define a mapHp(M∗
p ) −→ Ĥp−1

smooth(X) which maps [ã] 7→ [a]

for ã ∈ kerDp.

ã ∈ kerDp ⇔ Dpã = 0⇔ Dpa+ (−1)pi(r) = 0 and δr = 0

68



⇔ Da = Dpa+ da0,p−1 = da0,p−1 − (−1)pr.

Note that

δa0,p−1 − da1,p−2 = 0 ⇒ δda0,p−1 = dδa0,p−1 = dda1,p−2 = 0

⇒ da0,p−1 ∈ Ep(X) = ker δ : C0(U , Ep)→ C1(U , Ep).

Therefore, ã ∈ kerDp implies a is a smooth hyperspark of degree p−1. On

the other hand, if a is a smooth hyperspark with spark equation Da = e − r

with e ∈ Ep(X) and r ∈ Cp(U ,Z), it is clear to see ã ≡ (−1)pr + a ∈ kerDp.

Moreover, it is easy to see ã′ = r′ + a′ ∈ kerDp with ã− ã′ ∈ ImDp if and

only if a and a′ represent the same spark class.

Hence, the map [ã]→ [a] gives an isomorphism Hp(M∗
p )
∼= Ĥp−1

smooth(X).

It is shown in [HLZ] [HL2] that there is a natural isomorphism Ĥp−1(X) ∼=

Ĥp−1
CS (X), so we get [Br1, Proposition 1.5.7.] as a corollary.

Corollary 3.4.6.

Hp
D(X,Z(p)∞) ∼= Ĥp−1

CS (X).

In fact,
⊕

pH
p
D(X,Z(p)∞) ⊂

⊕
p,qH

q
D(X,Z(p)∞) is a subring, where the

product coincides with the products on spark characters and differential char-

acter, i.e. we have the following ring isomorphism:
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Theorem 3.4.7.

H∗
D(X,Z(∗)∞) ∼= Ĥ∗(X) ∼= Ĥ∗

CS(X).

Proof. It is shown in [HLZ] that Ĥ∗(X) and Ĥ∗
CS(X) are isomorphic as rings.

So we only need to verify that the product on H∗
D(X,Z(∗)∞) agrees with the

product on Ĥ∗(X).

We can make use of the isomorphism:

Hp
D(X,Z(p)∞) ∼= Hp(M∗

p )
∼= Ĥp−1

smooth(X).

First, fix two smooth Deligne cohomology classes

α ∈ Hp
D(X,Z(p)∞) and β ∈ Hq

D(X,Z(q)∞),

and let

ã = r + a = r +

p−1∑
i=0

ai,p−1−i ∈Mp
p be a representative of α

and

b̃ = s+ b = s+

q−1∑
i=0

bi,q−1−i ∈M q
q be a representative of β

where

r ∈ Cp(U ,Z), ai,p−1−i ∈ Ci(U , Ep−1−i),

and

s ∈ Cq(U ,Z), bi,q−1−i ∈ Ci(U , Eq−1−i).
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On one hand, we calculate α∪β by original product formula (See appendix

§8):

α ∪ β = [r ∪ b̃+ a ∪ db0,q−1].

On the other hand, let [a] and [b] be the image of α and β under the

isomorphism Hk(M∗
k )
∼= Ĥk−1

smooth(X), k = p, q with spark equations

Da = e−(−1)pr and Db = f−(−1)qs where e = da0,p−1, f = db0,q−1 are global forms.

We apply product formula on Ĥ∗
smooth(X), and get

[a][b] = [a ∪ f + (−1)p(−1)pr ∪ b] = [a ∪ db0,q−1 + r ∪ b]

which is the image of [r ∪ b̃+ a ∪ db0,q−1] = [a ∪ db0,q−1 + r ∪ b+ r ∪ s] under

the isomorphism of Hp+q(M∗
p+q)
∼= Ĥp+q−1

smooth(X).

We get the products are the same.

3.5 Massey Products in Secondary Geometric

Invariants

In this section, we apply the theory in §2.5 to the de Rham-Federer spark

complex and the smooth hyperspark complex associated to a smooth manifold

X, and define the Massey triple product on spark characters Ĥ∗(X).

In §2.5, we defined the Massey triple product in the ring of spark classes Ĥ∗

associated to a spark complex of differential graded algebras. Strictly speak-
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ing, neither the de Rham-Federer spark complex nor the smooth hyperspark

complex is spark complex of differential graded algebras. However, all argu-

ments in §2.5 are still valid for the de Rham-Federer spark complex and the

smooth hyperspark complex, since the product is on the class level.

Now we rewrite §2.5 in the context of the de Rham-Federer spark complex.

Thanks to Proposition 3.1.4, for any spark classes, we can always choose good

representatives such that the wedge product makes sense. Therefore, we just

assume all representatives chosen are good in the sense of Proposition 3.1.4.

We can also apply the theory in §2.5 to the smooth hyperspark complex. In

that case, we do not worry about the choice of representatives, since prod-

ucts are always well-defined. In the following theorem, Ĥ∗(X) denotes the

group of spark classes associated to the de Rham-Federer spark complex or

the smooth hyperspark complex, and Ĥ∗
∞(X) is the subgroup whose elements

can be represented by global smooth forms, i.e. ker δ2.

Theorem 3.5.1. If three spark classes α ∈ Ĥi(X), β ∈ Ĥj(X) and γ ∈

Ĥk(X) satisfy that αβ ∈ Ĥi+j+1
∞ (X) ⊂ Ĥi+j+1(X) and βγ ∈ Ĥj+k+1

∞ (X) ⊂

Ĥj+k+1(X), then the Massey triple product of α, β and γ, denoted byM(α, β, γ),

is well-defined in Ĥi+j+k+1(X)/(αĤj+k(X) + Ĥi+j(X)γ).

Proof. Choose representatives a ∈ α, b ∈ β and c ∈ γ with the spark equations

da = e− r, db = f − s, dc = g − t.

If αβ ∈ Ĥi+j+1
∞ (X) ⊂ Ĥi+j+1(X) and βγ ∈ Ĥj+k+1

∞ (X) ⊂ Ĥj+k+1(X), then

αβ = [a][b] = [af + (−1)i+1rb] = [φ], βγ = [b][c] = [bg + (−1)j+1sc] = [ψ]
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for some φ ∈ E i+j+1(X) and ψ ∈ E j+k+1(X). Hence there exist A ∈ D′i+j(X),

B ∈ D′j+k(X), X ∈ IF i+j+1(X) and Y ∈ IF j+k+1(X) such that

af + (−1)i+1rb = dA+X + φ, bg + (−1)j+1sc = dB + Y + ψ.

Note that

d(aψ + (−1)irB + (−1)i+1Ag + (−1)jXc) = eψ + (−1)iφg + rY + (−1)iXt.

So aψ + (−1)irB + (−1)i+1Ag + (−1)jXc ∈ D′i+j+k+1(X) represents a spark

class.

We define

M(α, β, γ) ≡ [aψ + (−1)irB + (−1)i+1Ag + (−1)jXc]

∈ Ĥi+j+k+1(X)/(αĤj+k(X) + Ĥi+j(X)γ).

It is easy to verify thatM(α, β, γ) is well-defined. (See §2.5.)

Similar to Corollary 2.5.5, we have

Corollary 3.5.2. The Massey triple product is compatible with the ring ho-

momorphisms

δ1 : Ĥ∗(X)→ Z∗+1
0 (X) and δ2 : Ĥ∗(X)→ H∗+1(X,Z).
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Proof. Note that the equations

af + (−1)i+1rb = dA+X + φ, bg + (−1)j+1sc = dB + Y + ψ

imply ef = dφ, fg = dψ, −rs = dX, −st = dY . So we can define the Massey

triple product for e, f , g and [r], [s], [t].

From the formula

d(aψ + (−1)irB + (−1)i+1Ag + (−1)jXc) = eψ + (−1)iφg + rY + (−1)iXt,

it is easy to see the compatibility of the Massey triple product with ring

homomorphisms δ1 and δ2.

Because of the surjectivity of δ1 and δ2 and their compatibility with the

Massey triple product, the examples mentioned in the introduction on the

Borromean rings and Iwasawa manifold naturally show the nontriviality of the

Massey triple product in spark characters. Moreover, for three spark classes

whose the Massey triple product is well-defined, even the Massey triple prod-

ucts of their images under δ1 and δ2 are trivial, their Massey triple product

may not be trivial. The following example may be the simplest case.

Example 3.5.3. Let X = S1 × S1 × S1 = R3/Z3 be three dimensional torus

and x, y, z be coordinates of R3. Define α, γ ∈ Ĥ1(X) and β ∈ Ĥ0(X) as

follows. Let α be the spark class [a = λdx] ∈ ker δ1 ∩ ker δ2 and γ be the spark

class [c = λ′dz] ∈ ker δ1∩ker δ2. The spark equations of α and γ can be written

as da = e−r = 0−0 and dc = g− t = 0−0. Let β be a spark class represented

by any current b with the spark equation db = f − s such that f = dy.
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Calculate the products αβ and βγ,

αβ = [a ∧ f + (−1)2r ∧ b] = [λdx ∧ dy] ∈ Ĥ2
∞(X),

βγ = [b∧g+(−1)1s∧c] = [b∧t+(−1)1f∧c+d(b∧c)] = [−λ′dy∧dz+d(b∧dz)] ∈ Ĥ2
∞(X).

So the Massey triple product is well-defined and represented by −λλ′dx∧dy∧dz.

From the 3× 3 diagram in Proposition 3.1.4, we see the class

[−λλ′dx ∧ dy ∧ dz] ∈ ker δ1 ∩ ker δ2 = H3(X,R)/H3(X,Z) ∼= R/Z.

It is easy to see the subgroup of Ĥ3(X) generated by α and γ is {[(mλ +

nλ′)dx ∧ dy ∧ dz] | m,n ∈ Z}. Therefore, for general λ, λ′, the Massey triple

product is nontrivial.

Question. It is not clear what is geometric meaning behind the nontrivial

Massey products from the example above. We are still looking for more exam-

ples and trying to explain this phenomena.

Question. We study secondary geometric invariants over smooth manifolds

via spark theory. One may ask whether there exist similar secondary invariants

over orbifolds. There are several papers on this topic, e.g. [LU] [LM]. In fact,

we can develop an orbifold spark theory which may be the correct secondary

invariant theory for orbifolds. It is interesting to compare our theory with [LU]

[LM].

75



Chapter 4

d̄-sparks of Level p

In this chapter, we study secondary geometric invariants on complex manifolds.

We introduce the groups of d̄-spark classes of level p which are generalizations

of the group of ∂̄-spark classes in [HL3]. These groups are obtained from a

family of generalized spark complexes in the sense of Definition 2.3.1. The main

examples are the Dolbeault-Federer spark complex, the Čech-Dolbeault spark

complex and the Čech-Dolbeault hyperspark complex which are presented in

§4.1, §4.2 and §4.3 respectively. The associated groups of d̄-spark classes are

shown to be quotient groups of differential characters and spark characters.

A ring structure is induced from the one on spark characters. Moreover, in

Proposition 4.1.4, we see that the Deligne cohomology groups are contained

in the groups of d̄-spark classes. So we may represent a Deligne cohomology

class by a d̄-spark and give a product formula, which will be shown in the next

Chapter. Note that all characters in this chapter is of coefficient C/Z.
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4.1 Dolbeault-Federer Sparks of Level p

We studied the de Rham-Federer spark complex associated a smooth manifold

X in §3.1.1. Recall the de Rham-Federer spark complex is a triple

(D′∗(X), E∗(X), IF∗(X)).

Now let X be a complex manifold and E∗ and D′∗ denote the sheaves

complex-valued smooth forms and currents respectively. We still denote

by Ĥ∗
spark(X) the associated group of spark classes.

Now we introduce a new spark complex, the Dolbeault-Federer spark com-

plex of level p, which is closely related to the de Rham-Federer spark complex.

For a complex manifold X, we can decompose the space of smooth k-forms

by types:

Ek(X) ≡
⊕
r+s=k

Er,s(X).

And similarly,

D′k(X) ≡
⊕
r+s=k

D′r,s(X).

Fix an integer p > 0 and consider the truncated complex (D′∗(X, p), dp)

with

D′k(X, p) ≡
⊕

r+s=k,r<p

D′r,s(X) and dp ≡ πp ◦ d

where πp : D′k(X)→ D′k(X, p) is the natural projection

πp(a) = a0,k + ...+ ap−1,k−p+1.

77



Similarly, we can define (E∗(X, p), dp).

Definition 4.1.1. By the Dolbeault-Federer spark complex of level p, or

more simply, the d̄-spark complex of level p we mean the triple (F ∗
p , E

∗
p , I

∗
p )

F ∗
p ≡ D′∗(X, p), E∗

p ≡ E∗(X, p), I∗p ≡ IF∗(X)

with maps

E∗
p ↪→ F ∗

p and Ψp : I∗p → F ∗
p

where Ψp = πp ◦ i.

Remark 4.1.2. The triple (F ∗
p , E

∗
p , I

∗
p ) ≡ (D′∗(X, p), E∗(X, p), IF∗(X)) is a

spark complex.

Proof. First,

H∗(F ∗
p ) ∼= H∗(E∗

p)
∼= H∗(Ω∗<p) ≡ H∗(X, p).

where H∗(Ω∗<p) ≡ H∗(X, p) denotes the hypercohomology of complex of

sheaves

0→ Ω0 → Ω1 → Ω2 → · · · → Ωp−1 → 0

and Ωk is the sheaf of holomorphic k-forms on X.

For the proof of Ψp(I
k
p ) ∩ Ek

p = {0} for k > 0, we refer to [HL3, Appendix

B].

Definition 4.1.3. A Dolbeault-Federer spark of level p of degree k, or
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a d̄-spark of level p is a pair

(a, r) ∈ D′k(X, p)⊕ IFk+1(X)

satisfying the spark equations

dpa = e−Ψp(r) and dr = 0

for some e ∈ Ek+1(X, p).

Two Dolbeault-Federer sparks of level p, (a, r) and (a′, r′) are equivalent

if there exist b ∈ D′k−1(X, p) and s ∈ IFk(X) such that

a− a′ = dpb+ Ψp(s) and r − r′ = −ds.

The equivalence class determined by a spark (a, r) will be denoted by [(a, r)],

and the group of Dolbeault-Federer spark classes of level p of degree k will be

denoted by Ĥk
spark(X, p) or Ĥk(X, p) for short.

Applying Proposition 2.3.7, we have

Proposition 4.1.4. Let Hk+1
Z (X, p) denote the image of map Ψp∗ : Hk+1(X,Z)→

Hk+1(X, p), and Zk+1
Z (X, p) denote the set of dp-closed forms in Ek+1(X, p)

which represent classes in Hk+1
Z (X, p). Let Ĥk

∞(X, p) denote the spark classes

representable by smooth forms, and Hk+1
D (X,Z(p)) denote the Deligne coho-

mology group.

The 3× 3 diagram for Ĥk(X, p) can be written as
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0

��

0

��

0

��
0 // H

k(X,p)

Hk
Z (X,p)

//

��

Ĥk
∞(X, p) //

��

dpEk(X, p) //

��

0

0 // Hk+1
D (X,Z(p)) //

��

Ĥk(X, p)
δ1 //

δ2
��

Zk+1
Z (X, p) //

��

0

0 // ker Ψ∗ //

��

Hk+1(X,Z)
Ψp∗ //

��

Hk+1
Z (X, p) //

��

0

0 0 0
A special and the most interesting case is when X is Kähler and k = 2p−1,

0

��

0

��

0

��
0 // J p(X) //

��

Ĥ2p−1
∞ (X, p) //

��

dpE2p−1(X, p) //

��

0

0 // H2p
D (X,Z(p)) //

��

Ĥ2p−1(X, p)
δ1 //

δ2
��

Z2p
Z (X, p) //

��

0

0 // Hdgp,p(X) //

��

H2p(X,Z)
Ψp∗ //

��

H2p
Z (X, p) //

��

0

0 0 0
where J p(X) denotes the pth intermediate Jacobian and Hdgp,p(X) is the

set of the Hodge classes.

Proof. The proof follows Proposition 2.3.7 directly. The only nontrivial part

is to show Hk+1
D (X,Z(p)) ∼= ker δ1. We postpone our proof to §5 where we

study Deligne cohomology in detail.

Remark 4.1.5. The d̄-spark complex is a generalization of ∂̄-spark complex

in [HL3] which corresponds the special case p = 1.
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4.1.1 Ring Structure

We can establish the ring structure on Ĥ∗(X, p) by identifying it as a quotient

ring of Ĥ∗(X).

Consider the following commutative diagram

IF∗(X) i //

id
��

D′∗(X)

πp

��

E∗(X)ioo

πp

��
IF∗(X)

πp◦i // D′∗(X, p) E∗(X, p)ioo

which induces a group homomorphism Πp : Ĥ∗(X) → Ĥ∗(X, p). Further-

more, we have

Theorem 4.1.6. The morphism of spark complexes (πp, πp, id) : (F ∗, E∗, I∗)→

(F ∗
p , E

∗
p , I

∗
p ) induces a surjective group homomorphism

Πp : Ĥ∗(X)→ Ĥ∗(X, p)

whose kernel is an ideal. Hence, Ĥ∗(X, p) carries a ring structure.

Proof. It’s straightforward to see that the diagram above commutes and πp

commutes with differentials. Consequently, the induced map (a, r) 7→ (πp(a), r)

on sparks descends to a well defined homomorphism Πp : Ĥk(X)→ Ĥk(X, p)

as claimed.

To prove the surjectivity, consider a spark (A, r) ∈ F k
p ⊕ Ik+1 with dr = 0

and dpA = e − Ψp(r) for some e ∈ Ek+1
p . We can choose some smooth form

which represents same cohomology class with r in Hk+1(F ∗) ∼= Hk+1(E∗), so

there exist a0 ∈ F k, e0 ∈ Ek+1 such that da0 = e0 − r. We have πp(da0) =

πp(e0 − r) ⇒ dp(πpa0) = πpe0 − Ψpr. Hence, dp(A − πpa0) = e − πpe0 is

a smooth form. It follows by Lemma 2.2.2 that there exist b ∈ F k−1
p and
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f ∈ Ek
p with A − πpa0 = f + dpb. Set a = a0 + f + db and note that

da = da0 + df + ddb = e0 − r + df = (e0 + df)− r. Hence, (a, r) is a spark of

degree k and πpa = πp(a0 + f + db) = πpa0 + f + dpb = A. So Πp is surjective.

We need the following lemma to show the kernel is an ideal.

Lemma 4.1.7. On Ĥk(X), one has that ker(Πp) = {α ∈ Ĥk(X) : ∃(a, 0) ∈ α

where a is smooth and πp(a) = 0}. In particular, ker(Πp) ⊂ Ĥk
∞(X).

Proof. One direction is clear. Suppose α ∈ ker(Πp) and choose any spark

(a, r) ∈ α. Πp(α) = 0 means that there exist b ∈ F k−1
p and s ∈ Ik with

 πp(a) = dpb+ Ψp(s) = πp(db+ s)

r = −ds

Replace (a, r) by (ã, 0) = (a−db−s, r+ds), note that πp(ã) = πp(a−db−s) = 0.

In fact, we can choose ã to be smooth. dã = da − ds = e − r − ds = e

is a smooth form, it follows by Lemma 2.2.2 and the fact H∗(F pD′∗(X)) =

H∗(F pE∗(X)) that we can choose ã to be smooth. Note that F 0D′∗ ⊃ F 1D′∗ ⊃

· · · ⊃ F pD′∗ ⊃ · · · is the naive filtration.

By the product formula of Ĥ∗(X), it is easy to see the kernel is an ideal.

In fact, if α and β are two spark classes, and α ∈ ker(Πp), then we can choose

representatives (a, 0) and (b, s) for α and β respectively, with spark equations

da = e− 0 and db = f − s, where a, e, f are smooth. By the product formula,

αβ can be represented by (a∧ f + (−1)deg a+10∧ b, 0∧ s) = (a∧ f, 0) which is

in ker(Πp).

Hence, Ĥ∗(X, p) carries a ring structure induced from Ĥ∗(X).
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4.1.2 Functoriality

Proposition 4.1.8. There are commutative diagrams

Ĥk(X)
δ1 //

Πp

��

Zk+1
Z (X)

πp

��

Ĥk(X)
δ2 //

Πp

��

Hk+1(X,Z)

=

��

Ĥk(X, p)
δ1 // Zk+1

Z (X, p) Ĥk(X, p)
δ2 // Hk+1(X,Z)

Proof. Let α ∈ Ĥk(X). Choose a representative (a, r) ∈ α with spark equa-

tion da = e− r. Then πp ◦ δ1(α) = πp(e), and δ1 ◦ Πp(α) = δ1 ◦ Πp([(a, r)]) =

δ1([(πp(a), r)]) = πp(e) since (πp(a), r) is a d̄-spark of level p with spark equa-

tion dp(πpa) = πp(e)−Ψpr. Hence, the first diagram is commutative. We can

verify the second one by the same way.

Moreover, we have the following theorem

Theorem 4.1.9. Any holomorphic map f : X → Y between complex mani-

folds induces a graded ring homomorphism

f ∗ : Ĥ∗(Y, p)→ Ĥ∗(X, p)

with the property that if g : Y → Z is holomorphic, then (g ◦ f)∗ = f ∗ ◦ g∗.

Proof. By Theorem 3.1.15, it suffices to show f ∗(ker Πp) ⊂ (ker Πp) which is

directly from Lemma 4.1.7.

Corollary 4.1.10. Ĥ∗(•, p) is a graded ring functor on the category of complex

manifolds and holomorphic maps.
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Theorem 4.1.11. (Gysin map) Any proper holomorphic submersion map f :

Xm+r → Y m between complex manifolds induces a Gysin homomorphism

f∗ : Ĥ∗(X, p)→ Ĥ∗−2r(Y, p− r).

Proof. It was shown in Theorem 3.1.16 that f induces a Gysin map f∗ :

Ĥ∗(X) → Ĥ∗−r(Y ). Moreover, it is clear that f ∗(ker Πp) ⊂ (ker Πp−r) from

Lemma 4.1.7.

4.2 Čech-Dolbeault Sparks of Level p

We now consider other presentations of the d̄-spark classes. We introduce

the Čech-Dolbeault spark complex of level p which is a generalization of the

Čech-Dolbeault spark complex in [HL3].

Recall that, for a complex manifold X, we can decompose the space of

smooth k-forms over an open set U ⊂ X by types:

Ek(U) ≡
⊕
r+s=k

Er,s(U).

Let Ek(U, p) =
⊕

r+s=k,r<p Er,s(U), and Ekp denote the subsheaf of Ek with

Ekp (U) = Ek(U, p). And similarly, we can define the sheaf D′kp with D′kp (U) =

D′k(U, p).

Suppose U is a good cover of X and consider the total complex of the

following double complex with total differential Dp = δ + (−1)rdp:

84



...
...

...
...

C0(U , E2
p )

δ //

dp

OO

C1(U , E2
p )

δ //

−dp

OO

C2(U , E2
p )

δ //

dp

OO

· · · · · · δ // Cr(U , E2
p )

(−1)rdp

OO

δ // · · ·

C0(U , E1
p )

δ //

dp

OO

C1(U , E1
p )

δ //

−dp

OO

C2(U , E1
p )

δ //

dp

OO

· · · · · · δ // Cr(U , E1
p )

(−1)rdp

OO

δ // · · ·

C0(U , E0
p )

δ //

dp

OO

C1(U , E0
p )

δ //

−dp

OO

C2(U , E0
p )

δ //

dp

OO

· · · · · · δ // Cr(U , E0
p )

(−1)rdp

OO

δ // · · ·
It is easy to see the row complexes are exact everywhere except in the first

column on the left, and

{ker(δ) on the left column} ∼= {global sections of sheaves E∗p} = E∗(X, p).

Hence,

H∗(
⊕
r+s=∗

Cr(U , Esp)) ∼= H∗(E∗(X, p)) ∼= H∗(X, p).

Note that every column complex is exact everywhere except at the bottom

and the level of p from the bottom.

Now we consider the triple of complexes

(F ∗
p , E

∗
p , I

∗
p ) ≡ (

⊕
r+s=∗

Cr(U , Esp), E∗(X, p), C∗(U ,Z)).

And we have

Proposition 4.2.1. The triple (F ∗
p , E

∗
p , I

∗
p ) defined above is a spark complex

( even in the sense of Definition 2.1.1 ), which is called the Čech-Dolbeault

spark complex of level p, or the smooth hyperspark complex of level

p.
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Proof. We have shown that E∗
p ↪→ F ∗

p induces an isomorphism H∗(E∗
p)
∼=

H∗(F ∗
p ). Also there is an injective cochain map I∗p ≡ C∗(U ,Z) ↪→ C∗(U , E0

p ) ↪→⊕
r+s=∗C

r(U , Esp) ≡ F ∗
p .

Ek
p ∩ Ikp = {0} for k > 0 is trivial.

Definition 4.2.2. A Čech-Dolbeault spark of level p of degree k, or a

smooth hyperspark of level p is an element

a ∈
⊕
r+s=k

Cr(U , Esp)

with the spark equation

Dpa = e− r

where e ∈ Ek+1
p (X) ⊂ C0(U , Ek+1

p ) is of bidegree (0, k+1) and r ∈ Ck+1(U ,Z).

Two Čech-Dolbeault sparks of level p, a and a′ are equivalent if there exist

b ∈
⊕

r+s=k−1C
r(U , Esp) and s ∈ Ck(U ,Z) satisfying

a− a′ = Dpb+ s.

The equivalence class determined by a Čech-Dolbeault spark a will be de-

noted by [a], and the group of Čech-Dolbeault spark classes of level p will be

denoted by Ĥk
smooth(X, p).

Recall that the smooth hyperspark complex in the last chapter is de-

fined by

(F ∗, E∗, I∗) = (
⊕
r+s=∗

Cr(U , Es), E∗(X), C∗(U ,Z)).

The associated group of smooth hyperspark classes is denoted by Ĥ∗
smooth(X).
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The relation between the smooth hyperspark complex and the Čech-Dolbeault

spark complex of level p is the same as the relation between the de Rham-

Federer spark complex and the Dolbeault-Federer spark complex of level p.

We have the natural morphism (πp, πp, id) : (F ∗, E∗, I∗) −→ (F ∗
p , E

∗
p , I

∗
p ). Ex-

plicitly, we have the following commutative diagram

C∗(U ,Z) i //

id
��

⊕
r+s=∗C

r(U , Es)
πp

��

E∗(X)ioo

πp

��
C∗(U ,Z) i //

⊕
r+s=∗C

r(U , Esp) E∗(X, p)ioo

Theorem 4.2.3. The morphism of spark complexes (πp, πp, id) : (F ∗, E∗, I∗)→

(F ∗
p , E

∗
p , I

∗
p ) induces a surjective group homomorphism

Πp : Ĥ∗
smooth(X)→ Ĥ∗

smooth(X, p)

whose kernel is an ideal. Hence, Ĥ∗
smooth(X, p) carries a ring structure.

Proof. The proof is similar to Theorem 4.1.6. It’s plain to see that the diagram

above commutes and πp commutes with differentials. Hence, the induced map

a 7→ πp(a) on sparks descends to a group homomorphism Πp : Ĥk
smooth(X) →

Ĥk
smooth(X, p).

To prove the surjectivity, consider a spark a ∈ F k
p with Dpa = e − r for

some e ∈ Ek+1
p and r ∈ Ik+1

p = Ik+1. We can choose some smooth form which

represents same cohomology class with r in Hk+1(F ∗) ∼= Hk+1(E∗), so there

exist a0 ∈ F k, e0 ∈ Ek+1 such that Da0 = e0 − r. We have

πp(Da0) = πp(e0)− r ⇒ Dp(πpa0) = πpe0 − r.
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Hence,Dp(a−πpa0) = e−πpe0 is a smooth form. It follows by Lemma 2.2.2 that

there exist b ∈ F k−1
p and f ∈ Ek

p with a−πpa0 = f +Dpb. Set ã = a0 +f +Db

and note that Dã = Da0 +Df +DDb = e0 − r + df = (e0 + df)− r. Hence,

ã is a spark of degree k and πpã = πp(a0 + f +Db) = πpa0 + f +Dpb = a. So

Πp is surjective.

We need the following lemma to show the kernel is an ideal.

Lemma 4.2.4. On Ĥk
smooth(X), one has that ker(Πp) = {α ∈ Ĥk

smooth(X) :

∃a ∈ α where a ∈ Ek(X) ⊂ C0(U , Ek) and πp(a) = 0}. In particular, ker Πp ⊂

Ĥk
∞(X).

Proof. One direction is clear. Suppose α ∈ ker(Πp) and choose any spark

a ∈ α with Da = e − r. Πp(α) = 0 means that there exist b ∈ F k−1
p and

s ∈ Ikp = Ik with πp(a) = Dpb + s = πp(Db) + s which implies Dp(πpa) = δs.

On the other hand, Dp(πpa) = πp(Da) = πpe − r. So we have πpe = 0 and

−r = δs. Replace a by ā = a−Db− s, then ā represents the same class as a

and πp(ā) = πp(a−Db)− s = 0.

In fact, we can choose ā in Ek(X) ⊂ C0(U , Ek). Since

Dā = Da− δs = e− (r + δs) = e

is a global smooth form, it follows by Lemma 2.2.2 and the fact

H∗(
⊕
r+s=∗

Cr(U , F pEs)) ∼= H∗(F pE∗(X))

that we can choose ā to be smooth. Note that F 0E∗ ⊃ F 1E∗ ⊃ · · · ⊃ F pE∗ ⊃

· · · is the naive filtration.
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By the product formula of Ĥ∗
smooth(X), it is easy to see the kernel is an

ideal. Hence, Ĥ∗
smooth(X, p) carries a ring structure induced from Ĥ∗

smooth(X).

4.3 Čech-Dolbeault Hypersparks of Level p

Now we introduce the Čech-Dolbeault hyperspark complex of level p which set

up a bridge connecting the Čech-Dolbeault spark complex of level p and the

Dolbeault-Federer spark complex of level p.

Fix a good cover U of X and consider total complex of the following double

complex with total differential Dp = δ + (−1)rdp:

...
...

...
...

C0(U ,D′2p ) δ //

dp

OO

C1(U ,D′2p ) δ //

−dp

OO

C2(U ,D′2p ) δ //

dp

OO

· · · · · · δ // Cr(U ,D′2p )

(−1)rdp

OO

δ // · · ·

C0(U ,D′1p ) δ //

dp

OO

C1(U ,D′1p ) δ //

−dp

OO

C2(U ,D′1p ) δ //

dp

OO

· · · · · · δ // Cr(U ,D′1p )

(−1)rdp

OO

δ // · · ·

C0(U ,D′0p ) δ //

dp

OO

C1(U ,D′0p ) δ //

−dp

OO

C2(U ,D′0p ) δ //

dp

OO

· · · · · · δ // Cr(U ,D′0p )

(−1)rdp

OO

δ // · · ·
It is easy to see the row complexes are exact everywhere except the first

column on the left, and

{ker(δ) on the left column} ∼= {global sections of sheaves D′∗p } = D′∗(X, p).

Hence,

H∗(
⊕
r+s=∗

Cr(U ,D′sp )) ∼= H∗(D′∗(X, p)) ∼= H∗(E∗(X, p)) ∼= H∗(X, p).
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Note that every column complex is exact everywhere except at the bottom

and the level of p from the bottom.

Now we consider the triple of complexes

(F ∗
p , E

∗
p , I

∗
p ) ≡ (

⊕
r+s=∗

Cr(U ,D′sp ), E∗(X, p),
⊕
r+s=∗

Cr(U , IF s)).

And we have

Proposition 4.3.1. The triple of complexes (F ∗
p , E

∗
p , I

∗
p ) as defined above is

a spark complex, which is called the Čech-Dolbeault hyperspark complex

of level p, or more simply, the hyperspark complex of level p.

Proof. We have shown that E∗
p ↪→ F ∗

p induces an isomorphism H∗(E∗
p)
∼=

H∗(F ∗
p ). Also there is a map

Ψp : I∗p ≡
⊕
r+s=∗

Cr(U , IF s) ↪→
⊕
r+s=∗

Cr(U ,D′s) πp−→
⊕
r+s=∗

Cr(U ,D′sp ) ≡ F ∗
p .

And Ek
p ∩ Ikp = {0} for k > 0 follows [HL3, Appendix B].

Definition 4.3.2. A Čech-Dolbeault hyperspark of level p of degree k,

or hyperspark of level p is a pair

(a, r) ∈
⊕
r+s=k

Cr(U ,D′sp )⊕
⊕

r+s=k+1

Cr(U , IF s)

with the spark equations

Dpa = e−Ψpr and Dr = 0
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where e ∈ Ek+1
p (X) ⊂ C0(U ,D′k+1

p ) is of bidegree (0, k + 1).

Two Čech-Dolbeault sparks of level p, (a, r) and (a′, r′) are equivalent if

there exist

b ∈
⊕

r+s=k−1

Cr(U ,D′sp ) and s ∈
⊕
r+s=k

Cr(U , IF s)

satisfying

a− a′ = Dpb+ s and r = −Ds.

The equivalence class determined by a Čech-Dolbeault hyperspark (a, r) will

be denoted by [(a, r)], and the group of Čech-Dolbeault hyperspark classes of

level p will be denoted by Ĥk
hyper(X, p).

Recall the hyperspark complex

(F ∗, E∗, I∗) = (
⊕
r+s=∗

Cr(U ,D′s), E∗(X),
⊕
r+s=∗

Cr(U , IF s))

defined in §2.1. The hyperspark complex and the Čech-Dolbeault hyper-

spark complex of level p is related by the natural morphism (πp, πp, id) :

(F ∗, E∗, I∗) −→ (F ∗
p , E

∗
p , I

∗
p ). Explicitly, we have the following commutative

diagram⊕
r+s=∗C

r(U , IF s) i //

id
��

⊕
r+s=∗C

r(U ,D′s)
πp

��

E∗(X)ioo

πp

��⊕
r+s=∗C

r(U , IF s) i //
⊕

r+s=∗C
r(U ,D′sp ) E∗(X, p)ioo

Similar to last two sections, we have the following lemma and theorem

Lemma 4.3.3. On Ĥk
hyper(X), one has that ker(Πp) = {α ∈ Ĥk

hyper(X) : ∃a ∈

α where a ∈ Ek(X) ⊂ C0(U ,D′k) and πp(a) = 0}. In particular, ker(Πp) ⊂
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Ĥk
∞(X).

Theorem 4.3.4. The morphism of spark complexes (πp, πp, id) : (F ∗, E∗, I∗)→

(F ∗
p , E

∗
p , I

∗
p ) induces a surjective group homomorphism

Πp : Ĥ∗
hyper(X)→ Ĥ∗

hyper(X, p)

whose kernel is an ideal. Hence, Ĥ∗
hyper(X, p) carries a ring structure.

In §3.1, we showed that both the de Rham-Federer spark complex and the

smooth hyperspark complex are quasi-isomorphic to the hyperspark complex.

Hence,

Ĥ∗
spark(X) ∼= Ĥ∗

hyper(X) ∼= Ĥ∗
smooth(X).

Similarly, we establish relations among the Dolbeault-Federer spark com-

plex, the Čech-Dolbeault spark complex and the Čech-Dolbeault hyperspark

complex of level p.

Theorem 4.3.5. We have morphisms of spark complexes

the de Rham-Federer
spark complex

i //

πp

��

the hyperspark complex

πp

��

the smooth
hyperspark complex

ioo

πp

��
the Dolbeault-Federer

spark complex of level p
i // the Čech-Dolbeault hyperspark

complex of level p
the Čech-Dolbeault spark

complex of level p

ioo

where horizontal morphisms are quasi-isomorphisms.

Hence we get induced homomorphisms

Ĥ∗
spark(X)

= //

Πp

��

Ĥ∗
hyper(X)

Πp

��

Ĥ∗
smooth(X)

=oo

Πp

��

Ĥ∗
spark(X, p)

= // Ĥ∗
hyper(X, p) Ĥ∗

smooth(X, p)
=oo

where the horizontal ones are isomorphism.
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Proof. It is easy to see we have the following two commutative diagrams

IF∗(X)
Ψp //

i
��

D′∗(X, p)

i
��

E∗(X, p)ioo

⊕
r+s=∗C

r(U , IF s) Ψp //
⊕

r+s=∗C
r(U ,D′sp ) E∗(X, p)ioo

and

C∗(U ,Z) i //

i
��

⊕
r+s=∗C

r(U , Esp)

i
��

E∗(X, p)ioo

⊕
r+s=∗C

r(U , IF s) Ψp //
⊕

r+s=∗C
r(U ,D′sp ) E∗(X, p)ioo

where

i : IF∗(X) −→
⊕
r+s=∗

Cr(U , IF s) and i : C∗(U ,Z) −→
⊕
r+s=∗

Cr(U , IF s)

are quasi-isomorphisms of cochain complexes.

So far, we have introduced three families of spark complexes associated

to a complex manifold X, and showed the natural isomorphisms between the

groups of spark classes associated to them. We denote the groups of spark

classes by Ĥ∗(X, p) collectively, and call them the Harvey-Lawson spark

characters of level p associated to X. The ring structure of Ĥ∗(X, p)

is induced from the ring structure of Ĥ∗(X). We may define the product

in Ĥ∗(X) via the de Rham-Federer spark complex or the smooth hyperspark

complex. In the next chapter, we shall study analytic Deligne cohomology and

define the product for Deligne cohomology.
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Chapter 5

Analytic Deligne Cohomology and Product

Formula via Spark Presentation

In this chapter, we study analytic Deligne cohomology and its ring structure.

In §5.1, we represent Deligne cohomology classes by d̄-spark classes and show

an explicit product formula for Deligne cohomology classes. The main results

are Theorems 5.1.6, 5.1.9 and 5.1.11. In §5.2, we define Massey higher products

in Deligne cohomology. An explicit formula for the Massey triple product is

also shown. As an application of our theory, we show that every algebraic

cycle represents a Deligne cohomology class and derive the ring homomorphism

ψ : CH∗(X)→ H2∗
D (X,Z(∗)) in §5.3.

5.1 Ring Structure on Deligne Cohomology

Definition 5.1.1. Let X be a complex manifold. For p ≥ 0, the Deligne

complex ZD(p) is the complex of sheaves:

0→ Z i→ Ω0 d→ Ω1 d→ · · · d→ Ωp−1 → 0
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where Ωk denotes the sheaf of holomorphic k-forms on X. The hypercohomol-

ogy groups Hq(X,ZD(p)) are called the Deligne cohomology groups of X,

and are denoted by Hq
D(X,Z(p)).

Remark 5.1.2. In Deligne complex ZD(p), we always consider that Z is of

degree 0, and Ωk is of degree k + 1.

Example 5.1.3. It is easy to see Hq
D(X,Z(0)) = Hq(X,Z) and Hq

D(X,Z(1)) =

Hq−1(X,O∗).

In [B], Beilinson defined a cup product

∪ : ZD(p)⊗ ZD(p′)→ ZD(p+ p′)

by

x ∪ y =


x · y if deg x = 0;

x ∧ dy if deg x > 0 and deg y = p′;

0 otherwise.

The cup product ∪ is a morphism of complexes and associative [EV] [Br1],

hence induces a ring structure on

⊕
p,q

Hq
D(X,Z(p)).

We are identifying the Deligne cohomology groups with subgroups of the

groups of d̄-spark classes. Then we give a product formula for Deligne coho-

mology.
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Lemma 5.1.4. We have the short exact sequence

0→ Hk
D(X,Z(p))→ Ĥk−1

spark(X, p)→ Z
k
Z(X, p)→ 0

which is the middle row of 3 × 3 diagram for the group of d̄-spark classes of

level p. Hence, for any Deligne class α ∈ Hk
D(X,Z(p)), there exists a spark

representative

(a, r) ∈ D′k−1(X, p)⊕ IFk(X) with dpa = −Ψp(r), dr = 0.

Proof. By Proposition 2.3.7 it suffices to show

Hk
D(X,Z(p)) ∼= Hk−1(Cone(Ψ : IF∗(X)→ D′∗(X, p))).

By definition,H∗
D(X,Z(p)) is the hypercohomology of the complex of sheaves

0→ Z→ Ω0 → Ω1 → . . .→ Ωp−1 → 0.

In other words, it is the hypercohomology of the Cone (Z→ Ω∗<p)[−1].

Consider the acyclic resolutions:

Z→ IF∗ and Ωk → D′k,∗.

And we have quasi-isomorphism of complexes of sheaves

Cone(Z→ Ω∗<p) ' Cone(Ψ : IF∗ →
⊕

s+t=∗,s<p

D′s,t),
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and hence

Hk
D(X,Z(p)) ∼= Hk−1(Cone(Z→ Ω∗<p)) ∼= Hk−1(Cone(Ψ : IF∗ →

⊕
s+t=∗,s<p

D′s,t))

∼= Hk−1(Cone(Ψ : IF∗(X)→ D′∗(X, p))).

Then for any Deligne class α ∈ Hk
D(X,Z(p)) ⊂ Ĥk−1(X, p), we can find a

representative (a, r) ∈ D′k−1(X, p)⊕Ik(X) with dpa = e−Ψp(r), dr = 0. And

we have e = 0 since α ∈ ker δ1.

Applying the representation of Deligne cohomology classes in terms of cur-

rents above, we define a product in Deligne cohomology

Hk
D(X,Z(p))⊗H l

D(X,Z(q)) −→ Hk+l
D (X,Z(p+ q)).

First, for any Deligne class α ∈ Hk
D(X,Z(p)), we choose a spark represen-

tative

(a, r) ∈ D′k−1(X, p)⊕ IFk(X) with dpa = −Ψp(r), dr = 0.

Similarly, for any β ∈ H l
D(X,Z(q)), we choose a spark representative

(b, s) ∈ D′l−1(X, q)⊕ IF l(X) with dqb = −Ψq(s), ds = 0.
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Since Πp : Ĥ∗(X)→ Ĥ∗(X, p) is surjective, there exist

(ã, r) ∈ D′k−1(X)⊕ IFk(X) with Πp[(ã, r)] = [(πp(ã), r)] = [(a, r)] = α,

and

(b̃, s) ∈ D′l−1(X)⊕ IF l(X) with Πq[(b̃, s)] = [(πq(b̃), s)] = [(b, s)] = β.

ã and b̃ represent spark classes in Ĥ∗(X). Write the spark equations for ã

and b̃ as

dã = e− r and db̃ = f − s,

where πpã = a, πpe = 0 and πq b̃ = b, πqf = 0.

By the product formula in Theorem 3.1.14

[(ã, r)] ∗ [(b̃, s)] = [(ã ∧ f + (−1)kr ∧ b̃, r ∧ s)] = [(ã ∧ s+ (−1)ke ∧ b̃, r ∧ s)].

Since

d(ã ∧ f + (−1)kr ∧ b̃) = e ∧ f − r ∧ s and πp+q(e ∧ f) = 0,

we get Πp+q[(ã ∧ f + (−1)kr ∧ b̃, r ∧ s)] ∈ Hk+l
D (X,Z(p + q)), and define it as

α ∗ β.

Now we show the product is well-defined, i.e. it is independent of the

choices of representatives α and β. If we have another representative (a′, r′) ∈

α and a lift (ã′, r′) with Πp[(ã
′, r′)] = [(a′, r′)] = α, then [(ã, r) − (ã′, r′)] ∈

ker Πp. By Lemma 4.1.7, there exists a representative of spark class [(ã, r) −
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(ã′, r′)], which is of form (c, 0) where c is smooth and πp(c) = 0. Then we have

Πp+q([(ã, r)] ∗ [(b̃, s)]− [(ã′, r′)] ∗ [(b̃, s)])

= Πp+q([(ã, r)− (ã′, r′)] ∗ [(b̃, s)])

= Πp+q([(c, 0)] ∗ [(b̃, s)])

= Πp+q([(c ∧ f + (−1)k0 ∧ b̃, 0)])

= 0

Similarly, we can show the product does not depend on representatives of β

either.

Remark 5.1.5. In the process above, we can always choose good representa-

tives a, ã, b, b̃, r and s in sense of Proposition 3.1.13 such that all wedge

products are well defined.

Theorem 5.1.6. Product formula of Deligne cohomology I

For any Deligne classes α ∈ Hk
D(X,Z(p)) and β ∈ H l

D(X,Z(q)), there exist

spark representations (a, r) for α and (b, s) for β as above. Let (ã, r) and (b̃, s)

be de Rham-Federer sparks which are lifts of (a, r) and (b, s). Then we define

the product α ∗ β in Hk+l
D (X,Z(p+ q)) by

α ∗ β = Πp+q[(ã ∧ f + (−1)kr ∧ b̃, r ∧ s)] = [(πp+q(ã ∧ f + (−1)kr ∧ b̃), r ∧ s)].

Proof. We have shown the product is well defined. In Theorem 5.1.11, we shall

verify that this product is equivalent to Beilinson’s definition.
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Remark 5.1.7. Suppose X is a algebraic manifold and CH∗(X) is the Chow

ring of X. Considering every nonsingular subvariety as a integrally flat cur-

rent, we can define the group homomorphism

ψ : CHp(X)→ H2p
D (X,Z(p)).

By our product formula, it is quite easy to see this map induces a ring homo-

morphism, i.e. the ring structure of Deligne cohomology is compatible with the

ring structure of the Chow ring. We shall explain this in the next section.

In Theorem 5.1.6, we represent Deligne cohomology classes by currents and

show an explicit product formula of Deligne classes. Now we derive another

product formula by representing Deligne classes in terms of the Čech-Dolbeault

sparks. Then we show this product is equivalent to the product defined by

Beilinson in Theorem 5.1.11.

Lemma 5.1.8. We have the short exact sequence

0→ Hk
D(X,Z(p))→ Ĥk−1

smooth(X, p)→ Z
k
Z(X, p)→ 0.

For any Deligne class α ∈ Hk
D(X,Z(p)), there exists a representative

(a, r) ∈
⊕

r+s=k−1

Cr(U , Esp)⊕ Ck(U ,Z) with Dpa = −r, δr = 0.

Proof. Note that we use (a, r) to represent a Čech-Dolbeault spark here al-

though we can omit r. The reason is that we can make the proof of Theorem

5.1.11 clearer with this representation.
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Applying the following quasi-isomorphisms of complexes of sheaves:

Z ' C∗(U ,Z) and Ω∗<p ' E∗p '
⊕
r+s=∗

Cr(U , Esp),

we get

Hk
D(X,Z(p)) ∼= Hk−1(Cone(Z→ Ω∗<p) ∼= Hk−1(Cone(C∗(U ,Z)→

⊕
r+s=∗

Cr(U , Esp)))

∼= Hk−1(Cone(C∗(U ,Z)→
⊕
r+s=∗

Cr(U , Esp))).

By Proposition 2.3.7 and definition of Ĥ∗
smooth(X, p), we have the short

exact sequence:

0→ Hk
D(X,Z(p))→ Ĥk−1

smooth(X, p)→ Z
k
Z(X, p)→ 0.

Hence, for any Deligne class α ∈ Hk
D(X,Z(p)) ⊂ Ĥk−1

smooth(X, p), we can find

a representative (a, r) ∈
⊕

r+s=k−1C
r(U , Esp) ⊕ Ck(U ,Z) with Dpa = e − r,

δr = 0. And we have e = 0 since α ∈ ker δ1.

Via the Čech-Dolbeault spark complex, we establish another product for-

mula for Deligne cohomology. The construction is similar to the former one,

but we still show the construction in detail to help the readers to understand

Theorem 5.1.11.

Our goal is to define the product in Deligne cohomology

Hk
D(X,Z(p))⊗H l

D(X,Z(q)) −→ Hk+l
D (X,Z(p+ q)).
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First, we choose a Čech-Dolbeault spark representative

(a, r) ∈
⊕

r+s=k−1

Cr(U , Esp)⊕ Ck(U ,Z) with Dpa = −r, δr = 0

for Deligne class α ∈ Hk
D(X,Z(p)), and a Čech-Dolbeault spark representative

(b, s) ∈
⊕

r+s=l−1

Cr(U , Esp)⊕ C l(U ,Z) with Dqb = −s, δs = 0

for β ∈ H l
D(X,Z(q)).

Since Πp : Ĥ∗
smooth(X) → Ĥ∗

smooth(X, p) is surjective, there exist smooth

hypersparks

(ã, r) ∈
⊕

r+s=k−1

Cr(U , Es)⊕ Ck(U ,Z) with Πp[(ã, r)] = [(a, r)] = α,

and

(b̃, s) ∈
⊕

r+s=l−1

Cr(U , Es)⊕ C l(U ,Z) with Πq[(b̃, s)] = [(b, s)] = β.

Write the spark equations of ã and b̃ as

Dã = e− r and Db̃ = f − s,

where πpã = a, πpe = 0 and πq b̃ = b, πqf = 0.

By the product formula of Ĥ∗
smooth(X) constructed in §3.2,

[(ã, r)] ∗ [(b̃, s)] = [ã ∪ f + (−1)kr ∪ b̃, r ∪ s] = [ã ∪ s+ (−1)ke ∪ b̃, r ∪ s].
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We have

D(ã ∪ f + (−1)kr ∪ b̃) = e ∧ f − r ∪ s and πp+q(e ∧ f) = 0,

so we get Πp+q[(ã∪f +(−1)kr∪ b̃, r∪s)] ∈ Hk+l
D (X,Z(p+q)), which is defined

to be α ∗ β.

The product is only dependent on the spark classes α and β. If we have an-

other representative (a′, r′) ∈ α and a lift (ã′, r′) with Πp[(ã
′, r′)] = [(a′, r′)] =

α, then [(ã, r)− (ã′, r′)] ∈ ker Πp. By Lemma 4.2.4, we can choose a represen-

tative of spark class [(ã, r)− (ã′, r′)], which is of form (c, 0) where c is smooth

and πp(c) = 0. Then we have

Πp+q([(ã, r)] ∗ [(b̃, s)]− [(ã′, r′)] ∗ [(b̃, s)])

= Πp+q([(ã, r)− (ã′, r′)] ∗ [(b̃, s)])

= Πp+q([(c, 0)] ∗ [(b̃, s)])

= Πp+q([(c ∪ f + (−1)k0 ∪ b̃, 0)])

= 0

Similarly, we can show the product does not depend on representatives of β

either.

Theorem 5.1.9. Product formula of Deligne cohomology II

For any Deligne classes α ∈ Hk
D(X,Z(p)) and β ∈ H l

D(X,Z(q)), there exist

Čech-Dolbeault spark representations (a, r) for α and (b, s) for β as above. Let

(ã, r) and (b̃, s) be smooth hypersparks which are lifts of (a, r) and (b, s). Then
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we define the product α ∗ β in Hk+l
D (X,Z(p+ q)) by

α ∗ β = Πp+q[(ã ∪ f + (−1)kr ∪ b̃, r ∪ s)] = [(πp+q(ã ∪ f + (−1)kr ∪ b̃), r ∪ s)].

Theorem 5.1.10. Two product formulas in Theorem 5.1.6 and Theorem 5.1.9

are equivalent.

Proof. The product formula in Theorem 5.1.6 and Theorem 5.1.9 are based

on product formulas of Ĥ∗
spark(X, p) and Ĥ∗

smooth(X, p) established in Theorem

3.1.14 and 3.2.4 respectively. Note that Ĥ∗
spark(X, p)

∼= Ĥ∗
smooth(X, p) and the

ring structures on them are compatible. Hence, product formulas in Theorems

5.1.6 and 5.1.9 are equivalent as well.

Our product formula is quite explicit compared with the product in [B]

which is defined on the sheaf level. Now we verify that these products are

equivalent.

Theorem 5.1.11. The products Theorem 5.1.6 and 5.1.9 are equivalent to

Beilinson’s product.

Proof. It is sufficient to show that the product formula in Theorem 5.1.9 is

the same as Beilinson’s product which is induced from the cup product on the

sheaf level.

The outline of the proof is following: First, we construct an explicit isomor-

phism between Hk
D(X,Z(p)) and ker δ1 : Ĥk−1

smooth(X, p)→ ZkZ(X, p); Then, we

calculate the product induced by ∪ : ZD(p)⊗ ZD(q)→ ZD(p + q) using Čech

resolution; Finally, we calculate the product via smooth hypersparks defined

earlier in this section, and compare these two products.
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Step 1: Fix a good cover {U} of X and take Čech resolution for the

complex of sheaves ZD(p) −→ C∗(U ,ZD(p)).

Then

Hq
D(X,Z(p)) ≡ Hq(ZD(p)) ∼= Hq(Tot(C∗(U ,ZD(p)))) ∼= Hq(Tot(C∗(U ,ZD(p))))

where C∗(U ,ZD(p)) are the groups of global sections of sheaves C∗(U ,ZD(p))

and look like the following double complex.

...
...

...
...

...

Ck(U ,Z)
(−1)ki//

δ

OO

Ck(U ,Ω0)
(−1)k∂//

δ

OO

Ck(U ,Ω1)
(−1)k∂//

δ

OO

Ck(U ,Ω2)
(−1)k∂ //

δ

OO

· · · (−1)k∂// Ck(U ,Ωp−1)

δ

OO

...

δ

OO

...

δ

OO

...

δ

OO

...

δ

OO

...

δ

OO

C2(U ,Z)
i //

δ

OO

C2(U ,Ω0)
∂ //

δ

OO

C2(U ,Ω1)
∂ //

δ

OO

C2(U ,Ω2)
∂ //

δ

OO

· · · ∂ // C2(U ,Ωp−1)

δ

OO

C1(U ,Z)
−i //

δ

OO

C1(U ,Ω0)
−∂ //

δ

OO

C1(U ,Ω1)
−∂ //

δ

OO

C1(U ,Ω2)
−∂ //

δ

OO

· · · −∂ // C1(U ,Ωp−1)

δ

OO

C0(U ,Z)
i //

δ

OO

C0(U ,Ω0)
∂ //

δ

OO

C0(U ,Ω1)
∂ //

δ

OO

C0(U ,Ω2)
∂ //

δ

OO

· · · ∂ // C0(U ,Ωp−1)

δ

OO

Let M∗
p ≡ Tot(C∗(U ,ZD(p))) denote the total complex of the double com-

plex C∗(U ,ZD(p)) with differential

∆p(a) =


(δ + (−1)ri)(a), when a ∈ Cr(U ,Z);

(δ + (−1)r∂)(a), when a ∈ Cr(U ,Ωj), j < p− 1;

δa, when a ∈ Cr(U ,Ωp−1).
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Now we construct a map

ϕp : H∗(M∗
p )
∼= H∗

D(X,Z(p)) −→ ker δ1 ⊂ Ĥ∗−1
smooth(X, p).

Assume that a cycle ã ∈ Mk
p represents a Deligne class in Hk

D(X,Z(p)),

and

ã = r + a = r +
∑

i+j=k−1,j<p

ai,j

where r ∈ Ck(U ,Z) and ai,j ∈ Ci(U ,Ωj).

Note that ai,j ∈ Ci(U ,Ωj) ⊂ Ci(U , E j,0) ⊂ Ci(U , E jp), so a ∈
⊕

i+j=k−1C
i(U , E jp).

And it is easy to see

∆pã = 0 ⇔ Dpa+ (−1)kr = 0 and δr = 0,

whereDp is the differential of the total complex of double complex
⊕

r+s=∗C
r(U , Esp)

defined in §4.2. Hence, ϕp : ã→ (a, (−1)kr) gives a map from cycles to smooth

hypersparks. Moreover, assume ã and ã′ represent the same Deligne class, i.e.

ã− ã′ = ∆pb̃ is a boundary, where b̃ = s+ Σi+j=k−2,j<pb
i,j for s ∈ Ck−1(U ,Z)

and bi,j ∈ Ci(U ,Ωj). Then

a− a′ + r − r′ = ã− ã′ = ∆pb̃ = δs+ (−1)k−1i(s) +Dpb

implies

a− a′ = (−1)k−1s+Dpb and (−1)kr − (−1)kr′ = −(−1)k−1δs,

106



i.e. (a, (−1)kr) and (a′, (−1)kr′) represent the same spark class. So the map

( also denoted by ϕp )

ϕp : Hk
D(X,Z(p))→ Ĥk−1

smooth(X, p)

which maps a Deligne class [ã] to a smooth hyperspark class [(a, (−1)kr)] is

well-defined. Since ϕp([ã]) = [(a, (−1)kr)] satisfies the spark equation Dpa =

0 − (−1)kr, so we have Imϕp ⊂ ker δ1. Therefore, ϕp : Hk
D(X,Z(p)) → ker δ1

give an explicit isomorphism between Hk
D(X,Z(p)) and ker δ1.

Step 2: The product formula for Deligne classes is induced by the cup

product

∪ : ZD(p)⊗ ZD(q)→ ZD(p+ q)

with the formula

x ∪ y =


x · y if deg x = 0;

x ∧ dy if deg x > 0 and deg y = q;

0 otherwise.

In the §8, we showed the explicit product formula on Čech cycles.

Assume

α ∈ Hk
D(X,Z(p)) and β ∈ H l

D(X,Z(q)),

and let

ã = r + a = r +
∑

i+j=k−1,j<p

ai,j ∈Mk
p be a representative of α

107



and

b̃ = s+ b = s+
∑

i+j=l−1,i<q

bi,j ∈M l
q be a representative of β

where

r ∈ Ck(U ,Z), ai,j ∈ Ci(U ,Ωj),

and

s ∈ C l(U ,Z), bi,j ∈ Ci(U ,Ωj).

By the §8, we calculate

α ∪ β

= [ã ∪ b̃]

= [rs+ Σi+j=l−1,j<q(−1)0·ir · bi,j + Σi+j=k−1,j<p(−1)(j+1)·(l−q)ai,j ∧ ∂bl−q,q−1]

= [r ∪ b̃+ (−1)l−qa ∪ ∂bl−q,q−1]

Note that ai,j is of bidegree (i, j + 1) in the Čech-Deligne double com-

plex C∗(U ,ZD(p)). This explains the sign (−1)(j+1)·(l−q) in front of the last

summand in the second line to the bottom. On the other hand, considering

ai,j ∈ Ci(U ,Ωj) ⊂ Ci(U , E j) as an element in the Čech-de Rham double com-

plex, it is of degree (i, j). By the definition of ∪ in Proposition 3.2.2, we get

the last equality.

Step 3: Let us calculate the product of α and β by the formula in Theorem

6.9.

ϕp(ã) = (a, (−1)kr) and ϕq(b̃) = (b, (−1)ls) are two smooth hypersparks
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which represent Deligne classes α and β respectively. The spark equations

associated to them are:

Dpa = 0− (−1)kr, δ(−1)kr = 0

and

Dpb = 0− (−1)ls, δ(−1)ls = 0.

Because of the surjectivity of the map Πp : Ĥ∗
smooth(X) → Ĥ∗

smooth(X, p) ,

there exist

(A, (−1)kr) ∈
⊕

i+j=k−1

Ci(U , E j)⊕Ck(U ,Z) with Πp[(A, (−1)kr)] = [(a, (−1)kr)] = α,

and

(B, (−1)ls) ∈
⊕

i+j=l−1

Ci(U , E j)⊕C l(U ,Z) with Πq[(B, (−1)ls)] = [(b, (−1)ls)] = β.

Assume the spark equations for A and B are DA = e − (−1)kr, DB =

f − (−1)ls, then πpA = a, πpe = 0 and πqB = b, πqf = 0.

By the product formula in Theorem 3.2.4,

[(A, (−1)kr)] ∗ [(B, (−1)ls)]

= [A ∪ f + (−1)k(−1)kr ∪B, (−1)kr ∪ (−1)ls]

= [A ∪ f + r ∪B, (−1)k+lr ∪ s].
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We have

D(A ∪ f + r ∪B) = e ∧ f − (−1)k+lr ∪ s and πp+q(e ∧ f) = 0,

so we get Πp+q[(A ∪ f + r ∪B, (−1)k+lr ∪ s)] ∈ Hk+l
D (X,Z(p+ q)), and define

it as α ∗ β.

We compare two results under isomorphism

ϕp+q : Hk
D(X,Z(p+ q))→ ker δ1.

The following lemma shows that ϕp+q(r ∪ b̃+ (−1)l−qa ∪ ∂bl−q,q−1) = (r ∪

b+ (−1)l−qa ∪ ∂bl−q,q−1, (−1)k+lr ∪ s) and (πp+q(A ∪ f + r ∪B), (−1)k+lr ∪ s)

represent the same class.

Lemma 5.1.12.

r ∪ b+ (−1)l−qa ∪ ∂bl−q,q−1 = πp+q(A ∪ f + r ∪B) + (−1)kDp+q(a ∪ (B − b)).

Proof. Compare

Db = (−1)l−q∂bl−q,q−1 +Dpb = (−1)l−q∂bl−q,q−1 − (−1)ls

and

DB = f − (−1)ls,

we have

(−1)l−q∂bl−q,q−1 = f −D(B − b). (5.1)
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(−1)kDp+q(a ∪ (B − b))

= (−1)kπp+qD(a ∪ (B − b))

= (−1)kπp+q(Da ∪ (B − b) + (−1)k−1a ∪D(B − b))
∗
= (−1)kπp+q(Dpa ∪ (B − b))− πp+q(a ∪D(B − b))

= (−1)kπp+q(−(−1)kr ∪ (B − b))− πp+q(a ∪D(B − b))

= −πp+q(r(B − b))− πp+q(a ∪D(B − b)) (5.2)

The equality ∗ follows that πp(Da−Dpa) = 0 and πq(B − b) = 0.

By 5.1 and 5.2, we have

Right hand side

= πp+q(A ∪ f + r ∪B) + (−1)kDp+q(a ∪ (B − b))

= πp+q(a ∪ f) + πp+q(r ∪B)− πp+q(r(B − b))− πp+q(a ∪D(B − b))

= πp+q(a ∪ f − a ∪D(B − b)) + πp+q(r ∪ b)

= πp+q((−1)l−qa ∪ ∂bl−q,q−1) + πp+q(r ∪ b)

= (−1)l−qa ∪ ∂bl−q,q−1 + r ∪ b

= Left hand side.

Question. It would be interesting to find and study other spark complexes

in geometry, topology and physics. In particular, for smooth quasi-projective

varieties, we may consider forms with logarithmic poles and develop a spark
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theory closely related to Deligne-Beilinson cohomology [B].

5.2 Massey Products in Deligne Cohomology

We defined the Massey triple product in spark characters Ĥ∗(X) in §3.5. In

fact, it induces the Massey triple product in Deligne cohomology.

Assume that we have three Deligne cohomology classes

α ∈ H i
D(X,Z(p1)) ⊂ Ĥi−1(X, p1),

β ∈ Hj
D(X,Z(p2)) ⊂ Ĥj−1(X, p2),

γ ∈ Hk
D(X,Z(p3)) ⊂ Ĥk−1(X, p3)

with their spark presentations:

α : (a, r) ∈ D′i−1(X, p1)⊕ IF i(X) with dp1a = −Ψp1(r), dr = 0;

β : (b, s) ∈ D′j−1(X, p2)⊕ IF j(X) with dp2b = −Ψp2(s), ds = 0;

γ : (c, t) ∈ D′k−1(X, p3)⊕ IFk(X) with dp3c = −Ψp3(t), dt = 0.

We choose lifts of α, β, γ in Ĥ∗(X) with representatives

(ã, r) ∈ D′i−1(X)⊕ IF i(X) with dã = e− r where e ∈ E i(X) and πp1e = 0;

(b̃, s) ∈ D′j−1(X)⊕ IF j(X) with db̃ = f − s where f ∈ E j(X) and πp2f = 0;

(c̃, t) ∈ D′k−1(X)⊕ IFk(X) with dc̃ = g − t where g ∈ Ek(X) and πp3g = 0.
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When αβ = βγ = 0, we define the Massey triple product for the triple

(α, β, γ), denoted byM(α, β, γ), as follows.

In the last section, we define

αβ = Πp1+p2([ã][b̃]) = Πp1+p2([ã ∧ f + (−1)ir ∧ b̃]).

And αβ = 0 ∈ H i+j
D (X,Z(p1 + p2)) ⊂ Ĥi+j−1(X, p1 + p2) ( together with

Lemma 4.1.7 ) implies

[ã][b̃] = [ã ∧ f + (−1)ir ∧ b̃] ∈ ker Πp1+p2 ⊂ Ĥi+j−1
∞ (X) ⊂ Ĥi+j−1(X).

Moreover, Lemma 4.1.7 tells us that any element in ker Πp1+p2 can be repre-

sented by a smooth form φ with the property πp1+p2(φ) = 0. So we can assume

that [ã][b̃] = [ã ∧ f + (−1)ir ∧ b̃] = [φ] for φ ∈ E i+j−1(X) with πp1+p2(φ) = 0,

i.e. ∃A ∈ D′i+j−2(X) and X ∈ IF i+j−1(X) such that

ã ∧ f + (−1)ir ∧ b̃ = dA+X + φ.

Similarly, βγ = 0 ∈ Hj+k
D (X,Z(p2 + p3)) ⊂ Ĥj+k−1(X, p2 + p3) implies

[b̃][c̃] = [b̃ ∧ g + (−1)js ∧ c̃] ∈ ker Πp2+p3 ⊂ Ĥj+k−1
∞ (X) ⊂ Ĥj+k−1(X),

and ∃B ∈ D′j+k−2(X), Y ∈ IF j+k−1(X) and ψ ∈ E j+k−1(X) with πp2+p3(ψ) =

0 such that

b̃ ∧ g + (−1)js ∧ c̃ = dB + Y + ψ.

As in §3.5, the Massey triple product of [ã],[b̃] and [c̃] in spark characters
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is defined by

M([ã], [b̃], [c̃]) = [ãψ + (−1)i−1rB + (−1)iAg + (−1)j+1Xc̃]

∈ Ĥi+j+k−2/([ã]Ĥj+k−2 + Ĥi+j−2[c̃]).

Note that

d(ãψ+(−1)i−1rB+(−1)iAg+(−1)j+1Xc̃) = eψ+(−1)i−1φg+rY +(−1)i−1Xt,

and

πp1+p2+p3(eψ + (−1)i−1φg) = 0.

Therefore, we define the Massey triple product of α, β and γ as

Πp1+p2+p3([ãψ + (−1)i−1rB + (−1)iAg + (−1)j+1Xc̃]) =

[(πp1+p2+p3(ãψ + (−1)i−1rB + (−1)iAg + (−1)j+1Xc̃), rY + (−1)i−1Xt)]

∈ H i+j+k−1
D (X,Z(p1 + p2 + p3)) ⊂ Ĥi+j+k−2(X, p1 + p2 + p3).

The triple product is well-defined up to some indeterminacy due to different

choices of A, B, X, Y , φ and ψ. If we have ãf + (−1)irb̃ = dA + X + φ =

dA′ +X ′ + φ′, then

ãψ+(−1)i−1rB+(−1)iAg+(−1)j−1Xc̃−(ãψ+(−1)i−1rB+(−1)iA′g+(−1)j−1X ′c̃)

= (−1)j−1(X −X ′)c̃+ (−1)i(A− A′)g.
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Notice that d(A−A′) = −(φ−φ′)− (X −X ′) and πp1+p2(φ) = πp1+p2(φ
′) = 0,

hence A−A′ represents a spark class which is located in H i+j−1
D (X,Z(p1+p2)).

Moreover,

[A− A′][c̃] = [(A− A′)g + (−1)i+j−1(X −X ′)c̃],

Hence the difference

[(−1)j−1(X −X ′)c+ (−1)i(A− A′)g] = (−1)i[A− A′][c̃]

∈ H i+j−1
D (X,Z(p1 + p2))γ ⊂ Ĥi+j−2(X, p1 + p2)γ.

Similarly, if b̃g + (−1)jsc̃ = dB + Y + ψ = dB′ + Y ′ + ψ′, then

ãψ+(−1)i−1rB+(−1)iAg+(−1)j−1Xc̃−(ãψ′+(−1)i−1rB′+(−1)iAg+(−1)j−1Xc̃)

= ã(ψ − ψ′) + (−1)i−1r(B −B′).

B − B′ is a spark satisfying the spark equation d(B − B′) = −(ψ − ψ′)−

(Y − Y ′) with πp2+p3(ψ − ψ′) = 0, so [B −B′] ∈ Hj+k−1
D (X,Z(p2 + p3)).

The product

[ã][B−B′] = [−ã(ψ−ψ′)+(−1)ir(B−B′)] = −[ã(ψ−ψ′)+(−1)i−1r(B−B′)].

Therefore,

[ã(ψ − ψ′) + (−1)i−1r(B −B′)] = −[ã][B −B′]

∈ αHj+k−1
D (X,Z(p2 + p3)) ⊂ αĤj+k−2(X, p2 + p3).
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Finally, we have

Theorem 5.2.1. If three Deligne classes α ∈ H i
D(X,Z(p1)), β ∈ Hj

D(X,Z(p2))

and γ ∈ Hk
D(X,Z(p3)) satisfy that αβ = 0 and βγ = 0, then the Massey triple

product of α, β and γ, denoted by M(α, β, γ), is well-defined in

H i+j+k−1
D (X,Z(p1+p2+p3))/(αH

j+k−1
D (X,Z(p2+p3))+H

i+j−1
D (X,Z(p1+p2))γ).

In his thesis [Sc], Schwarzhaupt showed an example where the Massey triple

product of three Deligne classes is not zero but a torsion. So far, we do not

have a clear answer whether the triple product must be a torsion.

Question. Are Massey triple products of ( integer-valued ) Deligne classes

always torsion?

5.3 Application to Algebraic Cycles

We begin this section by observing that, from the viewpoint of spark theory,

it is trivial that every analytic subvariety of a complex manifold represents a

Deligne cohomology class. Furthermore, when two cycles intersect properly,

their intersection represents the product of the Deligne classes they represent.

We shall then give a proof of the rational invariance of these Deligne classes

in the algebraic setting, thereby giving the well known ring homomorphism

ψ : CH∗(X)→ H2∗
D (X,Z(∗)).

Let V be a subvariety of complex manifold X with codimension p. Then
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integration over the regular part of V

[V ](α) ≡
∫

Reg V

α, ∀ smooth form α with compact support

defines a degree (p, p) current [V ] on X. Moreover, [V ] is rectifiable [Har],

hence [V ] ∈ IF2p(X). It is easy to see V represents a Deligne class.

Proposition 5.3.1. (0, [V ]) represents a spark class in Ĥ2p−1(X, p). More-

over, this class belongs to H2p
D (X,Z(p)) = ker δ1 ⊂ Ĥ2p−1(X, p).

Proof. Since [V ] is of type (p, p), we have Ψp([V ]) = 0 and (0, [V ]) satisfies the

spark equation d0 = 0−Ψp([V ]).

Proposition 5.3.2. Let V , W be two subvarieties which intersect properly.

Then

[(0, [V ])] ∗ [(0, [W ])] = [(0, [V ∩W ])].

Proof. Let V , W be two subvarieties in X with codimension p and q respec-

tively. Let r and s denote currents [V ] and [W ], then r∧s = [V ∩W ]. Now we

calculate the product of two Deligne classes [(0, r)] and [(0, s)]. First, fix a lift

of (0, r), say (a, r) with spark equation da = e−r and a lift of (0, s), (b, s) with

db = f−s. Note that πp(a) = 0, πp(e) = 0 and πq(b) = 0, πq(f) = 0. By prod-

uct formula, [(a, r)][(b, s)] = [(a∧f+r∧b, r∧s)]. Since πp+q(a∧f+r∧b) = 0,

we have

[(0, [V ])]∗ [(0, [W ])] = Πp+q([(a∧f+r∧b, r∧s)]) = [(0, r∧s)] = [(0, [V ∩W ])].
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Proposition 5.3.3. If X is an algebraic manifold of dimension n and V is an

algebraic cycle which is rationally equivalent to zero, then V represents zero

Deligne class.

Proof. Assume V is an algebraic cycle with dimension k and codimension p.

If V is rationally equivalent to zero, in particular, V represents zero homology

class, then V = dS for some rectifiable current with degree 2p − 1 ( and real

dimension 2k + 1 ). Hence (0, V ) is equivalent to (πp(S), 0) as sparks of level

p. (πp(S), 0) represents zero class if and only of

πp(S) = dpA+ ΨpR for A ∈ D′2p−2(X, p) and closed current R ∈ IF2p−1(X),

i.e.

[πp(S)] = 0 ∈ H2p−1(X,C)/F pH2p−1(X,C)⊕H2p−1(X,Z) ≡ J p,

which means the Abel-Jacobi invariant of V is zero. It is well known that the

Abel-Jacobi invariant is trivial for a cycle rationally equivalent to zero. So we

are done. We give a short and direct proof of this fact now.

If V is rationally equivalent to zero, then there is a cycle W ⊂ P1 × X

of codimension p, such that V = π−1(1) − π−1(0) where π : W → P1, the

restriction of the projection pr1 : P1 × X → P1, is equidimensional over P1.

Define Vz = π−1(z)− π−1(0), then we have a map µ : P1 → J p which assigns

z the Abel-Jacobi invariant of Vz. We shall show that µ is holomorphic, hence

a constant map to zero.

Let us recall the construction of the Abel-Jacobi map briefly. If V is a
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cycle homologous to zero, then V = dS. Integrating over S,
∫
S

defines a class

in

H2p−1(X,C)/F pH2p−1(X,C) = F n−p+1H2n−2p+1(X,C)∗.

If dS ′ = V , then the difference
∫
S
−

∫
S′

lies in the image of map

H2n−2p+1(X,Z)→ F n−p+1H2n−2p+1(X,C)∗.

Therefore, we get the Abel-Jacobi invariant of V defined in

J p ≡ H2p−1(X,C)/F pH2p−1(X,C)⊕H2p−1(X,Z).

Now we focus on the map µ. Let γz be a curve on P1 connecting 0 and

z and Sz = π−1(γz) with dSz = Vz. We want to show that µ : z 7→
∫
Sz

is

holomorphic. Note that

F n−p+1H2n−2p+1(X,C) ∼=
⊕

r+s=2n−2p+1
r≥n−p+1

Hr,s(X)

where Hr,s(X) is the group of harmonic (r, s) forms. So it suffices to show

µα : z 7→
∫
Sz
α is holomorphic for every α ∈ Hr,s(X), r + s = 2n − 2p + 1,

r ≥ n− p+ 1.

Let ν be a vector field in a small neighborhood U of z in P1, and ν̃ be a

lift of ν in U ×X. If ν is of type (0, 1), we have

ν

∫
Sz

α =

∫
π−1(z)

ν̃yα = 0
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for any α ∈ Hr,s(X), r + s = 2n − 2p + 1, r ≥ n − p + 1. The last equality

follows from the fact ν̃yα has no component of type (n− p, n− p).

By the last propositions and Chow’s moving lemma, it is easy to see

Theorem 5.3.4. The map V 7→ [(0, [V ])] induces a ring homomorphism

ψ : CH∗(X)→ H2∗
D (X,Z(∗)).

Question. There is also a cycle map for higher Chow groups CHp(X,n) →

H2p−n
D (X,Z(p)) (c.f. [KLM]). It is interesting if we can define this map from

our viewpoint.

Question. Inspired by Massey products in Deligne cohomology, we may de-

fine Massey products in higher Chow groups. However, it is not easy to find

nontrivial examples or show the triviality.
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Chapter 6

Characteristic Classes in Secondary Geometric

Invariants

The main purpose of this chapter is to give a Chern-Weil-type construction of

Chern classes in Deligne cohomology for holomorphic vector bundles. In [Z],

Zucker indicated that it is possible to define Chern classes in analytic Deligne

cohomology by splitting principle method. When the setting is algebraic,

theses classes are the image of Grothendieck-Chern classes under the ring

homomorphism ψ : CH∗(X) → H2∗
D (X,Z(∗)). Our approach is different and

constructive. In [CS], [HL1] and [BrM], characteristic classes for a vector

bundle with a connection were constructed in differential characters or spark

characters. For a holomorphic vector bundle with a compatible connection,

we define Chern classes in Deligne cohomology by projecting corresponding

classes in differential characters, which is independent of the choice of the

connection. The usual properties of Chern classes are verified. Two important

applications are shown in the next chapter.

121



6.1 Characteristic Classes in Differential Char-

acters

In §3, we studied secondary geometric invariants systematically from the view-

point of spark theory and showed the ring isomorphism among Cheeger-Simons

differential characters, Harvey-Lawson spark characters and smooth Deligne

cohomology. In a recent paper [SS], Simons and Sullivan showed the ring of

differential characters are uniquely characterized by its properties on functo-

riality and compatibility with the ring functors H∗(•,Z) and Z∗0 (•). The the-

ory of characteristic classes in differential characters were developed in [CS].

These characteristic classes are defined for vector bundles with connec-

tions. Similar to the characteristic classes in primary topological invariants,

the characteristic classes in secondary geometric invariants are uniquely deter-

mined by their properties, i.e. functoriality and compatibility with topological

characteristic classes and Chern-Weil homomorphism.

Because of the different descriptions of differential characters, there exist

different ways to construct the characteristic classes in secondary invariants.

In [CS], Cheeger and Simons defined characteristic classes in differential char-

acters which refines both topological characteristic classes and Chern-Weil

homomorphism. Harvey and Lawson constructed characteristic classes in the

group of de Rham-Federer spark classes in [HL1]. Brylinski and McLaughlin

[BrM] showed a construction of characteristic classes in smooth Deligne coho-

mology. All these three constructions satisfy the following properties and are

essentially equivalent.

We write this theorem in terms of Chern classes. Let E be a complex
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vector bundle with connection ∇ over smooth manifold X. Let ck(E) and

ck(Ω
∇) denote the kth integral Chern class and Chern-Weil form representing

ck(E)⊗ R in the curvature of ∇.

Theorem 6.1.1. [CS] There exist Chern classes ĉk(E,∇) ∈ Ĥ2k−1(X) satis-

fying

1. δ1(ĉk(E,∇)) = ck(Ω
∇),

2. δ2(ĉk(E,∇)) = ck(E),

3. If f : Y → X is smooth, then f ∗(ĉk(E,∇)) = ĉk(f
∗(E), f∗(∇)),

4. If E ′ is another complex vector bundle with connection ∇′, then

ĉ(E ⊕ E ′,∇⊕∇′) = ĉ(E,∇) ∗ ĉ(E ′,∇′),

where ĉ = 1 + ĉ1 + ĉ2 + ... denotes the total Chern class.

We call ĉk(E,∇) Cheeger-Simons Chern classes.

6.2 Chern Classes for Holomorphic Bundles in

Deligne Cohomology

In this section we construct Chern classes in Deligne cohomology for holomor-

phic bundles E over a complex manifold X.

Let E → X be a smooth complex vector bundle over complex manifold

X. ∇ is a unitary connection. We take the projections of the Cheeger-Simons
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Chern classes and define

d̂k(E,∇) ≡ Πk(ĉk(E,∇)) ∈ Ĥ2k−1(X, k).

By Theorem 6.1.1 and Proposition 4.1.8, we have

δ1(d̂k(E,∇)) = πk(ck(Ω
∇)) and δ2(d̂k(E,∇)) = ck(E).

Now suppose that E is holomorphic and is provided with a hermitian

metric h. Let ∇ be the associated canonical hermitian connection. Then

ck(Ω
∇) is of type k, k and we have

δ1(d̂k(E,∇)) = πk(ck(Ω
∇)) = 0 =⇒ d̂k(E,∇) ∈ ker(δ1) = H2k

D (X,Z(k)).

Proposition 6.2.1. The class d̂k(E,∇) ∈ H2k
D (X,Z(k)) defined above is in-

dependent of the choice of hermitian metric.

Proof. Let h0, h1 be hermitian metrics on E with canonical connections∇0,∇1

respectively. Then

ĉk(E,∇1)− ĉk(E,∇0) = [T ]

where [T ] is the differential character represented by the smooth transgression

form

T = T (∇1,∇0) ≡ k

∫ 1

0

Ck(∇1 −∇0,Ωt, ...,Ωt)dt

where Ck(X1, ..., Xk) is the polarization of the kth elementary symmetric func-

tion and where Ωt is the curvature of the connection ∇t ≡ t∇1 + (1 − t)∇0.

Fix a local holomorphic frame field for E and let Hi be the hermitian matrix
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representing the metric hi with respect to this trivialization. Then

∇1 −∇0 = θ1 − θ0 where θj ≡ ∂Hj ·H−1
j .

In this framing, ∇t = d + θt where θt = tθ1 + (1 − t)θ0 and so its curvature

Ωt = dθt − θt ∧ θt only has Hodge components of type 1, 1 and 2, 0. It follows

that the Hodge components

T p,q = 0 for p < q.

So we have d̂k(E,∇1)− d̂k(E,∇0) = Πk([T ]) = 0.

Remark 6.2.2. In the proof of last proposition, it is easy to see that we can

choose any connection compatible to the complex structure ( ∇0,1 = ∂̄ ) to

define the Chern classes in Deligne cohomology.

By the proposition above, each holomorphic vector bundle of rank r has a

well defined total Chern class in Deligne cohomology

d̂(E) = 1 + d̂1(E) + ...+ d̂r(E) ∈
r⊕
j=0

H2j
D (X,Z(j)).

Denote by Vk(X) the set of isomorphism classes of holomorphic vector

bundles of rank k on X, and by V(X) =
∐

k≥0 Vk(X) the additive monoid

under Whitney sum.

Theorem 6.2.3. On any complex manifold there is a natural transformation
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of functors

d̂ : V(X)→
⊕
j

H2j
D (X,Z(j))

with the property that:

1. d̂(E ⊕ F ) = d̂(E) ∗ d̂(F ),

2. d̂ : V1(X)→ 1 +H2
D(X, 1) is an isomorphism,

3. under the natural map κ : H2j
D (X,Z(j)) → H2j(X,Z), κ ◦ d̂ = c (the

total integral Chern class).

Proof. (1)Suppose E and F are holomorphic bundles with hermitian connec-

tions ∇ and ∇′, then we have

d̂(E) = 1 + d̂1(E) + d̂2(E) + · · · = 1 + Π1(ĉ1(E,∇)) + Π2(ĉ2(E,∇)) + · · ·

and similarly d̂(F ) = 1 + Π1(ĉ1(F,∇′)) + Π2(ĉ2(F,∇′)) + · · · .

Since

ĉ(E ⊕ F,∇⊕∇′) = ĉ(E,∇) ∗ ĉ(F,∇′),

we have

d̂k(E ⊕ F ) = Πk(ĉk(E ⊕ F,∇⊕∇′))

= Πk(
k∑
i=0

ĉi(E,∇) · ĉk−i(F,∇′))

=
k∑
i=0

Πi(ĉi(E,∇)) · Πk−i(ĉk−i(F,∇′))

=
k∑
i=0

d̂i(E) · d̂k−i(F ).
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It is easy to see the second to last equality from our definition of product

of Deligne cohomology classes. Recall when we defined the product of two

Deligne classes, we first lifted them to two sparks, then did multiplication and

projected the product back.

(2) is true because H2
D(X,Z(1)) ∼= H1(X,O∗).

(3) follows δ2(d̂k(E,∇)) = ck(E).

Following Grothendieck we define the holomorphic K-theory of X to be

the quotient

Khol(X) ≡ V(X)+/ ∼

where ∼ is the equivalence relation generated by setting [E] ∼ [E ′⊕E ′′] when

there exists a short exact sequence of holomorphic bundles 0 → E ′ → E →

E ′′ → 0. The next theorem tells us the natural transformation d̂ defined above

descends to a natural transformation

d̂ : Khol(X)→
⊕
j

H2j
D (X,Z(j)).

Theorem 6.2.4. For any short exact sequence of holomorphic vector bundles

on X

0→ E ′ → E → E ′′ → 0

one has d̂(E) = d̂(E ′) ∗ d̂(E ′′).

Proof. We have E ′ ⊕ E ′′ ∼= E as smooth bundles, so we consider them as

the same bundle with different holomorphic structures. The purpose is to

show these two holomorphic bundles have the same total Chern class val-

ued in Deligne cohomology. The idea of the proof is the following. We fix
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a hermitian metric on this smooth bundle, choose local holomorphic bases

for those two holomorphic structures respectively, and calculate the hermitian

connections with respect to them. Then we calculate the smooth transgres-

sion form which represents the difference of Cheeger-Simons Chern classes

of these two holomorphic bundles, and show that under the projection Πk,

this transgression form represents a zero spark class in Ĥ2k−1(X, k). Hence

d̂(E) = d̂(E ′ ⊕ E ′′) = d̂(E ′) ∗ d̂(E ′′).

Choose a C∞-splitting

0 // E ′ i // E
π //

E ′′
σ

oo // 0.

Fix hermitian metrics h1 and h2 for E ′ and E ′′ respectively, and define

a hermitian metric h = h1 ⊕ h2 on E via the smooth isomorphism (i, σ) :

E ′ ⊕ E ′′ → E.

Over a small open set U ⊂ X, we choose a local holomorphic basis {e1, e2, ..., em}

for E ′ and a local holomorphic basis {em+1, em+2, ..., em+n} for E ′′. Then

choose a local holomorphic basis {ẽ1, ẽ2, ..., ẽm, ẽm+1, ẽm+2, ..., ẽm+n} for E such

that ẽi = ei for 1 ≤ i ≤ m and ẽm+j is a holomorphic lift of em+j for

1 ≤ j ≤ n. Assume g = (gij) is the transition matrix for these two bases,

i.e. ẽi =
∑m+n

j=1 gijej. Then it is easy to know g has the form

g =

Im 0

A In

 and g−1 =

 Im 0

−A In


where Im and In is the identity matrices of rank m and n, and A is the

nontrivial part of g.

Let H1 and H2 be the hermitian matrices representing the metrics h1 and
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h2 with respect to the bases {e1, e2, ..., em} and {em+1, em+2, ..., em+n}. Let H

and H̃ be the hermitian matrices representing the metric h with respect to

bases {ei}m+n
i=1 and {ẽi}m+n

i=1 . Then we have

H =

H1 0

0 H2

 and H̃ = gHg∗

where g∗ = ḡt is the transpose conjugate of g.

Fix the hermitian metric h, we calculate the canonical hermitian connec-

tions with respect to two holomorphic structures. For E ′ ⊕E ′′, the hermitian

connection ∇0 can be written locally as the matrix ( w.r.t. the basis {ei} )

θ0 = ∂H ·H−1.

For E, the hermitian connection ∇1 can be written locally as the matrix (

w.r.t. the basis {ẽi} )

θ̃1 = ∂H̃·H̃−1 = ∂(gHg∗)(gHg∗)−1 = ∂g·g−1+g∂H·H−1g−1+gH∂g∗(g∗)−1H−1g−1.

We change the basis and write ∇1 as the matrix with respect to the basis {ei}

θ1 = d(g−1) · g + g−1θ̃1g

= −g−1dg + g−1(∂g · g−1 + g∂H ·H−1g−1 + gH∂g∗(g∗)−1H−1g−1)g

= −g−1dg + g−1∂g + ∂H ·H−1 +H∂g∗(g∗)−1H−1

= −g−1∂̄g + θ0 +H∂g∗(g∗)−1H−1

= θ0 +H∂g∗(g∗)−1H−1 − g−1∂̄g
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Let η ≡ θ1 − θ0 = H∂g∗(g∗)−1H−1 − g−1∂̄g and η1,0 = H∂g∗(g∗)−1H−1,

η0,1 = −g−1∂̄g be the (1, 0) and (0, 1) components of η respectively. Then we

have

η1,0 =

H1 0

0 H2


0 ∂A∗

0 0


Im −A∗

0 In


H−1

1 0

0 H−1
2

 =

0 H1∂A
∗H−1

2

0 0


and

η0,1 = −

 Im 0

−A In


 0 0

∂̄A 0

 = −

 0 0

∂̄A 0

.
Define a family of connections ∇t with connection matrices θt = θ0 + tη for

0 ≤ t ≤ 1. Let Ωt = dθt − θt ∧ θt be the curvature of the connection θt. It is

easy to see

Ω0,2
t = t∂̄η0,1 − t2(η0,1 ∧ η0,1) = 0

and

Ω1,1
t = ∂̄θ0 + t(∂̄η1,0 + ∂η0,1 − θ0 ∧ η0,1 − η0,1 ∧ θ0)− t2(η1,0 ∧ η0,1 + η0,1 ∧ η1,0).

Note that

η0,1 ∧ η0,1 =

 0 0

−∂̄A 0

 ∧
 0 0

−∂̄A 0

 = 0.

We will use this trick again in the later calculation.

Suppose that Φ is an symmetric invariant k-multilinear function on the Lie

algebra glm+n(C). Then the two connections ∇0 and ∇1 on E give rise to two
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Cheeger-Simons differential characters Φ̂0 and Φ̂1, and the difference

Φ̂0 − Φ̂1 = [TΦ]

where [TΦ] is the character associated to the smooth form

TΦ = k

∫ 1

0

Φ(η,Ωt,Ωt, ...,Ωt)dt.

Our goal is to show that Πk([TΦ]) = [πk(TΦ)] represents a zero spark class.

So it suffices to show πk(TΦ) is a dk-exact form. In fact, we shall show πk(TΦ)

is a form of pure type (k − 1, k) and equals ∂̄S = dkS for some (k − 1, k − 1)

form S.

Lemma 6.2.5. T i,2k−1−i
Φ = 0 for i < k − 1, i.e. πk(TΦ) = T k−1,k

Φ , where

T i,2k−1−i
Φ is the (i, 2k − 1− i) Hodge component of TΦ.

Proof. Note that we have Ω0,2
t = 0, i.e. Ωt is of type (1, 1) and (2, 0).

Hence it is easy to see T i,2k−1−i
Φ = 0 for i < k − 1 from the expression

TΦ = k
∫ 1

0
Φ(η,Ωt,Ωt, ...,Ωt)dt.

In order to show TΦ is ∂̄-exact for general Φ, we first show TΨk
is ∂̄-exact

for Ψk(A1, A2, ..., Ak) = tr(A1 · A2 · ... · Ak).

Lemma 6.2.6. Let Ψk(A1, A2, ..., Ak) = tr(A1 · A2 · ... · Ak) and T = TΨk
=

k
∫ 1

0
tr(η∧(Ωt)

k−1)dt. Then T k−1,k is ∂̄-exact. Explicitly, T 0,1 = 0 when k = 1,

and for k ≥ 2,

T k−1,k = k

∫ 1

0

tr(η0,1 ∧ (Ω1,1
t )k−1)dt = k∂̄

∫ 1

0

−tr(η0,1 ∧ η1,0 ∧ (Ω1,1
t )k−2) · tdt.
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Proof. When k = 1, T 0,1 =
∫ 1

0
tr(η0,1)dt = 0 since η0,1 has the form

 0 0

−∂̄A 0

 .

When k ≥ 2, it is easy to see

T k−1,k = k

∫ 1

0

tr(η0,1 ∧ (Ω1,1
t )k−1)dt

by comparing Hodge components on both sides. So it suffices to show the

identity

tr(η0,1 ∧ (Ω1,1
t )k−1) = −∂̄tr(η0,1 ∧ η1,0 ∧ (Ω1,1

t )k−2) · t.

First, we introduce some basic identities. We know that in our theory,

Chern classes in Deligne cohomology are independent of the choice of hermitian

metric, and the question above is local. So we fix local bases and choose

hermitian metrics h1 and h2 such that H1 = Im and H2 = In locally. Now we

have

η1,0 =

0 H1∂A
∗H−1

2

0 0

 =

0 ∂A∗

0 0

 and η0,1 =

 0 0

−∂̄A 0



Ω1,1
t = t(∂̄η1,0 + ∂η0,1)− t2(η1,0 ∧ η0,1 + η0,1 ∧ η1,0) = tdη − t2η ∧ η.

Note in the equation above, we use the fact η1,0 is ∂-exact, η0,1 is ∂̄-exact, and

η1,0 ∧ η1,0 = 0, η0,1 ∧ η0,1 = 0 by matrix multiplication.
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By calculation, we have

[Ω1,1
t , η] ≡ Ω1,1

t ∧ η − η ∧ Ω1,1
t = td(η ∧ η).

Take (2, 1) and (1, 2) components respectively, we have

[Ω1,1
t , η1,0] = t∂(η ∧ η) and [Ω1,1

t , η0,1] = t∂̄(η ∧ η).

The next observation is

∂̄Ω1,1
t = −t2∂̄(η ∧ η) = −t[Ω1,1

t , η0,1].

Using identities above, it is easy to conclude

∂̄((Ω1,1
t )n) = −t[(Ω1,1

t )n, η0,1].

Now we are ready to calculate.

−∂̄tr(η0,1 ∧ η1,0 ∧ (Ω1,1
t )n) · t

= −t · tr(∂̄(η0,1 ∧ η1,0 ∧ (Ω1,1
t )n))

= −t · tr(−η0,1 ∧ ∂̄η1,0 ∧ (Ω1,1
t )n + η0,1 ∧ η1,0 ∧ ∂̄(Ω1,1

t )n)

= −t · tr(−η0,1 ∧ ∂̄η1,0 ∧ (Ω1,1
t )n + η0,1 ∧ η1,0 ∧ (−t)[(Ω1,1

t )n, η0,1])

= t · tr(η0,1 ∧ ∂̄η1,0 ∧ (Ω1,1
t )n + tη0,1 ∧ η1,0 ∧ (Ω1,1

t )n ∧ η0,1

−tη0,1 ∧ η1,0 ∧ η0,1 ∧ (Ω1,1
t )n)
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= t · tr(η0,1 ∧ ∂̄η1,0 ∧ (Ω1,1
t )n − tη0,1 ∧ η1,0 ∧ η0,1 ∧ (Ω1,1

t )n)

+t2 · tr(η0,1 ∧ η1,0 ∧ (Ω1,1
t )n ∧ η0,1)

= tr(η0,1 ∧ (t∂̄η1,0 − t2η1,0 ∧ η0,1) ∧ (Ω1,1
t )n) + t2 · tr(η0,1 ∧ η0,1 ∧ η1,0 ∧ (Ω1,1

t )n)

∗
= tr(η0,1 ∧ Ω1,1

t ∧ (Ω1,1
t )n) + 0

= tr(η0,1 ∧ (Ω1,1
t )n+1)

Put n = k − 2, we are done.

Note that in the second to last equality, we use the trick η0,1 ∧ η0,1 = 0

several times.

Recall in the Chern-Weil theory, the kth Chern character of a vector bun-

dle is represented by the form 1
k!

Ψk(Ω,Ω, ...,Ω) = 1
k!
tr(Ωk) where Ω is the

curvature of any connection. Any symmetric invariant k-multilinear function

Φ on the Lie algebra glm+n(C) is generated by Ψ1, Ψ2, ... Ψk, i.e. we have

Φ =
k∑

n=1

∑
i1+···+in=k
i1>0,··· ,in>0

ai1i2···inΨi1 ⊗Ψi2 ⊗ ...⊗Ψin .

Hence, TΦ = k
∫ 1

0
Φ(η,Ωt,Ωt, ...,Ωt)dt where Φ(η,Ωt,Ωt, ...,Ωt) is a sum

with summands like Ψi1(η,Ωt,Ωt, ...,Ωt)Ψi2(Ωt,Ωt, ...,Ωt)...Ψin(Ωt,Ωt, ...,Ωt).

For j > 1, Ψij(Ωt,Ωt, ...,Ωt) is a closed (ij, ij) form representing ij! times the

ijth Chern character. And from last lemma, we know Ψi1(η,Ωt,Ωt, ...,Ωt) has

types (i1−1, i1) and higher, and its (i1−1, i1) component is ∂̄-exact. Therefore,

TΦ is of types (k − 1, k) and higher, and πk(T ) = T k−1,k = ∂̄Sk−1,k−1 for some

(k − 1, k − 1) form Sk−1,k−1.
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Remark 6.2.7. By the theorems on uniqueness of Chern classes in Deligne

cohomology in [B], [EV] and [Br2], our theory on Chern classes is equivalent to

all others. In particular, when the setting is algebraic, Chern classes defined

above are compatible with Grothendieck-Chern classes under the cycle map

ψ : CH∗(X)→ H2∗
D (X,Z(∗)).

Cheeger and Simons also defined Chern characters for vector bundles with

connections, which are located in rational differential characters Ĥ∗(X,R/Q).

For holomorphic vector bundles, we can project Chern characters in differential

characters to get Chern characters in rational Deligne cohomologyH2∗
D (X,Q(∗)).

Define

d̂chk(E) ≡ Πk(ĉhk(E,∇)) ∈ H2k
D (X,Q(k)),

where ∇ is the hermitian connection associated to a hermitian metric.

Since ĉh(E ⊕ E ′,∇⊕∇′) = ĉh(E,∇) + ĉh(E ′,∇′), we have

Theorem 6.2.8. If E and F be two holomorphic vector bundles on complex

manifold X, then

d̂ch(E ⊕ F ) = d̂ch(E) + d̂ch(F ).

Moreover,

Theorem 6.2.9. For any short exact sequence of holomorphic vector bundles

on X

0→ E ′ → E → E ′′ → 0

one has d̂ch(E) = d̂ch(E ′) + d̂ch(E ′′).

Recently, Grivaux [G] defined Chern classes in rational Deligne cohomology

for analytic coherent sheaves over complex manifolds. By a result of Voisin
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[V], not every analytic coherent sheaf has a locally free resolution. However,

applying Green’s result on simplicial resolution for coherent sheaves ( see [TT]

), we may define Chern classes in Deligne cohomology for coherent sheaves, if

we can define Chern classes for simplical holomorphic vector bundles by our

method.

Question. Is it possible to define Chern classes in Deligne cohomology for

analytic coherent sheaves through simplicial resolution?
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Chapter 7

Holomorphic Foliations and Nadel Invariants

We show two important applications of our theory on Chern classes. The first

one is on the Bott vanishing theorem for holomorphic foliations. Bott showed

an obstruction of a vector bundle to be ( isomorphic to ) the normal bundle of

some smooth foliation. We give an analogue of the Bott vanishing theorem on

holomorphic foliations in §7.1. The second application is on Nadel’s invariants.

Nadel introduced interesting relative invariants for a pair of holomorphic vec-

tor bundles. In §7.2, we construct Nadel-type invariants in the intermediate

Jacobians and give a direct proof of Nadel’s conjecture.

7.1 Bott Vanishing for Holomorphic Foliations

In [Bo], Bott constructed a family of connections on the normal bundle of any

smooth foliation of a manifold and established the Bott vanishing theorem.

Roughly speaking, it says the characteristic classes of the normal bundle are

trivial in all sufficiently high degrees. In particular, for the holomorphic case,

we have the following theorem.
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Theorem 7.1.1. [BB]Bott vanishing for holomorphic foliations.

Let X be a complex manifold of dimension n and F an integrable holomorphic

subbundle of TX with rank k. Let ϕ ∈ C[X1, X2, ..., Xn] be symmetric and

homogeneous polynomial of degree l, where n − k < l ≤ n. Let ∇ be a Bott

connection for N ∼= T/F . Then ϕ(Ω∇) = 0.

Note that the tangent bundle of a foliation is integrable and this theorem

tells us that the characteristic class of the normal bundle N corresponding to

ϕ vanishes if degϕ is high. Furthermore, if a Bott connection is chosen, the

Chern-Weil form vanishes!

Now we show a version of the Bott vanishing theorem for Chern classes in

Deligne cohomology.

Suppose that N is the normal bundle to a holomorphic foliation of codi-

mension p on a complex manifold X. Then there are two natural families of

connections to consider on N , the family of Bott connections and the family

of canonical hermitian connections.

Proposition 7.1.2. N is a holomorphic vector bundle on X. Let P (c1, ..., cq)

be a polynomial in Chern classes which is of pure degree 2k with k > 2q.

Then the projection image of Cheeger-Simons Chern class Πk(P (ĉ1, ..., ĉq)) ∈

Ĥ2k−1(X, k) for Bott connections agrees with the Chern class in Deligne coho-

mology P (d̂1, ..., d̂q) for the canonical hermitian connections.

Proof. In fact, this is a direct corollary of Remark 6.2.2 since Bott connections

are compatible with the holomorphic structure of N [BB, Remark 3.26].

Let ∇ be a Bott connection, ∇̃ be the canonical hermitian connection for

some hermitian metric and θ, θ̃ be their connection forms. Notice that both
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θ, θ̃ are of type (1, 0).

Let Φ(X1, ..., Xk) be the symmetric invariant k-multilinear function on the

Lie algebra glq(C) such that P (σ1(X), ..., σq(X)) = Φ(X, ..., X) where σj is

the jth elementary symmetric function of the eigenvalues of X. Then the

difference between the Cheeger-Simons Chern class associated to P for the

two connections ∇ and ∇̃ is the character associated to the smooth form

T = k

∫ 1

0

Φ(θ − θ̃,Ωt, ...,Ωt)dt

where Ωt = dθt − θt ∧ θt. Since θt is of type (1, 0) and Ωt is of type (1, 1) and

(2, 0), we have T p,q = 0 for all p < q.

Therefore,

P (d̂1, ..., d̂q)− Πk(P (ĉ1(N,∇), ..., ĉq(N,∇)))

= Πk(P (ĉ1(N, ∇̃), ..., ĉq(N, ∇̃)))− Πk(P (ĉ1(N,∇), ..., ĉq(N,∇)))

= Πk(T ) = 0

Theorem 7.1.3. Let N be a holomorphic bundle of rank q on a complex man-

ifold X. If N is (isomorphic to) the normal bundle of a holomorphic foliation

of X, then for every polynomial P of pure degree k > 2q, the associated refined

Chern class satisfies

P (d̂1(N), ..., d̂q(N)) ∈ Im[H2k−1(X,C×)→ H2k
D (X,Z(k))].
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Proof. We have the following commutative diagram:

0 // H2k−1(X,C×) //

��

Ĥ2k−1(X) //

��

Z2k
Z (X) //

��

0

0 // H2k
D (X,Z(k)) // Ĥ2k−1(X, k) // Z2k

Z (X, k) // 0

We know P (d̂1, ..., d̂q) ∈ H2k
D (X,Z(k)) and P (ĉ1, ..., ĉq) ∈ Ĥ2k−1(X). By

last proposition, we know they have the same images in Ĥ2k−1(X, k). And by

the Bott vanishing theorem, we have P (ĉ1, ..., ĉq) ∈ H2k−1(X,C×). Then we

get the conclusion.

7.2 Nadel Invariants for Holomorphic Vector

Bundles

In his beautiful paper [N], Nadel introduced interesting relative invariants for

holomorphic vector bundles. Explicitly, for two holomorphic vector bundles E

and F over a complex manifold X and a C∞ isomorphism f : E → F , Nadel

defined invariants

E k(E,F, f) ∈ H2k−1(X,O) and E k(E,F ) ∈ H2k−1(X,O)/H2k−1(X,Z).

He also conjectured that these invariants should coincide with a component

of the Abel-Jacobi image of k!(chk(E)− chk(F )) ∈ CHk(X) when the setting

is algebraic. In [Be], Berthomieu developed a relative K-theory and gave an

affirmative answer to Nadel’s conjecture. In his proof of Nadel’s conjecture, the

hard part is to show the compatibility of two theories on Characteristic classes,

i.e. Cheeger-Simons Chern classes and Deligne-Beilinson Chern classes.
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In this section, we generalize Nadel theory and give a short proof of his

conjecture. From our point of view, if E and F are two holomorphic vec-

tor bundles whose underlying C∞ vector bundles are isomorphic, then their

usual Chern classes coincide, and the difference of their kth Chern classes in

Deligne cohomology d̂k(E) − d̂k(F ) is located in the intermediate Jacobians

J k(X). Hence we can define relative invariants for a pair (E,F ) directly in

J k(X). In particular, we shall express the difference of kth Chern character

d̂chk(E) − d̂chk(F ) by transgression forms whose (0, 2k − 1) components are

exactly the Nadel invariants. This will prove Nadel’s conjecture in more gen-

eral context ( not necessarily algebraic ). Note that the Nadel-type invariants

are naturally defined from our viewpoint, and the Nadel’s conjecture is clear

after a computation of (0, 2k − 1) component of the transgression form.

Let E and F be two holomorphic vector bundles over complex manifold

X, and g : E → F be a C∞ bundle isomorphism. Fix a hermitian metric

h for E and F . Over a small open set U ⊂ X, choose local holomorphic

bases {ei}ri=1 and {fi}ri=1 for E and F respectively, and denote also by g the

transition matrix of the C∞ bundle isomorphism with respect to bases {ei}ri=1

and {fi}ri=1. Let H and H̃ be the hermitian matrices representing the metric

h with respect to bases {ei}ri=1 and {fi}ri=1. Then we have H̃ = gHg∗.

Now we calculate the canonical hermitian connections with respect to two

holomorphic structures. For E, the hermitian connection ∇0 can be written

locally as the matrix ( w.r.t. the basis {ei} )

θ0 = ∂H ·H−1.
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And for F , the hermitian connection ∇1 can be written locally as the matrix

( w.r.t. the basis {fi} )

θ̃1 = ∂H̃·H̃−1 = ∂(gHg∗)(gHg∗)−1 = ∂g·g−1+g∂H·H−1g−1+gH∂g∗(g∗)−1H−1g−1.

We change the basis and write ∇1 as the matrix with respect to the basis {ei}

θ1 = d(g−1) · g + g−1θ̃1g

= −g−1dg + g−1(∂g · g−1 + g∂H ·H−1g−1 + gH∂g∗(g∗)−1H−1g−1)g

= −g−1dg + g−1∂g + ∂H ·H−1 +H∂g∗(g∗)−1H−1

= θ0 +H∂g∗(g∗)−1H−1 − g−1∂̄g

Let η = θ1 − θ0 = H∂g∗(g∗)−1H−1 − g−1∂̄g and η1,0 = H∂g∗(g∗)−1H−1,

η0,1 = −g−1∂̄g be the (1, 0) and (0, 1) components of η respectively. Define a

family of connections ∇t with connection matrices θt = θ0 + tη for 0 ≤ t ≤ 1.

Let Ωt = dθt − θt ∧ θt be the curvature of the connection θt.

Ω0,2
t = t∂̄η0,1 − t2(η0,1 ∧ η0,1)

= t∂̄(−g−1∂̄g)− t2(−g−1∂̄g) ∧ (−g−1∂̄g)

= (t− t2)g−1∂̄g ∧ g−1∂̄g.

Suppose that Φ is an symmetric invariant k-multilinear function on the Lie

algebra glm+n(C). Then the two connections ∇0 and ∇1 on E give rise to two
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Cheeger-Simons differential characters Φ̂0 and Φ̂1, and the difference

Φ̂0 − Φ̂1 = [TΦ]

where [TΦ] is the character associated to the smooth form

TΦ = k

∫ 1

0

Φ(η,Ωt,Ωt, ...,Ωt)dt.

The difference of Chern classes Πk([TΦ]) = Πk(Φ̂0 − Φ̂1) ∈ J k is a spark

class which is represented by the smooth form πk(TΦ). In particular, when Φ

is the form Φ(A1, A2, ..., Ak) = tr(A1 · A2 · ... · Ak) ( representing k! times the

kth Chern character ), we have

TΦ = k

∫ 1

0

tr(η ∧ (Ωt)
k−1)dt and πk(TΦ) = πk(k

∫ 1

0

tr(η ∧ (Ωt)
k−1)dt).

The (0, 2k − 1) component

πk(TΦ)0,2k−1 = T 0,2k−1
Φ

= k

∫ 1

0

tr(η0,1 ∧ (Ω0,2
t )k−1)dt

= k

∫ 1

0

tr(−g−1∂̄g ∧ ((t− t2)g−1∂̄g ∧ g−1∂̄g)k−1)dt

= k

∫ 1

0

−tk−1(1− t)k−1tr((g−1∂̄g)2k−1)dt

= −k
∫ 1

0

tk−1(1− t)k−1dt · tr((g−1∂̄g)2k−1)

= ±E k(E,F, g)

Definition 7.2.1. X is a complex manifold, E and F are two holomorphic
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vector bundles over X whose underlying C∞ vector bundle are isomorphic.

Define Nadel-type invariants

Ê k(E,F ) ≡ k!(d̂chk(E)− d̂chk(F )) = [πk(k

∫ 1

0

tr(η ∧ (Ωt)
k−1)dt)] ∈ J k.

Note that we have a natural projection

π : J k ≡ H2k−1(X,C)/F kH2k−1(X,C)⊕H2k−1(X,Z)→ H2k−1(X,O)/H2k−1(X,Z).

By the calculations above, we have

Theorem 7.2.2. The kth Nadel invariant E k(E,F ) is the image of Ê k(E,F )

under the map π : J k → H2k−1(X,O)/H2k−1(X,Z). That is, Nadel’s conjec-

ture is true.
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Chapter 8

Products on Hypercohomology

The purpose of the chapter is to demonstrate the abstract nonsense behind

the following well known fact. It will help us to understand the proofs of

Theorems 3.4.7 and 5.1.11.

Theorem. If there are three complexes of sheaves of abelian groups F∗,G∗,H∗

over a manifold X and a cup product

∪ : F∗ ⊗ G∗ −→ H∗

which commutes with differentials, then ∪ induces an product on their hyper-

cohomology

∪ : H∗(X,F∗)⊗H∗(X,G∗) −→ H∗(X,H∗).

Although the above fact is well known, it is hard to find reference on how

to realize the product on the cocycle level. We shall show an explicit formula

of the induced product on Čech cocycles.

145



8.1 An Easy Case

Let us start from an easy case which can be found in standard textbooks on

homological algebra.

Theorem 8.1.1. Suppose we have three sheaves F ,G,H over X and a cup

product

∪ : F ⊗ G −→ H.

Then ∪ induces an product on their cohomology

∪ : H∗(X,F)⊗H∗(X,G) −→ H∗(X,H).

We shall show a proof using Čech resolution. In particular, we are in-

terested in the product formula in terms of Čech cocycles representing the

cohomology classes.

First, let us recall some facts on Čech cohomology. Fix an open covering

U of X, we have Čech resolution of F :

F → C0(U ,F)→ C1(U ,F)→ · · ·

Čech cohomology of sheaf F with respect to U is defined as

Ȟ∗(U ,F) ≡ H∗(C∗(U ,F))

where Ck(U ,F) is group of global sections of sheaf Ck(U ,F). When the open
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covering U is acyclic with respect to F , we have the canonical isomorphism

H∗(X,F) ∼= Ȟ∗(U ,F) ≡ H∗(C∗(U ,F)).

The idea of the proof is to show this chain of morphisms

Ȟ∗(U ,F)⊗ Ȟ∗(U ,G) τ∗−→ H∗(Tot(C∗(U ,F)⊗ C∗(U ,G)))

φ∗−→ Ȟ∗(U ,F ⊗ G) ∪∗−→ Ȟ∗(U ,H).

Then we get the desired cup product by choosing a good covering U and

composing these three morphisms.

Proof. Fix an open covering U of X.

We construct a morphism of complexes

φ : Tot(C∗(U ,F)⊗ C∗(U ,G)) −→ C∗(U ,F ⊗ G).

For a ∈ Cr(U ,F), b ∈ Cs(U ,G) we put

φ(a⊗ b)i0,··· ,ir+s = ai0,··· ,ir ⊗ bir,··· ,ir+s

We fix the differential D = δF ⊗ id+ id⊗ (−1)rδG on the total complex of

double complex ⊕
r,s

Cr(U ,F)⊗ Cs(U ,G),

where δF , δG are Čech differentials on C∗(U ,F) and C∗(U ,G) respectively. It

is easy to verify that φ is a chain map, i.e. commutative with differentials.
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Therefore, φ induce a map

φ∗ : H∗(Tot(C∗(U ,F)⊗ C∗(U ,G))) −→ H∗(C∗(U ,F ⊗ G)) ≡ Ȟ∗(U ,F ⊗ G).

In addition, ∪ : F ⊗ G −→ H induces a map on Čech cohomology

∪∗ : Ȟ∗(U ,F ⊗ G) −→ Ȟ∗(U ,H).

Furthermore, there is a natural map

Ȟ∗(U ,F)⊗ Ȟ∗(U ,G) τ∗−→ H∗(Tot(C∗(U ,F)⊗ C∗(U ,G)))

induced by

C∗(U ,F)⊗ C∗(U ,G) τ−→ Tot(C∗(U ,F)⊗ C∗(U ,G))).

Finally, we get a map

Ȟ∗(U ,F)⊗ Ȟ∗(U ,G) τ∗−→ H∗(Tot(C∗(U ,F)⊗ C∗(U ,G)))

φ∗−→ Ȟ∗(U ,F ⊗ G) ∪∗−→ Ȟ∗(U ,H).

And it is easy to see, for two Čech cocycles a ∈ Cr(U ,F) and b ∈ Cs(U ,G),

the cup product of [a] and [b] can be represented by a ∪ b which is defined by

(a ∪ b)i0,··· ,ir+s = ai0,··· ,ir ∪ bir,··· ,ir+s (8.1)
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When the covering U is acyclic with respect to F , G and H, we define

∪ : H∗(X,F)⊗H∗(X,G) −→ H∗(X,H)

by above construction.

8.2 The General Case

Now we consider the general case, i.e. cup product on hypercohomology of

complexes of sheaves. In fact, it is only nationally more difficult than the

easy case. From now on, we assume the covering U is acyclic with respect

to all sheaves we deal with and identify Čech (hyper)cohomology with sheaf

(hyper)cohomology.

Theorem 8.2.1. Let (F∗, dF), (G∗, dG), (H∗, dH) be complexes of sheaves of

abelian groups over a manifold X. If there is a cup product

∪ : F∗ ⊗ G∗ −→ H∗

which commutes with differentials, then ∪ induces an product on their hyper-

cohomology:

∪ : H∗(X,F∗)⊗H∗(X,G∗) −→ H∗(X,H∗).

Proof. Fix an open covering U of X, for a complex of sheaves A∗ ( A∗ = F∗,

G∗ or H∗ ) we have Čech resolution A∗ → C∗(U ,A∗). Then

H∗(X,A∗) ≡ H∗(Tot(C∗(U ,A∗))) ≡ H∗(Tot(C∗(U ,A∗)))
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where C∗(U ,A∗) denotes the group of global sections of sheaves C∗(U ,A∗), and

Tot(C∗(U ,A∗)) denotes the total complex of double complex
⊕

r,pC
r(U ,Ap)

with total differential DA = δ + (−1)rdA.

Similar to the case when F∗, G∗ are H∗ are single sheaves, the cup product

∪ : H∗(X,F∗)⊗H∗(X,G∗) −→ H∗(X,H∗)

is defined as the composition of three maps

H∗(X,F∗)⊗H∗(X,G∗) τ∗−→ H∗(Tot(C∗(U ,F∗)⊗ C∗(U ,G∗)))

φ∗−→ H∗(X,F∗ ⊗ G∗) ∪∗−→ H∗(X,H∗).

1) The first map is induced by

Tot(C∗(U ,F∗))⊗ Tot(C∗(U ,G∗)) τ∗−→ Tot(C∗(U ,F∗)⊗ C∗(U ,G∗)))

where Tot(C∗(U ,F∗)⊗ C∗(U ,G∗)) is the total complex of

⊕
r,s,p,q

(Cr(U ,Fp))⊗ (Cs(U ,Gq))

with differential D = DF ⊗ id+ id⊗ (−1)r+pDG.

2) Now we construct φ which induces the second map φ∗:

φ : Tot(C∗(U ,F∗)⊗ C∗(U ,G∗)) −→ Tot(C∗(U ,F∗ ⊗ G∗)).
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For a ∈ Cr(U ,Fp), b ∈ Cs(U ,Gq) we define φ(a⊗ b) ∈ Cr+s(U ,Fp ⊗ Gq)) by

φ(a⊗ b)i0,··· ,ir+s = (−1)psai0,··· ,ir ⊗ bir,··· ,ir+s .

Note that F∗⊗G∗ is the total complex of double complex
⊕

p,q Fp⊗Gq with

differential dF⊗G = dF ⊗ id + id ⊗ (−1)pdG. And Tot(C∗(U ,F∗ ⊗ G∗)) is the

total complex of
⊕

r,p,q C
r(U ,Fp⊗Gq) with differential DF⊗G = δ+(−1)rdF⊗G.

We have to verify that φ is a chain map, i.e. commutative with differentials.

In fact, the purpose that we put a sign (−1)ps in the definition of φ is to make

φ to be a chain map.

For an element a ⊗ b ∈ Cr(U ,Fp) ⊗ Cs(U ,Gq), we calculate φ(D(a ⊗ b))

and DF⊗G(φ(a⊗ b)) respectively.

φ(D(a⊗ b))

= φ(DFa⊗ b+ (−1)r+pa⊗DGb)

= φ((δa+ (−1)rdFa)⊗ b+ (−1)r+pa⊗ (δb+ (−1)sdGb))

= φ(δa⊗ b+ (−1)rdFa⊗ b+ (−1)r+pa⊗ δb+ (−1)r+p+sa⊗ dGb)

= (−1)psδa⊗ b+ (−1)(p+1)s+rdFa⊗ b

+(−1)p(s+1)+r+pa⊗ δb+ (−1)ps+r+p+sa⊗ dGb

= (−1)psδa⊗ b+ (−1)ps+s+rdFa⊗ b

+(−1)ps+ra⊗ δb+ (−1)ps+r+p+sa⊗ dGb
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DF⊗G(φ(a⊗ b))

= DF⊗G((−1)ps(a⊗ b))

= (δ + (−1)r+sdF⊗G)((−1)ps(a⊗ b))

= (−1)psδ(a⊗ b) + (−1)ps+r+sdF⊗G(a⊗ b)

= (−1)ps(δa⊗ b+ (−1)ra⊗ δb) + (−1)ps+r+s(dFa⊗ b+ (−1)pa⊗ dGb)

= (−1)psδa⊗ b+ (−1)ps+ra⊗ δb+ (−1)ps+s+rdFa⊗ b+ (−1)ps+r+p+sa⊗ dGb

= φ(D(a⊗ b))

Therefore, φ is a chain map and induces a map

φ∗ : H∗(Tot(C∗(U ,F∗)⊗C∗(U ,G∗))) −→ H∗(C∗(U ,F∗⊗G∗)) ≡ H∗(X,F∗⊗G∗).

3) Because ∪ commutes with differentials, it is easy to see ∪ induces a

chain map:

Tot(C∗(U ,F∗ ⊗ G∗)) −→ Tot(C∗(U ,H∗)).

Therefore, we have an induced map on hypercohomology

∪∗ : H∗(X,F∗ ⊗ G∗) −→ H∗(X,H∗).

From above process, we can realize the cup product on Čech cocycles. As-

sume α ∈ Hk(X,F∗) and β ∈ Hl(X,G∗). Let a =
∑

r+p=k a
r,p ∈

⊕
r+p=k C

r(U ,Fp)

be a Čech cocycle representing α and b =
∑

s+q=l b
s,q ∈

⊕
s+q=l C

s(U ,Gq) be
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a Čech cocycle representing β.

We define

a ∪ b ≡
∑

r+p=k,s+q=l

(−1)psar,p ∪ bs,q,

where the cup product ∪ in the right hand side is defined as formula 8.1. Then

α ∪ β is represented by a ∪ b.

Let us take a look at the case of smooth Deligne cohomology.

The cup product

∪ : ZD(p)∞ ⊗ ZD(q)∞ → ZD(p+ q)∞

is defined by

x ∪ y =


x · y if deg x = 0;

x ∧ dy if deg x > 0 and deg y = q;

0 otherwise.

Assume

α ∈ Hp
D(X,Z(p)∞) and β ∈ Hq

D(X,Z(q)∞),

and let

ã = r + a = r +

p−1∑
i=0

ai,p−1−i ∈Mp
p be a representative of α
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and

b̃ = s+ b = s+

q−1∑
i=0

bi,q−1−i ∈M q
q be a representative of β

where

r ∈ Cp(U ,Z), ai,p−1−i ∈ Ci(U , Ep−1−i),

and

s ∈ Cq(U ,Z), bi,q−1−i ∈ Ci(U , Eq−1−i).

Then we calculate

α ∪ β = [ã ∪ b̃]

= [rs+ Σi(−1)0·ir · bi,q−1−i + Σj(−1)(p−j)0aj,p−1−j ∧ db0,q−1]

= [r · b̃+ a ∧ db0,q−1]

= [r ∪ b̃+ a ∪ db0,q−1]

Note that in the last line above, we use ∪ in the sense of Proposition 3.2.2.
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[D] P. Deligne, Théorie de Hodge, II Publ. I. H. E.S. 40, 1971, 5-58.

[De] C. Deninger, Higher order operations in Deligne cohomology, In-

vent. math. 120, 289-315 (1995).

[DGMS] D. Deligne, P. Griffith, J. Morgan and D. Sullivan, The real ho-

motopy of Kahler manifold, Invent. Math. 29 (1975), 245-274.

[EV] H. Esnault and E. Viehweg, Deligne-Beilinson cohomology, Beilin-

son’s conjectures on special values of L-functions (Perspectives in

Math., Vol 4.) Academic Press: New York 1988.

[F] H. Federer, Goemetric Measure Theory, Springer-Verlag, New

York, 1969.

[FG] M. Fernández and A. Gray, The Iwasawa Manifold, Differential

Geometry Peniscola 1985, LMN 1209, 1986.

156



[Fu] W. Fulton, Intersection theory, Second edition, Springer-Verlag,

Berlin, 1998.

[G] J. Grivaux, Chern classes in Deligne cohomology for coherent an-

alytic sheaves, preprint, arXiv:0712.2207.

[GH] M. Greenberg and J. Harper, Algebraic Topology. A Frist Course,

Mathematics Lecture Note Series, 58. Benjamin/Cummings Pub-

lishing Co., Inc., Advanced Book Program, Reading, Mass., 1981.

[GM] P. Griffiths, J. Morgan, Rational homotopy theory and differential

forms, Progress in Mathematics, 16. Birkhauser, Boston, Mass.,

1981.

[Gr] A. Grothendieck, La thorie des classes de Chern, Bull. Soc. Math.

France 86 (1958) 137–154.
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