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Abstract of the Dissertation

Categorical and Combinatorial Constructions
of A,D,E Root Systems

by

Jaimal Thind

Doctor of Philosophy

in

Mathematics

Stony Brook University

2009

The main results of this dissertation, based on joint work with A. Kir-
illov Jr., give categorical and combinatorial constructions of the root system
R and the Lie algebra g from the corresponding Dynkin diagram Γ. In par-
ticular, given a Dynkin diagram Γ we produce a canonical quiver Γ̂ and show
that a choice of a Coxeter element in the Weyl group gives an identification
R → Γ̂. Moreover, the bilinear form and root lattice admit explicit descrip-
tions in terms of Γ̂. Using this identification, we construct a root basis in g

so that the structure constants of the Lie bracket are given by paths in Γ̂.
Hence g can be defined purely in terms of Γ̂. We also approach this cate-
gorically: Given the graph Γ, we construct a triangulated category C so that
the Grothendieck group K(C) is the corresponding root lattice, so that the
indecomposable classes are the roots, and so that the bilinear form admits an
explicit description in terms of C. This can be seen as giving a construction
analogous to Gabriel [G] and Ringel [R1] which does not require orienting
the diagram Γ.
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Introduction

At the end of the 19th Century simple Lie algebras were completely classified
by their root systems, which in turn are classified by Dynkin diagrams. The
construction of a root system and a Lie algebra from a Dynkin diagram has
several approaches. The standard construction of a root system is to choose
a system of simple roots corresponding to vertices of the Dynkin diagram
and then use the Weyl group to obtain all roots. The standard construction
of the corresponding Lie algebra involves choosing generators corresponding
to vertices of the Dynkin diagram and then using the edges to determine the
relations (the “Serre relations”).

Another approach to constructing the root system from the Dynkin di-
agram is based on the theory of quiver representations. Briefly, a quiver is

an oriented graph
−→
Γ = (Γ,Ω), where Γ is a graph and Ω is an orientation of

Γ. A representation of a quiver is the assignment of a vector space V (i) to
each vertex i and a linear map Φe : V (i) → V (j) for every arrow e : i → j.

Denote the Abelian category of representations of a quiver
−→
Γ by Rep(

−→
Γ ).

In the 1970’s Gabriel showed that when the underlying graph of a quiver
−→
Γ is a Dynkin diagram of type A,D,E the set of isomorphism classes of
indecomposable representations are in bijection with the set of positive roots
of the corresponding root system (see [G]). Moreover, one can obtain an
explicit description of the inner product and the root lattice. Ringel then
showed that using this category one could construct the positive part of
the corresponding Lie algebra (see [R1]). To obtain all roots and the whole
Lie algebra one must consider isomorphism classes of objects in a related

category; the “2-periodic derived category” Db(Rep(
−→
Γ ))/T 2, where T is the

translation functor (see [PX1]). In this approach two different choices of
orientation of the same graph give rise to different Abelian categories, which
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are not equivalent, but instead derived equivalent. The relation between
different categories is given by the “BGP reflection functors”.

The drawback of the quiver approach is that it requires a choice of ori-
entation of the Dynkin diagram, making the constructions non-canonical.
Similarly, the standard construction of a root system and its Lie algebra re-
quires a choice of simple roots and generators respectively. One would like
to find a construction which does not require these choices.

Another approach, which is independent of any choice of orientation,
was suggested by Ocneanu [Oc], in the setting of quantum subgroups of
SU(2). His idea was to give a purely combinatorial construction by studying

“essential paths” in the quiver Γ̂ = Γ × Zh, which requires no choice of
orientation.

In the case of affine Dynkin diagrams the McKay correspondence pro-
vides a tool for avoiding choosing orientations. The classical McKay corre-
spondence identifies affine Dynkin diagrams of type A,D,E and finite sub-
groups G ⊂ SU(2). In 2006, Kirillov Jr. studied a geometric approach to
McKay correspondence using Ḡ-equivariant coherent sheaves on P

1, where
Ḡ = G/ ± I (see [K]). In particular, it was shown that indecomposable
objects in the category Db

Ḡ
(P1)/T 2 are in bijection with the roots of the cor-

responding affine root system, that the inner product and root lattice admit
an explicit description in terms of this category, and that although there is
no natural choice of simple roots, there is a canonical Coxeter element in the
Weyl group. This gives a “categorical construction” of the corresponding
root system. Here “categorical construction” means that roots are realized
as classes of indecomposable objects in a certain category, and the inner
product and root lattice admit explicit description in terms of this category.

Motivated by the above constructions, the main results of this thesis give
both combinatorial and categorical constructions of R from Γ which do not
require a choice of orientation of Γ. This is based on joint work with A.
Kirillov Jr.

The first chapter deals with the combinatorial construction of the root
system R. In particular, it is shown that a choice of Coxeter element in
the Weyl group gives an identification of the root system R with a certain
canonical quiver Γ̂cyc associated to Γ (to be defined in the next section)
where vertices correspond to roots, and the root lattice and bilinear form
admit explicit descriptions in terms of this quiver.
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The second chapter gives a categorical construction of R from Γ. Instead
of choosing an orientation of Γ and studying representations of the associated
quiver, we study representations of a canonical quiver Γ̂ associated to Γ.
This construction is very closely related to the preprojective algebra of Γ.
In particular, the construction gives a certain periodicity result about the
preprojective algebra. It is likely that this periodicity result is known to
experts, however in the form given here the result is not easily available in
the literature. It is worth noting that this construction immediately implies
the combinatorial results given in the first chapter, and in fact motivated the
combinatorial construction.

In the third and final chapter the combinatorial framework of Chapter 1
is used to construct a root basis in the Lie algebra g so that all structure
constants can be obtained from Γ̂cyc. This gives a combinatorial construction
of g analogous to the categorical constructions of Ringel and Peng and Xiao.
After giving the construction this is related to the Ringel and Peng and Xiao
constructions.

3



Chapter 1

Preliminaries

1.1 Lie algebras and root systems

Throughout this dissertation let g be a simple Lie algebra of type A,D,E
and let Γ denote the corresponding Dynkin diagram. Let h ⊂ g be a fixed
Cartan subalgebra and let R denote the corresponding root system. Let r
denote the rank. Let nij denote the number of edges joining i, j in Γ. Let
(·, ·) be the invariant bilinear form normalized so that (α, α) = 2 for α ∈ R
(note that since Γ has no multiple edges all roots have the same length).

Let Π = {αΠ
1 , . . . , α

Π
r } be a system of simple roots and let RΠ

± denote
the corresponding splitting into positive and negative roots. Let W denote
the corresponding Weyl group. Then the simple reflections sαΠ

i
generate the

Weyl group. To simplify notation, the subscripts and superscripts will be
amended, writing sαΠ

i
= sΠ

i .

For any w ∈ W denote by lΠ(w) the length of a reduced expression for
w in terms of the simple refelctions sΠ

i . Then this does not depend on the
choice of reduced expression. It is well known that since Γ has no double
edges, any two reduced expressions are related by

sΠ
i s

Π
j = sΠ

j s
Π
i for ni,j = 0 (1.1.1)

sΠ
i s

Π
j s

Π
i = sΠ

j s
Π
i s

Π
j for ni,j = 1 (1.1.2)

(see [Bour] for details).
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Since the Weyl group acts simply-transitively on the set of simple systems,
there is a unique element which takes the system Π to the opposite system
−Π. Denote this element by w0 and define an automorphism of Γ by i 7→ ı̌,
where ı̌ is defined by:

w0(α
Π
i ) = α−Π

ı̌ . (1.1.3)

The element w0 is called the longest element, and satisfies lΠ(w) ≤ lΠ(w0)
for any w ∈W .

Definition 1.1.1. An element C ∈ W is called a Coxeter element if there
exists a simple system Π = {α1, . . . , αr} and a reduced expression for C
of the form C = sΠ

i1
· · · sΠ

ir such that each simple reflection appears exactly
once.
In such a case the simple system Π is said to be compatible with C and
lΠ(C) = r.
The order of a Coxeter element is called the Coxeter number and is denoted
by h.

Remark 1.1.2. The set of Coxeter elements in W form a conjugacy class, and
hence the Coxeter number is independent of the choice of Coxeter element
(see [Bour]). However, not all simple systems are compatible with a given
Coxeter element.

1.2 Quivers and Reflection Functors

A quiver
−→
Γ is an oriented graph. The vertex set is denoted by Γ0 and the

arrow set is denoted by Γ1. In what follows a quiver is obtained by orienting

a graph Γ. In such a case the quiver is denoted by
−→
Γ = (Γ,Ω) where Ω is

an orientation of the graph Γ. There are two functions s, t : Γ1 → Γ0 called
“source” and “target” respectively, defined on an oriented edge e : i→ j by
s(e) = i and t(e) = j.

For any quiver
−→
Γ let P (

−→
Γ ) be the following algebra. As an algebra it is

generated by elements {e}e∈Γ1
∪ {ei}i∈Γ0

. Here the elements ei are thought
of as “paths of length 0 from i to i”. Viewing a path as a sequence of edges,
the multiplication of basis elements is given by concatenation of paths. More
formally, the relations are:
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1. For edges e, f there is the relation

e · f =

{
ef if t(f) = s(e)

0 otherwise.

2. For an edge e and vertex i there are the relations

ei · e =

{
e if t(e) = i

0 otherwise

and

e · ei =

{
e if s(e) = i

0 otherwise.

3. The ei are “orthogonal idempotents”:

eiej =

{
ei if i = j

0 otherwise.

Definition 1.2.1. The algebra P (
−→
Γ ) defined above is called the path algebra

of
−→
Γ . It is an assiociative algebra with unit given by 1 =

∑
i∈Γ0

ei.

The algebra P (
−→
Γ ) is graded by path length and by the source and target

of the path. This gives a decomposition

P (
−→
Γ ) =

⊕

i,j∈Γ;k∈N

Pi,j;k (1.2.1)

where Pi,j;k is the space spanned by paths of length k from i to j. (Here an
edge has length 1, and the idempotent corresponding to a vertex has length
0.)

The preprojective algebra of a quiver
−→
Γ is defined as follows: Consider

the double quiver Γ which has the same vertex set as
−→
Γ but for every arrow

e : i → j add an arrow e : j → i. Choose a function ǫ : Γ1 → {±1} so that

ǫ(e) + ǫ(e) = 0. For each vertex i ∈
−→
Γ define θi ∈ Pi,i;2 by

θi =
∑

s(e)=i

ǫ(e)ee ∈ Pi,i;2 (1.2.2)
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Definition 1.2.2. The preprojective algebra Π(Γ) of Γ is defined as P (Γ)/J
where J is the ideal generated by the θi’s. The ideal J is called the “mesh”
ideal.

Note that this algebra is independent of the choice of ǫ and depends only
on the underlying graph and not on the orientation Ω. (See [L2] for details.)

Fix a field K. A representation of a quiver
−→
Γ is a choice of vector space

X(i) for every vertex in Γ0 and linear map xe : X(i)→ X(j) for every edge
e : i→ j. A morphism Φ : X → Y of representations is a collection of linear
maps Φ(i) : X(i)→ Y (i) such that the following diagram is commutative for
every edge e : i→ j.

X(i)
xe //

Φ(i)
��

X(j)

Φ(j)
��

Y (i)
ye // Y (j)

Denote the Abelian category of representations of
−→
Γ by Rep(

−→
Γ ).

Remark 1.2.3. Note that a representation of
−→
Γ is the same as a module over

the path algebra P (
−→
Γ ) and that the notion of morphism for each coincide

as well. (See [C-B] for details.)

For each vertex i define a representation Pi by setting Pi(j) = Pi,j the

space spanned by paths from i to j in
−→
Γ . This representation is projective

and indecomposable, and any indecomposable projective is isomorphic to Pi
for some vertex i (see [G]). For any vertex i define a simple object Si by
setting Si(j) = δi,jK.

Definition 1.2.4. The Auslander-Reiten quiver of the category Rep(
−→
Γ ) is

defined as follows:

1. The vertices are the set Ind(
−→
Γ ) of non-zero isomorphism classes of

indecomposable objects.

2. For vertices [X], [Y ] there is one edge e : [X] → [Y ] for each indecom-
posable morphism φ : X → Y .

The Auslander-Reiten quiver will be denoted by AR(
−→
Γ ). (For more details,

such as the definition of indecomposable morphism, see [ARS] Chapter VII.)
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Definition 1.2.5. For any representation V the dimension vector is given

by dimV = (dimV (i))i∈Γ0
∈ Z

Γ0 . This gives a map dim : K(
−→
Γ ) → Z

Γ0 ,

where K(
−→
Γ ) is the Grothendieck group of Rep(

−→
Γ ).

Definition 1.2.6. Define the Euler form 〈·, ·〉−→
Γ

by setting

〈X,Y 〉−→
Γ

= dim Hom(X,Y )− dim Ext1(X,Y ). (1.2.3)

Define the symmetrized Euler form by

(X,Y )−→
Γ

= 〈X,Y 〉−→
Γ

+ 〈Y,X〉−→
Γ
.

1.3 Definition of Γ̂

Let Γ be a finite graph without cycles. So in particular Γ is bipartite. Let
Γ = Γ0 ⊔ Γ1 be a bipartite splitting. Define the quiver Γ× Z as follows:

vertices : Γ× Z

edges : for each n ∈ Z and edge i− j in Γ, there are oriented edges

(i, n)→ (j, n+ 1), (j, n)→ (i, n+ 1) in ZΓ

For Γ as above with bipartite with splitting Γ = Γ0 ⊔ Γ1, then ZΓ is
disconnected: Γ× Z = (Γ× Z)0 ⊔ (Γ× Z)1, where

Γ× Zk = {(i, n) | n+ p(i) ≡ k mod 2}

where p(i) = 0 for i ∈ Γ0 and p(i) = 1 for i ∈ Γ1.

Definition 1.3.1. Define the quiver Γ̂ by setting

Γ̂ = {(i, n) ⊂ Γ× Z | n+ p(i) ≡ 0 mod 2} = (Γ× Z)0 (1.3.1)

Let Γ be an A,D,E Dynkin diagram with Coxeter number h, so in par-
ticular Γ is bipartite. Define also a cyclic version of Γ̂ by setting

Γ̂cyc = {(i, n) ⊂ Γ× Z2h | n+ p(i) ≡ 0 mod 2} (1.3.2)

Example 1.3.2. For the graph Γ = D5 the quiver Γ̂ is shown in Figure 1.1.
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Figure 1.1: The quiver Γ̂ for graph Γ = D5. For D5 the Coxeter number is
8, so by identifying the outgoing arrows at the top level and the incoming
arrows at the bottom level in this figure, one obtains Γ̂cyc.

The following basic properties of Γ̂ also hold for Γ̂cyc. For brevity only Γ̂
is considered.

Define a “twist” map τ : Γ̂→ Γ̂ by

τ(i, n) = (i, n+ 2). (1.3.3)

Definition 1.3.3. A function h : Γ→ Z satisfying h(j) = h(i)± 1 if i, j are
connected by an edge in Γ and satisfying h(i) ≡ p(i) mod 2, will be called
a height function. (Here p is the parity function defined in the beginning of
this section.)

Definition 1.3.4. Following [G], a connected full subquiver of Γ̂ which con-
tains a unique representative of {(i, n)}n∈Z for each i ∈ Γ will be called a
slice.

Any height function h defines a slice Γh = {(i, h(i)) | i ∈ Γ} ⊂ Γ̂; it also
defines an orientation Ωh on Γ where i → j if i, j are connected by an edge
and h(j) = h(i)+1. It is easy to see that two height functions give the same

9



orientation if and only if they differ by an additive constant, or equivalently,
if the corresponding slices are obtained one from another by applying a power
of τ . Conversely the second coordinate of any slice defines a height function.

Let h be a height function and let i ∈ Γ be a source for the corresponding
orientation Ωh. Define a new height function s+

i h by

s+
i h(j) =

{
h(j) + 2 if j = i

h(j) if j 6= i
.

Similarly, if i ∈ Γ is a sink for the corresponding orientation Ωh define a new
height function s−i h by

s−i h(j) =

{
h(j)− 2 if j = i

h(j) if j 6= i
.

Note that the orientation Ωs±i h
of Γ is obtained by reversing all arrows

at i, and that any orientation of Γ can be obtained by a sequence of such
operations. It is well-known that for any two height functions h, h′ one can
be obtained from the other by a sequence of operations s±i .

For Γ Dynkin of type A,D,E, with Coxeter number h, define the following
permutations on Γ̂ (and Γ̂cyc).
The “Nakayama” permutation given by:

νbΓ(i, n) = (̌ı , n+ h− 2) (1.3.4)

The “Twisted Nakayama” permuation given by:

γbΓ(i, n) = (̌ı , n+ h) = τ ◦ νbΓ(i, n) (1.3.5)

It remains to verify that νbΓ is well-defined. To see this only requires checking

that the image does in fact lie in Γ̂. Note that if h is even p(̌ı) = p(i) and

k + h = k mod 2, so (̌ı, k + h) ∈ Γ̂. If h is odd, then R = A2n, h = 2n + 1
and ı̌ = 2n − i + 1, so that p(̌ı) = p(i) + 1 and k + h = k + 1 mod 2, so

(̌ı, k + h) ∈ Γ̂. Hence the map νbΓ is well-defined.

Example 1.3.5. The maps νbΓ and γbΓ for the case Γ = A4 are shown in
Figure 1.2.
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γbΓΓh

Γh

νbΓΓh

Figure 1.2: The maps νbΓ and γbΓ in the case Γ = A4. A slice Γh and its
images under νbΓ and γbΓ are shown in bold.

1.4 The Dynkin Case

In the theory of quiver representations, quivers whose underlying graph is
Dynkin of type A,D,E play a special role. In this dissertation they also
play an important role, so this section gives a brief summary of the relevant
results needed for what follows.

Recall the maps νbΓ and γbΓ defined on Γ̂ by Equation 1.3.4 and Equa-
tion 1.3.5 respectively. These maps give a nice combinatorial description of

the Auslander-Reiten quiver of Rep(
−→
Γ ), using Γ̂ and the Nakayama permu-

tation ν defined by Equation 1.3.4. This is done as follows.

Fix a vertex i0 ∈ Γ. Then given an orientation Ω of Γ there is a
unique slice, denoted ΓΩ in Γ̂ identifying the vertex i0 ∈ Γ with the ver-

tex (i0, p(i0)) ∈ Γ̂ and
−→
Γ with ΓΩ. This determines a unique height function

hΩ : Γ → Z. The following Theorem describes the Auslander-Reiten quiver

of
−→
Γ with a full subquiver of Γ̂.

Theorem 1.4.1. [G] The Auslander-Reiten quiver AR(Γ,Ω) of Rep(Γ,Ω)

can be identified with the full subquiver of Γ̂ lying between the slice ΓΩopp and
the slice νbΓ(ΓΩopp). Explicitly

AR(
−→
Γ ) = {(i, k) ∈ Γ̂|hΩop(i) ≤ k ≤ hΩop(i) + h− 2}.

11



Moreover, the projective representations Pi, correspond to the slice ΓΩopp.

For a proof see [G, Proposition, p.50].

Example 1.4.2. For the case Γ = A4 and the orientation Ω given by 1 ←
2← 3← 4 the Auslander-Reiten quiver is shown in Figure 1.3 as the shaded
region.

Figure 1.3: The Aulander-Reiten quiver is shown as the shaded region. The
slices ΓΩopp and νbΓ(ΓΩopp) are shown in bold.

On Rep(
−→
Γ ) there are functors ν and τ defined by:

Hom(X,Y ) = (Ext1(Y, τX))∗ (1.4.1)

ν(X) = (HomP (X,P ))∗ (1.4.2)

where in the second line a representation X is identified with a module over

the path algebra P = P (
−→
Γ ).

In terms of the Auslander-Reiten quiver, these correspond exactly to the
maps νbΓ and τbΓ.

Remark 1.4.3. In the setting of equivariant sheaves on P
1 considered in [K],

the functor τ is given by tensoring with the dualizing sheaf O(−2).
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Now consider the corresponding derived category, denoted by Db(
−→
Γ ).

Recall that an object in D(
−→
Γ ) can be thought of as a choice of complex

X•(i) for each vertex i ∈ Γ together with maps of complexes xe : X•(i) →

X•(j) for each edge e : i → j. In Db(
−→
Γ ) the indecomposable objects, up to

isomophism, are of the form X[k], where X is an indecomposable object in

Rep(
−→
Γ ) considered as a complex concentrated in degree 0. The Auslander-

Reiten quiver of the derived category is the quiver Γ̂ defined in Section 1.3.
For more details about the structure of the derived category see [Hap].

The fundamental result for this theory is Gabriel’s Theorem, which relates
representations of Γ with the corresponding root system.

Theorem 1.4.4. Let Γ be a Dynkin graph of type A,D,E, let Ω be any ori-

entation of Γ, and let
−→
Γ = (Γ,Ω) be the corresponding quiver. Then the map

dim : K(
−→
Γ )→ Z

Γ0 gives an isomorphism of lattices. Hence the Grothendieck

group of Rep(
−→
Γ ) is identified with the root lattice of the corresponding root

system. Moreover, under this bijection the set Ind ⊂ K(
−→
Γ ) is identified with

the set of positive roots R+ of the corresponding root system, the symmetrized

Euler form (X,Y )−→
Γ

= 〈X,Y 〉−→
Γ

+ 〈Y,X〉−→
Γ

gives an inner product on K(
−→
Γ ),

and the Auslander-Reiten translation τ gives a Coxeter element in the cor-
responding Weyl group.

Gabriel’s Theorem provides a bijection between indecomposable represen-
tations and positive roots. A natural question is how this bijection depends
on the choice of orientation of the Dynkin diagram. To fully understand this

it is necessary to pass to the derived category Db(
−→
Γ ). In fact, one must

consider the “root” category Db(
−→
Γ )/T 2 where T is the translation functor

of the derived category. For more details on this see [PX1].

Let
−→
Γ = (Γ,Ω) and let i be a source for Ω. Define a functor RS+

i :
Db(Γ,Ω)→ Db(Γ, siΩ) by setting

RS+
i X(j) =

{
Cone(X(i)→

⊕
i→kX(k)) if i = j

X(j) otherwise.

For an edge e : j → k in Ω let e denote the corresponding edge in SiΩ, the
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map RS+
i (xe) is given by

RS+
i (xe) =

{
xe if s(e) 6= i

(0, ιj) : X(j)→ X•+1(i)
⊕
⊕i→jX(j) if s(e) = i

where ιj is the embedding of X(j) into ⊕X(j).

Similarly for i a sink define LS−i : Db(Γ,Ω)→ Db(Γ, siΩ) by

LS−i X(j) =

{
Cone(

⊕
i→kX(k)→ X(i)) if i = j

X(j) otherwise.

For an edge e : j → k in Ω let e denote the corresponding edge in SiΩ, the
map LS−i (xe) is given by

LS−i (xe) =

{
xe if t(e) 6= i

(ι+1
j , 0) : X(j)→ (⊕j→iX

•+1(j))
⊕

X•(i)) if t(e) = i

where ιj is the embedding of X(j) into ⊕X(j).

These are the derived functors of the well-known “BGP reflection func-
tors” (see [GM]). These functors provide a derived equivalence between the
categories Db(Γ,Ω) and Db(Γ, siΩ). Note that the functors RS+

i and LS−i
are inverse to each other. The name reflection functor comes from the action
of these functors on the Grothendieck group. In the setting of Gabriel’s The-

orem, the Grothendieck group of Db(
−→
Γ )/T 2 is isomorphic to the root lattice,

indecomposable objects correspond to all roots and the reflection functors
act on the Grothendieck group as the corresponding simple reflections in the
Weyl group of the associated root system.

14



Chapter 2

Combinatorial Construction

As discussed in the introduction, there are several approaches to constructing
a root system from the corresponding Dynkin diagram. This chapter gives a
combinatorial construction of the root system R corresponding to a Dynkin
graph Γ of type A,D,E. Rather than choosing a set of simple roots, as in
the standard construction, a choice of Coxeter element is made. This choice
then gives a canonical identification of R with the quiver Γ̂cyc, in which roots
correspond to vertices and the bilinear form and root lattice admit explicit
descriptions purely in terms of Γ̂cyc. This is then related to the construction
of R from Γ using quiver theory.

This construction is motivated by the categorical construction given in
the next chapter. However, all the proofs are independent and purely com-
binatorial. The main results of this chapter are summarized in the following
Theorem.

Theorem 2.0.5. Let Γ be an A,D,E Dynkin diagram, let R denote the
corresponding root system and W its Weyl group. Fix C ∈ W a Coxeter
element. Then there is a canonical bijection Φ : R→ Γ̂cyc with the following
properties:

1. It identifies the Coxeter element C with the “twist” τ : Γ̂cyc → Γ̂cyc.

Hence the natural projection map π : Γ̂cyc → Γ given by π(i, n) = i
gives a bijection between orbits of the Coxeter element and vertices of
the Dynkin diagram.

2. It gives a bijection between simple systems Π compatible with C and
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height functions h : Γ→ Γ̂cyc.

3. For each height function h there is an explicit description of the cor-
responding positive roots and negative roots as disjoint connected sub-
quivers of Γ̂cyc, as well as a reduced expression for the longest element
w0 in the Weyl group.

4. There is a de-symmetrization 〈·, ·〉 of the inner product on R, which

is analogous to the Euler form 〈·, ·〉 in the category Rep(
−→
Γ ) defined

in Section 1.2. Moreover, under the bijection Φ this form admits an
explicit description in terms of paths in Γ̂cyc.

2.1 Canonical Indexing Set

Let R ⊂ E be a root system of type A,D,E. Instead of fixing a choice
of simple roots, recall that for different simple root systems Π,Π′, there is
a unique element w ∈ W such that w(Π) = Π′, which therefore gives a
canonical bijection between simple roots α ∈ Π and α′ ∈ Π′. Therefore, it is
possible to use a single index set Γ for indexing simple roots in each of the
simple roots systems. More formally, this can be stated as follows.

Proposition 2.1.1. There is a canonical indexing set Γ, which depends only
on the root system R, such that for any simple root system Π there is a
bijection

Γ→ Π

i 7→ αΠ
i

which is compatible with the action of W : if Π′ = w(Π), then w(αΠ
i ) = αΠ′

i .

For any i, j ∈ Γ, i 6= j, define

nij = −(αΠ
i , α

Π
j ) ∈ {0, 1}

(this obviously does not depend on the choice of simple root system Π);
taking vertices indexed by Γ with i, j connected by nij unoriented edges
gives the Dynkin diagram of R; abusing the notation, this diagram will also
be denoted by Γ.
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2.2 Coxeter element and compatible simple

root systems

From now on, fix a Coxeter element C ∈ W and denote by h the Coxeter
number, i.e. the order of C.

Recall that a simple root system Π = {α1, . . . , αr} is compatible with C
if there is a reduced expression C = si1 · · · sir . By definition, for any Coxeter
element there exists at least one compatible simple root system. However,
not every simple root system is compatible with given C. More precisely,
there is the following result.

Lemma 2.2.1. For a given simple root system Π and Coxeter element C let
lΠ(C) be the length of a reduced expression for C given in terms of the simple
reflections sΠ

i . Then lΠ(C) ≥ r and C is compatible with Π if and only if
lΠ(C) = r.

Proof. Let ωi ∈ E be the fundamental weights. Then it is immediate from
the definition that si(ωj) = ωj for j 6= i and si(ωi) = −ωi +

∑
j nijωj. If

lΠ(C) < r then C = si1 · · · sil , and there exists i ∈ Γ such that i 6= ik for any
k. Hence C(ωi) = ωi. However the Coxeter element has no fixed vectors in
E (see [Kos2, Lemma 8.1]). Thus, lΠ(C) ≥ r.

Now suppose that lΠ(C) = r, so C = si1 · · · sir . Then the argument above
shows that every i ∈ Γ must appear in {i1, . . . , ir}. Since |Γ| = r, it must
appear exactly once, so C is compatible with Π.

The next proposition describes the set of Coxeter elements compatible
with a fixed set of simple roots.

Proposition 2.2.2. [Shi]

1. Let C be a Coxeter element, Π a simple root system compatible with C.
Choose a reduced expression for C and define an orientation on Γ as
follows: i → j if nij = 1 and i precedes j in a reduced expression for
C: C = . . . sΠ

i . . . s
Π
j . . . . Then this orientation does not depend on the

choice of a reduced expression for C.
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2. For fixed Π, the correspondence

{Coxeter elements compatible with Π} → { orientations of Γ}

defined in Part 1, is a bijection.

Proof. For a fixed set of simple roots Π, if there are two expressions C =
si1 · · · sir = si′

1
· · · si′r for a Coxeter element, we can obtain one from another

by the operations sisj → sjsi for i, j ∈ Γ satisfying nij = 0. As mentioned
in Section 1.1 any two reduced expressions for an element w ∈ W can be
obtained from each other by using operations sisj → sjsi if nij = 0 and
sjsisj → sisjsi if nij = 1; since for a Coxeter element every simple reflection
appears only once, the second operation does not apply. Thus, the orientation
on Γ does not depend on the choice of reduced expression.

Conversely, given an orientation on Γ, define a complete order on Γ as
follows: Γ = {i1, . . . , ir} so that all arrows are of the form ik → il with
k < l; thus, this orientation is obtained from the Coxeter element sΠ

i1
. . . sΠ

ir .
One easily sees that the order is defined uniquely up to interchanging i, j
with nij = 0 and thus the Coxeter element is independent of this choice of
order.

Example 2.2.3. For the root system R = An and Π = {α1 = e1 −
e2, . . . , αn = en − en+1} the Coxeter element C = s1 · · · sn corresponds to
the orientation 1→ 2→ · · · → n.

What is of interest in the present situation, however, is the opposite
direction: given a fixed Coxeter element C, how to describe all simple root
systems Π which are compatible with C.

For fixed compatible pair (C, Π) the following result shows how to con-
struct another set of simple roots compatible with C, and describes how the
corresponding orientations of Γ relate.

Proposition 2.2.4. Let C, Π be compatible and i ∈ Γ be a sink (or source)
for the corresponding orientation of Γ as defined in Proposition 2.2.2.

1. C = si1 · · · sir−1
si (if i ∈ Γ is a sink) or C = sisi1 · · · sir−1

(if i ∈ Γ is a
source).
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2. Π′ = sΠ
i (Π) is also a set of simple roots compatible with C. In this

case, Π is said to be obtained from Π′ by elementary reflection. Note
that elementary reflection si can only be applied to Π when i is a sink
or source for the orientation defined by Π.

3. The orientation of Γ corresponding to Π′ is obtained from the orien-
tation corresponding to Π by reversing the arrows at i. Thus a sink
becomes a source, and vice versa.

Proof. The proof is given for i ∈ Γ a sink. The proof for a source is almost
identical.

1. If i is a sink, all sj which do not commute with si must precede si in
the reduced expression for C. Thus, si can be moved to the end of the
reduced expression.

2. Denoting temporarily sj = sΠ
j , s′j = sΠ′

j , then s′j = sisjsi. Then, using
Part 1, write

C = si1 · · · sir−1
si

= (sisi)si1(sisi)si2(sisi) · · · (sisi)sir−1
si

= si(sisi1si)(sisi2si) · · · (sisr−1si)

= sis
′
i1
· · · s′ir−1

= s′is
′
i1
· · · s′ir−1

Hence C is compatible with Π′.

3. From C = s′is
′
i1
· · · s′ir−1

and Proposition 2.2.2 we see that i is a source
for the orientation obtained from Π′ and that the orientation is obtained
by reversing all the arrows to i.

Theorem 2.2.5. Fix a Coxeter element C ∈ W . Then:

1. The map

{Simple root systems Π compatible with C} → {orientations of Γ}

defined in Proposition 2.2.2 is surjective. Two different simple root
systems Π,Π′, both compatible with C, give the same orientation of Γ
if and only if Π′ = CkΠ for some k ∈ Z.
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2. If Π,Π′ are two simple root systems, both compatible with C, then Π′

can be obtained from Π by a sequence of elementary reflections si as in
Proposition 2.2.4.

Proof. The fact that the map is surjective easily follows from Proposition 2.2.4
and the fact that any two orientations of a graph without cycles can be ob-
tained one from the other by a sequence of operations si : sink↔ source.

Now, assume that two simple root systems Π, Π′ give the same orienta-
tion. Denoting as before si = sΠ

i , s′i = sΠ′

i , then for some complete order of
Γ

C = si1 . . . sir = s′i1 . . . s
′
ir

(note that the order is the same for si and s′i!). Let w ∈ W be such that
w(Π) = Π′; then s′i = wsiw

−1 and therefore C = (wsi1w
−1) . . . (wsirw

−1) =
wCw−1, so w commutes with C. However, it is known (see [Sp]) that the
centralizer of the Coxeter element is the cyclic group generated by C. Thus,
w = Ck.

Finally, to prove the last part, note that it is well known that any two
orientations can be obtained one from another by a sequence of elementary
reflections (reversing all arrows at a sink or a source). Thus, if Π,Π′ are
compatible with C, then applying a sequence of elementary reflections si
as in Proposition 2.2.4, one can obtain from Π′ a simple root system Π′′

which gives the same orientation as Π. By Part 1, it means that Π′′ = CkΠ.
But notice that the simple root system C(Π) can be obtained from Π by
a sequence of reflections si: namely, if C = sΠ

i1
. . . sΠ

ir , then consider the
sequence of simple root systems

Π0 = Π, Π1 = sΠ
i1
(Π0)

Π2 = sΠ1

i2
(Π1) = si1si2si1(Π1) = si1si2(Π)

. . .

Πr = s
Πr−1

ir
(Πr−1) = si1 . . . sir(Π) = C(Π).

One easily sees that ik is a source for Πk−1, so the above sequence of elemen-
tary reflections is well-defined.

Corollary 2.2.6. For a given Coxeter element C, there is a canonical bijec-
tion

{Simple root systems Π compatible with C} /C → {orientations of Γ}
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In particular, this shows that the number of simple root systems compati-
ble with C is equal to h2r−1, where h is the Coxeter number and r is the rank.
For example, for the root system of type An−1, where the Coxeter number is
n and the rank is n − 1, this gives n2n−2 (compared with the number of all
simple root systems, equal to n!).

A graphical description of the set of all compatible simple root systems
in terms of “height functions” will be given later, in Theorem 2.4.5.

2.3 Representatives of C-Orbits

As before, fix a Coxeter element C and choose a simple system Π compatible
with C. Define an order 6 on Γ by i 6 j if there exists an oriented path
i → · · · → j, with the orientation defined by Π as in Proposition 2.2.2. In
this case, one easily sees that si must precede sj in the reduced expression
for C.

Using this relation define βΠ
i ∈ R by

βΠ
i =

∑

j6i

αΠ
j . (2.3.1)

Proposition 2.3.1.

1. The βΠ
i are a basis of the root lattice, and αi = βΠ

i −
∑

j→i β
Π
j .

2. Let C = sΠ
i1
· · · sΠ

ir be a reduced expression for C. Then

βΠ
ik

= sΠ
i1
· · · sΠ

ik−1
(αΠ

ik
).

3. {βΠ
1 , . . . , β

Π
r } = {α ∈ RΠ

+ | C
−1α ∈ RΠ

−} where RΠ
± are the sets of

positive and negative roots defined by the simple root system Π.

4. βΠ
i are representatives of the C-orbits in R.

Remark 2.3.2. In the theory of quiver representations, the simple represen-
tations Xi correspond to the simple roots αΠ

i in R, while the projective
representations Pi correspond to the C-orbit representatives βΠ

i . This corre-
spondence will be discussed in detail in Section 2.8.
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Proof. The first two parts are easily obtained by explicit computation (see,
e.g. [Kos2, Theorem 8.1] ). The other two parts are known; a proof can be
found in [Bour, Chapter VI, §1, Proposition 33].

Example 2.3.3. For the root system R = An with simple roots Π = {α1 =
e1 − e2, . . . , αn = en − en+1} and Coxeter element C = s1s2 · · · sn the corre-
sponding C-orbit representatives are βΠ

i =
∑

j6i α
Π
j = e1 − ei.

Example 2.3.4. Let Γ = Γ0 ⊔ Γ1 be a bipartite splitting and

C = (Πi∈Γ0
si)(Πi∈Γ1

si).

Note that in the corresponding orientation of Γ all the arrows go from Γ0

to Γ1. So Γ0 are sources and Γ1 are sinks. Then βΠ
i = αΠ

i for i ∈ Γ0 and
βΠ
i = αΠ

i +
∑

j nijα
Π
j = −C(αΠ

i ) for i ∈ Γ1. In this case the βΠ
i obtained are

the same C-orbit representatives as in [Kos] except that our case the βΠ
i for

i ∈ Γ1 are shifted by C.

Example 2.3.5. As a special case of the previous example, consider the
Dynkin diagram of type D2n+1, with simple root system

Π = {α1 = e1−e2, . . . , α2n−1 = e2n−1−e2n, α2n = e2n−e2n+1, e2n+1 = e2n+e2n+1}

and
Γ0 = {2, 4, . . . , 2n, 2n+ 1}, Γ1 = {1, 3, . . . , 2n− 1}

The corresponding Coxeter element is given by C = (Πi∈Γ0
si)(Πi∈Γ1

si),
and the C-orbit representatives are

βΠ
i = αi for i ∈ Γ0 = {2, 4, . . . , 2n, 2n+ 1}

βΠ
1 = e1 − e3, β

Π
3 = e2 − e5, . . . e2i+1 = e2i − e2i+3, . . . , β2n−3 = e2n−2 − e2n−1

βΠ
2n−1 = e2n−2 + e2n

Figure 2.1 shows the corresponding orientation, as well as the roots αi
and βi for D5.

A natural question is how the set of βi change when the simple root system
Π is changed (keeping C fixed). By Theorem 2.2.5, it suffices to describe how
βi change under elementary reflections.
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e1−e2

e1−e3

e2−e3

e2−e3

e3−e4

e2+e4 e4−e5

e4−e5

e4+e5

e4+e5

Figure 2.1: The Dynkin Diagram D5. The C-orbit representative βΠ
i is above

the node i ∈ Γ, and the simple root αΠ
i is below the node i ∈ Γ.

Proposition 2.3.6. Let Π be a simple root system compatible with C, and
let i ∈ Γ be a sink for the corresponding orientation. Then

βsiΠj =

{
C−1βΠ

i for j = i

βΠ
j for j 6= i

Similarly, if i is a source, then

βsiΠj =

{
CβΠ

i for j = i

βΠ
j for j 6= i

Proof. For brevity deonte sj = sΠ
j , s′j = ssiΠj . For i a sink, it is possible to

write C = si1 · · · sir−1
si and βi = si1 · · · sir−1

αi. Hence

C−1βi = (sisir−1
· · · si1)(si1 · · · sir−1

)αi

= siαi

= αsiΠi

= βsiΠi

since i is a source for siΠ.
Now take ij 6= i. Then

βΠ
ij

= si1 · · · sij−1
αij

= (sisi)si1(sisi) · · · (sisi)sij−1
(sisi)αij

= sis
′
i1
· · · s′ij−1

(siαij)

= βsiΠij
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Similarly, for i a source, write C = sisi1 · · · sir−1
and βi = αi. Hence

Cαi = sisi1 · · · sir−1
αi

= s′i1 · · · s
′
ir−1

siαi

= βsiΠi

since i is a sink for siΠ.
For ij 6= i a similar calculation to the case i a sink gives βΠ

ij
= βsiΠij

.

Theorem 2.3.7. Let R/C be the set of C-orbits in R. Then there is a
bijection

Γ→ R/C

i 7→ C-orbit of βΠ
i

which does not depend on the choice of a simple root system Π compatible
with C.

Proof. The fact that it is a bijection follows from Proposition 2.3.1. To show
independence of the choice of Π, notice that by Proposition 2.3.6, if Π,Π′

are obtained one from another by an elementary reflection, then the C-orbit
of βΠ

i and βΠ′

i coincide. On the other hand, by Theorem 2.2.5, any two
simple root systems compatible with C can be obtained one from another by
elementary reflections.

For future use, the following proposition is given here, which describes
the action of C on βi. Its geometric meaning will become clear in Section 2.5.

Proposition 2.3.8. CβΠ
i = −βΠ

i +
∑

j→iCβ
Π
j +

∑
j←i β

Π
j .

Proof. Let i ∈ Γ be a sink. Then there are no j ← i and from the proof
of Proposition 2.3.6, −C−1βΠ

i = αi = βΠ
i −

∑
j→i β

Π
j . Applying C to this

equation and rearranging gives the statement of the proposition.

Now if i ∈ Γ is not a sink apply a sequence of reflections sj with j ≥ i
to make it one. This process replaces Π by another compatible simple root
system Π′. By Proposition 2.3.6,

1. βΠ
i = βΠ′

i
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2. if j → i for Π then βΠ
j = βΠ′

j

3. if j ← i for Π then βΠ′

j = C−1βΠ
j .

Then the argument of the first paragraph of the proof gives

βΠ′

i + CβΠ′

i =
∑

j→i in Π′

CβΠ′

j

=
∑

j→i in Π

CβΠ′

j +
∑

j←i in Π

CβΠ′

j

=
∑

j→i in Π

CβΠ
j +

∑

j←i in Π

C(C−1βΠ
j )

=
∑

j→i in Π

CβΠ
j +

∑

j←i in Π

βΠ
j .

2.4 Identification of R and Γ̂cyc

The goal of this section is to show that the set of vertices of Γ̂cyc can be
(almost) canonically identified with the root system R. To do so, fix one of
the vertices i0 ∈ Γ and choose an identification

Φ0 : (C– orbit of βi0)→ {(i0, n) | n ∈ Z2h, n+ p(i0) ≡ 0 mod 2} ⊂ Γ̂cyc

which identifies the Coxeter element with the twist: Φ0(Cβ) = τΦ0(β).

Remark 2.4.1. The seeming arbitrariness in the choice of Φ0 could have been
avoided if Z2h were replaced with a suitable Z2h-torsor in the definition of
Γ̂cyc.

Theorem 2.4.2. Let C be a fixed Coxeter element and Π a simple root system
compatible with C. Then there exists a unique bijection ΦΠ : R → Γ̂cyc with
the following properties

1. It identifies the Coxeter element with the twist: ΦΠ(Cβ) = τΦΠ(β).

2. It agrees with the identification R/C → Γ given in Theorem 2.3.7:
ΦΠ(βΠ

i ) = (i, h(i)) for some h : Γ→ Z2h.
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3. If, in the orientation defined by Π, we have i→ j, and ΦΠ(βΠ
i ) = (i, n),

then ΦΠ(βΠ
j ) = (j, n+ 1) (see Figure 2.2 ).

4. On the C–orbit of βi0, ΦΠ coincides with Φ0.

Proof. Since βΠ
i are representatives of C-orbits in R (Proposition 2.3.1), and

each C-orbit has period h, it suffices to define ΦΠ(βΠ
i ). On the other hand,

condition (4) uniquely defines ΦΠ(βΠ
i0
), and it is easy to see that given ΦΠ(βΠ

i0
),

conditions (2) and (3) uniquely determine ΦΠ(βΠ
i ) for all i ∈ Γ (since Γ is

connected and simply-connected).

Theorem 2.4.3. The bijection Φ: R→ Γ̂cyc, defined in Theorem 2.4.2, does
not depend on the choice of Π.

Proof. By Theorem 2.2.5 it suffices to check that if Π′ is obtained from Π by
elementary reflection, then ΦΠ = ΦΠ′

. To do so it suffices to check that ΦΠ

satisfies all the defining properties of ΦΠ′

. The only property which is not
obvious is (3): if in the orientation defined by Π′, i→ j, and ΦΠ(β′i) = (i, n),
then ΦΠ(β′j) = (j, n+1), where for brevity we denoted βi = βΠ

i and β′i = βΠ′

i .

Let Π′ = skΠ. If i, j are both distinct from k, then by Proposition 2.3.6,
βi = β′i, βj = β′j, so property (3) for ΦΠ′

coincides with the one for ΦΠ. So
the only case to consider is when i = k or j = k; in these cases, sk reverses
the orientation of the edge between i and j.

If i = k, then for Π we have j → i, so i is a sink for Π. Then by
Proposition 2.3.6 β′j = βj, β

′
i = C−1βi. By definition, if ΦΠ(βi) = (i, n), then

ΦΠ(βj) = (j, n − 1), and ΦΠ(β′i) = τ−1(i, n) = (i, n − 2) (see Figure 2.2).
Thus, condition (3) for pair β′i, β

′
j is satisfied.

Case j = k is done similarly.

Example 2.4.4. For a Dynkin digram of type A4, with Π = {e1−e2, . . . , e4−

e5} and C = s1s2s3s4, the map Φ: R→ Γ̂cyc is shown in Figure 2.3. For An
the figure is similar.

As an immediate application of this construction, it is possible to give an
explicit description of the set of all simple root systems compatible with C
purely in terms of Γ̂cyc.
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Φ(βi)

Φ(β′i)

Φ(βj)

Figure 2.2: Roots under the identification Φ.

Theorem 2.4.5. Let Π be a simple root system compatible with C. Then
the function hΠ : Γ→ Z2h defined by Φ(βΠ

i ) = (i, hΠ(i)) is a height function.
Conversely, every height function can be obtained in this way from a unique
simple root system compatible with C.

Proof. The fact that hΠ is a height function is obvious from the definition of
Φ. To check that any height function can be obtained from some Π compat-
ible with C, note that by Theorem 2.2.5, for given height function h there
is a simple root system Π which would give the same orientation of Γ as h.
Therefore, we would have hΠ = h+ a for some constant a ∈ Z2h, which must
necessarily be even. Take Π′ = Ca/2(Π); then h = hΠ′

.

Corollary 2.4.6. For a given Coxeter element C, there is a canonical bijec-
tion

{Simple root systems Π compatible with C} → {Height functions on Γ}.

The elementary reflections si can also be easily described in terms of
height functions.

Proposition 2.4.7. If Π is a simple root system compatible with C, i is a
sink for the orientation defined by Π, and hΠ, hsiΠ is the corresponding height
functions as defined in Theorem 2.4.5, then

hsiΠ(j) =

{
h(j)− 2 j = i

h(j) j 6= i
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Figure 2.3: The map Φ for the root system of type A4. The figure shows, for
each vertex in Γ̂cyc, the corresponding root α ∈ R; the notation (ij) stands
for ei− ej. The set of positive roots (with respect to usual polarization of R)

is shaded. Recall that the quiver Γ̂cyc is periodic.
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Simiarly, if i is a source, then

hsiΠ(j) =

{
h(j) + 2 j = i

h(j) j 6= i

(see Figure 2.4).

Figure 2.4: The action of simple reflections on height functions.

The proof is immediate from Proposition 2.3.6.

Remark 2.4.8. Note that in this case the height function hsiΠ is the same as
s±i h

Π as defined in Section 1.3, and abusing notation, from now on both will
be denoted by sih

Π.

2.5 Root lattice

In the previous section a canonical bijection Φ: R → Γ̂cyc was constructed,
which is independent of the choice of a simple root system Π. Among other
things, it identified the set of all compatible Π with the set of “height func-
tions”, by using Φ(βΠ

i ). In this section this isomorphism is studied further.

In particular, a description of the root lattice in terms of Γ̂cyc is given.

Theorem 2.5.1. Let the lattice Q be defined by

Q = Z
bΓcyc/J, (2.5.1)

where J is the ideal generated by the following relations, for each (i, n) ∈ Γ̂cyc,

(i, n)−
∑

j

(j, n+ 1) + (i, n+ 2) = 0 (2.5.2)
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(where the sum is over all vertices j ∈ Γ connected to i). Then

1. The identification Φ: R → Γ̂cyc defined in Theorem 2.4.3 descends to
an isomorphism of lattices Q(R) → Q, where Q(R) is the root lattice
of R.

2. For any height function h, the elements (i, h(i)) ∈ Γ̂cyc form a basis of
Q.

Proof. Let h be a height function. Then the classes (i, h(i)) for i ∈ Γ,
generate the lattice Q. Indeed, let Qh be the subgroup generated by (i, h(i)).
It follows from relations (2.5.2) that if i is a source for h, then (i, h(i) + 2) is
in Qh; thus, Qh = Qsih. Since any height function can be obtained from h by
succesive applications of elementary reflections, it follows that Qh contains
all (i, n) ∈ Γ̂cyc, so Qh = Q. In particular, this implies that rank(Q) ≤ r.

Next, we show that Φ−1 descends to a well-defined map Q → Q(R). To
do so requires verifying that

Φ−1(i, n)−
∑

j

Φ−1(j, n+ 1) + Φ−1(i, n+ 2) = 0

in Q(R). Choosing a simple root system Π such that Φ−1(i, n) = βΠ
i , this

relation is equivalent to the relation

βΠ
i −

(∑

j→i

CβΠ
j +

∑

j←i

βΠ
j

)
+ CβΠ

i = 0

proved in Proposition 2.3.8.

Since Φ−1 : Γ̂cyc → R is a bijection, the map Φ−1 : Q → Q(R) is sur-
jective. Since it has already been shown that rank(Q) ≤ r, this implies
that rank(Q) = r, so that Φ−1 is an isomorphism, and that for fixed height
function h, the classes (i, h(i)) form a basis of Q.

Remark 2.5.2. Relations (2.5.2) are motivated by almost split exact sequences
in the theory of quiver representations, or by the short exact sequence of
coherent sheaves on P

1 = P(V ): 0→ F → F(1)⊗ V → F(2)→ 0.
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2.6 Euler form

Recall the Euler form

〈X,Y 〉 = dim RHom(X,Y ) = dim Hom(X,Y )− dim Ext1(X,Y )

on Rep(
−→
Γ ) defined in Section 1.2. In this section the analog of such a form is

defined on both R and Γ̂cyc and used to give a definition of the inner product

on R in terms of Γ̂cyc.

Define a bilinear form 〈·, ·〉Π on the root lattice Q(R) by

〈βΠ
i , α

Π
j 〉

Π = δij. (2.6.1)

By Proposition 2.3.1, this completely determines 〈·, ·〉Π. Note that this form
is non-degenerate but not symmetric.

Theorem 2.6.1.

1. 〈βΠ
i , β

Π
j 〉

Π =

{
1 i 6 j

0 otherwise
= the number of paths (i→ · · · → j).

2. 〈·, ·〉Π is integer valued on R and satisfies

〈x, y〉Π + 〈y, x〉Π = (x, y) (2.6.2)

〈x, y〉Π = −〈y, C−1x〉Π. (2.6.3)

where (·, ·) is the W -invariant inner product in E normalized so that
(α, α) = 2 for α ∈ R.

Note that the equation 〈x, y〉 = −〈y, C−1x〉 in R corresponds to the state-
ment of Serre Duality Hom(X,Y ) = Ext1(Y,X(−2))∗ in the theory of equiv-
ariant sheaves described in [K], or equivalently, the identity Ext1(X,Y ) =
DHom(X, τY ) in Auslander–Reiten theory (see [ARS]).

Proof. Since throughout the proof the simple root system Π will be fixed,
the superscripts will be dropped, writing βi for βΠ

i , etc.
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1. Obvious from the definition of βj.

2. To see that 〈·, ·〉Π symmetrizes to (·, ·), use the identity αi = βi −∑
k→i βk (see Proposition 2.3.1), which gives

〈αi, αj〉
Π = 〈βi −

∑

k→i

βk, αj〉
Π =






1 if i = j

−1 if j → i

0 otherwise.

Then

〈αi, αj〉
Π + 〈αj, αi〉

Π =






2 if i = j

−1 if i→ j or j → i

0 otherwise

= (αi, αj).

To prove relation (2.6.3), it suffices to prove that for all k, i one has

〈βk, C
−1βi〉

Π = −〈βi, βk〉
Π. (2.6.4)

This will be proved by fixing k and using induction in i, using the
partial order defined by the orientation. So assume that (2.6.4) is true
for all j > i.

Using Proposition 2.3.8, rewrite the left-hand side of (2.6.4) as

〈βk, C
−1βi〉

Π = −〈βk, βi〉
Π +

∑

j→i

〈βk, βj〉
Π +

∑

j←i

〈βk, C
−1βj〉

Π.

The first two terms can be rewritten as

−〈βk, βi〉
Π +

∑

j→i

〈βk, βj〉
Π = −〈βk, αi〉

Π = −δik.

The last term, using the induction assumption, can be rewritten as

∑

j←i

〈βk, C
−1βj〉

Π = −
∑

j←i

〈βj, βk〉
Π

= −
∑

j←i

(number of paths j → · · · → k).
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Thus, the left-hand side of (2.6.4) is

〈βk, C
−1βi〉

Π = −δik −
∑

j←i

(number of paths j → · · · → k)

= −(number of paths i→ · · · → k) = −〈βi, βk〉
Π

which proves (2.6.4).

Theorem 2.6.2. For fixed C, the form 〈·, ·〉Π does not depend on the choice
of simple root system Π compatible with C. Thus this form will be denoted
by 〈·, ·〉 and called the Euler form defined by C.

Proof. Consider the difference ≪ ·, · ≫= 〈·, ·〉Π1 − 〈·, ·〉Π2 . Since these two
forms have the same symmetrization, ≪ ·, · ≫ is skew-symmetric and satis-
fies (2.6.4). Thus,

≪ x, y ≫= − ≪ y, C−1x≫=≪ C−1x, y ≫

so ≪ (1 − C−1)x, y ≫= 0. Since 1 is not an eigenvalue for C−1 (see [Kos2,
Lemma 8.1]), the operator 1− C−1 is invertible, so the form ≪ ·, · ≫ must
be identically zero.

Proposition 2.6.3. Let 〈·, ·〉 be the Euler form defined by C in Theorem 2.6.2.

1. The form 〈·, ·〉 is C–invariant: 〈Cx,Cy〉 = 〈x, y〉.

2. 〈x, y〉 = (x, (1− C−1)−1y) = ((1− C)−1x, y)

3. Let ωΠ
i be fundamental weights: (ωΠ

i , α
Π
j ) = δij. Then βΠ

i = (1−C)ωΠ
i

4. The operator (1 − C) is an isomorphism P (R) → Q(R), where Q(R),
P (R) are root and weight lattices of R respectively.

Proof.

1. Choose a compatible simple root system Π. Then by definition 〈βΠ
i , α

Π
j 〉 =

δij. On the other hand, C(Π) is also a compatible simple root system,

and α
C(Π)
i = CαΠ

i , β
C(Π)
i = CβΠ

i , so

〈CβΠ
i , Cα

Π
j 〉 = δij = 〈βΠ

i , α
Π
j 〉.
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2. First write 〈x, y〉 = (x,Ay) for some A. Then using (2.6.3) one obtains:

(x, y) = 〈x, y〉+ 〈y, x〉 = 〈x, y〉 − 〈x,C−1y〉

= (x,Ay)− (x,AC−1y)

= (x,A(1− C−1)y).

Hence A = (1−C−1)−1. (Note that 1−C−1 is invertible since 1 is not
an eigenvalue for C−1.) The second identity is proved in a similar way.

3. From Part (2) use that δij = ((1 − C)−1βΠ
i , α

Π
j ) and hence βΠ

i = (1 −
C)ωΠ

i .

4. Since ωi form a basis of P (R), and βi form a basis of Q(R) (Proposi-
tion 2.3.1), this follows from part (3).

As an immediate corollary, one obtains the following result, describing
the Euler form in Γ̂cyc.

Proposition 2.6.4. There exists a unique function 〈·, ·〉bΓcyc : Γ̂cyc× Γ̂cyc → Z

satisfying

1. 〈(i, n), (j, n)〉 = δij,
〈(i, n), (j, n+ 1)〉 =the number of paths (i, n)→ · · · → (j, n+ 1)
=number of edges between i, j in Γ (note that this number is either zero
or one).

2. For any q = (k,m) ∈ Γ̂cyc this function satisfies

〈q, (i, n)〉bΓcyc −
∑

j−i

〈q, (j, n+ 1)〉bΓcyc + 〈q, (i, n+ 2)〉bΓcyc = 0.

Proof. Uniqueness easily follows by induction: for fixed q = (i, n), condition
(1) defines 〈q, (∗, n)〉bΓcyc , 〈q, (∗, n + 1)〉bΓcyc . Then condition (2) can be used

to define 〈q, (∗, n + 2)〉bΓcyc . Continuing in this way, one observes that these

two conditions completely determine 〈·, ·〉bΓcyc .

To prove existence, note that the form 〈q1, q2〉bΓcyc = 〈Φ−1(q1),Φ
−1(q2)〉,

where 〈·, ·〉 is the Euler form on R defined in Theorem 2.6.2, satisfies all
required properties.
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Note that the proof of uniqueness actually gives a very simple and effective
algorithm for computing 〈·, ·〉bΓcyc .

Theorem 2.6.5. For a simply-laced Dynkin diagram Γ, define the set Γ̂cyc
and lattice Q by Equation 1.3.2, Equation 2.5.1 respectively. Let 〈·, ·〉bΓcyc be

the Euler form defined in Proposition 2.6.4, and let (x, y)bΓcyc = 〈x, y〉bΓcyc +

〈y, x〉bΓcyc.

Then (·, ·)bΓcyc is a positive definite symmetric form on Q, and Γ̂cyc ⊂ Q
is a root system with Dynkin diagram Γ.

Proof. Let R be a root system with Dynkin diagram Γ, and C a Coxeter
element in the corresponding Weyl group. Then the map Φ constructed in
Theorem 2.4.3 identifies R→ Γ̂cyc, Q(R)→ Q and the inner product (·, ·) in
Q with (·, ·)bΓcyc .

2.7 Positive roots and the longest element in

the Weyl group

Let Π be a simple root system compatible with C and RΠ
+ the corresponding

set of positive roots. Then bijection Φ: R → Γ̂cyc constructed in Theo-

rem 2.4.3 identifies RΠ
+ with a certain subset in Γ̂cyc. This subset can be

identified with the usual Auslander–Reiten quiver of the category of repre-

sentations of the quiver
−→
Γ where the orientation of Γ is opposite to that

defined by Π; this will be discussed in detail in Section 2.8.

In this section an explicit description of the set Φ(RΠ
+) is given in terms

of Γ̂cyc.

Theorem 2.7.1. Let Π be a simple root system compatible with C, and −Π =
{−α | α ∈ Π} be the opposite simple root system. Let hΠ, h−Π : Γ → Z2h be
the corresponding height functions as defined in Theorem 2.4.5.

Let ∆Π be the set of all vertices of Γ̂cyc “between” correponding slices:

∆Π = {(i, n) ∈ Γ̂cyc | h
Π(i) ≤ n < h−Π(i)}. (2.7.1)

(see Figure 2.5). The subset ∆Π will be considerd as a quiver, with the same

edges as Γ̂cyc.
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1. The map Φ gives an identification RΠ
+ → ∆Π.

2. Define a partial order on ∆Π by q1 � q2 if there exists a path from q1
to q2 in ∆Π, and extend it to a complete order, writing

∆Π = {α(1) = (i1, n1), α(2) = (i2, n2), . . . , α(l) = (il, nl)}

so that α(a) � α(b) =⇒ a ≤ b. Then

sΠ
i1
. . . sΠ

il

is a reduced expression for the longest element wΠ
0 of the Weyl group.

Figure 2.5: Positive roots in Γ̂cyc, for diagram of type D5. Bold lines show
Φ(βΠ

i ) and Φ(β−Π
i ); the shaded area is the set ∆ = Φ(RΠ

+).

Proof. First we prove that ∆Π ⊂ Φ(RΠ
+). Indeed, choose i ∈ Γ and let k

to be the smallest positive integer such that β = Φ−1(i, hΠ(i) + 2k) /∈ RΠ
+.
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Then β satisfies β ∈ R−Π
+ , C−1β ∈ RΠ

+. By Proposition 2.3.1 applied to −Π,
then it must be the case that β = β−Π

i , so hΠ(i) + 2k = h−Π(i). Therefore,
(i, n) ∈ Φ(RΠ

+) for all n satisfying hΠ(i) ≤ n < h−Π(i).

Reversing the roles of Π,−Π, gives that the set ∆−Π = {(i, n) ∈ Γ̂cyc | h
−Π(i) ≤

n < hΠ(i)} staisfies ∆−Π ⊂ Φ(R−Π
+ ) = Φ(−RΠ

+). Since Γ̂cyc = ∆Π ⊔ ∆−Π,
this forces ∆Π = Φ(RΠ

+). In particular, l = |∆Π| = |RΠ
+|.

To prove the second part, consider a sequence of sets ∆0 = ∆Π, ∆1 =
∆0 \ {α(1)} = {α(2), . . . , α(l)}, ∆k = ∆k−1 \ {α(k)} = {α(k + 1), . . . , α(l)},
∆l = ∅}.

It is immediate from the definitions that one can write

∆k = {(i, n) ∈ Γ̂cyc | hk(i) ≤ n < h−Π(i)} (2.7.2)

for the sequence of height functions h0 = hΠ, h1 = si1h0, . . . , hk = sikhik−1
,

. . . , hl = h−Π, and ik is a source for hk−1. In the same way, define a sequence
of corresponding simple root systems Π0 = Π, Π1 = si1Π, . . . ,Πl = −Π. One
easily sees that

Π2 = sΠ1

i2
(Π1) = sΠ

i1
sΠ
i2
sΠ
i1
(Π1) = sΠ

i1
sΠ
i2
(Π).

Repeating this argument, gives Πk = sΠ
i1
. . . sΠ

ik
(Π); in particular,

−Π = Πl = sΠ
i1
. . . sΠ

il
(Π).

Since l = |R+| = l(w0), the word sΠ
i1
. . . sΠ

il
is a reduced expression for the

longest element wΠ
0 .

Remark 2.7.2. The reduced expression for w0 given in the previous theorem
is given by source to sink operations taking the slice ΓΠ to Γ−Π and thus
is adapted to ΩΠ. (A reduced expression si1 · · · sil is adapted to Ω if ik is a
source for si1 · · · sik−1

Ω.)

Example 2.7.3. Consider the case R = A4 from Example 2.4.4. The con-
struction above gives the expression w0 = s1s2s3s4s1s2s3s1s2s1 for the longest
element.

Note that the second part of the theorem is equivalent to the algorithm
for constructing a reduced expression for w0 in terms of the Auslander–Reiten
quiver given in [Béd] (in the form given here it is reformulated in [Z, Theo-
rem 1.1]).
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Example 2.7.4. Let Π be such that it defines a bipartite orientation on Γ,
as in Example 2.3.4, so that C = (Πi∈Γ0

si)(Πi∈Γ1
si). Assume additionally

that the Coxeter number h = 2g is even. Then it is known that w0 = Cg (see
[Kos]), and thus −Π = Cg(Π), and the corresponding height functions are
related by h−Π = hΠ +2g. In this case, the set Φ(RΠ

+) is a “horizontal strip”.
However, as the example of type A shows (see Example 2.4.4), in general the
set Φ(RΠ

+) can have a more complicated shape.

Recall the automorphism i 7→ ı̌ of defined by Equation 1.1.3. Equiva-
lently, ı̌ can be defined by setting −βΠ

i = β−Π
ı̌ , where βΠ

i are the C-orbit rep-
resentatives defined above. Thus for the root systems of type A,D2n+1, E6

this map corresponds to the diagram automorphism, while for D2n, E7, E8

this map is just the identity (corresponding to the fact that −Id = Ch/2 ∈
W ).

Recall the map γbΓcyc : Γ̂cyc → Γ̂cyc by the formula

γbΓcyc(i, k) = (̌ı, k + h).

Lemma 2.7.5. Under the identification Φ : R → Γ̂cyc the map −Id corre-
sponds to γbΓcyc.

Proof. Φ(−βΠ
i ) = Φ(β−Π

ı̌ ) = (̌ı, h−Π(̌ı)) = γbΓcyc(i, h
Π).

For the last equality, since the maps Φ and γbΓcyc are compatible with
the simple reflection sj when j ∈ Γ is a sink or source, it is enough to
consider the case where Π gives a bipartite splitting Γ = Γ0 ⊔ Γ1 and C =
(
∏

i∈Γ0
sΠ
i )(

∏
i∈Γ1

sΠ
i ).

If h = 2g is even, then wΠ
0 = Cg (see [Kos]) and hence hΠ(i)+h = h−Π(̌ı).

If h = 2g + 1 is odd, then R = A2g. Then wΠ
0 = (

∏
i∈Γ0

sΠ
i )Cg and

ı̌ = 2g + 1− i, so that ı̌ ∈ Γ1 if i ∈ Γ0 and ı̌ ∈ Γ0 if i ∈ Γ1. If ı̌ ∈ Γ0, then

h−Π(̌ı) = wΠ
0 h

Π(̌ı) = hΠ(̌ı) + 2g + 2 = hΠ(i)− 1 + 2g + 2 = hΠ(i) + h.

For ı̌ ∈ Γ1 a similar calculation shows that h−Π(̌ı) = hΠ(i) + h.

Recall that a choice of compatible simple roots Π gives a height function
hΠ, and hence a slice given by ΓΠ = {(i, hΠ(i))}. The following Proposition

gives another characterisation of ∆Π ⊂ Γ̂cyc.
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Proposition 2.7.6. Let Π be compatible with C. Then γbΓcyc(ΓΠ) = Γ−Π, and

so the subset ∆Π ⊂ Γ̂cyc can be identified as the full subquiver lying “between”
ΓΠ and γbΓcyc(ΓΠ) = Γ−Π:

∆Π = {(i, n) ∈ Γ̂|hΠ ≤ n < h−Π}

where hΠ and h−Π are the height functions corresponding to the slices ΓΠ and
Γ−Π respectively.

Proof. This follows immediately from Lemma 2.7.5 and the identification of
∆Π with the set of roots lying between hΠ and h−Π given in Theorem 2.7.1.

2.8 Relationship between AR(Γ,Ω) and Γ̂cyc

The goal of this section is to show that for any choice of Π compatible with

C there is an identification of the Auslander-Reiten quiver of
−→
Γ = (Γ,Ωop

hΠ)

with the subset ∆Π
+ ⊂ Γ̂cyc.

Let Π be a simple root system compatible with C. This gives a height
function hΠ, and hence gives an orientation Ω on Γ, as well as a slice ΓΩ.
Consider the natural projection PΠ : Γ̂→ Γ̂cyc given by PΠ(i, k) = (i, k).

Proposition 2.8.1. Let Π be compatible with C, let ΩΠ denote the corre-
sponding orientation of Γ, and let τ be the Auslander-Reiten translation of
the category Rep(Γ,Ωop

Π ).

1. PΠ ◦ τ
−1 = τbΓcyc ◦ PΠ.

2. PΠ ◦ ν = νbΓcyc ◦ PΠ

3. The map PΠ identifies the Auslander-Reiten quiver AR(Γ,Ωopp) in Γ̂

with ∆Π in Γ̂cyc.

4. Under the identification PΠ, the projective representation Pi corre-
sponds to βΠ

i .
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Proof.

1. This follows easily just by definitions:

PΠ ◦ τbΓ(i, k) = PΠ(i, k + 2)

= (i, k + 2)

= τbΓcyc(i, k)

= τbΓcycPΠ(i, k).

2. Again by definitions:

PΠ(ν(i, k)) = PΠ(̌ı, k + h− 2)

= (̌ı, k + h− 2)

= (̌ı, k + h− 2)

= νbΓcyc(i, k)

= νbΓcyc ◦ PΠ(i, k).

3. As in Section 1.4 fix a vertex i0 ∈ Γ to identify AR(Γ,Ωop) with a full

subquiver of Γ̂. A choice of compatible simple system Π gives a unique
height function hΠ, which also gives an orientation Ω, and a unique slice
ΓΩ in Γ̂cyc. As in Section 1.2 fix a vertex i ∈ Γ to identify AR(Γ,Ωop)

with a full subquiver of Γ̂. Then this gives a unique slice ΓΩ through
(i, hΠ(i)) in Γ̂. By the construction of the map PΠ these two slices
are identified. Parts 1 and 2 show that PΠ identifies τ with τbΓcyc and ν

with νbΓcyc . Then the description of AR(Γ,Ωopp) given in Theorem 1.4.1,

and the description of ∆Π given in Proposition 2.7.6, shows that the
map PΠ identifies AR(Γ,Ωopp) with ∆Π. (Compare Example 1.4.2 with
Example 2.4.4.)

4. The βΠ
i map to the slice ΓΩ ⊂ Γ̂cyc. Similarly, the projective represen-

tations Pi map to the slice ΓΩ ⊂ Γ̂. By Part 3, these are identified by
PΠ.
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Given a simple root system Π, compatible with C, we have obtained a bi-
jection of the Auslander-Reiten quiverAR(Γ,Ωopp) of the category Rep(Γ,Ωopp)

with the subquiver ∆Π ⊂ Γ̂cyc. Both AR(Γ,Ωopp) and ∆Π correspond to
the set of positive roots RΠ

+. For AR(Γ,Ωopp) the correspondence is the
usual identification between Ind(Γ,Ωopp) and positive roots RΠ

+ ⊂ ⊕i∈IZαi,
given by the dimension vector dimX. For ∆Π it is given by the map
Φ : R → Γ̂cyc from Section 2.4. The following Theorem shows that the
bijection AR(Γ,Ωopp)→ ∆Π agrees with these identifications to RΠ

+.

Theorem 2.8.2. Let Π be a compatible simple root system, hΠ the corre-
sponding height function and Ω the corresponding orientation. The following
diagram is commutative:

AR(Γ,Ωopp)

dim

yysssssssssss

PΠ

��

RΠ
+

Φ
%%LLLLLLLLLLL

∆Π

Proof. Under the map dim : AR(Γ,Ωopp)→ RΠ
+ the projective representation

Pi given by

Pi(j) =

{
C j 6 i

0 otherwise

is identified with the C-orbit representative βΠ
i . By Theorem 1.4.1 these

representations form the slice ΓΩ ⊂ Γ̂. The C-orbit representatives map to
the slice ΓΩ in Γ̂cyc under the map Φ. By Proposition 2.8.1 these two slices are
identified by the map PΠ. Hence the diagram commutes on the projectives
Pi. The map dim identifies τ−1 (where τ is the Auslander-Reiten translation)
with C, the map Φ identifies C with τbΓcyc , and PΠ identifies τ−1 with τbΓcyc .

Since any X ∈ AR(Γ,Ωopp) is of the form τ−k(Pi), and any α ∈ RΠ
+ is of the

form CkβΠ
i this shows that the diagram commutes.
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2.9 Identification of Euler Forms

In this section, it is shown for a choice of compatible simple system Π, the
bilinear form 〈·, ·〉R on R, constructed in Section 2.6, corresponds to the
Euler form 〈X,Y 〉 = dim RHom(X,Y ) = dim Hom(X,Y ) − dim Ext1(X,Y )
on Rep(Γ,Ωopp), where Ω is the orientation determined by Π.

Note that the Euler form satisfies

〈X,Y 〉 = −〈Y, τX〉 = 〈τX, τY 〉 (2.9.1)

(see [C-B], for a proof).

Theorem 2.9.1. The map PΠ : ZΓ→ Γ̂cyc identifies the Euler form 〈·, ·〉 on
AR(Γ,Ωopp) with the form 〈·, ·〉R on RΠ

+.

Proof. Recall that the C-orbit representative βΠ
i corresponds to the projec-

tive representation Pi, while the simple root αΠ
i corresponds to the simple

representation Xi. It is well known (see [C-B] p.24) that 〈Pi, Xj〉 = δij.
Define a form≪ ·, · ≫ on AR(Γ,Ω) by≪ X,Y ≫= 〈PΠ(X), PΠ(Y )〉R where
〈·, ·〉R is the Euler Form on R defined in Section 2.6. Then ≪ Pi, Xj ≫=
〈βΠ

i , α
Π
j 〉R = δij, and ≪ ·, · ≫ satisfies Equation 2.9.1. However, since the

value of ≪ Pi, Xj ≫ and Equation 2.9.1 completely determine the form, the
two forms 〈·, ·〉 and ≪ ·, · ≫ are equal.
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Chapter 3

Categorical Construction

In the previous chapter, a combinatorial construction of the root system R
associated to a Dynkin graph Γ was given. This construction used a Coxeter
element in the Weyl group and to identify the root system with the quiver
Γ̂cyc. In this chapter, a categorical construction of R from Γ is given, which
served as motivation for the construction of Chapter 1. As described in the
previous chapter, by choosing an orientation of Γ and studying representa-
tions of the corresponding quiver one obtains a categorical construction of
R. However, in this setup the abelian categories obtained depend on the
choice of orientation, although by passing to the 2-periodic derived category
the categories become derived equivalent. The equivalences are given by the
well-known BGP reflection functors.

In this chapter, given a Dynkin diagram Γ the translation quiver Γ̂ ⊂ Γ×Z

is constructed and a triangulated subcategoryD ⊂ D(Γ̂) of the corresponding
derived category is studied. Given any choice of orientation Ω equivalences
D → Db(Rep(Γ,Ω)) are constructed and shown to be compatible with the
reflection functors.

Moreover, this construction is closely related to the preprojective algebra
of Γ. We begin by giving a “graphical” description of the Koszul complex of
the preprojective algebra. In this setup elements of degree k in the Koszul
complex are visualized as paths in Γ̂ with k “jumps”. This description is then
used to construct the indecomposable objects in the category D. We show
that our category D has Γ̂op as its Auslander-Reiten quiver, and use this to
relateD with the mesh category as described in [BBK] and [Hap]. This proves
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a periodicity result about the preprojective algebra (see Theorem 3.8.1).

The main result of this Chapter are summarized in the following Theorem.

Theorem 3.0.2. Given a simply-laced Dynkin diagram Γ with Coxeter num-
ber h there exists a triangulated category C with an exact functor C → C : F 7→
F(2) (“twist”) with the following properties:

1. The category C is 2-periodic: T 2 = id

2. For any F ∈ C, there is a canonical functorial isomorphism F(2h) = F ,
where h is the Coxeter number of Γ.

3. Let K be the Grothendieck group of C. The corresponding root system
R is identified with the set Ind ⊂ K of all indecomposable classes.

4. The map C : [F ] 7→ [F(−2)] is a Coxeter element for this root system.

5. Set 〈X,Y 〉C = dim RHom(X,Y ) = dim Hom(X,Y ) − dim Ext1(X,Y )
(the “Euler form”) then the inner product is given by (X,Y ) = 〈X,Y 〉C+
〈Y,X〉C.

6. There is a natural bijection Φ : Ind → Γ̂, between indecomposable ob-
jects and vertices in Γ̂. Under this bijection, the Coxeter element C
defined above is identified with the map τ : (i, n) 7→ (i, n + 2). Denote
the indecomposable object corresponding to q = (i, n) by Xq.

7. The category C has “Serre Duality”:

Hom(X,Y ) = (Ext1(Y,X(−2)))∗

There is also an identification

Hom(Xq, Xq′) = Path(q′, q)/J

where Path is the vector space generated by paths in Γ̂ and J is some
explicitly described subspace. Thus the form 〈·, ·〉 is determined by paths

in Γ̂.

8. For every height function h, there is a derived functor Rρh : C →
Db(Γ,Ωh)/T

2 which is an equivalence of triangulated categories.
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3.1 The Category D

In this section a precursor to the conjectured category is introduced and
several basic results are established. To begin a few preliminary results are
required.

Definition 3.1.1. Let Q be any quiver and e : i→ j in Q an edge in Q. For
any object X ∈ D(Q) define the complex of vector spaces Conee as the cone
of the map xe : X(i)→ X(j). This will be called the “Cone of the edge e”.

Remark 3.1.2. Note that xe : X(i) → X(j) is an honest morphism between
complexes of vector spaces, not a morphism in a derived category.

Lemma 3.1.3. For any quiver
−→
Γ and edge e : i→ j, Conee is functorial.

Proof. Suppose that X,Y ∈ D(
−→
Γ ) and that F : X → Y is a map of com-

plexes of representations. Let xe : X(i)→ X(j) and ye : Y (i)→ Y (j) be the
maps of complexes corresponding to the edge e. Then F (j) ◦ xe = ye ◦ F (i)
and dY ◦ F = F ◦ dX . By definition of Conee, this gives a map

Conee(xe)

F̃
��

= (X+̇1(i)⊕X(j), dX(i) + xe, dX(j))

Conee(ye) = (Y +̇1(i)⊕ Y (j), dY (i) + ye, dY (j))

Also note that this shows that if F is a quasi-isomorphism, then the induced
map F̃ is also a quasi-isomorphism.
Let Φ ∈ Hom

D(
−→
Γ )

(X,Y ) and let X ← Z → Y be a roof diagram for Φ.

Then the above shows that there is an induced roof diagram Conee(xe) ←
Conee(ze)→ Conee(ye). Hence Conee is functorial.

Definition 3.1.4. Let Γ be a finite graph without cycles. Take the subcat-
egory D ⊂ D(Γ̂) defined as follows: ObjD = {(X, {φ}q∈bΓ)} where X ∈ D(Γ̂)

is such that for any q ∈ Γ̂ the complex X(q) is bounded and Φ is a collection
of isomorphims φ(q) : X(τq) → Cone(xq). Here xq : X(q) →

⊕
q→q′ X(q′)

is the map given by edges q → q′, hence Cone(xq) is the direct sum of the
Cone over the edges e : q → q′ as defined above.
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A morphism Φ : X → Y in D is given by a morphism in D(Γ̂) such that
the following diagram is commutative:

X(τq)
F (τq) //

Φq
��

Y (τq)

Ψq
��

Cone(X(q)→ ⊕X(q′))
F̃ (τq) // Cone(Y (q)→ ⊕X(q′))

The translation functor in D is the same as that in D(Γ̂). The distinguished

triangles in D will be the distinguished triangles (X,Y, Z) in D(Γ̂) where
each of the X,Y, Z ∈ D.

Definition 3.1.5. An object X ∈ D(Γ̂) is said to satisfy the fundamental

relation if for any q ∈ Γ̂ there is a choice of map z : X(τq)→ X(q)[1] so that

X(q)
xq
→

⊕

q→q′

X(q′)

P
xq′
→ X(τq)

z
→ X(q)[1] (3.1.1)

is an exact triangle. Here xq, xq′ are the maps corresponding to edges q → q′

and q′ → τq.

Proposition 3.1.6. Any object X ∈ D satisfies the fundamental relation.

Proof. By definition of an object X ∈ D.

Lemma 3.1.7. The category D is full.

Proof. Let F ∈ HomD(bΓ)(X,Y ) and let q be any vertex. Since for any edge

e : q → q′, Cone(e) is functorial, there is an induced map F̃ making the
diagram below commute.

X(τq)
F (τq) //

Φq
��

Y (τq)

Ψq
��

Cone(X(q)→ ⊕X(q′))
F̃ (τq) // Cone(Y (q)→ ⊕X(q′))

Hence F ∈ HomD(X,Y ).

It remains to show that the category D inherits the structure of a trian-
gulated category.
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Theorem 3.1.8. D is a triangulated subcategory of D(Γ̂).

Following [GM], the notation T1, T2, T3, T4 for the axioms of a triangu-
lated category will be used for simplicity. The reader can refer to [GM] for
details.

Proof. Since triangles and morphisms have been defined above, only the ax-
ioms T1 → T4 remain to be verified.

For T1 the only thing that needs to be checked is that a morphismX → Y
can be completed to a triangle. First note that by construction the objects
and morphisms in D are objects and morphisms in the derived category D(Γ̂)
with extra structure. So to show that a morphism can be completed in D
it is enough to show that the completion in D(Γ̂) carries the required extra
structure. By construction of the derived category any morphism can be
completed to a distinguished triangle which is isomorphic to a triangle of the
form

X
F
→ Y → Cone(F )→ X[1]

where F : X → Y is a morphism of complexes (see [GM] Chapter 4 §2).
Hence it is enough to verify that if F : X → Y is a morphism of com-
plexes between objects in D then Z = Cone(F ) comes with an identification
Z(τq)→ Cone(Z(q)→ ⊕Zq′). To see this note that:

Cone(ConeF (q)→ ⊕ConeF (q′)) =

= Cone(Xk+1(q)⊕ Y k(q)→
⊕

(Xk+1(q′)⊕ Y k(q′)))

= (Xk+1(q)
⊕

Y k(q))+1
⊕
⊕(Xk+1(q′)⊕ Y k(q′))

= Xk+2(q)
⊕

Y k+1(q)
⊕

(⊕Xk+1(q′))
⊕

(⊕Y k(q′))

= (Xk+2(q)⊕Xk+1)
⊕

(Y k+1(q)⊕ Y k(q′))

= (Xk+1(q)⊕Xk(q′))+1
⊕

(Y k+1(q)⊕ Y k(q′))

= Xk+1(τq)⊕ Y k(τq)

= Cone(X(τq)→ Y (τq)

= Cone(F (τq)).
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To check that this is an isomorphism of complexes, not just of graded vector
spaces, it remains to check that the differentials match. Let δ be the differ-
ential of Cone(F ) and let dX , dY be the differentials of X,Y . Denote by D

the differential of Cone(Xk+1(q)⊕ Y k(q)
xq+yq
→

⊕
(Xk+1(q′)⊕ Y k(q′))).

δ(τq) = (d+1
X (τq) + F+1(τq), dY (τq))

= (d+2
X (q) + x+1

q + F+1(q),
∑

q→q′

d+1
X + F+1(q′), d+1

Y (q) + yq,
∑

q→q′

dY (q′))

= (d+2
X (q) + x+1

q + F+1(q), d+1
Y (q) + yq,

∑

q→q′

d+1
X + F+1(q′),

∑

q→q′

dY (q′))

= (δ+1(q) + x+1
q + y+1

q , δ(q′))

= D

T2 follows by definition of triangles in D.

For T3, Lemma 3.1.7 shows that if the diagram is completed with a
morphism in D(Γ̂), then this also a morphism in D.

For T4, again Lemma 3.1.7 shows that by completing the diagram in
D(Γ̂), the morphisms are in D so the diagram can be completed in D as
well.

3.2 DG Preprojective Algebra

In this section a graphical description of the “derived preprojective algebra” is
given. This is then related to the Koszul complex of the preprojective algebra.
Later this will be used to construct projectives in the category Rep(Γ̂) and
to define indecomposable objects in the category D. This algebra is known
to experts, however the presentation given here is not readily available in the
literature.

To begin consider the following algebra A.

Definition 3.2.1. Let P be the path algebra of Γ. Let A be the algebra
obtained by adjoining to P elements ti, i ∈ Γ, with relations

tiej = ejti = δijti
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where ei ∈ Pi,i;0 is the idempotent in P corresponding to the path of length
0 from i to i.

Thus, A is generated by the expressions of the form

p1ti1p2 . . . pktikpk+1 (3.2.1)

where each pa is a path from ia to ia−1.

The elements of A are pictured as paths in Γ̂ with jumps (i, n) to (i, n+2)
for each ti that appears.

Extend the grading of P (See Equation 1.2.1.) to A by letting the ti be
elements of degree 2, so that ti ∈ Ai,i;2. This gives a decomposition of A:

A =
⊕

i,j∈Γ , l∈Z+

Ai,j;l (3.2.2)

The interesting fact is that A has another grading, which is given by the
number of jumps (ie the number of ti which appear in an expression). This
gives a further decomposition of A:

A =
⊕

n≤0

An =
⊕

i,j∈Γ , l∈Z+,n≤0

Ani,j;l (3.2.3)

where A−k is the subspace in A generated by expressions of the form (3.2.1)
with exactly k ti’s. In particular, A−ki,j;l can be thought of as paths from i to
j of length l with k jumps.

The graded vector space A =
⊕

An is made into a complex by setting

d−k : A−k → A−k+1

p1ti1p2 . . . pktikpk+1 7→

k∑

a=1

(−1)a+1p1ti1p2 . . . paθiapa+1 . . . pktikpk+1

(3.2.4)

where θi ∈ Ai,i;2 is given by

θi =
∑

s(e)=i

ǫ(e)ee ∈ Pi,i;2. (3.2.5)

A routine calculation shows that this definition of d and multiplication in A
make it a DG algebra.
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3.2.1 The Koszul Complex

Let R be the algebra of functions Γ 7→ C with pointwise multiplication. Let Γ
be the double quiver, and for each edge joining i and j in Γ let eij : i→ j and
eji : j → i denote the corresponding pair of arrows in Γ. Let V be the vector
space spanned by the edges of the double Γ and let L be the R-submodule of
V ⊗ V generated by the element θ =

∑
e∈Γ[eij, eji]. Consider the embedding

j : L →֒ V ⊗ V . Denote by J the quadratic ideal generated by L. Then the
preprojective algebra of Γ is Π = TR(V )/J .

To see this coincides with the definition of Π given in Section 1.2 suppose
that if instead of considering the ideal J generated by the element θ above,
we consider the ideal J ′ generated by the elements θi. Then θ ∈ J ′ so J ⊂ J ′

and θi = ±θ · ei, where ei is the idempotent corresponding to vertex i, so
that θi ∈ J . Hence J = J ′. So the two definitions coincide.

As in [EG], consider the associated Koszul complex

K• = TR(V ⊕ L) =
⊕

V n1 ⊗ L⊗ V n2 ⊗ L⊗ · · ·L⊗ V nj

where V n = V ⊗n. The differential d is given by

d(v1⊗l1⊗v2⊗· · ·⊗lj−1⊗vj) =
∑

i

(−1)iv1⊗l1⊗v2⊗· · · vi⊗j(li)⊗vi+1⊗· · ·⊗lj−1⊗vj

(3.2.6)
where v1 ⊗ l1 ⊗ v2 ⊗ · · · ⊗ lj−1 ⊗ vj ∈ V

n1 ⊗ L⊗ V n2 ⊗ L⊗ · · ·L⊗ V nj .

We now relate the Koszul complex (K•, dK) to the complex (A•, dA) of
“paths with jumps”. Let a1, . . . , ar be the edges of Γ. Then these form a
basis of the space V , and by viewing a path as a sequence of edges, there is
an obvious identification between a path p = akak−1 · · · a2a1 to the element
ak ⊗ ak−1 ⊗ · · · ⊗ a2 ⊗ a1 ∈ V

k. We will now identify a path p of length k
and its image in V k, and denote both by p. Denote by li ∈ L the element so
that j(li) = θi ∈ V ⊗ V . Define a map Ψ : (A•, dA) 7→ (K•, dK) by

Ψ(pn+1tinpntin−1
· · · p2ti1p1) = pn+1linpnlin−1

· · · p2l1p1 (3.2.7)

Proposition 3.2.2. The map Ψ is an isomorphism of complexes.

Proof. The identification of paths of length k with V k described above, and
the identification ti with li, shows that the map Ψ gives isomorphisms A−k 7→
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Kk. Checking that Ψ is a chain map is straightforward:

ΨdA(pk+1tikpktik−1
· · · p2ti1p1) = Ψ(

k∑

n=1

(−1)n+1pk+1tikpk · · · pn+1θinpn · · · p2ti1p1

=
k∑

n=1

(−1)n+1pk+1likpk · · · pn+1θinpn · · · p2li1p1

=
k∑

n=1

(−1)n+1pk+1likpk · · · pn+1j(lin)pn · · · p2li1p1

= dK(pk+1likpklik−1
· · · p2li1p1)

= dKΨ(pk+1tikpktik−1
· · · p2ti1p1)

3.2.2 The non-Dynkin case

Consider the case where Γ is non-Dynkin. It is known (see [M-V] ) that the
preprojective algebra of a non-Dynkin graph is Koszul, and that the Koszul
complex K• gives a DG-algebra resolution of Π. These results, together with
the isomorphism Ψ : A• → K• gives the following result.

Proposition 3.2.3. Suppose Γ is non-Dynkin. Then

Hk(A•) =

{
Π if k = 0

0 if k > 0

so the complex A• gives a DG-algebra resolution of the preprojective algebra
Π.

3.3 Projective Representations of Γ̂

Let q ∈ Γ̂ be any vertex. Let Pathk(q, v) denote the space of “paths with k
jumps” from q to v. For q = (i, n) and v = (j,m), this space can be identified
with the component A−ki,j;m−n, defined by Equation 3.2.3.

Define a representation Xk
q ∈ Rep(Γ̂) by setting Xk

q (v) = Pathk(q, v). Com-
position of paths makes it a module over the path algebra P .
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Proposition 3.3.1.

1. For any k, and any vertex q ∈ Γ̂, the representation Xk
q is projective.

2. For any object X ∈ Rep(Γ̂) we have

HombΓ(X0
q , X) = X(q).

3. For any object X ∈ Rep(Γ̂) we have

HombΓ(Xk
q , X) =

⊕

v∈bΓ

HomC(Xk−1(q, v), X(τv)).

Proof.

1. The space Xk
q is freely generated over the path algebra P by elements

of the form p = tkpk−1 · · · p2t1p1 where the ti’s are jumps and the pi’s
are paths.

2. For any x ∈ X define φx : X0
q → X by φx(p) = p.x. This gives the

required isomorphism.

3. First the isomorphism HombΓ(Xk
q , X) ≃

⊕
v∈bΓX(2) ⊗ (Xk−1(q, v))∗ is

established. This isomorphism is given by

φ 7→
⊕

p∈Xk−1(q,v)

φ(tp)⊗ p∗

with inverse

x⊗ ψp 7→ (p1tp2

φx,ψp
7→ p1xψp(p2)).

To see this, note that any element φ ∈ HombΓ(Xk
q , X) is determined

by where it sends the generators tkpk−1 · · · p2t1p1. So for each path
p : q → v with k− 1 jumps we need to assign an element x ∈ τv which
is the value of φ(tp).
To establish the desired isomorphism, use the standard identification
W ⊗ V ∗ ≃ Hom(V,W ) to obtain

HombΓ(Xk
q , X) =

⊕

v∈bΓ

HomC(Xk−1(q, v), X(τv)).
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3.4 Indecomposable Objects in D

Using the components of the DG-algebra A defined in Section 3.2 define, for
each vertex q ∈ Γ̂, an object X•q ∈ D as follows: For q = (i, n) and v = (j,m)
set

Xk
q (v) = A−ki,j;m−n

where A−ki,j;m−n is defined by 3.2.3. It remains to check this does, in fact,
define an object in D.

Proposition 3.4.1. For q ∈ Γ̂ there is a canonical isomorphism (up to choice
of function ǫ) Xq(τv) ≃ Cone(Xq(v)→ ⊕v→v′Xq(v

′)) and hence Xq ∈ D.

Proof. Let v = (i, n) ∈ Γ̂. For any edge e : v → v′ in Γ̂, denote by e the
corresponding edge v′ → τv. Define the map φq : Cone(xv)→ X(τv) by

φv(x, y) = tix+
∑

e:s(e)=q

ǫ(e)ey (3.4.1)

where x ∈ X•+1
q (v) and y ∈

⊕
e:v→v′ Xq(v

′). Note that the choice of sign ǫ(e)
is forced by requiring that this map agree with the differentials:

φv(dC(x, y)) = φv(dXqx, (−1)kxvx+ dXqy)

= tidXq(x) + (−1)k
∑

e:s(e)=v

ǫ(e)exv(x) + ǫ(e)edXq(y)

= tidXq(x) + (−1)k
∑

e:s(e)=v

ǫ(e)eex+ ǫ(e)edXq(y)

= tidXq(x) + (−1)kθix+ ǫ(e)ey

= dXq(tix+ ǫ(e)ey)

= dXq(φv(x, y))

where (x, y) ∈ Conek(xv) and dC denotes the differential on Cone(xv).

Since paths with jumps form a basis and any path q → τv with k jumps
is either a path p : q → v′ with k jumps followed by the edge e : v′ → τv, or
is a path p : q → v with k− 1 jumps followed by the jump ti, the above map
gives an isomorphism of complexes.
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Alternatively, for i 6= j let q = (i, n), then for p = (j, n) set Xq(p) = 0.

Now let p = (j, n + 1) and nij = 1 so that q → p in Γ̂. We define X•q (p) :=
PathbΓ(q, p) where by this we mean a complex with Path in degree 0, and 0
in all other degrees. Note that by Lemma 3.6.3 this is sufficient to extend to
all other vertices using the fundamental relation. Note that it is clear from
this definition that Xq is indecomposable.

3.5 Some results about Hom in D

In this section we give some results which will be useful in future sections.

Theorem 3.5.1.

1. Let Y ∈ D, and let q ∈ Γ̂. Then there is an isomorphism RHom(Xq, Y ) =
Y (q)

2. Let q = (j, n), q′ = (i,m), then RHom(Xq, Xq′) = Ai,j;n−m.

3. Hom(Xq, Xq′) = PathbΓ(q′, q)/J where J is the mesh ideal, generated by
the mesh relations (see Equation 3.2.5).

4. Let h be a height function, and Γh the corresponding slice. If q, q′ ∈ Γh
then Exti(Xq, Xq′) = 0 for i > 0.

Proof.

1. Let Γh be a slice through q. By Lemma 3.6.3 Part 2 RHomD(Xq, Y )
is determined on the slice Γh. On the slice Γh the object Xq is con-
centrated in degree 0 so we can identify RHom(Xq, Y ) with Y (q) by
definition of RHom and Proposition 3.3.1 Part 2.

2. By Part 1 we have RHom(Xq, Xq′) = Xq′(q) = Ai,j;n−m.

3. By Part 1 we have

Hom(Xq, Xq′) = H0(Xq′(q)) = Path(q′, q)/J.

4. By Part 1 we have that Extk(Xq, Xq′) = Pathk(q′, q)/J . However if
q, q′ ∈ Γh then there are no paths with jumps q′ → q, in other words
the complex Xq′(q) is concentrated in degree 0.
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3.6 Equivalence of Categories

In this section, for every height function h : Γ → Z an equivalence of tri-
angulated categories Rρh : D → Db(Γ,Ωh) is constructed and shown to be
compatible with the reflection functors.

Remark 3.6.1. Note that here the equivalence of categories given by a height
function, is between the category D and Db(Γ,Ωh), where as in the case of
equivariant sheaves on P

1 considered in [K] the equivalence is between D and
Db(Γ,Ωop

h ) and is given by constructing a tilting object. That can also be
done here, however that is not the approach taken.

Recall that any height function h determines an orientation Ωh, and that
the corresponding slice Γh is an embedding of the quiver (Γ,Ωh) in Γ̂. So

any representation of Γ̂ gives a representation of (Γ,Ωh) by restriction to the

slice. So there is a restriction functor ρh : Rep(Γ̂)→ Rep(Γ,Ωh) defined by

ρh(X) =
⊕

q∈Γh

X(q). (3.6.1)

Notice that this functor is exact. Denote by Rρh : D → Db(Γ,Ωh) the
corresponding derived functor.

Theorem 3.6.2. Let h be a height function, and let Γh be the corresponding
slice. Then the functor Rρh : D → Db(Γ,Ωh) is an equivalence of triangulated
categories.

Before proceeding with the Proof of the Theorem, the following prelimi-
nary result is required.

Lemma 3.6.3. Let h be a height function, and let Γh be the corresponding
slice.

1. An object X ∈ D is determined up to isomorphism by the collection
{X•(q)}q∈Γh and morphisms corresponding to edges in the slice Γh.
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2. For any X,Y ∈ D a morphism f ∈ HomD(X,Y ) is determined by the
collection {f(q)}q∈Γh.

Proof.

1. Let q ∈ Γh be a source. Since X satisfies the fundamental relations and
comes with a fixed isomorphismX(τq)

∼
→ Cone(X(q)→

⊕
q→q′ X(q′)),

the complex X•(τq) is determined by X(q) and X(p) for q → p in

Γ̂ and morphisms corresponding to the edges joining them. (Noting
that the X(p) are in {X•(q)}q∈Γh since q is a source.) Write q =
(i, n) so that i is a source in the quiver (Γ,Ωh) determined by the
height function h. Apply the reflection si and consider a source in
q′ ∈ Γsih. Then repeating the argument above and noting that X(q′)
is in the collection {X•(q)}q∈Γh , and that X•(p) for q′ → p is in the
collection {X•(q)}q∈Γh

⋃
X•(τq), one sees that X•(τq′) is determined.

Continuing in this way it follows that for any p = τ kq for q ∈ Γh the
complex X•(p) is determined by the collection {X•(q)}q∈Γh .

A similar argument for q ∈ Γh a sink can be repeated. This shows that
for any p = τ−k(q) with q ∈ Γh the complex X•(p) is determined by
the collection {X•(q)}q∈Γh .

2. Suppose that F (q) : X(q) → Y (q) is given for all q ∈ Γh. Take q ∈

Γh to be a source, so that for any edge q → q′ in Γ̂ , q′ belongs to
the slice Γh. Then using the isomorphisms X(τq)

∼
→ Cone(X(q) →⊕

q→q′ X(q′)) and Y (τq)
∼
→ Cone(Y (q) →

⊕
q→q′ Y (q′)) together with

the functoriality of “cone over an edge”, the following diagram has a
unique completion F (τq) making it commutative, which extends F to
τq.

X(τq)

��

F (τq) // Y (τq)

��
Cone(X(q)→

⊕
q→q′ X(q′)) F̃ // Cone(Y (q)→

⊕
q→q′ Y (q′))

Continuing in this way (and using a similiar argument for q a sink) it

is possible to extend F to all vertices in Γ̂.
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The proof of Theorem 3.6.2 is now given.

Proof. Note that a height function h gives a lifting of the quiver (Γ,Ωh)

to Γ̂ and that the image of (Γ,Ωh) is the slice Γh. Hence for any object
Y ∈ Db(Γ,Ωh) define an object in D as follows.

For i ∈ Γ and q = (i, h(i)) ∈ Γ̂ define X(q) = Y (i) and for each edge
e : q → q′ ∈ Γh define maps xe : X(q)→ X(q′) by xe = ye where ye : Y (i)→
Y (j) and q′ = (j, h(j)). Then Part 1 of Lemma 3.6.3 shows this determines an
object X ∈ D. Hence for every Y ∈ Db(Γ,Ωh) there exists X ∈ D such that
Rρh(X) = Y . Note that Part 2 of Lemma 3.6.3 implies that for anyX,Y ∈ D
there is an isomorphism HomD(X,Y ) ≃ HomDb(Γ,Ωh)(RρhX,RρhY ). To-
gether, this shows that Rρh is an equivalence, and since Rρh is the derived
functor of an exact functor it is a triangle functor.

Corollary 3.6.4. Let Γ be Dynkin. The Auslander-Reiten quiver of D is
Γ̂op, so the objects Xq form a complete list of indecomposable objects in D.

Proof. By Theorem 3.6.2 the Auslander-Reiten quiver of D is the isomorphic
to that of Db(Γ,Ωh). It is well known (see [Hap] for example) that the

Auslander-Reiten quiver of Db(Γ,Ωh) is isomorphic to Γ̂op.

Remark 3.6.5. Usually the Auslander-Reiten quiver of Db(Γ,Ωh) is identi-

fied with Γ̂ by identifying the projectives with a slice in Γ̂ that gives the
opposite orientation to Ωh, and proceeding from there. For reasons that will
become clear in Section 3.7, we instead identify it with Γ̂op by identifying the
projectives with the slice Γh ⊂ Γ̂op.

Corollary 3.6.6. The category D has Serre Duality:

HomD(X,Y ) = (Ext1
D(Y, τDX))∗

where ∗ denotes the dual space and τD is given by Equation 3.7.3.

Proof. It is well known (see [Hap] Proposition 4.10 p.42) that in the category
Db(Γ,Ωh) this relation holds.

The following theorem shows that the restriction functor is compatible
with the reflection functors.
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Theorem 3.6.7. Let i be a source (or sink) for the orientation Ωh and let
S±i denote the corresponding reflection functor. Then the following diagram
is commutative.

Db(Γ,Ωh)

RS±

i

��

D

Rρ
s
±

i
h %%JJJJJJJJJJ

Rρh
99ssssssssss

Db(Γ,Ωs±i h
)

Proof. Let q ∈ Γh be a source. Let X ∈ D, so that X(τq) ≃ Cone(X(q) →
⊕X(q′)). Restriction along the slice Γs+i h gives X(p) if p 6= q and X(τq) if

p = q. The reflection functor is defined as X(p) if p 6= q and Cone(X(q) →
⊕X(q′)) if p = q, so the diagram commutes.

3.7 The Mesh Category B

In the remainder of this Chapter, fix Γ to be Dynkin. In this section the
definition of the mesh category of a translation quiver (Q, τ) is recalled and
then related to the category D.

Let (Q, τ) be a translation quiver (see [ARS] Chapter VII §for details).
Define the set of indecomposable objects of the mesh category B(Q) to be
the vertices of Q. Set HomB(q, q

′) = Path(q, q′)/J where J is the mesh ideal
generated by the mesh relations

∑
s(e)=i ǫ(e)ēe (see Equation 3.2.5).

Consider the mesh category of the translation quiver (Γ̂op, τbΓ) where
τbΓ(i, n) = (i, n+ 2). For simplicity denote this by B and denote the transla-
tion by τB.

Remark 3.7.1. Note that we consider the mesh category of Γ̂op instead of Γ̂
since the A-R quiver of D is Γ̂op.

It is shown in [BBK] (Section 6) that there are the following automor-
phisms in B:

1. A Nakayama automorphism νB which commutes with τB and satisfies
ν2
B = τ

−(h−2)
B . (Here ν = β̃−1 in the notation of [BBK].)
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2. An automorphism γB defined by γB := νBτ
−1
B , which satisfies γ2

B = τ−hB .

These automorphisms satisfy:

ν2
B = τ

−(h−2)
B

γ2
B = τ−hB

(3.7.1)

As before, for any i ∈ Γ define ı̌ by −αΠ
i = wΠ

0 (αΠ
ı̌ ), where wΠ

0 ∈W is the
longest element and Π is any set of simple roots. Thus for the root systems of
type A,D2n+1, E6 this map corresponds to the diagram automorphism, while
for D2n, E7, E8 this map is just the identity.

In terms of Γ̂op the maps νB and γB are given by:

νB(i, n) = (̌ı , n− h+ 2)

γB(i, n) = (̌ı , n− h)
(3.7.2)

Example 3.7.2. For the graph Γ = A4, ı̌ = 5 − i and h = 5 so νB(i, n) =
(5− i, n− 3) and γB(i, n) = (5− i, n− 5). The maps νB and γB are shown in
Figure 3.1.

Recall that the Auslander-Reiten quiver of D is Γ̂op. This identification
is given by [Xq] 7→ q. In terms of arrows, by Theorem 3.5.1 Part 2, for each

arrow q → q′ in Γ̂ there is an arrow q′ → q in the Auslander-Reiten quiver.

In the category D define an automorphism τD by

τD(X)(q′) = X(τ−1q′). (3.7.3)

Notice that

Xτq(q
′) = Path•bΓ(τq, q′) ≃ Path•bΓ(q, τ−1q′) = τD(Xq)(q

′)

so that τDXq ≃ Xτq for the indecomposables Xq. In terms of the Auslander-

Reiten quiver of D, this identifies τD with the translation τ on Γ̂op.

Theorem 3.7.3. Let h be a height function.

1. There are equivalences of additive categories, given by the following
commutative diagram:

B Db(Γ,Ωh)
Ψhoo

D

Rρh

OO

ψ

ddIIIIIIIIIII
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Γh

νBΓh

γBΓh

Figure 3.1: The maps νB and γB in the case Γ = A4. A slice Γh and its
images under νB and γB are shown in bold. Recall that we are considering
the mesh category of Γ̂op as mentioned above.

2. Under these equivalences the automorphisms νB gives an Nakayama
automorphism νD on D and is identified with the Nakayama automor-
phism ν in Db(Γ,Ωh)

3. The map τB can be identified with the Auslander-Reiten translation in
Db(Γ,Ωh), and with τD in D.

4. The map γB can be identified with T in Db(Γ,Ωh), and with TD in
D. Hence we can impose a triangulated structure on B making the
equivalences in (1) triangulated equivalences.

5. In D the relation T 2 = τ−hD holds and hence the objects Xq satisfy the
relation X•+2

q ≃ X•
τ−hq

.

Proof.

1. The equivalence ρh is from Theorem 3.6.2.
The equivalence Ψh is the map which is given Pi 7→ (i, hi) on projec-

tives, so that the projectives in Rep(Γ,Ωh) map to the slice Γh ⊂ Γ̂op.

(Note that in Γ̂op the arrows are reversed, so this agrees with the usual
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identification of projectives with a slice giving the orientation oppo-
site to Ωh.) This is just the identification of Ind(Db(Γ,Ωh)) with its
Auslander-Reiten quiver. That this is an equivalence is well-known, see
[Hap] for example.
The equivalence ψ is given by Xq 7→ q. By Corollary 3.6.4 the objects
Xq form a complete list of indecomposables, and since

HomD(Xq, Xq′) = H0(Xq′(q)) = PathbΓ(q′, q)/J = PathbΓop(q, q
′)/J

= HomB(q, q
′)

it follows that this is an equivalence.

2. Follows from (1), since Ψh is the identification of Ind(Db(Γ,Ωh)) with
its Auslander-Reiten quiver.

3. Again follows from (1).

4. In Db(Γ,Ωh) the Auslander-Reiten translation is defined by τDb :=
T−1ν, or equivalently T = ντ−1

5. By (4) γB is identified with TD, by (2) and (3) so there is an identifica-
tion of Nakayama automorphisms and translations in B and D. Then
using Equation 3.7.1 gives the result.

3.8 Periodicity in the Dynkin Case

This section discusses periodicity of the “dg-preprojective algebra” A in the
case where Γ is Dynkin. Recall the decomposition given in Section 2:

A =
⊕

n≤0

An =
⊕

i,j∈Γ, l∈Z+,n≤0

Ani,j;l (3.8.1)

Note that the differential in A preserves the grading by path length, so this
decomposition passes to homology:

Hn(A) =
⊕

i,j;l

Hn(Ai,j;l)

61



Now fix q = (j, n + l) and q′ = (i, n). Then by definition of Xq′ , and
by Part 2 of Theorem 3.5.1, RHom(Xq, Xq′) = Xq′(q) = Ai,j;l so the com-
ponent Ai,j;l can be interpreted as the RHom complex of the corresponding
indecomposables.

Recall that in the case where Γ was not Dynkin the complex A was a DG
resolution of the preprojective algebra Π. In particular, all homology was
in degree 0. The decomposition of homology above and the identification
Ai,j;l ≃ RHomD(Xq, Xq′) makes it clear that this is not the case when Γ is
Dynkin.

In the case where Γ is Dynkin there is have the following periodicity result
for the Koszul complex of the preprojective algebra and its homology. This
is likely known to experts, but does not seem to be easily available in the
literature.

Theorem 3.8.1. There is a quasi-isomorphism of complexes

A•+2
i,j;l ≃ A•i,j;l+2h. (3.8.2)

In terms of the homology of the complex A this gives:

Hk+2(Ai,j;l) = Hk(Ai,j;l+2h)

Proof. By Theorem 3.7.3 Part 5 there is an identification X•+2
q′ ≃ X•

τ−hq′
in

D, so in particular X•+2
q′ (q) ≃ X•

τ−hq′
(q). For q = (i, n) and q′ = (j, n + l)

there are identifications

RHom(Xq, Xq′) = Xq′(q) = Ai,j;l

RHom(Xq, Xτ−hq′) = Xτ−hq′(q) = Ai,j;l+2h.
(3.8.3)

Combining these gives A•+2
i,j;l ≃ Ai,j;l+2h.

In terms of the category D this result can be interpreted as follows.

Corollary 3.8.2. Let X,Y ∈ D.

1. RHom•(X, τ−hY ) ≃ RHom•+2(X,Y )

2. Exti(X, τ−hY ) ≃ Exti+2(X,Y )
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Proof. First note that the collection Xq form a complete list of indecompos-
ables in D (in this section Γ is Dynkin). So it’s enough to prove this result
for these objects. For these objects, recalling that τXq ≃ Xτq shows that the
first statement follows from Equation 3.8.3 in the proof of Theorem 3.8.1.
The second statement follows by taking homology.

3.9 The quotient category D/T 2

It was shown in [PX1] that the category Db(Γ,Ω)/T 2 is a triangulated cat-
egory, and that the set Ind(Γ,Ω), of classes of indecomposables gives the
corresponding root system. More general quotient categories were studied
in [Kel], where conditions for a quotient category to inherit a triangulated
structure are given.

In this section we consider the quotient category C = D/T 2 and relate it
to Theorem 3.0.2.

Proposition 3.9.1. The quotient category D/T 2 has the following proper-
ties:

1. It is triangulated.

2. τ−h = Id = τh

3. It has Auslander-Reiten quiver Γ̂/τh = Γ̂cyc.

Proof. Part 1 follows from the main result of [Kel]. The other parts follow
from Theorem 3.7.3.

Let R be the root system corresponding to Γ. Proposition 3.9.1 and
Theorem 2.0.5 show that there is a bijection between R and the Auslander-
Reiten quiver of the category C = D/T 2. The following Theorem summarizes
this bijection and completes the proof of Theorem 3.0.2.

Theorem 3.9.2. Let Γ be Dynkin with root system R and let K be the
Grothendieck group of C. Set 〈X,Y 〉 = dim RHom(X,Y ) = dim Hom(X,Y )−
dim Ext1(X,Y ). The set Ind ⊂ K of isomorphism classes of indecomposable
objects in C, with bilinear form given by (X,Y ) = 〈X,Y 〉+〈Y,X〉, is isomor-
phic to R, and K is isomorphic to the root lattice. Moreover, the translation
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τ gives a Coxeter element for this root system, and TC gives the longest ele-
ment.
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Chapter 4

Root Bases

Let Γ be a Dynkin graph of type A,D,E. Let g and Uq(g) be the correspond-
ing Lie algebra and quantum group respectively. By choosing an orientation

Ω of Γ, one obtains a quiver
−→
Γ = (Γ,Ω). Ringel used the category Rep(

−→
Γ ) of

representations of
−→
Γ to realise n+ and Uqn+ (see [R1], [R2]). Peng and Xiao

then used a related category, Db Rep(
−→
Γ )/T 2, to realise the whole Lie algebra

g. As mentioned in the Introduction, the drawback of these constructions is
the necessity of choosing an orientation of the Dynkin diagram.

Motivated by these results and the ideas of Ocneanu [Oc], the main goal
of this Chapter is to use a Coxeter element, and the results in Chapter 1, to
construct a root basis in the Lie algebra g and to determine the structure
constants of the Lie bracket in purely combinatorial terms.

In Chapter 1 it was shown a choice of Coxeter element gives a bijection
between R and a certain quiver Γ̂cyc, which identifies roots in R and vertices

in Γ̂. This bijection then identifies vertices in Γ̂cyc with basis vectors Eα.
Using this identification and choice of basis, it is possible to determine the
structure constants of the Lie bracket from paths in Γ̂cyc. Thus it is possible

to realise the Lie algebra g completely in terms of the quiver Γ̂cyc. This
construction is then independent of any choice of orientation of Γ or choice
of simple roots.

The main result is summarized in the following Theorem.

Theorem 4.0.3. Let g be a Lie algebra of type A,D,E with fixed Cartan
subalgebra h. This gives a root system R with Weyl group W . Fix a Coxeter
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element C ∈ W .

1. The choice of a Coxeter element C gives a root basis {Eα}α∈R for g.

2. With this choice of basis the Lie bracket is given by [Eα, Eβ] = (−1)〈α,β〉Eα+β

for α+β ∈ R, where 〈·, ·〉 is the de-symmetrization of the bilinear form
given in Theorem 2.0.5.

3. The identification R→ Γ̂cyc given in Theorem 2.0.5, together with Parts
1 and 2 of Theorem 4.0.3 imply that g can be defined combinatorially in
terms of Γ̂cyc: g has root basis given by vertices in Γ̂cyc and the structure

constants can be obtained from paths in Γ̂cyc.

4.1 Braid Group Action

Let Uq(g) be the corresponding quantum group. It is generated by elements
Ei, Fi, K

±1
i , where i ∈ Γ. In particular, for q = 1 this gives the universal

enveloping algebra U(g) of g.

In this section the definition and relevant results of the braid group op-
erators as defined in [J] are reviewed. For more details see [J], or [L].

Fix a system of simple roots Π. Let Ei, Fi, K
±1
i denote the corresponding

generators of Uq(g).
For simple roots αi define operators Ti, T

′
i on any finite dimensional module

V by setting for v ∈ Vλ:

Ti(v) =
∑

a,b,c≥0;−a+c−b=m

(−1)bqb−ac
E

(a)
i

[a]!

F
(b)
i

[b]!

E
(c)
i

[c]!
v

T ′i (v) =
∑

a,b,c≥0;−a+c−b=m

(−1)bqac−b
E

(a)
i

[a]!

F
(b)
i

[b]!

E
(c)
i

[c]!
v

with m = (λ, αǐ ). (Here αǐ denotes the coroot, not to be confused with the
root αı̌.)

Then there are unique automorphisms of Uq(g), also denoted by Ti, T
′
i so

that for any u ∈ Uq(g) and v ∈ V we have Ti(uv) = Ti(u)Ti(v). The operator
Ti acts on weights by the reflection si.
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The automorphisms Ti satisfy the braid relations:

TiTj = TjTi for (αi, αj) = 0

TiTjTi = TjTiTj for (αi, αj) = −1

For the automorphism Ti there are the following formulae:

TiEi = −FiKi

TiFi = −K−1
i Ei

TiEj = Ej for (αi, αj) = 0

TiEj = EiEj − q
−1EjEi for (αi, αj) = −1

TiFj = Fj for (αi, αj) = 0

TiFj = FiFj − q
−1FjFi for (αi, αj) = −1

In fact, there are automorphisms Tα for any root α. As above, define Tα
on a module V by setting for v ∈ Vλ:

Tα(v) =
∑

a,b,c≥0;−a+c−b=m

(−1)bqb−ac
E

(a)
α

[a]!

F
(b)
α

[b]!

E
(c)
α

[c]!
v

T ′α(v) =
∑

a,b,c≥0;−a+c−b=m

(−1)bqac−b
E

(a)
α

[a]!

F
(b)
α

[b]!

E
(c)
α

[c]!
v

where Eα, Fα ∈ Uq(g) satisfy the Uq(sl2) relations and m = (λ, α̌ ).

Lemma 4.1.1. Let Φ be an automorphism of Uq(g) such that Eα = Φ(Ei)
and Fα = Φ(Fi). Then Tα = ΦTiΦ

−1.

The automorphisms Tα satisfy relations similar to those of the Ti:
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TαEα = −FαKα

TαFα = −K−1
α Eα

TαEβ = Eβ for (α, β) = 0

TαEβ = EαEβ − q
−1EβEα for (α, β) = −1

TαFβ = Fβ for (α, β) = 0

TαFβ = FαFβ − q
−1FβFα for (α, β) = −1

Since the operators Ti satisfy the braid relations it is possible to define
an operator Tw for any w ∈ W . For any reduced expression w = si1si2 · · · sik
for w ∈W define Tw = Ti1Ti2 · · ·Tik .

The following Lemma will be useful. It can be found in [J], Proposition
8.20.

Lemma 4.1.2. If w ∈ W is such that w(αi) ∈ R+, then Tw(Ei) ∈ U
+
q . If,

in addition, w(αi) = αj, then Tw(Ei) = Ej.

For the case to be considered in the following sections, this result gives
the following important Corollary.

Corollary 4.1.3. Let w0 ∈ W be the longest element. Then Tw0
(Eı̌) =

TiEi = −FiKi.

Proof. Let w0 = siw be a reduced expression for w0, so that Tw0
= TiTw.

Then since
w(αı̌) = siw0(αı̌) = si(−αi) = αi

the Lemma gives Tw(Eı̌) = Ei, and the result follows by applying Ti.

4.2 Longest Element and Construction of Root

Vectors

Let Π be a simple system, and let R = R+ ∪ R− be the corresponding
polarization. Let w0 be the longest element. A reduced expression w0 =
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si1si2 · · · sil is said to be adapted to an orientation Ω of Γ if ik is a source for
si1 · · · sik−1

Ω. In particular i1 is a source of Ω.

Lemma 4.2.1. Given any orientation Ω, there is a reduced expression adapted
to Ω, and moreover, any two expressions adapted to Ω are related by sisj =
sjsi with nij = 0.

Proof. Recall that any height function h determines an orientation Ωh and
that for any orientation Ω there is a choice of h so that Ω = Ωh. So take
some h corresponding to Ω, then Theorem 2.7.1 gives the existence of such an
expression. Note that any reduced expression adapted to Ω gives a sequence
of source to sink moves taking the slice Γh to the slice Γ−h where Γ−h is the
slice corresponding to the simple roots −Π.

Let w0 = si1 · · · sil and w0 = si′
1
· · · si′

l
be two different reduced expressions

adapted to Ω. Let k be the first index where they differ. Write ik = i and
i′k = j to simplify notation. Then there are reduced expressions

w0 = wsiw1sjw2

w0 = wsjw
′
1sjw

′
2

where sj does not appear in w1 and si does not appear in w′1. Thus i, j are
both sources for wΩ and hence nij = 0. Note that since w1 is obtained as a
sequence of source to sink reflections, and since sj does not appear in w1, j
remains a source during this process. Hence if sl appears in w1 then l is not
adjacent to j, so that njl = 0. Thus w1sj = sjw1. which gives:

w0 = wsiw1sjw2

= wsisjw1w2

= wsjsiw1w2

So it is possible to make the two reduced expressions agree at the index k
using only the relation sjsl = slsj for njl = 0. Continuing in this fashion
it is possible to make the expressions agree at every index using only this
relation.
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It is well known that a reduced expression w0 = si1 · · · sil , adapted to
Ω, gives an ordering of the positive roots R = {γ1, . . . , γl} by setting γk =
si1 · · · sik−1

(αk). Such an expression also gives root vectors Eα, Fα for α ∈ R+

as follows:

Eγk = Ti1 · · ·Tik−1
(Eik) (4.2.1)

Fγk = Ti1 · · ·Tik−1
(Fik) (4.2.2)

Note that since the Ti satisfy the braid relation, Lemma 4.2.1 implies that
the root vectors defined this way do not depend on the choice of reduced
expression adapted to Ω.

Note that if γk = si1 · · · sik−1
αik then γk = sγk−1

· · · sγ1αik , and the longest
element can be expressed as w0 = sγl · · · sγ1 .

Since Tγk = (Ti1 · · ·Tik−1
)Tik(Ti1 · · ·Tik−1

)−1 then, as for reflections,

Ti1 · · ·Tik = Tγk · · ·Tγ1

so the root vectors Eγk given in Equation 4.2.1 can be expressed as

Eγk = Tγk−1
· · ·Tγ1Eik . (4.2.3)

Definition 4.2.2. Let Π be a set of simple roots, Ω be an orientation of Γ
and let w0 = si1 · · · sil be a reduced expression adapted to Ω. A root basis
{Eα}α∈R is said to be adapted to the pair (Π,Ω) if for α ∈ R+ the vector Eα
is given by Equation 4.2.1, or equivalently by Equation 4.2.3.

4.2.1 Change of Orientation

For a reduced expression w0 = si1si2 · · · sil , adapted to Ω, define a new re-
duced expression w0 = si2 · · · silsı̌1 which is adapted to s1Ω. Then this gives
a new enumeration of positive roots {γ′1, . . . γ

′
l}, and a new collection of root

vectors:
γ′1 = sii(γi2), γ

′
2 = si1(γi3), . . . , γl = αı̌1

Eγ′ = T−1
i (Esiγ) for γ 6= αi1 (4.2.4)
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4.2.2 Coxeter Element

Now consider the case where there is a fixed Coxeter element C ∈ W and
hence an identification R → Γ̂cyc as in Chapter 2. In this case a choice of
height function h is identified with a set of simple roots Π compatible with
C, and hence determines a polarization R = Rh

+∪R
h
−. A height function also

determines a reduced expression for w0 adapted to the orientation Ωh. This
expression is obtained from Γ̂cyc as a sequence of source to sink reflections
which take the slice ΓhΠ to the slice Γh−Π .

Using this reduced expression, there is an associated ordering of the pos-
itive roots which gives a completion of the partial order given by paths in
Γ̂cyc. Note that the completion depends on the reduced expression.

Now choose a height function h. Then using the reduced expression for
w0 obtained above, it is possible to define a collection of root vectors Eα for
α ∈ Rh

+ using Equation 4.2.1.

Under the identification R → Γ̂cyc suppose that α = (i, n), then Cα =
(i, n + 2). For j connected to i, denote by γj the root corresponding to
vertex (j, n + 1). The collection of roots {α, {γj}j−i, Cα} is said to satisfy

the fundamental relation in Γ̂cyc. Such a collection is depicted in Figure 4.1.

Cα

α

γγ′

Figure 4.1: A collection of roots α, γj, Cα ∈ Γ̂cyc satisfying the fundamental
relation.

Lemma 4.2.3. Let α, γj, C(α) ∈ Rh
+ satisfy the fundamental relation in Γ̂cyc.

Then the corresponding root vectors satisfy:

EC(α) = (
∏

j−i

Tγj)Tα(Eα) (4.2.5)
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Proof. Let h be a fixed height function and let Π = {α1, . . . , αr} denote the
corresponding set of simple roots and si denote the corresponding simple
reflections.

Let α = (i, n), γj = (j, n+ 1), Cα = (i, n+ 2) and

w0 = wsi(
∏

j−i

sj)siw
′

a reduced expression adapted to Ωh. Then

Eα = TwEαi and Tα = TwTαiT
−1
w

Eγj = TwTαjEαj and Tγj = TwTαiTαjT
−1
αi
T−1
w

ECα = TwTαi(
∏

j−i

Tαj)Eαi

where the product
∏

j−i is taken over all j connected to i in Γ.

On the other hand, using the first two formulae, and comparing with the
third one obtains:

(
∏

j−i

Tγj)TαEα =
∏

j−i

(TwTαiTαjT
−1
αi
T−1
w )TwTαiT

−1
w TwEαi

= TwTαi(
∏

j−i

Tαj)T
−1
αi
T−1
w TwTαiT

−1
w TwEαi

= TwTαi(
∏

j−i

Tαj)Eαi

= ECα

Now fix a height function h, and hence a choice of compatible simple
roots Πh, an orientation Ωh, a reduced expression w0 adapted to Ωh and a
slice Γh ⊂ Γ̂. Define a root basis as follows:

1. For β ∈ Γh choose Eβ ∈ gβ.

2. Since any root is of the form α = Ckβ for some k and some β, define
Eα inductively using Equation 4.2.5, beginning with ECβ for β a source
in Γh.
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Note that for Chβ = β this procedure produces another root vector E ′β ∈
gβ.

Proposition 4.2.4. Let Eα, E
′
α be the root vectors defined above.

1. For q = 1 E ′α = Eα, so this procedure produces a consistent root basis
in g.

2. For q 6= 1 E ′α = K−1
α EαKα.

Corollary 4.2.5. Let Uqg denote the corresponding quantum group. For
q 6= 1 there is a Z-torsor of vectors {Ek

α} for each root α that are related by
Ek+n
α = Kn

αE
k
αK
−n
α .

Proof. To simplify notation, set Eαi = Ei, Fαi = Fi, Kαi = Ki. Then using
Corollary 4.1.3 one obtains:

E ′i = Tw0
(Tw0

Ei)

= Tw0
(−Fı̌ Kı̌)

= −(Tw0
Fı̌)(Tw0

Kı̌)

= −(−K−1
i Ei)(Ki)

= K−1
i EiKi

This proves the second part, and to get the first part set q = 1 so that
Ki = 1.

Theorem 4.2.6. Let h be any height function and denote the associated
simple roots and orientation by Πh and Ωh respectively.

1. The root basis defined above is adapted to the pair (Πh,Ωh).

2. For this choice of root basis the Lie bracket is given by:

[Eα, Eβ] =

{
(−1)〈α,β〉Eα+β for α+ β ∈ R

0 for α+ β 6∈ R and α 6= −β

Proof. Let h be the height function used to construct the root basis {Eα}.
By construction this basis is adapted to the pair (Πh,Ωh). So it is enough to
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check that if {Eα} is adapted to (Π,Ω), and i is a source for Ω, then {Eα}
is also adapted to (siΠ, siΩ).

Suppose that {Eα} is adapted to (Π,Ω) and that i is a source. Let Π =
{α1, . . . , αr}. Then since i is a source and w0 is adapted to Ω, the correspond-
ing reduced expression for the longest element has the form w0 = sisi2 · · · sil .
By writing γk = si1 · · · sik−1

αik , the longest element can be reexpressed as
w0 = sγl · · · sγ2sαi . (Note that since i is a source, γ1 = αi.)

Then since {Eα} is adapted it is possible to write

Eγk = Tγk−1
· · ·Tγ2TαiEαk .

Now consider the pair (siΠ, siΩ). Denote the simple roots by α′j = siαj
and the corresponding simple reflections s′j = sisjsi. Then the corresponding
reduced expression for the longest element is w0 = s′i2 · · · s

′
il
si and as before

if γ′k = s′i2 · · · s
′
ik−1

(α′ik), then γ′k = γk+1 for k + 1 6= l and γl = −αi.

Now, if k + 1 6= l then

E ′γk = Eγk+1

= Tγk · · ·Tγ2TαiEαik+1

= Tγk · · ·Tγ2Esiαik+1
by Equation 4.2.4

= Tγ′
k−1
· · ·Tγ′

1
Eα′

k

so E ′γk is given by Equation 4.2.3.

If k + 1 = l then,

E ′γl = E−αi

= Tw0
(Eαı̌)

= Tγl · · ·Tγ2Tαi(Eαı̌)

= T ′γl−1
· · ·T ′γ1Esiαı̌

= T ′γl−1
· · ·T ′γ1Eα′

ı̌

so again E ′γk is given by Equation 4.2.3. Hence {Eα} is adapted to the pair
(siΠ, siΩ).

The proof of the second part will follow from Corollary 4.3.4.
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Note that Proposition 4.2.4 and Proposition 4.2.6 prove the main result,
Theorem 4.0.3.

Define TC = Tαi1Tαi2 · · ·Tαir , for some choice of compatible simple roots
Π = {α1, . . . , αr}, with C = si1si2 · · · sir . Since the Tα satisfy the braid
relations, the operator does not depend on the choice of compatible simple
roots Π.

Proposition 4.2.7. The root vectors Eα satisfy TCEα = ECα.

4.3 Ringel-Hall Algebras

In this section Ringel and Peng and Xiao’s approaches to constructing the Lie
algebra g from quiver theory is reviewed. This is then related to the construc-
tion given in the previous section. For more details on Ringel’s construction
see [R1], [R2], [DX]. For more details on Peng and Xiao’s construction see
[PX1] and [PX2].

Let Ω be a fixed orientation of Γ and denote by
−→
Γ = (Γ,Ω) the cor-

responding quiver. Fix K, a finite field of order p. Let Rep(
−→
Γ ) be the

category of representations of this quiver over the field K, and denote by K
its Grothendieck group. Denote by Ind ⊂ K the set of classes of indecom-
posable objects. Then Gabriel’s Theorem gives an identification Ind → R+

between indecomposable objects and positive roots of the corresponding root
system. Moreover, if 〈·, ·〉 is defined on K by 〈X,Y 〉 = dim Hom(X,Y ) −
dim Ext1(X,Y ), then the form given by (X,Y ) = 〈X,Y 〉 + 〈Y,X〉 is identi-
fied with the bilinear form on the root lattice. The form 〈·, ·〉 is called the
Euler form.

Ringel then constructed an associative algebra (Hp, ∗) as follows:

1. As a vector space Hp is spanned by [M ] ∈ K.

2. For objects M,N,L define FL
M,N(p) = |{X ⊂ L|X ≃ M and L/X ≃

N}|. (Since K is finite, this number is well-defined.)

3. Define an operation ∗ on Hp by the formula [M ] ∗ [N ] =
∑

[L] F
L
M,N [L].

The following Theorem summarizes the main results of Ringel.
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Theorem 4.3.1. Let (Hp, ∗) be the algebra defined above.

1. For n = (nα) ∈ (Z+)R+ set Mn =
⊕

nαMα where Mα is the indecom-
posable corresponding to root α. Then {[Mn]} is a PBW-type basis of

the algebra Hp, so that all structure constants F
[L]
[M ],[N ](p) are in Z[p].

Hence the Hall algebra can be considered with p as a formal parameter.
After making the substitution q = p1/2, Hq can be identified with Uqn+.

2. For q = 1, this gives an isomorphism Ψ : Un+ → H1 which is given
by Eα 7→ [Mα], where Mα denotes the indecomposable representation of
−→
Γ corresponding to root α. In particular the set {[Mα]} is a root basis
for n+.

3. In the case q = 1, the Lie bracket [·, ·] is given by

[Mα,Mβ] = (−1)〈Mα,Mβ〉Mα+β

for α+ β ∈ R. Here 〈·, ·〉 is the Euler form.

The polynomial FL
M,N(p) appearing in Part 1 of the Theorem is called the

“Hall polynomial”.

As mentioned before, Peng and Xiao extended the results of Ringel to
obtain a description for all of g. This construction is briefly recalled here.
For a more details see [PX1] , [PX2].

Peng and Xiao considered the “root category”, D = Db(
−→
Γ )/T 2, so that

indecomposable objects are in bijection with all roots. If M ∈ Rep(
−→
Γ ) is

indecomposable, then considering this as a complex concentrated in degree 0,
M is also indecomposable in D. These objects correspond to positive roots,
while their translates, TM , correspond to negative roots. (Up to isomor-
phism, this is a full description of indecomposable objects in D.) Denote by
Mα the class of indecomposable corresponding to root α ∈ R+. Peng and
Xiao then constructed a Lie algebra HD as follows:

1. Set HD = N⊕H where H = K(D) and N is the free abelian group with
basis {u[M ]} indexed by isomorphism classes of objects [M ].

2. Let hM = [M ] ∈ K(D).

3. Define a bilinear operation [·, ·] on HD by:
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(a) [H,H] = 0

(b) [uM , uN ] =
∑

[L](F
L
M,N(1)−FL

N,M(1))uL, for N 6= TM , where FL
M,N

is the Hall polynomial.

(c) [uM , uTM ] = hM
d(M)

where d(M) = dim End(M)

(d) [hM , uN ] = −(M,N)DuN = −[uN , hM ] where (·, ·)D is the sym-
metrized Euler form on K(D).

4. For α ∈ R+, let hα = hM where dimMα = α.

5. For α ∈ R+, let Mα = [Mα] where dimMα = α.

6. For α ∈ R+ let M−α = −[TMα] where dimMα = α.

Theorem 4.3.2. Let (HD, [·, ·]) be defined as above.

1. (HD, [·, ·]) is a Lie algebra.

2. The collection {Mα,M−α}α∈R+
defined above is a root basis for HD.

3. The map given by Eα 7→ Mα, Fα 7→ M−α and Hα 7→ hα for α ∈ R+

induces an isomorphism of Lie algebras g → HD. Hence HD can be
identified with the Z-form of g.

For details see [PX1] Section 4.

Recall that given a height function h, there is a corresponding set of
simple roots Πh and a polarization R = Rh

+∪R
h
−. Let Eα be the root vectors

defined in Section 4.2. Define a triangular decomposition g = nh− ⊕ h ⊕ nh+
by setting nh± = 〈Eα〉α∈Rh

±
.

A height function h also gives an orientation Ωh of Γ and hence a quiver
−→
Γ = (Γ,Ωh). As above, denote by K the corresponding Grothendieck group,
and by Ind ⊂ K the set of indecomposable classes in K. Then there is a
bijection Rh

+ → Ind, given by α 7→ [Mα].

Proposition 4.3.3. Let h be a height function. Then the identification

Rh
+ → Ind in Rep(

−→
Γ ) induces an isomorphim Unh+ → H1 given by Eα 7→

[Mα].
Moreover, the identification R → Ind(D) in the root category D gives an
isomorphism g − h → HD − H, given by Eα 7→ [Mα], E−α 7→ −[TMα] for
α ∈ Rh

+.
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Corollary 4.3.4. The Lie algebra g can be realised combinatorially in terms
of Γ̂cyc: It has root basis Eα for α ∈ Γ̂cyc and Lie bracket given by

[Eα, Eβ] =

{
(−1)〈α,β〉Eα+β for α+ β ∈ R

0 for α+ β 6∈ R and α 6= −β
(4.3.1)

Proof. The only thing to be checked is that in terms of the Eα constructed
in Section 4.2, the structure constants of the Lie bracket are given by Equa-
tion 4.3.1. For α, β ∈ R with α 6= −β there is a choice of compatible simple
roots Π so that α, β ∈ RΠ

+. Let h be the corresponding height function. Then
by Proposition 4.3.3 the identification Unh+ ≃ H1 gives that

[Eα, Eβ] = [Mα,Mβ] = (−1)〈α,β〉Mα+β = (−1)〈α,β〉Eα+β.

Remark 4.3.5. Note that the “Euler cocylce” (−1)〈·,·〉, defines a cohomologous
cocycle, and hence the same extension, as in the construction of g given in
[FLM].

Example 4.3.6. Consider the case Γ = A3, so that g = sl4. Let h be
the diagonal matrices. Then the roots are α = ei − ej for i 6= j, where
ek(h) = hkk for h ∈ h. The root space corresponding to root ei − ej is
CEij, where Eij is the corresponding matrix unit. For two different choices
of Coxeter element C, two different root bases are shown in Figure 4.2. In
each case the Lie bracket is then given by the Equation 4.3.1 and the form
〈·, ·〉 can be computed explicitly in terms of Γ̂cyc.
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Figure 4.2: Two different root bases for sl4 coming from different choices of C.
The case C = (1234) is shown in the figure to the left. The case C = (1243)

is shown in the figure to the right. For each vertex in Γ̂cyc the corresponding

root vector Eα is shown in terms of the matrix units Eij. Recall that Γ̂cyc is
periodic, so that arrows leaving the top level are identified with the incoming
arrows on the bottom level.
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