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Abstract of the Dissertation

Complete Set of Eigenfunctions of

the Quantum Periodic Toda Chain

by

Daniel An

Doctor of Philosophy

in

Mathematics

Stony Brook University

2008

The quantum periodic Toda chain is a system of particles whose quantum
behavior is governed by the Hamiltonian operator

H =

(

−1

2

N
∑

k=1

∂2

∂x2
k

+
N−1
∑

k=1

exk−xk+1 + exN−x1

)

.

Building on the previous works of Gutzwiller [11] and Sklyanin [31] , Pasquier
and Gaudin [7] was able to find quantization conditions for this system by in-
troducing an integral transform which turned the Schrodinger equation into
the Baxter equation. They gave the solution for the Baxter equation, but
were not able to state how to obtain the actual eigenfunctions due to the
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lack of any inverse transform. Kharchev and Lebedev [19] succeeded in con-
structing a more explicit integral transform and its inverse, which they used
to prove that Pasquier-Gaudin solutions can be inverted to give an eigen-
function for the quantum periodic Toda chain Hamiltonian. However, they
did not know whether these solutions formed a complete set.

We answer this question affirmatively, that all eigenfunctions of the quan-
tum periodic Toda chain arise from the Pasquier-Gaudin solutions, in the
form of integral representation obtained explicitly by Kharchev and Lebe-
dev. This will, in addition, show that the joint spectrum of commuting
Hamiltonians of the Periodic Toda chain is simple.
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Chapter 1

Introduction

We consider the eigenfunction expansion problem associated with the differ-
ential equation

(

−1

2

N
∑

k=1

∂2

∂x2
k

+
N−1
∑

k=1

exk−xk+1 + exN−x1

)

Ψ̃ = EΨ̃. (1.0.1)

This is called the Schrödinger equation for the quantum periodic Toda
chain, which is a quantum mechanical system obtained from quantization of
the classical periodic Toda chain.

1.1 The Classical Toda Chain

Consider a Hamiltonian system of N particles of unit mass in one di-
mension with interaction between the neighboring particles and no external
forces acting on them. Let qk and pk (k = 1, . . . , N) be the position and the
momentum of the k-th particle. The Hamiltonian of the system is written as

H =
1

2

N
∑

k=1

p2
k +

N−1
∑

k=1

V (qk − qk+1),

where the
∑N−1

k=1 V (qk − qk+1) term is called the potential term, and it de-
scribes the interaction between the neighboring particles. Then the evolution
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of the system is described by the the canonical Hamilton’s equations

dqk

dt
=
∂H

∂pk

,
dpk

dt
= −∂H

∂qk
. (1.1.1)

Unless the potential term is a polynomial of order 2 or less, this equation
is nonlinear. In the nonlinear case, it is usually impossible to obtain the
solutions explicitly. In a series of papers [33, 34], M. Toda introduced system
of infinitely many particles with exponential interaction between them. He
studied soliton solutions and periodic solutions of the system. Periodic solu-
tions are solutions that satisfy periodic condition qk+N = qk and pk+N = pk

for some integer N . The periodic solutions satisfy the finite particle system
described by the Hamiltonian

H =
1

2

N
∑

k=1

p2
k +

N−1
∑

k=1

eqk−qk+1 + eqN−q1.

This system is called the periodic Toda chain, and when eqN−q1 is missing it
is called the open Toda chain. Flaschka [5] and Manakov [25] independently
found N functionally independent quantities that are conserved throughout
the evolution, for both open and periodic N particle Toda chains. Such
a system is said to be a completely integrable Hamiltonian system. Using
the conserved quantities, Moser [26] and Kac and van Moerbeke [17],[18]
respectively gave complete explicit solutions for the open and periodic Toda
chains. Classical periodic Toda chain have regained the attention of physicists
because of its appearance in N=2 Supersymmetric Yang-Mills theory [29, 27].

1.2 Quantum Open Toda chain

The Toda chain is a system in classical mechanics. After it has been
completely solved, the question of whether the corresponding quantum me-
chanical system can also be solved explicitly gained interest. The Schrödinger
equation for quantum Toda chain is obtained from the classical Toda chain by
the standard procedure called the canonical quantization. For the quantum
open Toda chain, the Schrödinger equation is

(

−1

2

N
∑

k=1

∂2

∂x2
k

+
N−1
∑

k=1

exk−xk+1

)

Ψ̃ = EΨ̃, (1.2.1)
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where we have set ~ = 1, which appears in the standard form of Schrödinger
equation.

Surprisingly, the solution of this equation naturally appeared in the rep-
resentation theory of Lie groups. Consider the Iwasawa decomposition of
SL(N,R) = ODU. Where O is the subgroup of orthogonal matrices, D is the
subgroup of diagonal matrices of positive real numbers with determinant 1
and U is the subgroup of upper triangular matrices with 1’s on the diagonal.
Parametrizing each subgroup introduces a local coordinate system near the
identity of SL(N,R). One can write down left invariant vector fields with
respect to this coordinate system. Then consider the universal enveloping
algebra of the Lie algebra of SL(N,R). Since set of left invariant vector
fields with the Lie bracket is isomorphic to the Lie algebra, one can write
any element of this universal enveloping algebra as a differential operator on
C∞(SL(N,R)). Most notably, there is a natural second order central element
of the universal algebra called the Casimir element, which under this real-
ization will become a second order differential operator. Then we consider a
function in C∞(D), and find an appropriate extension of that function to an
element in C∞(SL(N,R)), so that when Casimir element acts on it, some of
the derivatives disappear and we get the differential equation of the quantum
open Toda chain. The eigenfunction then coincides with Whittaker functions
which is well known in representation theory. This was the observation of B.
Kostant [22]. Semenov-Tian-Shansky [30] later proved Plancherel theorem
for the eigenfunction expansion via Whittaker functions.

1.3 Quantum Periodic Toda chain

First attempt to find solutions of the equation (1.0.1) was done in
Gutzwiller’s papers [10],[11]. He constructed eigenfunctions for the case
N = 2, 3, 4 by using a method he discovered, which nowadays is called Quan-
tum Separation of Variables. For the eigenfunctions of the N particle quan-
tum periodic Toda chain, Gutzwiller used an ansatz of a formal series of the
eigenfunctions of the N − 1 quantum open Toda chain. He found that the
coefficients ak of the series satisfy Baxter equation of the following form:

−ak−1 + ak+1 = t(k)ak, (1.3.1)

where t(k) is some polynomial of k. This led to the solutions of (1.0.1)
along with quantization condition involving a Hill determinant. The so-
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lutions for general N case was not dealt due to the lack of explicit solu-
tions for the open quantum Toda chain and the algebraic complexity of
deducing the Baxter’s equation. Later, Sklyanin [31] used R-matrix for-
malism of Fadeev and Takhtajan [32] to drastically simplify the process of
deriving the Baxter equations for general N particle case. Benefiting from
Sklyanin’s work and inspired by ideas from statistical mechanics, Pasquier
and Gaudin [7] reinterpreted the Baxter’s equation as an equation of opera-
tors, Λ(u)Q(u) = iNQ(u+i)−i−NQ(u−i). They used clever arguments using
the asymptotic information of the spectrum of Q(v) to construct appropriate
solutions of the Baxter equation along with the condition for their existence,
which they concluded as the quantization condition for the quantum periodic
Toda chain. But the paper did not address the problem of how to recover the
solution of the quantum periodic Toda chain from the solution of the Baxter’s
equation they constructed. Nor did they rule out the possibility that other
solutions of Baxter’s equation fitting their description might exist. Kharchev
and Lebedev [19], [20] worked with an integral transform using the eigen-
functions of the open Toda chain in the spirit of the original Gutzwiller’s
approach. When applied to the eigenfunctions of the periodic Toda chain,
one obtains the Baxter’s equation equivalent to Pasquier-Gaudin’s. And be-
cause their integral transform had explicit inverse transform, they could use
the solution constructed by Pasquier and Gaudin and invert it back to get
the actual eigenfunction of the periodic Toda chain. They proved that in-
verse integral transform of the Pasquier-Gaudin solutions does converge and
it does satisfy the quantum periodic Toda equation. So we now have only one
question remaining - whether the inverse integral transform of the Pasquier-
Gaudin solutions give complete set of solutions of the periodic Toda chain.
By complete set, we mean that the solutions produces an eigenfunction ex-
pansion associated to the equation (1.0.1). The main goal of this thesis is to
answer this question affirmatively.

For the readers who are already familiar with Pasquier-Gaudin [7] and
Kharchev-Lebedev [19]’s work, we note here that the main goal of thesis was
achieved by using uniform bounds rather than asymptotics. The estimates
then are used to give some strong restrictions to the possible solutions of
the Baxter’s equation. The assumption that the solutions of the Baxter’s
equation takes the form of separated variables is not needed at all, but rather
it will follow from the restrictions acquired from the uniform bounds.
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Chapter 2

Preliminary Materials

and Statement of the Main

Theorem

Except for the statement of the main theorem and its corollar-
ies, all materials in this chapter are from Kharchev and Lebedev [19]
and [20], with slight changes in notation. Throughout this thesis,
we will denote the Hamiltonian operator for the periodic Toda chain
(

−1
2

∑N
k=1

∂2

∂x2
k

+
∑N−1

k=1 e
xk−xk+1 + exN−x1

)

by H, so that the Schrödinger

equation (1.0.1) can be written as HΨ̃ = EΨ̃. For the open Toda chain, we

write h to denote
(

−1
2

∑N
k=1

∂2

∂x2
k

+
∑N−1

k=1 e
xk−xk+1

)

.

2.1 Change of Variables and the Structure of

the Eigenfunctions

It is convenient to make use of the center of mass

XC =
1

N
(x1 + · · ·+ xN ).
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So we introduce a change of variables

uj =

√

j

j + 1

(

xj+1 −
x1 + · · · + xj

j

)

j = 1, . . . , N − 1 ,

uN =
√
NXC =

1√
N

(x1 + · · · + xN), (2.1.1)

which is a slight modification of the usual Jacobi coordinates[a]. The differ-

ence is the presence of the coefficients
√

j
j+1

and
√
N , which is introduced

so that the form of the Laplacian is invariant. We also introduce vectors

u = (u1, . . . , uN−1) , x = (x1, . . . , xN−1) (2.1.2)

and use (u, uN) (resp. (x, xN)) to mean (u1, . . . , uN) (resp. (x1, . . . , xN )).
In this change of variables, the equation for quantum periodic Toda chain
(1.0.1) becomes

(

−1

2

∂2

∂u2
N

− 1

2
△u + V (u)

)

Ψ̃(u, uN) = EΨ̃(u, uN), (2.1.3)

where △u =
(

∂2

∂u2
1

+ ∂2

∂u2
2

+ · · · + ∂2

∂u2
N−1

)

, and

V (u) = exp(−
√

2u1) + exp

(

N√
N2 −N

uN−1 +

N−2
∑

k=1

1√
k2 + k

uk

)

+

+
N−2
∑

k=2

exp

(

1√
k2 − k

uk−1 −
k + 1√
k2 + k

uk

)

.(2.1.4)

The fact that the potential term V (u) in the above equation is independent
of uN allows us to say that the generalized eigenfunctions[b] of the quantum
periodic Toda chain have the following structure

Ψ̃(u, uN) = Ψ(u)e
i

E1√
N

uN (2.1.5)

[a]This is a convenient coordinate system used in many body problems. (c.f. [21])
[b]Generalized eigenfunction means that is a solution of the eigenvalue problem in the

sense of distributions.
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for some constant [c] E1. Plugging in (2.1.5) into (2.1.3) we get a reduced
equation

(

−1

2
△u + V (u)

)

Ψ(u) = ẼΨ(u), (2.1.6)

where Ẽ = E − E2
1

N
. Observe that V (u) increases without bound in all

directions. In such case, −1
2
△u + V (u) has pure point spectrum and the

L2(RN−1) eigenfunctions form a complete set of basis for L2(RN−1). Note
that once we have all the L2(RN−1) eigenfunctions, then functions of the
form (2.1.5) can be used to produce an eigenfunction expansion since the

e
i

E1√
N

uN factor can be thought as the kernel of the Fourier transform. Hence
to solve the eigenfunction expansion problem, it is enough to find all the
eigenfunctions of this reduced equation. The eigenfunction Ψ(u) itself has
nice properties. It is an analytic function on RN−1 because −1

2
△u + V (u) is

an analytic hypoelliptic operator. It can also be analytically continued to an
entire function on CN−1 (cf. [3]) since V (u) is entire. In the next chapter,
we will show that it is a Schwartz class[d] function.

2.2 Complete Set of Commuting Hamiltoni-

ans: The R Matrix Approach.

We review Faddeev and Takhtajan [32]’s construction of commuting
Hamiltonians for the periodic Toda chain. Let Lk be

Lk(λ) =

(

λ−Pk e−xk

−exk 0

)

for k = 1, . . . , N . Here, Pk = −i ∂
∂xk

, which is the momentum operator.

Define matrix T (λ) as

T (λ) =

(

A(λ) B(λ)
C(λ) D(λ)

)

def
= LN (λ) · · ·L1(λ).

Let
t̂(λ) = trT (λ) = A(λ) +D(λ).

t̂(λ) can be viewed as polynomial in λ with operator coefficients.

[c]E1 is the eigenvalue of the operator H1, to be introduced in the next section.
[d]A function f(x) belongs to Schwartz class if f(x) is smooth and if f(x) and all its

partial derivatives decay to zero faster than any inverse polynomial at infinity.
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Proposition 2.2.1. The coefficients of t̂(λ) gives commuting Hamiltonians,
i.e.

t̂(λ) =

N
∑

k=0

(−1)kλN−kHk,

where Hk’s are self-adjoint operators such that [Hi,Hj] = 0 for all integers
1 ≤ i, j ≤ N . Moreover, the Hamiltonian for quantum periodic toda chain
can be written as H = 1

2
(H1)

2 −H2.

Proof. Let P be a matrix on R2 ⊗ R2 such that P (a ⊗ b) = b ⊗ a. Define
R-matrix as I2 ⊗ I2 + i

λ−µ
P . Written explicitly,

R(λ− µ) =











1 + i
(λ−µ)

1 i
(λ−µ)

i
(λ−µ)

1

1 + i
(λ−µ)











.

Then the commutation relations [exk ,Pk] = iexk and [e−xk ,Pk] = −ie−xk

can be used to verify that matrices Lk satisfy the quantum Yang-Baxter
equation[e] R(Lk(λ) ⊗ I2)(I2 ⊗ Lk(µ)) = (Lk(µ) ⊗ I2)(I2 ⊗ Lk(λ))R holds.
Multiplying these identities for k = 1, . . . , N , we get

R(T (λ) ⊗ I2)(I2 ⊗ T (µ)) = (T (µ) ⊗ I2)(I2 ⊗ T (λ))R. (2.2.1)

Taking the trace of this equation, we obtain [t̂(λ), t̂(µ)] = 0. Since λ and µ

are arbitrary, this means that the coefficients of the polynomials commute
with each other. The first few Hamiltonians can be written as

H1 =

N
∑

k=1

Pk,

H2 =
∑

j<k

PjPk −
N
∑

k=1

exk−xk+1,

H3 =
∑

j<k<l

PjPkPl + · · · .

Now it is straightforward to see that H = 1
2
(H1)

2 −H2.

[e]The Yang-Baxter equation is fundamental in the theory of classical and quantum
integrable systems. The argument described here first appeared in [36].

8



holds, i.e. some symmetric functions of γ are the eigenvalues. Kostant [22]
observed that φγ are the Whittaker functions that was previously studied in
representation theory of Lie groups. The analytic properties of Whittaker
functions [16, 12, 13] yield that equation (2.3.3) defines φγ uniquely up to a
constant if the following conditions are imposed :

(a) The solution vanishes very rapidly as (xk − xk+1) → ∞.

φγ(x) ∼ exp{−2e(xk−xk+1)} as (xk − xk+1) → ∞.

(b) As a function of γ, φγ is symmetric under any permutation

φ...γj ...γk ... = φ...γk ...γj ....

(c) φγ can be analytically continued to an entire function of γ ∈ CN−1 and
the following asymptotics hold:

ψγ ∼ |γj|(2−N)/2 exp
{

−π
2
(N − 2)|γj|

}

as |Re γj | → ∞ in a finite strip of the complex plane.

Condition (a) alone fixes the eigenfunctions up to a common γ-related factor.
Conditions (b) and (c) together fixes the factor up to a constant. To fix
the constant factor and to make the definition explicit, we introduce the
definition given by Kharchev and Lebedev.

Definition 2.3.1. We define φγ inductively as follows.

(1) φγ1 = exp(iγ1x1).

(2) Let φγ1,...,γn−1(x1, . . . , xn−1) be the n− 1 particle generalized eigenfunc-
tion. Then φλ1,...,λn

(x1, . . . , xn) is defined by the following n − 1 fold
integral

φλ1,...,λn
(x1, . . . , xn) =

∫

C
Q(γ; λ)φγ(x1, . . . , xn−1) ×

×e(ixN(
Pn

j=1 λj−
Pn−1

j=1 γj))µ(γ)dγ, (2.3.4)

10



where the integration is performed along the horizontal lines with Im γj >

maxk{Imλk}, and µ(γ) and Q(γ|λ) is defined by

µ(γ) =
(2π)1−n

(n− 1)!

∏

j<k

γk − γj

π
sinh (π(γk − γj)) , (2.3.5)

Q(γ1, . . . , γn−1|λ1, . . . , λn) =
n−1
∏

j=1

n
∏

k=1

Γ(iλk − iγj). (2.3.6)

This system of generalized eigenfunctions is complete as can be seen from
the Plancherel theorem proved by Semenov-Tian-Shansky [30], which says
that the integral operator

Uf(γ) =

∫

RN−1

f(y)φγ(y)dy (2.3.7)

is a unitary operator from L2(RN−1, dx) to L2(RN−1, µ(γ)dγ). Being unitary
means that the adjoint operator gives the inverse transform, i.e.

∫

RN−1

Uf (γ)φγ(x)µ(γ)dγ = f(x) (2.3.8)

holds in L2 sense.
In the N = 3 case, the definition of φγ and the Plancherel theorem

of Semenov-Tian-Shansky can be restated using the MacDonald function[f]

Kν(x) as

φγ1,γ2(x1, x2) = 2e
i
2
(γ1+γ2)(x1+x2)Ki(γ1−γ2)(2e

x1−x2
2 )

and

f(x1, x2) =
1

8π2

∫

R2×R2

(

f(y1, y2)e
i
2
(γ1+γ2)(x1+x2−y1−y2)×

×Ki(γ1−γ2)(2e
y1−y2

2 )Ki(γ1−γ2)(2e
x1−x2

2 ) sinh(γ2 − γ1)

)

dydγ.

This special case is known as Kontorovich-Lebedev Transform (c.f. [4]).

[f]Also known as the modified Bessel function of second kind.
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2.4 Integral Transform Using Eigenfunctions

of the N-1 Open Toda Lattice.

We introduce the auxiliary function

Φ̃γ(x1, . . . , xN) = e−ixN (γ1+···+γN−1)φγ(x1, . . . , xN−1). (2.4.1)

First observation is that

∂

∂uN

Φ̃γ(x, xN ) =
1√
N

(
∂

∂x1

+ · · · + ∂

∂xN

)Φ̃γ(x, xN) = 0.

So it is independent of uN and we may define, in the changed coordinates

Φγ(u) = Φ̃γ(u, uN). (2.4.2)

The integral transform introduced by Kharchev and Lebedev is[g]

ξE(γ) =

∫

RN−1

ΨE(u)Φγ(u)du. (2.4.3)

It will be shown in the appendix that if ξE(γ) satisfies some nice conditions,
then using the Plancherel theorem we can recover the original function by

1

2π

∫

RN−1

ξE(γ) Φγ(u)µ(γ)dγ = ΨE(u). (2.4.4)

2.5 The Baxter Equation

Let

tE(λ) =

N
∑

k=0

(−1)kλN−kEk,

so that
t̂(λ)Ψ̃E(x) = tE(λ)Ψ̃E(x).

Let ej, j = 1, . . . , N be the standard unit vectors.

[g]The γ is conjugated so that the integral is holomorphic rather than anti-holomorphic.
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Proposition 2.5.1. Suppose E1 = 0. Then

tE(γj)ξE(γ) = iNξE(γ + iej) + i−N
ξEEE(γ − iej) (2.5.1)

holds, which we call the Baxter equation.

Lemma 2.5.2.

t̂(γj)Φγ(u) = i−NΦγ+iej
(u) + iNΦγ−iej

(u).

Proof. From equation (2.2.1) we obtain the following relation.

(λ− µ+ i)DN (µ)CN(λ) = (λ− µ)CN(λ)DN(µ) + iDN (λ)CN(µ).

Now set µ = γj and apply both sides to φγ(x). Then using (2.3.3) and the
fact that DN(γj) does not contain xN and therefore commutes with exN , we
have

CN(λ) (DN(γj)φγ(x)) = −exN (λ− γj + i)
∏

k 6=j

(λ− γk + iδk
j ) (DN(γj)φγ(x)) ,

where δk
j is the Kronecker delta function. Along with this, we can show

that DN (γj)φγ(x) satisfies the conditions (a)-(c) in section 2.3. Then the
uniqueness of the Whittaker function tells us that DN(γj)φγ(x) is a constant
multiple of φγ+iej

(x). To determine the coefficients, we look at the asymp-
totics of both functions at large values of xk+1 −xk for k = 1, . . . , N − 2. We
omit this process as it is sketched in [19], and simply state that we get[h]

DN(γj)φγ(x) = iNexNφγ+iek
(x).

Now, by considering the quantum determinant (2.2.3), we immediately get
also

AN (γj)φγ(x) = i−Ne−xNφγ−iek
(x).

These two equations yield the desired result.

Now we prove proposition 2.5.1.

[h]For the case N = 2, this becomes a well known relation in Bessel functions.
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Proof. Let t̂′(λ) be gotten from t̂(λ) by changing variables from (x, xN) to
(u, uN), and then deleting all terms containing ∂

∂uN
. Since H1ΨE(u) does

not depend on uN ,
t̂(λ)ΨE(u) = t̂′(λ)ΨE(u).

Using this we have

tE(γj)ξE(γ) = tE(γj)

∫

RN−1

ΨE(u)Φγ(u)du

=

∫

RN−1

(

t̂′(γj)ΨE(u)
)

Φγ(u)du

=

∫

RN−1

ΨE(u)
(

t̂′(γj)Φγ(u)
)

du

=

∫

RN−1

ΨE(u)
(

i−NΦγ−iej
(u) + iNΦγ+iej

(u)
)

du,

where integration by parts was used in going from the second line to third
line[i], and the last equality is essentially the equation in the lemma in terms
of variable u.

Proposition 2.5.3. ξE(γ) is entire in each γj’s.

Proof. Φγ(u) is entire. So the proof is complete if can justify the interchange
of differentiation and integration, i.e.

∂

∂γj

∫

RN−1

ΨE(u)Φγ(u)du =

∫

RN−1

∂

∂γj
ΨE(u)Φγ(u)du.

This is justified as long as the integrand ΨE(u)Φγ(u) and all its first partial
derivatives are bounded by L1(RN−1) functions of u uniformly with respect
to γ (See [6]). The existence of such L1(RN−1) functions will be apparent
from the bounds we prove in the next chapter.

[i]The fact that the boundary terms vanish follows from the rapid decay of ΨE(u) which
will follow from the estimates proved in the next chapter.
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2.6 Fundamental Solutions of the Baxter

Equation and the Hill Determinant

Sklyanin [31] considered a solution of the Baxter equation (2.5.1) taking
the form of products of one variable functions as follows.

ξE(γ) =
N−1
∏

j=1

σj(γj). (2.6.1)

Substituting this into the Baxter equation (2.5.1), we obtain the following
functional-difference equation.

tE(z)σ(z) = iNσ(z + i) + i−Nσ(z − i). (2.6.2)

This approach is called the quantum separation of variables or Sklyanin’s
separation of variables.

Definition 2.6.1. The two fundamental solutions σ+(z) and σ−(z) of the
functional difference equation (2.6.2) are

σ±(z) = e−Nπz K±(z)
∏N

k=1 Γ
(

1 ∓ i(z − θk(E))
) . (2.6.3)

where θk(E)’s are N zeros of tE(z) and K±(z) are functions defined by the
following (semi-)infinite determinants:

K+(z) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 1
tE(z+i)

0
1

tE(z+2i)
1 1

tE(z+2i)

0 1
tE(z+3i)

1
. . .

. . .
. . .

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

, (2.6.4)

K−(z) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

. . .
. . .

. . . 1 1
tE(z−3i)

0
1

tE(z−2i)
1 1

tE(z−2i)

0 1
tE(z−i)

1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

. (2.6.5)
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The determinants K±(z) converge absolutely and uniformly with respect
to z on compact sets away from poles [35]. Hence K±(z) are meromorphic.
By performing row expansion in the top row of K+(z−i) we get the following
identity

K+(z − i) = K+(z) − 1

tE(z)tE(z + i)
K+(z + i). (2.6.6)

Similarly we have,

K−(z + i) = K−(z) − 1

tE(z)tE(z − i)
K−(z − i). (2.6.7)

In the definition of σ±(z) we see that the poles of K±(z) are canceled by the
poles of Γ functions so that σ±(z) are entire functions. The fact that σ±(z)
satisfy (2.6.2) follows from equations (2.6.6) and (2.6.7).

We introduce another important object, the Wronskian of two solutions
σ1(z) and σ2(z) of (2.6.2),

W [σ1; σ2](z) := σ1(z)σ2(z + i) − σ1(z + i)σ2(z). (2.6.8)

Using the Baxter equation (2.6.2) we see that

W [σ1; σ2](z + i) = (−1)NW [σ1; σ2](z). (2.6.9)

An immediate consequence of this is that Wronskian vanishes at z0 if and
only if there exists some coefficients a and b (not both zero) such that aσ1(z0+
ni) + bσ2(z0 + ni) = 0 for all integers n.

Proposition 2.6.2. The zeros of W [σ+; σ−](z) coincides with the zeros of
the infinite determinant

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

. . .
. . .

. . . 1 1
tE(z−2i)

1
tE(z−i)

1 1
tE(z−i)

0
1

tE(z)
1 1

tE(z)
1

tE(z+i)
1 1

tE(z+i)

0 1
tE(z+2i)

1
. . .

. . .
. . .

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.
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Proof. The infinite determinant converges absolutely and uniformly on com-
pact sets (see [35]). So it defines a meromorphic function. Let H(z) be the
function defined by the above determinant. By performing a row expansion
in the row containing 1

tE(z)
and performing column expansions to the subse-

quent matrices in the column that contains 1
tE(z−i)

and 1
tE(z+i)

, one obtains

H(z) = − 1

tE(z)

1

tE(z − i)
K−(z − i)K+(z) +

+K+(z)K−(z) − 1

tE(z)

1

tE(z + i)
K−(z)K+(z + i).

Then applying (2.6.7) gives us the following identity.

H(z) = K+(z)K−(z + i) − K+(z + i)K−(z)

tE(z)tE(z + i)
.

Using the definition of σ±(z) in (2.6.1), we have

W [σ+, σ−](z) = i−NH(z)
N
∏

k=1

π−1 sinh π(z − θk) (2.6.10)

and the poles of H(z) cancel all zeros of
∏N

k=1 π
−1 sinh π(z − θk).

The determinant H(z) is called the Hill determinant. It is known that
[35]

Proposition 2.6.3. The Hill determinant can be represented as

H(z) = 1 +

N
∑

k=1

αk(E) coth(z − θk(E)), (2.6.11)

where αk(E) are some constants depending on E. It has exactly N zeros
δ1(E), . . . , δN(E) in the strip 0 ≤ Im z < 1.

2.7 Statement of the Main Theorem

We introduce the Pasquier and Gaudin [7] solutions of the Baxter equa-
tion (2.5.1).
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Definition 2.7.1. Let

Ξ = { E ∈ RN
∣

∣∃(a, b) ∈ R2�{(0, 0)} such that

aσ+(δj(E)) + bσ−(δj(E)) = 0 for j = 1, . . . , N}

and also define
Ξ0 = {E ∈ Ξ | E1 = 0}.

The equations in the definition of the set Ξ is the quantization condition
of the quantum periodic Toda chain first proposed by Gutzwiller [11] after
establishing it for N = 2, 3, 4.

Definition 2.7.2. For any E ∈ Ξ, the Pasquier-Gaudin solutions of the
Baxter Equation (2.5.1) is

ξE(γ) =

N−1
∏

j=1

eNγj
aσ+(γj) + bσ−(γj)

∏N
k=1 sinh π(γj − δk(E))

,

where a and b are the pair of constants satisfying aσ+(δj(E))+bσ−(δj(E)) = 0
as in the definition of Ξ.

Kharchev and Lebedev [19] proved the following theorem.

Theorem 2.7.3. Suppose E ∈ Ξ and ξE(γ) is a Pasquier-Gaudin solution.
Then

ΨE(u) =
1

2π

∫

RN−1

ξE(γ) Φγ(u)µ(γ)dγ (2.7.1)

is an L2(RN−1) function and Ψ̃E(u, uN) = ΨE(u)e
i

E1√
N

uN satisfies equation
(2.3.1).

Now we state the main theorem to be proved in this thesis.

Theorem 2.7.4. (Main Theorem) Suppose there exist E = (E1, E2, . . . , EN)

and an L2(RN−1) function ΨE(u) such that Ψ̃E(u, uN) = ΨE(u)e
i

E1√
N

uN sat-
isfies equation (2.3.1). Then E ∈ Ξ and

∫

RN−1

ΨE(u)Φγ(u)du =
N−1
∏

j=1

eNπγj
aσ+(γj) + bσ−(γj)

∏N
k=1 sinh π(γj − δk(E))

(2.7.2)

for some constants a and b satisfying aσ+(δ1(E)) + bσ−(δ1(E)) = 0.
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Since it is apparent from definition 2.7.2 that Pasquier-Gaudin solutions
are unique up to a constant multiple for a given E ∈ Ξ, we have

Corollary 2.7.5. The joint spectrum of of commuting Hamiltonians Hk’s of
the Periodic Toda chain is simple.

For any E ∈ Ξ0, the normalized joint eigenfunction is

χE(u) =
1

NE

∫

RN−1

N−1
∏

j=1

eNπγj
aσ+(γj) + bσ−(γj)

∏N
k=1 sinh π(γj − δk(E))

Φγ(u)µ(γ)dγ,

(2.7.3)
where NE is a normalization constant.

The two theorems 2.7.3 and 2.7.4 establish a bijection between the eigen-
functions and the Pasquier-Gaudin solutions. Considering the structure of
the generalized eigenfunctions described in (2.1.5) and the discussion there-
after, we have the following eigenfunction expansion.

Corollary 2.7.6. Let f(u, uN) ∈ L2(RN )∩C(RN). For each E ∈ Ξ0, define

f̂E(γ) =

∫

RN

f(u, uN)χE(u)eiγuNduduN .

Then

f(u, uN) =
1

2π

∫

R

(

∑

E∈Ξ0

f̂E(γ)χE(u)e−iuN γ

)

dγ

and this expansion can be extended to hold on L2(RN) functions.
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Chapter 3

Estimates for the

Eigenfunctions

3.1 Uniform Bounds for Eigenfuctions of

Periodic Toda Chain and Its Derivatives.

The Agmon metric is a metric introduced by S. Agmon [1] to study the
decay of L2-eigenfunctions of second order elliptic PDEs.

Definition 3.1.1. The Agmon metric is

ρλ,V (x,y) := inf
r : [0, 1] → R

n

piecewise C1 and

r(0) = x, r(1) = y

{
∫ 1

0

(V (r(t)) − λ)
1
2
+ ‖r′(t)‖dt

}

,

where (f)+ means max{f, 0}.
There are several decay results involving the Agmon metric. The version

we need in this paper is a pointwise bound proved by B. Simon and Carmona
[2].

Theorem 3.1.2. Let V be a real and continuous function on Rn that is
bounded below. Suppose λ is a constant that makes {x|λ − V (x) ≥ 0} a
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compact set. Then any L2(Rn) eigenfunction f of the equation (−△+V )f =
λf satisfies

|f | ≤ Cǫe
−(1−ǫ)ρ

λ,V̆
(0,x), (3.1.1)

where ǫ is any positive number, Cǫ is some constant that depends only on ǫ

and V̆ is a function obtained from V by

V̆ (x) = inf
|x−y|≤1

V (y).

In the theorem, where V̆ is defined, we chose a ball of radius 1 centered
at x to take the infimum. But actually, the radius can be any small size as
long as it is fixed. We note one observation here, that if V1 and V2 are two
functions such that V1 ≥ V2 everywhere on Rn, then V̆1 ≥ V̆2.

Corollary 3.1.3. The eigenfunction ΨE2,...,EN
(u) satisfies the bound

|ΨE(u)| ≪ exp
(

−CeC′‖u‖
)

(3.1.2)

for some positive constants C,C ′. Here ≪ is the Hardy symbol which means
that ≤ holds for some positive constant multiple of the right side.

Proof. Recall that ΨE(u) satisfies equation (2.1.6) and hence we can apply
theorem 3.1.2. From equation (2.1.4), it is easy to see that there exists a
positive real number κ such that

V (u) ≥ eκ‖u‖.

After defining V2(u) = eκ‖u‖, we have the following relation between the
Agmon metric of the two

ρE,V̆ (0,u) ≥ ρE,V̆2
(0,u).

Let us give a lower bound for ρλ,V̆2
(0,u). First, it is easy to see that V̆2(u) =

eκ(‖u‖−1)+ . Let r(t) be a piecewise C1 path such that r(0) = 0 and r(1) = u.

Let r(t) = ‖r(t)‖ and let w(t) = r(t)
r(t)

, so that r(t) = r(t)w(t). Then from the

fact that 〈w(t),w′(t)〉 = 0, we have

‖r′(t)‖ = ‖r′(t)w(t) + r(t)w′(t)‖ =
√

(r′(t))2 + (r(t) ‖w′(t)‖)2 ≥ |r′(t)|.
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So that
∫ 1

0

(eκ(‖r(t)‖−1)+ −E)
1
2
+‖r′(t)‖dt ≥

∫ 1

0

(eκ(r(t)−1)+ − E)
1
2
+|r′(t)|dt

≥
∫ 1

0

(eκ(r(t)−1)+ −E)
1
2
+r

′(t)dt ≥
∫ ‖u‖

0

(

e
1
2
κ(r−1)+ −

√
E
)

dr

≥ 2

κ
e−

1
2
κ
(

e
1
2
κ‖u‖ − 1

)

−
√
E‖u‖.

So in a ball of large radius where

2

κ
e−

1
2
κ
(

e
1
2
κ‖u‖ − 1

)

−
√
E‖u‖ ≥ 1

κ
e−

1
2
κe

1
2
κ‖u‖

holds, we have

|ΨE(u)| ≤ Cǫe
−(1−ǫ)ρ

E,V̆
(0,u) ≤ Cǫe

−(1−ǫ)ρ
E,V̆2

(0,u) ≪ exp
(

−CeC′‖u‖
)

for some positive constants Cǫ, ǫ, C and C ′. Inside the ball, |ΨE(u)| is
bounded by a some constant so we have the desired result.

We proceed to give upper bounds for the derivatives of Ψ. We start by
quoting the following theorem on gradient estimates for Poisson equations
from [9]

Theorem 3.1.4. Suppose ω is a solution to the Poisson equation

△ω = f

on an n-dimensional cube Q of side d, and f ∈ C1(Q) ∩ C2(Q̄). Then the
following inequality holds.

| ∂
∂xk

ω(p∗)| ≤ n

d
sup
∂Q

|ω| + d

2
sup

Q
|f |, k = 1, . . . , n ,

where p∗ is the center of the cube.

Using this theorem along with the bound (3.1.2), we obtain
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Corollary 3.1.5. Let Ψ be as in the corollary (3.1.3). Then

‖DαΨ(u)‖ ≤ Cα exp
(

−C ′
αe

C′′
α‖u‖

)

, (3.1.3)

where α = (α1, . . . , αN−1) is a multi-index and Dα = ∂|α|

∂u
α1
1 ···∂u

αN−1
N−1

for some

positive constants Cα, C
′
α and C ′′

α.

Proof. For the case |α| = 1, we take a look at the equation (2.1.3) and set
ω = Ψ and f = (V (u) − E)Ψ. The bound (3.1.2) implies that both of the
functions are bounded by some function of the form of c exp(−c′ec′′|x|). Now
apply the gradient estimate given in the previous theorem by choosing a
(multi-)cube of side 1 centered at u then the inequality is immediate. The
bounds for higher derivatives can be obtained inductively by differentiating
the equation (2.1.3) and observing that all higher derivatives of V grows at
most exponentially while it is always paired with some derivatives of Ψ (
which is again bounded by some function of the form of c exp(−c′ec′′|x|) by
the previous step.)

In particular, corollary 3.1.5 implies that Ψ belongs to the Schwartz class.

3.2 Uniform Bounds for Eigenfunctions of

Open Toda Chain.

The following inequality is needed in order to bound the Whittaker func-
tion, and the proof appears in [14]. We reproduce the proof here.

Lemma 3.2.1. For real numbers γj, j = 1, . . . n and λk, k = 1, . . . n+1, the
following inequality holds.

n
∑

j=1

n+1
∑

k=1

∣

∣γj − λk

∣

∣ −
∑

1≤j<k≤n+1

∣

∣λj − λk

∣

∣ −
∑

1≤j<k≤n

∣

∣γj − γk

∣

∣ ≥ 0. (3.2.1)

Proof. Since the inequality is invariant under permutations between γk’s and
also between λk’s, without loss of generality we may assume that λ1 ≥ λ2 ≥
· · · ≥ λn+1 and γ1 ≥ γ2 ≥ · · · ≥ γn. Then one can check that

∑

1≤j<k≤n+1

∣

∣λj −λk

∣

∣ +
∑

1≤j<k≤n

∣

∣γj −γk

∣

∣ =
n+1
∑

k=1

(

k−1
∑

j=1

(γj − λk) +
n
∑

j=k

(λk − γj)

)

.
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Using the above identity, the inequality can be rewritten as

n+1
∑

k=1

(

k−1
∑

j=1

(
∣

∣γj − λk

∣

∣− (γj − λk)) +

n
∑

j=k

(
∣

∣λk − γj

∣

∣− (λk − γj))

)

≥ 0.

But this is obvious since |a| − a ≥ 0.

Corollary 3.2.2. Let γj, j = 1, . . . n and λk, k = 1, . . . n+1 be real numbers.
Suppose also that maxj{γj} ≥ 2 maxk{λk}. Then the following inequality
holds.

n
∑

j=1

n+1
∑

k=1

∣

∣γj −λk

∣

∣−
∑

1≤j<k≤n+1

∣

∣λj −λk

∣

∣−
∑

1≤j<k≤n

∣

∣γj − γk

∣

∣ ≥ max
j

{γj}. (3.2.2)

If instead, we have minj{γj} ≤ 2 mink{λk},
n
∑

j=1

n+1
∑

k=1

∣

∣γj−λk

∣

∣−
∑

1≤j<k≤n+1

∣

∣λj−λk

∣

∣−
∑

1≤j<k≤n

∣

∣γj−γk

∣

∣ ≥ −min
j
{γj}. (3.2.3)

Proof. Without loss of generality we may assume that γ1 ≤ · · · ≤ γn and
λ1 ≤ · · · ≤ λn+1 . Then maxj{γj} = γn and λn+1 ≤ 1

2
γn. Let Fn be the

left hand side of the first equation, with n to keep track of number of real
variables. If we separate the terms in Fn that involve γn or λn+1, we have

Fn = Fn−1 +

n
∑

k=1

(∣

∣γn − λk

∣

∣ +
∣

∣γk − λn+1

∣

∣−
∣

∣λk − λn+1

∣

∣−
∣

∣γn − γk

∣

∣

)

≥
n
∑

k=1

(

γn − λk +
∣

∣γk − λn+1

∣

∣ + λk − λn+1 − γn + γk

)

=
n
∑

k=1

(∣

∣γk − λn+1

∣

∣ + γk − λn+1

)

≥
∣

∣γn − λn+1

∣

∣+ γn − λn+1 = 2(γn − λn+1) ≥ γn.

The inequalities used in the above are Fn−1 ≥ 0 (which follows from (3.2.1))
and |a| + a ≥ 0.
The inequality for minj{γj} ≤ 2 mink{λk} can be handled by negating all γ
and λ variables.
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Proposition 3.2.3. The N particle generalized eigenfunction φγ(x) of quan-
tum open Toda chain satisfies the inequality

∣

∣φλ(x)
∣

∣ ≤ CeC′‖x‖ (‖λ‖ + 1)M exp

(

−π
2

∑

1≤j<k≤N

∣

∣Re(λj − λk)
∣

∣

)

, (3.2.4)

for some constants C,C ′ and some integer M , provided that for each γj, Im γj

is bounded in some compact interval of R.

Proof. Let φ
[n]
λ1,...,λn

(x) denote the n quantum open Toda chain eigenfunction.
We will use induction on n, with induction hypothesis being

∣

∣φ
[n]
λ (x)

∣

∣ ≤ Cne
C′

n‖x‖(‖λ‖ + 1)Mn exp

(

−π
2

∑

1≤j<k≤n

∣

∣Re(λj − λk)
∣

∣

)

(3.2.5)

for some constants Cn and C ′
n, and some integer Mn. For the initial step of

induction n = 1, the above bound holds trivially. So assuming the induction
hypothesis, we will bound the n+1 quantum open Toda chain eigenfunction
φ

[n+1]
λ (x), which is given by the integral

φ
[n+1]
λ1,...,λn+1

(x1, . . . , xn+1) =

∫

C
µ(γ)Q(γ; λ)φ[n]

γ1,...,γn
(x1, . . . , xn) ×

× exp

(

ixn+1

(

n+1
∑

j=1

λj −
n
∑

j=1

γj

))

dγ.(3.2.6)

The term exp
(

ixn+1

(

∑n+1
j=1 λj −

∑n
j=1 γj

))

can be bounded by CeC′|xn+1|

for some constants C and C ′ since the imaginary parts of λj and γj’s are
bounded. We use the following bounds for µ(γ) and Q(γ; λ)

∣

∣µ(γ)
∣

∣≪
(

‖γ‖ + 1
)

n(n−1)
2 exp

(

π
∑

1≤j<k≤n

∣

∣Re(γj − γk)
∣

∣

)

, (3.2.7)

∣

∣Q(γ; λ)
∣

∣≪ (‖λ‖+1)a(‖γ‖+1)a exp

(

−1

2
π

n
∑

j=1

n+1
∑

k=1

∣

∣Re(γj − λk)
∣

∣

)

(3.2.8)

for some constant a. The first inequality is apparent from the definition of µ
and the second inequality follows from a well known bound (c.f. [28])

∣

∣y
∣

∣

x− 1
2 e−

π
2
|y| ≪

∣

∣Γ(x+ iy)
∣

∣≪
∣

∣y
∣

∣

x− 1
2e−

π
2
|y|, (3.2.9)
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where x + yi lies in some vertical strip and x and x are the minimum and
maximum values of x on that strip. Overall, we see that

∣

∣φ
[n+1]
λ

∣

∣≪ eC′
n‖x‖+C′|xn+1|

∫

C
(‖λ‖ + 1)b(‖γ‖ + 1)c×

× exp

(

π

2

∑

1≤j<k≤n

∣

∣Re(γj − γk)
∣

∣− π

2

n
∑

j=1

n+1
∑

k=1

∣

∣Re(γj − λk)
∣

∣

)

dγ.

Now we may use inequalities from the lemma and its corollaries to show that
the integral on the right hand side is bounded by some function of the form

Cn+1e
C′

n+1‖(x,xn+1)‖(‖λ‖ + 1)Mn+1 exp

(

−π
2

∑

1≤j<k≤n+1

∣

∣Re(λj − λk)
∣

∣

)

.

(3.2.10)
To do this, we separate C into two parts and bound the integral on each
region. Put C = C1 ∪ C2 where

C1 =
{

γ ∈ C
∣

∣ 2 min
k

{Reλk} ≤ Re γj ≤ 2 max
k

{Reλk} for j = 1, . . . , n
}

,

C2 =
{

γ ∈ C
∣

∣ max
j

{Re γj} ≥ 2 max
k

{Reλk} or min
j
{Re γj} ≤ 2 min{Reλk}

}

.

Note that C1 is a compact set and it is disjoint from C2.
On C1, lemma 3.2.1 implies that

∫

C1

(‖λ‖+1)b(‖γ‖+1)c exp

(

π

2

∑

1≤j<k≤n

∣

∣Re(γj − γk)
∣

∣− π

2

n
∑

j=1

n+1
∑

k=1

∣

∣Re(γj − λk)
∣

∣

)

dγ

≪
∫

C1

(‖λ‖ + 1)b(‖γ‖ + 1)c exp

(

−π
2

∑

1≤j<k≤n+1

∣

∣Re(λj − λk)
∣

∣

)

dγ

≪ (‖λ‖ + 1)bp(λ) exp

(

−π
2

∑

1≤j<k≤n+1

∣

∣Re(λj − λk)
∣

∣

)

,

where p(λ) =
∫

C1
(‖γ‖+ 1)cdγ can be easily seen to be a function of at most

a polynomial in λ.
On C2, the inequality 3.2.2 and 3.2.3 can be applied to yield

∫

C2

(‖λ‖+1)b(‖γ‖+1)c exp

(

π

2

∑

1≤j<k≤n

∣

∣Re(γj − γk)
∣

∣− π

2

n
∑

j=1

n+1
∑

k=1

∣

∣Re(γj − λk)
∣

∣

)

dγ
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≪
∫

C2

(‖λ‖ + 1)b(‖γ‖ + 1)c exp

(

−π
2

∑

1≤j<k≤n+1

∣

∣Re(λj − λk)
∣

∣− π

2
q(γ)}

)

dγ,

where

q(γ) =

{

maxj{Re γj} maxj{Re γj} ≥ 2 maxk{Reλk}
−minj{Re γj} maxj{Re γj} < 2 maxk{Reλk}.

The integrand is easily seen to have exponential decay in γ variables and
therefore the integral converges absolutely. Hence integral on region C2 is also
bounded by (3.2.10) for some appropriate constants Cn+1,C

′
n+1 and Mn+1.

Corollary 3.2.4. Fix γ1, . . . , γk−1, γk+1, . . . , γN−1. Let
∣

∣Im γk

∣

∣ be bounded.
The auxiliary function Φγ satisfies

‖Φγ(u)‖ ≤ CeC′‖u‖(‖γ‖ + 1)Me−
(N−2)π

2
|Re γk| (3.2.11)

for some constants C and C ′ and some integer M .

3.3 Unform Bounds for the

Integral Transform of Kharchev-

Lebedev.

Proposition 3.3.1. Fix γ1, . . . , γk−1, γk+1, . . . , γN−1. Let
∣

∣Im γk

∣

∣ be bounded.
Then for any integer m, there exists a constant C such that

∣

∣ξE(γ)
∣

∣ ≤ C(|γk| + 1)−me−
(N−2)π

2
|Re γk| (3.3.1)

holds.

Proof. From the estimates (3.1.2) and (3.2.11), we easily get

∣

∣ξE(γ)
∣

∣ =

∣

∣

∣

∣

∫

RN−1

ΨE(u)Φγ(u)du

∣

∣

∣

∣

≤ C(|γk| + 1)Me−
(N−2)π

2
|Re γk| (3.3.2)

27



for some constant C and some integer M . We will improve this bound by
performing integration by parts. To do this, note that the recursive definition
(2.3.4) for φγ reveals that

φγ(x1, . . . , xN−1) = eixN−1(γ1+···+γN−1)fγ(x1, . . . , xN−2)

for some function fγ(x1, . . . , xN−2). Looking at the definition for
Φ̃γ(x1, . . . , xN), we see that

Φ̃γ(x1, . . . , xN) = ei(xN−1−xN )(γ1+···+γN−1)fγ(x1, . . . , xN−2).

Let v = xN−1 − xN . Since v is spanned by the variables {uk}N−1
k=1 , we may

find a measure dm such that dvdm = du. Now, we perform integration by
parts in v. Each integration by parts brings down (γ1 + · · · + γN−1)

−1 and
it differentiates ΨE(u) with respect to v. The boundary term goes away and

the remaining part is bounded by C(|γk| + 1)M−1e−
(N−2)π

2
|Re γk | due to the

bound (3.1.3). We have to be a little careful when γ1 + · · · + γN−1 = 0. In
that case, first prove the bound away outside some relatively compact open
set containing the set {γk ∈ C

∣

∣γ1 + · · · + γN−1 = 0}, and then use the fact
that ξE(γ) is continuous. We will frequently use this type of argument. We
may repeat this procedure of integration by parts as many times as we need
in order to get the desired bound.
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Chapter 4

Completeness Proof of

Pasquier-Gaudin Solutions.

Suppose there exist E = (E1, E2, . . . , EN) and an L2(RN−1) function

ΨE(u) such that Ψ̃E(u, uN) = ΨE(u)e
i

E1√
N

uN satisfies equation (2.3.1). We
have proved so far that

ξE(γ) =

∫

RN−1

ΨE(u)Φγ(u)du

satisfies three properties.

(A1) It satisfies the Baxter equation tE(γj)ξE(γ) = iNξE(γ + iej) +
i−NξEEE(γ − iej). (Proposition 2.5.1)

(A2) It is an entire function in each of its variables γj. (Proposition 2.5.3)

(A3)
∣

∣ξE(γ)
∣

∣≪ (|γk|+1)−me−
N−2

2
π|Re(γk)|, when other variables γ1, . . . , γk−1,

γk+1, . . . , γN−1 are fixed. (Proposition 3.3.1)

We will show that the above properties imply that E ∈ Ξ and that ξE(γ)
is a Pasquier-Gaudin solution (definition 2.7.2). Then the proof of the main
theorem 2.7.4 will be complete.
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4.1 Liouville’s Theorem for Periodic Func-

tions

The following theorem is a very special case of a known theorem about
almost periodic functions in [24]. The proof for this special case is elementary,
and we include it here.

Theorem 4.1.1. Suppose f is an entire function and f(z + 2i) = f(z).
Suppose also that

|f(z)| ≤ Ceπn|Re(z)|

for some constant C and an integer n. Then

f(z) = ane
πnz + an−1e

π(n−1)z + · · ·+ a−ne
−πnz.

Proof. Let g(z) = eπ(n+1)zf(z). Let z = 1
π
Logw and

h(w) = g( 1
π
Logw) = g(z).

h(w) is well defined because g(z + 2i) = g(z). Also, h(w) is holomorphic on
C∗ = C\{0}. The singularity 0 of h(w) is a removable singularity, which can
be seen as follows: As w → 0, Re z = 1

π
Log |w| → −∞ and h(w) = g(z) → 0

because of the given bound for f(z). So h(w) is entire. The bound for f(z)
gives the bound |h(w)| ≤ C|w|2n+1. Hence by the usual Liouville’s theorem
and the definition of g(z), h(w) is a polynomial of w of degree less than 2n+1.
Now the constant term of h(w) is zero because h(0) = 0. Undoing the change
of variables, one gets f(z) = ane

πnz + an−1e
π(n−1)z + · · ·+ a−ne

−πnz.

4.2 Estimates for Fundamental Solutions of

the Baxter Equation

The growth of σ±(z) defined in are described by the following bounds.

Proposition 4.2.1. Let M = maxk{Im θk} and L = mink{Im θk}. There
exists a positive real number P such that when A ≤ Im z ≤ B and |Re z| ≥ P ,
the following holds.

(a) (1 + |z|)−B+L−1
2 e

N
2

π|Re z| ≪
∣

∣

∣

∣

K+(z)
QN

k=1 Γ
(

1−i(z−θk)
)

∣

∣

∣

∣

≪ (1 +

|z|)−A+M−1
2 e

N
2

π|Re z|.
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(b) (1+ |z|)A−M−1
2e

N
2

π|Re z| ≪
∣

∣

∣

∣

K−(z)
QN

k=1 Γ
(

1+i(z−θk)
)

∣

∣

∣

∣

≪ (1+ |z|)B−L−1
2 e

N
2

π|Re z|.

(c) Suppose A ≥ M + 1. Then for any constants a and b there exists a

positive real r such that
∣

∣eNπz (aσ+(z) + bσ−(z))
∣

∣ ≫ (|z| + 1)re
N
2

π|Re z|

holds.

Proof. Recall the definition of K+(z) from equation (2.6.4). tE(z) is a poly-
nomial of degree 2 or higher. So we may choose a large constant P so that

∞
∑

n=1

∣

∣

∣

∣

1

tE(z + ni)tE(z + ni)

∣

∣

∣

∣

<∞

whenever |Re z| ≥ P in a horizontal strip. In fact, we may take P large
enough that

∞
∑

n=1

∣

∣

∣

∣

1

tE(z + ni)tE(z + ni)

∣

∣

∣

∣

≤ 1

3
.

Hence from propositions B.0.2 and B.0.3 from the appendix, we have

1

2
≤ K+(z) ≤ 3

2
if |Re z| ≥ P.

The products of gamma functions in the denominator can be handled by
inequality (3.2.9), which implies

(1 + |z|)−B+L−1
2 e

1
2

π|Re z| ≪
∣

∣Γ
(

1 − i(z − θk)
)∣

∣≪ (1 + |z|)−A+M−1
2 e

1
2

π|Re z|.

This immediately implies inequality (a). Proof for inequality (b) is essentially
same. Now for inequality (c), we use inequalities (a) and (b) to get

∣

∣eNπz (aσ+(z) + bσ−(z))
∣

∣ ≥ |b||eNπzσ−(z)| − |a||eNπzσ+(z)|

≫
(

(1 + |z|)A−M−1
2 − C(1 + |z|)−A+M−1

2

)

e
N
2

π|Re z|

For some positive constant C. Since A−M ≥ 1,
(

(1 + |z|)A−M−1
2 − C(1 + |z|)−A+M−1

2

)

≫ (1 + |z|)A−M−1
2

for P large enough and we have inequality (c) after setting r = A−M− 1
2
.
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4.3 Solutions of the Baxter Equations

Satisfying Certain Estimates

Let us fix γ1, . . . , γk−1, γk+1, . . . , γN−1 and let z = γk. To simplify our
notation, we introduce

σ(z)
def
= ξE(γ1, . . . , γk−1, z, γk+1, . . . , γN−1).

Then from the properties (A1)-(A3) we see that σ(z) satisfies the following
properties[a].

(B1) It satisfies equation (2.6.2).

(B2) It is an entire function.

(B3) It is bounded by C(|z| + 1)−me−
N−2

2
π|Rez|.

Our first step towards proving the main theorem 2.7.4 is to prove the following
proposition.

Proposition 4.3.1. Let σ(z) be a function such that satisfies properties
(B1)-(B3). Then E ∈ Ξ and

σ(z) = CeNπz aσ+(z) + bσ−(z)
∏N

k=1 sinh π(z − δk)
(4.3.1)

for some constants a and b satisfying aσ+(δ1(E)) + bσ−(δ1(E)) = 0.

Lemma 4.3.2. eNπzW [σ(z); σ±(z)] = c± for some constants c±

Proof. Let S = {z| A ≤ Im z ≤ A+ 2} where A is chosen so that none of the
zeros of the Hill determinant lies on the boundary and A ≥ M+ 1. Part (a)
of proposition 4.2.1 implies that there exists a real number p such that

|σ+(z)| ≪ (1 + |z|)pe
Nπ
2

[a]This is same as the functional-difference equation (2.6.2) obtained by using Sklyanin’s
separation of variables. A priori, we do not know that ξE(γ) is a product of one variable
functions. So we cannot use Sklyanin’s separation of variables, and we avoid it by saying
we have fixed γ1, . . . , γk−1, γk+1, . . . , γN−1.
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and

|σ+(z + i)| ≪ (1 + |z|)pe
Nπ
2

hold in S ∩ {z| |Re z| > P}. Namely, we may set p = −A + M− 1
2
. Using

the bound from property (B3) with m from (B3) chosen to be m = p+1, we
have

|eNπzW [σ(z); σ+(z)]| ≪ (|z|+1)pe
Nπ
2

|Re z|(|z|+1)−me−
(N−2)π

2
|Re z| ≪ (|z|+1)p−meπ|Re z|.

Although the above inequality initially holds in S∩ {z| |Re z| > P}, it holds
for the whole horizontal strip S because eNπzW [σ(z); σ+(z)] is continuous.
Also eNπzW [σ(z); σ+(z)] is periodic of period 2i because of equation (2.6.9).
So we may apply the Liouville’s theorem for periodic functions and get

eNπzW [σ(z); σ+(z)] = C1e
πz + C2 + C3e

−πz.

But C1 and C3 has to be zero since in the above bound p − m < 0.
So eNπzW [σ(z); σ+(z)] is constant. Similar argument can be used for
eNπzW [σ(z); σ−(z)].

Corollary 4.3.3. Let σ̃(z) be the linear combination aσ+(z) + bσ−(z) where
a and b are any pair of real numbers, not both zero, satisfying ac+ + bc− = 0.

Then ν(z)
def

= σ(z)
σ̃(z)

is a periodic meromorphic function of period i. Any pole

of ν(z) is a zero of the Hill determinant.

Proof. From the previous lemma, W [σ(z); σ̃(z)] = e−Nπz(ac+ + bc−) = 0.
This means that σ(z)σ̃(z + i) − σ(z + i)σ̃(z) = 0. Hence

ν(z)
def
=
σ(z)

σ̃(z)
=
σ(z + i)

σ̃(z + i)
= ν(z + i) (4.3.2)

shows that it is periodic. This means that if there is a pole, then all its
shifts of integer multiples of i is again a pole. So the poles are the periodic
zeros of aσ+(z) + bσ−(z), and therefore they are zeros of the Wronskian
W [σ+(z); σ−(z)]. Then the definition of the Hill determinant implies that
they are zeros of the Hill determinant.

So we know that the poles, if they exist, are located at some of the δk’s
and its periodic shifts. Hence we may multiply sinh(z − δk) for some k’s to
make it an entire function.
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Lemma 4.3.4. Let I ⊂ {1, . . . , N} be the smallest set that makes

f(z)
def

= e−Nπzν(z)
∏

k∈I

sinh π(z − δk)

an entire function. Then f(z) is a constant function.

Proof. f(z) is an entire function of period 2i by our construction. From
bound (c) of proposition 4.2.1 we know that in S ∩ {z| |Re z| > P},

∣

∣

∣

∣

e−Nπz 1

σ̃(z)

∣

∣

∣

∣

=
1

|eNπz (aσ+(z) + bσ−(z))| ≪ (1 + |z|)−re
−Nπ

2
|Re z|

for some positive real number r. Also, property (B3) for σ(z) states that

|σ(z)| ≪ (|z| + 1)−me−
N−2

2
π|Rez|. So we see that

∣

∣e−Nπzν(z)
∣

∣ =

∣

∣

∣

∣

e−Nπz 1

σ̃(z)

∣

∣

∣

∣

|σ(z)| ≪ (|z| + 1)−1e−(N−1)π|Re z|

outside some compact set of the strip. Now, |∏k∈I sinh π(z−δk)| is bounded
by some multiple of e#(I) π|Re z|. This implies that

|f(z)| ≪ (|z| + 1)−1eπ|Re z|.

Hence the Liouville’s theorem for periodic functions can be applied to yield
that f(z) is a constant.

Proof of proposition 4.3.1. Since f(z) = C,

C = e−Nπzν(z)
∏

k∈I

sinh(z − δk).

Solving this for σ(z) gives

σ(z) = CeNπz aσ+(z) + bσ−(z)
∏

k∈I sinh(z − δk)
.

Now, if I ( {1, . . . , N}, then from proposition 4.2.1 we have

|σ(z)| ≫ e−#(I) π|Re z| (eNπz(aσ+(z) + bσ−(z))
)

≫ (1 + |z|)re(
N
2
−#(I))πz .

This contradicts the boundedness property (B3). Hence I = {1, . . . , N} and
we have equation (4.3.1). Finally, in order for σ(z) to be entire, the periodic
zeros of aσ+(z) + bσ−(z) should contain all the zeros of

∏N
k=1 sinh π(z − δk).

More specifically, aσ+(δk) + bσ−(δk) = 0 for k = 1, . . . , N . Comparing this
with definition 2.7.1, we see that E ∈ Ξ.
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4.4 Proof of the Main Theorem

Proof of the main theorem 2.7.4. Applying proposition 4.3.1 to σ1(z) yields
that E ∈ Ξ and

σ1(z) = CeNπz aσ+(z) + bσ−(z)
∏N

k=1 sinh π(z − δk)
.

Since this result is obtained after fixing γ2, . . . , γN−1, when considering the
above equation in terms of ξE(γ), we should think of C as a function of
γ2, . . . , γN−1. Hence

ξE(γ) = C(γ2, . . . , γN−1)e
Nπγ1

aσ+(γ1) + bσ−(γ1)
∏N

k=1 sinh(γ1 − δk)
.

Applying proposition 4.3.1 to σ2(z) will yield

ξE(γ) = C ′(γ1, γ3, . . . , γN−1)e
Nπγ2

aσ+(γ2) + bσ−(γ2)
∏N

k=1 sinh(γ2 − δk)
.

So we can define a meromorphic function C ′′(γ) in two different ways as

C ′′(γ) =
C(γ2, . . . , γN−1)

eNπγ2
aσ+(γ2)+bσ−(γ2)
QN

k=1 sinh(γ2−δk)

=
C ′(γ1, γ3, . . . , γN−1)

eNπγ1
aσ+(γ1)+bσ−(γ1)
QN

k=1 sinh(γ1−δk)

.

It is apparent from above that the function C ′′(γ) is independent of both γ1

and γ2 and hence

ξE(γ) = C ′′(γ3, . . . , γN−1)e
N(γ1+γ2) aσ+(γ1) + bσ−(γ1)

∏N
k=1 sinh(γ1 − θk)

· aσ+(γ2) + bσ−(γ2)
∏N

k=1 sinh π(γ2 − θk)
.

Repeating this procedure, we have ξE(γ) in the form

ξE(γ) = C̃

N−1
∏

j=1

eNπγj
aσ+(γj) + bσ−(γj)
∏N

k=1 sinh π(γj − θk)
,

where C̃ is a constant because it does not depend on any γ1, . . . , γN−1. Fi-
nally, absorbing C̃ into a and b, we get

ξE(γ) =
N−1
∏

j=1

eNπγj
aσ+(γj) + bσ−(γj)
∏N

k=1 sinh π(γj − θk)
.
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Complete Set of
Joint Eigenfunctions

Entire Solutions
of the Baxter Equation

of Minimal Growth
in the Real Direction

Kharchev-Lebedev
Transform

Inverse Kharchev-Lebedev
Transform

Figure 4.5.1: The Correspondence for the Joint Eigenfunctions

4.5 Discussion

Proposition 4.3.1 reveals an interesting fact about the Baxter equation,
considered as a functional difference equation.

Corollary 4.5.1. The entire solutions of the functional difference equation

(zN −E1z
N−1 + · · ·+ (−1)NEN)σ(z) = iNσ(z + i) + i−Nσ(z − i)

has the growth of at least O(e−
Nπ
2

|Re z|) and solutions satisfying this growth
condition exist if and only if E = (E1, . . . , EN) ∈ Ξ. Moreover, when a
solution exists, it is unique up to a constant multiple.

Figure 4.5.1 gives an overall picture of the relation between the quantum
periodic Toda chain and this functional difference equation which we called
the Baxter equation. The quantum periodic Toda chain is a degenerate
case of the integrable periodic Discrete Self-Trapping (DST) chain which in
turn is a degenerate case of the Heisenberg XXX spin chain. The Baxter
equations appear in these systems also. For example, the Baxter equation
for the integrable DST chain [23] is

t(z)σ(z) =

(

z − i

2

)N

σ(z + i) + iNσ(z + i), (4.5.1)

where t(z) is a polynomial with the coefficients being the eigenvalues of the
operator T (z) of the DST chain. It will be interesting to find out whether
there exists an integral operator that gives the description of figure 4.5.1. My
rough conjecture is that even for the DST chain, we can consider the min-
imally growing solution of the Baxter equation whose existential condition
will give us the quantization condition for the DST chain. But the solutions
considered may not be entire and we may need to allow some singularities.
In light of this conjecture, the meromorphic solutions of the Baxter equations
satisfying some boundedness condition can be a meaningful thing to study.
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Appendix A

Inverse Transform of

Kharchev-Lebedev Integral

From the inversion formula (2.3.8) and Fourier inversion formula, we have

1

2π

∫

R2N

h(y, y
N
)
(

φγ(x)e−ix
N

ǫ
)

φγ(y)e−iyN ǫµ(γ) dy
N
dǫdydγ = h(x, xN )

(A.0.1)
for any continuous and L2(RN) function h. Let u and uN be the change of
variables given in section 2.1. The above identity will hold for h(x, xN ) =
f(u)g(uN) with f and g being Schwartz class functions on RN−1 and R

respectively. In the changed variables, the identity becomes

1

2π

∫

R2N

f(u′)g(u′N)Φγ(u)e
−ix

N
(ǫ− 1√

N

P

γk)
Φγ(u′)e

−iy
N

(ǫ− 1√
N

P

γk)
µ(γ)du′Ndǫdu

′dγ

= f(u)g(uN).

We now perform the integration with respect to du′N and dǫ, with
ǫ shifted by 1√

N

∑

γk. The integral kernel we have to look at is

e
i 1√

N
u′

N
ǫ
e
−i

“

1√
N

uN+
P

ak(uk−u′
k
)
”

ǫ
. Performing the integrals which is just Fourier

transform and its inversion, we have

1

2π

∫

R2N−2

g

(

1√
N
uN +

∑

ak(uk − u′k)

)

f(u′)Φγ(u)Φγ(u′)µ(γ)du′dγ = g(uN)f(u).
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Now we use Lebesgue dominated convergence theorem on sequence of
gn(uN)’s which approach to constant function 1. This is possible because
f(u) is assumed to be Schwartz class and Φγ(u)Φγ(u′)µ(γ) only has a poly-
nomial growth. Thus we obtain the following identity

1

2π

∫

R2N−2

f(u′)Φγ(u)Φγ(u′)µ(γ)du′dγ = f(u). (A.0.2)
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Appendix B

Estimates for Infinite

Determinants

Consider the (semi-)infinite determinant

P =

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 a1 0
b1 1 a2

0 b2 1
. . .

. . .
. . .

∣

∣

∣

∣

∣

∣

∣

∣

∣

. (B.0.1)

It is known [35] that the above determinant converges absolutely whenever
∑

j |ajbj | converges. In such a case we may reorder the terms of the deter-
minant and get

P = 1 −
∑

j

ajbj +
∑

j 6=k

ajbjakbk −
∑

j,k,l

· · · .

In case
∑

j |ajbj | < 1 we have

|P | ≥ 1 −
∑

j

|ajbj | −
(

∑

j

|ajbj |
)2

−
(

∑

j

|ajbj |
)3

· · · = 2 − 1

1 −∑j |ajbj |
.

One special case of the above inequality is the following.
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Proposition B.0.2. If
∑

j |ajbj | ≤ 1
3

then

|P | ≥ 1

2
.

Similarly, we can prove the following upper bound

Proposition B.0.3. If
∑

j |ajbj | ≤ 1
3

then

|P | ≤ 3

2
.
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