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Abstract of the Dissertation

Configurations of Graphs and
the Master Equation

by

Dezhen Xu

Doctor of Philosophy

in

Mathematics

Stony Brook University

2008

The “master equation package” of Sullivan is an algebraic structure

where homotopy equivalences can be defined. It appears in many theo-

ries, for example, Donaldson theory, symplectic topology, string topol-

ogy among others. This thesis provides an example of the “master

equation package” in the setting of configuration spaces. We show that,

under a canonical compactification, for any parallelizable manifold of

dimension d > 1, the fundamental chains M of configuration spaces of

certain decorated graphs in the manifold and the fundamental chains R

of moduli spaces of configurations of these graphs provide a solution to

the master equation system ∂R+R ∗R = 0, ∂M +M ∗R = 0, where the
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product ∗ is the sum over all possible subgraph insertions. As an ap-

plication, Kontsevich-Kuperberg-Thurston’s construction of quantum

invariants of 3-manifolds is discussed in this formalism.
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Chapter 1

Introduction

The purpose of this thesis is to describe, in the setting of configuration spaces,

an algebraic structure called the master equation package [45], which also appears

in many other theories, for example, Donaldson theory, symplectic topology, string

topology among others. We focus on the setting of configuration spaces of graphs,

where the Kontsevich-Kuperberg-Thuston’s construction of quantum invariants of

3-manifolds lives.

1.1 Background

As classical objects in algebraic topology, configuration spaces have been stud-

ied from many different point of views. More recent interests in configuration

spaces mainly came from two aspects:

One is from the algebraic aspect. Collections of configuration spaces form op-

erads which parametrize certain algebras. For example, Getzler and Jones [21]

observed the fact that the collection {conf(n,Rd)}n≥1 of moduli spaces of configura-

tions of n distinct points in Rd has an operad structure. The d = 1 case gives the
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associahedra introduced by Stasheff [41].

The other is from the geometric/topological aspect. Configuration spaces, com-

bined with ideas from perturbative Chern-Simons field theory [1, 4], are used to

construct invariants of links and 3-manifolds (see, e.g. [2, 11, 12, 13, 28, 31, 47]).

In both aspects, a special compactification of configuration spaces is used, which

is a real manifold analogue of the Fulton-Macpherson compactification [19] of con-

figuration spaces of distinct points in complex varieties. One of our motivations is

to understand the connections between the algebraic and topological approaches.

In this thesis, we investigate configuration spaces of finite graphs, which are used

by Kuperberg and Thurston [31] to give an improved, topological construction of

Kontsevich’s invariants [28] of rational homology 3-spheres.

A graph Γ is a pair consisting of a set of vertices and a set of edges. The

configuration space Conf(Γ,M) of a graph Γ in a manifold M is the space of maps

from the vertex set of Γ to the space M such that the images of any two vertices

can not be equal whenever they are connected by an edge. The moduli space of

configurations of graph Γ is the quotient space of the configuration space of graph

Γ in the Euclidean space by the action of the group of translations and dilations.

There are various ways to compactify the configuration space Conf(Γ,M). The

one we are interested in is obtained by iteratively blowing up the space Map(V(Γ),M)

of maps from the vertex set of Γ to M along the set of diagonals corresponding to the

set of connected full subgraphs of Γ. This compactification is called the canonical

compactification in the thesis, due to its history.

The above described picture is a just small portion of a large picture. Starting

from last eighties, based on ideas from quantum field theory in physics, many new

theories emerged in mathematics. These theories include, e.g., finite type invariants
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of links and 3-manifolds (or Vassiliev theory), Donaldson’s theory of 4-manifolds,

symplectic topology, string topology. A common feature of these theories is the use

of certain system of moduli spaces of some structures, and certain compactification

of the moduli spaces. Based on this, an algebraic structure named “master equation

package” was introduced by Sullivan [45, 46].

1.2 The master equation package

In this section, the notions of “master equation” and “master equation package”

will be explained.

Some algebraic structures, e.g., groups, can be represented in the form of gen-

erators with some relations. Consider such an algebraic structure, and suppose,

in addition, that there is a differential on it. To represent it, extra relations with

differential are needed.

In its easiest form, a master equation is, symbolically, an equation of the fol-

lowing form:

∂X = X ∗ X,

where ∂ is a differential; X = {Xi} is a linear basis indexed by some partially ordered

set {i} with all descending chains finite, such that the right hand side of the equation

for ∂Xi has only terms with strictly lower index; and X ∗X is a sum over a collection

∗ of binary operations.

There may have some initial terms Xi such that ∂Xi = 0.

The master equation is understood as a presentation of a free triangular differ-

ential graded algebra (or module over differential graded algebra) generated by a
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linear basis subject to the differential relation given by the master equation, where

“free” means free over certain combination operad, i.e., there are no other algebraic

relations besides those generated by the basic composition rules which define the

combination operad. In our case, the master equation has the form

∂Γ =
∑
γ

Γ/γ � γ

where Γ,Γ/γ, γ are configurations of graphs (Definition 3.2.1). The algebra it rep-

resents will be called configuration algebra (Definition 3.2.7), which is a differ-

ential graded many-sorted algebra (in the sense of universal algebra [14], see Re-

mark 3.2.3). Also we will have a master equation system of the form

∂RΓ =
∑

RΓ/γ � Rγ;

∂MΓ =
∑

MΓ/γ � Rγ

where RΓ,MΓ are configurations of graphs Γ coloured in colours R,M respectively.

The differential graded many-sorted algebra represented by this master equation

system will be called a right module over the configuration algebra.

A master equation package is a triple (F, S , A) where F and A are differen-

tial graded (many-sorted) algebras (or differential graded modules over differential

graded algebras) with F free and triangular, and S : F → A is a map of differen-

tial graded (many-sorted) algebras (or differential graded modules over differential

graded algebras). S is also called a solution map to the master equation (system).

And if there is a master equation package (F, S , A), we may as well say that there is

a solution in A to the master equation (system) representing F.
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There is a homotopy theory for master equation packages [45, 46], which is a

generalization of rational homotopy theory [44].

1.3 Outline and summary of results

The thesis has two parts and an appendix. The first part is from Chapter 2 to

Chapter 6; Chapter 7 is the second part.

Chapters 2 and 3 are the algebraic/combinatorial basis of the thesis. In Chap-

ter 2, after fixing the definition of graphs, the composition properties of insertions

of graphs are studied. In Chapter 3, the notion of configurations of abstract graphs

is defined, and a differential graded many-sorted algebra called configuration al-

gebra is constructed for a class of decorated graphs named A-labeled graphs (see

Definition 2.2.2).

Chapters 4 to 6 have more flavors of geometry and topology. Chapter 4 is a de-

tailed account of the canonical compactification of configuration spaces of graphs.

In Chapter 5, the fibrations on the boundary strata of the canonically compacti-

fied moduli spaces of graphs and canonically compactified configuration spaces of

graphs in manifolds are studied. Chapter 6 investigates the properties of geometric

chains on moduli spaces and certain modified configuration spaces of graphs. In

particular, the main result of the first part is given in this chapter.

Theorem 6.3.6 (Master equation package). Let M be a smooth parallelizable man-

ifold of dimension d > 1. Then the fundamental geometric chains {conf(Γ,Rd)} of

the canonically compactified moduli spaces of connected A-labeled graphs Γ with

two or more vertices, and the fundamental geometric chains { ̂Conf(Γ,M)} of cer-

tain modified configuration spaces of connected A-labeled graphs Γ with two or
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more vertices in M, provide a solution to the following master equation system

∂RΓ = 0, if |V(Γ)| = 2;

∂MΓ = 0, if |V(Γ)| = 2;

∂RΓ =
∑
γ

RΓ/γ �((Γ/γ,vγ),γ,Γ) Rγ, if |V(Γ)| > 2;

∂MΓ =
∑
γ

MΓ/γ �((Γ/γ,vγ),γ,Γ) Rγ, if |V(Γ)| > 2

in the sum of complexes of geometric chains of moduli spaces of Γ and modified

configuration spaces of Γ in M, with insertion products ∗ of graphs, where the sum

is over all connectedA-labeled graphs Γ with two or more vertices.

In the second part of the thesis, i.e., Chapter 7, the case when the manifold

Md is of odd dimensions is investigated. In particular, we show that Kontsevich-

Kuperberg-Thurston’s construction [28, 31] of quantum invariants of 3-manifolds

fits the framework developed in the first part.

Due to dimension reason (see Proposition 7.2.6), for many E-decorated graphs

Γ (Definition 7.1.2), there exist orientation reversing involutions on Conf(Γ,Rd).

This allows us to introduce certain equivalence relations on the differential right

module over configuration algebra. The quotient algebraic structure of the differen-

tial right module over configuration algebra of E-decorated graphs modulo the ideal

generated by certain involutions and IHX relations (§7.2.3) will be called the differ-

ential right module represented by the reduced master equation B. Sums of trivalent

graphs provide non trivial cycles to the differential right module represented by the

reduced master equation B.

The Kontsevich-Kuperberg-Thurston’s construction is summarized in §7.3.1.
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Theorem 7.3.4. Kontsevich-Kuperberg-Thurston invariants can be obtained from

geometric realization (C̄′n,D) of the non trivial cycles of the differential right module

represented by the reduced master equation B which are of the form of sums of

trivalent graphs.

The appendix is a supplement to Chapter 2. Here the relations between inser-

tions of graphs (with external edges) and operads are discussed.

7



Part I

The general theory
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Chapter 2

Graphs and insertions

The pre-Lie algebra and Hopf algebra of Feynman diagrams were studied by

Connes and Kreimer [15, 16]. Inspired by their work, in this chapter, we study the

properties of insertion operations on the set of connected graphs.

2.1 Graphs

Outside the scope of graph theory, various definitions and terminologies related

to graphs are used in the literature. In this section, we will introduce and fix our

definitions and notations about graphs.

Definition 2.1.1 (Pregraph). A finite pregraph Γ is a pair (V(Γ), E(Γ)) of finite sets,

where

• An element of V(Γ) is called a vertex of Γ.

• An element of E(Γ) is called an edge of Γ. Each edge is labeled by a two-

element subset of V(Γ). The labels of different edges may be the same.
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If {u, v} is the label of an edge e ∈ E(Γ), then vertices u and v are called the

endpoints of e.

Definition 2.1.2 (Graph). Two pregraphs Γ and Γ′ are isomorphic if V(Γ) = V(Γ′)

and there exist a bijective map f : (V(Γ), E(Γ))→ (V(Γ′), E(Γ′)) such that

• the first factor of f is the identity map, and

• the map induced by f from the multiset of labels of edges of Γ to that of Γ′ is

the identity map.

A finite graph is the isomorphism class of a finite pregraph.

The adjective finite before the term graph(s) will be omitted from now on, unless

we want to stress it, since only finite graphs will be considered in this thesis.

Remark 2.1.1. Graphs can be visualized as 1-dimensional CW-complexes: vertices

are 0-dimensional cells and edges are 1-dimensional cells.

Let v be a vertex of a graph Γ. The set of edges of Γ having v as an endpoint

will be denoted by E(v). The valence of the vertex v is the cardinality |E(v)| of the

set E(v). A trivalent graph Γ is a graph with |E(v)| = 3 for all of its vertices v.

Definition 2.1.3 (Subgraph, full subgraph). A graph γ is a subgraph of a graph Γ if

γ satisfies the following:

• V(γ) ⊂ V(Γ);

• E(γ) ⊂ E(Γ) and the endpoints of elements of E(γ) are the same as those of

them as elements of E(Γ);

10



Let γ be a subgraph of Γ. γ is called a full subgraph of Γ if every edge of Γ with

both endpoints in V(γ) is also an edge of γ.

A subgraph of a graph Γ is called non trivial if it is not a vertex or the graph Γ

itself.

Definition 2.1.4 (Connected graph). Two vertices u and v of a graph Γ are connected

by an edge if they are the endpoints of an edge of Γ.

A graph Γ is connected if for any two of its vertices p, q ∈ V(Γ), there exists a

sequence of sets of endpoints of its edges

{x0, x1}, {x1, x2}, · · · , {xk−1, xk}

such that x0 = p and xk = q.

The graph with only one vertex and no edges is considered connected.

Definition 2.1.5 (Cut vertex). Let Γ be a connected graph. A vertex v ∈ V(Γ) is

called a cut vertex if the graph obtained by removing v is not connected.

Definition 2.1.6 (Vertex-2-connected graph). A connected graph Γ is vertex-2-

connected if it has no cut vertices.

Definition 2.1.7 (Complete graph). A complete graph is a graph Γ in which any

two vertices are connected by a single edge.

Example 2.1.1. The connected graphs with two vertices, and complete graphs are

vertex-2-connected.

Definition 2.1.8 (Quotient graph). Let Γ be a graph and γ its connected full sub-

graph. The quotient graph Γ/γ is the graph defined by the following data:
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• V(Γ/γ) = (V(Γ) \ V(γ)) ∪ {vγ};

• E(Γ/γ) = E(Γ) \ E(γ), and the endpoints of elements e ∈ E(Γ/γ) are the

same as those of them as elements of E(Γ) if none of the endpoints is in V(γ),

otherwise, the endpoints of e are the endpoint of e which is not in V(γ) and

the vertex vγ.

Let γ1, γ2 be subgraphs of a graph Γ. We will use γ1∪γ2 to denote the subgraph

of Γ corresponding to the union of the geometric realizations (see Remark 2.1.1) of

γ1, γ2 in the geometric realization of Γ. For example, if γ1, γ2 are disjoint, γ1 ∪ γ2 is

the subgraph defined by V(γ1∪γ2) = V(γ1)∪V(γ2) and E(γ1∪γ2) = E(γ1)∪E(γ2);

if γ1 is a subgraph of γ2, then γ1 ∪ γ2 = γ2.

Let Γ be a graph, and γ1, γ2 its connected full subgraphs. Sometimes we will

use the notation Γ/(γ1 ∪ γ2) to denote (Γ/γ1)/γ2 or (Γ/γ2)/γ1, even when γ1 ∪ γ2 is

not connected or not a full subgraph, if no ambiguities will appear.

We will use G to denote the set of finite graphs. For any Γ1,Γ2 ∈ G, define

Γ1 ≺ Γ2 if and only if |V(Γ1)| < |V(Γ2)|. Then the following is immediate:

Proposition 2.1.1. The pair (G,≺) where ≺ is defined as above is a strict partially

ordered set and all descending chains for any Γ ∈ G are finite.

2.2 Insertions of labeled graphs

A graph can be inserted into a vertex of another graph to form a third graph. In

this section, we focus on a special class of graphs with labeled vertices and study

their properties under insertions.
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Definition 2.2.1 (Inserting a graph into another). Let Γ1,Γ2 be connected graphs

and v ∈ V(Γ1). Let f : E(v)→ V(Γ2) be a map.

Define a graph Γ by the following data

• V(Γ) = (V(Γ1) \ {v}) t V(Γ2);

• E(Γ) = E(Γ1) t E(Γ2); an edge of Γ1 with endpoint set {p, v} corresponds

to an edge of Γ with endpoint set {p, f (e)}; the endpoints of the other edges

remain unchanged.

We will call Γ the graph obtained by inserting Γ2 into Γ1 at vertex v according to the

map f . The graph Γ is denoted by Γ1 ◦(v, f ) Γ2.

LetA be a countably infinite discrete set. A prototypic example ofA is the set

N of natural numbers.

Definition 2.2.2 (A-labeled graph). A finite A-labeled graph is a finite graph Γ

which is labeled inA subjecting to the following rules:

• Each vertex of Γ is labeled by a non empty finite subset ofA.

• The intersection of each pair of subsets labeling vertices of Γ is empty.

• The label of the graph is the union of labels of its vertices.

The subsets ofA labeling vertices of anA-labeled graph or the graph itself will

be calledA-labels.

The set ofA-labeled graphs will be denoted byAG.

ForA-labeled graphs, Definition 2.2.1 can be made more specific.
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Definition 2.2.3 (Insertion operation of A-labeled graphs). Let Γ1,Γ2 and Γ3 be

connectedA-labeled graphs. If there exist v ∈ V(Γ1) whoseA-label is equal to the

A-label of Γ2 and a map f : E(v) → V(Γ2) such that Γ3 = Γ1 ◦(v, f ) Γ2, we say that

there is an insertion operation ◦((Γ1,v),Γ2,Γ3) : (Γ1,Γ2) 7→ Γ3.

Remark 2.2.1. The introduction of the notation ◦((Γ1,v),Γ2,Γ3) is, in a sense, not nec-

essary, because it can be equivalently substituted by some other notations like

◦((Γ1,v),Γ2, f ) in which the output Γ3 does not appear in the subscript. But for the

sake of symbol computations, the notation ◦((Γ1,v),Γ2,Γ3) has obvious advantages in

keeping track of data.

Similar remarks apply to Definitions 3.2.2, 6.2.1, 6.3.1, 6.3.2, 7.1.5, 7.1.6, etc.

Let Γ be an A-labeled graph and γ a connected full subgraph of Γ. To be

consistent with Definition 2.2.3, the vertex vγ of Γ/γ will be labeled by the subset

ofA whose elements occur in the labels of the vertices of γ.

Sometimes when we want to refer insertion operations in general, or do not

want to specify them, we will just use the notation ◦.

The following proposition gives the basic properties of insertion operations ◦.

Proposition 2.2.1. Let Γ be a connectedA-labeled graph; γ1 and γ2 be connected

full subgraphs of Γ with the induced labels from Γ. Then we have the following

statements of graphs:

1. If V(γ1) ∩ V(γ2) = φ, then

Γ/(γ1 ∪ γ2) = (Γ/γ1)/γ2 = (Γ/γ2)/γ1,

Γ/(γ1 ∪ γ2) ◦((Γ/(γ1∪γ2),vγ1 ),γ1,Γ/γ2) γ1 = Γ/γ2,
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Γ/(γ1 ∪ γ2) ◦((Γ/(γ1∪γ2),vγ2 ),γ2,Γ/γ1) γ2 = Γ/γ1,

and thus

(Γ/(γ1 ∪ γ2) ◦((Γ/(γ1∪γ2),vγ2 ),γ2,Γ/γ1) γ2) ◦((Γ/γ1,vγ1 ),γ1,Γ) γ1

= (Γ/(γ1 ∪ γ2) ◦((Γ/(γ1∪γ2),vγ1 ),γ1,Γ/γ2) γ1) ◦((Γ/γ2,vγ2 ),γ2,Γ) γ2. (2.2.1)

2. If V(γ2) ⊂ V(γ1), then

Γ/γ1 ◦((Γ/γ1,vγ1 ),γ1/γ2,Γ/γ2) γ1/γ2 = Γ/γ2,

and thus

(Γ/γ1 ◦((Γ/γ1,vγ1 ),γ1/γ2,Γ/γ2 γ1/γ2) ◦((Γ2/γ2,vγ2 ),γ2,Γ) γ2

= Γ/γ1 ◦((Γ/γ1,vγ1 ),γ1,Γ) (γ1/γ2 ◦((γ1/γ2,vγ2 ),γ2,γ1) γ2). (2.2.2)

Proof. The statements follows directly from definitions.

Intuitively, the first statement says that if V(γ1) ∩ V(γ2) = φ, then the resulted

graphs from different orders of collapsing γ1 and γ2 are the same, and when in-

serting back, different orders of inserting γ1 and γ2 will both produce the original

graphs. The second statement has similar idea. �

Remark 2.2.2. There are many non trivial identities on the insertion algebra of

graphs. In particular (see Example 2.2.1), there are pairwise non isomorphic graphs

A, B,C and D, such that A ◦1 B = C ◦2 D, where ◦1 and ◦2 are certain insertion

operations. So we do not expect that the insertion algebra of graphs be free.
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Example 2.2.1. Let Γ be a connected A-labeled graph; γ1 and γ2 be disjoint con-

nected full subgraphs of Γ with the induced labels from Γ. Then

Γ/γ1 ◦((Γ/γ1,vγ1 ),γ1,Γ) γ1 = Γ = Γ/γ2 ◦((Γ/γ2,vγ2 ),γ2,Γ) γ2.
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Chapter 3

Graph configurations and the master equation

In this chapter, we will study the algebraic/combinatorial properties of config-

urations of sets and graphs under insertions and define (or construct) a differential

graded algebra of configurations ofA-labeled graphs.

3.1 Configurations of finite sets

Before going into configurations of graphs, in this section we study configura-

tions of sets. All sets considered in this section are finite.

Based on the work of Axelrod, Bott, Fulton, MacPherson, Singer and Taubes

([2, 13, 19]), we have the definition of a screen of a set.

Definition 3.1.1 (Screen of a set). A screen S of a set S is a set of subsets of S such

that

• For any A ∈ S, |A| > 1.

• If A, B ∈ S and A ∩ B , φ, then either A ⊆ B or B ⊆ A.
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A screen of a set can be expressed as a nested set, and this nested set presentation

is unique.

Example 3.1.1. Let S = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. Then the screen

S = {{1, 2, 3}, {5, 6, 7, 8, 9}, {6, 7}}

has the nested set presentation

{0, {1, 2, 3}, 4, {5, {6, 7}, 8, 9}}.

Let (S ,S) be a configuation and N the nested set presentation of the screen S.

We will refer to S as the underlying set of N.

Definition 3.1.2 (Configuration). A configuration X of a set S is a pair (S ,S), where

S is a screen of the set S .

Definition 3.1.3 (Insertion product of configurations). Let X1, X2, X3 be configura-

tions of sets S 1, S 2, S 3 respectively, and s1 ∈ S 1. Define X3 = X1 �((S 1,s1),S 2,S 3) X2 if

and only if the following two conditions are satisfied:

• There exists s1 ∈ S 1 such that S 3 = (S 1 \ {s1}) t S 2.

• The nested set presentation of the screen of X3 is equal to the nested set ob-

tained by replacing s1 in the nested set presentation of the screen of X1 with

the nested set presentation of the screen of X2.

Definition 3.1.4 (Elementary configuration of a set). The elementary configuration

of a set S is a configuration of the set S where the screen is empty set.
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Proposition 3.1.1. A configuration of a finite set can be expressed as a monomial

of elementary configurations of some sets, where the product is a collection of in-

sertions as in Definition 3.1.3.

Proof. Here we provide an algorithm whose input is the nested set presentation of

a configuration, and whose output is a monomial presentation of the configuration.

Step 1). Let X = (S ,S) be a configuration of a finite set S and N be the nested

set presentation of S. There are two cases.

If S = φ, then done: X is an elementary configuration.

Otherwise there exists x ∈ N such that x itself is a nested set, then

X = (S 1,S1) �((S 1,s1),S 2,S ) (S 2,S2) (3.1.1)

where

• S 1 is the underlying set of the nested set obtained by replacing in N the ele-

ment x by the symbol s1;

• S1 is the induced screen when replacing x by s1;

• S 2 is the underlying set of the nested set x;

• S2 is the screen of the set S 2 whose nested set presentation is x.

Step 2). Repeat Step 1) for each argument configuration appearing in the right

hand side of equation (3.1.1).

Since S is a finite set, the algorithm will end in finite steps. �
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Example 3.1.2. Let S and S be the same as in Example 3.1.1. Then the configura-

tion (S ,S) can be expressed as a product of elementary configurations of sets:

(({0, a, 4, b}, φ) �(({0,a,4,b},a),{1,2,3},A) ({1, 2, 3}, φ))

�((A,b),D,S )(({5, c, 8, 9}, φ) �(({5,c,8,9},c),{6,7},D) ({6, 7}, φ))

where A = {0, 1, 2, 3, 4, b}, D = {5, 6, 7, 8, 9}.

3.2 An algebra of configurations of labeled graphs

Definition 3.2.1 (Graph configuration). Let Γ be a connected graph. A configura-

tion X of the graph Γ is a pair (Γ,S), where S is a screen of of the vertex set of Γ,

such that the elements of the screen are the vertex sets of some connected subgraphs

of the graph Γ.

The insertion product of configurations ofA-labeled graphs is a special case of

the insertion product of configurations of sets (see Definition 3.1.3).

Definition 3.2.2 (Insertion product of configurations of labeled graphs). Let Γi be

a connectedA-labeled graph, and Xi be a configuration of Γi, i = 1, 2, 3. Define

X3 = X1 �((Γ1,v),Γ2,Γ3) X2

if and only if the following two conditions are satisfied:

• There exists v ∈ V(Γ1) whose label is the same as the label of Γ2 such that

Γ3 = Γ1 ◦((Γ1,v),Γ2,Γ3) Γ2.
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• The nested set presentation of the screen of X3 is equal to the nested set ob-

tained by replacing v in the nested set presentation of the screen of X1 with

the nested set presentation of the screen of X2.

Remark 3.2.1. About the notation: sometimes the subscripts of the insertion prod-

ucts of configurations will be omitted, if no confusion will be caused and we do not

want to emphasize them.

Definition 3.2.3 (Elementary configuration of a graph). The elementary configura-

tion of a connected graph Γ is Γ with the empty screen on its set of vertices.

Let Γ be a connected graph. Since the nested set presentation of the empty

screen of the set V(Γ) is canonically isomorphic to the set V(Γ), we will inter-

changeably use the terms “an elementary configuration of a graph” and “a graph”,

and will sometimes also use the same notation Γ to denote the elementary configu-

ration of the graph Γ. These will cause no confusion from the contexts.

Proposition 3.2.1. A configuration of a connected A-labeled graph can be ex-

pressed as a monomial of elementary configurations of A-labeled graphs, where

the products are insertion products of configurations.

Proof. This follows from Proposition 3.1.1 and Definitions 3.1.3 and 3.2.2. �

Proposition 3.2.2 (Basic identities of graph configurations). Let Γ be a connected

A-labeled graph and γ1 and γ2 connected full subgraphs of Γ. Then we have the

following statements of graph configurations:

1. If V(γ1) ∩ V(γ2) = φ, then

(Γ/(γ1 ∪ γ2) �((Γ/(γ1∪γ2),vγ2 ),γ2,Γ/γ1) γ2) �((Γ/γ1,vγ1 ),γ1,Γ) γ1
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= (Γ/(γ1 ∪ γ2) �((Γ/(γ1∪γ2),vγ1 ),γ1,Γ/γ2) γ1) �((Γ/γ2,vγ2 ),γ2,Γ) γ2.

2. If V(γ2) ⊂ V(γ1), then

(Γ/γ1 �((Γ/γ1,vγ1 ),γ1/γ2,Γ/γ2) γ1/γ2) �((Γ2/γ2,vγ2 ),γ2,Γ) γ2

= Γ/γ1 �((Γ/γ1,vγ1 ),γ1,Γ) (γ1/γ2 �((γ1/γ2,vγ2 ),γ2,γ1) γ2).

Proof. This follows from Proposition 2.2.1 and Definition 3.2.2. �

Proposition 3.2.3. Let Γ be a connected A-labeled graph. The presentations of a

configuration of graph Γ as monomials of elementary configurations of A-labeled

graphs are unique modulo the two basic identities in Proposition 3.2.2.

Proof. This is because that when inserting two graphs Γ1 and Γ2 into a graph Γ,

either Γ1 or Γ2 is inserted first. Suppose Γ1 is inserted first, then when inserting

Γ2, it is inserted either inside or outside Γ1. All these different cases are described

by Proposition 3.2.2. When inserting more graphs, the relations between two dif-

ferent presentations of a configuration are generated by the two basic identities in

Proposition 3.2.2. �

Proposition 3.2.4. Let Γ be a connectedA-labeled graph and X a configuration of

Γ. Then

(1) The leftmost terms in all monomial presentations of X are the same.

(2) The numbers of � operations in all monomial presentations of X are the same.

Proof. These follow from Propositions 3.2.2 and 3.2.3. �
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Let n be the number of � operations in a monomial presentation of X. We will

call the number n + 1 the length of X and denoted by l(X).

Definition 3.2.4 (The boundary operator on configurations of A-labeled graphs).

Let V be the module over a commutative unital ring R generated by the set of

configurations of connectedA-labeled graphs with two or more vertices. Define an

operator ∂ : V→ V by the following

1. ∂ (a connectedA-labeled graph with two vertices) = 0;

2. if Γ is a connectedA-labeled graph with more than three vertices, then

∂Γ =
∑
γ

Γ/γ �((Γ/γ,vγ),γ,Γ) γ (3.2.1)

where the sum is over all connected non trivial full sub A-labeled graphs γ

with the induced labels from the graph Γ.

Then extending (multi)linearly ∂ to all configurations of connectedA-labeled graphs

with two or more vertices by derivation with respect to insertion product �.

Proposition 3.2.5. Let X be a configuration of a connectedA-labeled graph Γ with

|V(Γ)| > 1. Then ∂2X = 0 over Z2.

Proof. Let Γ be the elementary configuration of a connected A-labeled graph. By

definition,

∂Γ =
∑
α

Γ/α �((Γ/α,vα),α,Γ) α

where α runs over the set of connected full subA-labeled graphs of Γ. Then

∂2Γ =
∑
α

(∂(Γ/α) � α + Γ/α � ∂α)
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=
∑
α

∑
β

((Γ/α)/β �(((Γ/α)/β,vβ),β,Γ/α) β) �((Γ/α,vα),α,Γ) α

+
∑
α

∑
β

Γ/α �((Γ/α,vα),α,Γ) (α/β �((α/β,vβ),β,α) β).

There are two cases for the first item in the right hand side of the above formula:

Case 1) if V(α) ∩ V(β) = φ, then (Γ/α)/β = Γ/(α ∪ β), thus we have

∑
α

∑
β

(Γ/(α ∪ β) �((Γ/(α∪β),vβ),β,Γ/α) β) �((Γ/α,vα),α,Γ) α.

This equals 0 by the basic identity (1) of Proposition 3.2.2.

Case 2) otherwise there exist a connected full subgraph β̄ of Γ such that β = β̄/α.

Then V(α) ⊂ V(β̄), we have

∑
α

∑
β̄

(Γ/β̄ �((Γ/β̄,vβ̄),β̄/α,Γ/α) β̄/α) �((Γ/α,vα),α,Γ) α.

This cancels with the second item in the above formula, by the basic identity (2) of

Proposition 3.2.2.

So ∂2 = 0 for elementary configurations. The general case can then be shown

by induction and by the derivation property of ∂. �

Definition 3.2.5 (Oriented graph configuration). Let X be a configuration of a con-

nected graph Γ. An oriented graph configuration is a pair (X, or), where or is an

orientation of X, which is a choice of the generators of an infinite group Z associ-

ated with the graph configuration.

Let R be a commutative unital ring. Then on the module generated by isomor-

phism classes of oriented graph configurations, we assume that there is an imposed
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relation

(X,−or) = −(X, or), (3.2.2)

where −or means the opposite orientation of the orientation or.

Remark 3.2.2. The situation here is like to assign orientations to simplexes to cre-

ate a chain complex . All the graphs we considered are orientable.

Definition 3.2.6 (Orientation with diamond property). An orientation or is called

having the diamond property if it satisfies the following property of oriented graph

configurations:

For any Γ, γ1 and γ2, where Γ is a connected A-labeled graph; γ1 and γ2 are

connectedA-labeled full subgraphs of Γ,

1. if V(γ1) ∩ V(γ2) = φ, then

((Γ/(γ1 ∪ γ2), or) �((Γ/(γ1∪γ2),vγ2 ),γ2,Γ/γ1) (γ2, or)) �((Γ/γ1,vγ1 ),γ1,Γ) (γ1, or)

= −((Γ/(γ1 ∪ γ2), or) �((Γ/(γ1∪γ2),vγ1 ),γ1,Γ/γ2) (γ1, or)) �((Γ/γ2,vγ2 ),γ2,Γ) (γ2, or);

2. if V(γ2) ⊂ V(γ1), then

((Γ/γ1, or) �((Γ/γ1,vγ1 ),γ1/γ2,Γ/γ2) (γ1/γ2, or)) �((Γ2/γ2,vγ2 ),γ2,Γ) (γ2, or)

= −(Γ/γ1, or) �((Γ/γ1,vγ1 ),γ1,Γ) ((γ1/γ2, or) �((γ1/γ2,vγ2 ),γ2,γ1) (γ2, or)).

Theorem 3.2.6. Let (X, or) be an oriented configuration of a connectedA-labeled

graph Γ, where or is an orientation with diamond property. Then ∂2X = 0 over any

commutative unital ring R.
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Proof. This follows immediately from Proposition 3.2.5 and the diamond property

of the orientation or. �

Here we gave a name to the type of differential algebraic structures repre-

sented by the master equation of a certain class of decorated graphs (e.g.,A-labeled

graphs) with subgraph insertion products �.

Definition 3.2.7 (Configuration algebra). Let B be a class of decorated graphs,

which is closed under subgraph insertions and taking quotient graphs. A config-

uration algebra of decorated graphs in B over a commutative unital ring R is the

(many-sorted) algebra generated over R by the set of isomorphism classes of ori-

ented elementary configurations (X, or) of connected decorated graphs in B with

the set of bilinear operations �, where or is an orientation with diamond property,

subject to the differential relations as in Definition 3.2.4.

Remark 3.2.3. In the language of universal algebra, a many-sorted algebra is a

family of sets with a collection of operations among them. Here we list only the ba-

sic definitions of S -sorted algebras and homomorphism between S -sorted algebras

of the same signature. For more, see, e.g. [8, 23, 40].

Let S be a set whose elements will be called sorts.

• An S -sorted signature Σ is a family (Σw,s)s∈S ,w∈S ∗ of sets, where S ∗ is the set

of all finite words formed by elements of S . An element F ∈ Σw,s is called an

operation symbol of rank w, s, of arity w, and of sort s.

• Let Σ be an S -sorted signature. A Σ-algebra A is a family of sets (As)s∈S ,

where As is called the carrier of A of sort s, and a function

σA : As1 × As2 × · · · × Asn → As
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for each σ ∈ Σw,s, where w = s1s2 · · · sn. σA is called the operation of A

named by σ.

• If A and B are both Σ-algebras, a Σ-homomorphism h : A → B is a family of

functions (hs : As → Bs)s∈S which preserve the operations in the sense that if

σ ∈ Σs1···sn,s and ai ∈ Asi , i = 1, · · · , n, then

hs[σA(a1, · · · , an)] = σB[hs1(a1), · · · , hsn(an)]. (3.2.3)

Let Σ be an S -sorted signature.

Definition 3.2.8 (differential Σ-algebra, map of differential Σ-algebras). A differ-

ential Σ-algebra is a pair (A, ∂) where A is a Σ-algebra and ∂ is a differential on A

which is a derivation.

Let (A, ∂A), (B, ∂B) be differential Σ-algebras. A map f : A→ B is called a map

of differential Σ-algebras if the following are satisfied:

• f : A→ B is a Σ-homomorphism.

• f commutes with differentials, i.e., f∂A = ∂B f .

LetAG≥2 be the set of connectedA-labeled graphs with two or more vertices.

Proposition 3.2.7. Let F denote the configuration algebra of graphs inAG≥2. Then

F is a differential gradedAG≥2-sorted algebra.

Proof. Let γ ∈ AG≥2 and Fγ be the module spanned by configurations of γ.

Given a sequence of Γ1, · · · ,Γn,Γ, there are operations

σ : FΓ1 × FΓ2 · · · × FΓn → FΓ
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if and only if there are ways to combine Γ1, · · · ,Γn using the operations ◦ in Defi-

nition 2.2.3 to obtain Γ.

The binary operations are exactly the �’s. In general, an operation σ is a com-

bination of a collection of �’s, in the order prescribed by a binary tree. �

In this thesis, we will mostly use the term S -sorted algebra while keeping its

signature implicit. In fact, it is not possible to explicitly give the signature of a

configuration algebra, since there are infinitely many finite graphs and infinitely

many ways to combine them. But the lucky thing is that sometimes it is obvious to

recognize whether the signatures of two insertion algebras are the same or not.

By Proposition 3.2.3, the configuration algebra of A-labeled graphs is a free

differential S -sorted algebra, where “free” means that there are no algebraic rela-

tions besides those implied by the defining relations in Definition 3.2.6. Or, it can

be understood to be free over a combination operad [46] defined by the composition

rules as in Proposition 2.2.1.

Later on, we will have the case that the class B is coloured in two colours M

and R, and have a master equation system of the form

∂RΓ =
∑

RΓ/γ �((Γ/γ,vγ),γ,Γ) Rγ; (3.2.4)

∂MΓ =
∑

MΓ/γ �((Γ/γ,vγ),γ,Γ) Rγ (3.2.5)

Since equations (3.2.4) and (3.2.5) has the same underlying master equation (3.2.1),

and the operations �((Γ/γ,vγ),γ,Γ) satisfy the same set of composition rules as in Propo-

sition 3.2.2, the corresponding colored configuration algebra of decorated graphs in

B over the commutative unital ring R will be called the right module over the con-

figuration algebra of decorated graphs in B. This colored configuration algebra can
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also be understood as a many-sorted algebra, thus the definition of maps f : A→ B

of right modules over the configuration algebra can be given if A, B are of the same

signature as many-sorted algebras.

Proposition 3.2.8. Let Γ be a connectedA-labeled graphs with two vertices. Then

Γ is a non trivial cycle of the configuration algebra ofA-labeled graphs.

Proof. By Definition 3.2.4,

• ∂Γ = 0.

• Γ is not in the image of ∂, because any monomial configuration in the image

of ∂ has to be of length > 1.

�
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Chapter 4

Compactifications of configuration spaces of graphs

This chapter contains a detailed account of a compactification of the configura-

tion space of maps from a finite graph to a manifold, which is a variant of the canon-

ical compactification (see Axelrod and Singer [2], Fulton and Macpherson [19], and

Kontsevich [28]) of the configuration space of maps from a finite set to a manifold.

The construction here is due to Kuperberg and Thurston [31].

4.1 Defintions and conventions

This section contains some basic definitions and conventions for the rest of the

thesis.

4.1.1 Configuration spaces

Definition 4.1.1 (Configuration space). Let V be a finite set of labeled points and

X a topological space. The configuration space Conf(V, X) of V in X is the space of
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the maps

{ f : V → X| f (u) , f (v),∀u, v ∈ V}.

This concept can be generalized to

Definition 4.1.2 (Configuration space of a graph). Let Γ be a connected graph and

X a topological space. The space

{ f : V(Γ)→ X| f (u) , f (v), if {u, v} ∈ E(Γ)}

is called the configuration space of Γ in X, and is denoted by Conf(Γ, X).

Proposition 4.1.1. Given a finite set V and a topological space X, the configuration

space of V in X is exactly the configuration space Conf(Γ, X) of a complete graph

Γ with V(Γ) = V.

Proof. Compare Definition 4.1.1 and Definition 4.1.2. �

4.1.2 Tangent cones

In this thesis, we will use the term smooth as a synonym of C∞, or infinitely

differentiable. In most of the cases, Ck (for some integer k from the contexts) is suf-

ficient for our needs. But we will use the term smooth just for notational simplicity.

Let M be a smooth manifold and p ∈ M. Let us first recall the definitions of a

tangent vector at p and the tangent space TpM:

Let ϕ1 : [0, ε1) → M, ϕ2 : [0, ε2) → M, where ε1, ε2 > 0, be two smooth curves

such that ϕ1(0) = ϕ2(0) = p. Define ϕ1 ∼ ϕ2 if and only if for every real-valued

function f defined in a neighborhood of p, ( f ◦ ϕ1)′(0) = ( f ◦ ϕ2)′(0). One can
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check that ∼ is an equivalence relation. A tangent vector at p is just an equivalence

class (under ∼) of smooth curves starting at p. The set of the tangent vectors at p,

which has a linear space structure, is the tangent space TpM.

Now we are ready to give the definition of tangent cones:

Definition 4.1.3 (Tangent cone). Let M be a smooth manifold and X ⊂ M a subset

of M. The tangent cone TCpX of a point p ∈ X is the cone formed by those tangent

vectors v ∈ TpM such that there exists a smooth curve ϕ : [0, ε) → M so that

ϕ(0) = p, ϕ([0, ε]) ⊂ X and ϕ is a representative of v.

Example 4.1.1. Let M be a smooth manifold and X ⊂ M an open subset of M.

Then the tangent cone TCpX of a point p ∈ X is the entire tangent space TpM.

Definition 4.1.4 (Cone-like space). Let M be a smooth manifold and X ⊂ M a

subset of M. The set X is called cone-like if each point p ∈ X has a neighborhood

in X which is diffeomorphic to its tangent cone TCpX.

4.1.3 Manifolds with corners

Here we introduce some definitions on manifolds with corners.

Let (R≥0)n = {(x1, · · · , xn) ∈ Rn|xi ≥ 0, i = 1, · · · , n} and x ∈ (R≥0)n. Define

d(x)=the number of zeros in (x1, · · · , xn). We call d(x) the depth of the point x.

The following proposition will lead us to the notion of manifolds with corners.

Proposition 4.1.2. Let U,V be two (relative) open subsets of (R≥0)n, and let f :

U → V be a diffeomorphism. Then d(x) = d( f (x)), for all x ∈ U.

Proof. The proof is similar to the proof of Lemma 14.17 (invariance of corner

points) in Lee’s book [33]. �
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Because of Proposition 4.1.2, we have the following definitions:

Definition 4.1.5 (Manifold with corners). Suppose M is a topological n-manifold

with boundary. A chart with corners for M is a pair (U, ϕ), where U is an open

subset of M and ϕ is a homeomorphism from U to a (relative) open set Ũ ⊂ (R≥0)n.

Two charts with corners (U, ϕ), (V, ψ) are said to be smoothly compatible if the

composite map ϕ ◦ ψ−1 : ψ(U ∩ V)→ ϕ(U ∩ V) is a diffeomorphism.

A smooth structure with corners on a topological manifold with boundary M is

a maximal collection of smoothly compatible charts with corners whose domains

cover M.

A topological manifold with boundary together with a smooth structure with

corners is called a (smooth) manifold with corners.

Definition 4.1.6 (Depth-k stratum, codimension-k stratum). Let M be a manifold

with corners. Denote

∂kM = {x ∈ M|d(x) = k}.

A depth-k stratum of M is defined to be a connected component of ∂kM.

Remark 4.1.1. Let N be a depth k stratum of M. It is easy to see that the codimen-

sion in M of N is equals to k. So sometimes we refer N as a codimension-k stratum

of M.

Definition 4.1.7 (Transversal submanifold). Let M be a manifold with corners. A

closed subset N ⊂ M is called a transversal submanifold with corners of M if it

satisfies the following conditions

• N with the smooth structure with corners induced from M is a manifold with

corners.
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• N is transversal with each stratum of M.

• Each depth k stratum of N is contained in a depth k stratum of M.

4.1.4 Whitney-stratified immersion

Definition 4.1.8 (Mutually transverse). Let M be a smooth manifold (with corners)

and X1, X2, · · · , Xk ⊂ M submanifolds (with corners) of M. Then X1, X2, · · · , Xk

are called mutually transverse if for any collection of submanifolds Xi1 , · · · , Xim

(m 6 k), either

Xi1 ∩ · · · ∩ Xim = φ

or

codim Xi1 ∩ · · · ∩ Xim = codim Xi1 + · · · + codim Xim .

Definition 4.1.9 (Whitney-stratified immersion). Let M be a smooth manifold (with

corners) and X ⊂ M a closed subset. X is called a Whitney-stratified immersion if

it can be decomposed into a locally finite, strict partially ordered set (I,≺) of strata

Xi,

X =
⋃
i∈I

Xi

such that

• Each stratum Xi ⊂ M is a smoothly embedded manifold.

• Each Xi, the closure of the stratum Xi in M, is a union of strata.

• For any i, j ∈ I, i ≺ j ⇐⇒ Xi ⊂ X j.

• If i1, · · · , in are pairwise incomparable, then the corresponding strata Xi1 , · · · ,

Xin are mutually transverse.
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4.2 Blowups along a Whitney-stratified immersion

Let M be a smooth manifold and X ⊂ M a cone-like Whitney-stratified immer-

sion. This section will provide an algorithm to blow up M along X.

4.2.1 The blowup of a manifold along its smooth submanifold

The blowup of a complex manifold along its complex submanifold is well

known to algebraic geometers (see, for example, [26]). Our situation differs from

that in two aspects: first, we work with smooth real manifolds; second, instead of

replacing a point in the blowup locus with the set of lines passing through the point

in its normal space, we replace it with the set of rays in its normal space emanating

from this point.

Let us begin with the definition of the blowup of an open disk along a coordinate

plane.

Let S n−1 = Rn − {0}/ ∼, where x ∼ x′ if and only if there exists some number

λ > 0 such that x = λx′ for any x, x′ ∈ Rn − {0}.

Definition 4.2.1 (Blowup). Let D be an n-dimensional open disc with smooth co-

ordinates x1, · · · , xn, and let H ⊂ D be the plane xm+1 = · · · = xn = 0. Define a

smooth manifold with boundary

D̃ = {(x1, · · · , xn, [ym+1, · · · , yn]) ∈ D × S n−m−1|∃λ ≥ 0

s.t. (xm+1, · · · , xn) = λ(ym+1, · · · , yn)}.
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The space D̃, together with the map π : D̃→ D, which is induced by the projection

D × S n−m−1 → D

on the first factor, is called the (ray) blowup of D along H. Later we will denote D̃

by Bl(D,H).

The blowup map π : D̃ → D is an isomorphism away from H, and the inverse

image of a point x ∈ H is a sphere.

Let

Rn
j+ = {(x1, · · · , xn)|xi ∈ R

n, i = 1, · · · , n; x j ≥ 0};

Rn
j− = {(x1, · · · , xn)|xi ∈ R

n, i = 1, · · · , n; x j ≤ 0}

and

Ũ j+ = {(x1, · · · , xn, [ym+1, · · · , yn]) ∈ D̃|y j > 0};

Ũ j− = {(x1, · · · , xn, [ym+1, · · · , yn]) ∈ D̃|y j < 0}

for j = m + 1, · · · , n. The manifold with boundary D̃ can be covered by coordinate

charts

(Ũ j+, φ j+), (Ũ j−, φ j−)

where

φ j+ : Ũ j+ → R
n
j+, (x1, · · · , xn, [ym+1, · · · , yn]) 7→ (x1,

· · · , xm,
xm+1

x j
, · · · ,

x j−1

x j
, x j,

x j+1

x j
, · · · ,

xn

x j
);

φ j− : Ũ j− → R
n
j−, (x1, · · · , xn, [ym+1, · · · , yn]) 7→ (x1,
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· · · , xm,
xm+1

x j
, · · · ,

x j−1

x j
, x j,

x j+1

x j
, · · · ,

xn

x j
),

(when x j = 0, replace xi
x j

with yi
y j

) are smooth coordinates for j = m+1, · · · , n. Later

we will refer these coordinate charts as the standard covering coordinate charts of

D̃.

Proposition 4.2.1. The blowup π : D̃ → D does not depend on the coordinate

system used in D.

Proof. Let x′i = gi(x), i = 1, · · · , n be another smooth coordinate system in D,

H ⊂ D the plane x′m+1 = · · · = x′n = 0, and

D̃′ = {(x′1, · · · , x
′
n, [y

′
m+1, · · · , y

′
n]) ∈ D × S n−m−1|∃λ ≥ 0

s.t. (x′m+1, · · · , x
′
n) = λ(y′m+1, · · · , y

′
n)}

the blowup ofD in this new coordinate system, then we can extend the isomorphism

g̃ : D̃ − π−1(H)→ D̃′ − π′−1(H), x 7→ g(x)

over π−1(H) by sending a point (x, [ym+1, · · · , yn]) with xm+1 = · · · = xn = 0 to the

point (g(x), [y′m+1, · · · , y
′
n]), where

y′j =
n∑

i=m+1

yi
∂g j

∂xi
(x). (4.2.1)

One can easily check that the extension (4.2.1) does not depend on the coordinates

chosen. �
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Remark 4.2.1. The map

(x, y) 7→ [
n∑

i=m+1

yi
∂

∂xi

∣∣∣∣∣
x
]

gives an identification of the fiber of π : π−1(H)→ H over a point x = (x1, · · · , xm, 0, · · · , 0)

with its normal sphere S n−m−1. This identification is independent of the choice of

the coordinates.

The blowup construction can be carried out globally. Let M be an n-dimensional

smooth manifold, and N ⊂ M an m-dimensional smooth submanifold. Let {Dα}α∈I

be a collection of discs in M covering N such that N ∩ Dα is given by xm+1 = · · · =

xn = 0, and let πα : D̃α → Dα be the blowup of Dα along N ∩ Dα, for each α ∈ I.

Then we have a family of isomorphisms

παβ : π−1
α (Dα ∩ Dβ)→ π−1

β (Dα ∩ Dβ).

The local blowups D̃α with πα can be glued together, by these isomorphisms, to

form a manifold with boundary

L = ∪παβD̃α

with a map

π : L→ ∪Dα.

We still denote by π the map extending π on L and the identity on M − N, and let

Bl(M,N) = L ∪π (M − N).
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Definition 4.2.2 (Blowup along a submanifold). Let M be an n-dimensional smooth

manifold, and N ⊂ M an m-dimensional smooth submanifold. The manifold with

boundary Bl(M,N), together with the projection map π : Bl(M,N) → M, is called

the blowup of M along N.

By the construction, the blowup has the following immediate properties:

Proposition 4.2.2. Let M be an n-dimensional smooth manifold, and N ⊂ M an

m-dimensional smooth submanifold.

1. The map π is an isomorphism away from N ⊂ M and π−1(N) ⊂ Bl(M,N).

2. (Locality property) Locally the blowup is isomorphic to the blowup of a disc

along a coordinate plane as given in Definition 4.2.1.

3. π−1(N) → N is a fibre bundle over N with fibre S n−m−1. It can be naturally

identified with the normal sphere bundle of N in M.

4. The same blowup construction can be carried out if M is a manifold with

corners and N ⊂ M is a transversal submanifold with corners, provided that

N has a well-defined normal bundle in M.

Proof. Statements 1) and 2) follow directly from definitons. Statement 3) follows

from Remark 4.2.1. Statement 4) follows from 2) and 3). �

4.2.2 Iterated blowups

Based on the study of the blowup of a smooth manifold along a smooth subman-

ifold in § 4.2.1, this subsection studies the more general case: iterated blowups. We

will first look at the local pictures of blowups, and then go to the global picture.
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Lemma 4.2.3. Let V1 and V2 be linear subspaces of Rn of dimensions k and m

respectively, where k < m < n. If V1 is a subspace of V2, then π−1(V2 − V1), the

closure of π−1(V2 − V1) in Bl(Rn,V1), has a well-defined normal bundle.

Proof. Without loss of generality, we can assume

V1 = {(x1, · · · , xn) ∈ Rn|xk+1 = · · · = xn = 0};

V2 = {(x1, · · · , xn) ∈ Rn|xm+1 = · · · = xn = 0}.

Let {(Ũ j+, φ+), (Ũ j−, φ−)}nj=k+1 be the standard covering coordinate charts of Bl(Rn,V1).

We claim that {Ũ j+, Ũ j−}
m
j=k+1 is a covering of π−1(V2 − V1). In fact, for all p ∈

π−1(V2 − V1), there exist j(k + 1 ≤ j ≤ n), a neighborhood U(p) of p such that

U(p) ⊂ Ũ j+ (or Ũ j+), and a point x̃ ∈ π−1(V2 − V1) ∩ U(p) with the coordinates

(x1, · · · , xk,
xk+1
x j
, · · · ,

x j−1

x j
, x j,

x j+1

x j
, · · · , xn

x j
). But since xm+1 = · · · = xn = 0, and λ , 0,

we know ym+1 = · · · = yn = 0, which implies j ≤ m.

Now since j ≤ m, each point in π−1(V2 − V1) ∩ Ũ j± has coordinates

(x1, · · · , xk,
xk+1

x j
, · · · ,

x j−1

x j
, x j,

x j+1

x j
, · · · ,

xn

x j
)

= (x1, · · · , xk,
xk+1

x j
, · · · ,

x j−1

x j
, x j,

x j+1

x j
, · · · ,

xm

x j
, 0, · · · , 0)

So each point has a normal space spanned by

{
∂

∂xm+1
, · · · ,

∂

∂xn
},

which is diffeomorphic to Rn−m. �
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Lemma 4.2.4. Let V1 and V2 be linear subspaces of Rn of dimensions k and m

respectively, where k ≥ n−m. If V1 and V2 intersect transversely, then π−1(V2 − V1),

the closure of π−1(V2 − V1) in Bl(Rn,V1), has a well-defined normal bundle.

Proof. Without loss of generality, we can assume

V1 = {(x1, · · · , xn) ∈ Rn|xk+1 = · · · = xn = 0};

V2 = {(x1, · · · , xn) ∈ Rn|x1 = · · · = xn−m = 0}.

Let {(Ũ j+, φ+), (Ũ j−, φ−)}nj=k+1 be the standard covering coordinate charts of Bl(Rn,V1).

Each point in π−1(V2 − V1) ∩ Ũ j± has the coordinates

(x1, · · · , xk,
xk+1

x j
, · · · ,

x j−1

x j
, x j,

x j+1

x j
, · · · ,

xn

x j
)

= (0, · · · , 0, xn−m+1, · · · , xk,
xk+1

x j
, · · · ,

x j−1

x j
, x j,

x j+1

x j
, · · · ,

xn

x j
)

So each point has a normal space spanned by

{
∂

∂x1
, · · · ,

∂

∂xn−m
},

which is diffeomorphic to Rn−m. �

Remark 4.2.2. It follows that π−1(V2 − V1) is transverse to the boundary stratum of

Bl(Rn,V1).

Lemma 4.2.5. Let V1 and V2 be linear subspaces of Rn of dimensions k and m

respectively, where k ≥ n − m. If V1 and V2 intersect transversely, then

1. Rn can be blown up iteratedly along V1 and V2.
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2. The two manifolds with corners

Bl(Bl(Rn,V1), π−1(V2 − V1))

and

Bl(Bl(Rn,V2), π−1(V1 − V2))

are diffeomorphic, where π−1(V2 − V1) is the closure of π−1(V2−V1) in Bl(Rn,V1),

and π−1(V1 − V2) is the closure of π−1(V1 − V2) in Bl(Rn,V2).

Proof. The first statement follows from Lemma 4.2.4 and Proposition 4.2.2.

For the second statement, as in the proof of Lemma 4.2.4, we can assume

V1 = {(x1, · · · , xn) ∈ Rn|xk+1 = · · · = xn = 0};

V2 = {(x1, · · · , xn) ∈ Rn|x1 = · · · = xn−m = 0}.

Let x = (x1, · · · , xn) ∈ Rn. Without loss of generality, we may assume that xi, x j ≥ 0,

where i and j are two fixed indices: i ≤ n − m, j ≥ k.

In Ũ j+ (or Ũ j−) of Bl(Rn,V1), x̃ = (x1, · · · , xk,
xk+1
x j
, · · · ,

x j−1

x j
, x j,

x j+1

x j
, · · · , xn

x j
). In˜̃U i+ (or ˜̃U i−) of Bl(Bl(Rn,V1), π−1(V2 − V1)), ˜̃x = ( x1

xi
, · · · , xi−1

xi
, xi, xi+1

xi
, · · · , xn−m

xi
,

xn−m+1, · · · , xk, xk+1
x j

, · · · , x j−1

x j
, x j,

x j+1

x j
, · · · , xn

x j
).

Similarly, in ˜̃U i+ (or ˜̃U i−) of Bl(Bl(Rn,V2), π−1(V1 − V2)), ˜̃x = ( x1
xi

,· · · , xi−1
xi

, xi,

xi+1
xi

, · · · , xn−m
xi

, xn−m+1,· · · , xk, xk+1
x j

, · · · , x j−1

x j
, x j,

x j+1

x j
, · · · , xn

x j
).

So, we get a diffeomorphism between

Bl(Bl(Rn,V1), π−1(V2 − V1))
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and

Bl(Bl(Rn,V2), π−1(V1 − V2)).

�

By induction on the number of subspaces of Rn, we can generalize the above

lemma as

Lemma 4.2.6. Let V1, · · · ,Vk be linear subspaces of Rn, which are mutually trans-

verse. Then successive blowups along the Vi give a result independent of the order,

up to diffeomorphism.

Definition 4.2.3 (Minimal sequence). Let (I,≺) be a finite or countably infinite

partially ordered set. A sequence s:

i1, i2, · · · , ik, · · ·

is called a minimal sequence of I if the following conditions are satisfied:

• i1 is a minimal element of (I,≺), i2 is a minimal element of (I \ {i1},≺), · · · ,

ik is a minimal element of (I \ {i1, · · · , ik−1},≺) and so on;

• I = {i1, i2, · · · , ik, · · · }.

Remark 4.2.3. A minimal sequence s of I turns the partially ordered set I into a

well-ordered set. The transfinite induction (see, for example, [17]), an extension of

mathematical induction, is valid on a well-ordered set.
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Example 4.2.1. Let Γ be a connected graph with k vertices. Let I be the set of

connected full subgraphs of Γ. Define a partial order on I by

Γi ≺ Γ j ⇔ V(Γi) ⊃ V(Γ j).

Here is a minimal sequence of the poset (I,≺): beginning with the graph Γ itself,

then the connected full subgraphs with (k − 1) vertices in an arbitrary order, then

the connected full subgraphs with (k − 2) vertices in an arbitrary order, and so on.

Theorem 4.2.7. Let M be a smooth manifold and X =
⋃

i∈I Xi a cone-like, Whitney-

stratified immersion.

1. Let s be a minimal sequence of I, then M can be blown up successively along

strata Xi of X in the order specified by s. Denote the final resulted manifold

with corners by Bl(M, (X, s)).

2. Let s, s′ be minimal sequences of I, then Bl(M, (X, s)) is diffeomorphic to

Bl(M, (X, s′)).

Proof. The second statement follows from the first statement, Lemma 4.2.6 and the

locality property of blowups.

Here is the proof of the first statement:

Let the sequence s:

i1, i2, · · · , ik, · · ·

be a minimal sequence of the partially ordered set I. As given in Definiton 4.2.2, the

smooth manifold M can be blown up along the stratum Xi1 , resulting in a manifold

with corners Bl(M, Xi1).

We notice that the partial order are preserved under the blowup process:
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1. If i, j , i1 ∈ I and Xi ⊂ X j, then it is easy to see that

π−1(Xi − Xi1) ⊂ π−1(X j − Xi1).

It follows that if i ≺ j , i1 in I, then we have i ≺ j in I \ {i1} after the blowup.

2. If k1, · · · , km , i1 ∈ I and Xk1 , · · · , Xkm are mutually transverse, then in

Bl(M, Xi1), π−1(Xk1 − Xi1), · · · , π−1(Xkm − Xi1) are mutually transverse. To ease

of notation, let us consider only their complete intersection,

codim π−1(Xk1 − Xi1) + · · · + codim π−1(Xkm − Xi1)

= codim Xk1 + · · · + codim Xkm

= codim Xk1 ∩ · · · ∩ Xkm

= codim (π−1(Xk1 ∩ · · · ∩ Xkm − Xi))

= codim π−1(Xk1 ∩ · · · ∩ Xkm − Xi1)

= codim π−1(Xk1 − Xi1) ∩ · · · ∩ π−1(Xkm − Xi1).

It follows that if k1, · · · , km are pairwise incomparable in I, then we have

k1, · · · , km are pairwise incomparable in I \ {i1} after the blowup.

Now let us consider the blowup preimages of the other strata X j of X in Bl(M, Xi1):

• For those indices j such that i1, j are incomparable, we have Xi1 , X j are trans-

verse in M. By Lemma 4.2.4, and the locality property of blowups, π−1(X j − Xi1)

has a well-defined normal bundle in Bl(M, Xi1).

• For those indices j such that i1 ≺ j, we have Xi1 ⊂ X j, where the closure is

taken in M. So if i1 ≺ j1, j2, · · · , jk, then Xi1 ⊂ X j1 ∩ X j2 ∩ · · · ∩ X jk . Since X
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is locally cone-like, for any p ∈ Xi1 , there exist a neighborhood U(p) ⊂ X of

p which is diffeomorphic to the tangent cone TpX with p the tip of the cone.

If in addition we assume that j1, j2, · · · , jk are pairwise incomparable, then

it follows that in Bl(M, Xi1), π−1(X j1 − Xi1), π−1(X j2 − Xi1), · · · , π−1(X jk − Xi1)

are disjoint in a sufficiently small neighborhood of π−1(Xi1). By Lemma 4.2.3

and the locality property of blowups, each π−1(X js − Xi1), s ∈ {1, · · · , k}, has

a well-defined normal bundle in Bl(M, Xi1).

Thus π−1(Xi2 − Xi1) has a well-defined normal bundle in Bl(M, Xi1). So we can

blow up Bl(M, Xi1) along π−1(Xi2 − Xi1).

Suppose that we already finished the blowups along the strata corresponding to

indices i1, i2, · · · , ik, and have the following:

• For any i, j ∈ I\{i1, i2, · · · , ik}, i ≺ j if and only if the preimage in the resulted

partially blown-up space Y of the stratum Xi is a subset of the closure in Y of

the preimage of X j.

• If k1, · · · , km ∈ I\{i1, i2, · · · , ik} are pairwise incomparable, then the preimage

in Y of the corresponding strata Xk1 , · · · , Xkm are mutually transverse.

• The preimage in Y of each stratum of X with index in I\{i1, i2, · · · , ik} has

well-defined normal bundle.

So we can continue blowing up the partially blown up space Y along the preimage

of the next stratum Xik+1 .

By the principal of induction, the iterated blowup procedure can proceed along

every stratum of X. �
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4.3 Compactifications of configuration spaces of graphs

Let Γ be a connected graph and M a d-dimensional smooth manifold. Let

Map(V(Γ),M) be the space of maps f : V(Γ)→ M. It is easy to see that Map(V(Γ),M)

is isomorphic to the Cartesian product M×|V(Γ)|.

If Γ′ is a connected full subgraph of Γ, denote by∆Γ′ the diagonal of Map(V(Γ),M)

in which all vertices of Γ′ are mapped to the same point.

If one could blow up Map(V(Γ),M) along

{∆e ⊂ Map(V(Γ),M)|e ∈ E(Γ)},

then a compactification of the configuration space of the graph Γ in the manifold M

would be obtained. But unfortunately, there are some technical difficulties in doing

so. Instead, there is a compactification of the configuration space of the graph,

which is obtained by iteratively blowing up all connected full subgraphs of Γ. To

see this, one needs the following theorem

Theorem 4.3.1. Let Γ be a connected graph and M a smooth manifold. Let

X =
⋃
Γ′

{∆Γ′} ⊂ Map(V(Γ),M),

where Γ′ varies over the set of connected full subgraphs of Γ. Then X admits a

cone-like, Whitney-stratified immersion structure in Map(V(Γ),M).

Proof. The subset X ⊂ Map(V(Γ),M) is cone-like since it is the union of a set of

diagonals.

Now we check that X admits a Whitney-stratified immersion structure whose
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strata are corresponding to diagonals in certain way which we now describe.

Let Γ be a connected graph and I the set of connected full subgraphs of Γ. We

say a filtration

Γ1 ⊃ Γ2 ⊃ · · · ⊃ Γk,

where Γ1 = Γ, Γk is a two-vertex connected full subgraph of Γ, Γi ∈ I and the vertex

set V(Γi−1) ! V(Γi), is good if there is no Γ′ ∈ I such that V(Γi−1) ! V(Γ′) ! V(Γi).

Now let

Γ1 ⊃ Γ2 ⊃ · · · ⊃ Γk

be a good filtration, then we say

∆Γ1 ,∆Γ2\∆Γ1 , · · · ,∆Γk\∆Γk−1

are strata coming from the filtration.

Consider all the strata coming from good filtrations on I. For any connected full

subgraph Γi, let

∆Γi\∆Γi−1,1 , · · · ,∆Γi\∆Γi−1,m

be all the strata which have the form ∆Γi\∆Γi−1 . Define

XΓi = (∆Γi\∆Γi−1,1) ∩ · · · ∩ (∆Γi\∆Γi−1,m),

and XΓ = ∆Γ. Thus we obtain a decomposition

X =
⋃
Γi∈I

XΓi .
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We call XΓi the stratum of X corresponding to the subgraph Γi.

On I, we define

Γi ≺ Γ j ⇔ XΓi ⊂ XΓ j .

Since by our construction, XΓi = ∆Γi , for some Γi ∈ I, XΓi is a union of strata. If

XΓi = ∆Γi , XΓ j = ∆Γ j , then

Γi ≺ Γ j ⇔ XΓi ⊂ XΓ j ⇔ V(Γi) ⊃ V(Γ j).

It remains to check that if Γi1 , · · · ,Γik are pairwise incomparable, then the cor-

responding strata XΓi1
, · · · , XΓik

are mutually transverse. We do this by induction on

k.

When k = 2. Let Γ1, Γ2 be connected full subgraphs of Γ. We have XΓ1 = ∆Γ1 ,

XΓ2 = ∆Γ2 .

i) If V(Γ1) ∩ V(Γ2) , φ and Γ1 ∪ Γ2 is a full subgraph, then ∆Γ1 ∩ ∆Γ2 = ∆Γ1∪Γ2 .

So XΓ1 ∩ XΓ2 = φ.

ii) If V(Γ1)∩V(Γ2) , φ and Γ1∪Γ2 is not a full subgraph, let Γ′ be the connected

full subgraph of Γ with vertex set V(Γ1 ∪ Γ2). Then we have

∆Γ1 ∩ ∆Γ2 = ∆Γ1∪Γ2 = ∆Γ′ .

So XΓ1 ∩ XΓ2 = φ.

iii) Otherwise V(Γ1) ∩ V(Γ2) = φ. Then a point on ∆Γ1 ∩ ∆Γ2 can be viewed as

the graph obtained from Γ by contracting Γ1 to a vertex and Γ2 to another vertex.

Thus

codim XΓ1 ∩ XΓ2 = codim ∆Γ1 ∩ ∆Γ2 = (|V(Γ1)| + |V(Γ2)| − 2)d.
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Now since

codim XΓ1 = codim ∆Γ1 = (|V(Γ1)| − 1)d;

codim XΓ2 = codim ∆Γ2 = (|V(Γ2)| − 1)d,

it follows that

codim XΓ1 ∩ XΓ2 = codim XΓ1 + codim XΓ2 .

When k > 2. From definition we have XΓi1
= ∆Γi1

, XΓi2
= ∆Γi2

, · · · , XΓik
= ∆Γik

.

By induction, it’s enough to consider their complete intersection XΓi1
∩ · · · ∩ XΓik

only.

i) If there exist s, t ∈ {i1, i2, · · · , ik} such that V(Γs) ∩ V(Γt) , φ and Γs ∪ Γt is a

full subgraph of Γ, then XΓs ∩ XΓt = φ, which implies that

XΓi1
∩ · · · ∩ XΓik

= φ.

ii) If there exist s, t ∈ {i1, i2, · · · , ik} such that V(Γs) ∩ V(Γt) , φ and Γs ∪ Γt is

not a full subgraph of Γ, let Γ′ be the full subgraph with vertex set V(Γs ∪ Γt). Then

∆Γs ∩ ∆Γt = ∆Γs∪Γt = ∆Γ′ .

So XΓs ∩ XΓt = φ. This implies that

XΓi1
∩ · · · ∩ XΓik

= φ.

iii) Otherwise, V(Γi1),V(Γi2), · · · ,V(Γik) are pairwise disjoint. On the one hand,

a point on ∆Γi1
∩ · · · ∩ ∆Γik

can be viewed as a graph obtained from Γ by collapsing
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each Γi j( j = 1, · · · , k) to a vertex. Thus

codim XΓi1
∩ · · · ∩ XΓik

= codim ∆Γi1
∩ · · · ∩ ∆Γik

= (|V(Γi1)| + · · · + |V(Γik)| − k)d.

On the other hand,

codim XΓi j
= codim ∆Γi j

= (|V(Γi j)| − 1)d, j = 1, · · · , k.

So we have,

codim XΓ1 ∩ · · · ∩ XΓk = codim XΓ1 + · · · + codim XΓk .

�

Corollary 4.3.2. The space Map(V(Γ),M) can be blown up along X = ∪{∆Γ′}, the

set of diagonals corresponding to all connected full subgraphs.

Proof. It follows immediately from Theorems 4.2.7 and 4.3.1. �

The resulted space in the above corollary will be denoted by Conf(Γ,M).

Corollary 4.3.3. Let Γ be a connected finite graph and M a smooth compact man-

ifold. Then Conf(Γ,M) is compact.

Proof. It follows immediately from Theorems 4.2.7 and 4.3.1. �

Let Γ be a connected finite graph. If the space M is compact, by the above

Corollary 4.3.3, Conf(Γ,M) is a compact space; if M is not compact, then in general

Conf(Γ,M) is not compact. For example, the space Conf(Γ,Rd) is not compact,
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because a sequence of configurations going to the spatial infinity has no limit. But

in both cases, we will follow the history and call the iterated blowup procedure

from Map(V(Γ),M) to Conf(Γ,M) a compactification of the configuration space

Conf(Γ,M), and call Conf(Γ,M) the compactified configuration space of the graph

Γ in the space M.

Remark 4.3.1. There are different compactifications of configuration spaces. But

the compactification constructed as above, i.e., the compactification obtained by it-

eratively blown up diagonals corresponding to all connected subgraphs in the order

specified by a minimal sequence as in Example 4.2.1, is the one we are most inter-

ested of. It will be referred to as the canonical compactification of the configuration

space of a graph in a manifold.

In one of the examples of other compactifications, the space Map(V(Γ),M) are

blown up along the set of its diagonals which correspond to all vertex-2-connected

diagonals only, due to the following proposition

Proposition 4.3.4. Let Γ be a connected graph and M a smooth manifold. Let

X =
⋃
Γ′

{∆Γ′} ⊂ Map(V(Γ),M),

where Γ′ varies over the set of vertex-2-connected full subgraphs of Γ. Then X

admits a cone-like, Whitney-stratified immersion structure in Map(V(Γ),M).

Proof. Similar to the proof of Theorem 4.3.1, see Kuperberg-Thurston [31]. �

The points in Conf(Γ,M), or other spaces that we will form from it, will be

called configurations of the graph Γ in the space M.
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Corollary 4.3.5. Let M be a smooth manifold and Γ a connected graph. The com-

pactified configuration space Conf(Γ,M) is a manifold with corners.

Proof. This follows immediately from the fact that Conf(Γ,M) can be constructed

by the iterated ray blowups from the manifold Map(V(Γ),M) (see Theorem 4.2.7).

�

Proposition 4.3.6. Let M be a smooth manifold and Γ a connected graph. The two

spaces Conf(Γ,M) and Conf(Γ,M) are homotopy equivalent.

Proof. This is obvious. �
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Chapter 5

Boundary fibrations of Conf(Γ,M) and conf(Γ,Rd)

This chapter is devoted to the study of the fibration structures on the boundary

strata of the canonical compactified configuration spaces of graphs in d-dimensional

smooth closed manifolds, and of the compactified moduli spaces of configurations

of graphs in the d-dimensional Euclidean space Rd, where d > 1. In particular, in

these cases, the bases and fibers of these bundles are also configuration spaces.

5.1 Boundary fibrations of Conf(Γ,M)

Let Γ be a connected graph and M a smooth manifold. Let Conf(Γ,M) be

the canonical compactified configuration space of Γ in M, obtained by iteratively

blowing up the space Map(V(Γ),M) along its set of diagonals corresponding to

connected full subgraphs of Γ (see Chapter 4). By Corollary 4.3.5, Conf(Γ,M) is a

smooth manifold with corners. According to Theorem 4.3.1, each codimension one

stratum of this manifold with corners corresponds to a connected full subgraph γ of

the graph Γ. Let Fγ denote the stratum corresponding to γ.

Proposition 5.1.1. Let Γ be a connected graph and M a smooth manifold. The
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stratum Fγ of Conf(Γ,M) admits a fibre bundle [42] structure where the base is

isomorphic to the space Conf(Γ/γ,M).

Proof. By the construction in Theorems 4.2.7 and 4.3.1, the stratum Fγ is obtained

from the normal sphere bundle of the diagonal corresponding to γ, with its inter-

sections with all diagonals corresponding to connected full subgraphs of Γ/γ blown

up. So Fγ is a fibre bundle over a base which is isomorphic to Conf(Γ/γ,M). �

Remark 5.1.1. There exist examples (see Example 5.1.1) of graphs Γ and a version

(see Proposition 4.3.4) of compactification of configuration spaces Conf(Γ,M) of

graphs Γ, in which the space Map(V(Γ),M) is blown up along the set of diagonals

corresponding to vertex-2-connected full subgraphs of Γ, such that the compactified

space of Conf(Γ,M) does not satisfy the property in Proposition 5.1.1.

Example 5.1.1. Let Γ be the graph defined by

V(Γ) = {1, 2, 3, 4, 5, 6, 7},

E(Γ) = {{1, 2}, {1, 3}, {2, 3}, {3, 4}, {4, 5}, {4, 6}, {4, 7}, {5, 6}, {6, 7}},

and Γ′ be the edge with endpoints {4, 6}. In the vertex-2-connected subgraph ver-

sion of compactification (see Proposition 4.3.4), the base of the fibration whose

total space is the diagonal corresponding to Γ′ is not Conf(Γ/Γ′,M), but the space

obtained by blowing up Conf(Γ/Γ′,M) along the diagonal corresponding to the con-

nected full subgraph γ with V(γ) = {{46}, 5, 7}, which is not a vertex-2-connected

subgraph of the graph Γ/Γ′.

Recall that a smooth manifold M is parallelizable if it admits a smooth global

frame, or equivalently (see, for example [33]), if its tangent bundle T M is a product
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bundle. Examples of parallelizable manifolds include Rd, Lie groups and orientable

3-manifolds [43].

Theorem 5.1.2. If M is a d-dimensional parallelizable smooth manifold, then each

boundary fibration Fγ of Conf(Γ,M) is a product bundle with base Conf(Γ/γ,M),

where γ is a connected full subgraph of Γ.

Proof. By Proposition 5.1.1, we only need to check that the boundary fibration is a

product bundle.

Recall the construction of the compactification of configuration space. The

boundary stratum Fγ is obtained by blowup the diagonal ∆γ in Map(V(Γ),M),

which is isomorphic to the cartesian product of several copies of M. Since M is

parallelizable, there exist global framings on M. Fix a such framing f , then f in-

duces global framings on ∆γ and Map(V(Γ),M). It follows that the normal bundle

of each diagonal ∆γ ⊂ Map(V(Γ),M) is trivial; so is the normal sphere bundle of

∆γ. Thus Fγ is a product bundle. �

5.2 Boundary fibrations of conf(Γ,Rd)

Let

G = {g : Rd → Rd|g(x) = ax + b, a > 0, b ∈ Rd}

be the group of translations and dilations of Rd.

The group G has a left action on the space Conf(Γ,Rd).

Proposition 5.2.1. Let Γ be a connected graph with V(Γ) > 1, then the left group

action of G on Conf(Γ,Rd) is free.
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Proof. Let g ∈ G be a non identity element of the group G. Then the equation gx =

x has at most one solution in Rd, since it is a linear equation. So if c ∈ Conf(Γ,Rd)

is a configuration with at least two vertices, it is impossible to have gc = c. �

Definition 5.2.1 (Moduli space of configurations). Let Γ be a connected graph with

V(Γ) > 1. The space

conf(Γ,Rd) = Conf(Γ,Rd)/G

will be called the moduli space of configurations of the graph Γ in Rd.

Proposition 5.2.2. Let Γ be a connected graph with V(Γ) > 1, then the group G

acts on Conf(Γ,Rd) freely.

Proof. The elements of any orbit of the group G belong to one stratum of the man-

ifold with corners Conf(Γ,Rd). And by Proposition 5.2.1 and Theorem 5.1.2, the

group G acts on each stratum of Conf(Γ,Rd) freely. �

Definition 5.2.2 (Compactified moduli space). Let Γ be a connected graph with

V(Γ) > 1. The space

conf(Γ,Rd) = Conf(Γ,Rd)/G

will be called the compactified moduli space of configurations of the graph Γ in Rd.

Example 5.2.1. Let Γ be a connected graph with two vertices. The space conf(Γ,Rd),

which is diffeomorphic to the (d − 1)-dimensional sphere S d−1, is already compact

and thus is isomorphic to conf(Γ,Rd).

Proposition 5.2.3. Let Γ be a connected graph and γ a connected full subgraph

with V(γ) > 1. Let M be a smooth manifold of dimension d > 1, then the fiber of

the boundary fibration Fγ of Conf(Γ,M) is isomorphic to conf(Γ,Rd).
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Proof. This is immediate by the construction of Conf(Γ,M) (see Chapter 4) and the

definition of conf(Γ,Rd). �

Proposition 5.2.4. Let Γ be a connected graph. Then the space conf(Γ,Rd) is a

manifold with corners.

Proof. The space Conf(Γ,Rd) is a manifold with corners (see Corollary 4.3.5), and

it allows a free left G-action which preserves the strata. So conf(Γ,Rd) is a manifold

with corners, whose strata are induced from those of Conf(Γ,Rd). �

In Theorem 5.1.2, let M = Rd. Let Eγ = Fγ/G.

Proposition 5.2.5. Let Γ be a connected graph and γ a connected full subgraph

with V(γ) > 1. Then the boundary stratum Eγ of conf(Γ,Rd) has a product bundle

structure, where the base is isomorphic to conf(Γ/γ,Rd) and the fiber is isomorphic

to conf(γ,Rd).

Proof. By Theorem 5.1.2, each codimension one stratum of Conf(Γ,Rd) is a trivial

fiber bundle. The group G acts trivially on the fibre direction of each codimension

one stratum Eγ of conf(Γ,Rd). So the transition group of the bundle has only one

element. Thus the fibre bundle is trivial. �

Proposition 5.2.6. Let Γ be a finite connected graph. Then the space conf(Γ,Rd) is

compact.

Proof. Since Γ is a finite graph, the number of strata of conf(Γ,Rd) is finite. Then

the proposition follows from the fact that every sequence in conf(Γ,Rd) has a con-

vergent subsequence, the limit point of which belongs to conf(Γ,Rd). �

Proposition 5.2.7. The two spaces Conf(Γ,Rd) and conf(Γ,Rd) are homotopy equiv-

alent.
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Proof. Let G be the Lie group of translations and dilations in Rd. Since the G-action

on Conf(Γ,Rd) is free, we have a fibration

G // Conf(Γ,Rd)
p

��
conf(Γ,Rd).

Let p∗ : πk(Conf(Γ,Rd)) → πk(conf(Γ,Rd)) be the map induced by p. By the

long homotopy exact sequence associated to the above fibration, p∗ is an isomor-

phism for any k, since the Lie group G is contractible.

Now the statement follows by applying Whitehead’s theorem (see, for example,

p. 346 in [27]). �
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Chapter 6

Insertion products on chains of configuration spaces

of graphs

On the moduli spaces of configurations of graphs, and the compactified configu-

ration spaces of graphs in parallelizable manifolds, chain level insertion operations

are induced by inserting a graph into another. In this chapter, we will show that

the fundamental chains of the canonically compactified moduli spaces of config-

urations of graphs in the Euclidean space Rd, and certain modified compactified

configuration spaces of graphs in the parallelizable manifolds provide a solution to

a master equation system of the form ∂R + R ∗ R = 0, ∂M + M ∗ R = 0.

6.1 Geometric chains of Whitney-stratified spaces

Although essentially the results in this thesis do not depend on the models of

chains used, as long as certain out (or inner) normal direction can be made sense

in the chain models, appropriate models of chains are helpful in understanding. A

nice discussion of some ideas on chains can be found at the appendix of Wilson’s

Ph.D. thesis [48].
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We will take a geometric chain model, as given in Goresky [25]. Here we list

some definitions.

Definition 6.1.1 (Whitney object). Let X be a closed subset of a smooth manifold

M.

A Whitney stratification of X is a filtration

X0 ⊂ X1 ⊂ ... ⊂ Xn = X

where each Xi is closed and Xi − Xi−1 is a locally finite union of i-dimensional sub-

manifolds of M, such that each pair of such submanifolds satisfies Whitney’s con-

dition B1. Xi is called the i-skeleton. The components of Xi are called i-dimensional

strata of X.

The closed subset X with its Whitney stratification is called a Whitney object.

A closed subset W ⊂ X is called a Whitney substratified object if it has a Whit-

ney stratification such that each of its strata is contained in a single stratum of X.

Example 6.1.1. Manifolds with corners are Whitney stratified objects. Let M be a

d-dimensional manifold with corners, its Whitney stratification is given by

Xd−k =
⋃

k≤i≤d

∂iM, k = 0, 1, · · · , d.

Definition 6.1.2 (Geometric chain). Let X be a Whitney stratified object. A geo-

metric k-chain α in X is a triple (|α|, o,m), where |α| ⊂ X is a compact k-dimensional

Whitney substratified object, called the support of α; o is an orientation of |α|; m is

the multiplicity of each k-dimensional stratum.

1see [24]
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The reduction of a geometric k-chain α is the geometric chain whose support is

the closure of the union of all components of |α| − |α|k−1 that have been assigned a

nonzero multiplicity.

The boundary ∂α of a geometric k-chain α is the (reduction of the) geometric

(k − 1)-chain whose support is αk−1 and with the induced orientation.

A geometric k-cycle is a geometric k-chain α such that ∂α = 0.

Remark 6.1.1. 1. A chain with a given orientation and multiplicity will be iden-

tified with the chain with the opposite orientation and negative multiplicity,

just as in Equation (3.2.2).

2. As in [25], one can identify a geometric chain with its reduction and no con-

fusion will be caused.

In this thesis, we will take the induced orientation on the boundary of a chain to

be the so called “the out normal first orientation”. That is, if α is a geometric chain,

β is a connected boundary component of α, and v is an outward pointing normal

vector of β ⊂ α, then

v ⊕ oβ = oα.

Let X be a Whitney stratified object. We will use C∗(X) to denote the complex

of geometric chains of X over a unital commutative ring R, for example Z.

Proposition 6.1.1. Let Γ be a finite connected graph and M a smooth compact

manifold, then

• conf(Γ,Rd) is a geometric chain.

• Conf(Γ,M) is a geometric chain.
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Proof. By Propositions 5.2.4 and 5.2.6, the space conf(Γ,Rd) is a compact manifold

with corners. The Whitney stratification on conf(Γ,Rd) is given by its manifold with

corners structure.

Similarly for Conf(Γ,M). By Corollary 4.3.3 it is compact, and by Corol-

lary 4.3.5, it is a manifold with corners. �

6.2 Insertion products on chains of conf(Γ,Rd)

The insertion operations of configurations of graphs induce insertion operations

on the chains of moduli spaces of configurations of graphs. We will study their

properties in this section.

Definition 6.2.1. Let Γ1, Γ2 be connected A-labeled graphs and Γ an A-labeled

graph which can be obtained by inserting Γ2 into a vertex v of Γ1. For any integers

i, j ≥ 0, define a bilinear operation

∗((Γ1,v),Γ2,Γ) : Ci(conf(Γ1,Rd)) ⊗C j(conf(Γ2,Rd))→ Ci+ j(conf(Γ,Rd)),

x ⊗ y 7→ z

where the support |z| of chain z is a fibration with base |x| and fiber |y| so that this

fibration is the restriction of the codimension one boundary fibration of conf(Γ,Rd).

Proposition 6.2.1. Let Γ1, Γ2 be connected A-labeled graphs and Γ an A-labeled

graph which can be obtained by inserting Γ2 into a vertex v of Γ1. If α ∈ C∗(conf(Γ1,Rd)),

β ∈ C∗(conf(Γ2,Rd)), then

∂(α ∗((Γ1,v),Γ2,Γ) β) = (∂α) ∗((Γ1,v),Γ2,Γ) β + α ∗((Γ1,v),Γ2,Γ) ∂β
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up to signs, where ∂ is the boundary operator of geometric chains. In other words,

∗((Γ1,v),Γ2,Γ) commutes with ∂.

Proof. Firstly, as topological spaces (the support of chains), the formula is correct:

the boundary of the product consists of two parts: the boundary of the first factor

times the second factor, and the first factor times the boundary of the second factor.

Secondly, the differential ∂ is a linear map, so multiplicities are preserved. Lastly,

both sides are with the induced orientation from α ∗((Γ1,v),Γ2,Γ) β. �

Proposition 6.2.2. The sum overAG≥2 of the complexes of geometric chains of the

canonically compactified moduli spaces of graphs is a differential graded AG≥2-

sorted algebra with the same signature as the configuration algebra in Proposi-

tion 3.2.7, where the product is a collection of the insertions ∗.

Proof. The proof that it is anAG≥2-sorted algebra is the same as Proposition 3.2.7.

It is obvious that these two algebras are of the same signature.

That it is a differential graded AG≥2-sorted algebra then follows from Proposi-

tion 6.2.1. �

Proposition 6.2.3. Let Γ ∈ AG≥2. As geometric chains,

∂conf(Γ,Rd) =
∑
γ

conf(Γ/γ,Rd) ∗((Γ/γ,vγ),γ,Γ) conf(γ,Rd)

where ∂ is the differential of the complex C∗(conf(Γ,Rd)) of geometric chains and γ

runs over the set of connected non trivial full subA-labeled graphs of Γ.

Proof. The space conf(Γ,Rd) is a manifold with corners, whose codimension one

boundary strata are disjoint open manifolds. Some of the closures of these open

64



manifolds may intersect, but the intersections are of much lower dimensions. So as

chains, we have the above formula, where the product structure on the right hand

side of the formula is due to the Proposition 5.2.5. �

Theorem 6.2.4 (Master equation package). The fundamental chains {conf(Γ,Rd)}Γ∈AG≥2

provide a solution to the master equation

∂Γ =


0 if |V(Γ)| = 2;∑
γ Γ/γ �((Γ/γ,vγ),γ,Γ) γ if |V(Γ)| > 2

in the sum overAG≥2 of complexes C∗(conf(Γ,Rd)) of geometric chains with inser-

tion products ∗.

Proof. Let F be the configuration algebra of A-labeled graphs and F′ be the dif-

ferential S -sorted algebra in Proposition 6.2.2. The map which sends Γ ∈ AG≥2 to

the fundamental chain of its moduli space can be extended to a map f : F → F′ of

differentialAG≥2-sorted algebras, following Propositions 6.2.1 and 6.2.3.

If |V(Γ)| = 2, then ∂conf(Γ,Rd) = 0 as geometric chain, since its support is

isomorphic to S d−1. �

6.3 Insertion products on chains of modified config-

uration spaces

Let Γ be a connected graph and M a smooth parallelizable manifold of dimen-

sion d > 1. In Chapter 4, the canonically compactified space Conf(Γ,M) of the con-

figuration space Conf(Γ,M) is constructed by iteratively blowing up Map(V(Γ),M)
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along diagonals corresponding to connected full subgraphs γ of Γ with |V(γ)| > 1.

The insertion operations of configurations of graphs induce an action of the

chains of moduli spaces of configurations of graphs on the chains of compactified

configuration spaces Conf(Γ,M) of graphs in the manifold M.

Definition 6.3.1. Let Γ1, Γ2 be connected A-labeled graphs and Γ an A-labeled

graph which can be obtained by inserting Γ2 to a vertex v of Γ1. For any integers

i, j ≥ 0, define a bilinear operation

∗((Γ1,v),Γ2,Γ) : Ci(Conf(Γ1,M)) ⊗C j(conf(Γ2,Rd))→ Ci+ j(Conf(Γ,M))

x ⊗ y 7→ z

where the support |z| of chain z is a fibration with base |x| and fiber |y| so that this

fibration is the restriction of the codimension one boundary fibration of Conf(Γ,M).

Proposition 6.3.1. Let Γ be a connectedA-labeled graph. As geometric chains,

∂Conf(Γ,M) =
∑
γ

Conf(Γ/γ,M) ∗((Γ/γ,vγ),γ,Γ) conf(γ,Rd)

+Conf(Γ/Γ,M) ∗((Γ/Γ,vΓ),Γ,Γ) conf(Γ,Rd)

where ∂ is the differential of the chain complex C∗(Conf(Γ,M)) and γ runs over the

set of connected non trivial full subA-labeled graphs of Γ.

Proof. The proof is similar to that of Proposition 6.2.3. �

Let

M = {Conf(Γ,M)|Γ is a connectedA-labeled graph},
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R = {conf(Γ,Rd)|Γ is a connectedA-labeled graph}.

Then the boundary strata of the space Conf(Γ,M) correspond to chains of the fol-

lowing forms:

m ∗ r

(m ∗ r1) ∗ r2,m ∗ (r1 ∗ r2),

((m ∗ r1) ∗ r2) ∗ r3, (m ∗ (r1 ∗ r2)) ∗ r3, (m ∗ r1) ∗ (r2 ∗ r3),

· · · (6.3.1)

where m ∈ M, r, ri ∈ R, and ∗ is the insertion product as in Definition 6.3.1.

Since M is a parallelizable manifold, we can fix a global frame f of M. For each

stratum of Conf(Γ,M), if the corresponding chain when expressed in the above

forms has the support |m| of its leftmost argument chain m isomorphic to M, we

identify the fibers of the iterated fibration using the frame f . That is, intuitively, we

collapse these strata of Conf(Γ,M) along the M direction. Let ̂Conf(Γ,M) denote

the resulted modified compactified configuration space.

Proposition 6.3.2. Let Γ be a connected finite graph and M a compact paralleliz-

able manifold. Then ̂Conf(Γ,M) is a Whitney stratified object, and thus a geometric

chain.

Proof. By Corollary 4.3.3, Conf(Γ,M) is compact. Then by its construction, the

space ̂Conf(Γ,M) is compact and has a Whitney stratification induced from that of

Conf(Γ,M). �

A definition similar to Definition 6.3.1 can be made for chains of spaces ̂Conf(Γ,M).

We will use the same notation ∗.
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Definition 6.3.2. Let Γ1, Γ2 be connected A-labeled graphs and Γ an A-labeled

graph which can be obtained by inserting Γ2 into a vertex v of Γ1. For any integers

i, j ≥ 0, define a bilinear operation

∗((Γ1,v),Γ2,Γ) : Ci( ̂Conf(Γ1,M)) ⊗C j(conf(Γ2,Rd))→ Ci+ j( ̂Conf(Γ,M))

x ⊗ y 7→ z

where the support |z| of chain z is a fibration with base |x| and fiber |y| so that this

fibration is the restriction of the codimension one boundary fibration of ̂Conf(Γ,M).

Proposition 6.3.3. Let Γ1, Γ2 be connected A-labeled graphs and Γ an A-labeled

graph which can be obtained by inserting Γ2 into a vertex v of Γ1. If α ∈ C∗(conf(Γ1,M)),

β ∈ C∗(conf(Γ2,Rd)), then

∂(α ∗((Γ1,v),Γ2,Γ) β) = (∂α) ∗((Γ1,v),Γ2,Γ) β + α ∗((Γ1,v),Γ2,Γ) ∂β

up to sign, where ∂ is the boundary operator of geometric chains. In other words,

∗((Γ1,v),Γ2,Γ) commutes with ∂.

Proof. Similar to Proposition 6.2.1. �

Proposition 6.3.4. Let M be a parallelizable manifold of dimension d > 1. The

sum overAG≥2 of complexes of geometric chains of modified configuration spaces

̂Conf(Γ,M) of Γ ∈ AG≥2 in M is a right differential graded module over the dif-

ferential graded AG≥2-sorted algebra of the sum over AG≥2 of the complexes of

geometric chains of compactified moduli spaces of graphs.

Proof. This follows from Definitions 6.2.1, 6.3.2 and Proposition 6.2.1, 6.3.3. The
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check is routine, similar to the proof of Proposition 6.2.2. �

Proposition 6.3.5. Let Γ be a connected A-labeled graph with |V(Γ)| > 2. As

geometric chains,

∂ ̂Conf(Γ,M) =
∑
γ

̂Conf(Γ/γ,M) ∗((Γ/γ,vγ),γ,Γ) conf(γ,Rd),

where ∂ is the differential of the complex C∗( ̂Conf(Γ,M)) of geometric chains and

γ runs over the set of connected non trivial full subA-labeled graphs of Γ.

Proof. By the construction of ̂Conf(Γ,M), the codimension one face of Conf(Γ,M)

corresponding to the diagonal where the images of all the vertices of the graph Γ

coincide is collapsed along the base M to a fibre conf(Γ,Rd) over a point, accord-

ing to a framing of M. The dimension of conf(Γ,Rd) is (d + 1) less than that of

Conf(Γ,M) and ̂Conf(Γ,M). So, as a chain, this term is not part of the boundary of

̂Conf(Γ,M). The statement then follows from Proposition 6.3.1. �

Theorem 6.3.6 (Master equation package). Let M be a parallelizable manifold of

dimension d > 1. Then the fundamental chains {conf(Γ,Rd)}Γ∈AG≥2 and { ̂Conf(Γ,M)}Γ∈AG≥2

provide a solution to the master equation system

∂RΓ = 0, if |V(Γ)| = 2;

∂MΓ = 0, if |V(Γ)| = 2;

∂RΓ =
∑
γ

RΓ/γ �((Γ/γ,vγ),γ,Γ) Rγ, if |V(Γ)| > 2;

∂MΓ =
∑
γ

MΓ/γ �((Γ/γ,vγ),γ,Γ) Rγ, if |V(Γ)| > 2. (6.3.2)
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in the sum over AG≥2 of complexes of geometric chains of moduli spaces of Γ and

modified configuration spaces of Γ in M, with insertion products ∗.

Proof. Let Γ ∈ AG≥2.

If V(Γ) = 2, then as topological spaces, conf(Γ,Rd) is isomorphic to S d−1;

̂Conf(Γ,M) is obtained from Conf(Γ,M) by collapsing its boundary, which is iso-

morphic to S d−1 × M, along the M direction, to a point. Thus as geometric chains,

∂conf(Γ,Rd) = 0,

∂ ̂Conf(Γ,M = 0.

The case when V(Γ) > 2 follows from Propostions 6.2.3 and 6.3.5 .

Now the statement follows from the fact that the map which sends RΓ to conf(Γ,Rd),

and MΓ to ̂Conf(Γ,M) can be extended to a map of differential many sorted alge-

bras. The check will not be given here since it is routine. �
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Part II

The odd dimensional case
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Chapter 7

Reduced master equations in odd dimensions

Configuration spaces in odd dimensional manifolds will be investigated in this

chapter. This is interesting mainly due to the fact that configuration spaces of many

graphs in odd dimensional Euclidean spaces allow certain orientation reversing in-

volutions. The Kontsevich-Kuperberg-Thurston’s construction [28, 31] of quantum

invariants of 3-manifolds, is discussed in the framework of the master equation

package. Many of the proofs about the construction are following Kuperberg and

Thurston [31, 47].

7.1 E-decorated graphs and the master equation

After introducing a class of decorated graphs, main definitions and propositions

parallel to those of the usualA-labeled graphs in previous chapters will be listed.

Definition 7.1.1. A linear order on a finite set S is a bijective map from the set of

consecutive natural numbers {1, · · · , |S |} to S .

Definition 7.1.2 (E-decorated graph). An E-decorated graph is anA-labeled graph

with the following data:
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• a linear order σ on the set of edges;

• an orientation (direction) for each edge.

An isomorphism of E-decorated graphs is an isomorphism ofA-labeled graphs

which preserves the extra decoration. Let E be the set of isomorphism classes of

connectedA-labeled graphs with two or more vertices.

Definition 7.1.3 (Shuffle). Let S and T be two finite sets and s, t be linear orders on

S and T respectively. A shuffle of s and t is a linear order h on the set S t T such

that

h−1(s(1)) < h−1(s(2)) < · · · < h−1(s(|S |))

and

h−1(t(1)) < h−1(t(2)) < · · · < h−1(t(|T |)).

Previous notions like “insertion of graph”, “screen of graph”, “configuration

algebra of graphs” etc, can be moved to the case of E-decorated graphs without

difficulties. Some of them are listed here.

Definition 7.1.4 (Inserting an E-decorated graph into another). Let Γ1,Γ2 ∈ E such

that there exists v ∈ V(Γ1) whose A-label is equal to the A-label of Γ2. Let σ1, σ2

be the linear orders on E(Γ1) and E(Γ2), and h is a shuffle of σ1, σ2. Let f : E(v)→

V(Γ2) be a map.

Define an E-decorated graph Γ by the following data

• V(Γ) = (V(Γ1) \ {v}) t V(Γ2);

• E(Γ) = E(Γ1)tE(Γ2) as sets of oriented edges; an edge of Γ1 with endpoint set

{p, v} corresponds to an edge of Γ with endpoint set {p, f (e)}; the endpoints
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of the other edges remain unchanged;

• the linear order on E(Γ) is given by h.

This Γ ∈ E will be called the graph obtained by inserting Γ2 into Γ1 at vertex v

according to the map f and shuffle h, and be denoted by Γ1 ◦(v, f ,h) Γ2.

Definition 7.1.5 (Insertion operation of E-decorated graphs). Let Γ1,Γ2,Γ3 ∈ E. If

there exist v ∈ V(Γ1) whoseA-label is equal to theA-label of Γ2, a map f : E(v)→

V(Γ2) and a shuffle h of linear orders on E(Γ1), E(Γ2) such that Γ3 = Γ1 ◦(v, f ,h) Γ2,

we say that there is an insertion operation ◦((Γ1,v),Γ2,Γ3) : (Γ1,Γ2) 7→ Γ3.

Definition 7.1.6 (Insertion of configurations of E-decorated graphs). Let Γi ∈ E,

and Xi be a configuration of Γi, i = 1, 2, 3. Define

X3 = X1 �((Γ1,v),Γ2,Γ3) X2

if and only if the following two conditions are satisfied:

• There exists v ∈ V(Γ1) whose A-label is the same as the A-label of Γ2 such

that as E-decorated graphs,

Γ3 = Γ1 ◦((Γ1,v),Γ2,Γ3) Γ2.

• The nested set presentation of the screen of X3 is equal to the nested set ob-

tained by replacing v in the nested set presentation of the screen of X1 with

the nested set presentation of the screen of X2.
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Remark 7.1.1. Here and in the following, the same notation as in Chapters 2 - 6

will be used, but with a different meaning. This will not cause confusion from the

contexts.

Given an E-decorated graph Γ and a smooth manifold M, the configuration

space Conf(Γ,M) is isomorphic to the configuration space of the underlying graph

of Γ without extra decoration. Because of the canonical compactification of config-

uration spaces of graphs, one can define insertion products ∗ for geometric chains

of moduli spaces and configuration spaces of E-decorated graphs, similar to Defi-

nitions 6.2.1 and 6.3.2, and thus we have the following proposition:

Proposition 7.1.1 (Master equation package). Let M be a parallelizable manifold of

dimension d > 1. Then the fundamental chains {conf(Γ,Rd)}Γ∈E and { ̂Conf(Γ,M)}Γ∈E

provide a solution to the master equation system (6.3.2) in the sum over E of com-

plexes of geometric chains of moduli spaces of Γ and modified configuration spaces

of Γ in M, with insertion products ∗.

Proof. Similar to Theorem 6.3.6. �

7.2 Involutions and reduced master equations

The idea of involutions on configuration spaces was used by Axelrod, Bott,

Cattaneo, Kontsevich, Kuperberg, Singer, Taubes, and Thurston ([1, 2, 11, 12, 13,

28, 31, 47]) et al., in their constructions of invariants of links and 3-manifolds. We

give a review of involutions in this section: first on abstract graphs and then their

geometric realization on configuration spaces.
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7.2.1 Involutions on graphs

Definition 7.2.1 (separating edge). An edge e of a graph Γ is called a separating

edge if the removal of e will disconnect Γ into two components Γ1 and Γ2, in the

sense that

• there are no other edges connecting Γ1 and Γ2;

• one of the endpoints of e belongs to Γ1 and the other belongs to Γ2.

Definition 7.2.2 (separating pair of edges). Two edges e1 and e2 of a graph Γ are

called a separating pair if the removal of e1 and e2 will disconnect Γ into two com-

ponents Γ1 and Γ2 in the sense that

• there are no other edges connecting Γ1 and Γ2;

• both e1 and e2 have the property that one endpoint belongs to Γ1 and the other

belongs to Γ2.

Remark 7.2.1. In Definitions 7.2.1 and 7.2.2, the graphs Γ, Γ1 and Γ2 themselves

do not have to be connected. And in Definition 7.2.2 the endpoints of the two edges

e1 and e2 are not required to be different.

Proposition 7.2.1 ([31, 47]). Let Γ be a trivalent graph and γ a connected non

trivial full subgraph of Γ which is not an edge. Then γ has at least a separating

pair of edges.

Proof. Since γ is a subgraph of a connected graph Γ, there exist u ∈ V(Γ)\V(γ), v ∈

V(γ) such that u and v are connected by an edge. Thus the valence of u in γ is 1 or

2.
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If there are two edges e1, e2 ∈ E(γ) with endpoint v. Then e1, e2 are a separating

pair: v is a component, and the subgraph of γ spanned by V(γ) \ {v} is another

component.

If there is only one edge e ∈ E(γ) with endpoint v. Let u be the other endpoint

of e. Since γ is not an edge, the valence of u in γ is 2 or 3. If it is 2, done. Otherwise

there are two other edges e1, e2 ∈ E(γ) having u as an endpoint. Then e1, e2 are a

separating pair: the subgraph of γ spanned by u, v is a component, and the subgraph

of γ spanned by V(γ) \ {u, v} is another. �

Definition 7.2.3 (involution). A type I involution on an E-decorated graph coloured

in R is a reversing of the orientation of a separating edge.

A type II involution on an E-decorated graph coloured in R is a permutation of

the linear order of a separating pair of edges whose removal separate the graph into

two components Γ1 and Γ2, with a possible change of orientations (directions) of

these two edges as described in the following

• if both the two edges have orientations away from (or going into) Γ1, then

both of their orientations are reversed.

• otherwise, both orientations are unchanged.

An involution on an E-decorated graph colored in R does not change its under-

lying A-labeled graph. And there may exist none or many involutions on a given

E-decorated graph.

Proposition 7.2.2. 1. Given Γ ∈ E, then the set of type I involutions on the

set of E-decorated graphs with the same underlying A-labeled graph as Γ’s

generates a finite group.
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2. Given Γ ∈ E, then the set of type II involutions on the set of E-decorated

graphs with the same underlying A-labeled graph as Γ’s generates a finite

group.

Proof. Here we give the proof for type II involutions; type I case is similar.

A type II involution only changes the E-decoration, not the underlying A-

labeled graph: permuting the order of a separating pair of edges and possibly re-

versing their orientations (if the orientation of one edge in the pair is reversed, so

is the other). Since there are only finitely many E-decorated graphs with the same

underlying A-labeled graph as Γ, the group generated by involutions is a finite

group. �

Corollary 7.2.3. The order of the groups in Proposition 7.2.2 are even.

Proof. This is due to Lagrange’s theorem in group theory and the fact that an invo-

lution is an element of order two. �

The involutions can be generalized to the configuration algebra F of R-coloured

E-decorated graphs. A type I (or type II) involution on a monomial of R-colored

E-decorated graphs is a type I (or type II) involution on an argument E-decorated

graph. This introduces on configuration algebra F an equivalent relation of the

following form:

(an involution)m = −m,

where m is a monomial of R-colored E-decorated graphs (i.e., elementary configu-

rations).

Proposition 7.2.4. The configuration algebra of E-decorated graphs modulo equiv-

alences generated by involution relations is a triangular differential right module

78



over a differential graded algebra.

Proof. This is immediate. �

7.2.2 Involutions on configuration spaces

This subsection discusses the geometric realization of involutions defined in

§7.2.1.

Let Γ ∈ E. Let Map(V(Γ),Rd) denote the space of maps from V(Γ) to Rd. This

space is isomorphic to Rd×|V(Γ)|.

Type I involution: Suppose Γ has a separating edge e, i.e., the removal of e dis-

connects Γ into two components Γ1 and Γ2. Let v1 ∈ V(Γ1), v2 ∈ V(Γ2) be the

endpoints of e. Define a map

f : Map(V(Γ),Rd)→ Map(V(Γ),Rd), ϕ 7→ f (ϕ)

by the following:

f (ϕ)(v1) = 2ϕ(v2) − ϕ(v1);

f (ϕ)(v) = ϕ(v) + 2ϕ(v2) − 2ϕ(v1) if v ∈ V(Γ1) and v , v1;

f (ϕ)(v) = ϕ(v) if v ∈ V(Γ2).

Type II involution: Suppose Γ has a separating pair of edges e1, e2: the removal

of e1 and e2 disconnects Γ into two components Γ1 and Γ2. Let v11 ∈ V(Γ1), v12 ∈

V(Γ2) be the endpoints of e1 and v21 ∈ V(Γ1), v22 ∈ V(Γ2) be the endpoints of e2.
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Define a map

f : Map(V(Γ),Rd)→ Map(V(Γ),Rd), ϕ 7→ f (ϕ)

by the following:

1. If v11 , v21 and v12 , v22, then

f (ϕ)(v11) = ϕ(v12) + ϕ(v22) − ϕ(v21);

f (ϕ)(v21) = ϕ(v12) + ϕ(v22) − ϕ(v11);

f (ϕ)(v) = ϕ(v)+ϕ(v12)+ϕ(v22)−ϕ(v11)−ϕ(v21) if v ∈ V(Γ1) and v , v11, v21;

f (ϕ)(v) = ϕ(v) if v ∈ V(Γ2).

2. If v11 = v21 = v1 and v12 , v22, then

f (ϕ)(v1) = ϕ(v12) + ϕ(v22) − ϕ(v1);

f (ϕ)(v) = ϕ(v) + ϕ(v12) + ϕ(v22) − 2ϕ(v1) if v ∈ V(Γ1) and v , v1;

f (ϕ)(v) = ϕ(v) if v ∈ V(Γ2).

3. If v11 , v21 and v12 = v22 = v2, then

f (ϕ)(v11) = 2ϕ(v2) − ϕ(v21);

f (ϕ)(v21) = 2ϕ(v2) − ϕ(v11);

f (ϕ)(v) = ϕ(v) + 2ϕ(v2) − ϕ(v11) − ϕ(v21) if v ∈ V(Γ1) and v , v11, v21;

f (ϕ)(v) = ϕ(v) if v ∈ V(Γ2).

4. If v11 = v21 = v1 and v12 = v22 = v2, then

f (ϕ)(v1) = 2ϕ(v2) − ϕ(v1);
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f (ϕ)(v) = ϕ(v) + 2ϕ(v2) − 2ϕ(v1) if v ∈ V(Γ1) and v , v1;

f (ϕ)(v) = ϕ(v) if v ∈ V(Γ2).

Proposition 7.2.5. The map f : Map(V(Γ),Rd) → Map(V(Γ),Rd) has the prop-

erty that if ϕ(u) , ϕ(v), then f (ϕ)(u) , f (ϕ)(v), for any u, v ∈ V(Γi) and ϕ ∈

Map(V(Γ),Rd), i = 1, 2.

Proof. This is immediate. �

Recall that Conf(Γ,Rd) is the subspace of Map(V(Γ),Rd) such that the images of

two vertices of Γ can not coincide if there is an edge connecting these two vertices.

Because of Proposition 7.2.5, f (ϕ) ∈ Conf(Γ,Rd) for any ϕ ∈ Conf(Γ,Rd). We will

use the same symbol f to denote the map when restricted to Conf(Γ,Rd).

Proposition 7.2.6. The map f : Conf(Γ,Rd) → Conf(Γ,Rd) is an orientation re-

versing isomorphism when d is odd.

Proof. The map f is an isomorphism: f 2 is the identity map on Conf(Γ,Rd).

Since the space Map(V(Γ),Rd) is isomorphic to Rd×|V(Γ)|, the map f can be

viewed as a linear map from Rd×|V(Γ)| to Rd×|V(Γ)|. Using linear algebra, one can

check that in all the cases, the determinant of the map f is equal to −1 when d is

odd. Thus f is an orientation reversing map. �

Example 7.2.1. Let Γ be the graph of a single edge with labeled endpoints p, q.

When d = 3, the type I involution

f : Map({p, q},R3)→ Map({p, q},R3), ϕ 7→ f (ϕ),
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is given by

f (ϕ(p)) = f (ϕ)(p) = 2ϕ(q) − ϕ(p);

f (ϕ(q)) = f (ϕ)(q) = ϕ(q).

So, the determinant of the map f is

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−1 0 0 2 0 0

0 −1 0 0 2 0

0 0 −1 0 0 2

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= −1.

The map f commutes with translations and dilations inRd. Let [ f ] : conf(Γ,Rd)→

conf(Γ,Rd) be the map induced by f .

Corollary 7.2.7. The map [ f ] is an orientation reversing isomorphism when d is

odd.

Proof. This follows from Proposition 7.2.6 and the definition of conf(Γ,Rd). �

Now let M be a smooth parallelizable manifold of odd dimension d > 1 and

Γi,Γi0 ∈ E such that Γi0 = f (Γi0), where f is an involution, i = 1, ..., i0, .., k and

1 < i0 ≤ k. Let c1 be a monomial chain of the form in (6.3.1), more explicitly,

say, of the form Conf(Γ1,M) ∗ conf(Γ2,Rd) ∗ · · · ∗ conf(Γk,Rd) with parentheses

inserted in appropriate places; c2 be a monomial chain which differs from c1 in that

the graph Γi0 is replaced by Γi0 . Then on the algebra of chains F, impose equivalent
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relations of the following form:

(Conf(Γ1,M) ∗ conf(Γ2,Rd) ∗ · · · ∗ conf(Γi0 ,R
d) ∗ · · · ∗ conf(Γk,Rd), or)

= −(Conf(Γ1,M) ∗ conf(Γ2,Rd) ∗ · · · ∗ conf(Γi0 ,R
d) ∗ · · · ∗ conf(Γk,Rd), or)

This is reasonable since the involution f is orientation reversing,

(Conf(Γ1,M) ∗ conf(Γ2,Rd) ∗ · · · ∗ conf(Γi0 ,R
d) ∗ · · · ∗ conf(Γk,Rd), or)

= (Conf(Γ1,M) ∗ conf(Γ2,Rd) ∗ · · · ∗ (−conf(Γi0 ,R
d)) ∗ · · · ∗ conf(Γk,Rd), or)

= (Conf(Γ1,M) ∗ conf(Γ2,Rd) ∗ · · · ∗ conf(Γi0 ,R
d) ∗ · · · ∗ conf(Γk,Rd),−or)

= −(Conf(Γ1,M) ∗ conf(Γ2,Rd) ∗ · · · ∗ conf(Γi0 ,R
d) ∗ · · · ∗ conf(Γk,Rd), or).

Involutions also induces relations on the chains whose supports are inside the

above monomial chains. Let [ f ] : conf(Γi0 ,R
d) → conf(Γi0 ,R

d) be a involution.

Then [ f ] induces an involution on the level of geometric chains

[ f ]] : C∗(conf(Γi0 ,R
d))→ C∗(conf(Γi0 ,R

d)).

And then the map [ f ]] can be extend to C∗(Conf(Γ1,M) ∗ conf(Γ2,Rd) ∗ · · · ∗

conf(Γi0 ,R
d) ∗ · · · ∗ conf(Γk,Rd)).

7.2.3 Cycles of reduced master equations

The quotient differential algebraic structure of the differential right module over

the configuration algebra represented by the master equation system of E-decorated

graphs (see Poposition 7.1.1) modulo the ideal generated by certain equivalences
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relations will be called, by abuse of language, a reduced master equation of E-

decorated graphs. Two versions of reduced master equations will be considered:

the reduced master equation A, in which the equivalences relations are generated

by involutions of both type I and type II, and the reduced master equation B, which

is obtained by modulo relations generated by involutions of type II and generalized

IHX relations.

In the study of finite type invariants (see [5] for an almost complete bibliography

on the theory of finite type invariants), a relation called IHX relation is often used. It

is a relation among connected trivalent graphs with more than three vertices which

only differ at the neighborhood of a single edge. There are three different ways to

divide the four edges connecting to the endpoints of the single edge into two pairs,

which correspond to three trivalent graphs. The IHX relation is defined to be the

identities of the form claiming that the formal sum of these three graphs is 0.

For E-decorated graphs, since edges are oriented and vertices are labeled, there

are more graphs which differ only at a neighborhood of a single edge. Let γ be

the E-decorated graph consisting of an oriented single edge e from endpoint u to

endpoint v. There are six ways to insert γ into a 4-valent vertex v of an E-decorated

graph so that in the new graph obtained both u and v are trivalent. Let I,H, X, I,H

and X be six E-labeled graphs which can be obtained this way. A relation of the

form

I/γ �(I/γ,vγ),γ,I) γ + H/γ �(H/γ,vγ),γ,H) γ + X/γ �(X/γ,vγ),γ,X) γ+

+ I/γ �(I/γ,vγ),γ,I) γ + H/γ �(H/γ,vγ),γ,H) γ + X/γ �(X/γ,vγ),γ,X) γ = 0 (7.2.1)

will be referred as an IHX relation on configurations of E-decorated graphs. Re-

lations induced on the right module over the configuration algebra of E-decorated
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graphs by relations (7.2.1) will be called generalized IHX relations. Note that in the

case of length two configurations of trivalent E-decorated graphs, the only general-

ized IHX relations are exactly of the form given in (7.2.1).

Now let us consider some examples of non trivial cycles of reduced master

equations.

Let Γ ∈ E. If |V(Γ)| = 2, then by Proposition 3.2.8, Γ is a non trivial cycle of the

reduced master equations A and B.

Proposition 7.2.8. For each set of A-labels on vertices, the sum of all the E-

decorated trivalent graphs with 2k vertices and with the given A-labels is a non

trivial cylce of the reduced master equation A.

Proof. 1) The sum is a cycle. Given an E-decorated graph Γ, we have

∂Γ =
∑
γ

Γ/γ �((Γ/γ,vγ),γ,Γ) γ.

By Proposition 7.2.1, for each term where γ is not an edge, there exists at least one

type II involutions. By Corollary 7.2.3, there are even number of elements in the

group generated by involutions on the underlyingA-decorated graphs, thus the sum

of terms where γ is non edge is 0.

Similarly, terms in which γ is an edge are canceled by type I involutions.

2) The cycle is non trivial, because any monomial configuration in the image of

∂ has to be of length > 1. �

Proposition 7.2.9. For each set of A-labels on vertices, the sum of all the E-

decorated trivalent graphs with 2k vertices and with the given A-labels is a non

trivial cylce of the reduced master equation B.
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Proof. Similar to the proof of Proposition 7.2.8. The only difference is that those

terms in which γ is an edge are canceled by IHX relations. �

Question: Do there exist non trivial cycles of the reduced master equations

which are of the form of sums of some non trivalent graphs?

Invariants of manifolds may be obtained from non trivial cycles of reduced mas-

ter equations. One way is by the Kontsevich-Kuperberg-Thurston’s construction,

which will be discussed in the next section.

7.3 Finite type invariants and the master equation

package

A family of quantum invariants of links and 3-manifolds were defined by Kont-

sevich [28], based on ideas from perturbative Chern-Simons field theory. Kuper-

berg and Thurston [31] gave a purely topological construction of these invariants

and showed that they are universally finite type in certain sense. In this section we

will show that their construction fits the framework of master equation package.

In this section, let M be a rational homology 3-sphere.

7.3.1 Kuperberg-Thurston’s construction

For the needs of next subsection, we include here a brief review of Kuper-

berg and Thurston’s construction [31] of quantum invariants of rational homology

spheres.

For cohomological reason (Lemma 7.3.2), these invariants are given in terms of

Mfin = M \ {∞} with a fixed asymptotically constant framing, where ∞ ∈ M is a

86



marked point.

Let Ĵn be the set of isomorphism classes of E-decorated trivalent graphs Γ with

2n vertices, for a fixed set of A-labels on vertices. Each of these graphs has 3n

edges. Let Conf∞(Γ,M) denote the space obtained by blowing up Map(V(Γ),M)

along infinity locus where the images of vertices of some connected full subgraph

of Γ coincide at∞ and diagonals corresponding to connected full subgraphs.

The key point of their construction is a generalized gauss map

Φ : (C̄n(M),D)→ (P̄(M)×3n,Q),

for each n, where

• C̄n(M) is obtained from Cn(M) =
∐
Γ∈Ĵn

Conf∞(Γ,M) by the following glu-

ings or modifications of boundary strata:

– Boundary strata corresponding to single edges are glued together ac-

cording to IHX relation.

– Boundary strata corresponding to non single edges are glued together

according to type II involutions.

– The particular boundary strata where the images of all 2n vertices of Γ

coincide are collapsed using the framing of Mfin.

– Points in boundary strata corresponding to infinite locus are identified

according their directions according to framing, and form the degenerate

locus D.

• P̄(M) is obtained from Conf∞(e,M), the compactified configuration space of
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a single edge e, with points in boundary identified according to their direc-

tions in the framing.

• Q is certain degenerate locus of P̄(M).

To obtain invariants, Kuperberg and Thurston proved the following two lemmas:

Lemma 7.3.1. The top cohomology of C̄n(M) is independent of M and there is a

surjective map

f : H6n(C̄n(M),D)� Vn,

where Vn is the vector space over Q spanned by isomorphism classes of connected

Lie-oriented trivalent graphs with 2n vertices, modulo IHX relation.

Lemma 7.3.2. The space P̄(M) has a generating class α ∈ H2(P̄(M),Q), and there

is a well-defined cohomology class α⊗3n ∈ H6n(P̄×3n(M),Q).

Now, by Lemma 7.3.1, there is an injection f ∗ : V∗n ↪→ H6n(C̄n(M),D). If

w ∈ V∗n , then there is an invariant of M associated to w by the pairing of homology

classes with cohomology classes:

Iw(M) =< w,Φ∗(α⊗3n) > .

By linear duality, an invariant In(M) ∈ Vn of M is defined.

Kuperberg and Thurston then showed that In(M) is a finite-type invariant of

degree n in both the algebraically split and Torelli senses for framed rational ho-

mology 3-spheres M, and it is universal for integer homology spheres; and there is

an invariant δn(M) ∈ Vn such that In(M)− δn(M) does not depend on the framing of

M.
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7.3.2 Finite type invariants and the master equation package

Here we construct a geometric realization (C̄′n,D) of the non trivial cycle in

Proposition 7.2.9 of the reduced master equation B, in the sum over E of complexes

of geometric chains of the modified configuration spaces.

Let

C′n =
∐
Γ∈Ĵn

̂Conf∞(Γ,M).

C̄′n is obtained from C′n with the following gluings and modifications:

• The codimensional one strata corresponding to single edges are glued to-

gether according to IHX relation.

• The codimensional one strata corresponding to non single edges are glued

together according to type II involutions.

• Points in boundary strata corresponding to infinite locus are identified ac-

cording their directions according to framing, and form the degenerate locus

D.

• Lower dimensional strata, i.e., those of codimensional two or more, are also

identified according to relations implied by the master equation B.

The pair (C̄′n,D) is a geometric realization of the non trivial cycle in Proposi-

tion 7.2.9. The difference from (C̄n,D) is that there are more gluings and modifi-

cations in (C̄′n,D):

• There are more collapses, namely the collapses used in modifying Conf∞(γ,M)

into ̂Conf∞(γ,M), where γ is a non trivial connected full subgraph of a triva-
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lent graph Γ with 2n vertices. These collapses are modifications on strata of

codimensional two or more, relative to C̄′n.

• There are extra identification of strata of codimensional two or more, accord-

ing to relations implied by the master equation B.

Proposition 7.3.3. Let X,Y be n-dimensional CW complexes such that Y is obtained

from X by adding more relations on generating cells of dimension n − 2 and lower.

Then Hn(X,Q) � Hn(Y,Q).

Proof. By definition of homology, Hn(X,Q) � Hn(Y,Q). Then the statement fol-

lows from the universal coefficient theorem. �

Theorem 7.3.4. Kontsevich-Kuperberg-Thurston invariants can be obtained from

geometric realization (C̄′n,D) of the non trivial cycles of the differential right module

represented by the reduced master equation B which are of the form of sums of

trivalent graphs.

Proof. By the construction of C̄n and C̄′n, (C̄′n,D) differs from (C̄n,D) only in that

there are more gluings in strata of codimension two or more. In the gluings of

codimensional one strata of compactified and modified configuration spaces of a

trivalent graph, a generalized IHX relation is exactly the usual IHX relation used

in Kuperberg and Thurston’s construction. The collapses from Conf∞(Γ,M) to

̂Conf∞(Γ,M) only reduce the dimension of anomalous faces and do not introduce

any new relations. Thus by Proposition 7.3.3, the top cohomology with rational

coefficient of (C̄′n,D) is isomorphic to that of (C̄n,D):

H6n(C̄n(M),D) � H6n(C̄′n(M),D).
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Then since the Kontsevich-Kuperberg-Thurston invariants is the degree of the gen-

eralized gauss map, if C̄ is replaced by C̄′, we will have the same invariants. �
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Appendix A

Graphs, insertions and operads

We investigate in this appendix the properties of insertion operations on some

classes of finite connected decorated graphs with external or half edges, and con-

struct coloured operads using these graphs and insertions. This can be seen as a

supplement to Chapter 2, but is not used in later chapters.

A.1 Graphs with external edges

In this section, we introduce and fix our definitions and notations about graphs

with external or half edges. Since this appendix can be read independently, we will

just refer them as graphs.

Definition A.1.1 (Pregraph). A finite pregraph Γ is a triple (V(Γ), E(Γ),H(Γ)) of

finite sets, where

• An element of V(Γ) is called a vertex of Γ.

• An element of E(Γ) is called an internal edge of Γ. Each internal edge is

labeled by a two-element subset of V(Γ). The labels of different internal

edges may be the same.
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If {u, v} is the label of an internal edge e ∈ E(Γ), then vertices u and v are

called the endpoints of e.

• An element of H(Γ) is called an external edge or half edge of Γ. Each external

edge is labeled by a singleton subset of V(Γ). The labels of different external

edges may be the same.

If {v} is the label of an external edge h ∈ H(Γ), then v is called the endpoint

of h.

Definition A.1.2 (Graph). Two pregraphs Γ and Γ′ are isomorphic if V(Γ) = V(Γ′)

and there exist a bijective map f : (V(Γ), E(Γ),H(Γ)) → (V(Γ′), E(Γ′),H(Γ′)) such

that

• the first factor of f is the identity map, and

• the map induced by f from the multiset of labels of internal and external

edges of Γ to that of Γ′ is the identity map.

A finite graph is the isomorphism class of a finite pregraph.

The adjective finite before the term graph(s) will be omitted from now on, unless

we want to stress it, since only finite graphs will be considered in this thesis.

Remark A.1.1. A graph can be visualized as a 1-dimensional topological space: a

vertex corresponds to a 0-dimensional cell, an internal edge corresponds to an open

1-dimensional cell (0, 1) with its ends glued to different vertices, and an external

edge corresponds to an open 1-dimensional cell (0, 1/2) with only one end glued to

a vertex.
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Let v be a vertex of a graph Γ. The set of internal edges of Γ having v as

an endpoint will be denoted by E(v). The set of internal and external edges of Γ

having v as an endpoint will be denoted by H(v); an element h ∈ H(v) will be called

a half edge of v and labeled by {v}, and we will say v is the only endpoint of h. For

example, if Γ is a graph with a single vertex v, then H(Γ) = H(v).

Definition A.1.3 (Connected graph). Two vertices u and v of a graph Γ are con-

nected by an internal edge if they are the endpoints of an internal edge of Γ.

A graph Γ is connected if for any two of its vertices p, q ∈ V(Γ), there exists a

sequence of sets of endpoints of its internal edges

{x0, x1}, {x1, x2}, · · · , {xk−1, xk}

such that x0 = p and xk = q.

The graph with only one vertex and no internal edges is considered connected.

We will use G to denote the set of finite graphs. For any Γ1,Γ2 ∈ G, define

Γ1 ≺ Γ2 if and only if |V(Γ1)| < |V(Γ2)|. Then it is immediate that we have the

following

Proposition A.1.1. The pair (G,≺) where ≺ is defined as above is a strict partially

ordered set and all descending chains for any Γ ∈ G are finite.

There are some combinatorial constraints on the existence of graphs and con-

nected graphs.

Proposition A.1.2. Let V be a finite set, and cv, c ∈ Z≥0, for all v ∈ V. Then

(1) there exists a graph Γ with vertex set V(Γ) = V, |H(v)| = cv and |H(Γ)| = c if

and only if the following are satisfied:

100



•
∑

v∈V cv ≥ c, where the equality holds if and only if there are no internal

edges; and

•
∑

v∈V cv ≡ c mod 2.

(2) if |V | > 1, there exists a connected graph Γ with vertex set V(Γ) = V, |H(v)| =

cv and |H(Γ)| = c if and only if the following are satisfied:

• cv > 0 for all v ∈ V;

•
∑

v∈V cv ≥ c+ 2(|V | − 1), where the equality holds if and only if there are

no internal edges; and

•
∑

v∈V cv ≡ c mod 2.

Proof. (1) is easy. (2) is because in order that Γ be connected, at least |V(Γ)| − 1

internal edges are needed. �

A.2 Coloured operads

Many algebraic structures can be described in the language of ordinary or gen-

eralized operads. For standard facts on ordinary operads, the reader is referred

to [21, 22, 29, 36, 38, 39]. In this thesis we will use the notion of a generalized

operad called coloured operad [7, 9, 30, 37], which is also known as many-sorted

operad or typed operad [3], or multicategory [18, 32, 34], or relaxed multilinear

category [10], or pseudo-tensor category [6]. In this section, for convenience, we

introduce the definitions of and list certain basic facts about this generalized operad.

The notion of coloured operads can be defined in any symmetric monoidal cat-

egory [35] (E,⊗). Here we require that E has internal Hom and finite products
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and coproducts. We will only give the definition when E is the category of sets

(modules, vector spaces, chain complexes, ...) or its subcategory. Let Σn be the

symmetric group on n symbols.

Definition A.2.1 (C-coloured operad). A coloured operad O in the category E con-

sists of the following data:

(1) a set C, whose elements will be called colours;

(2) for any n ∈ N, and any (n+ 1)-tuple (c1, ..., cn; c) of colours, there is an object

O(c1, ..., cn; c) in E, whose elements are operations from n inputs of colours

c1, ..., cn to an output of colour c;

(3) for any colour c, there is an element 1c ∈ O(c; c), called the identity of colour

c;

(4) for any (n + 1)-tuple (c1, ..., cn; c) of colours and n other tuples of colours

(c1,1, ..., c1,k1), ..., (cn,1, ..., cn,kn),

of lengths k1, ..., kn respectively, there is a composition product

O(c1, ..., cn; c) ⊗ O(c1,1, ..., c1,k1; c1) ⊗ · · · ⊗ O(cn,1, ..., cn,kn; cn)

θ
→ O(c1,1, ..., cn,kn; c);

(5) for any σ ∈ Σn, there is a map σ∗ : O(c1, ..., cn; c)→ O(cσ(1), ..., cσ(n); c).

These data are required to satisfy the following properties:
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• each 1c is a 2-sided unit for the composition product θ, i.e., we have the

following identity

1c ◦ θ = θ = θ ◦ (1c1 , ..., 1cn);

• the maps in (5) define a right Σn-action on O(n) = ⊕c1,...,cn,c∈CO(c1, ..., cn; c),

i.e., σ∗τ∗ = (τσ)∗ for any σ, τ ∈ Σn;

• the composition product θ is associative and Σn-equivariant in some natural

sense (see, e.g., [18]).

Remark A.2.1. When the set C contains only one colour, a C-coloured operad is

the same as an ordinary operad.

By removing from Definition A.2.1 all references to the symmetric group ac-

tions, one obtains the notion of non symmetric C-coloured operads.

Example A.2.1 (C-coloured endomorphism operad). Let A = (A(c))c∈C be a family

of objects of E. The endomorphism operad End(A) of A is given by

End(A)(c1, ..., cn; c) = Hom(A(c1) ⊗ · · · ⊗ A(cn), A(c))

for c1, ..., cn, c ∈ C, where the composition product and Σn-action are the evident

substitution and permutation.

Definition A.2.2 (Map of coloured operads). Let O be a C-coloured operad and

O′ a C′-coloured operad. A map of coloured operads from O to O′ consists of a

function f : C → C′, and for each c1, ..., cn, c ∈ C, a function

O(c1, ...cn; c)→ O′( f (c1), ..., f (cn); f (c))
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which preserves the symmetric group Σn-action, the identities and the composition.

Definition A.2.3 (Algebra over a coloured operad). Let O be a C-coloured operad.

An O-algebra structure on a family A = (A(c))c∈C of objects of E is a map of C-

coloured operads

α : O→ End(A)

which preserves the colours, i.e., is a family of maps

αc1,...,cn;c : O(c1, ...cn; c) ⊗ A(c1) ⊗ ... ⊗ A(cn)→ A(c)

satisfying obvious axioms for associativity, unit and equivariance.

Let A = ⊕c∈CA(c) for a fixed order of C. We also say A is an O-algebra.

If P is an ordinary operad and P = ⊕ j≥1P( j), then P has a canonical structure of

P-algebra (see, for example Manin [36], p.177). Similarly, we have the following

Proposition A.2.1. LetO be a C-coloured operad. Let O(c) = ⊕n∈N;c1,...cn∈CO(c1, ...cn; c)

and O = ⊕c∈CO(c) for a fixed order of C. Then O has a canonical structure of O-

algebra.

Proof. The O-algebra structure on O is given by the maps

αc1,...,cn;c : O(c1, ...cn; c) ⊗ O(c1) ⊗ ... ⊗ O(cn)→ O(c).

�

Definition A.2.4 (Map of O-algebras). Let O be a coloured operad and A, A′ be

O-algebras. A map of O-algebras f : A → A′ is a family of maps ( fc : A(c) →

A′(c))c∈C which commute with the O-algebra structure maps of A, A′.
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The above definition (Definition A.2.1) of coloured operads makes use of the

canonical order on the set [n] = {1, 2, ..., n}. In many discussions, instead of [n],

we need to work with an arbitrary finite set, then it is useful and natural to have a

version of the definition which does not depend on a particular order.

Definition A.2.5 (C-coloured operad; unordered version). A coloured operad O in

the category E consists of the following data:

(1) a set C, whose elements will be called colours;

(2) for any finite set I, family of colours (ci)i∈I , and colour c, there is an object

O((ci)i∈I , c) in E, whose elements are operations ϕ : (ci)i∈I → c;

(3) for any surjective map between finite sets p : I → J, families of colours

(ai)i∈I , (b j) j∈J, and colour c, there is a composition product

O((b j) j∈J, c) ⊗
∏
j∈J

O((ai)i∈p−1{ j}, b j)
θ
→ O((ai)i∈I , c), (A.2.1)

(ϕ, (ψ j) j∈J) 7→ ϕ ◦ (ψ j) j∈J = ϕ((ψ j) j∈J);

(4) for any singleton I, colour c, there is an identity element 1I
c ∈ O((ci)i∈I; c);

These data are required to satisfy the following associativity and unit axioms:

• If p : I → J, q : J → K are maps of finite sets, and φ j : (ai)i∈p−1{ j} → b j, ψk :

(b j) j∈q−1{k} → ck, ϕ : (ck)k∈K → d are operations, where ai, b j, ck, d are colours,

then

(ϕ ◦ (ψk)k∈K) ◦ (φ j) j∈J = ϕ ◦ (ψk ◦ (φ j) j∈q−1{k})k∈K;
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• If I is a finite set, J is a singleton, and ϕ : (ci)i∈I → c is an operation, then

1J
c ◦ (ϕ) j∈J = ϕ = ϕ ◦ (1{i}ci

)i∈I .

The definitions of maps of coloured operads, algebras over a coloured operads

etc for the unordered version can be given similarly as in the usual version.

There is an alternative way (Definition A.2.7) of viewing operads, in which

instead of a family of n-ary operations, an operad is viewed as a family of binary

operations with certain constraints.

Definition A.2.6. Let X,Y be finite sets and x ∈ X, define

X tx Y = (X \ {x}) t Y

where the “t” on the right hand side is the disjoint union, i.e, the coproduct in the

category of finite sets and maps between them.

Proposition A.2.2 ([38]). Let X,Y,Z be finite sets, x, x1, x2 ∈ X and y ∈ Y, then

(X tx Y) ty Z = X tx (Y ty Z),

(X tx1 Y) tx2 Z = (X tx2 Z) tx1 Y.

Proof. It follows directly from definition. �

Remark A.2.2. In category theory, the coproduct of a family of objects in a cat-

egory is defined via universal property, and thus is unique only up to canonical

isomorphisms [14, 35]. So when we use the phrase “the disjoint union” of two fi-
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nite sets, we understand that it is up to these canonical isomorphisms. Similarly, the

“=”s in the above preposition are actually canonical isomorphisms.

The above proposition is used implicitly to make sense of the associativity con-

ditions in the following definition of coloured pseudo-operad.

Definition A.2.7 (C-coloured pseudo-operad; unordered version). A coloured pseudo-

operad O in the category E consists of the following data:

(1) a set C, whose elements will be called colours;

(2) for any finite set I, family of colours (ci)i∈I , and colour c, there is an object

O((ci)i∈I , c) in E, whose elements are operations from (ci)i∈I to c;

(3) for any constant map between finite sets p : I → J, families of colours

(ai)i∈I , (b j) j∈J, and colour c, there is a composition product

O((b j) j∈J, c) ⊗ O((ai)i∈I , b j0)
◦((J, j0),I)
−→ O((ck)k∈Jt j0 I , c),

where j0 ∈ p(I), and

ck =


ak, if k ∈ I;

bk, if k ∈ J \ { j0}.

These data are required to satisfy the following associativity axioms:

• if I, J,K are finite sets, j0 ∈ J, k0 ∈ K, and φ : (ai)i∈I → b j0 , ψ : (b j) j∈J →

ck0 , ϕ : (ck)k∈K → d are operations, where ai, b j, ck, d are colours, then

ϕ ◦((K,k0),Jt j0 I) (ψ ◦((J, j0),I) φ) = (ϕ ◦((K,k0),J) ψ) ◦((Ktk0 J, j0),I) φ;
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• if I, J,K are finite sets, k1, k2 ∈ K, and φ : (ai)i∈I → ck1 , ψ : (b j) j∈J → ck2 , ϕ :

(ck)k∈K → d are operations, where ai, b j, ck, d are colours, then

(ϕ ◦((K,k2),J) ψ) ◦((Ktk2 J,k1),I) φ = (ϕ ◦((K,k1),I) φ) ◦((Ktk1 I,k2),J) ψ.

Proposition A.2.3. A coloured operad is a coloured pseudo-operad.

Proof. Let O be a coloured operad. Let I, J be finite sets, φ : (ai)i∈I → b j0 , ψ :

(b j) j∈J → c are operations, where ai, b j are colours of O. Define composition prod-

uct ◦((J, j0),I) as follows:

◦((J, j0),I)(ψ, φ) = θ(ψ, (ϕ j) j∈J),

where θ is the composition product of the coloured operad O (see equation (A.2.1)),

and

ϕ j =


φ, if j = j0;

1{ j}b j
, if j ∈ J \ { j0}.

One can check that a coloured pseudo-operad is obtained in this way. �

A.3 Insertions of decorated graphs and operads

A graph can be inserted into a vertex of another graph to form a third graph. In

this section, we focus on a special class of graphs with labeled vertices and study

their properties under insertions.

Definition A.3.1 (Inserting a graph into another). Let Γ1,Γ2 be connected graphs

and v ∈ V(Γ1) such that there is a bijective map f : H(v)→ H(Γ2).
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Define a graph Γ by the following data

• V(Γ) = (V(Γ1) \ {v}) t V(Γ2);

• E(Γ) = E(Γ1) t E(Γ2); an internal edge of Γ1 with endpoint set {p, v} corre-

sponds to an internal edge of Γ with endpoint set {p, q}, where p ∈ V(Γ1) \ {v}

and q ∈ V(Γ2) is the endpoint of f (v);

• H(Γ) = H(Γ1); an external edge of Γ1 with endpoint v corresponds to an

external edge of Γ with endpoint the endpoint of f (v).

We will call Γ the graph obtained by inserting Γ2 into Γ1 at vertex v according to the

map f . The graph Γ is denoted by Γ1 ◦(v, f ) Γ2.

A.3.1 L-graphs

Definition A.3.2 (L-graph). An L-graph Γ is a a graph along with the following

data:

• there is a linear order on the set H(Γ) of external edges.

• for each v ∈ V(Γ), there is a linear order on the set H(v) of half edges of v.

For L-graphs, Definition A.3.1 can be made more specific.

Definition A.3.3 (Insertion operation of L-graphs). Let Γ1,Γ2, and Γ3 be connected

L-graphs. If there exist v ∈ V(Γ1) and a linear order preserving bijective map

f : H(v) → H(Γ2) such that Γ3 = Γ1 ◦(v, f ) Γ2, we say that there is an insertion

operation ◦((Γ1,v),Γ2,Γ3) : (Γ1,Γ2) 7→ Γ3.
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Remark A.3.1. In the notation ◦((Γ1,v),Γ2,Γ3) above, the Γ3 in the subscript is redun-

dant, i.e., one can safely use ◦((Γ1,v),Γ2) instead and there will be no confusion. But we

prefer the notation adopted, since it is more convenient in certain symbolic proofs.

Theorem A.3.1. The set L0 of connected labeled L-graphs with two or more ver-

tices forms a Z≥0-coloured pseudo-operad in the category of sets.

Proof. Here we will check Definition A.2.7.

• Take the set Z≥0 of non negative integers as the set C of colours.

• For any finite set I, family of colours (ci)i∈I , and colour c, there is a set

O((ci)i∈I , c) of connected L-graphs Γ: each Γ ∈ O((ci)i∈I , c) is an L-graph with

V(Γ) = I, |H(Γ)| = c and |H(i)| = ci for all i ∈ I. Because of combinatorial

constraints (see Proposition A.1.2), some O((ci)i∈I , c)s may be empty.

• For any constant map between finite sets p : I → J, families of colours

(ai)i∈I , (b j) j∈J, and colour c, there is a composition product

O((b j) j∈J, c) ⊗ O((ai)i∈I , b j0)
◦((J, j0),I)
−→ O((ck)k∈Jt j0 I , c),

where j0 ∈ p(I), and

ck =


ak, if k ∈ I;

bk, if k ∈ J \ { j0}.

In our situation, if some O((ci)i∈I , c)s are empty, the composition product is

trivial; otherwise, given graph Γ ∈ O((b j) j∈J, c), γ ∈ O((ai)i∈I , b j0), one has a

graph Γ ◦((J, j0),I) γ ∈ O((ck)k∈Jt j0 I , c).
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Now one can readily see that the associativity axioms in Definition A.2.7 are satis-

fied. �

Corollary A.3.2. The set L0 of connected labeled L-graphs with two or more ver-

tices forms an algebra over the above defined coloured pseudo-operad of L-graphs.

Proof. This follows from Theorem A.3.1 and Proposition A.2.1. �

A.3.2 A-labeled L-graphs

LetA be a countably infinite discrete set. A prototypal example ofA is the set

N of natural numbers.

Definition A.3.4 (A-labeled graph). A finiteA-labeled L-graph is a finite L-graph

Γ which is labeled inA subjecting to the following rules:

• Each vertex of Γ is labeled by a non empty finite subset ofA.

• Each element ofA can occur at most once for eachA-labeled graph.

• The label of the graph is the union of labels of its vertices.

An isomorphism of A-labeled L-graphs is a graph isomorphism which pre-

serves the A-labeling and all linear orders. Let AL denote the set of isomorphism

classes of connectedA-labeled L-graphs.

Definition A.3.5 (Insertion operation ofA-labeled L-graphs). Let Γ1,Γ2,Γ3 ∈ AL.

If there exist v ∈ V(Γ1) whose label is equal to the label of Γ2 and a linear order

preserving bijective map f : H(v) → H(Γ2) such that Γ3 = Γ1 ◦(v, f ) Γ2, we say that

there is an insertion operation ◦((Γ1,v),Γ2,Γ3) : (Γ1,Γ2) 7→ Γ3.
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Theorem A.3.3. The set AL of connected A-labeled L-graphs forms a coloured

operad in the category of sets.

Proof. Here we check that the setAL satisfies Definition A.2.5.

• Define a colour c to be a pair (n, A), where n is a non negative integer and A

is a non empty finite subset ofA.

• For any finite set I, family of colours (ci)i∈I , where ci = (ni, Ai), and colour

c = (n, A), there is a set O((ci)i∈I , c) of connectedA-labeled L-graphs Γ: each

Γ ∈ O((ci)i∈I , c) is anA-labeled L-graph satisfies the following conditions:

– V(Γ) = I, |H(Γ)| = n and |H(i)| = ni for all i ∈ I;

– vertex i is labeled by Ai, for all i ∈ I, and the graph Γ is labeled by A.

Because of the combinatorial constraints (see Proposition A.1.2) andA-labeling

restriction, some O((ci)i∈I , c)s are empty sets.

• For any surjective map between finite sets p : I → J, families of colours

(ai)i∈I , (b j) j∈J, and colour c, there is a composition product

O((b j) j∈J, c) ⊗
∏
j∈J

O((ai)i∈p−1{ j}, b j)
θ
→ O((ai)i∈I , c),

(ϕ, (ψ j) j∈J) 7→ ϕ ◦ (ψ j) j∈J = ϕ((ψ j) j∈J).

More explicitly, if all O((ci)i∈I , c)s in the domain are not empty, the compo-

sition means that after inserting each vertex j of a graph Γ ∈ O((b j) j∈J, c) a

graph γ ∈ O((ai)i∈p−1{ j}, b j), a new graph Γ′ ∈ O((ai)i∈I , c) is obtained.

In case that some O((ci)i∈I , c) in the domain is empty, the composition product

is trivial.
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• For any singleton I = {i}, colour c = (n, A) ∈ Z≥0, the graph with only one

vertex i labeled by A, no internal edges and n external edges is the unit 1{i}c .

One can easily check that the above data satisfy the associativity and unit ax-

ioms. �

Remark A.3.2. Strictly speaking, the definition of pseudo-tensor category of Beilin-

son Drinfeld [6] is slightly different from the definition of coloured operad we

adopted (Definition A.2.5). But by the same construction, one can check that the

set AL of connected A-labeled L-graphs forms a pseudo-tensor category. Similar

remarks applies to all the related statements.

A.4 Relation to pre-Lie algebra

This section discusses the relations between the above algebras of graphs under

insertions and pre-Lie algebra.

Definition A.4.1 (Pre-Lie algebra). Let k be a field of characteristic 0 and W be a

vector space. A pre-Lie algebra is W with a bilinear operation · : W × W → W

which satisfies

(α · β) · γ − α · (β · γ) = (α · γ) · β − α · (γ · β)

for any α, β, γ ∈ W.

Let α, β ∈ W, define a bilinear operation [, ] : W ×W → W by

[α, β] = α · β − β · α.
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Proposition A.4.1. Let (W, ·) be a pre-Lie algebra and [, ] the binary operation

defined as above. Then (W, [, ]) is a Lie algebra. More explicitly, if α, β, γ ∈ W, then

1. (anti-symmetry) [α, β] = −[β, α].

2. (Jacobi identity) [α, [β, γ]] + [β, [γ, α]] + [γ, [α, β]] = 0.

Proof. It is a direct check, or see Gerstenhaber [20]. �

There is a notion of the sum of all ways of insertions of graphs which will lead

to a pre-Lie algebra. We give it in the case of L-graphs; other cases are similar.

Definition A.4.2 (All possible insertions operation on graphs). LetW be the linear

space spanned by the set of finite L-graphs. Define a bilinear operator ∗ :W⊗W→

W, by

Γ1 ∗ Γ2 =
∑

v∈V(Γ1),Γ3

Γ1 ◦((Γ1,v),Γ2,Γ3) Γ2 (A.4.1)

for any L-graphs Γ1,Γ2 and then extend bilinearly toW.

Remark A.4.1. It is easy to see that the sum at the right hand side of equation (A.4.1)

has only finitely many nonzero terms. Thus the above operation is well defined.

Proposition A.4.2. The pair (W, ∗) is a pre-Lie algebra.

Proof. See Connes-Kreimer [16]. �
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