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Abstract of the Dissertation

Rigidity of Rank-One Factors of Compact
Symmetric Spaces

by

Andrew Clarke

Doctor of Philosophy

in

Mathematics

Stony Brook University

2008

In this dissertation we study the minimal submanifolds of product spaces
and prove global rigidity theorems for such submanifolds. Specifically, we
consider closed minimal submanifolds M ⊆ M1 ×M2 where M1 and M2 are
compact symmetric spaces. If both factors have rank one and M is minimal
and satisfies two uniform bounds on its induced data, then it must be a
totally geodesic subspace of the first factor. If only the first factor is of rank
one, then that factor itself is rigid in this way.

In particular this implies that these minimal submanifolds are isolated
from minimal submanifolds that are not of this type.

This analysis does not apply to the exceptional case of the Cayley Plane
since this space does not admit a submersion from a Euclidean sphere.
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Introduction

Symmetric spaces can in many ways be considered to be the model spaces in
Riemannian geometry. A wide variety of interesting geometric ideas can be
studied on them. Questions of holonomy, comparison geometry, pinching of
curvature, Einstein metrics and the geometry of isometries and Killing fields
all have very precise resolutions for Riemannian symmetric spaces.

One example of this is the study of totally geodesic submanifolds. A
submanifold is totally geodesic if the ambient connection and the induced
Levi-Civita connection on the submanifold coincide. In general these sub-
manifolds are rare. In dimension greater than one, their existence indicates
a certain degree of local symmetry. Such a submanifold is preserved by the
ambient geodesic spray of any of its tangent spaces.

For symmetric spaces there is a very precise characterisation of totally
geodesic submanifolds. Using the algebraic structure of the isometry group,
one can show that the totally geodesic submanifolds that contain a point
p ∈M are in an exact one-to-one correspomndence with subspaces V ∈ TpM
that are preserved by the Riemannian curvature tensor at p.

In this dissertation, we study the totally geodesic submanifolds of a Rie-
mannian symmetric space of compact type. This will be done in the context
of minimal submanifolds.

The minimality of a submanifold is a variational condition. An immersed
submanifold i : M → X is minimal if it is a critical point of the volume
function

volp : Immp(X) → R
defined on the set of p-dimensional immersed submanifolds with given bound-
ary conditions. Minimality is a classical and natural condition and the knowl-
edge of the set of minimal submanifolds of a space, and closed ones in partic-
ular, contributes greatly to an understanding of the space. One case of this
is the important role of geodesics in Riemannian geometry.
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The most naive question to ask may be of how many minimal submani-
folds there are near a given one. A common approach to this is to consider
the Jacobi operator on the submanifold. The zero eiegnspace of this opera-
tor corresponds to infinitesimal deformations through minimal submanifolds.
The approach that we take in this dissertation is different though. One re-
sult that we prove is that there is a C3-open neighbourhood in the set of
immersions into a compact-type symmetric space so that any closed minimal
submanifold in it must be totally geodesic and of a particular type. These
totally geodesic subspaces are isolated from other minimal submanifolds.

Specifically, we show that if a Riemannian symmetric space X of compact
type splits as a product

X = X1 ×X2

where X1 is symmetric and of rank one, then any closed minimal submanifold
M ⊂ X that is close (in a precise sense) to a totally geodesic factor X1×{p}
must be totally geodesic and of the same form. In this sense, the rank one
subspaces are rigid and isolated from other minimal submanifolds of X. This
discussion will be made more clear in Chapters 4 and 5.

The organisation of this dissertation is quite simple. Chpaters 1 and 2
are primarily background material on symmetric spaces and minimal sub-
manifolds respectively. They include some technical statements from other
sources, but no original proofs.

Chapter 3 contains some elementary calculations that are used later. The
main results and proofs are contained in Chapters 4 and 5. These chapters
are organised so that the principal results are made at the start of Chapter 4
with the proofs in the following sections. Chapter 5 consists of the extension
of the main results for X1 = Sn to include CPn and HPn.
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Chapter 1

Elementary Background on
Symmetric Spaces

1.1 Riemannian Symmetric Spaces

The content of this dissertation is in large part the proof of a theorem that
pertains to the submanifolds of a space with a large degree of symmetry. To
be precise, we will take the ambient manifold to be a symmetric space and
the submanifolds to be minimal and of a particular type with respect to the
algebraic structure of the ambient space. We will outline all of these concepts
in detail in the coming chapters and then ultimately state and prove these
statements in chapters 4 and 5. The principal reference for this chapter is
Kobayashi and Nomizu [4] which contains an excellent introduction to sym-
metric spaces. We will assume that the manifold M is connected at all times.

Let (M, g) be a Riemannian manifold. For x ∈ M and U a sufficiently
small neighbourhood of x we can define a map sx on U by

sx(exp(X)) = exp(−X)

where exp is the exponential map at x and X is a tangent vector at x. We
then have that s2

x = Id and so sx is a self-diffeomorphism of U . We refer to
sx as the symmetry at x. The defining characteristic of sx is that it reverses
geodesics through x. The derivative of sx at x is −Id.

The map sx can be locally defined at any point in a Riemannian manifold.
The Riemannian manifold (M, g) is a locally symmetric space if for every
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x ∈M , sx is an isometry of U , for sufficiently small U . (M, g) is a symmetric
space if for each x, sx can be extended to a global isometry of M .

Two facts that we will note follow trivially from this definition. The first
is that a symmetric space is complete. This follows since geodesics can be
extended indefinitely, by a correct use of the symmetries along it. The second
fact is that the isometry group of a symmetric space acts transitively. The
large collection of symmetries indicates that this should be so. The manifold
M is then of the form M = G/H.

We also note that if R is the curvature tensor of (M, g) and ∇ is the
Levi-Civita connection then we have

∇R = 0. (1.1)

∇R is clearly invariant under the action of all isometries. That is, g∗(∇R) =
∇R. However, for any x ∈M ,

s∗x(∇R)(X, Y, Z,W ) = sx

(
(∇sxXR)sxY,sxZ(sxW )

)
= (−1)5(∇R)(X, Y, Z,W ).

We conclude that ∇R = 0.

The observation that M = G/H omogeneous will allow us to consider
the Lie group G of isometries of (M, g) instead of M itself. We assume that
G is connected. The action of G and of the isotropy of a point will be our
principal focus. We fix a point o ∈M . The action of the symmetry so on M
induces an action on G. We define a homomorphism σ by

σ(g) = so ◦ g ◦ s−1
o .

It is clear that σ2 = Id. It is not necessary that so ∈ G but conjugation by
an element sends the component of the identity to itself so σ ∈ G for g ∈ G.
σ in turn induces an involutive automorphism of the Lie algebra g. This
automorphism will be used extensively in the following section to determine
the metric and curvature of the space M .

A converse statement is that if so is an involutive diffeomorphism of M =
G/H that fixes o = [H] and has derivative −1 at o then for any other x ∈M
we can define sx by

sx = g ◦ so ◦ g−1 where x = g(o).
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sx is a diffeomorphism with square the identity, that fixes x and acts by −1
tangent to x. We will give criteria for when the maps sx are all isometries of
M .

Let σ be the involutive automorphism of the group G. It then induces an
involutive automorphism of the Lie algebra g. σ2 = Id so g splits as a direct
sum g = h+m where h is the +1-eigenspace of σ and m is the −1-eigenspace.

If G is a Lie group, we can identify the tangent space to G at the identity
with g, the set of left-invariant vector fields on G. Similarly, suppose that
M is a Riemannian symmetric space and M = G/H. Then π : g → ToM is
surjective with kernel h so π : m → ToM is an isomorphism. We will make
use of this identification throughout. The curvature of M will be able to be
expressed in terms of Lie brackets of elements of m.

In the following section we will almost exclusively consider g, m and σ.

1.2 Orthogonal Symmetric Lie Algebras

In this section we describe some properties of Lie algebras of Killing fields
to symmetric spaces and how the geometry of the symmetric space can be
determined purely algebraically. We emphasise at this stage that we are ex-
clusively interested in real Lie algebras.

A symmetric Lie algebra is a triple (g, h, σ) consisting of a Lie algebra g

with an automorphism σ of g that satisfies σ2 = 1, together with h = {X ∈
g ; σ(X) = X}. A symmetric Lie algebra is the infinitesimal model for a
symmetric quotient space M = G/H.

Since σ2 = 1 on g we can split g into the +1 and −1 eigenspaces of σ.
Specifically, let m = {X ∈ g ; σ(X) = −X}. We then have the decomposition

g = h⊕m.

It follows that h and m together satisfy

[h, h] ⊆ h,

[h,m] ⊆ m,

[m,m] ⊆ h.
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That is, h acts on m. We assume that this action is effective in the sense
that no non-zero element of h annihilates every element of m. For brevity we
won’t continue to refer to this assumption.

The action of h on m is by the restriction of the adjoint action. De-
note the induced algebra of endomorphisms by adm(h). We consider the
connected group K ⊆ GL(m) of endomorphisms of m that has Lie algebra
adm(h) ⊆ gl(m). If K is compact we say that (g, h, σ) is an orthogonal sym-
metric Lie algebra. In this case, m has an inner product that is invariant
under the action of K, and hence h.

If g is a semi-simple Lie algebra one can express (g, h, σ) as a direct sum
of symmetric Lie algebras of the form

1. (g′ + g′,∆(g′), σ′) where g′ is simple,

2. (g′, h′, σ′) where g′ is simple.

More precisely, the Lie algebra g decomposes as a direct sum of simple ideals.
The automorphism permutes the simple ideals so the decomposition can be
expressed as

g = (g1 + g′1) + · · ·+ (gk + g′k) + gk+1 + · · ·+ gn. (1.2)

σ restricts to be an isomorphism between gi and g′i for i = 1, . . . , k and re-
stricts to be an automorphism on gj for j = k + 1, . . . , n.

Example. In the first of the two distinguished cases σ′ is defined by
σ′(X, Y ) = (Y,X). h′ = ∆(g′) is the diagonal {(X,X) ; X ∈ g′} and the
transverse subspace is m′ = {(X,−X) ; X ∈ g′}.

The map σ extends to the product G×G by (g, h) 7→ (h, g) where G is a
corresponding Lie group. The quotient G×G/∆G is diffeomorphic to G via
the map g 7→ [(g, e)] and the symmetry can be understood on G as follows.

σ(g, e) = (e, g) = (g−1g, g) = (g−1, e) · (g, g) ∼ (g−1, e)

so the map σ on G×G descends to a map on the quotient, or on the group
G itself by

σ̃ : g 7→ g−1.
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Example. Consider the orthogonal symmetric Lie algebra (so(n+m), so(n)+
so(m), σ) where σ is conjugation by the matrix(

In 0
0 −Im

)
on so(n + m). This is the symmetric Lie algebra associated to the Grass-
mannian of n-planes in Rn+m. An element of so(n + m) decomposes into
blocks (

A −BT

B C

)
where A ∈ so(n), C ∈ so(m) and B is an m × n-matrix. h is the set where
B = 0 and m is where A = C = 0.

A symmetric Lie algebra (g, h, σ) is said to be irreducible if in the decom-
position g = h ⊕ m, the subalgebra [m,m] ⊂ h acts irreducibly on m by the
adjoint representation. Otherwise it is referred to as reducible. This perhaps
seems like an unusual definition, but one may consider [m,m]⊕m to be the
smallest subalgebra of g that contains all information about the space m and
the symmetry σ.

If (g, h, σ) is an orthogonal symmetric Lie algabra and g is semi-simple,
the irreduciblity of (g, h, σ) is equivalent to the condition that (g, h, σ) cannot
be decomposed into two or more proper factors, as in Equation 1.2. In this
case, h = [m,m] and h acts irreducibly on m.

A result that is fundamental to the consideration of the Riemannian ge-
ometry of symmetric spaces is the following relation between tensor fields on
the manifold G/H and tensors on the vector space m.

Theorem 1.1. [4] There is a one-to-one correspondence between G-invariant
tensor fields on the manifold M = G/H and Ad(H)-invariant tensors on the
vector space m.

This is particularly of use when we consider inner products. There is a
one-to-one correspondence between metrics on M for which G acts by isome-
tries, and inner products on m that are invariant under the adjoint action of
H.
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Observation. Suppose 〈 , 〉 is a G-invariant metric on M = G/H. Then
the map so that descends from the automorphism σ is an isometry of M and
hence the maps sx are as well.

That is, an involutive automorphism of G and a G-invariant inner prod-
uct on M give M the structure of a Riemannian symmetric space.

For example, let (g, h, σ) be an orthogonal symmetric Lie algebra. Then
the group of transformations by the adjoint action of H is compact and there
is necessarily then an H-invariant inner product on m.

The canonical symmetric bilinear form on a Lie algebra g is the Killing
form. This is defined as

κ(X, Y ) = Tr(adX ◦ adY ).

κ is invariant under the adjoint action of g on itself.

Theorem 1.2. The Killing form is non-degenerate if and only if the Lie
algebra g is semi-simple.

We can further refine our definitions to consider when the Killing form is
positive definite or negative definite. An orthogonal symmetric Lie algebra
(g, h, σ) is said to be of compact type if the Killing form for g is negative
definite on the subspace m. It is of non-compact type if it is positive definite.
These definitions are made because of the implications they make on the as-
sociated simply-connected symmetric M . If κ is negative definite on m, −κ
defines an invariant metric on M with Ricci curvature bounded above zero.
By Myers theorem M must be compact. We will elaborate below.

We will assume that the Lie algebra g is of compact type. The Killing
form restricts to m and induces an inner product by

〈X, Y 〉 = −κ(X, Y ).

This is the inner product on m that we will consider and this will induce the
Riemannian metric on M that we will study.

We must also consider another bilinear form on m that will be determined
as follows. For X and Y in m, adY maps m to h, and adX sends h to m. We
consider adX ◦ adY as an endomorphism of m, and take its trace. Define B
by

B(X, Y ) = Trm(adX ◦ adY ).
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We will give an extended explicit derivation of some properties of B.

Proposition 1.3. B is a symmetric bilinear endomorphism on m.

Proof. Bilinearity is obvious. If 〈 , 〉 is the metric arising from the Killing
form, B can be expressed as

B(X, Y ) =
∑

i

〈[X, [Y, ei]], ei〉 =
∑

i

〈ei, [Y, [X, ei]]〉 = B(Y,X)

where {ei} is a Killing-orthonormal basis for m. This follows since κ is ad-
invariant. 2

Proposition 1.4. B is invariant under the action of h on m.

Proof. Let G be the simply connected Lie group with Lie algebra g and
let H be the connected subgroup of G with corresponding algebra h. The
invariance of B under the action of h on m is equivalent to its invariance
under the action of H. The adjoint action of H on g is by automorphisms
so for h ∈ H and X ∈ m,

adAdh(X) = Adh ◦ adX ◦ Ad−1
h .

This implies that

(Ad∗hB)(X, Y ) = B(Adh(X), Adh(Y ))

= Trm(Adh ◦ adX ◦ adY ◦ Ad−1
h )

= Trm(adX ◦ adY )

= B(X, Y )

and B is H-invariant. 2

That is, κ and B are H-invariant symmetric bilinear forms on m. If (g, h, σ)
is irreducuble they can be compared.

Proposition 1.5. Let (g, h, σ) be an irreducible orthogonal symmetric Lie
algebra of compact type with decomposition g = h⊕m. Let κ be the restriction
of the Killing form to m and let B be the H-invariant symmetric form that
was defined above. Then there exists ρ > 0 such that

B(X, Y ) = ρ κ(X, Y )

for all X, Y ∈ m.
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Proof. We diagonalise the form B in terms of κ. That is, we can define
an endomorphism of m that we also denote by B by

B(X, Y ) = κ(B(X), Y ).

B is symmetric so we can find an orthonormal basis of eigenvectors for B.
Let Vρ ⊆ m be a non-trivial eigenspace. Then Vρ is invariant under the action
of h since B and κ are invariant. Since m is an irreducible representation of
h we must have that Vρ = m and B = ρ κ.

B can be expressed as

B(X, Y ) =
∑

i

〈[X, [Y, ei]], ei〉 = −
∑

i

〈[X, ei], [Y, ei]〉

so it is negative semi-definite and ρ ≥ 0. If ρ = 0, we have [X, ei] = 0 for
all X ∈ m and for all ei in the basis. This in turn implies that [m,m] = 0.
However, as was noted earlier, if (g, h, σ) is an irreducible and orthogonal
symmetric Lie algebra we have [m,m] = h. We then conclude that ρ > 0. 2

Example. We return to the example (g + g,∆(g), σ) that we gave earlier
that is associated to a compact Lie group. In this case we can see that
h = ∆(g) = {(X,X)} and m = {(X,−X)}. One can easily verify that for
X̃, Ỹ in m

κ(X̃, Ỹ ) = Trg+g(adX̃ ◦ adỸ )

= 2Trm(adX̃ ◦ adỸ )

= 2B(adX̃ ◦ adỸ )

so ρ = 1/2.

We note that ρ is entirely dependent on the triple (g, h, σ) and is not
subject to any arbitrary choices. It is specified in the same way that m is
specified by g and σ.

If (g, h, σ) is not irreducible we can also compare B and κ. Suppose that

g = g1 + · · ·+ gk,

h = h1 + · · ·+ hk,

m = m1 + · · ·+ mk,

10



where (gi, hi, σi) is an irreducible orthogonal symmetric Lie algebra of com-
pact type. and σi = σgi

. Then the Killing form of gi is equal to the restric-
tion of the Killing form of g. Also, since [mi,mj] = 0 for i 6= j we have that
B(mi,mj) = 0. B|mi

is an hi invariant symmetric form on mi so by the same
argument to above we have

B|mi
= ρi κ|mi

for ρi > 0 (1.3)

and, B =
∑

i

Bmi
=
∑

i

ρi κ|mi
. (1.4)

If we define ρ = min{ρi} then for any X ∈ m

−B(X,X) ≥ ρ‖X‖2.

This inequality is used in the chapters to follow.

We can make this calculation more explicit and more in perspective by
noting that the tensor is related to the intrinsic geometry of M . This uses an
identity that we prove in the following section. We have previously defined a
metric on a symmetric space by restricting the negative of the Killing form
to m. This defines a G-invariant metric on M with respect to which all the
geodesic symmetries are isometries. Equation 1.5 states that at o and with
respect to the identification ToM = m we have

RX,YZ = −[[X, Y ], Z]

for X, Y, Z in m. The (unnormalised) Ricci curvature is then given by

Ric(X, Y ) = Tr{Z 7→ RZ,XY } = −
∑

i

〈[[ei, X], Y ], ei〉

= −Trm (adX ◦ adY )

= −B(X, Y ).

That is, −B is exactly the Ricci curvature of M . This in particular shows
that if M is irreducible, Ric = ρ〈 , 〉 so is Einstein. In the reducible case we
can say that

−Trm (adX ◦ adX) ≥ ρ‖X‖2

where ρ is the smallest Ricci curvature of any direction tangent to M .
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The next quantity that we will define is motivated by the relationship of
symmetric spaces to semi-simple Lie groups. If g is a complex semi-simple Lie
algebra, the rank of g is the dimension of a maximal abelian subalgebra of g.
The algebraic structure of g can be very precisely obtained by combinatorial
data from such a subalgebra. For example, in the algebra so(2n), the span
of elements of the form

0 −x1

x1 0
. . .

0 −xn

xn 0


forms a maximal abelian subalgebra. The rank of so(2n) is then n.

For an orthogonal symmetric Lie algebra g = m ⊕ h, we define the rank
of (g, h, σ) to be the dimension of a maximal subspace V of m for which
[X, Y ] = 0 for X, Y in V . We again use the Grassmannian as an example.

Example. Let M = G(n, n + m) be the Grassmannian of n-planes in
Rn+m. This is a Riemannian symmetric space with orthogonal symmetric
Lie algebra (so(n + m), so(n) + so(m), σ). The subspace m is spanned by
elements of the form

Eij =

(
0 −eT

ij

eij 0

)
where eij is an m× n matrix with a 1 in the (i, j) slot and zeroes elsewhere.
Eij and Ekl commute if and only if i 6= k and j 6= l. The dimension of a
maximal commuting subspace is thus the smaller of n and m. We then have
that rk(so(n+m), so(n) + so(m), σ) = min(n,m)

In the following section, in Equation 1.6, we see that these commuting
subspaces in m correspond exactly to subspaces of ToM on which the sectional
curvature vanishes. The theorems for rigidity of minimal submanifolds are
for the sphere and other rank-1 symmetric spaces, in part because of the
strict positivity of the curvature.
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1.3 Geometry of Riemannian Symmetric Spaces

In this section we will relate the calculations of the previous section that
explicitly gave the metric that we are interested in to the global geometry of
the symmetric space M = G/H. As previously, this primarily comes from
[4].

Our first calculation is to determine the curvature of the Levi-Civita
connection for a G-invariant metric on M . This will be done using the
principal-bundle formalism.

We consider the homogeneous manifold M = G/H where H = Gp is
the stabiliser of some point p ∈ M . G is a principal H-bundle over M . In
particular, G can be considered to be a sub-bundle of the the tangent frame
bundle of M . This can be shown by considering the map

G→ PGL(M),

g 7→ g∗{ei}

where {ei} is a fixed frame of vectors at p. G is transitive on M so this de-
termines an H-structure on M . In particular, this means that the associated
vector bundle for the isotropy representation of H, which is identified with
the adjoint representation on m, is the tangent bundle to M .

If the frame {ei} is orthonormal with respect to some H-invariant inner
product at p, G is mapped to the orthonormal frame bundle of theG-invariant
Riemannian metric on M .

We can use this description to state a convenient characterisation of the
Levi-Civita connection on a a Riemannian symmetric space. It is determined
by the conditions on the connection 1-form on the bundle G→ G/H:

1. ω is a left-invariant h-valued 1-form on G.

2. At e ∈ G, ω(Xh +Xm) = Xh with respect to the splitting g = h⊕m.

Equivalently, left translation of m (⊆ TeG) defines a distribution on G. From
its definition every element of the distribution projects on the corresponding
tangent space to M and since m is Ad(H)-invariant, the distribution is in-
variant under H. In the context of considering G as a bundle over M , and
looking at the naturally induced connection on it we will refer to h as the
vertical subspace of g and m as the horizontal subspace.

13



This distribution defines the connection form ω. The curvature of the
connection is essentially the derivative of ω. Specifically, let Ω be the cur-
vature form on G of the canonical connection that we have defined. This is
an h-valued 2-form on G. For X and Y tangent to G, Ω is defined by the
equation

Ω(X, Y ) = dω(Xm, Ym).

Here Xm and Ym are the horizontal components of X and Y respectively. If
X, Y ∈ m are horizontal vector fields they are everywhere in the kernel of ω.
We then have

dω(X, Y ) = Xω(Y )− Y ω(X)− ω([X, Y ]) = −ω([X, Y ])

ie., Ω(X, Y ) = −ω([X, Y ]) = −[X, Y ]h = −[X, Y ].

Generally when we relate the two formalisms of vector bundles and principal
bundles, we need to know how the structure group (the fibre of the principal
bundle) is represented on the vector space (the fibre of the vector bundle).

In the case at hand, the structure group of the manifold M = G/H is H,
the fibre of the associated vector bundle is m and the representation of H on
m is the adjoint representation.

We summarise this information.

Theorem 1.6. Let M = G/H be a Riemannian symmetric space with
riemannian metric induced by an H-invariant inner product on m. For
p = [H] ∈ M let X, Y and Z be tangent to M at p. Then using the
identification of TpM with m, the curvature tensor of M is given by

RX,YZ = −[[X, Y ], Z]. (1.5)

The sectional curvature of the metric is given by

κ(X ∧ Y ) = 〈RX,Y Y,X〉
= −〈[[X, Y ], Y ], X〉
= 〈[X, Y ], [X, Y ]〉 (1.6)

for X, Y ∈ m orthogonal and unit length so the sectional curvature is non-
negative and the zero curvature planes correspond to commuting elements of
m. If (mathfrakg, h, σ) has rank one there are no such pairs of commuting
planes so the sectional curvature is strictly positive.

14



We consider these for the symmetric Lie algebra (so(n+1), so(n), σ) with
associated Riemannian symemtric space Sn. The metric obtained from the
Killing form on so(n+1) is a constant multiple of the standard metric on Sn.
The sectional curvature is in this case 1

2(n−1)
. The curvature transformation

is given by

RX,YZ = −ad([X, Y ])(Z) =
1

2(n− 1)

(
− 〈X,Z〉Y + 〈Y, Z〉X

)
.

We next consider submanifolds of riemannian symmetric spaces that re-
spect some of the symmetry of the space. Specifically, we consider the totally
geodesic submanifolds of M = G/H. The fundamental fact that we require
is the following.

Theorem 1.7. [4] Let M = G/H be a Riemannian symmetric space amd g =
h+m the canonical decomposition. Then there is a natural one-to-one corre-
spondence between the set of linear subspaces m′ of m such that [[m′,m′],m′] ⊂
m′ and the set of complete totally geodesic submanifolds through the origin
[H] of M .

This further emphasises the importance of the curvature tensor. These
are exactly the subspaces of m that are preserved by the curvature tensor.
We call a subspace m′ that satisfies [[m′,m′],m′] ⊂ m′ a Lie Triple System.

1.4 Rank-One Symmetric Spaces

In this section we describe the classification of rank-one symmetric spaces
of compact type. Earlier in this chapter we have seen that an orthogonal
symmetric Lie algebra (g, h, σ), where g is a semi-simple Lie algebra, splits
into the direct sum of irreducible subspaces. This can be expressed in the
statement that a simply-connected Riemannian symmetric space with semi-
simple isometry group has de Rham decomposition consisting of a product
of irreducible symmetric spaces.

The theorem that we will prove in the coming chapters can generally be
considered that the irreducible components of a compact space that have
rank one, other than the Cayley Plane, are rigid when considered as minimal
submanifolds.

This proof is done on a case-by-case basis, given that there is a classifica-
tion of rank-one symmetric spaces of compact type. This is a classical result

15



and we will outline its proof in this section. For brevity though we will omit
many of the technicalities and subtleties.

Little in this section is original. It is primarily a summary of the excellent
reference [2] by Chavel and the proof of Gluck, Warner and Ziller [3] of a
theorem of Wong, Wolf, Escobales and Ranjan. This section will be entirely
expository, with many absent or imprecise proofs. In this section we will
consider M to be a rank-one Riemannian symmetric space of compact type
and of dimension n. Here M = G/H where H is the isotropy group ofo se
point o ∈M .

To start we make the definition that a Riemannian homogeneous space
G/H is two-point homogeneous if for any points p, q, r, s ∈ G/H such that
d(p, q) = d(r, s) there is a an element of G that sends p to r and q to s. This
is equivalent to the linearised isotropy action being transitive on the unit
sphere at a point. In terms of the Lie algebra decomposition g = h + m in
the symmetric case we have the proposition.

Proposition 1.8. ([2], page 61) A Riemannian symmetric space M = G/H
is two-point homogeneous if and only if the associated orthogonal symmetric
Lie algebra g satisfies

m = RX + [h, X] for all X ∈ m

For a fixed X ∈ m we consider the map BX : Y 7→ [[X, Y ], X]. This
is symmetric with respect to the metric on m and so can be orthogonally
diagonalised. If Y1, . . . , Yn−1 is a basis of eigenvectors we then have that

[X, Yi] ∈ h,

and if all of the eigenvectors are non-zero, [[X, Yi], X] = λiYi then span the
orthogonal complement to X ∈ m. This is sufficient to show that M is two-
point homogeneous. This assumption on the eigenvectors is equivalent to all
sectional curvatures through X being non-zero. From the previous section,
if the symmetric space is of rank one all sectional curvatures are positive so
the space is two-point homogeneous.

This in particular means that all non-constant geodesics are homotopic
and equivalent to a simple closed one. They all have the same length which
can be normalised to be 2π.

For X ∈ ToM we define the number

s(X) = sup{t ; d(o, expo(tX)) = t} > 0.
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This is the value of t for which the unit speed geodesic in that direction
ceases to be length minininising. The tangential cut locus is the set

TC(o) = {s(X)X ; |X| = 1} ⊆ ToM

and the cut locus is

C(o) = {expo(s(X)X) ; |X| = 1} ⊆M.

The above choice for geodesic loops then gives that the tangential cut locus
for a rank one symmetric space is

TC(o) = {X ; |X| = π} = πSn−1.

Otherwise there would exist simple geodesic loops of length less than 2π.
We next consider the map

Y 7→ RY,XX

for X a unit tangent vector. Then (see [2]) by considering Jacobi fields along
the geodesic γ(t) = expo(tX) we can see that the only possible eigenvalues
for the map are 1

4
and 1.

We define λ to be the dimension of the 1-eigenspace. By the two-point
homogeneity considered above this number is independent of the the point
o ∈M and the direction X ∈ ToM .

We consider the space C(o) ⊆ M and consider the map expo : πSn−1 →
C(o). From the two-point homogeneity of M , the isotropy group at o acts
transitively on πSn−1 ⊆ ToM and so also on C(o). An orbit of a smooth
proper group action is a smooth submanifold so C(o) is a smooth, compact
submanifold.

For reasons of invariance the map expo is a submersion. For p ∈ C(o)
and πX ∈ πSn−1 (with |X| = 1) such that expo(πX) = p, the kernel of
(d expo)πX can be identified with the set of Jacobi fields along the geodesic
γ(t) = expo(tX) that vanish at o and p. The dimension of this space is called
the multiplicity of p with respect to o along γ.

For X ∈ ToM with |X| = 1 we consider vectors that satisfy

RY,XX = κY. (1.7)

Recall that the possible values of κ are 1/4 and 1. If Y satisfies Equation
1.7 at o and is parallel translated along γ then since ∇R = 0 Y continues to
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satisfy Equation 1.7 along γ. We can then see that the Jacobi fields along γ
that vanish at o are given by

Jκ(t) =
1√
κ

sin(
√
κt)Y (t).

This vanishes at p = expo(πX) if κ = 1 and does not for κ = 1/4. The kernel
of (d expo)πX is then equal to the κ = 1 eigenspace of the above curvature
map. Let V1 ⊆ ToM be the vector subspace spanned by the X and the κ = 1
eigenspace. By an invariance argument one can show that the fibre of the
submersion that maps to p is equal to the great sphere

exp−1
o (p) = πSn−1 ∩ V1.

In summary then, we have a submersion

expo : πSn−1 → C(o)

of a sphere by totally geodesic spheres. Since H acts transitively on πSn−1

and the way the fibres have been characterised we can easily see that the
fibres are of constant distance apart. The proof of the classification of rank-
one symmetric spaces is then completed by by referring to results on the
restrictions that exist for fibrations of spheres by parallel totally geodesic
subspaces. In particular we quote the theorem

Theorem 1.9. (Wong, Wolf, Escobales, Ranjan) If an open set in a round
sphere is filled by pieces of parallel great spheres then that filling is a portion
of a Hopf fibration.

This received an elementary unified proof by Gluck, Warner and Ziller
[3] that we descibe. In our description we only consider the case of a sphere
fibred by spheres, neglecting the words ”piece” and ”portion”.

The Hopf fibrations are given using the normed division algebras K and
are given by sending a nonzero point in Kn+1 to the line that it spans. For
K = C, H, O the Hopf maps are given by

S1 → S2n+1 → CPn

S3 → S4n+3 → HPn

S7 → S15 → S8 = OP1.
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Following [3], if there is a fibration of Sn−1 by parallel totally geodesic (k−
1)-spheres, then one can construct a fibration of Sn−1−k by totally geodesic
(k − 1)-spheres. Proceeding inductively, one has that k divides n. Let F :
Sk−1 → Sn−1 → M be such a fibration , If P is a fibre of F then it spans
a k-dimensional subspace of Rn which we also denote by P . This defines a
map

F : M → Gk(Rn)

into the appropriate Grassmannian. The derivative of this map at P can be
considered as

F∗ : TPM → Hom(P, P⊥),

or F∗ : TPM ⊗ P → P⊥ (1.8)

where P denotes either a point in M or the span of the fibre over this point.
P⊥ is the orthogonal complement to P in Rn.

If n = 2k, which is the first nontrivial case, P, TPM and P⊥ are all
k-dimensional and the expression 1.8, since the spaces have been mutually
identified, can be identified with the multiplication in a normed division
algebra. A classical theorem of Hurwitz identifies this with R, C, H or O,
according to dimension. It follows that there is an isometry of Rn that sends
the fibration F to the Hopf fibration. The case n > 2k can be reduced to
this case.

We also note the explicit theorem from [3].

Theorem 1.10. There is no open set in S23 that can be filled by pieces of
parallel great 7-spheres.

This demonstrates the non-existence of projective spaces over the octo-
nions past the Cayley Plane.

This is sufficient for the classification of rank-one symmetric spaces. If M
is a compact rank-one symmetric space and o ∈ M , the sphere of radius π
in ToM can be fibred by parallel totally geodesic spheres. The tangent space
to the fibre at πX ∈ πSn−1 consists of +1-eigenvectors of the curvature map

Y → RY,XX.

The orthogonal complement consists of 1/4-eigenvectors. This determines the
sectional curvatures of the manifold at o and hence the curvature operator
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at o. This determines the decomposition

g = h + m

and hence the symmetric space G/H. The fibration must be a Hopf fibration
so the symmetric space must be one of Sm, RPm, CPm, HPm or OP2.
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Chapter 2

Minimal Submanifolds

2.1 The Second Fundamental Form

Let f : Mp → M̄n be a smooth immersion. We can pull the ambient tangent
bundle back to M and see that f ∗(TM̄) splits as a direct sum

f ∗(TM̄) = TM ⊕NM (2.1)

into the tangent and normal compnents. One can also pull the Levi-Civita
connection ∇̄ on M̄ back to f ∗(TM̄). By projection to the two factors this
induces connections on TM and NM . That is, for ∈ E(TM) and ν ∈ E(NM),

∇MX = (∇X)T

∇Nν = (∇ν)N .

∇M is the Levi-Civita connection for TM for the metric induced by the im-
mersion. With respect to the splitting of equation 2.1 on M the connection
∇̄ decomposes as

∇ =

(
∇M −A
B ∇N

)
(2.2)

Here A and B are tensors that relate TM and NM . Explicitly they are given
by

Aν(X) = −(∇Xν)
T

B(X, Y ) = (∇XY )N .

for X and Y tangent vectors and ν normal. The following is clear and easy
to prove.
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Proposition 2.1. 1. A and B are tensorial in X, Y and ν. Ie., they are
only dependent on these vectors at the given point.

2. B(X, Y ) = B(Y,X).

3. 〈Aν(X), Y 〉 = 〈X,Aν(Y )〉

4. 〈Aν(X), Y 〉 = 〈ν,B(X, Y )〉

The first part of the proposition means that we can consider A and B
to be sections of bundles defined over M . For example, B is at each point
a symmetric bilinear form on TM with values in NM . The negative sign in
2.3 is given to ensure part (4) of the proposition, which is that A and B are
transposes of one another. A and B will together be referred to as the Second
Fundamental Form of the immersion. The tensor A will be considered as a
section of Riemannian vector bundle H(M) = Hom(NM , S(M)). Here S(M)
is the space of symmetric linear endomorphisms of TM . In our consideration
of Simons’s work we will consider this space further.

An immersed submanifold M of M is totally geodesic if the second fun-
damental form of the immersion vanishes identically. In this case the Levi-
Civita connection of the ambient manifold is (in directions tangent to the
submanifold) the direct sum of the connections on the subspaces. Parallel
transport with respect to the ambient connection along tangential paths pre-
serves tangential and normal vectors. The ambient curvature tensor, when
acting on tangential vectors, coincides with the curvature of the submanifold.

An immersed submanifold M of M̄ is said to be minimal if the trace
of the second fundamental form vanishes identically. That is, we define the
mean curvature of a submanifold to the the normal vector field K defined by

K = TrB =
∑

i

B(ei, ei)

where {ei} is an orthonormal basis for TM . The submanifold M is minimal
if K ≡ 0. This is equivalent to

TrAν = 0

for all normal vectors ν. The condition of minimality is natural because the
mean curvature can be considered the gradient vector of the area function,
considered on the space of immersions of one fixed manifold in another. An
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immersion is a critical point of the area (possibly area minimising) if the
mean curvature vanishes identically. K = 0 is the Euler-Lagrange equation
for the variational problem.

Example. We give an example of a helicoid-like minimal surface in S2×S1.
We recall the definition of the helicoid. This is a minimal submanifold of
R3 obtained by raising a line in R2 at constant speed and simultaneously
rotating it at constant speed. We have a similar example in S2 × R.

Let (x, y, z) = (cos θ sinφ, sin θ sinφ, cosφ) be a coordinate description
for S2 and let t ∈ R. We can define an embedding of S1 ×R into S2 ×R by

(cosφ, sinφ, t) 7→ (cos(αt) sinφ, sin(αt) sinφ, cosφ, t)

where α is an arbitrary fixed real number. The great circle S2 ∩ {y = 0}
is rotated at rate α as it is lifted at constant unit speed. The image of the
embedding has tangent space spanned by the orthogonal unit vectors

e1 = ∂φ = (cos(αt) cosφ, sin(αt) cosφ,− sinφ, 0)

e2 =
1

|∂t|
∂t =

1√
1 + α sin2 φ

(−α sin(αt) sinφ, α cos(αt) sinφ, 0, 1)

and with respect to this orthonormal basis the second fundamental form Aν

is given by the matrix

Aν =
α cosφ

1 + α sin2 φ

(
0 1
1 0

)
(2.3)

It is thus trace free so for any value of α the helicoid-like submanifold of
S2×R is minimal. We can also note that the submanifold is invariant under
the action of the group π

α
Z acting isometrically by translation in the real

factor. If α = k/2 where k is a positive integer the submanifold is invariant
by 2πZ so descends to the quotient of the ambient space by this group. This
gives a minimal submanifold of S2× S1 where S1 is the circle of unit radius.
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2.2 The Fundamental Second Order Equation

for A

In this section we give the second order differential equation for A that is
fundamental to this dissertation. The equation relates the Laplacian of A to
an algebraic expression involving A and the ambient curvature of M̄ . It was
derived by Simons [8] and used extensively to study submanifolds of spheres
and of euclidean space. The principal results given in this dissertation are of
a similar type to some in that paper.

Let (M, g) be a smooth Riemannian manifold and V a vector bundle over
M . Suppose that V is endowed with an inner product defined on its fibres
and a connection ∇ that preserves the metric. We say that V with this
structure is a a smooth Riemannian vector bundle. Then, for ψ ∈ E(V ), we
have ∇ψ ∈ E(T ∗ ⊗ V ). T ∗ ⊗ V is a Riemannian vector bundle so we can
differentiate again. We define the second derivative of ψ in the directions X
and Y to be

∇X,Y ψ = ∇X(∇ψ)(Y )

= ∇X∇Y ψ −∇∇XY ψ

where the symbol ∇ should be interpreted carefully. This expression is sym-
metric in X and Y . Define ∇2ψ to be the section of V given by

∇2ψ = Tr(X, Y 7→ ∇X,Y ψ)

=
∑

i

∇ei,ei
ψ.

The important property of this rough Laplacian that we will require is that
it is, in good situations, negative semi-definite.

Proposition 2.2. Let M be a compact oriented riemannian manifold with
boundary. Let ϕ, ψ ∈ E(V ) be sections of V . Then we have∫

M

〈∇2ψ, ϕ〉vol = −
∫

M

〈∇ψ,∇ϕ〉vol +

∫
∂M

Xy vol (2.4)

where X is the vector field on M defined by

〈X, Y 〉 = 〈∇Y ψ, ϕ〉.
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This is a standard result that follows by Stokes’ Theorem. In particular
we can conclude that if ∂M = ∅, ∇2 is negative semi-definite.

We will use this on the vector bundle H(M) = Hom(NM , S(M)) for M
a submanifold, NM its normal bundle and S(M) the bundle of symmetric
transformations of TM . The natural connection on H(M) is given as follows.
Let A ∈ E(H(M)), ν ∈ E(NM), X, Y ∈ E(TM). Then,

(∇XA)ν(Y ) = ∇M
X (AνY )− A∇

N
Xν(Y )− Aν(∇XY ).

The second derivative can also be derived similarly. In the case that A and
B define the second fundamental form of M we have two identities.

Theorem 2.3. [8] Let M ⊆ M̄ be a minimal submanifold and let R̄ denote
the riemannian curvature of M̄ . Then

(∇xB)(y, z)− (∇yB)(x, z) = (R̄x,yz)
N ∀x, y, z ∈ TM (2.5)

p∑
i=1

(∇ei
B)(ei, z) =

p∑
i=1

(R̄ei,zei)
N ∀z ∈ TM . (2.6)

where {ei} is a local frame on M . The first equation holds for all submani-
folds, the second holds if M is minimal.

These two expressions can be re-interpreted by instead considering B as
a 1-form with values in a the bundle Hom(TM , NM). The first equation here,
known as Codazzi’s Equation, is the anti-symmetrization of the derivative.
The second equation is the trace of the derivative of B. The equations can
be re-expressed as

d∇B = πN R̄

δ∇B = R.

where R is a Ricci-like transformation in Hom(TM , NM). The operator
d∇ sends bundle valued 1-forms to bundle valued 2-forms. The operator
δ∇ is the formal adjoint of the differential operator ∇ : Hom(TM , NM) →
Λ1⊗Hom(TM , NM). In this way the equations can be considered inhomoge-
neous Yang-Mills-type equations. The inhomogeneity is only in terms of the
ambient curvature and the first order behaviour of the submanifold.

An additional similarity with the Yang-Mills equations is the fact that
one (Second Bianchi Identity) holds for all connections. The other comes
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from the variational problem. In this case, equation 2.5 holds for all sub-
manifolds. Equation 2.6 holds only if the submanifold is minimal.

In particular, one can conclude that the second fundamental form satisfies
a first order elliptic equation. It also however satisfies a second order equation
that is the basis for our investigation. We first must define some terms that
appear in the equation.

We recall that the second fundamental form A is a section of the bundle
Hom(NM , S(M)). For any normal vector ν, Aν is a symmetric transforma-
tion of TM . We can then consider At to be the transpose of A, considering
S(M) and NM to have their natural metrics. We define Ã to be the section
of Hom(NM , NM)

Ã = At ◦ A.

Ã satisfies

〈Ã(ν), η〉 = 〈Aν , Aη〉
= Tr(Aν ◦ Aη)

=
∑

i

〈Aν(ei), A
η(ei)〉. (2.7)

We now define a slightly less simple operator. We note that the map

(ν, η) 7→ ad(Aν) ◦ ad(Aη)

is a bilinear form on NM with values in Hom(S(M), S(M)). We define A
∼

to

be the trace of this map. That is,

A
∼

=
∑

j

adAνjadAνj

and 〈A
∼
(s1), s2〉 =

∑
j

〈[Aνj , [Aνj , s1]], s2〉

=
∑

j

〈[Aνj , s1], [A
νj , s2]〉 (2.8)

where s1 and s2 are symmetric transformations of TM . From these expressions
we can see that Ã and A

∼
are symmetric and positive semi-definite operators

on the respective spaces. We will consider A◦Ã, A
∼
◦A ∈ E(Hom(NM , S(M))).
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The two remaining tensors on M that we will define are dependent on A,
together with the ambient curvature of M̄ .

Let R(A) be the section of Hom(NM , S(M)) defined by

〈R(A)WX, Y 〉 =

p∑
i=1


2〈Rei,YB(X, ei),W 〉+ 2〈Rei,XB(Y, ei),W 〉
−〈AW (X), Rei,yei〉 − 〈AW (Y ), Rei,Xei〉
+〈Rei,B(X,Y )ei,W 〉 − 2〈AW (ei), Rei,XY 〉


where {ei} is an orthonormal basis for TM . To simplify the notation in the
later sections we will denote the six terms in this expression by (1) to (6).
For example,

〈(2)WX, Y 〉 = 2

p∑
i=1

〈Rei,XB(Y, ei),W 〉.

For a fixed normal vector W , R(A)W can be seen to be symmetric in X and
Y . Terms (2) and (4) are the transposes of terms (1) and (3) respectively.
The fifth term is symmetric since B is.

We will show that (6) is symmetric. Firstly, we use the first Bianchi
identity to observe

Rei,XY = Rei,YX −RX,Y ei.

Next, recall that a symmetric transformation (for example, AW ) is orthogonal
to a skew-symmetric one (such as RX,Y ). Thus,

〈(6)WX, Y 〉 = −2
∑

i

〈AW (ei), Rei,XY 〉

= −2
∑

i

〈AW (ei), Rei,YX〉+ 2〈AW , RX,Y 〉

= 〈(6)WY,X〉.

as was required.
We now define the final distiguished section of Hom(NM , S(M)) that we

need. For X, Y tangent vectors to M and W normal to M and {ei} an

orthonormal basis for TM , define R
′
by

〈R′
W
X, Y 〉 =

∑
i

(
〈∇X(R)ei,ye,W 〉+ 〈∇ei

Rei,XY,W 〉
)
.
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R
′
is defined independently of the basis for TM and is linear in its arguments.

It is a smooth section of Hom(NM , S(M)) that is dependent on A and the
ambient derivative∇(R) of curvature. This now allows us to give the theorem
proved by Simons that shows that A satisfies a second order elliptic equation.

Theorem 2.4. [8] Let M be a minimal submanifold of a riemannian man-
ifold and let A be its second fundamental form, considered as a section of
Hom(NM , S(M)). Then A satisfies

∇2A = −A ◦ Ã− A
∼
◦ A+R(A) +R

′
. (2.9)

This equation was given in the paper of Simons [8] and was fundamental
to many of his important results there, including an intrinsic rigidity theorem
for totally geodesic submanifolds of Sn.

We make some observations that we will use in the following chapters.
The second term (2)W is the transpose of (1)W and (4)W is the transpose of
(3)W . That is,

〈(1)WX, Y 〉 = 〈X, (2)WY 〉
〈(3)WX, Y 〉 = 〈X, (4)WY 〉.

Since A is symmetric, this in particular means that

〈(2), A〉 =
∑

j

Tr
(
Aηj ∗ ◦ (2)ηj

)
=

∑
j

Tr
(
(2)ηj ∗ ◦ Aηj

)
=

∑
j

Tr
(
(1)ηj ◦ Aηj

)
= 〈(1), A〉.

Similarly, 〈(3), A〉 = 〈(4), A〉. Thus, in the estimation of 〈R(A), A〉 we only
need to consider (1), (3), (5) and (6).
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Chapter 3

Geometry of Projections

This aim of this dissertation is to give some results on minimal submanifolds.
We consider the ambient space to be the Riemannian product

M = M1 ×M2

and suppose M ⊆ M is a minimal submanifold. For the results in the
coming chapters, it is necessary to understand the ambient curvature and
how it relates and restricts to the tangent and normal spaces to M . The
curvature of M is the pull-backs of the curvature tensors of M1 and M2.
We must then consider the projection maps π1 and π2 from M to M1 and
M2. The required terms are tensorial so we can just consider these terms on
vector spaces.

Let U be a vector space with inner product and suppose that U has two
decompositions. Suppose that

U = V ⊕ V ⊥ = W1 ⊕W2.

We suppose that dimV ≤ dimW1.
Let πV and π⊥ be the orthogonal projection maps onto V and its orthog-

onal complement V ⊥ respectively and let π1 and π2 be the projections onto
the W1 and W2 factors. These maps satisfy π2 = π = π∗ where π∗ is the
adjoint or transpose of π.

We study πV π1 and π⊥π1 when considered to act either as endomorphisms
of V and V ⊥ respectively, or as maps between these spaces.

We will consider a series of maps on and between V and V ⊥. They are,

πV π1 : V → V π⊥π1 : V ⊥ → V ⊥

π⊥π1 : V → V ⊥ πV π1 : V ⊥ → V
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πV π1 is symmetric on V with respect to the inner product so there is an
orthonormal basis {ei} such that πV π1ei = λ2

i ei for some λi ∈ [0, 1]. If none
of the eigenvalues λ2

i are 0 or 1, we can then also obtain an orthonormal set
{ηj} in V ⊥ that satisfies

π⊥π1ej =
√
λ2

j(1− λ2
j) ηj,

πV π1ηj =
√
λ2

j(1− λ2
j) ej

π⊥π1ηj = (1− λ2
j)ηj

That is, π⊥π1 sends an eigenvector for πV π1 on V to an eigenvector for
π⊥π1 on V ⊥. The eigenvalues are λ2

j and 1− λ2
j respectively.

The set {ηj} does not however span V ⊥. The orthogonal complement to
the span of the set {ηj; j = 1, . . . , p} is equal to the kernel of πV π1 when
considered on V ⊥. π⊥π1 preserves this space and can be orthogonally diag-
onalised. We can then take as a basis {ηj; j = p + 1, . . . , N − p} so that
π⊥π1ηj = (1− λ2

j)ηj.

To summarise, we have orthonormal bases for V and V ⊥ that diagonalise
πV π1 and π⊥π1 respectively.

All of the above calculations have been only considering the projection
onto the first factor. It is also necessary to consider the other factor. We can
then see that the basis {ei} defined above satisfies

πV π2ei = (1− λ2
i )ei,

πV π2ηj = λ2
jηj

π⊥π2ei = −π⊥π1ei = −
√
λ2

i (1− λ2
i ) ηi.

In summary, an orthonormal basis for V ⊥ that we may construct using
π2 differs from the basis {ηj} by a factor of −1. Any quadratic expression
for ηj takes the same values on the new basis.

Finally, we consider the norm of the map π2 : V → W2. If in a heuristic
sense, V is almost contained in the subspace W1, the map π2 restricted to V
is almost the zero map. The norm of π2 is given by

‖π2‖2 = Tr(π∗2π2).
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The transpose of π2 in this case is obtained by observing

〈π∗2X, Y 〉 = 〈X, π2Y 〉 = 〈X, Y 〉 = 〈πVX, Y 〉

for X ∈ W2 and Y ∈ V so π∗2 = πV . The norm is then calculated by

‖π2‖2 =
∑

i

〈πV π2ei, ei〉 =
∑

i

(1− λ2
i )

where {ei} is the above distinguished basis of eigenvectors.
The assumption that we will make later is that this norm is small. Sup-

pose that

‖π2‖ ≤ Λ.

Then, ∑
(1− λ2

i ) ≤ Λ2.

This is the inequality that we wish to use in the calculations of the following
chapter.
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Chapter 4

Rigidity of Sphere Factors of
Symmetric Spaces

In this chapter we give all the main calculations leading to the main rigidity
thoerem.

This thesis is a description of some theorems that generalise a result of
Simons for rigidity and isolation phenomena for minimal submanifolds of
the euclidean sphere. He showed that if a closed minimal submanifold of
Sn had second fundamental form uniformly bounded by an explicitly stated
constant, it had to be a totally geodesic great sphere. We have a result of a
similar sort where the ambient space is a compact symmetric space with semi-
simple isometry group. We show that minimal (actually totally geodesic)
submanifolds that correspond to the non-exceptional rank-one components
are similarly rigid.

We recall theorem 2.4. The second fundamental form A satisfies the
second order elliptic equation

∇2A = −A ◦ Ã− A
∼
◦ A+R(A) +R

′
.

Let M be a closed minimal submanifold of M . That is, ∂M = ∅ so from
equation 2.4 we have

0 ≤
∫

M

‖∇A‖2 = −
∫

M

〈∇2A,A〉

=

∫
M

〈A ◦ Ã+ A
∼
◦ A,A〉 − 〈R(A) +R

′
, A〉. (4.1)
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The first simplification of this inequality is the following universal statement
of Simons.

Theorem 4.1. [8] Let Mp be a minimal submanifold of M
n
. Then the second

fundamental form satisfies

〈A ◦ Ã+ A
∼
◦ A,A〉 ≤ q‖A‖4

where

q = 2− 1

n− p
.

For the next simplification of Equation 4.1 we place an assumption on
the geometry of M . That is, let M be locally symmetric. By Equation 1.1,
∇R ≡ 0 and so from its definition.

R
′ ≡ 0.

The only remaining term is 〈R(A), A〉. The inequality that we wish to have
is of the form 〈R(A), A〉 ≥ C‖A‖2 where C is a constant that is essentially
independent of the submanifold. If we have this inequality we observe that

0 ≤
∫

M

〈A ◦ Ã+ A
∼
◦ A−R(A), A〉

≤
∫

M

q‖A‖4 − C‖A‖2

=

∫
M

‖A‖2
(
q‖A‖2 − C

)
(4.2)

Proposition 4.2. Let M be a closed minimal submanifold of a compact
Riemannian symetric space. Suppose that the second fundamental form of
M uniformly satifies

〈R(A), A〉 ≥ C‖A‖2

‖A‖2 <
C

q
.

Then M is totally geodesic.
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This follows clearly from the inequality 4.2. We will give a number of
cases where results of this type can be proven.

Let M = M1×M2 be a Riemannian product and let M be a submanifold
of M . We will consider submanifolds that are close to being contained in the
first factor. We consider the projection π2 : M → M2 and wish to estimate
the size of this map. The method that is useful in the present case is to
consider the uniform norm of the derivative map π2 : TM → TM2 .

The norm of α = π2 at a point is given by

‖α‖2 = Tr(α∗α).

Theorem 4.3. Let M be a minimal submanifold of Sn × Sm for p < n.
Suppose that the map π2 uniformly satisfies ‖π2‖ ≤ Λ. Then the second
fundamental form of M satisfies

〈R(A), A〉 ≥
(
(p− 1)− Λ2

(
18p2 + 2p+ 3

))
‖A‖2.

Proof. This is proven in an extended calculation in the following section.
This equation is given in equation 4.7. 2

In particular, for small values of Λ, (p− 1)− Λ2
(
18p2 + 2p+ 3

)
> 0 and

we have the estimate that we discussed in Theorem 4.2.

Theorem 4.4. Let Λ =
√

p−1
2(18p2+2p+3)

. Let M be a closed p-dimensional

minimal submanifold of Sn×Sm. Suppose that ‖π2‖ < Λ on M and the second
fundamental form of M uniformly satisfies ‖A‖2 < p−1

2q
for q = 2 − 1

n+m−p
.

Then M is a totally geodesic submanifold.

Proof. This follows from the integration by parts argument given above. 2

We can strengthen this result by giving Theorem 4.30. This result is that
if M is as we have above, it must actually be a totally geodesic subspace of
the first factor. That is,

Theorem 4.5. There exists Λ > 0 such that if T is a p-dimensional totally
geodesic submanifold of Sn × Sm and ‖π2‖ ≤ Λ then T ⊂ Sn × {pt}.

We note that the uniform bound on the second fundamental form A is a
condition on the second order derivatives of the immersion of M . The bound
on π2 is a condition on the first derivatives of the immersion. Together with
our knowledge of the totally geodesic submanifolds of Sn we thus have
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Theorem 4.6. Let f be the embedding of Sp into Sn×Sm as a totally geodesic
sphere in the first factor. Then there is a C2 neighourhood U of f in the set
of immersions such that any minimal immersion contained in U is conjugate
to f .

By the term conjugate to f we mean equivalent by the action of isome-
tries of Sn × Sm and diffeomorphisms of Sp, where these groups act as one
might expect.

We now turn our attention to minimal submanifolds of slightly more
general symmetric spaces. The spaces that we consider are of the form

M = Sp ×M2.

M2 is a compact symmetric space with semi-simple isometry group. The
metric that we take on M is the one obtained by restricting the Killing form
on so(p+ 1) + g to m1 + m2. We consider the minimal submanifolds of M .

Firstly we recall the Ricci tensor of M . We saw previously that if the
orthogonal symmetric Lie algebra decomposes into g = g1 + · · · + gk there
are positive real numbers ρi such that the Ricci tensor is given by

Ric = ρ1g1 + · · ·+ ρkgk

where the gi are the metrics induced by the Killing forms on the irreducible
subspaces mi of g. In particular we have that an irreducible compact sym-
metric space is Einstein. We define ρ to be the smallest of these constants.
This is the smalles Ricci curvature of any direction tangent to M .

ρ = min ρi.

We can now state the main theorem of this dissertation. It is also stated as
Theorem 4.28.

Theorem 4.7. There exists C = C(p,M2) > 0 such that for any 0 < Λ ≤ 1
and for any p-dimensional closed minimal submanifold M of the symmetric
space M = Sp ×M2 for which ‖π2‖ ≤ Λ the term R(A) satisfies

〈R(A), A〉 ≥
(
(2ρ+

1

p− 1
)− CΛ2

)
‖A‖2.
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The constant C here is given explicitly in Equation 4.11. The proof of
this theorem is lengthy and completed in Section 4.2. In particular, if M is
closed and minimal this implies the integral inequality

0 ≤
∫

M

‖A‖2

(
‖A‖2 −

(
(2ρ+ 1

p−1
)− CΛ2

q

))
(4.3)

In the following theorem we take Λ2 = 1
C(p−1)

so that (2ρ+ 1
p−1

)−CΛ2 = 2ρ.

Theorem 4.8. Suppose that M is a p-dimensional closed minimal subman-
ifold of Sp ×M2. If the projection of M to M2 uniformly satisfies ‖π2‖ < Λ
and the second fundamental form of M uniformly satisfies

‖A‖2 < 2ρ/q

where q = 2− 1
dim M2

then M must be a totally geodesic submanifold.

Combining this with Theorem 4.30 we obtain the theorem

Theorem 4.9. There exists Λ > 0 such that if M is a p-dimensional closed
minimal submanifold of Sp ×M2 that satisfies

‖π2‖ < Λ

‖A‖2 <
1

q

(
2ρ+

1

p− 1
− CΛ2

)
then M = Sp × {q} for some q ∈M2.

The second fundamental form A is given by projecting the ambient Levi-
Civita connection to the tangent and normal spaces to M . It is thus depen-
dent on the second order derivatives of the map immersing M to Sp ×M2.
The projection π2 is considered on tangent vectors so is dependent on the
first derivatives of the map. The conditions ‖π2‖ < Λ and ‖A‖2 < Const
then defines a C2-open set in the set of immersions. We can conclude the
following.

Theorem 4.10. Let i : Sp → Sp ×M2 be the standard embedding of Sp as a
totally geodesic factor. Then there is a C2-neighbourhood U of i in the set of
immersions such that any minimal immersion in U is conjugate to i.
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As we have noted earlier, by the term conjugate we mean equivalent with
respect to the action of isometries of M and diffeomorphisms of M .

However, one can also note that the norm squared of the second funda-
mental form of a minimal submanifold is closely related to the intrisic scalar
curvature. Denote by K the scalar curvature of a submanifold M ⊆ Sp×M2

in the induced metric. We obtain a theorem where the constraint is on K.

Theorem 4.11. Let ρ, q, and K2 be as stated above and let Λ > 0 satisfy
the equation

1

q
(ρ+

1

p− 1
) = Λ2

(
C

q
+ p+ p(p− 1)K2

2

)
.

Then if M ⊆ Sp×M2 is a p-dimensional closed minimal submanifold so that
the projection π2 and the initrinsic scalar curvature uniformly satisfy

‖π2‖ ≤ Λ
p

2
−K <

ρ

q

then A ≡ 0 and M is totally geodesic.
Furthermore, there is a (possibly smaller) Λ > 0 such that ‖π2‖ ≤ Λ and

p
2
−K < ρ

q
together imply that π2 ≡ 0 and M = Sp × pt and K ≡ p

2
.

For the proof we first consider two objects for the submanifold. Let

S(X, Y ) = 〈RY,XX, Y 〉
S(X, Y ) = 〈RY,XX, Y 〉

where R is the intrinsic curvature of M and R is the curvature of M and X
and Y are tangent to M . If X and Y are orthogonal and unit length, S and
S give the sectional curvatures in the plane spanned by X and Y .

Proof. The Gauss curvature equation [4, page 23] states that the curvature
operators and the second fundamental form satisfy

〈B(X, Y ), B(X, Y )〉 − 〈B(X,X), B(Y, Y )〉 = S(X, Y )− S(X, Y ).
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Since M is minimal we have that

0 ≤ ‖A‖2 =
∑
i,k

‖B(ei, ek)‖2 =
∑
i,k

S(ei, ek)−
∑
i,k

S(ei, ek)

=
∑
ei,ek

S(ei, ek)−K.

We must now estimate the first of these terms. The ambient sectional cur-
vature is given by S(ei, ek) = ‖[ei, ek]‖2 so

‖A‖2 =
∑
i,k

‖[π1ei, π1ek]‖2 +
∑
i,k

‖[π2ei, π2ek]‖2 −K

≤ 1

2(p− 1)

∑
ik

λ2
iλ

2
k + p(p− 1)Λ2K2

2 −K

Here K2 is given by

K2 = max{‖[X1, X2]‖ ; Xi ∈ mi, ‖Xi‖ = 1}.

K2
2 is the maximum sectional curvature of a plane tangent to M2. The

assumption of π2 implies that λ2
iλ

2
k = 1 + λ2

i (λ
2
k − 1) + (λ2

i − 1) ≤ 1 + 2Λ2 so
we can estimate

‖A‖2 ≤ 1

2(p− 1)

∑
ik

1 +
2Λ2

2(p− 1)

∑
ik

1 + p(p− 1)Λ2K2
2 −K

=
p

2
+ Λ2

(
p+ p(p− 1)K2

2

)
−K.

From the Equation 4.3 we see that we have to estimate ‖A‖2−
( (2ρ+ 1

p−1
)−CΛ2

q

)
.

‖A‖2 −
((2ρ+ 1

p−1
)− CΛ2

q

)
= ‖A‖2 −

2ρ+ 1
p−1

q
+
C

q
Λ2

≤
(
p

2
− ρ

q

)
−

(
ρ+ 1

p−1

q

)
+
C

q
Λ2

+
(
p+ p(p− 1)K2

2

)
Λ2 −K

Now, as stated in the theorem, we take Λ that satisfies

1

q
(ρ+

1

p− 1
) = Λ2

(
C

q
+ p+ p(p− 1)K2

2

)
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Then,

‖A‖2 −
((2ρ+ 1

p−1
)− CΛ2

q

)
≤ p

2
− ρ

q
−K.

If this term is uniformly negative then necessarily the other term in Equation
4.3 must be zero.

The final statement of this theorem follows from Theorem 4.30 and by
calculating the scalar curvature of those factors in the given metric. 2

4.1 Submanifolds of Products of Spheres

In this section we prove Theorem 4.3. That is, we prove that if M is a p-
dimensional minimal submanifold of Sn × Sm for p < n such that
π2‖ ≤ Λ then second fundamental form of M satisfies

〈R(A), A〉 ≥
(
(p− 1)− Λ2(18p2 + 2p+ 3)

)
‖A‖2.

Throughout this section we take Sn and Sm to each have sectional cur-
vatures constantly one. The curvature of M is given by

RX1,X2X3 = −〈t1, t3〉t2 + 〈t2, t3〉t1 − 〈s1, s3〉s2 + 〈s2, s3〉s1.

where Xi are tangent vectors and π1(Xi) = ti and π2(Xi) = si. We also recall
the definition

〈(1)WX, Y 〉 =
∑

i

2〈Rei,YB(X, ei),W 〉.

Proposition 4.12. Let M be a p-dimensional submanifold of M = Sn×Sm

for p ≤ n. Then the term (1) satisfies at each point

〈(1)WX, Y 〉 = 2
(
−
∑

i

〈ei, π
Tπ1B(X, ei)〉

)
〈πTπ1W,Y 〉

+ 2
∑

i

〈〈πNπ1ei,W 〉πTπ1B(X, ei), Y 〉 (plus a π2-term)

〈(1), A〉 = −4
∑
i,j

λiλj

√
(1− λ2

i )(1− λ2
j)
(
〈Aηi(ei), A

ηj(ej)〉 − 〈Aηj(ei), A
ηi(ej)〉

)
(4.4)
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where {ei} is an orthonormal basis for TM that diagonalizes the map πTπ1,
as described in the previous chapter.

Proof. From the expression for the curvature of Sn×Sm and the definition
of the term (1), the π1-term is given by

〈(1)WX, Y 〉 = 2
∑

i

〈−〈π1ei, π1B(X, ei)〉π1Y + 〈π1Y, π1B(X, ei)〉π1ei,W 〉

= 2〈(−
∑

i

〈ei, π
Tπ1B(X, ei)〉)πTπ1W,Y 〉

+2
∑

i

〈〈πNπ1ei,W 〉πTπ1B(X, ei), Y 〉

For the second equation, we calculate the inner product by considering the
distinguished orthonormal bases that we have described in Chapter 3. We
assume {ei} is an orthonormal basis for TM such that πTπ1ei = λ2

i ei for
i = 1, . . . , p. The map πNπ1 sends the tangent space to the normal space.
The image of this map has orthonormal basis {ηj} that satisfies πNπ2ηj =
(1− λ2

j)ηj for j = 1, . . . , p. We extend this to a full basis for NM by adding
ηj that are also eigenvalues of πNπ1. Denote the eigenvalues also by 1 − λ2

j

for j = p + 1, . . . , n + m. The vectors satisfying this second condition are
orthogonal to the image of πNπ1 and so are anihilated by πTπ1. We have

〈(1), A〉1 =

p∑
k=1

n+m∑
j=1

〈(1)ηj(ek), A
ηj(ek)〉

= −2
∑
i,j,k

〈ei, π
Tπ1B(ei, ek)〉〈πTπ1ηj, A

ηj(ek)〉

+2
∑
i,j,k

〈πNπ1ei, ηj〉〈πTπ1B(ek, ei), A
ηj(ek)〉

= −2
∑
i,j,k

λiλj

√
(1− λ2

i )(1− λ2
j)〈ηj, B(ei, ek)〉〈ej, A

ηj(ek)〉

2
∑
i,j,k,l

λiλl

√
(1− λ2

i )(1− λ2
l )〈ηi, ηj〉〈B(ei, ek), ηl〉〈el, A

ηj(ek)〉
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= −2
∑
i,j,k

λiλj

√
(1− λ2

i )(1− λ2
j)〈Aηi(ei), ek〉〈ek, A

ηi(ej)〉

+2
∑
i,k,l

λiλl

√
(1− λ2

i )(1− λ2
l )〈A

ηl(ei), ek〉〈ek, A
ηi(ek)〉

= −2
∑
i,j

λiλj

√
(1− λ2

i )(1− λ2
j)
(
〈Aηi(ei), A

ηj(ej)〉 − 〈Aηj(ei), A
ηi(el)〉

)
In the second equation the normal vectors ηj that are considered are only

those for j = 1, . . . , p. The remaining vectors are in the kernel of πTπ1 so
can be omitted.

This is almost sufficient. We now note that this calculation only consid-
ers the component of the curvature from the first sphere factor. Only the π1

term is considered. The component for the second is identical, because the
eigenvalues of the map πTπ2 are 1 − λ2

i instead of λ2
i . Making this replace-

ment leaves the final expression the same so the π2-term equals the π1 one.
Also, πNπ2ei = −πNπ1ei so ηi can be replaced by −ηi. The expressions are
all quadratic so this difference can be ignored. 2

We also note that

〈(2), A〉 = 〈(1), A〉.

The third term of R(A) is given by

〈(3)WX, Y 〉 = −
∑

i

〈AW (X), Rei,Y ei〉.

Proposition 4.13. The second fundamental form of a minimal submanifold
Mp of M satisfies

〈(3)WX, Y 〉 =
(
TrπTπ1

)
〈πTπ1A

WX, Y 〉 − 〈(πTπ1)
2AWX, Y 〉

(plus a π2-term, )

〈(3), A〉 =
∑
i,j

[
λ2

i

(∑
k

λ2
k − λ2

i

)
+(1− λ2

i )
(
p− 1 + λ2

i −
∑

k

λ2
k

)]
‖Aηj(ei)‖2 (4.5)

where the bases {ei} and {ηj} are distinguished in the way considered above.
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Proof. We recall,

〈(3)WX, Y 〉 = −
∑

i

〈
AW (X),−〈π1ei, π1ei〉π1Y + 〈π1Y, π1ei〉π1ei

〉
= (Tr πTπ1)

〈
πTπ1A

W (X), Y
〉
−
∑

i

〈
πTπ1A

W (X), ei

〉 〈
ei, π

Tπ1Y
〉

=
(
TrπTπ1

) 〈
πTπ1A

WX, Y
〉
−
〈
(πTπ1)

2AWX, Y
〉

The π2-terms are obtained in an identical manner. The inner product with
A is gotten by taking the π1 and π2 terms separately. For example,

〈(3)1, A〉 = (TrπTπ1)
∑
k,j

〈πTπ1A
ηj(ek), A

ηj(ek)〉

−
∑
k,j

〈(πTπ1)
2Aηj(ek), A

ηj(ek)〉

=
(∑

l

λ2
l

)∑
i,j,k

〈Aηj(ek), λ
2
i ei〉〈ei, A

ηj(ek)〉

−
∑
i,j,k

〈Aηj(ek), λ
4
i ei〉〈ei, A

ηj(ek)〉

=
∑
i,j,k

[
(
∑

l

λ2
l )λ

2
i − λ4

i

]
〈Aηj(ei), ek〉〈ek, A

ηj(ei)〉

=
∑
i,j

λ2
i

(∑
k

λ2
k − λ2

i

)
‖Aηj(ei)‖2

This is the inner product of A with the endomorphism of TM gotten by only
taking the curavature component from the first factor. The inner product
with the part from the second factor has eigenvalue λ2

i replaced with 1− λ2
i .

The sum of these expressions is the equation that we require. 2

Again we note that

〈(4), A〉 = 〈(3), A〉.

The fifth term of R(A) is given by

〈(5), A〉 =
∑

i

〈
Rei,B(X,Y )ei,W

〉
.

This term is similarly estimable.
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Proposition 4.14. As before, if M is a p-dimensional minimal submanifold
of Sn × Sm the terms of (5)WX and 〈(5), A〉 that come from the first factor
satisfy

〈(5)WX, Y 〉 = −Tr(πTπ1)〈AX(πNπ1W ), Y 〉+ 〈AX(πNπ1π
Tπ1W ), Y 〉

〈(5), A〉 = −Tr(πTπ1)
∑
j,k

(1− λ2
j)‖Aηj(ek)‖2 +

p∑
j,k=1

λ2
j(1− λ2

j)‖Aηj(ek)‖2.

The π2-terms, as usual, are obtained by replacing λ2
i by 1− λ2

i .

We note in this proposition that when we assume that πTπ2 is close to
zero, this implies that 1−λ2

j , as they have been defined, are close to zero only
for j = 1, . . . , p. The remaining eigenvalues of πNπ1 defined on NM could
and will be close to 1 in some cases.
Proof. The component of (5) coming from the first factor is given by

〈(5)WX, Y 〉 =
∑

i

〈Rei,B(X,Y )ei,W 〉

=
∑

i

〈−〈π1ei, π1ei〉π1B(X, Y ) + 〈π1B(X, Y ), π1ei〉π1ei,W 〉

= −Tr(πTπ1)〈AX(πNπ1W ), Y 〉+
∑

i

〈πTπ1B(X, Y ), ei〉〈ei, π
Tπ1W 〉

= −Tr(πTπ1)〈AX(πNπ1W ), Y 〉+ 〈AX(πNπiπ
Tπ1W ), Y 〉,

as required. The inner product is given by

〈(5), A〉 = −Tr(πTπ1)
∑
j,k

〈Aek
(πNπ1ηj), Aei

(ηj)〉+ 〈Aei
(πNπ1π

Tπ1ηj), Aei
(ηj)〉.

We can see that this gives us what we require. The bases for TM and NM

that we take are of eigenvalues for the relevant maps. In particular, there
are the coefficients 1− λ2

j for the first terms. For the last one, we note that,
from equations 3.1 and 3.1, we have that πNπ1π

Tπ1ηj = λ2
j(1 − λ2

j)ηj for
j = 1, . . . , p and equals zero for j = p+ 1, . . . , n+m− p. 2

The final term that we will calculate is the sixth. This is slightly more
delicate. It is given by

〈(6)WX, Y 〉 = −2
∑

i

〈AW (ei, Rei,XY 〉.
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Proposition 4.15. The sixth term of R(A) in this case satisfies

〈(6)WX, Y 〉 = −2Tr(πTπ1A
W )〈πTπ1X, Y 〉+ 2〈πTπ1A

W (πTπ1X), Y 〉.

〈(6), A〉 = 2
∑
i,k

(
λ2

iλ
2
k + (1− λ2

i )(1− λ2
k)
)(
‖B(ei, ek)‖2 − 〈B(ei, ei), B(ek, ek)〉

)
.

In the first case there is also the ubiquitous π2-term. This is taken into
account in the second expression.

Proof.

〈(6), A〉 = −2
∑

i

〈AW (ei), Rei,XY 〉

= −2
∑

i

〈AW (ei),−〈π1ei, π1Y 〉π1X + 〈π1X, π1Y 〉π1ei〉

= −2
∑

i

〈πTπ1A
W (ei), ei〉〈πTπ1X, Y 〉

+2
∑

i

〈AW (πTπ1X), ei〉〈ei, π
Tπ1Y 〉

as required. We take the inner product of A with the component of R(A)
coming from the first factor.

〈(6), A〉1 = −2
∑
i,j,k

〈πTπ1A
ηj(ei), ei〉〈πTπ1ek, A

ηj(ek)〉

+2
∑
jk

〈πTπ1A
ηj(πTπ1ek), A

ηj(ek)〉

= −2
∑
i,k

〈B(πTπ1ei, ei), B(πTπ1ek, ek)〉

+2
∑
ik

〈B(πTπ1ek, ei), B(ek, π
Tπ1ei)〉 (4.6)

= 2
∑
ik

λ2
iλ

2
k

(
‖B(ei, ek)‖2 − 〈B(ei, ei), B(ek, ek)〉

)
The π2 term has 1− λ2

i replacing λ2
i and the full inner product is the sum of

these two terms. 2
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This completes the first set of calculations. We now use them to explicitly
estimate the size of〈R(A), A〉 under the assumption that the uniform size of
‖π2‖ is bounded. Specifically we note that the assumption ‖π2‖ ≤ Λ implies
that p− Λ2 ≤

∑
i λ

2
i ≤ p.

Proposition 4.16. Suppose that the endomorphism π2 of the tangent space
uniformly satisfies ‖π2‖ ≤ Λ over the submanifold. Then the term (1) satis-
fies

〈(1), A〉 ≥ −8p2Λ2‖A‖2.

Proof. We begin with equation 4.4. That is

〈(1), A〉 = −4
∑
ij

λiλj

√
(1− λ2

i )(1− λ2
j)
(
〈Aηi(ei), A

ηj(ej)〉−〈Aηj(ei), A
ηi(ej)〉

)
.

Our hypothesis implies that
∑

i(1− λ2
i ) ≤ Λ2 so we can naively estimate

〈(1), A〉 ≤ 8Λ2p2‖A‖2

as required. 2

Since 〈(1), A〉 = 〈(2), A〉 we also have that

〈(2), A〉 ≥ −8p2Λ2‖A‖2.

Proposition 4.17. Suppose again that the map π2 uniformly satisfies ‖π2‖ ≤
Λ. Then the second fundamental form of M satisfies

〈(3), A〉 ≥
(
(p− 1)− Λ2(p− 1)

)
‖A‖2.

Proof. We recall equation 4.5. The hypothesis that
∑

i(1 − λ2
k) ≤ Λ2

implies that p− Λ2 ≤
∑

i λ
2
i ≤ p and

λ2
i

(∑
k

λ2
k − λ2

i

)
+ (1− λ2

i )
(
p− 1 + λ2

i −
∑

k

λ2
k

)
≥ (1− Λ2)(p− 1− Λ2)− Λ2 · Λ2

= (p− 1)− Λ2(p− 1).

from which the inequality follows. 2
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Proposition 4.18. Suppose that the bound ‖π2‖ ≤ Λ holds uniformly on M .
Then the fifth term of R(A) satisfies

〈(5), A〉 ≥ −(p+ 3Λ2)‖A‖2.

Proof. The two terms, coming from the projections to the two sphere
factors, are

〈(5), A〉1 = −
(∑

i

λ2
i

) p∑
k=1

N−p∑
j=1

(1− λ2
j)‖Aηj(ek)‖2 +

p∑
j,k=1

λ2
j(1− λ2

j)‖Aηj(ek)‖2

〈(5), A〉2 = −
(∑

i

(1− λ2
i )
) p∑

k=1

N−p∑
j=1

λ2
j‖Aηj(ek)‖2 +

p∑
j,k=1

λ2
j(1− λ2

j)‖Aηj(ek)‖2

In particular, if 0 ≤
∑p

i=1(1−λ2
i ) ≤ Λ2 ≤ 1, we have that p−Λ2 ≤

∑p
i=1 λ

2
i ≤

p and

〈(5), A〉1 ≥ −p
∑
j,k

‖Aek
(ηj)‖2 − Λ2‖A‖2

= −
(
p+ Λ2

)
‖A‖2,

〈(5), A〉2 ≥ −2Λ2‖A‖2.

The sum of these terms gives the required inequality. 2

Proposition 4.19. In the above situation, if the projection from the tangent
space to the second factor uniformly satisfies ‖π2‖ ≤ Λ ≤ then the sixth term
in R(A) satisfies

〈(6), A〉 ≥
(
1− 2Λ2 − 2p2Λ2

)
‖A‖2.

Proof. In Proposition 4.15 we consider the expression in the λ’s

λ2
iλ

2
k + (1− λ2

i )(1− λ2
k) ≥ (1− Λ2)2 − Λ4

= 1− 2Λ2.

As a result we have∑
i,k

(
λ2

iλ
2
k + (1− λ2

i )(1− λ2
k)
)
‖B(ei, ek)‖2

≥
∑
i,k

(1− 2Λ2)‖B(ei, ek)‖2

= (1− 2Λ2)‖A‖2.
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We also observe the identity

λ2
iλ

2
k + (1− λ2

i )(1− λ2
k) = 1+

≥2Λ2︷ ︸︸ ︷
λ2

i (λ
2
k − 1) + λ2

k(λ
2
i − 1) .

This allows the second term to be simplified as∑
i,k

(
λ2

iλ
2
k + (1− λ2

i )(1− λ2
k)
)
〈B(ei, ei), B(ek, ek)〉

=
∑
i,k

〈B(ei, ei), B(ek, ek)〉+
∑
i,k

(
λ2

i (λ
2
i − 1) + λ2

k(λ
2
i − 1)〈B(ei, ei), B(ek, ek)〉

≥ −2p2Λ2‖A‖2.

Here we use that the trace of the second fundamental form is zero. Hence,

〈(6), A〉 ≥
(
1− 2Λ2 − 2p2Λ2

)
‖A‖2.

2

We combine the conclusions of this collections of lemmas. In summary we
have that

〈R(A), A〉 = 〈(1) + (2) + (3) + (4) + (5) + (6), A〉
≥ −8p2Λ2‖A‖2 − 8p2Λ2‖A‖2(

(p− 1)− Λ2(p− 1)
)
‖A‖2 +

(
(p− 1)− Λ2(p− 1)

)
‖A‖2

−
(
p+ 3Λ2

)
‖A‖2 +

(
1− 2Λ2 − 2p2Λ2

)
‖A‖2

=
(
(p− 1)− Λ(18p2 + 2p+ 3)

)
‖A‖2 (4.7)

This is sufficient to prove Theorem 4.3 and completes this section.

4.2 Submanifolds of Reducible Symmetric Spaces

In this section we consider minimal submanifolds of products of symmetric
spaces. Previously we considered submanifolds of products of spheres. In
this case we consider the ambient space to be symmetric and one factor in
its decomposition into irreducible comonents is a sphere. Again we consider
the tensor R(A) and wish to show that it is uniformly bounded below by the
second fundamental form.
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First we recall some important facts on the Riemannian geometry of sym-
metric spaces. The symmetric spaces that we will consider are of a certain
restricted type, and their metrics will be distinguished as well. We will sup-
pose that M is a compact riemannian symmetric space that is diffeomorphic
to a homogeneous space G/H where G is a compact group of isometries and
H is the kernel of an involutive automorphism of G. We will assume that G
is semi-simple. The Lie algebra g of G splits into the +1 and −1 eigenspaces
of the automorphism. That is, g = h⊕m.

The metric geometry that we will assume on M can be quite precisely
stated as well. In our situation the Killing form is negative definite on g and
so it induces an inner product on g and, by restriction, on the subspace m.
This inner product is invariant by the action of H on m and so induces a
riemannian metric on M that is invariant by G. This is the metric that we
will consider.

The curvature operator for this metric is given entirely in terms of the
algebraic structure of g. If we identify ToM with m it is given by

RX,YZ = −[[X, Y ], Z]

for X, Y and Z in m.
Another assumption that we will make is how the action of h on m is

reducible. The Lie algebra g splits as a sum of ideals

g = g1 + g2 = m1 + h1 + m2 + h2

where [g1, g2] = 0. In particular, we will assume that the symmetric Lie
algebra (g1, h1, σ) is isomorphic to (so(p+1), so(p), σ). This implies that, up
to finite coverings, the symmetric space M is

M = Sp ×M2

where M2 is another compact symmetric space. Many of the calculations will
be done in a little more generality. It should be noted that each of the six
terms in the estimate of 〈R(A), A〉 can be controlled where the first factor
of the symmetric space is an arbitrary compact-type symmetric space. Only
the term (6) is currently preventing an extension of our theorem.

In the following calculations, we suppose that M ⊂ M i minimal sub-
manifold and at a fixed point x ∈ M , {ei} is a basis for TxM each element
of which is an eigenvector for the map πTπ1. The set {ηj} is an orthonor-
mal basis for NM of eigenvectors for πNπ1. These are as constructed in the
previous chapter.
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Proposition 4.20. Let M be a p-dimensional closed minimal submanifold
of the compact symmetric space M . Then the first term in R(A) satisfies

〈(1)WX, Y 〉 = 2
∑

i

〈Rei,YB(X, ei),W 〉

= 2
∑

i

〈[ei, [B(X, ei),W ]], Y 〉

〈(1), A〉 = 2
∑
i,j,k

〈[Aηj(ek), ei], [B(ek, ei), ηj]〉

Proof. From the definition of (1) we have that

〈(1)WX, Y 〉 = −2
∑

i

〈[[ei, Y ], B(X, ei)],W 〉

= 2
∑

i

〈[ei, [B(X, ei),W ]], Y 〉

〈(1), A〉 = 2
∑
ijk

〈Aηj(ek), [ei, [B(ek, ei), ηj]]〉

= 2
∑
i,j,k

〈[Aηj(ek), ei], [B(ek, ei), ηj]〉

2

As before, we recall that the term (2) is the transpose of (1). Hence,
〈(2), A〉 = 〈(1), A〉.

We now look at the term (3) and take the inner product with A. (3) is
given by

〈(3)WX, Y 〉 = −
∑

i

〈AW (X), Rei,yei〉 =
∑

i

〈AW (X), Ry,ei
ei〉

where R is the ambient curvature tensor. The right hand side looks very much
like the ambient Ricci curvature operator. By this approximate identification,
we may say that

〈(3)WX, Y 〉 = 〈Ric(AWX), Y 〉
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and (3) = Ric ◦A. Clearly then, positive Ricci curvature should be a neces-
sary assumption to ensure that 〈(3), A〉 is comparable to ‖A‖2. We have that
in this case because of the earlier observtion that the symmetric form −B is
exactly the Ricci operator which must then be sufficiently positive. On each
irreducible symmetric component of M , B is a constant positive multiple of
the metric.

It should be noted that the identification of the right hand side of (3)
with the ambient Ricci curvature is false because we only sum over a basis
for the tangent space to the submanifold. The following theorem makes it
clear that we must be able to negate the normal directions to use the above
argument.

Proposition 4.21. Let A be the second fundamental form of a minimal
submanifold M of a compact symmetric space M . The third term in the
expression R(A) satisfies

〈(3)WX, Y 〉 =
∑

i

〈[ei, [A
W (X), ei]], Y 〉

〈(3), A〉 = −
∑
jk

Trm

(
ad(Aηj(ek) ◦ ad(Aηj(ek))

)
−
∑
j,k,l

〈[Aηj(ek), ηl], [A
ηj(ek), ηl]〉

≥ ρ‖A‖2 −
∑
j,k,l

〈[Aηj(ek), ηl], [A
ηj(ek), ηl]〉 (4.8)

where ρ is the smallest coefficient given in the decomposition of B in Equation
1.3.

This is the most important term in all of our calculations. Our overall aim
is to show that the inner product 〈R(A), A〉 is bounded below by a positive
multiple of ‖A‖2. The term (3) is the one that gives this positivity. The
other term can be thought to be small if one thinks that tangent and normal
vectors almost commute, as happens if the tangent spaces are close to an
irreducible factor.
Proof.

〈(3)WX, Y 〉 = −
∑

i

]〈AW (X), [[ei, Y ], ei]〉

=
∑

i

〈[ei, [A
W (X), ei]], Y 〉
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〈(3), A〉 =
∑
i,j,k

〈Aηj(ek), [ei, [A
ηj(ek), ei]]〉

= −
∑
i,j,k

〈[Aηj(ek), [A
ηj(ek), ei]], ei〉 −

∑
j,k,l

〈[Aηj(ek), [A
ηj(ek), ηj]], ηj〉

−
∑
j,k,l

〈[Aηj(ek), ηl], [A
ηj(ek), ηl]〉

= −
∑
jk

Trm

(
ad(Aηj(ek) ◦ ad(Aηj(ek))

)
−
∑
j,k,l

〈[Aηj(ek), ηl], [A
ηj(ek), ηl]〉

=
∑
j,k

Ric(Aηj(ek))−
∑
j,k,l

〈[Aηj(ek), ηl], [A
ηj(ek), ηl]〉

≥ ρ‖A‖2 −
∑
j,k,l

〈[Aηj(ek), ηl], [A
ηj(ek), ηl]〉

2

Again as before, (4) is the transpose of (3) so 〈(4), A〉 = 〈(3), A〉.

In the previous theorem, we considered minimal submanifolds of Sn×Sm

where the projection to the second factor is small. In that case the dimension
of the submanifold could be anything less than n. We can’t make that
assumption in this case.

Proposition 4.22. Under the same hypotheses as for the previous proposi-
tions, we can calculate the fifth term of R(A) as

〈(5)WX, Y 〉 =
∑

i

〈AX

(
πN [ei, [ei,W ]]), Y 〉

〈(5), A〉 = −
∑
i,j,k,l

〈Aek
(ηl), Aek

(ηj)〉〈[ei, ηj], [ei, ηj]〉.

From either of these equations one can see that if tangent and normal
vectors almost commute, this is going to be estimably small.
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Proof.

〈(5)WX, Y 〉 =
∑

i

〈Rei,B(X,Y )ei,W 〉

= −
∑

i

〈[[ei, B(X, Y )], ei],W 〉

=
∑

i

〈AX

(
πN [ei, [ei,W ]]), Y 〉

〈(5), A〉 =
∑
ijk

〈Aek

(∑
l

〈[ei, [ei, ηj]], ηl〉ηl

)
, Aek

(ηj)〉

= −
∑
i,j,k,l

〈Aek
(ηl), Aek

(ηj)〉〈[ei, ηj], [ei, ηj]〉

2

The final term that we need to consider is the sixth one in R(A).

Proposition 4.23. Let M be a p-dimensional minimal submanifold of M =
Sp ×M2 where M2 is a riemannian symmetric space of compact type. The
sixth term of R(A) satisfies

〈(6)WX, Y 〉 = 2
∑

i

〈−[[ei, X], AW (ei)], Y 〉 (4.9)

〈(6), A〉 =
1

p− 1

∑
ik

λ2
iλ

2
k

(
‖B(ei, ek)‖2 − 〈B(ei, ei), B(ek, ek)〉

)
−2
∑
ijk

〈[π2ei, π2ek], [π2A
ηj(ei), π2A

ηj(ek)]〉. (4.10)

In this proposition we have assumed that the first factor of the reducible
symmetric space is the sphere. This is the first time that we have had to
make this assumption. The reason that it is necessary is that in the general
case we obtain a term that is negative semi-definite and difficult to estimate
in terms of Λ and other terms. In the case of the sphere, this term vanishes
identically. We are currently determining whether the rank-one condition is
necessary for this term to be controlled.
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Proof. We have

〈(6)WX, Y 〉 = −2
∑

i

〈AW (ei), Rei,XY 〉

= 2
∑

i

〈AW (ei), [[ei, X], Y 〉

= 2
∑

i

〈−[[ei, X], AW (ei)], Y 〉.

To take the inner product of (6) with A we consider the two factors of Sp×M2

and the projections to them.

〈(6), A〉 = 2
∑
ijk

〈−[[π1ei, π1ek], π1A
ηj(ei)], π

ηj(ek)〉

−2
∑
ijk

〈[π2ei, π2ek], [A
ηj(ei), A

ηj(ek)]〉

We denote these two terms 〈(6), A〉1 and 〈(6), A〉2. The first term clearly
uses the curvature term for the first factor. This factor is the sphere with
Killing metric. The curvature is thus given by

RXYZ = −[[X, Y ]Z] =
1

2(p− 1)

(
− 〈X,Z〉Y + 〈Y, Z〉X

)
.

We then have

〈(6), A〉1 =
2

2(p− 1)

∑
ijk

〈−〈π1ei, π1A
ηj(ei)〉π1ek + 〈π1ek, π1A

ηj(ei)〉π1ei, A
ηj(ek)〉

This can be seen to be very similar to equation 4.6 from which we obtain the
first term that we require. The expression for 〈(6), A〉2 is clear. 2

This completes our exact calculations of the six terms in R(A). To prove
the Theorem 4.7 we must estimate them correctly in the case that ‖π2‖ ≤ Λ.
To do this we must first define some constants that will be used. For the
first of these we suppose that the symmetric Lie algebra has splitting

m = m1 + m2

then we define

K1 = sup{[X, Y ] ; X, Y ∈ m1, |X| = |Y | = 1}.
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Similarly for m2 we define K2.
Next we recall the summetric bilinear B form on m defined by

B(X, Y ) = Trm

(
adx ◦ adY

)
.

Then we proved that if κi is the Killing form of g restricted to the irreducible
component of m, we have

B = ρ1 · κ1 + · · ·+ ρk · κk

for some positive constants ρi. We define the constant

ρ = min ρi.

Proposition 4.24. Let M be a p-dimensional minimal submanifold of Sp ×
M ′ where Sp×M ′ is symmetric and has the Killing metric. Suppose that π2

uniformly satisfies ‖pi2‖ ≤ Λ. Then the first term of R(A) satisfies

〈(1), A〉 = ≥ −4p2(N − p)(K2
1 +K2

2)Λ2‖A‖2.

Proof.

〈(1), A〉 = 2
∑
ijk

〈[Aηj(ek), ek], [B(ei, ek), ηj]〉

= 〈(1), A〉1 + 〈(1), A〉2
where the two terms come from the brackets on the two symmetric compo-
nents. That is,

〈(1), A〉 = 2
∑
ijk

〈[π1A
ηj(ei), π1ek], [π1B(ek, ei0, π1ηj]〉

To study this we note that |π1X| ≤ |X| for X a tangent vector and the
hypothesis ‖π2‖ ≤ Λ and the fact that dim(M) = p = dim(Sp) implies that
|π1ν| ≤ Λ|ν| for ν a normal vector to M . Hence,

〈(1), A〉 2
∑
ijk

〈[π1A
ηj(ei), πk(ek)], [π1B(ek, ei), π1ηj]〉

≥ −2
∑
ijk

|Aηj(ek)| |B(ei, ek)|K2
1 Λ2

≥ −2p2(N − p)K2
1 Λ2 ‖A‖2

Similarly, 〈(1), A〉 is estimable by the corresponding term. 2

This also gives the estimate for 〈(2), A〉.
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Proposition 4.25. In the given situation, if ‖π2‖ ≤ Λ the third term satisfies

〈(3), A〉 ≥ ρ‖A‖2 −
∑
jkl

‖[Aηj(ek), ηl]‖2

≥ ρ‖A‖2 − p(N − p)2(K2
1 +K2

2)Λ2‖A‖2.

Proof. This follows immmediately from equation 4.8. In particular we
note that∑

jkl

‖[Aηj(ek), ηl]‖2 =
∑
jkl

(
‖[π1A

ηj(ek), π1ηl]‖2 + ‖[π2A
ηj(ek), π2ηl]‖2

)
≤ p(N − p)2(K2

1 + k2
2)Λ

2‖A‖2.

The estimate of the first of these terms uses the fact that |π1ηl| ≤ Λ which
requires that the dimension of the submanifold is equal to the dimension of
the first factor of the symmetric space Sp ×M2. 2

Proposition 4.26. The fifth factor of R(A) satisfies

〈(5), A〉 ≥ −p2(N − p)2(K2
1 +K2

2)Λ2‖A‖2.

Proof. This follows from a similar argument to above, for the equation

〈(5), A〉 = −
∑
i,j,k,l

〈Aek
(ηl), Aek

(ηj)〉〈[ei, ηj], [ei, ηj]〉.

2

Proposition 4.27. Under the assumption that ‖π2‖ ≤ Λ ≤ 1 uniformly on
M , the sixth and final term of R(A) satisfies

〈(6), A〉 ≥ 1

p− 1
‖A‖2 − 4p2

p− 1
Λ2‖A‖2 − 2p2(N − p)K2

2Λ‖A‖2

Proof. This proposition is very similar to the proposition 4.19. As such
we recall the identity

λ2
iλ

2
k = 1− λ2

i (1− λ2
k) + (λ2

i − 1)
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and calculate the first term of 〈(6), A〉. Under the hypothesis ‖π2‖ ≤ Λ from
Theorem 4.23 we have the equation.... (t

(p− 1)〈(6), A〉1 =
∑
ik

‖B(ei, ek)‖2

−
∑
ik

λ2
i (λ

2
k − 1)

(
‖B(ei, ek)‖2 − 〈B(ei, ei), B(ek, ek)〉

)
+
∑
ik

(λ2
i − 1)

(
‖B(ei, ek)‖2 − 〈B(ei, ei), B(ek, ek)〉

)
≥ ‖A‖2 − 4p2Λ2‖A‖2

The estimate for the term 〈(6), A〉2 is similar to the others that we have given
and so we omit the calculation. 2

This term, 〈(6), A〉, is the one in which we have only been able to give the
result for submanifolds close to rank-one factors. This is because in the cal-
culation of this term for arbitrary compact symmetric spaces, a term arises
that is negative semi-definite. Our theorem can be concluded whenever this
term vanishes or can be controlled. The first factor being the sphere is one
such case.

This completes the explicit calculation of the coefficient that we require.
Taking the inequalities in propositions 4.24, 4.25, 4.26 and 4.27 as reference
we can define

C = C(p,M2) = 8p2(N − p)(K2
1 +K2

2) + 2p(N − p)2(K2
1 +K2

2)

+p2(N − p)2(K2
1 +K2

2) + 4
p2

p− 1
+ 2p2(N − p)K2

2 .

This value of C and the above calculations allow us to conclude the fol-
lowing theorem.

Theorem 4.28. There exists C = C(p,M2) > 0 such that for any 0 < Λ ≤ 1
and for any p-dimensional minimal submanifold M of the symmetric space
M = Sp ×M2 for which ‖π2‖ ≤ Λ the term R(A) satisfies

〈R(A), A〉 ≥
(
(2ρ+

1

p− 1
)− CΛ2

)
‖A‖2.
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This coefficient 2ρ + 1/(p− 1)− CΛ2 is independent of the submanifold
M . Thus according to the argument at the start of the chapter, we have a
criterion for when M must be totally geodesic. This theorem is the analogue
of Equation 4.7 in this case.

4.3 Totally Geodesic Submanifolds of Prod-

ucts

In the previous section we gave some sufficient conditions for a minimal
submanifold of a riemannian symmetric space to be totally geodesic. The
intended result is not so much this as the statement that the minimal sub-
manifold is a particular totally geodesic subspace.

In this section we consider the totally geodesic submanifolds of symmetric
spaces. It is a basic result in the theory that complete totally geodesic
submanifolds of a symmetric space M with corresponding symmetric Lie
algebra g = m + h are in a one-to-one correspondence with subspaces t ⊂ m

that satisfy

[[t, t], t] ⊂ t.

Our study of totally geodesic submanifolds will be via this correspondence.
We outline our hypotheses for this section. Let (g, h, σ) be an orthogonal

symmetric Lie algebra with g semi-simple and of compact type. Assume
that an inner product is given on g by the negative of the Killing form. We
restrict this to m to give an h-invariant inner product. We will assume that
the symmetric Lie algebra is reducible. It splits as

g = (m1 + h1) + (m2 + h2).

Moreover, we assume that the first factor is the symmetric Lie algebra for
the round sphere. That is, (g1, h1, σ) = (so(n+ 1), so(n), σ). The important
features of this space are that it has rank one and that we know all of its Lie
triple systems. The totally geodesic subspaces of the sphere are the great
subsphere of the various dimensions so the Lie triple systems are (conjugate
to) (so(p + 1), so(p), σ). For notational reasons we will continue to refer to
the first factor as m1.
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Proposition 4.29. Let t be a Lie triple system contained in m1 + m2. Con-
sider the orthogonal projections π2 : t → m2 and πt : m1 + m2 → t. Suppose
that ‖πtπ2‖2 ≤ Λ2/p for Λ < 1.

Then the subalgebra t + [t, t] ⊂ g is simple and isomorphic to so(p+ 1).

Proof.
Firstly, the condition that k = t + [t, t] is a subalgebra follows from the

observations

[[t, t], t] ⊂ t

[[t, t] , [t, t]] ⊂ [t, [t, [t, t]]]

⊂ [t, t]

This follows by the Jacobi identity and the fact that t is a Lie triple system.
Next we consider the subspace π1(t) ⊂ m1. This is clearly a Lie triple

system of m1 and so corresponds to a totally geodesic submanifold of M1.
We know by hypothesis that M1 = Sn and that the corresponding totally
geodesic subspace is a great sphere. This has isometry group SO(p+ 1).

We consider the map πtπ2. The assumption that ‖πtπ2‖2 ≤ Λ2/p for
Λ < 1 implies that π1 : t → m1 is an injection to its image. We claim that π1

is injective when considered on k = t + [t, t]. Let x = X1 +X2, y = Y1 + Y2

for Xi, Yi ∈ mi. We can suppose that X1 and Y1 are non-zero. Then,

[x, y] = [X1, Y1] + [X2, Y2]

and π1[x, y] = [X1, Y1]

Suppose that [X1, Y1] = 0. We have assumed that the symmetric Lie alge-
bra (g1, h1, σ) has rank one. This means that the dimension of a maximal
subspace of m1 on which the brackets vanish is one. In other words,

[X1, Y1] = 0 ⇒ X1 = λY1.

We can rescale x and y so that λ = 1. Then x − y = X2 − Y2 ∈ kerπ1 ∩ t.
This implies that x = y and [x, y] = 0. That is, π1 is injective on [t, t] as well
so π1 : k → m1 is an isomorphism to its image.

Hence, k = t + [t, t] ∼= so(p+ 1) and the symmetries correspond. 2

In particular, the algebra k is simple so the map π2 : k → m2 is either
identically zero or an isomorphism to its image. In the first case, if T ⊂
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M1 ×M2 is the corresponding totally geodesic subspace, π2(T ) is a point.
In the second case, π2 : T → π2(T ) is a covering map. We show that if
‖πTπ2‖ ≤ Λ/

√
p uniformly for some sufficiently small Λ dependent only on

M2 this second case cannot occur.

Theorem 4.30. There exists Λ > 0 such that if T is a p-dimensional totally
geodesic submanifold of Sn ×M2 and ‖π2‖ ≤ Λ then T ⊂ Sn × {pt}.

Proof. As before we consider the maps π1 and π2 to the two factors. From
the previous proposition if Λ < 1, π2(T ) is either a point or is a totally
geodesic subspace of M2 of the same dimension. We consider the second case
and show that for Λ sufficiently small it cannot occur.

Theorem 4.31. [7](Area Formula) Let F : Xn → Y n+m be a C1 map between
Riemannian manifolds. Then∫

A

JF (x)dHn(x) =

∫
F (X)

H0(F−1(y) ∩ A)dHn(y).

for any measurable A ⊂ X, where Hk is the k-dimensional Hausdorff measure
on the spaces.

This also holds for locally Lipschitz maps, though that is unnecessary for
our considerations. The Jacobian term is given by (JF )2 = det(dF ∗ ◦ dF ).
In the present case we consider the map π2 defined on T and estimate the
volume of π2(T ). We have

vol(π2(T )) =

∫
π2(T )

dHp(y) ≤
∫

π2(T )

∫
π−1
2 (y)

dH0(t)dHp(y)

=

∫
T

Jπ2(x)dHp(x)

The Jacobian term can be estimated. In our context the transpose of π2 :
t → m2 is πt : m2 → t. The determinant is the product of the eigenvalues of
πtπ2. Thus,

(Jπ2)
2 =

∏
i

(1− λ2
i ) ≤ Λp

and

vol(π2T ) ≤ Λ
p
2 vol(T ).
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Similarly, by considering the projection to the other factor and observing
that the assumption on ‖πtπ2‖ implies that

∏
i λ

2
i ≥ (1− Λ)p, we have that

vol(T ) ≤ 1

(1− Λ)
p
2

vol(Sp)

where Sp has the round metric with constant curvature 1
2(n−1)

. This strange

curvature value arises because we have the Killing metric on so(n+1). Hence
we have

vol(π2T ) ≤
(

Λ

1− Λ

) p
2

vol(Sp).

We show that for sufficiently small Λ this can only occur if π2 ≡ 0 and π2T
is a point.

Suppose that Sp ⊂M2 is a totally geodesic submanifold. Then for o ∈ N ,
denote V = ToN . Let U denote a fixed connected open subset of ToM2 that
does not intersect the origin and does not intersect the tangential cut locus
of o ∈ M2. If V ⊆ ToM2 is a p-dimensional vector subspace we consider
U ∩ V and consider the function

F (V ) = vol(expo(U ∩ V )) = Hp(expo(U ∩ V )).

This is a positive continuous function on G(p, ToM2) (if U is chosen correctly)
and so has values bounded away from zero. That is, F (V ) ≥ λ > 0 for some
small λ and for all V .

If N ⊆M2 is totally geodesic and o ∈ N then N = expo(ToN),

vol(N) ≥ vol(exp(U ∩ ToN)) ≥ λ.

Thus if we take Λ > 0 such that (Λ/1− Λ)p/2 vol(Sp) < λ then ‖π2‖ ≤ Λ
uniformly on a totally geodesic T implies that N = Sp.

4.4 A Note on Genericity

Throughout the argument giving the proof of Theorem 4.7 we have used
distinguished bases {ei} and {ηj} for TM and NM respectively. They were
chosen to satisfy

πTπ1ei = λ2
i ei

πNπ1ηj = (1− λ2
j)ηj
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and to be connected by the relation

πNπ1ei =
√
λ2

i (1− λ2
i )ηi for i = 1, . . . , p.

The problem that we note now is that this assignment can be made only if
all eigenvalues λ2

i are non-zero and not equal to one. This must be taken into
account because the problem we are ultimately solving is to give sufficient
conditions to have all λi’s equal to zero. This apparent contradiction can be
overcome if we consider precisely what we are doing.

The conclusion of the extensive calculation of Section 4.2 that led to The-
orem 4.7 can be stated as:

If V ⊆ m1 + m2 is a vector subspace on which all eigenvalues of πV π1

are not zero or one and if ‖π2‖ ≤ Λ and if A is a tensor on V with the
symmetries and type of a second fundamental form then

〈R(A), A〉 ≥
(
(2ρ+

1

p− 1
)− CΛ2

)
‖A‖2.

That is, the inequality holds for all A and for all V that lie in a Zariski-open
subset of G(p,m1 + m2). By continuity, the inequality must hold for all sub-
spaces V ⊆ m1 + m2.

Hence, the conclusion of Theorem 4.7 is valid, even for submanifolds some
of whose tangent spaces have 0 as an eigenvector.

61



Chapter 5

Rigidity of Rank-One
Components

We continue our previous calculations regarding minimal submanifolds of
symmetric spaces. In the previous chapter we proved a number of theorems
on rigidity and isolation phenomena for the totally geodesic factors Sp×{pt}
contained in Sp×M2 where M2 is a riemannian symmetric space of compact
type and where the ambient metric is gotten from the Killing form on the
associated Lie algebra of Killing vectors. From these calculations, we can
give similar results in the case that the ambient space is M1 ×M2 where M1

is an arbitrary compact symmetric space of rank one.
In a similar way to how the previous chapter was directly motivated by

the work of Simons for submanifolds of the sphere, this chapter uses the
techniques and methods of proof of Lawson [5]. This work also uses the
classification of rank-one symmetric spaces so that we can do it one a case-
by-case basis.

The fundamental observation that we make is that any rank-one symmet-
ric space admits a submersion from a Euclidean sphere that is compatible
with the Riemannian structures of the spaces. This type of structure was
studied originally and extensively by O’Neill [6].

5.1 Riemannian Submersions

We consider smooth maps F : N →M with derivative everywhere surjective.
The preimage of any point in M is then a smooth submanifold of N . We will
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combine this with the Riemannian geometry of the spaces N and M .
Assume that N and M are Riemannian manifolds. At p ∈ N consider the

subspace of TN orthogonal to the fibre F−1(F (p)). F∗ is bijection to TM when
restricted to this space. If F∗ restricted to this space is an isometry for every
p ∈ N we say that F : N → M is a Riemannian submersion. In the case
at hand, in which we are interested in minimal submanifolds, we will also
assume that each fibre of the submersion is a totally geodesic submanifold.

We use the terminology of fibre bundles in describing the curvature of such
spaces. The tangent space to a fibre is referred to as the vertical subspace.
The orthogonal space to a fibre is called the horizontal space. Let X denote
a tangent vector at p ∈ N . The vertical and horizontal components of X are
denoted VX and HX respectively. The fundamental tensor that relates the
curvature of N , M and the fibres will be denoted by A and is given by

AXY = V∇HXHY +H∇HXVY

This defines a tensor of type (1, 2) on N . It can be thought of as a measure
of the extent to which horizontal parallel translation does not preserve the
horizontal and vertical subspaces.

Let R and R′ denote the Riemann curvatures of N and M respectively so
that S(X, Y ) = 〈RY,XX, Y 〉 and S ′(X, Y ) = 〈R′Y,XX, Y 〉 denote the sectional
curvatures when X and Y are orthogonal and unit length. Then by [6, pg.
465] if X and Y are horizontal vectors to N and V is vertical,

S ′(F∗X,F∗Y ) = S(X, Y ) + 3|AXY |2

S(X,V ) = |AXV |2.

The second term more generally involves some terms involving the second
fundamental form of the fibres. These vanish if we assume the fibres are
totally geodesic.

We now give some formulas relating the scalar curvatures of N and M .
Following Lawson, we define four terms. At p ∈ N we let K(p) denote the
scalar curvature of N at p, K ′(p) denote the scalar curvature of M at F (p),
and let r(p) denote the scalar curvature of the fibre at p. Finally we define
the twisting curvature of the submersion τ(p) at p by

τ(p) =
∑

j

∑
k

S(ej, νk)
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where {ej} is an orthonormal basis for the horizontal space at p and {νk}
is an orthonormal basis for the vertical space at p. We note that τ ≥ 0
everywhere. The fundamental relation that we use is

Theorem 5.1. [5, pg. 351]

K ′ = K + τ − r.

We will use this result to prove theorems similar to 4.11, where we will
compare the scalar curvature of a minimal submanifold with the scalar cur-
vature of a space that fibres over it.

Finally, in the context of Riemannian submersions, we will recall another
construction of Lawson that relates submanifolds of the base of a submersion
with submanifolds of the domain. Let π : M → B be a Riemannian sub-
mersion and let M be a submanifold of M that respects the map π. That
is, suppose there is a submersion π : M → B where B is a submanifold of B
such that the diagram

M
f−−−→ M

π

y yπ

B
f−−−→ B

commutes. Importantly, we also assume that the submanifold M of M con-
tains all of the fibres of the map from M . We give a number of facts taken
from [5] that we will need. Firstly,

Theorem 5.2. [5] M is a minimal submanifold of M if and only if B is a
minimal submanifold of B.

And secondly, we shall compare the τ functions for the two submersions.
We denote the τ functions by τM and τM for the submersions from M and
M respectively, and we denote the mapping S similarly in the two cases.

Then the Gauss curvature equation for a submanifold M ⊆ M is given
by

‖B(X, Y )‖2 − 〈B(X,X), B(Y, Y )〉 = 〈RY,XX, Y 〉 − 〈RY,XX, Y 〉

for X and Y tangent to M . If M is totally geodesic, the terms on the left
vanish and the curvature terms are equal. If, furthermore, Y is tangent to
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another submanifold F ⊆ M that is totally geodesic in M then only the
second term on the left vanishes. This occurs in the case at hand where F
is the fibre to submersions from M and M . We assume that this subspace is
totally geodesic. Then,

0 ≤ ‖B(ei, νk)‖2 (5.1)

= SM(ei, νk)− SM(ei, νk)

since the vector νk used to define τ is vertical and tangent to the totally
geodesic fibre. This will be used in our calculation of τM .

Finally we make an observation for submanifolds M ⊆M×M2 that fibre
over B ⊆ B×M2. This is the observation that the projections π2 from M to
M2 and from B to M2 have the same uniform norms. This can be seen from
the fact that the fibres to the submersion are wholly contained in the first
factor. Also, the (tangential) projection of B to M2 can be identified with
the projection of the horizontal space (those vectors orthogonal to the fibre)
to M2.

5.2 Case 2: CPn ×M2

We have named this section Case 2 to reflect that the first rank-one symmet-
ric space that we considered was the sphere. CPn is a natural second one. In
this section we show that the CPn × {pt} factors in this manifold are rigid
as minimal submanifolds, as we have done for spherical factors in previous
sections.

First we describe the Riemannian geometry of this space and how this
relates to the submersion from S2n+1.

The manifold CPn is a Riemannian symmetric space and can be given as
the homogeneous space

CPn = SU(n+ 1)/S(U(1)× U(n)).

The isotropy group H is isomorphic to U(n). In the decomposition of the
orthogonal symmetric Lie algebra su(n + 1) = h + m we have m the set of
elements of the form (

0 −v̄T

v 0

)
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for v ∈ Cn. The metric that we take on CPn is induced from the restriction
of minus the Killing form on su(n + 1) to m. For reasons of invariance and
irreducibility this inner product on m is equal to a positive multiple of the
usual Euclidean inner product, under the above identification of m with Cn.
One can calculate that the positive constant is equal to 4n. With this metric
the sectional curvatures of CPn range between 1

4n
and 1

n
.

We will consider the fibration S1 → S2n+1 → CPn where S1 acts on S2n+1

by complex multiplication in Cn+1. The sphere is diffeomorphic to the ho-
mogeneous SO(2n + 2)/SO(2n + 1) and the metric on S2n+1 that we take
is the restriction of minus the Killing form on so(2n + 2). As we noted in
Section 1.3 this is 4n times the usual metric on S2n+1.

We can thus see that the fibration S1 → S2n+1 → CPn is a Riemannian
submersion for these metrics. The fibre is one dimensional and the space
orthogonal to it is mapped isometrically to the tangent space of CPn.

We now consider the submanifold geometry in this case. Let M be a
2n-dimensional submanifold of CPn ×M2 and let N ⊆ N = S2n+1 ×M2 be
the submanifold that fibres over it. N is locally the pre-image of M by the
projection.

Lemma 5.3. τN ≤ 1
2
.

Proof. We recall the definition.

τN(p) =
∑
i,k

SN(ei, νk).

We can use Equation 5.2. We can assume that the bases {ei} and {νk}
together diagonalise the map πTπ1 on N . In particular, π1νk = νk because
νk is vertical and |π1ei| = λi.

SN(ei, νk) ≤ SN(ei, νk)

= ‖[π1ei, π1νk]‖2 + ‖[π2ei, π2νk]‖2

=
1

4n
λ2

i ≤
1

4n
.

Thus, τN(p) ≤ 1
4n

2n = 1
2
. 2
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Also, we can note that since the fibre this submersion is S1, r = 0 in this
case.

We can now prove the main theorem for this section. Let Λ > 0 satisfy(
C

q
+ 2n+ 1 + 2n(2n+ 1)K2

2

)
Λ2 =

ρ+ 1
2n

q

where q = 2 − 1
dim M2

and ρ is the smallest Ricci curvature of any direction

tangent to S2n+1 ×M2 and C is defined by equation...... Then we have the
theorem.

Theorem 5.4. Let M be a 2n-dimensional closed minimal submanifold of
CPn ×M2 where M2 is a symmetric space of compact type. Let K ′ be the
intrinsic scalar curvature of the induced metric on M . Suppose that M uni-
formly satisfies

‖π2‖ ≤ Λ

(n+ 1)−K ′ <
ρ

q
.

Then M is totally geodesic. Furthermore, Λ can be taken sufficiently such
that these conditions imply that π2 ≡ 0 and M = CPn×{pt} and K ′ ≡ n+1.

We use the extensive calculations of the previous chapter. As has been
noted above, we lift M to a submanifold of S2n+1 × M2 and show that
this space has to satisfy the previously determined conditions to be totally
geodesic.

Proof. Let N ⊆ S2n+1 × M2 be the submanifold that fibres over M .
Then N is a closed minimal submanifold. Let AN be its second fundamental
form and let K be the scalar curvature of the induced metric on N . Then N
uniformly satisfies ‖π2‖ ≤ Λ and by Equation 4.3

0 ≤
∫

M

‖AN‖2
(
‖AN‖2 −

((2ρ+ 1
2n

)− CΛ2

q

))
.
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¿From the proof of Theorem 4.11 we obtain the estimate

‖AN‖2 −
((2ρ+ 1

2n
)− CΛ2

q

)
≤
(2n+ 1

2
− ρ

q

)
−K −

(ρ+ 1
2n

q

)
+
(C
q

+ 2n+ 1 + 2n(2n+ 1)K2
2

)
Λ2

=
(2n+ 1

2
− ρ

q

)
−K

=
2n+ 1

2
− ρ

q
−K ′ + τ − r

≤ n+ 1−K ′ − ρ

q
.

If this is negative then necessarily AN ≡ 0 and N is totally geodesic. By
considering Lie triple systems for the relevant spaces, M = π(N) is then also
totally geodesic.

As before, if Λ is sufficiently small, N and M are factors of the respective
spaces. 2

As we did for the case where the first factor is a sphere, we can express
the above inequality in terms of isolation phenomena for embeddings. In
this case, we must use the C3 topology because the condition is on scalar
curvature.

Corollary 5.5. There is a C3-open neighbourhood of the standard embed-
ding of CPn in CPn ×M2 in the set of immersions such that any minimal
immersion contained in it is conjugate to the standard one.

5.3 Case 3: HPn ×M2

Consider the smooth manifold HPn of quaternion lines in Hn+1 where scalar
multiplication of H is on the right. This space can be realised as a symmetric
homogeneous space G/H where

G = Sp(n+ 1)

= {g ∈ SO(4(n+ 1)); [g, I] = [g, J ] = [g,K] = 0}.

The isotropy group of this action on lines is the group

H = Sp(n)Sp(1) = Sp(n)× Sp(1)/Z2
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where Sp(n) preserves the vector (1, 0, . . . , 0) ∈ Hn+1 and Sp(1) (acting on
the right) preserves the line [1 : 0 : · · · : 0]. The diagonal element (−1,−1)
acts trivially so is factored out.

The tangent space to HPn can be identified with Hn, by a similar method
to CPn, and the restriction of the Killing metric to m = Hn is a positive
multiple of the standard Euclidean inner product on Hn. One can calculate
that this positive multiple is is 8n+ 4.

HPn admits a Hopf-type submersion π : S4n+3 → HPn from a sphere of
dimension 4n+ 3. This can be seen from the identification

HPn = (Hn+1)∗/H∗ = S4n+3/S3

by first quotienting out the radial component. The metric that we take on
the sphere is 2(4n+3− 1) = 8n+4 times the usual Euclidean metric. Thus,
the derivative of π, restricted to the orthogonal complement to the fibre is an
isometry. The fibres of the submersion are the 3-dimensional great spheres
contained in the quaternion lines. Thus, π is a Riemannian submersion with
totally geodesic fibres so we can use the previous techniques to the Rieman-
nian submersion π : S4n+3 ×M2 → HPn ×M2.

If HPn is given its standard Riemannian metric for which its curvatures
are pinched between 1 and 4 (and for which this submersion if Riemannian
if S4n+3 has constant unit curvature) then its scalar curvature is 16n(n+ 2).
We have homothetically scaled this metric by a factor of 2(4n + 2) so its
scalar curvature is

16n(n+ 2)

2(4n+ 2)
=

4n(n+ 2)

2n+ 1
.

Let M be a closed minimal submanifold of HPn ×M2 and let N be the
submanifold of S4n+3 × M2 that fibres over M with S3 fibres. N is then
a closed minimal submanifold and the uniform norm of π2 from N is equal
to the uniform norm from M . The map from N to M is a Riemannian
submersion with totally geodesic fibres. We consider the previously defined
functions K ′, K, τN and r.

Lemma 5.6. For p ∈ N ,

r(p) =
3

4n+ 2

τN(p) ≤ 3n

2n+ 1
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Proof. This is essentially identical to the case in the previous section, each
time taking account of the correct scaling of the metric on S4n+3. 2

We can now give the theorem of this section. Suppose that Λ satisfies(
C

q
+ 4n+ 3 + (4n+ 2)(4n+ 3)K2

2

)
Λ2 =

ρ+ 1
4n+2

q

where the constants are defined earlier. C is the term given in Theorem 4.28
for p = 4n + 3. K2 is the maximum value of ‖[X, Y ]‖ for X and Y unit
vectors in m2. ρ is the smallest Ricci curvature of any direction in M and
q = 2− 1/ dimM2.

Theorem 5.7. Let M be a closed 4n-dimensional minimal submanifold of
HPn × M2 and let K ′ be its intrinsic scalar curvature. Suppose that M
satisfies, for Λ given above,

‖π2‖ ≤ Λ,

4n(n+ 2)

2n+ 1
−K ′ <

ρ

q
.

Then M is totally geodesic. There exists a possibly smaller Λ such that these
hypotheses imply that M is a totally geodesic factor HPn × pt.

Proof. The proof is essentially identical to the case for the complex
projective space in Theorem 5.4. As noted above, the submanifold N of
S4n+3 ×M2 that factors over M is minimal, closed and 4n + 3-dimensional.
We show that N is totally geodesic. Let A be the second fundamental form
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of N and let K be its intrinsic scalar curvature. Then, following that proof,

‖A‖2 −

(
(2ρ+ 1

4n+2
)− CΛ2

q

)
=

4n+ 3

2
− ρ

q
−K

+

[(
C

q
+ 4n+ 3 + (4n+ 2)(4n+ 3)K2

2

)
Λ2 −

(
ρ+ 1

4n+2

q

)]
=

4n+ 3

2
−K ′ + τ + r − ρ

q

≤ 4n+ 3

2
+

3n

2n+ 1
− 3

4n+ 2
− ρ

q
−K ′

=
4n(n+ 2)

2n+ 1
−K ′ − ρ

q
.

Hence we assume that this term is negative. By a similar method to the case
for CPn, we can conclude that A ≡ 0 and M is totally geodesic. Also as
before, by Theorem 4.30 we can take Λ to be possibly even smaller to ensure
that M = HPn × pt. 2

As in the Sp and CPn cases, we can show that the HPn factors are isolated
from other inequivalent minimal embeddings.

Corollary 5.8. There is a C3-open neighbourhood of the standard embed-
ding of CPn in CPn ×M2 in the set of immersions such that any minimal
immersion contained in it is conjugate to the standard one.

5.4 The Case of the Cayley Plane

In the previous two sections of this chapter we have proven that a closed
minimal submanifold of CPn ×M2 (or HPn ×M2) that is sufficiently close
to the CPn (or HPn) factor must be totally geodesic and equal to CPn×{q}
for some q ∈M2 (or HPn × {q} respectively).

The condition of closeness that we require is that the intrinsic scalar cur-
vature of the submanifold is uniformly close to the constant scalar curvature
of the symmetric subspace that it is being compared to, together with the
projection to the M2 factor being uniformly small.
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The crucial fact in the proofs of these theorems is that there are Rieman-
nian submersions from spheres onto CPn and HPn. We can lift a minimal
submanifold of CPn ×M2 to one of S2n+1 ×M2 and use the fundamental
Theorem 4.9 for submanifolds of this space to show that the submanifold is
a CPn-factor.

According to the classification of rank-one symmetric spaces of compact
type, as outlined in Section 1.4 this almost proves a rigidity theorem for all
rank-one factors in the decomposition of a symmetric space of compact type.
This outstanding case is the Cayley Plane OP2. This space can be thought of
as the set of octonian lines in O3, although it is a delicate matter to construct
it in this way (see [1]).

Perhaps regretably, we have the following theorem.

Theorem 5.9. [3] No open set in S23 can be filled by pieces of parallel great
7-spheres.

This in particular shows that the set of octonian lines in O4 cannot be
well studied as a symmetric space. However, closer to the issue at hand,
it shows that there is not a Riemannian submersion of S23 onto OP2 with
fibres totally geodesic 7-spheres. Thus, one cannot use the same techniques
as in the other cases to study the minimal submanifolds of OP2. Without
the development of new techniques, this completes this work. With these
realisations, we end this dissertation.
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