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In the thesis, I prove the following statement: Every compact com-
plex surface with even first Betti number is deformation equivalent
to one which admits an extremal Kéhler metric. In fact, this ex-
tremal Kihler metric can even be taken to have constant scalar
curvature in all but two cases: the deformation equivalence classes
of the blow-up of Py at one or two points. The explicit construc-
tion of compact complex surfaces with constant scalar curvature
Kihler metrics in different deformation equivalence classes is given.
The main tool repeatedly applied here is the gluing theorem of C.

Arezzo and F. Pacard which states that the blow-up/resolution of
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a compact manifold/orbifold of discrete type, which admits cscK

metrics, still admits cscK metrics.
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Chapter 1

Introduction

Let (M, J) be a compact complex Kéhler manifold, and « be a Kéhler class
of (M, J). Calabi [8] considers the functional ®(g) := [ szdv, defined on the
set of all Kéhler metrics g in the class 7y, where s, denotes the scalar curvature
associated to the metric g. A Kihler metric is called extremal if it is a critical
point of ®. It has been shown that g is extremal if and only if the gradient
of the scalar curvature s, is a real holomorphic vector field. In particular, g is
extremal if s, is constant. The famous Aubin-Yau theorem [4, 41] asserts that
every compact complex manifold X with negative first Chern class admits a
Kahler-Einstein metric in the canonical class —c¢y(X), which has a negative
constant scalar curvature. Followed by applying a deformation argument due
to LeBrun and Simanca [24], we know there exists a constant scalar curvature
Kihler (cscK) metric in every class near —ci(X).

There are classical obstructions to the existence of cscK metrics related to
the automorphism group Aut(M, J) of (M, J). The Matsushima-Lichnerowicz
theorem [25, 29] states that the identity component Auto(M,J) of the auto-




morphism group must be reductive if a escK metric exists. Later, Futaki [13]
shows that the scalar curvature of an extremal Kéhler metric is constant if ||
and only if its Futaki invariant vanishes identically. Recently Donaldson [10],
Chen-Tian [9] and Mabuchi [26, 27| have made substantial progress on relat-
ing the existence and uniqueness of extremal Kéhler metrics in Hodge Kéahler
classes to the K-stability of polarized projective varieties. In particular, it has
been shown that K-stability is a necessary condition for the existence of cscK !
metrics for a polarized projective variety. The main result of this thesis is the

following;:

Main Theorem: Every compact complex surface with even first Betti number ]
is deformation equivalent to one which admits an extremal Kihler metric. In
fact, this extremal Kahler metric can even be taken to have constant scalar
curvature in all but two cases: the deformation equivalence classes of the

blow-up of P2 at one or two points.

The hypothesis that b; is even is equivalent to requiring that (M, J) admits
a Kihler metric [35, 37]. One of the main tools in our proof is the major :
breakthrough by Arezzo and Pacard [1]: Let M be a complex manifold/orbifold
of discrete type, which admits cscK metrics. Then the blow-up/resolution of i
M admits cscK metrics.

To prove the main theorem, we proceed along the Kodaira dimension & of

{M,J). The main difficulty lies in the case of x = 1. First of all, we deal with

the case of principal E-bundles. We could show every principal E-bundle with

even Bettl number is covered by H x C, and it inherits a cscK metric from the

product metric. Analyzing the geometric structure of the surface and the local i




structure near a multiple fibre, wo can generalize this result to the case of all
elliptic surfaces whose each fibre has smooth reduction. To construct an elliptic
surface with cscK metrics and positive Euler number in each deformation class,
we start with the elliptic surface S, which is obtained by applying logarithmic
transform along some fibres on the trivial elliptic bundle. Under certain choices
of the base curve and the fibres on which logarithmic transform is applied, there
exists an holomorphic involution ¢ : § — S. Although the quotient of S by
the action of involution ¢ is singular, we can show its resolution is smooth and
carries cscK metrics by an application of Arezzo-Pacard’s result {1]. Finally, to
show elliptic surfaces with positive Euler number of each deformation class can
be constructed in this way, we use the deformation theory of elliptic surfaces
[11]: in the case of positive Euler number, the deformation class of an clliptic
surface is determined by the diffeomorphism type of the base orbifold and the
Euler number y.

In chapter 4, we explain why the complex surfaces of other Kodaira di-
mensions are deformation equivalent to complex surfaces with cscK metrics.
The case of & = 2 is done as an application in Arezzo-Pacard’s paper [1] by
using the Aubin-Yau theorem [4, 41] and the fact that negative first Chern
class implies the automorphism group is discrete, Similarly, the case of Kk =0
is a result of Yaw’s theorem [41] and the fact that all holomorphic vector fields
on a minimal complex surface of 1 = 0 are parallel. The case of ruled surfaces,
k= —00, is dealt with by using the result that if a rank 2 vector bundle ¥ is
poly-stable, then the associated ruled surface P(F) admits cscK metrics. In

the end, we also show that Py#kPs, k = 1,2, is not deformation equivalent

to any complex surface with cscK metrics by showing that the Lie algebra of




holomorphic vector fields of every compact complex surface in the deformation
class is not reductive.

Although there exists no cscK metrics on any Kéhler class of the blow-up
of P, at one or two points, Calabi (8], Arezzo, Parcard, and Singer [2] have

ghown that there do exist extremal K#&hler metrics on them, and the main

theorem follows.




Chapter 2

Elliptic surfaces i

In this chapter, we give a general description of elliptic surfaces, and dis-
cuss some special examples: principal £-bundles and the ones without singu-
lar fibres. Then we introduce one important operation: logarithmic transform
which we will use later to investigate the geometric structures of elliptic sur-

faces.

2.1 Properties of elliptic surfaces

Definition 2.1.1. A compact complex surface S is called an elliptic surface
if there is a surjective holomorphic map m : S — B over a smooth algebraic
curve B, whose general fibres are smooth elliptic curves. The map 7 is colled

an elliptic fibration.

Throughout this section, we only consider the case that the elliptic surface S

is minimal. That is, it contains no rational curves of self-intersection number




1. An elliptic surface may have singular, reducible, multiple fibres. Kodaira
[19] has classified all possible fibres of an elliptic surface, which are denoted
by wlp, LLIIT, IV, ¥, IT* TIT*, and IV*, where k € NU{0}. The set of

multiple fibres plays a central role in our discussion of elliptic surfaces. And

- we will recall the definition here,

Definition 2.1.2. Let w : § — B be an elliptic fibration and p € B. We call
7~1(p) a multiple fibre if there exists an integer m > 1 and a reduced divisor
D in 8 such that as o divisor 7' (p) = mD. The largest m is called the
multiplicity of the fibre.

In fact, there are only two types of multiple fibres: with e the multiplicity
and D as above, cither D is a smooth elliptic curve (type pJo) or D is a reduced

cvcle of n rational curves (type mZ1,).

Definition 2.1.3. Letw: 8 — B be an elliptic fibration. We say that the fibre
E, = n~Y(p), p € B, is singular if i has positive Euler number. In particular,

o multiple fibre with smooth reduction is not singular in this sense.

Except the type n, o, all other types have positive Euler numbers [40], and

are singular by our definition.

Lemma 2.1.4. A minimal elliptic surface S has nonnegative Euler number

x, and the case x = 0 occurs if and only if S has no singular fibres.

Proof. Let w : § — B be an elliptic fibration, & C B be the set of critical
values of 7, and £}, be the fibre over b, b € B.

Set ' = U Fy, which is a closed set in S, and we have the exact sequence
beE

o — HY(S\ F,R) — HYS,R) — H'(F,R) - HI''(S\ F,R) — ...

e

TR e T i Ve i

oo S




where the subscript ¢ means the cohomology with compact support. Therefore,
we deduce the relation among the Euler numbers x(S) = x.(S\ #) + x(#).
Now 7 : S\ F — B\ X is a topological elliptic fibre bundle with fibre &, and
hence we have x,(S\ F) = x.(B \ X)x(£) = 0. As a result,

X(S) :X(F) :ZFba

bex
and the lemma follows. ]

To each clliptic fibration, we can associate two fundamental invariants [5,

19]:

Definition 2.1.5. Let 7 : 8 — B be an elliptic fibration. We define the

following invariants associated to S

1. The j-invariant (functional invariant) js of S. Let U be the open subset
of B consisting of regqular values of m. Let fg be the holomorphic map
which associate to each point b € B the isomorphism class of the elliptic
curve m1(b) € C*/PSLy(Z), where C* is the upper half plane, and j be
the biholomorphic function j : CT/PSLy(Z) — C induced by the elliptic
modular function j : Ct — C. Let jg = jo fg/1728 : U — C. By
the stable reduction theorem [5], js has an extension to a holomorphic

function from B to IPy.

2. The homological invariant (global monodromy) of S, which is a sheaf
Gs on the base B. Let U be the open subset of B consisting of reg-

ular values of m and © : U — B be the inclusion map. Then we de-

fine Gy = i (R, Z|U). The sheaf R'm.Z|U is locally constant, and

I mom e ma Lt e AN




it can be constructed from a representation of the fundamental group

Lg : m(U, b) — Aut(H'(x 1(b), ) & SLy(Z) .

These two invariants are not unrelated. There is a natural compatibility
between them. From the definition, the functional invariant jg takes the value
of 0o only at singular fibres. Let = : S — B be an elliptic fibration. Assume
the functional invariant 7 is not identically 0 or 1, Let I := B\j7'({0, 1, 00}).
Composing with the canonical projection SLy(Z} — PSLy{%Z), the equivalence
clags of the representation Gg : m(U) — SL{Z) induces a representation
Gg : m(U) — PSLy(%). On the other hand, the elliptic modular function
4 ¢ €t — C is unbranched outside the preimage of 0 and 1. The covering
7:CH\574({0,1}) — C\ {0,1} therefore induces an equivalence class of a
representation 7, : w1 (C\ {0,1}) — PSLy(Z). Then the meromorphic function
jg gives a map jgy : m(U) — PSLy(Z). Making the identification of the fibre
F, with the quotient C/Z & Z before and after going around fhe loop, we see
that jg, can be thought of as the monodromy of the period Z @ Zr. But it

is slightly cruder than the monodromy since it does not distinguish -=7. The

discussion gives the following commutative diagram

mU) —= SLy(Z)

o] |

PSLy(Z) —— PSLy(Z).

Definition 2.1.6. Let L : = (U) — SL(Z) be an equivalence class of o

representation, and b : U — C be a meromorphic function with h{u) # 0,1,00

for w € U. We say L belongs to h if it induces the representation defined by

=




Kodaira has the following result about the classification of elliptic fibrations |

without multiple fibres. |

Theorem 2.1.7. (Kodaira [19]) Let B be a Riemonn surfoce, U = B\

{p1,..ps}, and h be o meromorphic function on B with h(u) # 0,1,00 for !

we .

1. If k > 1, then there are exactly 29815 =1 inequivalent homological in-

variants L that belong to h, where g(B) is the genus of the curve B.

| 2, Given h and o homological invariant L belonging to h, there exisis

unique minimal elliptic fibration [ : & — B with these invariants, ad-

mitting a section.

3. Let F{(h,L} denote the sel of all elliptic fibrations, without multiple fi- §
| bres, with gwen invariants h and L. Given S’ an element of F(h, L),
there exist a covering B = UV} witﬁ fi 2 8= f7HV;) — Vi being the
restriction of f, and a cocycle &; € H W), where T is the sheaf of ;

local holomorphic sections of the unique elliptic surface in (2), such that

S is obtained by gluing the collections of S; together using the &;. In '

particular, the set & (h, L) is parameterized by the abelian group H'(F). ﬂ

Definition 2.1.8. The unique minimal elliptic surface 8, which admils the

invariants jg and Gg of # 1 8 — B and a section, is colled the basic elliptic

surface associated with S.

From Theorem 2.1.7, we see that an elliptic surface without multiple fibres

is locally isomorphic to its basic elliptic surface.




2.2 Elliptic fibre bundles

A special case of elliptic surfaces ig the total space of a holomorphic.elliptic
fibre bundle 7 : § — B which is locally trivial. Let F be an elliptic curve. A
holomorphic elliptic fibre bundle S ™ B is determined by the associated class
¢ € HY(B, ) where &5 is the sheaf of germs of local holomorphic maps
from B to Aut(E).

Definition 2.2.1. Let E be an elliptic curve. The E-fibre bundle S = B is

called a principal bundle if the structure group can be reduced to F.

Let S = B be aprincipal F-bundle with the associated class § € H'(B, &5),
where &g is the sheaf of germs of local holomorphic maps from B to £. The

long exact sequence induced by the universal covering sequence is written as
HY(B,T) — HY(B,Op) — H\(B, &) 5 HY(B,T) — 0,

where I is the lattice such that C/T' = F.

Lemma 2.2.2. ([5]) Let E be an elliptic curve and FEp be the sheaf of the
germs of locally constant map B — E. A principel E-bundle with class £ €
HY(B, &g) can be defined by a locally constant cocycle in H'(B, Ep) if and

only if c¢(€) = 0.

Proof. Let T be the period of E. That is, = C/T". The diagram of sheaves

0 » T » Cp » Ep » 0

L

0 — [ —— O —— g —— 0

10




induces the commutative diagram in cohomology

HYB,C) —— HY(B,E) —— H*B,T') — H*(B,C)

| ! H

HY(B,©p) —— HY(B,&) —— H*(B,1).

Since H2(B,T) = H*(B,Z)® T, and H*(B,Z) is free of torsion, we know the
map «y is a zero map, and H'(B,C) — HY(B, E)) is surjective. Moreover, the
map H(B,C) — HY(B,Op) is given by projecting onto the {0,2)-factor of
HY(B,C) in the Hodge decomposition, and is therefore surjective. Chasing

the diagram in cohomology therefore gives us the lemma. O

Proposition 2.2.3. [5] Let E be an elliptic curve. Every E-principal bundle

admits a holomorphic C*-bundle as ¢ unramified covering .

Proof. Let T' be the period of £. The diagram

0 A A e AN

i K

0 , T , C B 0,

where ¢ is the quotient with respect to some subgroup < 7 > of C*, induces

the diagram in the cohomology

HY(B,0g) —— HYB,0%) — H¥B,Z) —— 0

| o

HYB,0p) — H'(B,&) —— H*(B,I) —— 0.

Let ¢ € HY(B, &5) be the cocycle class defining the E-principal bundle. Since

11




H*B,T) = H*B,Z) @, there exists a primitive cmbedding Z — 1" such
that c(£) is in the image of the map H*(B,Z) — H?*(B,T). Chasing this
cohomology diagram gives us the existence of n € H YB,0%) such that ¢ =
H{q)y. That is, the F-principal bundle defined by £ is a Z-quotient of &
holomorphic C*-bundle defined by n € H'(Op) where the Z-action is generated
by the multiplication with 7. a

The topological version of H'(B,©0p) — HYB,&s) — H*(B,T) — 0
tells us that topologically principal E-bundles are classified by the associated
Chern class ¢(§) € H?(B,T'). The Chern class c(£) vanishes if and only if the
E-bundle § — B is topologically trivial. In this case, the first Betti number
bi(S) = bi(B) + 2 is even. On the other hand, if ¢(§) # 0, the splitting
E = 8' x 8! would imply the existence of an S'-bundle X over B such that

S = X x 8. Therefore the Gynsin sequence
0 — HY(B,2) —— HYX,Z) —— H°(B,Z)
L m¥B,Z) —— HYX,Z) — HNB,Z) — 0
tells us that by (S) = b1(B) + 1 is odd, where § is the multiplication with the
Chern class ¢(£).

Proposition 2.2.4, Let F be an elliptic curve, 7 : S — B be o principal
E-bundle. Then S admits cscK metrics if and only if the first Betti number

by of § is even.

Proof. The only if part is an immediate consequence of the Hodge decompo-
sition for a compact Kahler manifold. To prove the if part, first recall that

Lemma 2.2.2 tells ug that the surface S is defined over some open covering

12
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{U;} of B by patching the pieces U; X E together according to some locally
constant cocycle in If'(B, E). Endow the flat metric on E. Fix a cscK metric
on the curve B (Depending on the genus of B, it is either the Fubini-Study,
flat, or hyperbolic metric.), and restrict it to each open set U;. Then we can
see that the product metrics on all pieces U; x E are respected by the patching
procedure since the cocycle is locally constant. Therefore we obtain a glohally

defined cscK metric on the surface S. O

In fact, we have HY(B, E) = Hom(H(B,Z}, E) = Hom(m(B), E) from
the universal coefficient theorem. Let & € H'(B, E) be the locally constans
cocycle which determines the principal E-bundle § — B. Regard £ as a
homomorphism from 1(B) to &, which acts on H x £. Then the principal
E-bundle S is obtained from the quotient of H x E by the action of £ Tn
other words, the universal cover of every principal £-bundle with even first
Betti number is H x C and each deck transformation can be expressed by

(z,10) = (a(2),w + t) where a(z) € PSLy(Z), and t is a constant.

Corollary 2.2.5. Let © : § — B be an elliptic fibre bundle with even first
Betli number. If the functional invariant jg is constant and the homological
invariant Gg is trivial, then there exists an elliptic curve E such that m : § —

B is a principal E-bundle. In particular, S admits a cscK metric.

Proof. Since S has no singular fibre and jg is constant, all fibres are isomorphic
to some elliptic curve F. Since Jy is constant and G Is trivial, the basic
elliptic surface of S is the product B x E. Using Theorem 2.1.7, the surface &
is obtained from B x F by twisting according to some cocycle £ € H YB,&s).

Therefore § is a principal F-bundle with even Betti number. The corollary

13
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follows then [rom Proposition 2.2.4. 0

Theorem 2.2.6. Let m : S — B be an elliptic fibration whose each fibre is
smooth and whose first Betti number by is even. Assume that the genus of
B is ot least 2. Then there exists a principal E-bundle 8" — E which is a

fibre-preserving étale covering of S — B.

Proof. Since S has no singular fibres, the j-invariant jg can not take the
value of oo, therefore it is constant, and every fibre F is isomorphic. Since
(¢ belongs to Jg, the homological invariant is equivalent to the monodromy
representation G : my(B) ~ Zp,. (Here the value of m depends on the value
of jg: if 45 18 0, then m =2, 3, or 6; if jg is 1, then m= 4, or 6; if jg is 1, then
m = 2 or 4; otherwise, m=2.) Thercfore there exists a connected unramified
cover B! — B of degree m such that the pullback §' = B’ Xp 5 is an elliptic
surface over B’ with fibre E, constant jg, trivial G, and even Betti number.
From Corollary 2.2.5, §' is obtained by twisting B’ x £ according to some
constant cocycle & € H'Y(B', E). Therefore S — B’ is a principal E-bundle
and by construction, it is an étale m-cover of 5 and it is locally isomorphic to

every fibre of S — B. The theorem follows. O

2.3 Elliptic surfaces whose each fibre has a

smooth reduction

One crucial tool in studying the elliptic surfaces is Kodaira’s formula (ee

14




[5] p.161) of the canonical divisor of an elliptic surface 7 : § — B:
Kg = (Kp+ D)+ Z(m; — 1)F;

where the Fy’s are the multiple fibres of multiplicity m; and D is some divisor
of B with degD = x(Og). The formula implies that K§ = 0. Usually we
assume B is an orbifold with orbifold points P; of order m; corresponding to
a fibre. ) of multiplicity ms. Let Ts = x(Og) — x"*(B), where x"*(B) is the
orbifold Fuler number defined by

k
X(B) = X0(B) = 31 - o).

Using that the plurigenera Pp(S) = h%(S, K®™) = mrg when m is divisible
by m; for all i and some extra thoughts, Wall (401 shows that the sign of 75

determines the Kodaira dimension of an elliptic surface.

Lemma 2.3.1. (Wall [{0]) Let 7 : S — B be an elliptic fibration and 7g be
defined as above. Then the Kodaira dimension k of § 15 —00,0, or I corre-

sponding to T¢ <0, s = 0, or 7g > 0, respectively.

Proof. See [40] Lemma 7.1. 0

In the following, we are interested in elliptic surfaces of Kodaira dimension
k = 1, which are sometimes called properly elliptic surfaces. We will exploit
some properties of properly elliptic surfaces without singular fibres, and use
them later to construct elliptic surfaces with cscK metrics. Let us start with

a feature of the base of an elliptic fibration.

15




Definition 2.3.2. An orbifold Riemann surfoce is called good if its orbifold

universal cover admits o cscK metric.

Lemma 2.3.3. Let S be a minimal elliptic surface with x(S) = 1 and without

singular fibres. Then the base B is a good orbifold.

Proof. Using Noether's formula, x(Os) = 1/12(K3 + x) = 1/12x = 0. By
Lemma 2.3.1, we have x°™(B) = —7g < 0. The lemma follows from Troyanov’s

argument [39] that an orbifold Riemann surface 3 is always good if x(B) <

0. O

Smooth elliptic fibration without multiple fibres are completely classified
by Kodaira [19). If there are multiple fibres, we need some more work to reduce

it to a smooth fibration:

Lemma 2.3.4. (local version) Let ® : S — /\ be an elliptic fibration over
the unit disk A\, and the fibre Fy = n~1(0) is a multiple fibre with, maultiplicity
n., Let &, : N — A be the map z — 27, S = A xa 8 be the fibre product
with respect to 8,, and S’ be the normalisation of 5. Then S is a nonsingular

surface with no multiple fibre and §' — § is an unramified cover.

Proof. Let x, y be the local coordinate on S such that w(z,y) = 2”. Then the

fibre product S can be expressed as

UxaA = {(z,y,2)z" = 2"}

where Uy = {{z,y,(z)|(z,y) € U} = U, and p, is the group of the n-th

root of unity. The normalisation §’ locally is the disjoint union of the n

16




components Uz, and thercfore is smooth. Identifying U, with U, we can define
7 1 S — A by (z,y) — (z on Uy, which has no multiple fibres. Moreover,
the group p, acts on S’ freely by interchanging these components Uy, and we

have 5'/u, = S. O

Definition 2.3.5. The fibration 7' : 8’ — /\ constructed in the above proof is

called the n-th root fibration of #.

Lemma 2.3.6. (/6] Lemma 6.7) Let w1 S — B be an elliptic surface whose

base B is ¢ good orbifold and whose fibres are either smooth or multiples of
smooth elliptic curves. Then there exists a branched Galois cover py: B’ — B b

with Galots group G, a surface S' and ¢ commutative diagram i

§—5 :E“f]

| |7

B: f4

such that the action of G on B’ lifts to S', py induces an isomorphism S'/G —

8, and every fibre of 7’ is smooth.

Proof. Since B is a good 2-orbifold Riemann surface, there exists a smooth
Riemann surface B, and a branched covering map py : B’ — B with the group HJ
of deck transformation G. We can assume py is & Galois cover. (If it is not, then ili g
m1(B') is not a normal subgroup of 7;(B). We can then take the intersection [
H of all conjugate groups of m (B') in m(B), which is a subgroup of m;(B’)
of finite index and is normal in m;(B). Therefore there exists a further finite
cover B” — B’ — B such that the group of deck transformations of B” over

B is I, which acts transitively on the preimage of any point on 5.) Now let

17




p1 1 B' — B be a Colois cover with the Golois group G. We have B'/G = B.
Consider the pull-back § :== B’ x § which has singularities at the pull-back
of the multiple fibres. Let ¥ € B be the set of multiple points. Outside the

fibres over X, therc is an étale cover

8 =5\ 6) — 8= S\ 70,

bel e

and the action of G lifted to S, acts freely such that S;/G = 51. Let S’ be
the normalisation of S. From Lemma 2.3.4, S’ is smooth, and the action of G

lifted to S acts on § freely such that S*/G = 8. O

Theorem 2.3.7. Let S be a minimal properly elliptic surface of Kihler type }
|
whose fibres are either smooth or multiples of smooth elliptic curves. Then the !

universal cover is biholomorphic to H x C, and S inherits o cscK metric from

H x C.

Proof. (cf. [40]) Let m : S — B be the elliptic fibration. By Lemma 2.3.6,

there exists a smooth finite cover B’, and a branched Golois covering map

p1 : B’ — B with Qalois group G. Lift the action of & to the normalization 5’

of the pullback B’ x g 8, which is a smooth elliptic fibration over B’. Then we

can see that G acts freely on §* and the quotient S'/G = . From Theorem

2.2.6, there is an étale cover B” of B’ such that the pull-back surface S” is a
principal E-bundle with even first Betti number. That is, S is obtained by
twisting the trivial bundle B” x E by a locally constant cocycle in H'{B", E).

We can then see H x C is the universal cover of 8%, 5", and S. And the action




of every deck transformation ~ of I x C over S” can be written cxplicitly as e

'7(21 ’LU) = ((I,T(Z), w + t’}‘):

where a., € PSLy(C), t, € C. So far, we have the following diagram

HxC —— 8 — 8

L

H — B" — B

Without loss of generality, we can assume S” is a normal cover of S. Let Al
H be the group of deck transformations of H x € over S, and 1" be the group

of deck transformations of I x C over S7. The action of I on H x C descends

to a discrete group I acting on the base H and the quotient I/ Y= B"1is

the base of $”. By Theorem 2.2.4, we have that the group I' is a subgroup

of PSL, x C and 8" inherits the product metric from H x C. To show §
inherits the product metric from H x C, it suffices to show that every deck ]
transformation b € H preserves the product metric. Given i € H, since all

fibres of S" are isomorphie, and the group of deck transformations of S over

S preserves the elliptic structure, we can write the action of & € H on H % C
as

h(z,w) = (an(2), epw + an(z)),

where ¢, is the k-th root of unity for & = 2,4,0r 6. For a covering transfor-

mation h, €, is constant. A direct computation shows that




hml(za w) = (a;l(z),egl'w - Eglah(aijl(z))):

hyh (2, w) = (apoyen-1(2), w — ap(op-:(2)) + enty + an{oyan—: (2))).

Tt follows that az, (e, (2)) — @p(2) = tpyn-1 —€nty i8 a constant. For a fixed &, the

cocycle {tpyn-1 — €xty} € Hom(m (B"),C) =2 H'(B",C) defines a principal C-
bundle X over BY, for which ay,(z) defines a section. Therefore the principle C-
bundle is trivial, and p,s-1 —epty, = 0. It follows that the holomorphic function
ax(z) is constant on the orbits of I', and can be regarded as a holomorphic
function of the compact surface B". Thus a(z) is constant. This concludes

the proof. a

2.4 Logarithmic transformation

Logarithmic transformation is an important operation introduced by Ko-
daira [19]. It enables us to replace a smooth fibre in an elliptic fibration by a ‘
multiple fibre, (For more details see [16], Chap. 4.5). Let 7 : § — B be an g
elliptic fibration over a smooth curve B. Let U/ ¢ B be an open neighborhood

of p € B, Ey be the smooth fiber over p. Choose some local coordinate z with

z(0) = p. Denote ¥ :=n 1(U). For every m € N, consider the diagram

U -—7U

where ¢ is a cyclic cover of degree m given by Z — Z™, and 5= Y =
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U xy . Let A(z) be a family of lattices such that ¥ = U x C/A{z), then
5 = U x C/A(F™). Let B(z) be a local m-torsion section of ¥ -— U and

G € Aut(Y) be the cyclic group generated by
(£,t) — (e%mnlé,t + B(Z™)  mod A(F™).

Denote 3 ;= ¥/G. We then have an isomorphism o : X'\{¢*Eo/G) & ¥\ E,
where Ey = '(p). By setting 5’ = (S\Fo) |, L', we get an elliptic fibration
§' —» B, which is isomorphic to § away from Fy and has a multiple fibre with
reduction isomorphic to Fy/G of multiplicity m over p.

Since we simply remove T2 x D?(= ) and glue it back in (as ¥') with a
different fibration, we can reformulate the logarithmic transformation in the
following way: Consider an elliptic surface 7 : S — C and fix a generic fibre
7~1{t) = F. We denote a closed tubular neighborhood of the fibre /" in S by
$ with the interior X ¥ is diffeomorphic to 72 x D?. Deleting the interior ¥
from § and regluing 72 x D? via a smooth map ¢ : 7% x §* — Boundary(S\ Z)
with multiplicity m, we get a new manifold $’. The diffeomorphism type of
the resulting manifolds depends on the multiplicity of m of the map ¢.

A remark here is that the process of logarithmic transform is quite vio-
lent. A non-algebraic surface may be obtained from an algebraic one by a

logarithmic transform, and vice versa.
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Chapter 3

A construction of elliptic surfaces of cscK

metrics

In this chapter, we construct elliptic surfaces with cscK metrics.

3.1 Arezzo-Pacard Theorem

The main tool we use here is the remarkable theorem 3.1.1, 3.1.2 by Arezzo-
Pacard [1]. Kronheimer [21] has shown that there exist asymptotically locally
Euclidean resolutions of singularities of the type C?/T', where I is a finite sub-
group of SU(2). Arezzo and Pacard [1] glue this resolution to an orbifold with
isolated singularities of local model C?/T, which has no nontrivial holomorphic
vector fields, study the partial differential equations arising from the pertur-
bation of the Kéhler forms suggested in [24], and they succeed constructing

cscK metrics on the resulting desingularisation. This is a major breakthrough

in the construction of manifolds with cscK metrics, and we state their results
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here.

Theorem 3.1.1. (Arezzo, Pacard {1]) Let M be a compact cscK manifold.
Assume there are no nontrivial holomorphic vector fields thot vanish some-
where on M. Then, given finitely many points pi1,pa, ..., Pn 00 M, the blow-up

of M at py,pa,...,pn carries a cscK melric.

Theorem 3.1.2, (Arezzo, Pacard [1]) Let M be o compact 2-dimensional
cscK orbifold with isolated singularities. Assume there are no nontrivial holo-
morphic vector fields on M. Let p1,pa,....0n be findtely many points on M,
each of which has o neighborhood biholomorphic to C*/T';, where T'; is a finite
subgroup of SU(2). Then the minimal resolution of M ot p1,pa, ..., pn carries

escK metries,

The first result we obtain by applying Arezzo-Pacard Theorem 3.1.1, 3.1.2
is that an elliptic surface obtained by blowing up a minimal properly elliptic
gurface of Kéhler type, which has no singular fibres, at finitely many points

admits cecK metrics.

Proposition 3.1.3. Let S be o minimal properly elliptic surfoce of Kdhler
type, which has no singular fibres. Then every nontrivial holomorphic vector

field on S has no zeros.

. Proof. By Lemma 2.3.3, the agsumption implies the base B is a good orb-

ifold. Let h(S) be the algebra of holomorphic vector fields. Let ¢ € h(S) be
nontrivial. Since the base B is a 2-orbifold with x°®(B) < 0, { is vertical.
By Theorem 2.3.7, H x C is the universal cover of §. Thus £ can be lifted to

a holomorphic vector field ¢ = f (z)% on H x C, where f is a holomorphic
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function on H, z is the coordinate of Hl, and w is the coordinate on C. Since
f is invariant under the action of m;(B), it defines a holomorphic function on
B, and is constant. Therefore we conclude that ¢ is induced by c%, which is

everywhere nonzero. O

Corollary 3.1.4. Let S be a minimal properly eliiptic surface of Kihler type,
which has no singular fibres. Then every surface obtained by blowing up S af

finitely many points admits cscK metrics.

Proof. The corollary follows from Arezzo-Pacard Theorem 3.1.1 and Proposi-

tion 3.1.3. L

3.2 The construction of elliptic surfaces with

cscK metrics

Lemma 3.2.1, Let x be a positive multiple of 12, g be a nonnegative integer.
Then there exists a smooth compact Riemann surface (Xy,J) of genus g' =
5x + 2g — 1, which admits an isometric holomorphic involution 1 with %x

fized points.

Proof. When ¢’ is at least 2, such a surface (Ly, J, 1)) exists due to Thurston’s
pants decomposition [32] of & Riemann surface 3, which states that a hy-
perbolic Riemann surface R of genus ! always containg 3/ — 3 simple closed
geodesics such that cutting R along these geodesics decomposes R into 2g — 2

pairs of pants, and the fact that for any pair of pants, the length of boundaries
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provide the coordinates for Teichmiiller space, and can be chosen arbitrarily.

When g’ = 0, 1, this involution  amounts to a 180° rotation of S about an

axis, or the Weierstrass involution of a torus. O

This lemma. tells us that given two numbers x = 12d > 0, and g > 0,

i
there exists a Ricmann surface of genus ¢’ = Tlﬁx + g - 1, and it admits a 3'
holomorphic surjective holomorphic map ¥y — B of degree 2, where B is a i

Riemann surface of genus g.

Our goal is to construct an elliptic surface with Euler number y, base curve

B of genus g and k multiple fibres of multiplicities mq, my, ..., my, respectively,

where the numbers v, g, & and myq, ms, ..., Mg are given,

]

L St
(\ >
mg
” SONGICD
i ma any,
\__v___J \___v_____/
1/12x — 1 holen & holes g holes g holes
(@) g=1Lx=24 (b) g > 1,x =12
A " g T

AN N A
1/12x — 1 holes W

(c) g =0,x>24 {(d) g=0,x =12

Now let £ = C/T" be a fixed elliptic curve, and ¢ : £ — £ be the Weier-
strass involution, which is an isometry with respect to the flat metric on £
with 4 fixed points. Let S be the product Yy x E. Choose arbitrarily k points
Py, P;,.., P, on Ty outside the fixed points of U. Let @; = ¥(F) € Iy
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Apply the logarithmic transformation of order m; = n; at theses 2k points £,
(), where 4 = 1,..., k. Let S be the resulting surface. The involution 1 X ¢ on
the product £y x E can be extended to an involution + on S, which has 2x
fixed points.

From the construction, $ — ¥ is an elliptic fibration with 2k multiple
fibres. Now take the quotient of S by the action of ¢. The resulting surface
§' = §/%s is singular and has 2y ordinary double points. Let S” be a minimal
resolution, which is obtained by replacing each singular point by a (—2)-curve.
we can gsee that §” — B is an elliptic fibration with k& multiple fibres of order

M, ..., Ty Tespectively.

Proposition 3.2.2. The elliptic surface S” constructed above hos Buler char-

acteristic number x.

Proof. Recall from the construction that the %X double points come from
the fixed points of ¢, and they are locally modeled by C?/Zy. ‘To resolve the
singularities, we take the blow-up S of S at the 2y double points, and extend
the map ¢ to an automorphism Z of 5, then §” = S/Z, is the nonsingular
complex surface obtained by replacing each double point with a (—2)-curve.
Let py : § — S, and py : S8 — 8 be the quotient map and the blow-down,

respectively.

2 & 1
S {P Sr >SH

A

Sy Sy » B

We claim that the irregularity g := h°(S”, Q%) = g @ If n is a nonzero holo-

morphic 1-form on §%, then pin i a holomorphic 1-form on 5 invariant under
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i. Since H°(8, ) — HO(S, Q%) is an isomorphism by Hartog’s extension the-
orem, there exists a 1-form & on S mvariant under ¢, such that p3(£) = pi(n).
Since S is an elliptic surface without singular fibres, its universal cover is Hx C,
and we know that every holomorphic 1-form on 5 comes from either the base
Xy or the fibre. However, since ¢*dz = —dz on the elliptic curve E, the only
1-forms on S invariant under ¢ are induced from holomorphic 1-forms of ¥y
invariant under 1. That is, ¢ = dim¢{w € H*(S,, ¥)|¢*w = w}. Since every
holomorphic 1-form on >, invariant under the action of 1) corresponds to a
holomorphic 1-form on Xy /4 = B, we conclude that ¢ = g. Using similar
argument as above, we can also show p, = 11—2)( 4+ 1 + g : the only holomor-
phic 2-forms on § invariant under ¢ are induced from the exterior product of
holomorphic 1-forms of E and those of Y. Because ¢*dz = —dz, we can take
" anti-symmetric” 1-forms on Xy, i.e. ¢¥*w = —w. Since every l-form on S
caxi be decomposed as the sum of a symmetric I-form and an anti-syrmetric
one, we have py = h*(Zy, M) — g = (Hx+2¢—-1) —g = Lx+9—1. From

Noether’s formula, we can therefore compute the Euler number of 5 as

12%(Ogr) — K% = 12(h%(Ogn) — W (Ogi) + B Ogi)) = 0
= 121 - g+ (Fx+g-1)

= X

where the first equality holds since S” is minimal. O

Proposition 3.2.3. Let 5" be an elliptic surface constructed above. If 8" has

even first Betti number by, then S admits cscK metrics.

Proof. Since S" has even first Betti number, it admits a Kéhler form w. Note

7
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that the pullback form pjw is positive semi-definite on S, which is degener-
ate on the exceptional divisors. Consider the Eguchi-Hanson metric on the

total space of O(—1). By gluing the Kébler potentials carefully, we can get a

Kihler form @ on §, therefore the first Betti number b,(S) is even. Because
blowing up at points does not change the first Betti number, 8;(S) is even too. i

Therefore S is a minimal properly .elliptic surface of Kahler type, which has

no singular fibres. By Theorem 2.3.7, S admits cscK metrics. Furthermore,
the involution ¢ : § — § is an isometric automorphism. This gives S = S/¢ a
cscK orbifold metric. In view of Arezzo-Pacard Theorem 3.1.2, to show that
the minimal resolution S admits a cscK metric, it guffices to show that there
are no nontrivial holomorphic vector fields on the orbifold S If ' is & holo-

morphic vector field on &, it can be lifted to a holomorphic vector field ¢ on

S, which is invariant under the action of ¢, and { has zeros at the fixed points

of i. By Proposition 3.1.3, §(S) consists of only parallel holomorphic vector

fields. Therefore ¢ is trivial, and so is (" O

Proposition 3.2.4. Let 8" be an clliptic surfoce constructed as above. If
8" has even first Betti number by, then S admits no nontriviel holomorphic
‘vector ficlds. In particular, every blow-up of S at finitely many points admils

a cscK metric.

Proof. Let ¢ € h{S") be a holomorphic vector field, The vector field ¢ re-
stricted to the (—2)-curves is tangent to these curves, therefore ¢ can be lifted
to a holoﬁorphic vector field ¢ on 9, which is invariant under Z. Let py : A
be the natural blow-down map. By Hartog’s extension theorem, the push-

forward pa.( is well-defined holomorphic vector field on S which vanishes at
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all fixed points of . As we have shown in the proof of Theorem 3.2.3, 5(S)
is even, Therefore, § is a Kihler type minimal elliptic surface with x(5) =1
and hag no singular fibres. By Propﬁsition 3.1.3, poul can only be parallel,
and therefore it vanishes everywhere. The last statement follows from a direct

application of Arezzo-Pacard Theorem 3.1.1. O
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Chapter 4

Compact complex surfaces and cscK metrics

In this chapter, we will show that every complex surface, which is not in
the deformation class of Py#kPs, k = 1 or 2, with & even is deformation
equivalent to a surface which admits cecK metrics. We will proceed with
the help of classification theorem of compact complex surfaces: Let S be a
complex surface, and Kg be the canonical line bundle. We can define the
pluri-canonical map ¢ : 8 — P(H(S, KZ*))*, which is a rational map, not
defined at the base locus of the linear system |K§*|. The Kodaira dimension

k of § is defined to be the maximal dimension of the image ¢x9+(5) for & > 1.

4.1 Kodaira dimension s =2

A complex surface S in this case is said to be of general type. Since we
have ¢?(K) > 0, every minimal surface of general type is projective. For a

minimal surface of general type, ¢ K®W is a globally defined map for & > 5, and
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it is an embedding away from some smooth (—2)-rational curves. The image
of these curves are isolated singular points with local structure group I', where
I' is a finite subgroup of SUs (see [5]). One can get the pluri-canonical model
X = tyge(S) by collapsing these (—2)-curves. If M has no (—2)-curves, it
has negative first Chern class ¢; (M), and Aubin-Yau Theorem [4, 41} asserts
that every manifold with negative first Chern class admits a Kihler-FEinstein
metric, Otherwise, Kobayashi [18] has shown that the pluri-canonical model
X admits a K'al_hler—Einstein orbifold metric of negative scalar curvature by
extending Aubin’s proof of the Calabi conjecture, Along with the fact that a
complex manifold of general type has no nontrivial holomorphic vector fields,

a direct application of Arezzo-Pacard Theorem 3.1.1 gives the following result,

Theorem 4.1.1. (Arezzo-Pacard [1]) Every compact complez surface of gen-

eral type admils cscK metrics.

proof. See [1] Corollary 8.3. ' 0

4.2 Kodaira dimension x =1

Every complex surface S in this case is a properly elliptic surface. Since an
elliptic curve has Euler number y = 0, the Euler characteristic number of an
elliptic surface S is given by the sum of those of singular fibres. In particular,

x(8) > 0 and the equality holds if and only if there are no singular fibres,

Definition 4.2.1. Two smooth compact complez manifolds M, N are said to be

deformation equivalent or of the same deformation type if there exist connected
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reduced compler spaces X and T, and a proper holomorphic submersion ® :
X — T, together with points t1,te € T such that for eacht € T, M, := ®71(t)

is a compact complex submanifold, and ®~1(¢,) = M, () = N.

Since we consider only the reduced spaces, an equivalent definition would
be to agssume that 7 consists of finitely many irreducible components, each of
which is smooth (and which can be taken to be a disk in C). Let S; and S;
be two deformation equivalent surfaces, and let Si and S; be the blow-ups of
S1 and Sp at 7 points. A straightforward argument shows that S, and 5, arc
again deformation equivalent.

Now we introduce the following classification of the deformation types of

elliptic surfaces with singular fibres.

Theorem 4.2.2. Twe elliptic surfaces with positive Fuler numbers are defor-
mation equivalent (through elliptic surfaces) if and only if they have the same

Euler numbers and their base orbifolds are diffeomorphic.

Proof. See [11] Chap.1l Theorem 7.6 . (W

Theorem 4.2.3. A properly elliptic surface of Kdhler type is deformation

equivalent to a compact complex surface with cscK melrics.

Proof. Let § be the minimal model of S. If x(S) = 0, then § is a minimal
properly elliptic surface of Kihler type which has no singular fibres. This is
done in Theorem 3.1.3. If x(S) > 0, a direct application of Theorem 4.2.2
shows that S is deformation equivalent to one of the elliptic surfaces we con-
structed in Section 3. Therefore by Proposition 3.2.4, § admits cacK metrics.

O
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4.3 Kodaira dimension s = 0

Minimal compact complex surfaces of Kéhler type with Kodaira dimension
& = 0 consist of Enrique surfaces, K3 surfaces, bielliptic surfaces, and Abelian
surfaces. Although not all of them are projective, they all admits Kéhler
metrics. Moreover, each of them has a vanishing real first Chern class. A
direct application of the following celebrated theorem by Yau [41] implies that
every compact Kihler manifold with vanishing real first Chern class admits a

Ricci-flat Kihler-Einstein metric.

Theorem 4.3.1. (Yau [41]) Let M be a compacl Kdhler manifold with Kahler
form w, and ¢1 (M) be its real first Chern class. Then every closed real 2-form
of (1,1)-type belonging to the class 2mei(M) is the Ricei form of one and only

one Kdihler metric in the Kdhler class [w].

Since every holomorphic vector field on a Ricci-flat Kéhler manifold is
parallel, there is no obstruction on the application of Arezzo-Pacard Theorem

3.1.2, and we can reach the following result.

Theorem 4.3.2. Let S be a compact complex surface of Kéhler type and of

Kodaira dimension k = 0. Then S admits cscK metrics.

4.4 Kodaira dimension Kk = —c<
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In this case, S is called a ruled surface. A minimal ruled surface is either
a geometrically ruled surface or the complex projective plane P2, If § is a
geometrically ruled surface, then there exists a holomorphic rank two vector
bundle V over a curve C such that S is isomorphic to the associated P!-bundle
P{V). Two vector bundles V, V' over C give isomorphic ruled surfaces if and
only if V' =V ® L for some holomorphic line bundle L over C. It follows that
¢1(V) mod 2 is a holomorphic invariant of S. In addition, given rank two vector
bundles V and V’ over the same curve C, if ¢1(V) = ¢ (V') mod 2, then the
resulting surfaces P(V) and P(V') are diffeomorphic. Let m: S =P(V) = C
be the ruling, og be the class of a holomorphic section of 7 (it always exists!),
and f be the class of a fibre of . We can see {oy, f} is a basis of //*(S, Z) and
o2 = ¢y (V) mod 2. Moreover, the intersection pairing on H*(S,Z) is even if
c1(V) =0 mod 2 and is odd if ¢;(V) = 1 mod 2. In particular, the homotopy
type of S, indeed the diffeomorphism and the deformation equivalent classes
are determined by b;(S) and the pairing on H?(S,Z). |

For every Riemann surface C' of genus g > 2, we shall see that in each
deformation class of geometrically ruled surfaces w: S — C, there exists one

which admits cscK metrics.

4.4.1 ¢(V)=0mod 2

Let C be a Riemann surface with the hyperbolic metric, m1(C) := {a1, b1, ...,
tg,by : [0z, bi)[@a, ba...[ag, by) = 1) be the fundamental group of C, and g™*
be the (multiple of) Fubini-Study metric with curvature 1 on the complex

projective line P;. Define the representation p : m: (C) — SU(2)/Z; by
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0 i
plaz) = p(by) := ,
i 0

and p(a;) = p(b;) = [id] for § £ 1,2. Then m (C) acts isometrically on Hx P!,
and the quotient
Si=MHx, P =H x P/ (C)

inherits a Kahler metric ¢ of congtant scalar curvature s = —141=10.

Proposition 4.4.1. The surface S defined above is deformation equivalent to

the trivial product C x P, and it has no nontrivial holomorphic vector fields.

Proof. To prove the first statement, we construct a family of surfaces defined

by the following representations p; : m1(C'} — SU(2)/Z:

et 0
pr(an) = pi(bi} = , :
0 e®
' cost esint ‘.
pi(az) = pe(ba) = )

—e"H"sint  cost i

and p;(a;) = pi(b;) = {id] for j # 1,2. Let S; = H x,, P!, This defines a family ]

of geometrically ruled surfaces in the same deformation class with Sy = € x P!

[
and Sqsa = 5. To show the algebra §(S) of holomorphic vector fields consists g};
of only the zero vector field, we first find by direct computation that the action i.;:i

of m1(C) by p fixes no points of P'. Since a Riemann surface with genus g > 2
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admits no nontrivial holomorphic vector fields, every holomorphic vector field

£ on S is vertical. In particular, £ hag weros and is nonparallel. Since S carries
a scalar flat Kéhler metric, the algebra hy of nonparallel holomorphic vector
fields is the complexification of the Lie algebra of nonparallel killing fields. Lift
€ to a vertical holomorphic vector field 5 on H x CP?, so £ & suy, which is
invariant under the action of 71 (C). This action of 71(C) is given by composing
the representation m(C) — SUs/Z, with the adjoint action of SUz/Z; on its
Lie algebra. Since the adjoint action of SU;/Zs on its Lie algebra coincides
with the action of SOy on R®, every nonzero m; {C)-invariant vector field &

defines an invariant point on §% & Py, Therefore E =0, and £ is trivial. ]

4,42 ¢(V)=1mod 2

Definition 4.4.2. Let (M, J,w) be a Kdhler manifold of complex dimension

n. The slope of a holomorphic vector bundle F over M of rank r is the number

p(E) = %/MCI(E) Aw™ L

Definition 4.4.3. Let (M, J,w) be a Kahler manifold. A holomorphic vector
bundle is said to be stable if u(F) < p(E) for any proper sub-bundle F C E.

Definition 4.4.4. A vector bundle F is said to be polystable if it decomposes

as a direct sum of stable vector bundles with the same slope.

In [3], Apostolov and Tonnesen-Friedman have shown that a complex ge-
ometrically ruled surface M = P(V) over a Riemann surface C, where V is a

holomorphic rank 2 vector bundle over €, admits cscK metrics if and only if
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the bundle V is polystable.

Theorem 4.4.5. Let C be a curve of genus at least 1. Let O(p) be the line
bundle over C associated with the divisor of a point p € C. Then every non-

trivial extension V' of O(p) by O is stable.

Proof. (See [12].) Let V' be a nontrivial extension of the form

0+ 0=V - Op)— 0.

(It exists since HY(C, O(—p)) = HYC,Q (p)) # 0 if C has genus at least 1.)
The normalized degree p(V) is 1/2. We need to show that for every subline
bundle L of V, u(l)) = deg L is less than or equal to zero. If the composite map
L — O(p) is zero, then L is contained in O, and deg L < 0 < u(V). Otherwise,
the map L — O(p) is nonzero. Thus, L~ ® O(p) has a nonzero section, which
implies degL < 1. In particular deg L = 1 if and only if L = O(p), and
the exact sequence splits, contrary to the hypothesis. Therefore, we also have

deg L <0 < p(V). This completes the proof. 0

Theorem 4.4.6. Let C' be a curve of genus at least 1. Let O(p) be the line
bundle over C' associated with the divisor of a point p € C. Then the projec-
tivization S 1= P(V) of every nontrivial extension V of O(p) by O admits no

nontrivial holomorphic vector fields which vanish somewhere on S.

Proof. First consider the case that C has genus at least 2. Let §:=P{V) be
the projectivization of V, and 7 : § — C be the canonical projection. Denote
by Aut{V) the automorphism of V over C, by Aut(C) the automorphism group

of C, and Autc(S) denotes the automorphism group of S over C. That is,
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Auto{S) = {o € Aut(S)|mo = #}. Since C is an irrational curve, there is an

exact sequence

1 — Aute(S) — Aut(S) — Aut(C).

It is well known that every Riemann surface C of genus at least 2 has a
discrete automorphism group. Therefore to show that 5 admits no nontrivial
holomorphic vector fields, it suffices to show the group Aute(S) is discrete.
The relation between Aut(V) and Autc(S) can be found in [17], which states

that one has the following exact sequence of groups
L — Aut(V)/T(C,0") — Auto(S) = A — 1,

where I'(C, O*) is the group of global holomorphic sections of the sheaf O over
C, and A := {L|L — C'is a holomorphic line bundle satisfyingV® L =V} is
a subgroup of 2-torsion part of the Jacobian variety of C, hence A\ is discrote.

In the case that V is indecomposable, Maruyama [28] shows that
o 8 1 2
Aut(V) = e e (I} ® L) =C*s e T(C, (det V' & L?) },

where L is a maximal sub-bundle of V. From the proof of Theorem 4.4.5,
we know the line bundle (det V)~! ® L? has negative degree, and admits no
nontrivial holomorphic sections, This implies Aut(V) = C¥ = I'(C, ©*), hence
Aute(8) = A is discrete.

If the curve €' has genus 1, that Aute(S9) is discrete can be shown by the

same argument. [t implies that there exists no vertical holomorphic vector
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fields on § = P(V). Let £ be a holomorphic vector field on §. Since S is a

fibration with every fibre smooth and compact, £ projects to a holomorphic
vector field € on C, which can only be parallel. Therefore £ vanishes nowhere.

O

Corollary 4.4.7. Let S be a ruled surface over a curve of genus at least 1,
then S is deformation equivalent to a compact complex surface which admits

a cscK metric.

Proof. It § is minimal, it is deformation equivalent to either the surface we
constructed in Section 4.4.1, the trivial bundle T' x P; over a torus, or the
projectivization of the nontrivial extension of O(p) by ©. By Theorem 4.4.1
and 4.4.5, each of them admits cscK metrics. If § is non-minimal, & is de-
formation equivalent to the blow-up of the surface we constructed in Section
4.4.1 or the projectivization of the nonirivial extension of O(p) by. ©. Fach
of them admits no nontrivial holomorphic fields by Theorem 4.4.1 and 4.4.6.
Therefore a direct application of Arezzo-Pacard Theorem 3.1.1 gives us the

conclusion, 0

The remaining case is the ruled surfaces over a rational curve Py, First,
assume the surface § over P; is minimal. Then S is either Py, Py x Iy, or
P(O® O(k)), where k € N, The first two cases admit cscK metrics due to the
existence of Fubini-Study metric on projective space. Denote P(O @ O(k)) by
F, then F} ig isomorphic to the one point blow-up of P, and F}, is deformation
equivalent to Fy if and only if k& = k'(mod 2). Since the automorphism group
of Py is PGL3(C), if X is the blow-up of Py at more than 3 points in general

position, then the automorphism group of X is trivial.
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Proposition 4.4.8. Let S be a compact complex rational surface. Suppose S is

not deformation equivalent to Po#tkPy, where k = 1,2, Then S is deformation

equivalent to o complex surface with cscK metrics,

Proof. The assumption implies that S is either P3, or deformation equivalent
to Py x Py, or Py#kP;, where k > 3. In the first two cases, the Fubini-Study
metric and the product of Fubini-Study metrics provide a cscK metric. If § is
the blow-up of P; at k& points, where 3 < &k < 8, Tian and Yau [36] have shown
that S admits a Kdhler-Einstein metric. If X is the blow-up of Py at more
than 4 points in the gencral position, then the automorphism group Aut(X) is
discrete. Therefore a direct application of Arezzo-Pacard Theorem 3.1.1 shows

that X = ]P’g#kﬁg admits a cscK metric whenever & > 4. O

4.5 Non-existence case

In the section, we will show that Po#kPs, k = 1,2, is not deformation equiva-
lent to any complex surface with cscK metrics. Since the deformation class of
Py#P; consists exactly of Hirzebruch surfaces Fy, = P(O & O(k)), where k is
odd, it suffices to show the Lie algebra of holomorphic vector fields h of F}, is

not reductive whenever & > Q.

Definition 4.5.1. We say a Lie algebra & is reductive if it is the sum of an

abelion and a semisimple Lie algebra.

Recall the theorem of Lichnerowicz and Matsushima [25, 29| tells us that
a compact Kéhler manifold (M, .J) whose identity component Auto(M, J) of

the automorphism group s not reductive does not admit any cscK metric.
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Theorem 4.5.2. (Lichnerowice-Matsushima [25, 29]) Let (M, J) be a compact

manifold with cscK metrics. Then the Lie algebra §{M) of holomorphic vector

fields decomposes as a direct sum
h(M) = §'(M) & a(M)

where a({M) is the abelian subalgebra of parallel holomorphic vector fields, ond
h'(M) is the subalgebra of holomorphic vector fields with zeros. Purthermore,
h(M) is the complezification of the killing fields with zeros. In particular,

h(M) is a reductive Lie algebra.
Let £ = O & O(k), F, = P(E) be the projectivization, and = : Fy — P
be the holomorphic ruling. Let h{M) be the Lie algebra of the holomorphic

vector fields. Then we have the algebra homomorphism ¢ : b - s0(C), and

the following exact sequence:
0 bt — b 5 sh(0),

where h denotes the algebra of all vertical holomorphic vector fields. Here

we use "vertical” to mean they are tangent to the fibres.
Lemma 4.5.3. The algebra homomorphism ¢ : ) — slo(C) is surjective.

Proof. Given a holomorphic vector field £ ¢ h{IPy), the generated automor-
phism group h, = exp(t€) € Aut(Py) = PGLy(C) = SLy(C)/Z, can be lifted
to a family of linear automorphism group h; € SLy (C) on C?, which fixes the
origin O, and ho = identity. Using that @(—1) is the one point blow-up of C?

at the origin and apply Hartog’s extension theorem, the derivative £ = Ohy
Bt |t=0
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represents a holomorphic vector field on @(—1) such that p.f = &, where

p: O(—1) — Py is the natural projection. Since O(1} is the dual of @(—1),
O(k) is the tensor product of & copies of O(1), and @ @ @(k) is the direct
sum of bundles ©@ and O(k), we deduce that the family of automorphisms h,
on Py induces a family of automorphisms fi; on £ = O @ O(k) such that the

following diagram commutes.

E——“iaE

Lo

!
IPl ———12—} P]_.

Since h, restricted to cach fibre is linear, it induces a family of infinitesimal
automorphisms on Fy = P(E), and a holomorphic vector field £ € §{F}) such
that '.'r*é = £, m]

Recall the exact sequence of groups found by Grothendieck [17]:
1 — Aut{V)/T{(C,0) — Aute(S) — A — 1,

where A is a discrete subgroup of Picard group. Assume k > 0. We have

Aut(E) = T(P,E® E)
= CaCaqay,

where V = CZ, and OFV = {ng§+blZ§"121 +b2Z§”sz+...—f~ka{“|bg, bi, ... by

€ C} is the set of homogeneous polynomials of degree k. Using the decompo-
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sition B = O @ O(k), we can write

a O
PNE® E*) =
b ¢

where a, c are constants, and b € @*V. The group multiplication is given by

a 0 a 0 aa’ 0

b ¢ ¥ o abl +bd o

Observe that a/, o € C induces the identity map on P{Z). We can then identify

the fibre-preserving automorphism group of £ with the group

|ceCbe Y

The Lie algebra §' of vertical holomorphic vector fields may be visualized as

the set of

where x stands for an arbitrary complex number, and * stands for an arbitrary
homogeneous polynomial with degree k in the variables 2, z;. A direct com-
putation shows that the center of h is trivial, and [h,h*] 5 h*. Therefore,

ht is not reductive.

Theorem 4.5.4. Y is not reductive. In particular, Fy admits no cscK metrics

whenever k > 0.
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Proof. Suppose that b is reductive. We claim that Z(h) C Z{("), where

Z{h), Z(h') denote the centers of h and §*, respectively. In particular, Z(f) =

0. Recall that we have the exact sequence of Lie algebras
O—+l]i—>f)£>§[2(C) — 0.

Given h € Z(h), [h, '] = 0 for any #' € b implies [¢p(h), ¢(F'}] = 0 in s(C).
Therefore ¢(k) is in the center of l,(C}, which is trivial. It follows that £ is in
ht, so h € Z(h1'). Since b is reductive, and ' is a subideal of h, there exists

a subideal § of B such that h = hL @ h. Therefore we have

hroh = b
= [hh @ Z()
= [hteb bt e
= [b,pt) e b, b
This implies h = [hL, h1], which is the contradiction. |

Next we consider the deformation class of Po#2P,. Every compact complex
ruled surface S deformation equivalent to ]P’g#QFg can be realized as a one
point blow-up of a Hirzebruch surface Fj at p for some point p € £, k € N,
Denote the surface Fy#P; by S. Then the Lie algebra h(S) of holomorphic
vector fields on S is isomorphic to the Lie algebra §y(F) of holomorphic vector
fields vanishing at the point p, i.e. h{S) = H(F:) = {X € h{F)| X (p) = 0}.
Consider the algebra homomorphism , : () — sl(C) composed by h(S) —
h(Fy) and h(F}) 24, slo(C). Let g be the image of m,. Then g is the Lie algebra

of the subgroup of SLy(C) fixing the point w(p). Without loss of generality,
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we can assume w(p) = [1: 0] € Py.

Theorem 4.5.5. §(5) is not reductive. In particular, Fy#Py admits no csek

metrics if k > 0.
Proof. Suppose h(S) = W/(F}) = ¥ is reductive. Then
g = mb

([0, 0] @ Z (1))
[W*h’;ﬂ-*hf] + W*Z(hf)

{l

< o, 8]+ Z(0).
a
This is absurd since g = la,b ¢ C 5 has trivial center, and
0 —a
0 *
9,91 = [xeCo. | O

00
Recently, Arezzo, Pacard, and Singer (2] have shown that there exists ex-
tremal metrics on the one or two points blow-up of Py#kP;. The following

corollary follows immediately from their result and Proposition 4.4.8.

Corollary 4.5.6. Let S be a compact complex surface with even Betti num-

ber by. Then S is deformation equivalent to a complex surface with ewtremal

metrics.
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Chapter 5

Remarks

Theorem 4.1.1 and 4.3.2 tell us that every compact complex surface of
Kéahler type and Kodaira dimension 0 or 2 carries cscK metrics. This is not true
for other cases. For example, a pseudo-Hirzebruch surface S = P(O @ O(k)),
k > 0 does not admit any cscK metries since its automorphism group is not
reductive. Furthermore, although most of elliptic surfaces and ruled surfaces
with cscK metrics in this thesis have discrete automorphism group, and we
know there is an h''-dimensional family of cscK metrics on the nearby complex
surfaces in the deformation class by using LeBrun and Simanca’s theorem [24],
it is challenging to see, for a fixed complex structure, which Kéhler class do
these cscK metrics lie in. Even if the first Chern class ¢;(X) of a manifold X
is negative, there are examples by Ross [34] where some Kéhler classes do not

contain any cscK metric.
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