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Abstract of the Dissertation

On G-equivariant Fusion Categories and
Extended Verlinde Formulae

by

Vincent Graziano

Doctor of Philosophy

in

Mathematics

Stony Brook University

2007

G-equivariant fusion categories arise when one translates the struc-

tures of a conformal field theory with a finite group G of automor-

phisms into a more conversational language. Some structure is

abandoned when we use the language of categories to discuss con-

formal field theories; the upshot is that we can convey ideas in

beautiful song.

Herein I show that the fusion rules of a modular Zn-equivariant

fusion category are diagonalizable. I produce formulas analogous

to the Verlinde formula in the setting of the extended Verlinde

algebra. An important example, type D quantum subgroup, is
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explored in the direction of this work. The proof that type D

quantum subgroup fusion rules are correctly predicted uses the

symmetry of type A quantum group fusion rules; this is, at the

least, an ode to representation theory.

A G-equivariant fusion category is a category C that has a G-

grading C � `gPGCg, and G-action with the same properties of a

fusion category [except the braiding] satisfying similar functorality

properties which respect the group grading and action. Unlike the

fusion category we do not have braiding isomorphisms but rather

we have G-crossed braidings: Denote the action of g P G on an

object V P Ch by gV . Then for V P Cg and W P Ch the isomor-

phism corresponding to the crossed braiding is σ : V bW�ÑgWbV .

Kirillov gives a generalized version of the Verlinde algebra, the ex-

tended Verlinde algebra. The extension is non-trivial; a basis for

the algebra cannot be indexed by the isomorphism classes of simple

objects in the category. Moreover, in this algebra we encounter a

break from the theory of classical modules; fusion in the algebra

is, in general, not commutative.
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Chapter 1

Introduction and Results

1.1 Introduction

In this dissertation we present results which allow one to work withG-equivariant

fusion categories. These categories were formalized so as to capture many of

the features of conformal field theories that have a finite group of automor-

phisms acting on them. Here, in some sense, we bear the first fruits of this

formalization.

The features of a usual conformal field theory were captured by the for-

malism of a tensor or fusion category. The notion of a Verlinde algebra which

arises from a fusion category, the action of a modular group on the algebra,

and the Verlinde formula gave us beautiful means to study these theories. Such

they were that in [Ki] Kirillov put forth the notion of a G-equivariant fusion

category so that it generalized the formalism of a fusion category. Roughly, a

G-equivariant fusion category C additionally possesses a G-grading and -action

satisfying similar functorality properties which respect the group grading and

action. Unlike the fusion category there are not braiding isomorphisms but
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rather, as Turaev [Tu] called them, G-crossed braidings: Denote the action of

g P G on an object V P Ch by gV . Then for V P Cg and W P Ch the isomor-

phism corresponding to the crossed braiding is σ : V bW�ÑgW b V . Then

Kirillov generalized the Verlinde algebra, giving us the so-called extended Ver-

linde algebra, which as he demonstrated can, like the Verlinde algebra, too

have the action of the a modular group defined on it. Figure 1.1 summarizes

this development.

The dissertation is presented in two parts. Initially we synthesize known

results from several papers. The features of the theory needed later are high-

lighted and when necessary discussed at greater length. Later we continue to

generalize the theory associated to modular fusion categories and their Ver-

linde algebras. Here we have a major break from the previous theory and,

more generally, from the modules of classical objects: [as a result of the group

action] the product is not commutative. In this dissertation we present the

following main results:

• We show for any modular G-equivariant fusion category that the fusion

rules are diagonalizable for a certain subalgebra of the extended Verlinde

algebra. Specifically, one can consider the space rV1 as a rV1,1 module. In

this case we diagonalize the fusion rules. We then generalize the classical

Verlinde formula to the products of this type.

• We show for any modular Z2-equivariant fusion category that the fusion

rules are diagonalizable for the entire algebra. Then we generalize the

Verlinde formula to products in rV1.

• We consider an important example of a modular Z2-equivariant fusion

2



category. This example arises when one considers the type D2m�2 quan-

tum subgroup of the semi-simple representations of Uqpsl2q. We give this

example a thorough treatment, applying the results presented in this

dissertation.

Verlinde Formula ‘Extended Verlinde’ Formulas
Ò Ò

VpDq – Verlinde Algebra rVpCq – Extended Verlinde Algebra
Ò Ò

D – Modular Fusion Category C – Modular Equivariant Fusion Category
Ò Ò

V OA  ����¡ V OAöG

Figure 1.1: Overview of Development

In Section 2.1 we give the definition of an equivariant fusion category. Sec-

tion 2.2 has trivial examples of such categories as they were offered in [Ki].

Section 2.4 gives the definition of our main object of study, the extended Ver-

linde algebra. Here we provide some commentary to clarify possible points of

confusion as well as a second, equivalent, definition of the extended Verlinde

algebra. In Section 2.3 we discuss two important constructions: the algebra in

a category and the orbifold construction. The algebra in a category construc-

tion was used by Kirillov and Ostrik in [KO] when they formalized the notion

of a quantum subgroup and the q-analog of McKay Correspondence in Uqpsl2q.
The orbifold construction is presented in [Ki]. These constructions provide a

way for one to pass between modular fusion categories and modular equivari-

ant fusion categories. The two constructions for the first time are presented

along-side one another to show how they relate. These constructions will play

an important role in Section 4.1 where we discuss at length the equivariant fu-

sion category associated to the quantum subgroup of type D2m�2. Section 3.1
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deals with the lack of canonical basis in the algebra. Previously, in the Ver-

linde algebra, one could simply take a representative from each isomorphism

class; the basis was then given by the identity map of each of these represen-

tatives. The group action ensure that there is no longer such a canonical basis

and also introduces the non-commutativity in the product. In Section 3.2 we

discuss the fusion with elements of the subalgebra [a standard Verlinde alge-

bra]. Here we show that the fusion rules can be diagonalized and give the first

generalization of the Verlinde formula. In Section 4.1 we develop an important

real-life example of an equivariant fusion category. All the theory introduced

in the first two chapters is employed in the example. We related the s-matrix

of the two algebras via the algebra in a category construction from [KO] and

show explicitly that the main result from Section 3.2 does indeed predict the

fusion rules. Section 5.1, the final section of the paper, considers the case

G � Z2. Here we show that one can indeed diagonalize the fusion rules. We

give another generalized version of the Verlinde formula and we consider the

example from Section 4.1 in this context.

D C � C1

V G � V ö
G

orbifolding

algebra in category
Modules

VOAs

Fusion Categories

Equivariant Fusion Category

Figure 1.2: Fusion and Equivariant Fusion Categories
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Chapter 2

Background: Equivariant Fusion Categories

and the Extended Verlinde Algebra

2.1 Equivariant Fusion Categories

The definitions and results in this section were already established by Kirillov

in [Ki]. To define the extended Verlinde algebra we will need a G-equivariant

fusion category. The definition is due to Turaev. See [Tu]. As formulated in

[Ki] let us recall this

2.1.0 Definition. A G-equivariant category C is an abelian category with the

following additional structure:

G-grading Decomposition of C over the group G.

C � à
hPG

Ch

where each Ch is a full subcategory in C.

5



Action of G For each g P G, we are given a functor Rg : C Ñ C and functorial

isomorphisms αgh : Rg �Rh�ÑRgh such that R1 � id, RgCh � Cghg�1 , and

αg1g2,g3 � αg1,g2 � αg1,g2g3 � αg2,g3 [both sides are functorial isomorphisms

Rg1Rg2Rg3�ÑRg1g2g3 ].

We will use the notation gV for RgpV q.

2.1.1 Definition. AG-equivariant fusion category is a semisimpleG-equivariant

abelian category with additional structure. As follows:

• The structure of a rigid monoidal category such that

1 is a simple object

Rg is a tensor functor

for X P Cg, Y P Ch, X b Y P Cgh

• Functorial isomorphisms δV : V Ñ V ��, satisfying the same compati-

bility conditions as in the absence of G (see [BK]) and the additional

condition RgpδV q � δRgpV q.

• A collection of functorial isomorphisms RV,W : V b W Ñ gW b V for

every V P Cg,W P Ch, satisfying an analog of the pentagon axiom (see

[Tu, Section 2.2]).

In our study C shall always refer to a modularG-equivariant fusion category

where G is a finite group. D shall always refer to a fusion category. Other

categories will be denoted by other symbols.
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The category has the following properties which are immediate from the

definition.

2.1.2 Proposition. Let C be a G-equivariant fusion category. Then

1. The unit object 1 P C1.

2. For V P Cg we have that V � P Cg�1.

3. By rigidity, we have g1 � 1

4. and pgV q� � gpV �q canonically.

The G-equivariant fusion category C is not a fusion category. The braiding

in a fusion category is commutative while the braiding in C is not. Note that

a fusion category is a special case when the grading of the category is trivial.

The full subcategory C1 � C, commonly known as the untwisted sector, is a

fusion category. Recall Figure 1.2. The category C1 will have an important

role throughout this paper.

As in the case of a fusion category the existence of functorial isomorphisms

V � V �� allows us to define a system of twists θV in the category.

2.1.3 Lemma. Let C be a G-equivariant fusion category. Then C has a col-

lection of functorial isomorphisms θV : V Ñ gV for V P C with the following

properties

1. θ1 � id

2. θUbV � pθ b θqRgV,URU,V

3. θV � � Rg�1pθ�V q

7



4. θhV � RhpθV q

There is a graphical calculus which has been developed to represent mor-

phisms in C. This generalizes the technique of representing morphisms in a

braided tensor category by tangles. This is the work of Turaev [Tu]. The

uninitiated reader may refer to [Ki] for a brief review of this technique.

2.2 Examples of Equivariant Fusion Categories

Here we give two examples of equivariant fusion categories. Although both are

trivial in some sense they do provide a nice initiation to the theory of these

categories. I duplicate these examples as they were given in [Ki, Section 5].

Some details of the orbifold construction and related theorems will be given

in Section 2.3. For a fuller treatment see [Ki].

2.2.1 Graded Vector Space

Let C be the category of G-graded vector spaces. This is the category with

simple objects Xg for g P G. The tensor product is given by Xg bXh � Xgh

and duality by X�
g � Xg�1 . The action of G is defined by RgXh � Xghg�1 .

Then the orbifold category [see Section 2.3 for definition] C{G is the category

of finite-dimensional modules over the Drinfeld double DpGq with the standard

tensor product.
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2.2.2 Twisted Graded Vector Space

Let Cω be a twisted category of G-graded vector spaces. Here the category

is a rigid monoidal category that coincides with the category given above.

Tensor product and duality are instead defined as follows: XgbXh�ÑXgh, and

X�
g �ÑXg�1 [non-canonically]. This category defines a 3-cocycle ω P C3pG,C�q.

Suppose that we choose a system of isomorphisms αgh : XgbXh Ñ Xgh. Then

αg1,g2g3αg2,g3 � ωpg1, g2, g3qαg1g2,g3αg1,g2 . We note that two such categories are

equivalent as monoidal categories if and only if rωs � rω1s. This defines a

bijection between equivalence classes of twisted categories of G-graded vector

spaces and H3pG,C�q. Now the action of the group can be defined by RgX �
Xg bX bX�

g , and the braiding isomorphism as composition

Xg bXh�ÑXg bXh bX�
g bXg � gXh bXg.

This defines on our category Cω the structure of a G-equivariant fusion cat-

egory. The corresponding orbifold category Cω{G coincides with the category

of modules over the twisted Drinfeld double DωpGq. For the definition of these

modules see [DPR], and [DN].

2.3 From Fusion To G-Equivariant Fusion And

Back

Before we study the extended Verlinde algebra we introduce some important

categorical constructions that we will later need. The constructions and the-

orems presented in this section are not new. Rather, what we are doing here

9



is synthesizing results across several papers.

First we recall the definition of a D-algebra A. Then we define the category

of modules RepA of this algebra. See [KO] for details.

2.3.1 Definition. Let D be a fusion category. An associative commutative

algebra A in D is an object A P D along with morphisms µ : A b A Ñ A and

ιA : 1 ïÑ A satisfying associativity and commutativity compatibility conditions

along with a unique unit element.

We define the category of modules of this algebra as follows.

2.3.2 Definition. Let D be a fusion category and A a D-algebra. Define the

category RepA as follows:

• The objects are pairs pV, µV q where V P D and µV : A b V Ñ V is a

morphism in D satisfying the following properties:

1. µV � pµb idq � µV � pidbµV q : Ab Ab V Ñ V

2. µV pιA b idq � id : 1b V Ñ V

• The morphisms are defined by

HomRepAppV, µV q, pW,µW qq

� tϕ P HomCpV,W q|µW � pidbϕq � ϕ � µV : Ab V Ñ W u

We say that an algebra A in D is rigid if 1 has multiplicity 1 in A and the

composition AbA µÝÑ AÑ 1 is a non-degenerate pairing. See [KO] for details.

2.3.3 Theorem. Let D be a fusion category. Suppose that A P D is an

associative commutative algebra with the following properties:

10



D

C � RepA

C{G

algebra in category

orbifolding

����

G-equivariant fusion category

fusion category

Figure 2.1: Algebra in a Category and Orbifolding

• θA � id

• A is rigid

• There is an action of a finite group G by automorphisms πg of A such

that the action is faithful and AG � 1.

Then the category C � RepA is a G-equivariant fusion category. The objects

and morphisms are given in Definition 2.3.2.

See [Ki, Section 4] and [K2, Section 5] for the details.

Between the categories D and C define two functors F : D Ñ C and G : C Ñ
D as follows

F pV q � Ab V , µF pV q � µb id

and GppV, µV qq � V.

We have the following important theorems from [KO]

2.3.4 Theorem. F and G are exact and injective on morphisms. F and G

are adjoint. F is a tensor functor, F pV bW q � F pV qbAF pW q and F p1q � A.

And GpF pV qq � Ab V .

11



2.3.5 Theorem. For X, Y P C � RepA the following hold

dimCpXq � dimDpXq
dimDA

,

and dimCpF pV qq � dimDpV q.

Let us recall the orbifold construction. A detailed account is given in [K2].

2.3.6 Definition. Let C be a G-equivariant fusion category. Then the orbifold

category C{G is defined as follows:

• The objects are pairs pX,Φq where X P C and Φ � tϕgugPG is a collection

of C-morphisms ϕ : gX�ÑX such that ϕ1 � id and ϕgRgpϕhq � ϕgh.

• The morphisms pX,Φq Ñ pY,Ψq are C-morphisms τ : X Ñ Y such that

ψg �Rgpτq � τ � ϕg for all g in G.

2.3.7 Nota Bene. Not every object X P D will have such a set Φ of morphisms.

In which case the object does not appear as part of a pair in the orbifold

construction. Note also that for a given X P C there may be more than one

such set Φ.

The relation between the algebra in a category construction and the orb-

ifold construction is summarized in Figure 2.1 and given in [K2] by the follow-

ing

2.3.8 Theorem. Let D be a fusion category and A a commutative algebra in

D satisfying the conditions given in Theorem 2.3.3. Then the category D is

naturally equivalent to the orbifold category RepA{G.

12



Like before, we can define adjoint functors between the two categories C

and C{G. Define F 1 : C{GÑ C as follows

F 1ppX, tϕguqq � X.

Define G1 : C Ñ C{G as follows

G1pV q � pX, tϕguq

where X � `hPG
hV and ϕg : `h

ghV Ñ `h
hV . These functors are summarized

in Figure 2.2.

D

C

C{G

F

G F 1

G1

����
Figure 2.2: Functors between the Categories

2.4 The Extended Verlinde Algebra

Let us begin by recalling the definition of the Verlinde algebra.

For D a fusion category denote its Grothendieck ring byKpDq. The algebra

VpDq � KpDq bZ C is a finite-dimensional commutative associative algebra.

The algebra has a basis Vi � xViy , i P I and a unit 1 � xV0y. This algebra

is called the Verlinde algebra. Next we give an equivalent definition of the

Verlinde algebra that we will later generalize.

13



2.4.0 Definition. Let D a fusion category. The Verlinde algebra V � VpDq is

the complex vector space given by

V �à
iPI

MorDpVi, Viq,

where the sum is over the set I � IpDq of isomorphism classes of simple objects

in D. The algebra V has a natural basis. For each isomorphism class fix a

representative Vi. The canonical basis of V is the identity map λ : Vi Ñ Vi of

each of the representatives.

The Verlinde algebra was generalized by Kirillov [Ki]. The generalization

was motivated by the modular functor approach: the generalized algebra can

be defined as a vector space associated to a torus with no punctures. Kirillov

gives us the the following

2.4.1 Definition. Let C be a G-equivariant fusion category. For each isomor-

phism class of simple objects in C fix a representative Vi. Then the extended

Verlinde algebra of C is the complex vector space defined by

rVpCq � à
iPI,gPG

MorCpVi, gViq.

In our study we consider extended Verlinde algebras rVpCq where the cate-

gory C is such that G is a finite group and there are finitely many isomorphism

classes of simple objects. Thus our extended Verlinde algebra is finite dimen-

sional.

2.4.2 Notation. The identity element of the group is written 1. We index

the classes of simple objects by the set I � IpCq. Ih is used to denote the

14



classes of simple objects in Ch. Lastly, gIh shall denote the classes in Ih which

are invariant under the action of g. We use the notation Vi to denote the

representative that we have fixed. In particular V0 where 0 P I is the unit

object 1 in C.

Note that for Vi P Ch the space MorCpVi, gViq is empty unless gh � hg.

Thus the extended Verlinde algebra can be written as

rVpCq � à
g,h|gh�hg

rVg,hpCq; rVg,hpCq � à
iPIh

MorCpVi, gViq.

In particular, MorpVi, gViq is trivial unless gVi belongs to the same isomor-

phism class as Vi. So we note that there may be i P Ih such that MorpVi, gViq is

trivial although the condition gh � hg is satisfied. Stated differently, the space

MorpVi, gViq is non-trivial if and only if Vi as an isomorphism class is invariant

under the action of g. Equivalently, MorpVi, gViq where i P Ih is non-trivial if

and only if i P gIh. We introduce another formulation of the extended Verlinde

algebra:

rVpCq � à
gPG

rVgpCq; rVgpCq � à
iP

g
I

MorpVi, gViq

This second formulation of the definition puts emphasis on the invariance

of a class under the action of the group. In this formulation the direct sum

has no trivial summands. That is, MorpVi, gViq is non-trivial for all g P G

and i P gI since 1����g1 for all g in G and we consider elements of the set gI

rather than I. The indexing set gI can be written as a disjoint union of sets:

gI � \ gIh over h P Hg � G. The subset Hg is determined by the group action

on the set of isomorphism classes. From the space rVg we can in a natural way

15



recover the spaces rVg,h.
2.4.3 Nota Bene. Suppose that X�ÑgX in the category. Then the morphism

ϕ : X Ñ gX does not necessarily appear as an element of the algebra. For

example, X � Vi ` Vj, where gVi w Vj and gVj w Vi. The obstruction is that

X must be the direct sum of g-invariant [up to isomorphism] simple objects

in the category.

Let us introduce a formulation of the algebra that is based on isomorphism

classes. Then with this formulation in place we will be prepared to discuss

further the properties of the algebra.

2.4.4 Classes and the extended Verlinde algebra

rVg is isomorphic to the vector space spanned by classes rϕs where ϕ : V Ñ gV ,

V is a linear combination of Vi for i P gI, with the following relations

1. For any λ P C ϕ : V Ñ gV and ψ : V Ñ gV one has

λrϕs � rλϕs and rϕs � rψs � rϕ� ψs.

2. For any ϕ : V Ñ gV and isomorphism T : V �ÑV
1

one has

rRgpT qϕT�1s � rϕs.

3. Suppose V � `Vi for some i P gI and ϕ : V Ñ V is given by ϕ � °ϕij
where ϕij : Vi Ñ gVj. Then

rϕs � ¸rϕiis.
16



We are now prepared to talk some about the structure of the extended

Verlinde algebra. For a detailed treatment see [Ki, Section 8].

2.4.5 Extended Verlinde algebra structure

Dimension The dimension di of an object Vi in C is defined to be the cate-

gorical trace of the identity of Vi.

Tensor Product The extended Verlinde algebra is an associative algebra.

We denote the product as b. Suppose ϕ P rVg,a and ψ P rVh,b. Then the

product when g � h is defined to be

rϕs b rψs � rϕb ψs P rVg,ab
and is zero otherwise. The tensor product is in rVg,ab because the action

of the group is a tensor functor. When we use the word fusion or fusion

product we are referring to the tensor product of the algebra.

Convolution Product The algebra has another associative product. We

denote it by �. Let ϕ : Vi Ñ gVi and ψ : Vj Ñ hVj. The convolution

product rϕs � rψs is zero when hVj and Vi are not isomorphic. Otherwise,

let κ be an isomorphism between hVj and Vi. Then

rϕs � rψs � d�1
i rVj ψÝÑ hVj

κÝÑ Vi
ϕÝÑ gVi

Rgpκ�1qÝÝÝÝÝÑ ghVjs

17



where di is the dimension of Vi. Thus for ϕ P rVg,a and ψ P rVh,a we have

that rϕs � rψs P rVgh,a. The coefficient is in the definition to make life sim-

pler later on. Note that we have for a simple object V and ϕ : hV Ñ ghV

and ψ : V Ñ hV that rϕs � rψs � 1
dimV

rϕψs.

Bilinear Form To define the bilinear form we first make some preliminary

definitions. Recall that for ϕ : V Ñ gV we have an adjoint morphism

ϕ� : gV � Ñ V �. This defines on rV a linear map � : rVg,h Ñ rVg�1,h�1 such

that pϕb ψq� � ψ� b ϕ� and pϕ � ψq� � ψ� � ϕ�.

Next, define the constant term map r s0 : rV Ñ C as follows

rϕs0 � 0, ϕ : Vi Ñ gVi, i � 0

rχg0s0 � 1

where χg0 : 1 Ñ g1 is the canonical isomorphism. One easily sees that it

completely determines r s0 and that rxs0 � 0 if x P rVg,h, h � 1.

We can now define the bilinear form

pϕ, ψq � rϕb ψ�s0.

2.4.6 Proposition. The bilinear form enjoys the following properties:

1. For ϕ P rVg1,h1 , ψ P rVg2,h2, we have pϕ, ψq � 0 unless g1 � g�1
2 , h1 � h2.

2. The form is symmetric: pϕ, ψq � pψ, ϕq, non-degenerate, and G-invariant.
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3. pχi, χjq � δij

4. pxb y, zq � px, z b y�q.

In the extended Verlinde algebra the tensor product and the convolution

product are not commutative. In general the products fail to be commutative

even when the group is abelian. This is unlike the case of the Verlinde algebra

where both products commute.

As in the case of the Verlinde algebra it is possible to define linear operators

on the extended Verlinde algebra which under some non-degeneracy condition

defines the action of the modular group SL2pZq on rV . We introduce these

operators now.

2.4.7 Definition. t̃ : rVg,h Ñ rVgh,h is defined by

rϕs ÞÑ rθϕs � rϕθs

where θ is the universal twist.

The equality rθϕs � rϕθs follows from Lemma 2.1.3 and Section 2.4.4.

The existence of this operator will later be used to develop theorems on the

structure of particular extended Verlinde algebras. Let us now define a most

useful operator on the extended Verlinde algebra.

2.4.8 Definition. The linear operator s̃ : rV Ñ rV called the s-matrix is defined

as follows.

s̃ : rVg,h Ñ rVh�1,g

s̃rϕs � ¸
k P h�1Ig

ps̃rϕsqk
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where, for ϕ : V Ñ gV, V P Ch, we define ps̃rϕsqk : Vk Ñ h�1
Vk, Vk P Cg by

Figure 2.3.

ps̃rϕsqk � dk ϕ

V

gV

Vk

h�1
Vk

Figure 2.3: s-matrix

When using the graphical calculus to represent objects in the algebra it

will be useful to have the following

2.4.9 Lemma. Let ϕ P rVg,h and ψ P rVh,g. Suppose ϕ : V Ñ gV and ψ : W Ñ
hW . Then

ps̃ϕ, ψq �
ϕ

ψ
V

gV

W
hW

The operators s̃ and t̃ behave nicely with the bilinear form.

2.4.10 Lemma. The operators s̃ and t̃ have the following properties.

1. When restricted to rV1,1 the operators s̃ and t̃ are the corresponding op-

erators of the [non-extended] Verlinde algebra VpC1q.

2. s̃ and t̃ are symmetric: ps̃ϕ, ψq � pϕ, s̃ψq and pt̃ϕ, ψq � pϕ, t̃ψq.

3. ps̃ϕ, ψq � ps̃ψ�, ϕ�q.
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4. s̃pϕb ψq � s̃pψq � s̃pϕq.

Proof. Immediate from the graphical calculus.

The operator s̃ enjoys the property of interchanging the tensor product

with the convolution product. We will leverage this fact with the structure

of the extended Verlinde algebra to study the tensor product explicitly. Later

still we will make use of the group action in our study of the tensor product.

2.4.11 Definition. A G-equivariant fusion category with finitely many iso-

morphism classes of simple objects is called modular if the operator s̃ is invert-

ible.

The category is called modular since, after re-normalization, the operators

s̃ and t̃ satisfy the relations of SL2pZq. See [Ki, Section 10] for details. In

what follows it will be convenient to have the s-matrix normalized so that it

is unitary.

2.4.12 Proposition. Define the numbers p� as follows

p� � ¸
iPI1

θ�1
i d2

i .

Put

D �
b
p�p� , s � D�1s̃.

Then s is a symmetric unitary operator.

The s-matrix of a modular fusion category can also be normalized so that

it is unitary. The number D � DD is defined by the same formula as in the

proposition.
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2.4.13 Nota Bene. The equality s̃pϕ b ψq � s̃pψq � s̃pϕq from Lemma 2.4.10

becomes spϕb ψq � Dspψq � spϕq.

Modularity is preserved when moving between fusion categories and equiv-

ariant fusion categories via the algebra in a category construction or the orb-

ifold construction. See Figure 2.1. From [Ki, Section 10] we have the following

2.4.14 Theorem. A G-equivariant fusion category C is modular if and only

if the orbifold category C{G is modular.

So by the equivalence of the categories D and C{G in Figure 2.1 we have

that modularity is preserved. Also note that if C is modular then C1 is modular.

It is important to realize that this implies that the restriction of the s-matrix

from rVpCq to the subalgebra rV1,1 is an invertible operator.

To introduce the relation between the two operators sC and sC{G � sD we

extend the definition of F 1 and G1 from the language of categories to algebras.

Start by recalling the definitions of F 1 and G1.

F 1 : C{GÑ C

is given by F 1ppX, tϕguqq � X,

and

G1 : C Ñ C{G

is given by G1pV q � pX, tϕguq

22



where X � `hPG
hV and ϕg : `h

ghV Ñ `h
hV . Note ϕg P rVg�1 . See

Figure 2.2. The functors F 1 and G1 can be extended to maps between the

algebras as follows. Define

pF 1 : VpC{Gq Ñ rVpCq
by pF 1ppX, tϕguqq �

¸
gPG

rϕgs.

For ϕ : V Ñ gV define

pG1 : rVpCq Ñ VpC{Gq

by pG1pϕq � `hRhpϕq : hV Ñ hgV.

The s̃C{G-matrix of the Verlinde algebra of the orbifolded category is re-

lated to the s̃C-matrix of the extended Verlinde algebra VpCq by the following

equation from [Ki, Section 9]. See Figure 2.2.

2.4.15 Theorem. For x P VpC{Gq and y P rVpCq we have

ps̃ pF 1x, yqC � 1

|G| ps̃x,
pG1yqC{G.

We can normalize both operators so that they are unitary. The above

relation between the normalized operators is given by the following

2.4.16 Corollary. For x P VpC{Gq and y P rVpCq we have

ps pF 1x, yqC � psx, pG1yqC{G.

23



Proof. A theorem from [Ki, Section 10] gives us the relation |G|DC � DC{G.

Apply the relation to Theorem 2.4.15 and the result follows.

Of course, since the categories D and C{G are equivalent, Corollary 2.4.16

can be used to relate values of sC and sD. We will make tacit use of this

equivalence when using this corollary in Section 4.1.
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Chapter 3

Fusion by Untwisted Modules

3.1 A Basis for the Algebra

In the case of the standard Verlinde algebra we could choose a basis canonically.

To each simple object Vi in a fusion category there corresponds an identity

map id: Vi Ñ Vi in the category. These maps formed a basis for the Verlinde

algebra. We do not have this nicety in the extended Verlinde algebra. There is

no canonical map in the space MorpVi, gViq and so there is no canonical basis

for the extended Verlinde algebra. This causes some difficulty when we try

to study fusion in the algebra. To get around this difficulty we introduce the

notion of a generic basis for the extended Verlinde algebra.

For i invariant under the action of g we have that MorpVi, gViq is a one

dimensional vector space. From each one dimensional vector space MorpVi, gViq
we pick an arbitrary element in that space. This element will serve as a basis

for the space. However in cases where g � 1 we choose the identity map in

MorpVi, 1Viq as our ‘arbitrary’ element. This can be done canonically as in the

case of the standard Verlinde algebra. These elements form a generic basis of
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rV .

3.1.1 Notation. Recall how we set the stage. Given a G-equivariant category

C we first fixed a representative Vi from each of the isomorphism classes. We

then defined the corresponding extended Verlinde algebra rVpCq. Now we fix

a generic basis for the algebra as described above. We make the following

notation to refer to these basis elements.

Basis elements in rV1 For the basis element that we fixed in MorpVi, Viq
which is the identity map we write λi. When we want to state that

i P Ih we write i � ih. The basis element is then written λih .

Basis elements in rVg For the basis element that we fixed in MorpVi, gViq we

write gλi. When we want to state that i P Ih we write i � ih. The basis

element is then written gλih .

In practice, the lack of canonical basis will not trouble us. When we study

fusion in the algebra it is useful to have a basis   λk ¡ satisfying gλi � hλi �
ghλi. In general however there is no such basis. Even in cases where the group

is abelian, as we shall see later, one cannot expect such a basis.

3.2 Fusion with an element of �V1,1

Let us recall our goal. Given two elements in rV we want to write their product

as a sum of elements. Two non-trivial elements of our algebra have a tensor

product which is non-zero when both belong to the same subspace rVg. Fix a
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basis for the algebra as described above. The basis elements are morphisms

of the simple objects in the category. It suffices to understand fusion on the

basis elements to realize the goal. The fusion of two basis elements is then to

be written as a linear combination of basis elements. Again, we denote our

basis of rVg by gλi : Vi Ñ gVi where i runs over the indexing set gI. Then what

we are looking for is gLkij such that

gλi b gλj �
¸
k

gLkij
gλk.

The Lkij are what we call fusion coefficients. For a fixed subspace rVg, a

fixed basis, and a fixed basis element gλi we can consider the matrix Li �
Lkij � gLkij where j and k are over gI. We shall call this matrix the matrix of

left multiplication by gλi in the given basis. Note that for i � ia and j � jb

we know a priori that Lkc � 0 when c � ab. When it is clear from the context

we suppress the g superscript and write instead Lkij.

We first study fusion in rV1. Below we show without making any restrictions

on our category that we can get precise results in terms of the operator s̃ in

cases where one of the elements in the product belong to rV1,1. In such cases

the product is commutative.

In this section then we consider the space rV1 as a rV1,1-module. We will first

look at the special case rV1,1 � rV1,1 Ñ rV1,1. This case is nothing more than the

standard Verlinde algebra presented in the language of the extended Verlinde

algebra. After staging these results in the broader language we will consider

the general case.
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3.2.1 The Verlinde Algebra

Let us begin by reviewing fusion in the Verlinde algebra. Here we are restrict-

ing to the fusion of elements in rV1,1. Thus the all operators here are maps

rV1,1 Ñ rV1,1. Under these restrictions we are in the setting of a modular fusion

category and the Verlinde algebra associated to it.

3.2.2 Lemma. Let C be a modular G-equivariant fusion category. Fix a basis

for rVpCq. Fix i P I1. Let Li be the operator of left multiplication by λi in

our basis. For k P I1 define the linear operator Di : rV1,1 Ñ rV1,1 by Diλk �
psλi, λkq{psλ0, λkqλk. Then we have that

sLi � Dis.

Proof. Let λj P rV1,1. Then from the left hand side we have

sLiλj � spλi b λjq

� Dsλj � sλi

by Lemma 2.4.10. Recall the Definition 2.4.8 of s̃. Thus

sλi � D�1s̃λi � D�1
¸
kPI1

di ps̃λiqk

� D�1
¸
kPI1

ps̃λi, λkqλk.

Mutatis mutandis, we have the same for s̃λj. Note that ps̃λ0, λiq � di � dimVi.
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Therefore

Dsλj � sλi � D�1
¸
kPI1

ps̃λj, λkqλk �
¸
kPI1

ps̃λi, λkqλk

� D�1
¸
kPI1

ps̃λj, λkqλk � ps̃λi, λkqλk

� D�1
¸
kPI1

ps̃λi, λkq
ps̃λ0, λkq ps̃λj, λkqλk.

� Disλj.

Since the convolution product is zero when Vi and Vj are not in the same

isomorphism class we have equality between the first and second line. λk is

the identity map. So the convolution product is simply the composition of

functions multiplied by the constant dk
�1. This concludes the proof.

As a direct result of the previous lemma we have the well known Verlinde

formula.

3.2.3 Theorem. Verlinde Formula. Keep the hypotheses from Lemma 3.2.2.

Then the fusion coefficients Lkij are given by the following formula.

Lkij �
¸
p

psλi, λpqpsλj, λpqpsλ�k, λpq
psλ0, λpq , i, j, k P I1.

Proof. Fix λi and λj P rV1,1. The equation sLi � Dis from above can be

written as follows

¸
r

Lrijpsλr, λpq �
psλi, λpqpsλj, λpq

psλ0, λpq .
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We multiply both sides by psλp, λ�kq and sum over p. Since s is a sym-

metric unitary operator (Lemma 2.4.10) we have that psλr, λpqpsλp, λ�kq �
psλr, λpqpsλ�p , λkq � δrk and the proof.

dk λ

Vi

Vi

Vk

Vk

� ps̃λi, λkq

λk

Figure 3.1: Scalar Multiple of Identity

In the proof of Lemma 3.2.2 we were able to write both ps̃λiqk and ps̃λjqk
as scalar multiples of the identity map λk. Precisely, ps̃λiqk � ps̃λi, λkqλk. See

Figure 3.1. The convolution product of these maps was then the composition

of identity maps multiplied by a scalar. In the more general setting of rV1,1 �rV1 Ñ rV1 this is no longer the case. We can however still calculate the fusion

coefficients in terms of the s-matrix. We have to adjust our procedure only

slightly.

dk λ

Vj

Vj

Vk

g�1
Vk

� ps̃λj, gλkq

Vk

g�1
Vk

Figure 3.2: Scalar Multiple of Basis Element
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3.2.4 The Space �V1 as a �V1,1-module

In this section we consider λibλj for i P I1 and j P Ig. Recall that the operator

s̃ sends and element of rV1,g to rVg�1,1. Thus ps̃λjqk is no longer a multiple of the

identity map id: Vk Ñ Vk. Rather ps̃λjqk is a multiple of g
�1
λk. See Figure 3.2.

Though convolution is no longer the composition of identity maps it remains

a composition of maps, one of which is an identity map. See Section 2.4.5 for

the definition of the convolution product.

3.2.5 Lemma. Let C be a modular G-equivariant fusion category. Fix a basis

for rVpCq. Fix i P I1. Let Li : rV1,g Ñ rV1,g be the operator of left multiplication

by λi in our basis. For k P g�1
I1 define the linear operator Di : rVg�1,1 Ñ rVg�1,1

by Di
g�1
λk � psλi, λkq{psλ0, λkq g�1

λk. Then we have that

sLi � Dis.

Proof. Since s and Di are invertible the lemma implies that Li is an invertible

linear operator. We use the graphical calculus to prove the statement.

Let λj P rV1,g. Then from the left hand side we have sLiλj � spλi b λjq �
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Dsλj � sλi

�D�1
¸

k P g�1I1

ps̃λjqk � ¸
kPI1

ps̃λiqk

�D�1
¸

k P g�1I1

dk λ

Vj

Vj

Vk

g�1
Vk

� ¸
kPI1

ps̃λi, λkq

Vk

Vk

�D�1
¸

k P g�1I1

dk λ

Vj

Vj

Vk

g�1
Vk

� ps̃λi, λkq

Vk

Vk

�D�1
¸

k P g�1I1

ps̃λi, λkq
ps̃λ0, λkq dk λ

Vj

Vj

Vk

g�1
Vk

�D�1
¸

k P g�1I1

ps̃λi, λkq
ps̃λ0, λkq ps̃λjqk � D�1

¸
k P g�1I1

psλi, λkq
psλ0, λkq ps̃λjqk

� Disλj.

3.2.6 Corollary. Keep the hypotheses from Lemma 3.2.5. Then the fusion

coefficients are given by the following formula.

Lkij �
¸
p

psλi, λpqpsλj, gλpqpsλ�k, gλpq
psλ0, λpq , i P I1 and j, k P Ig.
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Note that p in sum above is indexed by the set g�1
I1. Often we instead

write gI1 since these sets are the identical. Recall that rV1,g is a rV1,1 module.

Thus for λi P rV1,1 and λj P rV1,g we have that Liλj is
°
k L

k
ijλk where k P Ig.

Proof. Fix λi P rV1,1. Fix λj P rV1,g. Then the equation sLi � Dis can be

written as follows.

sLiλj � Disλj

ðñ s
¸
rPIg

Lrijλr � Di

¸
pPg�1I1

psλj, gλpqg�1

λp

ðñ ¸
r

Lrijsλr �
¸
p

Dipsλj, gλpqg�1

λp

ðñ ¸
r

Lrij
¸
p

psλr, gλpqg�1

λp �
¸
p

psλi, λpqpsλj, gλpq
psλ0, λpq

g�1

λp

ðñ ¸
r

Lrijpsλr, gλpq �
psλi, λpqpsλj, gλpq

psλ0, λpq .

We multiply both sides by psgλp, λ�kq and sum over p. Since s is a symmetric

unitary operator we have that psλr, gλpqpsgλp, λ�kq � psλr, gλpqpsgλ�p , λkq � δrk

and the proof.

3.2.7 Remarks

In this section we repeatedly used the fact that the structure of b and � are

isomorphic on rV . That is, that s̃ is invertible, and both s̃pϕbψq � s̃pψq � s̃pϕq
and s̃pϕ�ψq � s̃pψqb s̃pϕq hold. Special properties that the group may impose

on the algebra have yet to been used. In the proof the convolution product
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was d�1
k Vk

λkÝÑ Vk
g�1

λkÝÝÝÑ g�1
Vk. In more general cases we see the definition of

the convolution product in its full generality. Recall that rϕs � rψs � d�1
i rVj ψÝÑ

hVj
κÝÑ Vi

ϕÝÑ gVi
Rgpκ�1qÝÝÝÝÝÑ ghVjs. In general using the s-matrix to interchange

the tensor product with the convolution product will not “diagonalize” the

fusion rules. Further description of rV requires that we make use of properties

imposed by the group. In cases where the group G is commutative we still

manage to get nice results.

Before we consider more general cases let us rest on an example. In the next

section we introduce most of the machinery necessary to discuss the example.

After that we consider a non-trivial example. We use the theorems from this

section to compute the fusion rules. Perhaps this will lend insight into more

general cases. Succinctly, a nice example is nice.
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Chapter 4

Example of G-equivariant Fusion Category

4.1 An Example: Algebra of Type D2m�2

The subspace rV1,1 is a rV1 module. In Section 3.2 we diagonalized the fusion

rules for ϕ b ψ in the case that ϕ P rV1,1 and ψ P rV1. In this section we give

a non-trivial example of a modular G-equivariant fusion category. We start

with a modular fusion category D and consider a modular G-equivariant fusion

category C that arises from an algebra in D. Recall Figure 2.1. This example

is attractive to us for several reasons. For now, we show that Corollary 3.2.6

correctly predicts the fusion rules and we show how the s-matrix of the al-

gebras VpDq, rVpRepAq bring together the Verlinde formula with the formula

[extended Verlinde formula] from our corollary.

Let D be the semisimple part of the category of representations of Uqpsl2q
with q � eπi{κ and κ ¯ 2. This category is well understood; for a review

see [BK]. Denote the irreducible representations by V0, . . . , Vδ, where δ �
κ � 2. These representations are the simple objects in the category. Denote

the Verlinde algebra of this category by V � VpDq. Denote the s-matrix
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operator associated to this algebra by s̃D. This category is a modular fusion

category. As discussed above this algebra has a natural basis. Denote the

identity map of Vi by χi. Then the χi form a basis for the algebra, where i is

indexed by the set I � IpDq � t0, 1, . . . , δu. Fusion in the algebra is given by

the following theorem.

4.1.1 Theorem. For χi, χj P V. Then

χi b χj �
¸
k

Nk
ijχk

where

Nk
ij �

$'''&'''%
1 for |i� j| ® k ® i� j, k ® 2δ � pi� jq, i� j � k P 2Z,

0 otherwise.

At this point we summon a G-equivariant fusion category using the algebra

in a category construction recalled in Section 2.3. Suppose that δ � 4m. Put

A � V0 ` Vδ. Then the D-algebra A is rigid and θA � id. There is a natural

action of the group Z2 acting by automorphisms π on A. In particular, the

automorphism πa is given by

π : AÑ A where

πa|V0 � id

πa|Vδ
� � id

Let C � RepA be the category of modules over A. Theorem 2.3.3 tells us
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that this category is a Z2-equivariant fusion category. Theorem 2.4.14 tells us

that this category is modular and that the subcategory C1 � C is a modular

fusion category. See Figure 1.2.

We discussed what the objects in C � RepA are in Section 2.3. For brevity

we refer to representatives of the simple modules by X1, . . . , X2m�1, and X�
2m

and X�
2m. The Xi for i P t0, 1, . . . , 2m � 1u in the subring generated by X1

are given by Xi � Vi ` Vδ�i � A b Vi. The modules X�
2m are isomorphic as

objects of D to V2m. The object X�
2m `X�

2m is also in the subring generated

by X1 and is given by Ab V2m. See [KO] for more specific details.

Denote the non-trivial element of the group Z2 by a. The action of Z2 on

A gives rise to the Z2-grading and action of Z2 on C. The group grading and

action on the category is as follows. Xi is in C1 if and only if i is even, otherwise

Xi P Ca. The non-trivial element a P Z2 acts trivially on the isomorphism

classes of Xi for i � 1, . . . , 2m� 1 and it interchanges X�
2m and X�

2m.

[KO, Section 7] gives us the tensor decomposition for the simple objects in

the category.

4.1.2 Theorem. Let C be the category of representations of the algebra A as

described above for δ � 4m. Suppose 8|δ. Then the decomposition of the tensor

product in C is given by
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X0bXi � Xi,

X1bXi � Xi�1 `Xi�1, i � 1, . . . , 2m� 2,

X1bX2m�1 � X2m�2 `X�
2m �X�

2m,

X1bX�
2m � X2m�1,

X�
2mbX�

2m � X0 `X4 ` � � � `X2m�4 `X�
2m,

X�
2mbX	

2m � X2 `X6 ` � � � `X2m�2.

The remaining tensor products can be derived from this table.

The results for δ � 4 mod 8 are similar and left omitted. In this entire

section we shall consider only the case where δ � 4m and 8|δ.

4.1.3 Example

Suppose we wish to find X2 bX�
2m. Since X1 bX1 � X0 `X2 consider

X1 bX1 bX�
2m � pX0 `X2q bX�

2m

�
�
X0 bX�

2m

	
`
�
X2 bX�

2m

	
� X�

2m `
�
X2 bX�

2m

	
.

And

X1 bX1 bX�
2m � X1 bX2m�1

� X2m�2 `X�
2m `X�

2m.
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So that

X2 bX�
2m � X2m�2 `X	

2m.

The notion of a G-equivariant fusion category was not used in [KO] and the

extended Verlinde algebra had not yet been formalized. Regardless, although

in a different form, the coefficients for fusion in rV1 � rV are given above by

Theorem 4.1.2. We now put those results into the language of the extended

Verlinde algebra.

Consider the extended Verlinde algebra rVpCq. Fix a basis and notation for

this algebra as described in Section 3.1. Recall, in particular, that λi is the

identity map of Xi. A basis for the sub-algebra rV1 � rV is given by λi where

i P I and I � IpCq � t0, 1, . . . , 2m� 1, �2m,
�
2mu. Note that I � I1\ Ia where I1

contains the even integers and Ia the odd. To refer to the element λ�2m � λ�2m

we sometimes will use the notation λ2m � pλ�2m � λ�2mq. We can then use the

index set I� � t0, 1, . . . , 2m�1, 2mu to refer to the ring generated by λ1. Then

the fusion rules for elements in rV1 are given by the above theorem where we

replace Xi by λi.

The results from [KO] however do not give a complete description of the

fusion rules for this algebra. In particular the fusion with elements of the sort

aλi are yet to be considered. Later, Section 5.1, we will consider such ele-

ments when we show that the fusion rules can be diagonalized in the extended

Verlinde algebra arising from any modular Z2-equivariant fusion category.

Right now we want to check that the formula given in Corollary 3.2.6

correctly predicts the fusion rules. To use this formula we need to have the
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operator sC at our disposal. The operator sC can be given in terms of the op-

erator sD except for the elements λ�2m and λ�2m. Let us christen these elements,

the exceptional elements; and give them the notation λ� and λ� respectively.

Recall that it is on exactly the exceptional elements which the group acts

non-trivially. To find sC on the exceptional elements we will have to refer to

the universal R-matrix of D. We proceed in two parts. We first discuss the

example on the non-exceptional elements. We give the relation between the

s-matrix of the two algebras, the relation between the fusion coefficients, and

we show that the corollary does indeed produce the fusion rules. We dispatch

the second part by using a symmetry argument and the result from the first:

the tensor product decomposes in a similar way for similar products, the s-

matrix has the same value on similar points. Afterwards, we explicitly find

the value of the s-matrix at some exceptional points so that one can use the

standard Verlinde formula in the subalgebra rV1,1 � rV1.

Recall that the sD-matrix for Uqpsl2q is given by the following

4.1.4 Theorem.

psχi, χjq �
d

2

κ
sin

�pi� 1qpj � 1qπ
κ

�
.

4.1.5 Example

Theorem 2.4.15 can be tricky to work with in practice. So we make a preemp-

tive strike by calculating two examples explicitly. We shall find psλ2, λ2q and

psλ3,
aλ2q in terms of sD using Corollary 2.4.16.
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Let x � χ2 P VpDq and y � λ2. Then

ps pF 1x, yqC � psλ2, λ2qC � psaλ2, λ2qC
� psλ2, λ2qC

since by definition psP,Qq � 0 if P P rVa,b but Q R rVb,a. And

psx, pG1yqC{G � psχ2, χ2qC{G � psχ2, χ2qC{G
� 2psχ2, χ2qC{G.

So that, psλ2, λ2qC � 2psχ2, χ2qC{G.

Now let x � χ2 P VpDq and y � λ3. Then ps pF 1x, yqC

� psλ2, λ3qC � psaλ2, λ3qC
� psaλ2, λ3qC.

And psx, pG1yqC{G

� psχ2, χ3qC{G � psχ2, χ3qC{G
� 2psχ2, χ3qC{G.

So that, psλ3,
aλ2qC � 2psχ3, χ2qC{G.
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By the equivalence D w C{G we have

psλ2, λ2qC � 2psχ2, χ2qD
and psλ3,

aλ2qC � 2psχ3, χ2qD.

Rather than prove by hand that the sC-matrix and the corollary give the

fusion rules we shall instead establish the result by using Theorem 4.1.1 and

the functor F introduced earlier. This turns out to be a surprisingly good way

to proceed. We observe at the level of the Verlinde formula what happens to

the symmetry in D when we pass from the fusion category D to the equivariant

fusion category C.

In the sequel we will need a lemma. In order not to lose focus we avoid

giving it in a more general setting. Consider it a technical lemma.

4.1.6 Lemma. Let F : D Ñ C and G : C Ñ D be the adjoint functors given

in Section 2.3. If i P I� then

F pGpλiqq � 2λi.

Proof. Recall that λi : Xi Ñ Xi is an identity map. Since i P I� we have that

AbXi � pV0 ` Vδq bX � X `X

and the lemma.

To show that the corollary gives the fusion rules we first re-cast Theo-

rem 4.1.2.
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4.1.7 Theorem. Let C � RepA as described above for δ � 4m. Suppose

i, j P I�. Write λi b λj � °k Lkijλk where k P I�. Then

Lkij �

$'''&'''%
Nk
ij �N δ�k

ij for k � 2m,

Nk
ij for k � 2m,

where Nk
ij are the fusion coefficients in VpDq.

Proof. The element λi P rV is the identity map λ : Xi Ñ Xi. By Lemma 4.1.6

we can write λi b λj as

� 1

2
F pGpλi b λjqq � 1

2
F pχi b χj b pχ0 � χδqq

where χi P VpDq is the identity map χ : Vi Ñ Vi. Now χi b χj can be written
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as
°
kN

k
ij χk, where k P IpDq. So λi b λj can be written as follows

� 1

2
F
¸

k�2m

Nk
ij χk b pχ0 � χδq � N2m

ij pχ2m b pχ0 � χδqq

� 1

2
F
¸

k�2m

Nk
ij ppχk b χ0q � pχk b χδqq � N2m

ij pχ2m b pχ0 � χδqq

� 1

2
F
¸

k�2m

Nk
ij pχk � χδ�kq � N2m

ij pχ2m b pχ0 � χδqq

� 1

2
F

2m�1¸
k�0

Nk
ij pχk � χδ�kq �

δ̧

k�2m�1

Nk
ij pχk � χδ�kq

�N2m
ij pχ2m b pχ0 � χδqq

� 1

2
F

2m�1¸
k�0

Nk
ij pχk � χδ�kq �

2m�1¸
k�0

N δ�k
ij pχk � χδ�kq

�N2m
ij pχ2m b pχ0 � χδqq

� 1

2
F

2m�1¸
k�0

pNk
ij �N δ�k

ij q pχk � χδ�kq �N2m
ij pχ2m b pχ0 � χδqq

�
2m�1¸
k�0

pNk
ij �N δ�k

ij qλk �N2m
ij λ2m
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4.1.8 Example

Suppose δ � 8. In VpDq we have χ2 b χ3 � χ1 � χ3 � χ5. In rVpCq we have

λ2 b λ3 � 1
2
F pGpλ2 b λ3qq

� 1

2
F pχ2 b χ3 b pχ0 � χ8qq

� 1

2
F pχ1 � χ3 � χ5 b pχ0 � χ8qq

� 1

2
F ppχ1 � χ3 � χ5q � pχ7 � χ5 � χ3qq

� λ1 � 2λ3

To show that Corollary 3.2.6 correctly predicts the fusion coefficients we

need to prove the following theorem which relates it to the Verlinde formula.

4.1.9 Theorem. Suppose i, j, k P I�. Suppose further that i is even. Then

¸
p

psλi, λpqpsλj, gλpqpsλ�k, gλpq
psλ0, λpq

�

$''''''&''''''%

¸
p1

psχi, χp1qpsχj, χp1q
�
psχ�k, χp1q � psχ�δ�k, χp1q

	
psχ0, χp1q for k � 2m

¸
p1

psχi, χp1qpsχj, χp1qpsχ�k, χp1q
psχ0, χp1q for k � 2m

where p is indexed by I1 � IpCq and p1 is indexed by I 1 � IpDq.

To prove the theorem we first establish several interesting facts. The sym-

metry of the tensor product in D � RepUqpsl2q which is in some sense a

structure on the Verlinde algebra VpDq becomes part of the structure in the

extended Verlinde algebra rVpCq � rVpRepAq.
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4.1.10 Lemma. Suppose that p1 is odd. Then

psχ�k, χp1q � psχ�δ�k, χp1q � 0.

4.1.11 Corollary. Suppose that p1 is odd and that k � 2m. Then

psχ�k, χp1q � 0.

4.1.12 Lemma. Suppose that p1 is even. Then

psχ�k, χp1q � psχ�δ�k, χp1q.

These facts follow essentially because the sine function is odd with respect

to reflection about 2π, and even with respect to reflection about π{2. Note that

these results will hold in the more general case when passing from a modular

fusion category to a modular G-equivariant fusion category via the algebra in

a category construction.

Proof of Lemma 4.1.10. Note that pδ � k � 1qp2wq

� 2wδ � 2wk � 2w � p2w � 2wq

� 2wδ � 4w � p2wk � 2wq

� p2wqpδ � 2q � pk � 1qp2wq.
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So that

psχ�δ�k, χ2w�1q �
b

2{pδ � 2q sin
�pδ � k � 1qp2wqπ

pδ � 2q

�

�
b

2{pδ � 2q sin
��pk � 1qp2wqπ

pδ � 2q

�

� �1 �
b

2{pδ � 2q sin
�pk � 1qp2wqπ

pδ � 2q

�

� �1 � psχ�k, χ2w�1q

and the lemma.

Proof of Corollary 4.1.11. The lemma implies that

psχ2m, χp1q � psχδ�2m, χp1q

is zero. Note that δ � 2m � 4m� 2m � 2m and the result follows.

Proof of Lemma 4.1.12. Note that pδ � k � 1qp2w � 1q

� 2wδ � δ � 2wk � k � 2w � 1� pp2w � 1q � p2w � 1qq

� 2wδ � 4w � δ � 2� 2wk � k � p2w � 1q

� 2wpδ � 2q � pδ � 2q � pkp2w � 1q � p2w � 1qq.

The proof follows the previous lemma with the nuance that here we reflect

across π{2.

Proof of Theorem 4.1.9. Consider the right-hand side of the equation when

k � 2m. Here we are summing over p1 P IpDq. By Lemma 4.1.10 we have that

the summand is zero when p1 is odd. When j is odd, that is λj P rV1,a, we have
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that the summand corresponding to p1 � 2m is zero by Corollary 4.1.11. So, in

this case, the sum over I is equivalent to the sum over t0, 2, . . . , 2m� 2, 2m�
2, . . . , δu. Now apply Lemma 4.1.12 and Lemma 4.1.10. The right-hand side

simplifies thus

4 �¸
p1

psχi, χp1qpsχj, χp1qpsχ�k, χp1q
psχ0, χp1q ,

where p1 runs over the set t0, 2, . . . , 2m � 2u. In the case that λj P rV1,1

Corollary 4.1.11 does not apply, so we get a 2m summand. Since j is even

we apply Lemma 4.1.12 twice to get the same indexing set as in the odd case.

The right-hand side is written thus

4 �¸
p1

psχi, χp1qpsχj, χp1qpsχ�k, χp1q
psχ0, χp1q � 2 � psχi, χ2mqpsχj, χ2mqpsχ�k, χ2mq

psχ0, χ2mq ,

where p1 runs over the same indexing set. Now consider the left-hand side of

the equation. p is indexed by I1. Recall that I1 � t0, 2, . . . , 2m � 2, �2m,
�
2mu.

Use the relation between sD and sC given by Corollary 2.4.16 to get equality

between the two sides. We note that the case k � 2m runs similar and conclude

the proof.

4.1.13 Exceptional Elements

Now we turn our attention to the exceptional elements in the algebra. We want

to show that the fusion rules for the exceptional elements are also correctly

predicted by Corollary 3.2.6. The exceptional elements λ� and λ� are in the

subalgebra rV1,1pCq � rVpCq. Recall Figure 1.2. Suppose that λj P rV1,a. Then
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we know a priori that λ� b λj belongs to rV1,a. That is, the number Lk�,j is

nonzero only when k P Ia. Note that since the dimension of λ� and λ� are

equal we have that: for all p P aI1 that psλ�, λpq � psλ�, λpq. We have already

shown that Corollary 3.2.6 holds in the case that i � 2m and j, k P Ia. Recall

that Lk2m,j � Lk�,j � Lk�,j. Then since λ� b λj � λ� b λj, stated differently,

that L�,j is identical to L�,j, we have that Corollary 3.2.6 correctly predicts

the fusion rules for this example. Indeed,

2Lk�,j � Lk2m,j �
¸
p

psλ2m, λpqpsλj, gλpqpsλ�k, gλpq
psλ0, λpq

�¸
p

ppsλ�, λpq � psλ�, λpqq psλj, gλpqpsλ�k, gλpq
psλ0, λpq

� 2
¸
p

psλ�, λpqpsλj, gλpqpsλ�k, gλpq
psλ0, λpq .

We have not considered yet the fusion of two objects in rV1,1 when one

of them is an exceptional element. We do this now. Again, the subalgebra

rV1,1 � rV1 is a standard Verlinde algebra. We have the usual Verlinde formula

at our disposal to calculate the fusion rules. The only requisite to using the

Verlinde formula is having the values of the s-matrix in the Verlinde algebra.

Theorem 2.4.15, remarkably enough, can be used to find the values of the

s-matrix in rV1pCq except for the entries

psλ�2m, λ�2mq

and psλ�2m, λ	2mq.
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There are several ways to find these values. Let us restrict the discussion

to the case where δ � 4m and 8|δ. Then the product in VpDq

χ2m b χ2m � χ0 � χ2 � . . .� χ2m � . . .� χ4m�2 � χ4m

splits in rVpCq as follows

λ�2m b λ�2m � λ0 � λ4 � . . .� λ2m�4 � λ�2m and

λ�2m b λ	2m � λ2 � λ6 � . . .� λ2m�2.

This gives us the immediate relation

4.1.14 Lemma.

psDχ2m, χ2mq � psCλ�2m, λ�2mq � psCλ�2m, λ	2mq

To find the values psλ�2m, λ�2mq and psλ�2m, λ	2mq we refer to the universal

qR-matrix of D � RepUqpsl2q . In VpDq the relevant formula is given by

χi χj

� ¸
k

qR2|kNk
ij

χk

where qR2 is given by

qR2|Vk�VibVj
� q�

1
2
pipi�2q�jpj�2q�kpk�2qq � θ�1

i θ�1
j θk.
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To get the value ps̃χi, χjq take the trace of both sides. That is, close the

strands.

4.1.15 Example

Suppose that δ � 8. Let us find psλ�4 , λ�4 q and psλ�4 , λ	4 q. Using the functors

F and G, and the relation dimCpXq � dimDpXq
dimDA

from Theorem 2.3.5 yields the

following equation

λ�

λ�

� q�4

2
χ0 � q8

2
χ4 � q�4

2
χ8

Thus ps̃λ�4 , λ�4 q � 1
2
p2q�4r1s�q8r5sq. After normalization and Lemma 4.1.14

we get

psλ�4 , λ�4 q �
d

2

10

�
1� 2 sin

3π

10



,

psλ�4 , λ	4 q �
d

2

10

�
2 sin

3π

10



.

4.1.16 Theorem. Let δ � 4m and κ � δ � 2. Suppose that 8|δ. Then

psλ�2m, λ�2mq �
1

2

��d 2

κ
� p�1qm{2

�
.

Before giving the proof of the theorem we recall [See Theorem 4.1.4], for
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the sake of comparison and curiosity, that

psχ2m, χ2mqD �
d

2

κ
.

Proof. Apply the formula s̃ij � θ�1
i θ�1

j

°
kN

k
i�jθkdk to the decomposition of

λ�2m b λ�2m to get

ps̃λ�, λ�q � θ�2
2m

m̧

p�0

θ4pdimCpλ4pq � θ�2
2m

1

dimDA

m̧

p�0

θ4pr4p� 1s

� θ�2
2m

q1 � q�1

1

2

m̧

p�0

q1{2p4pqp4p�2qpq4p�1 � q�1p4p�1qq

� θ�2
2mq

�1

q1 � q�1

1

2

m̧

p�0

q2p2p�1q2 � q2p2pq2

� θ�2
2mq

�1

q1 � q�1

1

2

2m�1¸
p�0

p�1qp�1q2p2 .

Recall that q � eπi{κ. Use the symmetries �q2p2 � q2pp�κ{2q2 and q2p2 �
q2pp�κq2 to further simplify the sum:

ps̃λ�, λ�q � θ�2
2mq

�1p�1q
q1 � q�1

1

2

��1� 1

2

κ̧

p�1

q8p2

�
.

Explicit calculation shows that �θ�2
2mq

�1 � �q�p2m�1q2 � �p�iq2m�1 �
p�1qmpiq and q1 � q�1 � 2i sinpπ{κq so that the coefficient

θ�2
2mq

�1p�1q
q1 � q�1

1

2
� p�1qm

4 sinpπ{κq .

The sum
°κ
p�1 q

8p2 � °κ
p�1 e

8πip2{κ is a quadratic Gauss sum. Following the
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convention in [Ap] let

Spa, bq �
b̧

p�1

eπiap
2{b.

The sums Spa, bq enjoy a “reciprocity law” (see, e.g., [Ap, Section 9.10]): if ab

is even then

Spa, bq �
d
b

a

�
1� i?

2

�
Spb, aq.

It is straight-forward enough to find Spκ, 8q � 2
?

2p1 � iqim which gives

Sp8,κq � ?
2κp�iqm and

ps̃λ�, λ�q � p�1qm
4 sinpπ{κq �

�
1� p�iqm

cκ
2



.

To conclude the proof note that m is even by the hypotheses and normalize

by multiplying by D�1
C � |G|

b
2{κ sinpπ{κq.

4.1.17 Corollary.

psλ�, λ	q � 1

2

��d 2

κ
� p�1qm{2

�
.
Proof. Immediate from Theorem 4.1.16 and the relation given by Lemma 4.1.14.

In the next section we extend our results to fusion when our category is a

general modular Z2-equivariant fusion category. At the end of the next section

we will consider the example D2m�2 again, where the case is that both λi and

λj are in rV1,a.
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Chapter 5

Fusion of two Twisted Modules

5.1 Fusion in �V where G � Z2

In Section 4.1 we showed that the extended Verlinde formula correctly predicts

the fusion rules of the extended Verlinde algebra arising from the algebra of

type D2m�2. The category came equipped with a Z2 grading and action. This

was the first time that we considered the fusion of two elements that were not

both in the space rV1,1. In this section we show that we can diagonalize the

fusion rules in the general case where G � Z2.

For this section we suppose that C is a modular Z2-equivariant category.

We denote the element in Z2 which generates the group by a. Again, for ϕ

and ψ in rV1,a we are interested in knowing how ϕ b ψ decomposes. From

the definition of the tensor product we know a priori that this tensor will

decompose as a sum in rV1,1. This is a significant change from the setting in

Section 3.2 where the operator Lϕ [which was left multiplication by ϕ P rV1,1]

took the space rV1,g to itself.

In Section 3.2 we obtained our results by using the s-matrix to interchange
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the tensor product with the convolution product. For ϕ P rV1,1 we had that

s̃ϕ was a linear combination of identity maps. This made convolving an easy

process. We no longer have this nicety. We need another approach. Roughly

speaking, we will pick a generic basis and then find a change of basis which

diagonalizes the convolution product. Let us make this formal now.

5.1.1 Diagonalizing the Convolution Product

Consider the space rV�,1. This space is rV1,1 ` rVa,1. As described in Section 3.1

we choose a generic basis for rV with a slight change. First recall that for

the space rV1,� we picked the identity morphisms as the basis elements; these

identity morphisms were denoted by λi. For i P aI1 pick basis elements aλi for

the space rVa,1 with the following property

aλi � aλi � d�1
i λi.

We can obviously pick such a aλi. Indeed, for i P aI1 and a fixed rep-

resentative Vi in C, we can pick an arbitrary element ϕ : Vi Ñ aVi from the

space rVa,1. Then ϕ �ϕ is some [non-zero] multiple of λi. Make the appropriate

normalization to get aλi.

Fix this basis. We are now prepared to find a suitable change of basis so

that convolution becomes diagonalized. For i P aI1 we define
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αi � 1
2
paλi � λiq,

βi � 1
2
paλi � λiq.

Define the change of basis operator M : rV�,1 Ñ rV�,1 as follows

Mλi � αi, i P aI1

Maλi � βi, i P aI1

Mλi � λi, i P I1 and i R aI1

Order the basis so that t. . . , λi , aλi , . . .u appear pairwise. Then the change

of basis matrix M will then be a diagonal block matrix. The blocks are

�
- 1
2

1
2

1
2

1
2

�
and r 1 s .

A simple calculation shows that the convolution product is diagonal in this

basis:

αi � αi � � d�1
i αi

αi � βi � 0
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and

βi � βi � d�1
i βi

βi � αi � 0

and for i R aI1

λi � λi � d�1
i λi.

Convolution in rV�,1 is now diagonal. This approach will allow us to find a

nice equation for the fusion rules. Suppose that ϕ and ψ are in rV1,a. Then s̃ϕ

and s̃ψ are in rVa,1. We make use of the fact that s̃ interchanges the products

and that the convolution product is diagonal to represent fusion in terms of a

diagonal operator.

5.1.2 Fusion in �V1

The following theorems allow us to ”diagonalize” the fusion rules for a modular

Z2 equivariant fusion category. By now we are accustomed to the result in the

case of the standard Verlinde algebra. In the general theory it is known that

one cannot find such a diagonalization. The grading and action that Z2 can

impose on our category is indeed somewhat limited. Fusion in this algebra is

commutative while in the general theory it is not. Regardless- we do not have

a priori that fusion can be diagonalized. In later sections we shall push these

results to groups of prime order.
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5.1.3 Theorem. Let C be a modular Z2-equivariant fusion category. Fix a

generic basis for rVpCq as described above. Fix i P Ia. Let Li be the operator

of left multiplication by λi in our basis. Let M be the change of basis operator

described in Section 5.1.1 which makes convolution diagonal. Define a linear

operator Di : rV�,1 Ñ rV�,1 by the following equations. For k P aI1 define

Diαk � �psλi,
aλkq

psλ0, λkq αk, Diβk � psλi, aλkq
psλ0, λkq βk,

and for k R aI1 and k P I1 define

Diλk � psλi, aλkq
psλ0, λkq λk.

Then we have that MsLi � DiMs.

Proof. Multiply both sides byD and show that Ms̃Li � DiMs̃. Let λj P rV1,a.

Then from the right-hand side of the equation we have DiMs̃λj
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�DiM
¸

k P aI1

dk λ

Vj

Vj

Vk

aVk

�DiM
¸

k P aI1

ps̃λj, aλkqaλk

�Di

¸
k P aI1

ps̃λj, aλkqpβk � αkq

� ¸
k P aI1

ps̃λj, aλkqps̃λi, aλkq
ps̃λ0, λkq pβk � αkq.

Consider the left-hand side. We have that s̃Liλj � s̃pλi b λjq � ps̃λj � s̃λiq
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� ¸
k P aI1

ps̃λjqk � ¸
k P aI1

ps̃λiqk

� ¸
k P aI1

dk λ

Vj

Vj

Vk

aVk

� ¸
k P aI1

dk λ

Vi

Vi

Vk

aVk

� ¸
k P aI1

dk λ

Vj

Vj

Vk

aVk

� dk λ

Vi

Vi

Vk

aVk

� ¸
k P aI1

ps̃λj, aλkq

Vk

aVk

� ps̃λi, aλkq

Vk

aVk

� ¸
k P aI1

ps̃λj, aλkqps̃λi, aλkq
ps̃λ0, λkq λk.

Now apply M . This yields

¸
k P aI1

ps̃λj, aλkqps̃λi, aλkq
ps̃λ0, λkq pβk � αkq

and the result.

As done twice previously we find a formula for the fusion coefficients. The

proof runs parallel to Theorem 3.2.3 and Corollary 3.2.6 and makes use of the

change of basis operator.

60



5.1.4 Corollary. Keep the hypotheses from the above lemma. Then the fusion

coefficients are given by the following formula.

Lkij �
¸
p

psλi, aλpqpsλj, aλpqpsλ�k, λpq
psλ0, λpq .

Proof. Fix λi and λj in rV1,a. Then the equation sLi � M�1DiMs can be

written as follows.

sLiλj �M�1DiMsλj

ðñ s
¸
rPI1

Lrijλr �M�1DiM
¸
pPaI1

psλj, aλpqaλp

ðñ ¸
r

Lrijsλr �
¸
p

M�1DiMpsλj, aλpqaλp

ðñ ¸
r

Lrijsλr �
¸
p

M�1Dipsλj, aλpqpβp � αpq

ðñ ¸
r

Lrij
¸
p

psλr, λpqλp �
¸
p

M�1 psλi, aλpqpsλj, aλpq
psλ0, λpq pβp � αpq

ðñ ¸
r

Lrij
¸
p

psλr, λpqλp �
¸
p

psλi, aλpqpsλj, aλpq
psλ0, λpq λp

ðñ ¸
r

Lrijpsλr, λpq �
psλi, aλpqpsλj, aλpq

psλ0, λpq .

We multiply both sides by psλp, λ�kq and sum over p. Since s is a symmetric

unitary operator we have that psλr, λpqpsλp, λ�kq � psλr, λpqpsλ�p , λkq � δrk and

the proof.

These results predict the remainder of the fusion table in rV1 in the example

from Section 4.1.
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5.1.5 Example: Fusion in Algebra of Type D2m�2

Consider again the example discussed in Section 4.1. Here we want to show

that Corollary 5.1.4 correctly predicts the fusion decomposition for λi b λj

where λi, λj P rV1,a. The argument is the same as it was in Section 4.1. We

need to prove Theorem 4.1.9 again except here i is odd rather than even.

There is nothing to do but change the left-hand side of the equation from

Corollary 3.2.6 to Corollary 5.1.4. As we did in Section 4.1, use Theorem 4.1.7,

which relates the fusion coefficients of the two algebras, and we have shown

that Corollary 5.1.4 gives the fusion rules.
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