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Abstract of the Dissertation

The Effective Cone on Symmetric
Powers of Curves

by

Yusuf Achmad Mustopa

Doctor of Philosophy

in

Mathematics

Stony Brook University

2008

The dth symmetric power Cd of a smooth complex projective curve (or compact

Riemann surface) C is a parameter space for effective divisors of degree d on C, so that

the theory of degree-d maps from C to projective space is encoded in the subvarieties

of Cd and the relations amongst them. We give a complete description of the cone of

codimension-1 subvarieties of Cg−1 when C is a general curve of genus g ≥ 4, as well

as new bounds for the case Cd in the range (g+1
2
, g− 2]. We also give new information

on the movable cone of Cd and the volume function of Cg−1.
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1. Introduction

Given a smooth complex projective algebraic curve C and an integer d ≥ 2, the

d-th symmetric power Cd of C is the quotient of the d−th Cartesian power Cd by the

natural action of the symmetric group Sd. This is a d−dimensional smooth projective

variety (Proposition 2.2), and it is a fine moduli space parametrizing effective divisors

of degree d on C (e.g. Theorem 16.4 in [26]). As such, the information about degree-d

linear series on C is encoded in the subvarieties of Cd and the relations amongst them.

The primary focus of this work is the codimension-1 subvarieties of Cd.

Cones of divisor classes on Cd have been studied by several authors. Their

study began in earnest with the work of Kouvidakis, who in [16] obtained bounds

for the effective cone of Cd in the case where C is very general (see Section 2 for the

definition). These bounds were obtained by degenerating to smooth curves possessing

linear series which are special in the sense of Brill-Noether.

Ciliberto-Kouvidakis [6] and Ross [27] recovered the bounds for the effective

cone of C2 in the case g ≥ 9 from [16] by degenerating to rational nodal curves.

The case 2 ≤ g ≤ 4 was completely settled in Theorem 2 of [16], and the best

bounds currently known for the remaining genera are due to Debarre for 6 ≤ g ≤ 8

(Proposition 8 in [8]) and Ross for g = 5 (Section 4 of [27]).

In [23], Pacienza used work of Voisin [28] on curves in K3 surfaces to compute

the ample cone of Ck for a very general curve C of genus 2k ≥ 6. In recent unpublished

work, Debarre obtained some bounds for the ”intermediate” cones on Cd.

The Néron-Severi space N1
R(Cd) contains two classes x and θ (see Section 2.2

for their definitions) which are linearly independent (Lemma 2.8). In many cases,

for instance when C is very general, these classes generate N1
R(Cd) (Corollary 2.10).

Theorem 3 in [16] implies that when dimN1
R(Cd) = 2, one ray of the effective cone of
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Cd is spanned by the fundamental class 2(−θ + (g + d− 1)x) of the large diagonal

∆ := {2p+D′ : p ∈ C,D′ ∈ Cd−2}.
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FIGURE 1: The effective cone of Cd.

Part 2 of Theorem 5 in [16] gives the ray spanned by θ − x as an inner bound

for the other part of the effective cone of Cd when the genus g of C is at least 4 and

g
2
< d ≤ g − 1. We prove the following:

Theorem A. Let C be a very general curve of genus g ≥ 4.

(i) For g+1
2
< d ≤ g − 1, the class θ − (1 + g−d

g2−dg+(d−2)
)x ∈ N1

R(Cd) is Q−effective.

(ii) The class θ − (1 + 1
2g−3

)x ∈ N1
R(Cg−1) spans a boundary ray of the effective cone

of Cg−1.

Combining (ii) with Theorem 3 in [16] yields

Corollary 1.1. If C is a very general curve of genus g ≥ 4, the effective cone of Cg−1

is spanned by the half-diagonal class −θ + (2g − 2)x and the class θ − (1 + 1
2g−3

)x.
2



We consider Theorem A in light of the bounds given by Theorem 5 of [16] for the

effective cone of Cg−1. As g tends to infinity, the boundary ray in the fourth quarter

of the (θ, x)−plane approaches the ray spanned by θ − x, so that Kouvidakis’ inner

bound is asymptotically sharp in g relative to the new bound. The ray spanned by

θ− 2x is obtained as an outer bound by degenerating C to a hyperelliptic curve. For

any p ∈ C, the class θ−x, which gives the aforementioned inner bound, is represented

by the cycle Γg−1(KC(−p)) parametrizing effective divisors of degree g−1 subordinate

to the complete linear series |KC(−p)| (see 2.3.2 for the general definition.) Since the

dimension of Γg−1(KC(−p)) is the dimension of the linear series |KC(−p)| (Lemma

2.11) the inner bound in [16] comes from the fact that the canonical series separates

0-jets, i.e. is basepoint-free, and the outer bound is obtained by degenerating to the

case in which the canonical linear series fails to separate 1-jets. The divisor we obtain

which spans the non-diagonal boundary of the effective cone of Cg−1 is supported on

the set ⋃
p∈C

Γg−1(KC(−2p))

and so it reflects very precisely the fact that KC separates 1-jets. More generally, the

divisor we obtain in (i) for Cd in the range g
2
< d ≤ g − 1 is supported on

⋃
p∈C

Γd(KC(−(g − d+ 1)p)).

We obtain more refined information in two distinct, but related, directions. The

stable base locus B(D) of a Q−Cartier divisor D on a projective variety X is the set-

theoretic intersection of the base loci of the linear systems |mD| (where m varies over

all positive integers for which mD is Cartier). The codimension of B(D) is a rough

measure of the size of D; for instance, if D is ample, B(D) = ∅, and if D is not

Q−effective, B(D) = X;

While the stable base locus is not a numerical invariant in general, we may

define a class ξ ∈ N1
Q(X) := H1,1(X) ∩ H2(X,Q) to be stable if B(D) = B(D′) for

3



any two divisors D,D′ having numerical class ξ (stability for classes in N1
R(X) will be

defined later). Note that by the Nakai-Moishezon criterion (Theorem 3.1) the class

of any ample divisor on X is stable.

Theorem B. Let C be a very general curve of genus g ≥ 4, and let d be an integer

satisfying g+1
2
< d ≤ g− 1. Then the class θ− x on Cd is stable with stable base locus

{D ∈ Cd : dim |D| ≥ 1}

of codimension g − d+ 1.

We now turn to another way of measuring the size of a Cartier divisor. The

volume of a Cartier divisor D on a projective variety X of dimension n is defined as

volX(D) := lim sup
m→∞

n!h0(OX(mD))

mn

Recall that D is big if h0(OX(mD)) = O(mn); it follows from the definitions

that volX(D) > 0 precisely when D is big. Note that when D is ample, asymptotic

Riemann-Roch (e.g. Theorem 1.1.24 in [17]) and Serre vanishing imply that

h0(OX(mD)) =
Dn

n!
mn +O(mn−1).

Consequently, volX(D) = Dn for any ample divisor D.

Bigness may be thought of as a birational version of amplitude, in the sense

that for any birational map f : X 99K Y of projective varieties and any ample divisor

D on Y, the pullback f ∗(D) is big on X. Similarly, the volume of a big divisor may be

thought of as the birational version of the top self-intersection of an ample divisor.

For example, if f : X → Y is a birational morphism of projective varieties, and D is a

Cartier divisor on Y, then volY (D) = volX(f ∗(D)) (Proposition 3.17). Furthermore,

volX(D) depends only on the numerical class of D (Proposition 3.15) and extends

to a continuous function volX : N1
R(X) → [0,∞) which is homogeneous of degree
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n (Proposition 3.16). We obtain the following partial computation of the volume

function:

Theorem C. Let C be a general curve of genus g ≥ 4. Then for t ∈ [0, 1 + 1
g2−g−1

],

volCg−1(θ − tx) =

g−1∑
k=0

(
g − 1

k

)
g!

(k + 1)!
tk(1− t)g−1−k.

This result, together with (ii) of Theorem 1, implies that for a general curve C

of genus g ≥ 4,

volCg−1(θ − x) = 1

volCg−1(θ − (1 +
1

2g − 3
)x) = 0

For any two positive integers d and r, there exist a determinantal subvariety

W r
d (C) of Picd(C) supported on the set

{L ∈ Picd(C) : dim |L| ≥ r}

(Section 3 of Chapter IV in [1]) and a fine moduli variety Gr
d(C) parametrizing linear

series of degree d and dimension r (Theorem 3.6 in [1]). It follows from Theorem 16.4

in [26] that G0
d(C) and Cd are canonically isomorphic; accordingly, we will denote

W 0
d (C) by Wd(C).

The residuation map τ̃ : Pic2g−2−d(C)→ Picd(C) defined by τ̃(L) = KC ⊗ L−1

restricts to an isomorphismW g−d−1
2g−2−d(C) ' Wd(C). The rational map τ : Gg−d−1

2g−2−d(C) 99K

G0
d(C) = Cd to which this isomorphism lifts via the natural forgetful maps Cd →

Wd(C) and Gg−d−1
2g−2−d(C)→ W g−d−1

2g−2−d(C) is the crux of the proofs of our main results.

If C is general, then by Gieseker’s theorem (1.6 on p.214 of [1]) Gg−d−1
2g−2−d(C) is

smooth of dimension d, and by the Brill-Noether theorem the loci of indeterminacy of

τ and τ−1 are both of codimension 2 or greater. Since τ and τ−1 fail to be defined at

points parametrizing incomplete linear series, τ is an isomorphism precisely when C
5



does not possess a degree-d linear series of positive dimension. We may then conclude

the following from Hartogs’ Theorem:

• τ induces an isomorphism

Pic(Cd) ' Pic(Gg−d−1
2g−2−d(C)).

• For any line bundle L on Cd, τ induces an isomorphism

H0(Cd,L) ' H0(Gg−d−1
2g−2−d(C), τ ∗L).

It follows from the first item that τ induces an isomorphism

N1
R(Cd) ' N1

R(Gg−d−1
2g−2−d(C))

of Néron-Severi spaces, and it follows from the second item that for any line bundle

L on Cd,

volCd
(L) = volGg−d−1

2g−2−d(C)(τ
∗L).

For any projective variety X, the closure of the big cone in N1
R(X) is equal to

the closure of the effective cone in N1
R(X) This, together with the continuity of the

volume function implies that τ ∗ : N1
R(Cd) → N1

R(Gg−d−1
2g−2−d(C)) maps the big (resp.

effective) cone of Cd to the big (resp. effective) cone of Gg−d−1
2g−2−d(C).

In the special case d = g− 1, the map τ is a birational involution on Cg−1, and

τ ∗ interchanges the two boundary rays of the effective cone of Cg−1. As mentioned

earlier, Theorem 3 of [16] implies that one boundary ray is spanned by the class of

the large diagonal; thus the other ray is determined once we compute τ ∗ explicitly

(Proposition 4.4).

When dg
2

+ 1e ≤ d ≤ g − 1, the pullback via τ of the divisor on Cd obtained in

(i) of Theorem 1 is supported on the set

⋃
p∈C

{(L, V ) ∈ Gg−d−1
2g−2−d(C) : V ∩H0(L(−(g − d+ 1)p)) 6= 0}
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of all linear series possessing a ramification point of degree g− d+ 1, i.e. the mildest

possible ramification. This is a natural generalization of the large diagonal on Cd.

While the proof of Theorem 1 is a bit more involved, its main features can be

outlined easily enough. One important fact is that τ ∗ and (τ−1)∗ map certain stable

classes in one Néron-Severi space to certain stable classes in the other (Proposition

4.7). For any effective divisor D of degree g − d on C, the Plücker divisor

X̂D := {(L, V ) ∈ Gg−d−1
2g−2−d(C) : V ∩H0(L(−D)) 6= 0}

is ample (Proposition 4.2), and therefore stable. Our explicit calculation of (τ−1)∗

(Proposition 4.4) shows that it takes the class of X̂D to θ − x.

The study of cones of divisor classes on Cd for an arbitrary curve C is quite

difficult. This is partly because special linear series on arbitrary curves are poorly

understood. However, special linear series on hyperelliptic curves are understood

quite well, and as such they are a natural first step in treating the case of an arbitrary

curve. Debarre [8] and Kong [15] have shown that the class θ− (g− 1)x on C2 spans

a boundary ray of the effective cone of C2 precisely when C is hyperelliptic.

By Corollary 2.10, for a general hyperelliptic curve C the Néron-Severi rank of

Cd is 2 for all d ≥ 2. The ray spanned by θ− (g−d+1)x was given as an inner bound

for the effective cone of Cd for 2 ≤ d ≤ g in the unpublished notes of Debarre, and it

was shown in Theorem 5 in [16] that this bound is sharp when d = g − 1 or d = g.

We prove the following:

Theorem D. Let C be a general hyperelliptic curve of genus g, and let 2 ≤ d ≤ g.

(i) The effective cone of Cd is spanned by the half-diagonal class −θ+ (g+d−1)x and

the class θ − (g − d+ 1)x.

(ii) For all t ∈ [0, g − d+ 1],

volCd
(θ − tx) =

g!

(g − d)!
(1− t

g − d+ 1
)d

7



Combining Theorems C and D yields

Corollary 1.2. Let C be a curve of genus g ≥ 4. Then

volCg−1(θ − x) =


1 if C is general and nonhyperelliptic;

g!
2g−1 if C is general hyperelliptic.

We conclude this introduction with some remarks about other classes of curves.

By the Mumford-Martens classification (Theorems 5.1 and 5.2 in Chapter IV of [1])

the non-hyperelliptic curves having Brill-Noether loci of the largest possible dimension

are the trigonal, smooth plane quintic, and bielliptic curves. Since these are in some

sense the ”least general” non-hyperelliptic curves, it would be interesting to extend

our study to their symmetric powers.

If C is a general trigonal curve or a general plane quintic, it follows from The-

orem 2.10 that the Néron-Severi rank of Cd is 2. The following are consequences of

the proof of Theorem 5 in [16]:

• If C is a general trigonal curve of genus g ≥ 5, the class θ − 2x spans a

boundary ray of the effective cone of Cg−2.

• If C is a general plane quintic, the class θ − 3x spans a boundary ray of the

effective cone of C3.

The study of the case where C is bielliptic is complicated by the fact that the

Néron-Severi rank of Cd is at least 3. Debarre has shown in [8] that for any non-

hyperelliptic curve C of genus g ≥ 5, the class θ − 2x on C2 is nef, and that it fails

to be ample precisely when C is bielliptic. As far as we know, there are currently no

results on the portion of the ample or effective cone lying outside the (θ, x)−plane.

8



2. Preliminaries on Cd

Conventions: We work over the field of complex numbers. C will always

denote a smooth, connected projective curve. The linear series on C given by a space

V of global sections of a line bundle L on C will be denoted by (L, V ). The term grd

will sometimes be used to refer to a linear series of dimension r and degree d. The

empty set has dimension −1.

Definition: If Z is a subvariety of the moduli space Mg of smooth projective

curves of genus g, we say that a property holds for a general curve of Z if it holds

on the complement of the union of countably many subvarieties of Z. If Z =Mg, we

say that the property holds for a general curve of genus g.

2.1. Definition of Cd and basic properties. Let X be a projective variety. For

any integer d ≥ 2, the symmetric group Sd acts on the dth Cartesian power Xd by

permuting the factors.

Proposition 2.1. For any d ≥ 1, the quotient variety Xd = Xd/Sd is projective.

Proof. By the Theorem on p.66 of [21], Xd has the structure of a variety. Let OX(1)

be an ample line bundle on X. Then the line bundle

Õ(1) :=
⊗
ρ∈Sd

ρ∗OX(1)

is Sd−invariant and ample on Xd. Consequently Õ(1) descends via the quotient map

π : Xd → Xd to a line bundle O(1) on Xd, which is ample by Chevalley’s theorem. �

We now specialize to the case where C is a smooth projective curve.

Proposition 2.2. Cd is smooth.
9



Proof. This is a consequence of the fundamental theorem of symmetric polynomials.

�

Note that this is false if we replace C by a smooth surface.

We now introduce a class of morphisms that will prove useful in the next section.

If d1, ..., dk is a partition of d with d1 ≥ ... ≥ dk, then the Cartesian product Cd1 ×

...×Cdk
is a quotient of Cd ' Cd1 × ...×Cdk by the natural action of Sd1 × ...×Sdk

.

Since the latter group embeds into Sd compatibly with the action of Sd on Cd, the

addition map

σd1,...,dk
: Cd1 × ...× Cdk

→ Cd

(D1, ..., Dk) 7→ D1 + ...+Dk

is a finite morphism of smooth projective varieties whose degree is the multinomial

coefficient
(

d
d1...dk

)
. In particular, σ1,...,1 is the canonical quotient map from Cd to Cd.

2.2. The Néron-Severi Space of Cd. The Néron-Severi group NS(X) of a smooth

projective variety X is the additive group of divisors on X modulo algebraic equiva-

lence. (See Exercise 1.7 in Chapter V of [13] for the definition of algebraic equivalence

and p.364 in loc. cit. for the definition of numerical equivalence.)

Proposition 2.3. For any d ≥ 2 there is a canonical isomorphism

NS(Cd) ' Z⊕NS(J(C)).

Proof. Since H2(Cd,Z) is torsion-free (e.g. [19]) for all d ≥ 1, algebraic and numerical

equivalence of divisors coincide on Cd. By descent, pullback via the quotient map

induces an isomorphism of Pic(Cd) with the Sd−invariant part of Pic(Cd).

By the Lefschetz theorem on (1,1)-classes, the exponential sequence on Cd gives

rise to the Sd−equivariant exact sequence

0→ Pic0(Cd)→ Pic(Cd)→ H2(Cd,Z) ∩H1,1(Cd)→ 0
10



so that NS(Cd) = (H2(Cd,Z) ∩H1,1(Cd))Sd = H2(Cd,Z)Sd ∩H1,1(Cd).

The Sd−invariant part of the Künneth decomposition of H2(Cd,Z) is

H2(Cd,Z)Sd ' H2(C,Z)⊕ Sym2H1(C,Z) ' Z⊕ Sym2H1(C,Z).

The copy of H2(C,Z) sitting in H2(Cd,Z)Sd is generated by the sum of the

fiber classes associated to the projections of Cd onto its d factors, so it is contained in

H1,1(Cd). Because of the principal polarization, we may identify Sym2H1(C,Z) with

the additive group Ends(H1(C,Z)) of endomorphisms of H1(C,Z) symmetric with

respect to the polarization. The (1,1)-part of this is the group of Hodge structure

endomorphisms of H1(C,Z) symmetric with respect to the polarization, which is in

turn isomorphic to NS(J(C)) by Proposition 5.2.1 in [3]. �

Definition: The Néron-Severi space N1
R(X) of a smooth projective variety

X is NS(X)⊗Z R.

As an immediate consequence of Proposition 2.3, we have

Corollary 2.4. For any integer d ≥ 2 and any C, N1
R(Cd) ' R⊕N1

R(J(C)). �

We now introduce the basic classes of divisors on Cd.

Definition: For a given p ∈ C and d ≥ 2, Xp is the unique reduced effective divisor

on Cd supported on the set σd−1,1(Cd−1 × {p}).

Lemma 2.5. For all p ∈ C, the divisor Xp on Cd is ample.

Proof. Fix a point p ∈ C and an integer d ≥ 2. For i = 1, .., .d, let πi : Cd → C be

projection onto the ith factor, and let π : Cd → Cd be the canonical quotient map.

Then

π∗(Xp) = π1
∗(p) + ...+ πd

∗(p)

Since this divisor is ample, it follows from Corollary 1.2.28 on p.34 of [17] that

Xp is ample. �
11



Remark: This result is generalized in Lemma 4.2.

The natural map Div(C) → Pic(C) which maps each divisor on C to its

associated line bundle restricts to the degree-d part of each group, giving a map

Divd(C) → Picd(C). If we compose this with the natural inclusion Cd ↪→ Divd(C),

we get the morphism

ad : Cd → Picd(C)

D 7→ OC(D)

which will be referred to as the Abel map. We will use this term to refer to both

ad : Cd → Picd(C) and the map of ad onto its image Wd(C) ⊆ Picd(C).

For each L ∈ Picd(C), the fibre a−1
d (L) is equal the complete linear system

P(H0(L)). Furthermore, the differential of the Abel map at D ∈ Cd is given by the

coboundary map H0(OD(D))→ H1(OC) induced by the short exact sequence

0→ OC → OC(D)→ OD(D)→ 0.

We can summarize this discussion as follows:

Proposition 2.6. Let C be a curve and let d ≥ 2 be an integer. Then ad : Cd →

Wd(C) is

(i) an immersion at D ∈ Cd precisely when h0(OC(D)) = 1.

(ii) a submersion at D ∈ Cd precisely when h1(OC(D)) = 0.

(iii) an isomorphism precisely when C does not possess a degree-d linear series of

positive dimension. �

Note that by Riemann-Roch, if d ≥ 2g − 1 the map ad exhibits Cd as a

Pd−g−bundle over Picd(C).

If the genus of C is at least 1, then the divisors Xp and Xq are not linearly equiv-

alent for p 6= q. However, varying p over C gives an algebraic, and hence numerical,

family of divisors on Cd.
12



Definition: The class x ∈ N1
R(Cd) is the common numerical class of the divisors

Xp on Cd.

Similarly, pulling the translates of the theta-divisor on J(C) back to Cd via the

Abel map gives another algebraic family of divisors on Cd.

Definition: The class θ ∈ N1
R(Cd) is the numerical class of the pullback of a

theta-divisor on J(C).

Lemma 2.7. For 2 ≤ d ≤ g and 0 ≤ k ≤ d, the intersection product xd−kθk is equal

to g!
(g−k)!

.

Proof. Let q1, ..., qd−k be general points of C. Then
⋂d−k
i=1 Xqi ⊆ Cd has numerical

class xd−k and is isomorphic to Ck. Its image under the Abel map Cd → Wd(C) is the

translate of Wk(C) by OC(q1 + ...+ qd−k). By the Poincare Formula (p.25 in [1]), the

class wk of any translate of Wk(C) in Picd(C) is 1
(g−k)!

· θg−k, so xd−kθk is equal to the

intersection wk ·Θk on Picd(C), which in turn is equal to g!
(g−k)!

. �

Lemma 2.8. If C is a curve of genus g ≥ 1, then for all d ≥ 2 and all e ∈ {1, ..., d−1}

the classes xiθe−i (0 ≤ i ≤ e) are linearly independent.

Proof. See Exercise B-1 on p.328 of [1]. �

So far we have seen that the Neron-Severi rank of Cd is always at least 2. We

will use a result of Pirola (which refines an earlier result of Lefschetz) to show that

in the cases of interest to us, it is exactly 2. Recall that by the Torelli theorem (e.g.

p.245 in [1]) the assignment of a curve C of genus g to its polarized Jacobian (J(C),Θ)

gives an isomorphism of Mg with the Jacobian locus Jg in the moduli space Ag of

g−dimensional principally polarized abelian varieties.

Proposition 2.9. ((ii) of Proposition 3.4 in [25]) Let g ≥ 2 be an integer, and let

Y be a subvariety of codimension ≤ g − 2 in Jg. Then the rank of the Neron-Severi

group of a general point of Y is 1.
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Remark: Proposition 3.4 in loc. cit. says that the statement is true if we replace

Jg by the locus of genus-g hyperelliptic Jacobians, g−dimensional abelian varieties

with fixed polarization type, or g−dimensional Prym varieties.

Corollary 2.10. If C is general among curves of genus g ≥ 2 possessing a g1
e (where

e ≥ 2), then for all d ≥ 2, the Néron-Severi rank of Cd is 2. In particular, this is true

of both the general curve of genus g and the general hyperelliptic curve of genus g.

Proof. Since the dimension of the d−gonal locus inMg is min{3g−3, 2g+2d−5}, its

image under the Torelli embedding is of codimension max{0, g−2d+2} in the Jacobian

locus Jg. So the result follows immediately from Propositions 2.3 and 2.9. �

2.3. Some important algebraic cycles on Cd. From this point on, all refer-

ences to the “second quarter” and “the fourth quarter” refer to the second and fourth

quarters of the (θ, x)−plane, respectively.

2.3.1. Diagonal Loci. Here we introduce the loci in Cd which parametrize the various

types of nonreduced divisors of degree d on C.

Definition: Let d ≥ 3 be an integer, and let (n1, ..., nk) and a := (a1, ..., ak) be

k−tuples of positive integers satisfying n1 ≥ n2 ≥ ... ≥ nk and
k∑
j=1

ajnj = d. Define

the map

φa : Cn1 × ...× Cnk
→ Cd

φa((D1, ..., Dk)) =
k∑
j=1

ajDj.

Then ∆a1,...,ak
:= (φa)∗(Cn1 × ...× Cnk

) is the diagonal locus associated to

a.

Note that ∆2,1,..,1 is the large diagonal ∆ we have defined earlier. We will refer

to the curve ∆d as the “small diagonal” of Cd.
14



Remark: In the sequel, the phrase small diagonal will be used to refer to both

the locus ∆d in Cd ands it pullback to the Cartesian power Cd via the natural quotient

map.

2.3.2. The loci of divisors subordinate to a given linear series. The cycles we define

in this subsection and the next play an essential role in our main results.

Let d ≥ 2 be an integer, and let (L, V ) be a linear series of degree n and

dimension r on C. Recall from [1] that there is a natural rank-d vector bundle EL on

Cd whose fibre over D ∈ Cd is H0(D,L|D). As such, there is a morphism

αV : V ⊗OCd
→ EL

whose fibre over each D ∈ Cd is the restriction map V → H0(D,L|D). The latter fails

to be injective precisely when D is subordinate to (V,L), i.e. when V ∩H0(L(−D)) 6=

0.

Definition: The cycle Γd(V,L) is the degeneracy locus of αV . If (V,L) is complete,

we will write Γd(L) instead.

Note that Γd(V,L) is supported on the set

{D ∈ Cd : V ∩H0(L(−D)) 6= 0}.

The following result computes the fundamental class of Γd(V,L); we refer to

p.342 of [1] for the proof.

Lemma 2.11. (3.2 on p. 342 of [1]) Let C be a curve of genus g, and let n, d, and r be

integers satisfying n ≥ d ≥ r. Then Γd(V,L) is r−dimensional, and its fundamental

class is
d−r∑
k=0

(
n− g − r

k

)
xkθd−r−k

(d− r − k)!
.

2.3.3. The loci of divisors moving in a linear system of given dimension. The final

class of cycles we will consider are the natural cycles contracted by the Abel map ad.
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Definition: For any curve C and any two positive integers r and d,

Cr
d := a−1

d (W r
d (C)).

Note that the support of Cr
d is the set

{D ∈ Cd : dim |D| ≥ r}.

Part (iii) of Proposition 2.6 can be restated as saying that ad is an isomorphism

precisely when C1
d = ∅.

2.4. Diagonal Calculations. We collect some special cases of Proposition 5.1 on

p.358 of [1] that will be used in the sequel.

Proposition 2.12. Let C be a curve of genus g. The fundamental class of the small

diagonal ∆d in Cd is

dxd−2 ·
(

((d− 1)g + 1)x− (d− 1)θ
)

Proof. By Proposition 5.1 on p.358 of [1], this class is

∑
0≤β≤α≤d−1

(−1)α+β

β!(α− β)!

(
d(β + 1− g) + d2(g − β)

)
xd−1−αθα.

The result is thus immediate when d = 2; when d ≥ 3, it follows from the fact that∑
1≤β≤α(−1)ββ

(
α
β

)
= 0 for all α ≥ 2. �

Proposition 2.13. The numerical class of ∆g−d+1,d is

d(g − d+ 1)xg−3 ·
{(

d(g − d+ 1)(g2 − g)− (g2 + 1)(g − 2)
)
x2

+
(

(2− 2d)g2 + (2d2 − 3)g − (2d2 − d− 2)
)
xθ + (d− 1)(g − d)θ2

}
.
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Proof. By Proposition 5.1 on p.358 of ACGH, the class of ∆g−d+1,d is the coefficient

of t1t2 in the expression

∑
0≤β≤α≤g−1

(−1)α+β

β!(α− β)!

(
1+(g−d+1)t1+dt2

)2−g+β(
1+(g−d+1)2t1+d2t2

)g−β
xg−1−αθα.

This coefficient is equal to

d(g − d+ 1)

g−1∑
α=0

(−1)α

α!

{(
(d− 1)g − d(d− 1)

) α∑
β=0

(−1)β
(
α

β

)
β2

+
(

(2− 2d)g2 + (2d2 − d− 2)g − (d2 − d− 1)
) α∑
β=0

(−1)β
(
α

β

)
β

+
(

(d− 1)g3 − (d2 − 2)g2 + (d2 − d− 1)g + 2
) α∑
β=0

(−1)β
(
α

β

)}
xg−1−αθα

Since the three sums over β are equal to 0 for all α ≥ 3, we finally obtain

d(g − d+ 1)xg−3

{(
(d− 1)g3 − (d2 − 2)g2 + (d2 − d− 1)g + 2

)
x2

+
(

(2− 2d)g2 + (2d2 − 3)g − (2d2 − 2d− 1)
)
xθ +

(
(d− 1)g − d(d− 1)

)
θ2

}
.

�
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3. Stable Base Loci, Cones of Divisor Classes, and The Volume

Function

In this section we introduce the parts of the asymptotic theory of linear series

that will be used in our work.

3.1. From Ample to Nef and Big. We state the following definition for complete-

ness.

Definition: A Cartier divisor D on a projective variety X is ample if for any

coherent sheaf F on X, there exists a positive integer n0 such that for all n ≥ n0 the

sheaf F(mD) is globally generated.

The following important result (e.g. Theorem 5.1 in [13]) implies that ample-

ness, unlike very ampleness, is a numerical property of a divisor.

Theorem 3.1. (Nakai-Moishezon) Let D be a Cartier divisor on a projective variety

X. Then L is ample if and only if for all integral subschemes Y of X

Ddim(Y ) · Y > 0.

The following definitions are important generalizations of ampleness. The first

of these is directly inspired by the Nakai-Moishezon theorem:

Definition: A Cartier divisor D on a projective variety X is nef if for any

integral subscheme Y,

Ddim(Y ) · Y ≥ 0.

Definition: A Cartier divisor D on a projective variety X is semiample if for

some m ∈ N the linear system |mD| is basepoint-free.
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Every semiample divisor is nef, but the converse is not true; even though nefness

is a numerical property by definition, semiampleness is not. To see why, consider a

smooth projective variety X with h1(OX) > 0 and compare the trivial line bundle on

X to a non-torsion element of Pic0(X).

Proposition 3.2. Let f : X → Y be a morphism of projective varieties, and let D

be an ample divisor on Y. Then f ∗D is semiample on X. In particular, f ∗D is nef.

Proof. If D is an ample divisor on Y, then by definition there exists a positive integer

n for which OY (nD) is globally generated, and our result follows from the fact that

global generation is preserved under pullback via morphisms. �

The following is Theorem 1.1.24 in [17]; we refer to loc. cit. for its proof.

Theorem 3.3. (Asymptotic Riemann-Roch) Let D be a Cartier divisor on an

irreducible projective variety of dimension n. Then for m >> 0,

χ(X,OX(mD)) =
Dn

n!
·mn +O(mn−1).

IfD is nef, we have from Theorem 1.4.40 in [17] that form >> 0, hi(OX(mD)) =

O(mn−i). (This is a generalization of the Serre vanishing property of ample divisors.)

Combining this with Theorem 3.3 yields

Corollary 3.4. Let D be a nef Cartier divisor on an irreducible projective variety X

of dimension n. Then for m >> 0,

h0(X,OX(mD)) =
Dn

n!
·mn +O(mn−1).

Definition: A Cartier divisor D on an irreducible projective variety X is big

if h0(X,OX(mD)) = O(mn) as m→∞.

Proposition 3.5. (Corollary 2.2.7 on p.141 of [17]) A Cartier divisor D on an

irreducible projective variety X is big if and only if there exists an ample divisor A
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on X, an effective divisor E on X, and a positive integer m such that mD is linearly

equivalent to A+ E. �

3.2. Stable Base Loci and Cones of Divisor Classes. Before proceeding further,

we must know what it means for a class in N1
R(X) to be ample, nef, or big.

Definition: Let η be a class in N1
R(X).

(i) η is ample if η =
m∑
j=1

rjDj for positive real numbers r1, ..., rm and classes

D1, ..., Dm of ample Cartier divisors on X.

(ii) η is nef if for all integral subschemes Y of X, ηdimY · Y ≥ 0.

(iii) η is big if η =
m∑
j=1

rjDj for positive real numbers r1, ..., rm and classesD1, ..., Dm

of big Cartier divisors on X.

Proposition 3.6. Let X be a projective variety.

(i) The closure of the ample cone of X in N1
R(X) is equal to the nef cone of X.

(ii) The closure of the big cone of X is equal to the closure of the effective cone of

X.

Definition: Let X be a smooth projective variety and let D be a divisor on X.

Then the stable base locus B(D) of D is
⋂∞
m=1 Bs(|mD|) where Bs(|mD|) is the

set-theoretic base locus of the linear system |mD|.

Remark: Note that if dim |mD| = 0 for all m, then B(D) = X.

Lemma 3.7. B(D) is a Zariski-closed subset of X. �

The remark immediately following the definition of semiampleness shows that

the stable base locus is not a numerical invariant. Note that B(D) = ∅ precisely when

D is semiample. However, we have “inner and outer approximations” of the stable

base locus which are numerical invariants.

Definition: Let D be an R−divisor on X.
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(i) The restricted base locus of D is

B−(D) :=
⋃
A

B(D + A)

where the intersection is taken over all ample R−divisors A such that D +A

is a Q−divisor.

(ii) The augmented base locus of D is

B+(D) :=
⋂
A

B(D − A)

where the intersection is taken over all ample R−divisors A such that D −A

is a Q−divisor.

Lemma 3.8. If D is a Q−divisor, then B−(D) ⊆ B(D) ⊆ B+(D). �

Lemma 3.9. Both B−(D) and B+(D) are numerical invariants of D. �

It is an immediate consequence of the definition that B+(D) is Zariski-closed.

While it is currently unknown whether B−(D) is always Zariski-closed, we do know

that it is at worst a countable union of subvarieties (Proposition 1.19 in [10]).

The following theorem of Nakamaye gives a useful characterization of the aug-

mented base locus of a nef and big divisor. We refer to [22] or p.249-251 in [18] for

the proof.

Theorem 3.10. (Theorem 0.3 in [22]) If D is a nef and big divisor on a smooth

projective variety X, then B+(D) is the union of all positive-dimensional subvarieties

V of X for which DdimV · V = 0.

Remark: This result has been generalized to Theorem C of [11], which charac-

terizes augmented base loci of big divisors that need not be nef. However, Theorem

3.10 is entirely sufficient for our purposes.

Ampleness, nefness, and bigness can all be characterized in terms of augmented

and restricted base loci:
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Lemma 3.11.

(i) D is ample if and only if B+(D) = ∅.

(ii) D is nef if and only if B−(D) = ∅.

(iii) D is big if and only if B+(D) 6= X.

(iv) D is pseudoeffective if and only if B−(D) 6= X. �

We refer to [10] for the proofs. In loc. cit.,(i) and (iii) are Example 1.7, while

(ii) and (iv) are Example 1.18.

Note that by (i) of Lemma 3.11, D is ample if and only if B−(D) = B+(D) = ∅.

This helps motivate the following

Definition: A class η ∈ N1
R(X) is stable if B−(η) = B+(η). If η is stable, its

stable base locus B(η) is its augmented (or restricted) base locus.

Note that if D is a stable Q−divisor, then B(D) does not depend on the nu-

merical class of D. We will need to know for the proof of Theorem 1 that in some

sense, most classes in N1
R(X) are stable.

Proposition 3.12. (1.26 in [10]) The set of stable classes is open and dense in

N1
R(X). In fact, for every η ∈ N1

R(X) there exists ε > 0 such that for any ample class

α satisfying ‖α‖ < ε, η − α is stable. �

If η ∈ N1
Q(X) is a stable class which is big, as stated in the introduction we

may measure its size by the codimension of its stable base locus.

Definition: Let X be a smooth projective variety of dimension n, and let

l ∈ {0, ..., n} be given. Then

Kl(X) := {η ∈ N1
Q(X) : η stable, dim B(η) ≤ l}

A few remarks are in order. First, by Lemma 3.11, the nef cone of X is equal

to K0(X) and the pseudoeffective cone is equal to Kn−1(X). Secondly, we have the

inclusions

K0(X) ⊆ K1(X) ⊆ ... ⊆ Kn−1(X) ⊆ Kn(X) = X
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Finally, by Proposition 3.12, we have the alternate characterizations

Kl(X) = {η ∈ N1
R(X) : dim B−(η) ≤ l} = {η ∈ N1

R(X) : dim B+(η) ≤ l}.

The cone Kn−2(X) has been referred to as the movable or modified nef cone,

and has been studied by Boucksom in [4], who proved in loc. cit. that it is the

closed convex cone generated by pushforwards of ample classes on modifications of

X. The duals of the Kl(X) were computed by Payne in the case where X is a complete

Q−factorial toric variety [24], and there is unpublished work of Debarre on the case

where X is the projectivization of a rank-2 vector bundle on P2.

3.3. The Volume Function. We will assume for the remainder of this section that

X is an irreducible projective variety of dimension n.

Definition: Let D be a Cartier divisor on X. Then the volume of D is

volX(D) := lim sup
m→∞

n!h0(X,mD)

mn
.

It is an immediate consequence of the definition of bigness that volX(D) > 0

precisely when D is big. Also, by Corollary 3.4, we have

Lemma 3.13. If D is a nef divisor on X, then volX(D) = Dn. �

In addition, the following properties of volX (as well as other properties that

will not be used in the sequel) bear out a strong analogy with the top self-intersection.

Lemma 3.14. ((i) of Proposition 2.2.35 in [17]) If k is a positive integer and D is

a Cartier divisor on X, then

volX(kD) = kn · volX(D).

�
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As a result, for any Q−Cartier divisor D on X, we may define

volX(D) :=
1

kn
· volX(kD),

where k is a positive integer for which mD is an integral Cartier divisor.

Proposition 3.15. (Proposition 2.2.41 in [17]) Let D1 and D2 be Cartier divisors

on X which are numerically equivalent. Then

volX(D1) = volX(D2).

It follows that volX : N1
Q(X)→ [0,∞) is a well-defined function. The next result

ensures that volX can be uniquely extended to a continuous real-valued function on

N1
R(X).

Proposition 3.16. (Theorem 2.2.44 in [17]) Let ‖·‖ be any norm on N1
R(X). Then

there exists a constant C > 0 such that

|volX(η)− volX(η′)| ≤ C · (max(‖η‖, ‖η′‖))n−1 · ‖η − η′‖

for any two classes η, η′ ∈ N1
Q(X). �

Remark: It has been proved in [5] that volX has continuous first derivative.

Lemma 3.17. (Birational invariance of volume) Let η : X ′ → X be a birational

projective mapping of n−dimensional irreducible varieties. If D is an integral or

Q−divisor on X, then

volX′(η
∗(D)) = volX(D).

Proof. See p.153 in [17]. �

3.4. The Special Case Cd. Our investigation of the cones Kl(Cd) begins by consid-

ering the portions of the effective and nef cones of Cd in the second quarter. It is worth

noting that unlike the corresponding results for the fourth quarter, Theorem 3.18 and
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Proposition 3.19 yield boundary rays of the effective and nef cones, respectively, for

all symmetric powers of all curves.

Theorem 3.18. (Theorem 3 in [16]) If C is a curve of genus g, d ≥ 2 is an integer,

and the Néron-Severi rank of Cd is 2, then the class 2(−θ + (g + d− 1)x) of the “big

diagonal” in Cd spans a boundary of the effective cone.

The result and proof that follow are essentially due to Pacienza [23].

Proposition 3.19. If C is any curve of genus g and d ≥ 3, the numerical class

−θ + dgx in N1
R(Cd) is nef and big, and its augmented base locus is ∆d.

Proof. By the diagonal calculation in Proposition 2.12, any effective divisor class

whose intersection with the small diagonal is zero is a positive multiple of −θ + dgx.

By Theorem 3.10, we will be done after constructing a generically finite morphism

from Cd to another variety which contracts exactly ∆d.

We define the multi-difference map ξ : Cd → J(C)(
d
2) by sending the ordered

d−tuple (p1, ..., pd) of points on C to Π1≤i<j≤dO(pi − pj). The proof of Proposition

3.19 will conclude after that of the following lemma.

Lemma 3.20. Let C be a smooth projective curve of genus g ≥ 3, and let d be an

integer ≥ 3.

(i) If C is nonhyperelliptic, then the restriction of ξ to the complement of the small

diagonal in Cd is injective.

(ii) If C is hyperelliptic, then the restriction of ξ to the complement of the small diag-

onal is finite-to-one.

Proof. Let (p1, ..., pd) and (q1, ..., qd) be two distinct elements of Cd such that

ν := ξ((p1, ..., pd)) = ξ((q1, ..., qd)),
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let k ∈ {1, ..., d} be such that pk 6= qk, and let l ∈ {1, ..., d} be different from k. Since

pk − pl is linearly equivalent to qk − ql by assumption, we have that pk + ql is linearly

equivalent to pl + qk.

If C is nonhyperelliptic, then since pk 6= qk we must have pk = pl and qk = ql.

Varying l shows that both (p1, ..., pd) and (q1, ..., qd) are in the small diagonal, and (i)

is proved.

If C is hyperelliptic, we may assume that pk+ql and pl+qk are in the hyperelliptic

pencil; otherwise we are done by the argument in the previous case. Assume further-

more that (p1, ..., pd) and (q1, ..., qd) are not in the small diagonal. Let m ∈ {1, ..., d}

be any element distinct from k and l. Then pk + qm is linearly equivalent to pm + qk.

If qm 6= ql, then dim |pk + qm| = dim |pm + qk| = 0, and we must have that pm = pk

and qm = qk. If qm = ql, then we must have pm = pl. Varying m shows that the fibre

of ξ−1(ν) has finite length, and (ii) is proved. �

Conclusion of the proof of Proposition 3.19: We first compose ξ with the
(
d
2

)
−th

Cartesian power of the Kummer morphism J(C) → KumJ(C) (where KumJ(C) =

J(C)/〈−1〉) and then compose the resulting morphism with the natural quotient map

Kum
(d
2)
J(C) → (KumJ(C))(d

2)
, thereby obtaining an Sd−invariant morphism from Cd to

the
(
d
2

)
−th symmetric power (KumJ(C))(d

2)
of KumJ(C). By Lemma 3.20, this contracts

precisely the small diagonal in Cd, and thus the induced morphism Cd → (KumJ(C))(d
2)

contracts precisely the small diagonal in Cd. �

Determining the boundary of the nef cone in the fourth quarter is considerably

more difficult in general. However, we have

Proposition 3.21. For all d ≥ 2, the class θ on Cd is nef, and is ample precisely

when C does not possess a g1
d.

Proof. Since θ is the class of the pullback of an ample divisor on Picd(C), the nefness

of θ follows from Proposition 3.2. The second statement follows from Proposition

2.6. �
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As a result of the previous propositions, we have

Corollary 3.22. Let C be a curve of genus g ≥ 2, let d ≥ 2 be an integer, and

suppose that the Néron-Severi rank of Cd is 2.

(i) The boundary of the nef cone of Cd in the second quarter is spanned by the class

−θ + dgx.

(ii) If C possesses a g1
d, the boundary of the nef cone in the fourth quarter is spanned

by the class θ.

�
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4. Proofs of Main Results

4.1. Proof of Theorem D. Combining Theorem 3.18 with (1) and (3) of the fol-

lowing result immediately yields Theorem D.

Proposition 4.1. Let C be a general hyperelliptic curve of genus g ≥ 3, and let

d ∈ {2, ..., g − 1} be given.

(1) The cycle C1
d is a divisor which spans the boundary of the effective cone of Cd,

and its numerical class is equal to θ − (g − d+ 1)x, so that ud−1,d = d− g − 1.

(2) The common boundary of the nef and movable cones of Cd in the fourth quarter

is spanned by θ, i.e. uk,d = 0 for 0 ≤ k ≤ d− 2.

(3) For all t ∈ [0, g − d+ 1],

volCd
(θ − tx) =

g!

(g − d)!
(1− t

g − d+ 1
)d

Remark: Since C1
d is neither empty nor of the expected dimension

(g − 2(g − d+ 1)) + 1 = 2d− (g + 1)

in the case we are considering, the computation of the class of C1
d given on p.326 of

[1] does not apply.

Proof. (1): By the theorem of Martens (Theorem 5.1 on p.191 of [1]) the loci W 1
d (C)

and W 2
d (C) in Picd(C) have respective dimensions d− 2 and max{−1, d− 4}, so that

dim |L| = 1 for a general member L of W 1
d (C). Consequently C1

d , the inverse image

of W 1
d (C) under the Abel map, is a divisor on Cd.

Suppose C1
d is big. Then by Proposition 3.5, its class can be expressed as a sum

A+E of Q−divisors, where A is ample and E is Q−effective. Since C1
d is contracted

to the (d − 2)−dimensional locus W 1
d (C) by the Abel map, and θ is the pullback of
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an ample class, we have that

θd−1 · A+ θd−1 · E = θd−1 · C1
d = 0.

However, the aforementioned property of θ implies that it is the class of a

semiample divisor, so we must have θd−1 · A > 0 and θd−1 · E ≥ 0, which is absurd.

By geometric Riemann-Roch, the underlying set of C1
d is {D+E : D ∈ C1

2 , E ∈

Cd−2} (cf. p.13 of [1]). Put differently, C1
d = σ(π−1C1

2), where π : C2 × Cd−2 → C2

is projection onto the first factor and σ : C2 × Cd−2 → Cd is the addition map.

Consequently the numerical class of C1
d is the image of the numerical class of C1

2

under the “push” map

Ad−2 : H∗an(C2,Q)→ H∗an(Cd,Q)

which takes a cycle class z to σ∗π
∗z.

Since Lemma 3.2 on p.342 of [1] implies that the numerical class of C1
2 is equal

to θ − (g − 1)x and, by Exercise D-8 on p.369 of [1], we have

Ad−2(x) = (d− 1)x

Ad−2(θ) = θ + g(d− 2)x

it follows that C1
d has numerical class Ad−2(θ − (g − 1)x) = θ − (g − d+ 1)x.

(2): Since θ is nef and big for 2 ≤ d ≤ g−1, this is a consequence of Nakamaye’s

theorem on base loci.

(3): For t ∈ (0, g − d+ 1],

volCd
(θ − tx) = volCd

(
(1− t

g − d+ 1
)θ + (

t

g − d+ 1
)(θ − (g − d+ 1)x)

)
=
( t

g − d+ 1

)d
· volCd

(
(
g − d+ 1

t
− 1)θ + (θ − (g − d+ 1)x)

)
.
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Since the Abel map exhibits Cd as the blowup of Wd(C) along the codimension-

2 locus W 1
d (C) with exceptional divisor C1

d–whose class was just determined to be

θ − (g − d+ 1)x–the birational invariance of the volume function implies that

(
t

g − d+ 1
)d · volCd

(
(
g − d+ 1

t
− 1)θ + (θ − (g − d+ 1)x)

)
=
( t

g − d+ 1

)d
· volWd(C)

(
(
g − d+ 1

t
− 1)Θ|Wd(C)

)
where Θ is the numerical class of the theta-divisor on Picd(C). Since the numerical

class of Wd(C) is Θg−d

(g−d)!
and Θ|Wd(C) is ample,

volWd(C)(Θ|Wd(C)) = Θ|dWd(C) =
Θg−d

(g − d)!
·Θd =

g!

(g − d)!
.

Therefore we may conclude that

( t

g − d+ 1

)d
· volWd(C)

(
(
g − d+ 1

t
− 1)Θ|Wd(C)

)
=

( t

g − d+ 1

)d
·
(g − d+ 1

t
− 1
)d
· g!

(g − d)!
=

g!

(g − d)!

(
1− t

g − d+ 1

)d
.

�

In particular, we have

volCg−1(θ − x) =
g!

2g−1
.

By a well-known elementary identity, this is an odd integer precisely when g is

a power of 2 and fails to be an integer otherwise.

4.2. Proofs of Theorems A,B, and C. Throughout this section, C will denote a

general non-hyperelliptic curve of genus g ≥ 4 unless otherwise stated.

4.2.1. Residuation. Since we are assuming C is general, its gonality is dg
2

+ 1e. When

g
2

+ 1 ≤ d ≤ g − 1, Serre duality induces a birational map τ : Gg−d−1
2g−2−d(C) 99K Cd.

The loci of indeterminacy of τ and τ−1 are Gg−d
2g−2−d(C) and C1

d , respectively. Since
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these loci are both of codimension at least 2 and both varieties are smooth, it follows

from Hartogs’ Theorem that τ induces an isomorphism of Picard groups, and thus of

Neron-Severi groups.

If D is an effective divisor on C of degree g − d, where g
2

+ 1 ≤ d ≤ g − 1, then

D imposes independent conditions on the canonical linear system |KC |, so that the

complete linear system |KC(−D)| is of dimension d− 1 and degree g+ d− 2. Lemma

2.11 then tells us that the locus Γd(KC(−D)) is a divisor in Cd with numerical class

θ − x.

We may generalize the divisor classes x and θ on Cd in a straightforward fashion

to obtain divisor classes on Gg−d−1
2g−2−d(C).

Proposition 4.2. For any effective divisor D of degree r + 1 on C, the set

X̂D := {(V,M) ∈ Gr
d(C) : V ∩H0(M(−D)) 6= 0}

has the natural structure of an ample divisor on Gr
d(C).

Note that the special case r = 0 is Lemma 2.5.

Proof. We first recall some aspects of the construction of Gr
d(C) in Section 3 of Chap-

ter IV of [1]. Fix a Poincare bundle L on C × Picd(C), and let D′ be an effective

divisor on C of degree 2g − d− 1.

If η : C × Picd(C)→ Picd(C) is projection onto the second factor, and Γ is the

product divisor (D+D′)×Picd(C), then the direct image sheaf η∗L(Γ) is locally free

of rank g+r+1 and its fibre over a line bundleM of degree d on C is H0(M(D+D′)).

Indeed, h1(M(D+D′)) = 0 by Serre duality since the degree ofM(D+D′) is 2g+r,

so this follows from Riemann-Roch and base change in cohomology (Theorem 2.6 on

p.175 of [1]).

If Γ′ is the product divisor D′ × Picd(C), then an entirely analogous argument

tells us that η∗L(Γ′) is a rank-g subbundle of η∗L(Γ). Since the dual of η∗L(Γ) is ample

by Proposition 2.2 on p.310 of [1], the Plucker divisor σ′ on the Grassman bundle
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G(r+ 1, η∗L(Γ)) associated to η∗L(Γ′) is ample by the following lemma. (Recall that

a vector bundle E is ample if the hyperplane class on the subbundle projectivization

Psub(E∗) of E∗ is ample.)

Lemma 4.3. Let X be a smooth projective variety, and let E be an ample vector

bundle of rank s on X. Then for all s′ ≤ s, the Plucker class on the associated

Grassman bundle G(s′, E∗) of rank-s′ subbundles of E∗ is ample.

Proof. If ν : G(s′, E∗) → X is the structure map, then the determinant of the in-

clusion Ss′,E∗ ↪→ ν∗(E) of the tautological subbundle induces the Plucker embedding

G(s′, E∗) ↪→ Psub(∧s
′
E∗). The result then follows from the fact that the amplitude of

E implies the amplitude of its exterior powers (part (ii) of Corollary 6.1.16 on p.15

of [18]). �

Conclusion of proof of Proposition 4.2: For each line bundle M of degree d on C,

there is a commutative diagram

0 // H0(M)
f1

// H0(M(D +D′))
g1

// H0(M(D +D′)|D+D′)

0 // H0(M(−D))

i

OO

f2
// H0(M(D′))

i′

OO

g2
// H0(M(D′)|D+D′)

i′′

OO

in which both rows are exact and all vertical arrows are injective, so that a diagram

chase gives the equality

(f1 ◦ i)
(
H0(M(−D))

)
= f1

(
H0(M)

)
∩ i′
(
H0(M(D′))

)
.

Therefore if V is a subspace of H0(M), we have

f1(V ) ∩ (f1 ◦ i)
(
H0(M(−D))

)
= f1(V ) ∩ i′

(
H0(M(D′))

)
.
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It follows at once from the definitions that X̂D = Gr
d(C) ∩ σ′. Consequently

X̂D, which has a cycle structure induced by its being an intersection of cycles and is

the restriction of an ample divisor, is ample. �

As D varies over Cr+1, we obtain an algebraic family of divisors whose common

numerical class we will denote by X̂. Also, we will denote by θ̂ the numerical class of

the pullback of a theta-divisor in Picd(C).

Remark: By the formula for the fundamental class wrd of W r
d (C) (Theorem 4.4

in Chapter VII of [1]), it follows that θ̂d = wg−d−1
2g−2−d · θd = g!

(g−d)!
.

Proposition 4.4. Under the isomorphism τ ∗ : N1
R(Cd)→ N1

R(Gg−d−1
2g−2−d(C)),

τ ∗(θ) = θ̂, τ ∗(θ − x) = X̂.

Proof. If τ̃ : Pic2g−2−d(C)→ Picd(C) is the morphism induced by taking Serre duals

and L1 and L2 are line bundles on C of respective degrees 2g− 2− d and d satisfying

L1 ⊗ L2 ' KC , we have the commutative diagram

Pic0(C)

(−1)

��

·⊗L1
// Pic2g−2−d(C)

τ̃
��

Gg−d−1
2g−2−d(C)oo

τ

��
�
�
�

Pic0(C)
·⊗L2

// Picd(C) Cdoo

where the leftmost vertical arrow is multiplication by −1 and the left horizontal

arrows on the top and bottom are multiplication by L1 and L2, respectively. Since

multiplication by −1 induces the identity on the cohomology of Pic0(C), it induces

the identity on the Neron-Severi group of Pic0(C). Therefore τ ∗ takes the theta class

on Cd to θ̂ on Gg−d−1
2g−2−d(C).

If D is an effective divisor of degree g − d on C, then it follows immediately

from Riemann-Roch that D′ ∈ Cd satisfying h0(D′) = 1 is subordinate to |KC(−D)|

precisely when D is subordinate to |KC(−D′)|. This can be rephrased as saying that

away from the loci of indeterminacy of τ and τ−1, the divisor X̂D is isomorphic to
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Γd(KC(−D)) via τ. Since the fundamental class of Γd(KC(−D)) is θ − x by Lemma

2.11, we have that τ ∗(θ − x) = X̂. �

4.2.2. Residuation and volCd
. Essentially the same Hartogs argument which gives

the isomorphism of Picard groups also shows that τ ∗ and its inverse both preserve

the volume function. The next result simultaneously proves Theorem C and (ii) of

Theorem A.

Proposition 4.5. Let L be a line bundle on Cd andM be a line bundle on Gg−d−1
2g−2−d(C).

Then

H0(Cd, (τ
−1)∗M) ' H0(Gg−d−1

2g−2−d(C),M)

H0(Gg−d−1
2g−2−d(C), τ ∗L) ' H0(Cd,L)

In particular, volCd
((τ−1)∗M) = volGg−d−1

2g−2−d(C)(M) and volGg−d−1
2g−2−d(C)(τ

∗L) = volCd
(L).

Proof. Let U = Cd−C1
d and V = Gg−d−1

2g−2−d(C)−Gg−d
2g−2−d(C). Clearly τ |V : V → U is an

isomorphism and τ−1|U : U → V is its inverse. These furnish natural isomorphisms

H0(U,L|U) ' H0(V, τ ∗L|V )

H0(V,M|V ) ' H0(U, (τ−1)∗M|U)

Since U and V are complements of subvarieties of codimension at least 2 in smooth

varieties, these isomorphisms extend to all of Cd and Gg−d−1
2g−2−d(C). �

As an immediate consequence of Proposition 4.5, we obtain the following:

Corollary 4.6. τ ∗ and (τ ∗)−1 interchange the pseudoeffective cones of Cd and

Gg−d−1
2g−2−d(C). �

We now specialize to the case d = g − 1. In this scenario τ is a birational

involution on Cg−1. By Theorem 3.18, the class −2θ + (4g − 4)x representing the
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big diagonal in Cg−1 spans a boundary of the effective cone. Combining this with

Corollary 4.6 yields (ii) of Theorem A.

Proof of Theorem C: By Corollary 3.22, the nef cone of Cg−1 is spanned by the

classes θ and −θ+ (g2 − g)x. Since τ ∗(θ− tx) = (1− t)θ+ tx by Proposition 4.4 and

the volume of a nef class is its top self-intersection by Lemma 3.13, we have

volCg−1(θ − tx) = volCg−1((1− t)θ + tx)

=

g−1∑
k=0

(
g − 1

k

)
tk(1− t)g−1−kxkθg−1−k =

g−1∑
k=0

(
g − 1

k

)
g!

(k + 1)!
tk(1− t)g−1−k.

�

4.2.3. Residuation and Stable Base Loci. Here we give the proof of Theorem B,

which is an immediate consequence of combining Theorem 3.18 and Proposition 4.4

with the following result.

Proposition 4.7. Let L be a stable line bundle on Gg−d−1
2g−2−d(C) with stable base

locus Z and numerical class aX̂ + bθ̂ satisfying a > 0 and a+ b > 0. Then the line

bundle (τ−1)∗L on Cd is stable with stable base locus C1
d ∪ τ−1(Z).

In particular, a line bundle L on Gg−d−1
2g−2−d(C) with numerical class in the

aforementioned range is stable precisely when the pullback bundle (τ−1)∗L on Cd is

stable.

Proof. Let L be a stable line bundle on Gg−d−1
2g−2−d(C) satisfying the hypotheses, and

let M := (τ−1)∗L. Since the stable base locus of a line bundle does not change after

taking positive tensor powers, we will assume without loss of generality that

Bs(|L|) = Z and Bs(|M|) = B(M).

The hypothesis on the coefficients a and b guarantees that the numerical class of

M, which is (a+ b)θ − ax, lies in the fourth quarter of the θ, x−plane, so that the

stable base locus of M must contain C1
d . By Proposition 4.5, pullback via τ−1 gives

a natural isomorphism between H0(Gg−d−1
2g−2−d(C),L) and H0(Cd,M), so
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B(M) = Bs(|M|) = C1
d ∪ τ−1(Z). Indeed, if x ∈ Cd−C1

d is a basepoint of |M|, then

τ(x) is a basepoint of |L|.

The set of stable classes in in N1
R(Gg−d−1

2g−2−d(C)) having Z as its stable base locus

is open, so its image under (τ−1)∗ is open as well. If t0 := a
a+b

, then by our previous

calculation and Proposition 3.12, we have that for some ε > 0, θ − tx is stable with

stable base locus C1
d ∪ τ−1(Z) for all t satisfying 0 < |t− t0| < ε. We then have by

the definitions of the augmented and restricted base loci that

B−(M) = C1
d ∪ τ−1(Z) = B+(M). �

Consider the case d = g − 1. It follows from Proposition 4.7 that for t slightly

larger than 1 + 1
g2−g−1

, the class θ − tx ∈ N1
R(Cg−1) is stable with stable base locus

C1
g−1 ∪ τ(∆g−1). Since a general curve has only normal Weierstrass points (this

follows from, for instance, Theorem 2 of [12]) this is a disjoint union. Furthermore,

the dimension of C1
g−1 is at least 2 for g ≥ 5, so that we have examples of

non-equidimensional stable base loci.

4.2.4. Bounds for the case g+1
2
< d ≤ g − 2. We conclude with the following result,

which implies (i) of Theorem A.

Proposition 4.8. Let C be a very general curve of genus g ≥ 4. For 2 ≤ d ≤ g

define the following divisor on Cd :

Dd :=
⋃
p∈C

Γd
(
KC(−(g − d+ 1)p)

)
Then for d 6= g+1

2
, the numerical class of Dd is

(g − d+ 1)
(
(g2 − dg + (d− 2))θ − (g2 − (d− 1)g − 2)x

)
.

In particular, when g+1
2
< d ≤ g − 1, the slope of Dd is strictly less than 1 and tends

to 1 as g →∞.
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Proof. Fix d− 1 general points q1, ...qd−1 on C. The two test curves in Cd that we

will use to compute the numerical class of Dd are the tiny diagonal ∆d and the curve

χd :=
d−1⋂
j=1

Xqj = {p+ q1 + ...+ qd−1 : p ∈ C}

The numerical class of χd is xd−1, and by Proposition 2.13, the numerical class of ∆d

is dxd−2(((d− 1)g + 1)x− (d− 1)θ).

The intersection number χd ·Dd is the cardinality of the set{
q ∈ C : ∃p ∈ C 3 (g − d+ 1)p+ q ≤ |KC(−q1 − ...− qd−1)|

}
If (g − d+ 1)p ≤ |KC(−q1 − ...− qd−1)|, then there are

((2g − 2)− (d− 1))− (g − d+ 1) = g − 2

points q (counting multiplicity) such that

(g − d+ 1)p+ q ≤ |KC(−q1 − ...− qd−1)|,

and we may conclude that

χd ·Dd = (g − 2) ·∆g−d+1 · Γg−d+1(KC(−q1 − ...− qd−1)).

Similarly, ∆d ·Dd is the cardinality of{
q ∈ C : ∃p ∈ C 3 (g − d+ 1)q + dq ≤ |KC |

}
.

Assume the numerical class of Dd is aθ − bx for a, b ∈ Q. The fact that the class

of Γg+1(KC) is x2 − xθ + θ2

2
(by Lemma 2.11), the hypothesis that d 6= g+1

2
, and the

computation of ∆g−d+1,d from Proposition 2.13 all imply that

∆d ·Dd = d2g4 − (2d3 − d2 + d)g3 + (d4 − 2d)g2 − (d4 − 2d3 − d)g − (2d2 − 2d)
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Then our system of equations is

ag − b = g4 − 2dg3 + (d2 + 2d− 4)g2 − (2d2 − 5d+ 1)g − (2d− 2)

adg − b = dg4 − (2d2 − d+ 1)g3 + (d3 − 2)g2 − (d3 − 2d2 − 1)g − (2d− 2)

and it has the solution

a = g3 − (2d− 1)g2 + (d2 − 2)g − (d− 1)(d− 2) = (g − d+ 1)(g2 − dg + (d− 2))

b = g3 + (2− 2d)g2 + (d2 − 2d− 1)g + (2d− 2) = (g − d+ 1)(g2 − (d− 1)g − 2)

�
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