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Abstract of the Dissertation

Topics in Algebraic Cycles

by

Luis Edoardo Lopez

Doctor of Philosophy

in

Mathematics

Stony Brook University

2007

The goal of this work is to explore the space Z
p(Pn) of algebraic

cycles of codimension p in Pn. In the first chapter generalizations

of the classical Gauss map for projective hypersurfaces are con-

structed. They are algebraic maps which associate to every point

x a hypersurface of degree d in Pn which is a good approximation

at x. Some geometric properties of these maps are described and

applications are given.

The second chapter shows an explicit homotopy between two dif-

ferent H-space structures on the infinite projective space. One

presentation has the advantage of being commutative and an infi-

nite loop space structure while the other has a nice description in

terms of line bundles and it has an explicit homotopy inverse.

The third chapter is concerned with the existence of an extension

of the map classifying the tensor product of bundles to the space

of all algebraic cycles of arbitrary degree in Pn. Such an extension
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is constructed in codimension 1 and a topological obstruction is

exhibited for higher codimension assuming compatibility with the

additive structure on the space of algebraic cycles.
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Chapter 1
Introduction

In the 1950’s algebraic topologists realized that the homology and cohomology

groups can be represented as homotopy classes of maps from one space into

another. Dold and Thom constructed in [DT58] particularly beautiful models

for the Eilenberg-MacLane spectrum. Their representations of homology and

cohomology were

Hi(X, Z) = [Si, Z · X] = πi(Z · X) H i(X, Z) = [X, Z · Si]

where X is any compact, connected, CW-complex and Z ·X is the free abelian

group generated by the points of X.

From the point of view of algebraic geometry, the free abelian group can be

interpreted as the group of 0-dimensional cycles, thus it is natural to consider

the group of p-dimensional algebraic cycles Zp(X). This is something which

Blaine Lawson did in his foundational paper [LJ89]. The consequences of

these investigations have been far reaching for both the study of invariants of
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algebraic varieties and the study of the geometry of spectra.

The inclusion of the cycles of degree 1 (i.e. linear subspaces) in Pn into the

space of all cycles stabilizes to give a map c : BU → Z(P∞) which represents

the total Chern class map from topological K-theory into the cohomology ring

1 ×
∏

k≥0 H2k thought of as a group with respect to the cup product pairing.

The existence of such a map was first observed by Grothendieck, and it was

conjectured by Segal in [Seg75] that this map extends to a map of cohomology

theories. In [BLLF+93] this conjecture was settled by showing that the map c

is actually a map of E∞-spectra.

This dissertation is concerned with the development of the ideas arising

from the representation of the Eilenberg-MacLane spectrum as the space of

algebraic cycles in projective space.

Given the homotopy equivalence Zp(Pn) ≃
∏p

n=0 K(Z, 2n) we can think of

a total cohomology class [Ψ] ∈ H0(X; Z) × · · · × Hp(X; Z) as the homotopy

class of a map Ψ : X → Zp(Pn). This is very appealing geometrically since

we now have a new picture of cohomology classes. Namely, we can think of

cohomology classes as a generalization of vector bundles:

• A vector bundle is a continuous choice of a projective subspace at every

point x ∈ X. Analogously,

• A cohomology class is a continuous choice of a projective algebraic

cycle at every point x ∈ X

The precise meaning of continuous is provided by the topology that we impose

on the space of algebraic cycles. Some remarks about this idea are important
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1. Since a vector space can be thought of as a linear space in projective

space, it should define a cohomology class. This class is precisely the

total chern class of the bundle

2. The total chern class homomorphism is an isomorphism if we take ratio-

nal classes, i.e. the chern class induces an isomorphism

c : K(X) ⊗ Q → H×(X) ⊗ Q

Therefore every rational cohomology class can be represented by a vector

bundle.

3. The new ”bundles” that we get when we choose continuously an algebraic

cycle for every point x ∈ X are far more complicated than vector bundles.

Consider the following example: Let Y ⊂ Pn be a polarized variety and

let π : Y → X be a flat map. Then the assignment

x 7→ π−1(x) ⊂ Pn

defines a total cohomology class in X 1. It then follows that we loose es-

sential properties of vector bundles such as local triviality. The fibers are

no longer homeomorphic but only cycles which lie in the same connected

component of the Chow variety.

From this point of view we can think of the space Zp(Pn) as completing

the space Z
p
1(P

n) ∼= Gp(Pn) of cycles of degree 1.

1Actually this defines an algebraic cocycle which is a more refined object taking values
in a bi-valued theory defined by Lawson and Friedlander cf.[FLJ92]
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The first chapter of this dissertation presents an instance of such a family

of cycles which are importantly tied to the geometry of hypersurfaces: the

higher degree Gauss maps.

One of the first examples of vector bundles we encounter is the Gauss map

which associates to every point x of a smooth variety X the tangent space

TxX. A natural question to ask is: Is there some natural cohomology class

associated to X using cycles of higher degree? The higher degree Gauss maps

are good candidates for answering the question in the case of hypersurfaces.

These higher degree Gauss maps turn out to be well-defined maps even for

singular hypersurfaces (possibly reducible) for sufficiently high degrees. They

reflect both the local and the global structure of the variety, locally because

each cycle is tangent to the variety at smooth points and globally because the

assignment defines a cohomology class and the assignment is ”aware” of the

existence of singularities or flexes cf. Example 2.2.7 and Theorem 2.4.1. In

other words, the higher gauss maps select distinguished points of the Chow

variety corresponding to geometrically meaningful points. This continuous

selection of points cannot be obtained using only the local structure of the

variety.

The next two chapters address topological questions concerning the spaces

Zp(Pn). Notice that taking the linear join η#p of an algebraic cycle η ⊂ Pn

with a point p ∈ Pn+1 such that p /∈ Pn we get an inclusion Zp(Pn) →֒ Zp(Pn+1)
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which is compatible with the usual inclusion of the corresponding grassman-

nian. In this way we get the stable spaces BU(p) and Zp. Analogously we get

inclusions Zp ⊂ Zp+1 and we obtain the space Z of all cycles of all possible

codimensions. The map c between the double colimits BU and Z is the total

chern class map. These double colimits are very rich in structure:

1. The space BU has two different H-space structures which can be en-

riched to infinite loop space structures (or they are induced by two dif-

ferent infinite loop space structures, if preferred). The first H-space

structure on BU is obtained via the direct sum ⊕ of vector bundles.

The second H-space structure is obtained via the tensor product ⊗ of

vector bundles. These two structures are compatible and actually define

an E∞-ring space structure on BU, that is, we obtain a ring spectrum,

namely the spectrum defining topological K-theory.

2. The space Z also has two different H-space structures which can be

enriched to infinite loop space structures. The first structure is induced

by the sum of cycles + in each Zp. The second structure is induced by

the linear join of cycles #. These two structures are compatible and they

define an E∞-ring structure on Z which defines a cohomology theory M .

3. The inclusion c : BU → Z is a map of E∞-loop spaces

(BU,⊕) → (Z, #)

The operations on these spaces are therefore very important from a topolog-

ical point of view. Different operations will yield different infinite loop space
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structures and thus we will obtain different cohomology theories. Notice that

the third item says that the chern class map is only a map of infinite loops

spaces, it is not a map of E∞-ring spectra. Actually, Totaro proved in [Tot93]

that the spectrum (Z, #) cannot be enhanced into a ring spectrum.

The authors of [BLLF+93] noted that it would be nice to have an extension

of the tensor product operation to the space of all algebraic cycles. The result

of Totaro in [Tot93] implies that if such construction exists, then it is not

compatible with the structure #. The third chapter of this dissertation proves

up to what extent there is such an extension with respect to the structure +.

The result is affirmative and it is constructed explicitly for the case of cycles

of codimension 1, i.e. there is a continuous biadditive product ⊗̂ which makes

the following diagram commute

G1(P∞) × G1(P∞) //

c1×c1
��

G1(P∞)

c1

��

Z1
0(P

∞) × Z1
0(P

∞)
⊗̂

// Z1
0(P

∞)

This construction gives us a working definition of what is the tensor product

of two hypersurfaces. The geometry of this product is not completely under-

stood, though some results in the case when one of the factors is a linear space

are proved in chapter 3. Homotopically there is a better understanding of this

product, and we recover the chern class formula for the tensor product of line

bundles.

The extension of the tensor product to higher codimension is not possible.
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The key result in proving this negative result is the factorization of the inclu-

sion of the grassmannian Gp(Pn) into the space of cycles ZP (Pn) through the

free subgroup generated by the points of the grassmannian ZGp(Pn). The two

inclusions are characterized homotopically in the case p = 1 and then, using

the Chern class formula for the tensor product of bundles it is proved that

there is a topological obstruction for having such an extension of the tensor

product pairing in higher codimensions.

The idea of the proof stems from the geometric picture mentioned at the

beginning of this introduction: The space of all algebraic cycles ”completes”

the space of linear cycles. But now we regard this completion not only in the

topological sense, but also in the algebraic sense as H-spaces. Explicitly, there

is an H-space lying in between the two H-spaces BU and Z: the free group

ZBU generated by the points of BU. We can factor the total chern class map

through the subgroup ZBU. It is possible to compute in rational cohomology

what happens with this factorization, and we get a contradiction from the

chern class formula for the tensor product of bundles.

The second chapter is a transition between chapters 1 and 3. In this chap-

ter we show how two different presentations of the H-space structure of P∞ are

homotopic. One presentation is very appealing from the point of view of geom-

etry: it is the operation induced by a stabilized version of the Segre product.

The other presentation is appealing from the topological point of view: it is

the H-space structure obtained from the free group Z0P
1 of divisors of degree

zero in P1. Moore showed how this is advantageous from a topological point of

7



view: for a topological group all the higher Postnikov invariants vanish, hence

we have up to homotopy a product of Eilenberg MacLane spaces, in this case

Z0P
1 ≃ K(Z, 2).
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Chapter 2
Higher Degree Gauss Maps

2.1 Introduction

F
or any smooth variety X ⊂ Pn of codimension q the classical gauss map

is the map

g1 : X → Gq(Pn)

which associates to each point ξ the projective linear subspace of codimension

q tangent to X at ξ in Pn:

ξ 7→ TξX

If X is a hypersurface defined by the set of zeros of a homogeneous poly-

nomial F , X = V (F ) := {x ∈ Pn | F (x) = 0} ⊂ Pn, then the gauss map has

the following coordinate expression

ξ 7→ V

(
∑ ∂F

∂xi

(ξ)xi

)

If X has singularities we no longer have a map which is regular, but only

9



a rational map.

In this chapter higher degree Gauss maps will be defined

gk : X → C1
k(P

n)

which associate to each point ξ the effective algebraic cycle of degree k and

codimension 1 which approximates X at ξ. In analogy with the above, the

degree k Gauss map associates to the point ξ a projective hypersurface defined

by the k-th partial derivatives of F at ξ.

2.2 Definition and Euler Formula

I
n this section X will be a projective hypersurface (not necessarily irre-

ducible) of dimension n− 1 defined by the zero set of a homogeneous poly-

nomial F ∈ C[x0, . . . , xn] of degree d.

Let us recall the Euler relation:

d · F =
n∑

i=0

∂F

∂xi

xi (2.1)

The Euler relation can be iterated, i.e., the following holds:

(d − 1) ·
∂F

∂xi

=
n∑

k=0

∂2F

∂xk∂xi

xk (2.2)

If we substitute equation (2.2) into equation (2.1) we get the following
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relation for F :

d · (d − 1) · F =
n∑

i=0

n∑

k=0

∂2F

∂xk∂xi

xkxi (2.3)

In general, if s ≤ d = deg(F ) we have the following equation:

d(d − 1) · · · (d − s + 1)F =
∑

|α|=s

∂|α|F

∂xα
xα (2.4)

where α runs over all multi-indices of length s, i.e.

α = (α0, . . . , αn) with αi ∈ N

and

|α| = α0 + · · · + αn

∂|α|F

∂xα
=

∂|α|F

∂xα0
∂xα1

· · · ∂xαn

2.2.1 Remark. One of the consequences of the Euler formula is that the

systems { ∂F
∂x0

, . . . , ∂F
∂xn

, F} and { ∂F
∂x0

, . . . , ∂F
∂xn

} have the same set of solutions,

more precisely, they define the same scheme since the ideals they generate are

equal. Recursively we obtain the following lemma.

2.2.2 Lemma. Let ξ be a point in Pn such that ∂sF
∂xα

(ξ) = 0 for all α with

|α| = s. Then F (ξ) = 0 and ∂|β|F
∂xβ (ξ) = 0 for all β with |β| ≤ s

Now we will define the higher degree Gauss maps and we will derive some

consequences from the generalized Euler formulas given above.
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2.2.3 Definition. For every k ≤ d, the degree k Gauss map

gk : X //___ C1
k(P

n) (2.5)

is the rational map defined by

ξ 7→ V




∑

|α|=k

∂kF

∂xα

(ξ)xα





The space C1
k(P

n) of cycles of codimension 1 and degree k in Pn can be identi-

fied with P(n+k

k )−1, this identification is via the Chow coordinates. Every codi-

mension 1 cycle is determined by a multivariable homogeneous polynomial of

degree k. If a cycle is defined by a polynomial
∑

aαxα then its Chow coordi-

nates are [a0 : · · · : aα : · · · ]. Using the Chow coordinates in C1
k(P

n) ∼= P(n+k

k )−1

the degree k Gauss map is just

ξ 7→

[
∂kF

∂x0 · · · ∂x0

(ξ) : . . . :
∂kF

∂xα
(ξ) : . . . :

∂kF

∂xn · · · ∂xn

]

(2.6)

Notice that the first gauss map g1 coincides with the classical projective

gauss map.

As in the case of the first Gauss map, the higher degree Gauss maps are

only rational in general. Interestingly however, they can still be regular in the

presence of certain singularities. More precisely, the following is true:

2.2.4 Theorem. If a hypersurface of degree d has a regular Gauss map of

degree p, it also has regular Gauss maps of degree q for p ≤ q ≤ d

12



Proof. This follows immediately from the Euler relation: If the degree p gauss

map is regular, then for every ξ ∈ X some p-th partial derivative ∂pF
∂xα

(ξ) is not

zero. On the other hand, if all the q-th partial derivatives are zero at ξ then

lemma ( 2.2.2) implies that ∂pF
∂xα (ξ) = 0 for all α !

2.2.5 Remark. These higher degree Gauss maps are not the higher order

Gauss maps which define the Higher Fundamental Forms studied by Griffiths

and Harris, Landsberg et. al. Furthermore, the higher degree Gauss maps are

not osculating hypersurfaces at the point as defined by Landsberg.

2.2.6 Remark. Landsberg defined in [Lan96] what it means for a hypersur-

face V to be an osculating hypersurface of order k to a variety X at a point

p. The definition is that if V = V (F ) and T is a local parametrization of X

around p such that F (T0) = p then F should vanish to order k at T0. The

higher degree gauss maps are osculating hypersurfaces of order 1 at smooth

points, but they do not define osculating hypersurfaces of higher order in gen-

eral. They define approximations which are tangent to the hypersurface at

smooth points, but they are ”aware” of the global structure of the hypersur-

face. Note that the osculating hypersurfaces are not unique in general.

2.2.7 Example. Let V ⊂ P2 be the nodal plane cubic defined by F (x0, x1, x2) =

x2x
2
1 − x3

0 − x2
0x2, then V does not have a regular Gauss map of degree 1, but

it has a well defined Gauss map of degree 2 (see figure 2.1):

ξ 7→ Vξ = V (−(3ξ0 + ξ2)x
2
0 − 2ξ0x0x2 + ξ2x

2
1 + 2ξ1x1x2)

13



Figure 2.1: Second degree approximations to the nodal cubic: The red curve
is the nodal cubic, the black curves are the conics approximating the curve at
the point signaled by the arrow.

That is, to every point v we associate a quadric which approximates the

curve at v. Notice that at the node [0 : 0 : 1] we do have a well defined second

order approximation: the union of the two possible tangents.
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2.3 Degree and Dimension

T
he closure of the image of the first Gauss map defines the dual variety of

the hypersurface X. We could ask what are the general properties of the

images of these higher degree Gauss maps. The following results extend some

classic results of projective geometry. We shall assume throughout that X is

a hypersurface of degree d.

2.3.1 Theorem. If X is not a cone, then the (d − 1) Gauss map g(d−1)is an

isomorphism from X into its image. (This extends the well known result for

the duals of smooth quadrics. Note that any singular quadric is a cone.)

In order to prove this theorem we will first prove a characterization of

cones. Recall that a cone is the linear join Y #p of a variety Y ∈ Pn with a

point p ∈ Pn such that p /∈ Y .

2.3.2 Lemma. X ⊂ Pn is a cone if and only if there is some ξ ∈ X such that

multξX = d.

Proof. If X is a cone X = Y #p, then p is a point such that multpX = d.

Conversely, if ξ is a point of multiplicity d, let l be any line passing through ξ.

If l intersects X at any other point q then ξq = l ⊂ X (otherwise the degree

of X would be greater than d).

Now we can prove Theorem 2.3.1.

Proof. Notice that using the Chow representation (2.6) , g(d−1) is a linear map.

That is, it is the map induced by a linear map L̃ : Pn → P(n+k

k )−1 by restriction

to X. This means that L̃ itself is induced by a linear map L : Cn+1 → C(n+k

k ).

15



If g(d−1) is not an injection then L is certainly not an injection. We will show

that this leads to a contradiction.

If L is not an injection then it has a non-zero kernel. Let ξ̄ be a non-zero

vector in that kernel. This means that all the (d − 1)-partial derivatives of

F vanish at ξ̄. But the generalized Euler relation implies then that ξ ∈ X.

This is a contradiction because we get a point ξ ∈ X such that multξX = d

(because all the (d − 1)−partial derivatives vanish at ξ), i.e. X is a cone (by

the previous lemma).

2.3.3 Lemma. If the degree p Gauss Map is regular, then

(gp)∗(O(1)) = OX(d − p)

Proof. First of all, notice that if gp is regular, then it extends to a regular map

defined on all of Pn:

g̃p : Pn → PN

We see this as follows. Note that the extension is given by the same coor-

dinate functions cf. (2.6). This extension is regular for the following reason:

If there is some point ξ ∈ Pn where all the coordinate functions vanish simul-

taneously, Lemma 2.2.2 then implies that F (ξ) = 0, i.e. ξ ∈ X, but this would

imply that gp is not regular!

16



Now, since the coordinate functions of g̃p can be interpreted as sections of

the bundle (g̃p)∗(O(1)) and they are polynomials of degree d − p, we get that

the pullback of O(1) under this map is O(d−p). Since gp is just the restriction

of g̃p we get the lemma.

2.3.4 Theorem. If the degree p Gauss map is regular, the dimension of the p-

th Gauss image variety is n−1 and the degree of the p-th Gauss image variety

is d(d − p)n−1. (This extends the fact that the dual of a smooth non-linear

hypersurface is a hypersurface and the classical formulas for the degree of the

dual of a smooth hypersurface).

Proof. Both statements follow from calculating the Kronecker pairing of the

image variety with a linear subspace of the appropriate codimension. Using the

previous lemma, this becomes just a chern class calculation. We will denote

with HPs the class of a hyperplane in H2(Ps, Z) and with Hk
Ps its k-fold cup

product. Recall that dimX = n − 1. Using the previous lemma we obtain:

(gp)∗(HPN ) = (d − p)HPn

therefore

(gp)∗(Hn−1
PN ) = (d − p)(n−1)H

(n−1)
Pn

If 〈, 〉 denotes the Kronecker pairing, then the following calculation proves

the result:

17



deg gp(X) = 〈gp(X), H
(n−1)

PN 〉

= 〈(g̃p)∗(X), H
(n−1)

PN 〉

= 〈X, g̃∗(H
(n−1)

PN )〉

= 〈X, (d − p)(n−1)H
(n−1)
Pn 〉

= d(d − p)(n−1)

Lemma 2.3.3 also allows us to prove the following calculation. Recall that

f : X → PN ⊂ P∞ = K(Z, 2) defines a cohomology class [f ] ∈ H2(X, Z).

2.3.5 Theorem. If X is a smooth hypersurface, the cohomology class defined

by the p-th Gauss map [gp] ∈ H2(X) satisfies

[gp] =
d − p

d − 1
[g1] =

d − p

d − 1
c(NX(−1))

More generally,

[gp] = c1(OX(d − p))

Proof. We note that the cohomology class [gp] coincides with c1((g
p)∗(O(1))).

Lemma 2.3.3 provides this last calculation:

c1((g
p)∗(O(1))) = c1(OX(d − p))

18



To prove the first claim we recall the adjunction formula:

OX(d) = [X]|X = NX

But we can also write

OX(d) = OX(d − 1) ⊗ OX(1) = [g1] ⊗ OX(1)

therefore

[g1] = NX(−1)

In the next chapter an alternative proof of Theorem 2.3.3 will be provided

using the H−space structure of P∞.

2.4 Examples and Applications

T
he higher degree gauss maps encode information about the underlying

variety. For example if the p-th Gauss map is regular then the variety

cannot have singularities of order greater than or equal to p. The next theorem

recovers the classical calculation of the number of flexes of a smooth plane

curve. Recall that a flex of a plain curve C is a point p ∈ C where the tangent

line has contact of order higher than 2, that is, the local intersection number

at p of the tangent line at p and the curve is greater than 2.

2.4.1 Theorem. Let C be a smooth plane curve C ⊂ P2 of degree d ≥ 2.

Then C has 3d(d − 2) flexes (counted with multiplicity).
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Proof. Let C be defined by a homogeneous polynomial F . A point p is a flex

if and only if the determinant of the Hessian matrix Hp is zero, where

Hp =









∂2F
∂x2

0

(p) ∂2F
∂x0x1

(p) ∂2F
∂x0x2

(p)

∂2F
∂x0x1

(p) ∂2F
∂x2

1

(p) ∂2F
∂x1x2

(p)

∂2F
∂x0x2

(p) ∂2F
∂x1x2

(p) ∂2F
∂x2

2

(p)









(cf. [?, EGAC]emma 13.2) but Hp is the quadratic form which defines the

second gauss map at p, i.e.

g2(p) = ξT Hpξ (2.7)

Notice that since C is smooth, the second gauss map is regular. So the con-

dition of p being a flex is exactly the same as g2(p) being a singular quadric.

Now, singular quadrics form a hypersurface ∆ of degree 3 in the space P5 of

all degree 2 homogeneous polynomials in three variables. This hypersurface ∆

is given by the vanishing of the determinant of the matrix defining a quadratic

form.

Thus we are interested in computing the number of intersection points of

g2(C) with ∆. But deg(g2(C)) = d(d− 2) and deg(∆) = 3, therefore Bezout’s

theorem implies that the number of flexes is 3d(d − 2).

The next example shows how it is possible to have a hypersurface X with

degenerate gauss map (the image of the gauss map will be a curve) and nev-

ertheless the second gauss map has the same dimension as the hypersurface.

It would be interesting to find examples of hypersurfaces X with degenerate

higher gauss images such that X is not a cone.
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2.4.2 Example. Let Σ ∈ P3 be the rational normal curve. That is, Σ is the

image of the rational parametrization

t 7→ [1 : t : t2 : t3]

It is known that the dual variety Σ
∨

is a hypersurface defined by the discrimi-

nant of the general single variable polynomial of degree 3 (cf [GKZ94] ch. 1.),

namely, the equation defining the dual hypersurface is:

∆ = x2
1x

2
2 − 4x3

1x
2
3 − 27x2

0x
2
3 + 18x0x1x2x3

Now, Σ
∨

must necessarily be singular, since otherwise the dual variety would

be a hypersurface. But the singularities of Σ
∨

actually have order 1, therefore

the second gauss map is regular and using our calculations we can conclude

that g2(Σ
∨
) is a surface of degree 4(4 − 2)2 = 16 in P9.
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Chapter 3
H-space structures on P∞

T
he infinite complex projective space P∞ is an Eilenberg-MacLane space

of type K(Z, 2). Therefore it is an infinite loop space. In this section

we will present two equivalent H-space structures on P∞ which coincide with

its H-space structure determined by the infinite loop space structure. One

presentation has the advantage of being strictly commutative while the other

has a nice geometric interpretation in terms of the classification of line bundles

as well as an explicit description of the H-inverse of the operation.

3.1 Addition of points

T
here is an H-space structure on P∞ obtained via the homeomorphism

φ : P∞ → SP∞P1

Given by

[p0 : p1 : . . . : pt : 0 : . . . : 0 : . . .] 7→ Z(
∑

pix
iyt−i)
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With inverse
n∑

i=0

[xi : yi] 7→ [a0 : a1 : . . . : an : 0 : . . .]

where
∑

ajx
jyn−j is any polynomial having the divisor

∑
[xi : yi] as its roots

(we use the term divisor to emphasize that we are counting multiplicities).

The operation is just the formal addition of cycles in P1:

n∑

i=1

xi +
m∑

j=1

yj =
n+m∑

k=1

zk

where zk = xk if k ≤ n and zk = yk−n if k > n .

The induced H-space structure on P∞ via the homeomorphism above is

([x0 : x1 : . . . : xn : . . .], [y0 : y1 : . . . : ym : . . .])
_

��

[x0y0 : x0y1 + x1y0 : . . . :
∑

xiyk−i : . . .]

(3.1)

Notice that from the description 3.1 it follows immediately that this op-

eration is strictly commutative (it also follows from the fact that the infinite

symmetric product is just the free abelian monoid on points in P1).

3.2 Classification of Line Bundles

I
t follows from the exponential sequence or from the general theory of clas-

sification of vector bundles that P∞ is the classifying space for line bundles.

Isomorphism classes of line bundles form a group under the tensor product

operation. Therefore it is natural to look for the map classifying the tensor
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product of line bundles. Restricting our attention to projective spaces of finite

dimension, this map is the Segré product map:

Pn × Pm → Pmn+m+n

[x0 : . . . : xn], [y0 : . . . : ym] 7→ [x0y0 : . . . : xiyj : . . . : xnym]

In order to get a well defined map in the colimit, we have to order consis-

tently the entries of the Segré product. This can be achieved in the following

way:

P∞ × P∞ ⊗
// P∞ (3.2)

([x0 : . . . : xi : . . .], [y0 : . . . : yj : . . .])
_

⊗
��

[x0y0 : x0y1 : x1y0
︸ ︷︷ ︸

: . . . : x0yk : . . . : xky0
︸ ︷︷ ︸

subindices add up to k

: . . .]

(3.3)

This product has an H-inverse j, i.e. a map which makes the following

compositions homotopic to the identity:

P∞
(id,j)

// P∞ × P∞ ⊗
// P∞ (3.4)

P∞
(j,id)

// P∞ × P∞ ⊗
// P∞ (3.5)

The inverse map j is defined by

j[x0 : . . . : xi : . . .] = [x̄0 : . . . : x̄i : . . .]
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where x̄ is the complex conjugate of x. The composition (3.4) then becomes

[x0 : . . . : xi : . . .] 7→ [‖x0‖
2 : x0x̄1 : x1x̄0 : . . . : xix̄j : . . .]

Next we apply a homotopy to this composition. This homotopy multiplies by

(1 − t) all coordinates where the subindices are not equal:

H([. . . : xi : . . .], t) = [‖x0‖
2 : (1− t)x0x̄1 : (1− t)x1x̄0 : (1 − t)xix̄j

︸ ︷︷ ︸

if i 6= j

: . . .] (3.6)

Notice that the image of H(−, 1) lies within a convex subspace of P∞,

namely the subspace

C+ := {[. . . : xi : . . .] ∈ P∞ | xi ≥ 0 ∀i , and xj > 0 for some j}

Therefore the composition (3.4) is nullhomotopic. Analogously, the com-

position (3.5) is nullhomotopic.

As it was mentioned in the introduction of this chapter the two products

are homotopic.

3.2.1 Theorem. The operations ⊗ and + are homotopically equivalent

Proof. Consider first the homotopy H1(x, y, t) : P∞ × P∞ × [0, 1] → P∞ given
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by

([x0 : . . . : xn : . . .], [y0 : . . . : ym : . . .], t)
_

��

[x0y0 : x0y1 + tx1y0 : . . . : xiyj + t
∑

k 6=i
0≤k≤i+j

xkyi+j−k : . . .]

(3.7)

(Lemma 3.2.2 proves that H1 is continuous) Notice that H1(x, y, 0) = x ⊗ y

and H1(−,−, 1) is the function given by

[x0 : . . . : xn : . . .], [y0 : . . . : ym : . . .]
_

��

[x0y0 : x0y1 + x1y0 : x1y0 + x0y1
︸ ︷︷ ︸

2 terms with indices
adding up to 1

: . . . :
∑

0≤k≤M
xkyM−k

︸ ︷︷ ︸

M + 1 terms with indices
adding up to M

: . . .]

(3.8)

There are M +1 coordinates containing the term
∑

0≤k≤M xkyM−k, if we multi-

ply the last M coordinates by (1− t) we obtain a homotopy between H(x, y, 1)

and the function given by

[x0 : . . . : xn : . . .], [y0 : . . . : ym : . . .]
_

��

[x0y0 : x0y1 + x1y0 : 0 : . . . : 0 :
∑

0≤k≤M xkyM−k : 0 : . . . : 0
︸ ︷︷ ︸

M terms

: . . .]

(3.9)

This last function differs from the operation + just by a permutation of the

coordinates. Since GL is connected, the result follows.

3.2.2 Lemma. The function H1 : P∞ × P∞ × [0, 1] → P∞ is continuous
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Proof. Since the coordinate functions are continuous functions, and P∞ has

the compactly generated topology, it suffices to show that they cannot be all

simultaneously equal to zero for any value of t ∈ [0, 1]. If t = 0 then we get

the operation ⊗ and if t = 1 we get the coordinate functions of the operation

+. Therefore it suffices to consider t ∈ (0, 1).

Consider the M +1 entries involving the variables xi and yj with i+j = M .

If all these entries are zero for some t, then we have the following system of

M + 1 equations:

xMy0 + tx1yM−1 + . . . + tx0yM = 0

txMy0 + x1yM−1 + . . . + tx0yM = 0

...

txMy0 + tx1yM−1 + . . . + x0yM = 0

(3.10)

This system is equivalent to the vanishing of the determinant of the following

(M + 1) × (M + 1) matrix

A =












1 t . . . t

t 1 . . . t

...
...

t t . . . 1












(3.11)

But det A = (Mt + 1)(1 − t)M . Since the roots are t = − 1
M

and t = 1 we are
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done (because t ∈ (0, 1)).

3.2.3 Remark. These products are not only H−space structures on P∞ but

also infinite loop space structures. It is known that the product + coincides

with the product of K(Z, 2) which gives K(Z, 2) its infinite loop space struc-

ture.

Using the operation ⊗ we can give an explicit description of the maps

which classify all bundles obtained from a fixed line bundle by taking tensor

products (either positive or negative powers).

3.2.4 Lemma. Let L be a line bundle over a space X and let f : X → P∞ be

its classifying map. If

f(x) = [f0(x) : f1(x) : · · · ]

then for m > 0 the map fm classifies L⊗m where

fm(x) = [f0(x) · · · f0(x) : . . . : fα1
(x) · · · fαm

(x) : . . .]

Also, f−1 classifies L−1 where

f−1(x) = [f0(x) : · · · ]

As an application of the flexibility provided by the homotopy between these

two operations, an alternative proof of theorem ( 2.3.4) will be presented.
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3.2.5 Lemma. If the degree p Gauss Map is regular, then

(gp)∗(O(1)) = OX(d − p)

Proof. If gp is regular, then gp extends to a map of Pn which we will denote

with the same letter. The statement is equivalent to the following:

[gp] = [L⊗(d−p)] ∈ H2(Pn, Z)

where L is the class of a linear embedding of Pn in P∞ (the inclusion, for

example).

The case p = d − 1 follows from the fact that if gd−1 is regular, then it

is a linear embedding. To see this note first that it is a linear map and if it

had a non-zero kernel, then any non-zero vector ξ in this kernel would satisfy

gd−1(ξ) = 0 and therefore ξ ∈ X. But then gd−1 would not be regular!

Also, if gp is regular then gq is regular for any q ≥ p. Therefore we can

proceed by induction. Assume that [gp−1] = [L⊗(d−(p−1))]. Now just observe

that gp⊗ i ≃ gp−1 where i : X → PN is the canonical linear embedding of X in

PN . This is because the product ⊗ of any function f with i is homotopically

equivalent to the integration of each of the coordinate functions with respect to

the variables x0, . . . , xn (as long as the integration with respect to the variables

is a well-defined function). Since i ≃ L we get the statement of the theorem.
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Chapter 4
(co-)Tensor Product of codimension 1 cycles

4.1 Introduction

B
oyer, Lawson, Lima-Filho, Mann and Michelsohn settled the Segal con-

jecture in [BLLF+93]. One of the fundamental results which motivated

the proof is that there is a geometric construction which extends the map

classifying the direct sum of vector bundles in BU to the space Z of all al-

gebraic cycles, namely, the linear join # of cycles, i.e. the following diagram

commutes:

BU × BU
⊕

//

c

��

BU

c

��

Z × Z
#

// Z

In this paper the authors mention that one would like to have a geometric

construction on the space of algebraic cycles which extends the tensor product

in the level of BU (i.e. degree-one cycles). Segal proved in [Seg74] that BU

has an infinite loop space structure where the H-space structure is induced

by the map classifying the tensor product of vector bundles. Therefore the
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construction requested by the authors of [BLLF+93] would give yet another

infinite loop space structure on Z. My results provide an idea of the extent to

which such construction is possible:

4.1.1 Theorem. There is an algebraic biadditive pairing ⊗̂ which extends the

tensor product to all effective divisors:

C1
d(P

n) × C1
e(P

m)
⊗̂

// C1
de(P

mn+m+n)

This product is constructed via an algebraic pairing in the corresponding rings

of polynomials which may be of interest in its own right. The formula ob-

tained from stabilizing and group-completing the pairing to the stabilized space

Z1
0(P

∞) of algebraic cycles of codimension 1 and degree 0 yields a commutative

diagram

G1(P∞) × G1(P∞) //

c1×c1
��

G1(P∞)

c1

��

Z1
0(P

∞) × Z1
0(P

∞)
⊗̂

// Z1
0(P

∞)

which recovers the group structure in the second cohomology group given by

the tensor product of line bundles

c1(L1 ⊗ L2) = c1(L1) + c1(L2) ∈ H2(BU1)

The Hurewicz map is the main tool in proving that a general pairing does

not exist. The following theorem calculates the classes pulled back by the

Hurewicz map.
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4.1.2 Theorem. The inclusion of the grassmannian G1(Pn) of hyperplanes in

Pn into the space Z1(Pn) of all cycles in Pn factors through the free group

ZG1(Pn):

G1(Pn) �

� i
// ZG1(Pn) �

� j
//

=

��

Z1(Pn)

=

��∏n

j=0 K(Z, 2j) K(Z, 0) × K(Z, 2)

(4.1)

With respect to the canonical product decomposition given in (4.1), the map

i classifies the cohomology class 1× ω × · · · × ωn where ω is the multiplicative

generator of H2(G1(Pn)) and the map j is homotopic to the projection π0 × π1

onto the first two factors.

The pairing constructed for divisors in Theorem 4.1.1 cannot be extended to

a continuous biadditive pairing on the space of cycles of higher codimension,

but it does admit an extension if we restrict the second factor of the pairing

to the subgroup ZG1(Pm) of cycles which are unions of hyperplanes (possibly

with multiplicities).

4.1.3 Theorem. There is a continuous biadditive pairing ⊗̃ which makes the

following diagram commute

Gp(Pn) × G1(Pm)
⊗

//

c×h

��

Gp(Pnm+n+m)

c

��

Z
p
0(P

n) × Z0G
1(Pm)

⊗̃
// Z

p
0(P

nm+n+m)

The relevance of this diagram is twofold, on the one hand it provides a new

way of calculating the formula for the total chern class of the tensor product
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of a vector bundle and a line bundle, namely

ci(E ⊗ L) =
i∑

j=0

(
rk(E) − j

i − j

)

cj(E)c1(L)i−j (4.2)

and on the other hand it suggests a path for generalizing the Bott periodicity

map which is related to the top arrow of this diagram (the problem for gener-

alizing the Bott map is that there is no ”orthogonal complement” in the space

of cycles.)

The formula 4.2 does not describe completely the map induced in cohomology

by the pairing ⊗̃, since h∗(im2k) = h∗(is2t) = ωkm if km = ts. This calculation

can actually be obtained rationally:

4.1.4 Theorem. The pairing

Z
p
0(P

n) × Z0G
1(Pm) → Zp(Pnm+n+m)

induces the following map in rational cohomology

⊗̃
∗
(i2k) =

k∑

j=0

(
p − j

k − j

)

i2j ⊗ ĩ2(k−j)

where i2k is the fundamental class of the k-th factor of Z
p
0(P

n) ≃
∏p

j=1 K(Z, 2j)

and ĩ2l is the fundamental class in the l-th factor of Z0G
1(Pm) ≃

∏m

j=1 K(Z, 2j)

Using theorems 4.1.2 and 4.1.4 the following theorem can be proved

4.1.5 Theorem. There is no continuous biaddditive pairing in the stabilized
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space of cycles which makes the following diagram commute

BU × BU
⊗

//

c×c

��

BU

c

��

Z × Z
⊗̃

// Z

4.2 Tensor Pairing for divisors

I
n this section we will define a product

⊗̃ : C1(Pn−1) × C1(Pm−1) → C1(Pmn−1)

which is continuous and biadditive (each of the factors has the structure of a

topological monoid). This pairing generalizes the pairing on cycles of degree

1 which classifies the tensor product of the universal quotient bundle.

Let C[x̄]d := C[x0, . . . , xn−1]d denote the set of complex polynomials of

degree d in the variables x0, . . . , xn−1. This set is a complex vector space of

dimension N . If we order the variables lexicographically, we get the following

ordered basis for this vector space:

B := {x0x0 · · ·x0, . . . , xj1xj2 · · ·xjn−1
, . . . , xn−1 · · ·xn−1}

where j1 ≤ j2 ≤ . . . ≤ jn−1, i.e. the set of all monomials of degree d ordered

lexicographically. Also, throughout this section C[z̄] will be the polynomial

ring in the double-indexed variables zst.
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4.2.1 Definition. Let

Ψde : C[x̄]d × · · · × C[x̄]d
︸ ︷︷ ︸

e−times

×C[ȳ]e × · · · × C[ȳ]e
︸ ︷︷ ︸

d−times

→ C[z̄]de

be the multilinear homomorphism defined on the elements of the bases B by

Ψde(xj1
1
· · ·xj1

d
, . . . , xje

1
· · ·xje

d
, yk1

1
· · · yk1

e
, . . . , ykd

1
· · · ykd

e
) =

zj1
1k1

1
· · · zj1

dkd
1
· · · zje

1k1
e
· · · zje

dkd
e

and extended multilinearly.

The idea is to define the map in the monomials which form a basis. The

variables of the monomial that we obtain from two monomials will have two

indices, these indices are computed from the original monomials.

Notice that this definition depends on the ordered bases B, in particular,

a different order on the elements would yield a different homomorphism.

The function Ψ1e has a particularly nice expression when the degree 1 forms

are monomials.

4.2.2 Lemma.

Ψ1e(xi1 , . . . , xie , g) = g(zi1j1 , . . . , zieje)
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Proof. Let g =
∑

bj1···je
yj1 · · · yje

. Then, following the definition we get

Ψ(xi1 , . . . , xie , g) = Ψ(xi1 , . . . , xie ,
∑

bj1···je
yj1 · · · yje

) =

∑

bj1···je
Ψ(xi1 , . . . , xie , yj1 · · · yje

) =
∑

bj1···je
zi1j1 · · · zieje

=

g(zi1j1 , . . . , zieje
)

With the previous definition, we can now define the tensor product of

divisors:

4.2.3 Definition. Given f ∈ C[x0, . . . , xn−1]d and g ∈ C[y0, . . . , ym−1]e we

define f⊗̃g ∈ C[. . . , zjk, . . .] by

f⊗̃g := Ψde(f, . . . , f
︸ ︷︷ ︸

e−times

, g, . . . , g
︸ ︷︷ ︸

d−times

)

4.2.4 Example. Let f = x2
0 − 3x1x2 and g = y5y7. Then

f⊗̃g = Ψ(f, f, g, g) = Ψ(x2
0 − 3x1x2, x

2
0 − 3x1x2, y5y7, y5y7) =

Ψ(x2
0, x

2
0 − 3x1x2, y5y7, y5y7) − 3Ψ(x1x2, x

2
0 − 3x1x2, y5y7, y5y7) =

Ψ(x2
0, x

2
0, y5y7, y5y7) − 3Ψ(x2

0, x1x2, y5y7, y5y7)

− 3Ψ(x1x2, x
2
0, y5y7, y5y7) + 9Ψ(x1x2, x1x2, y5y7, y5y7) =

z05z05z07z07 − 3z05z05z17z27 − 3z15z25z07z07 + 9z15z25z17z27

The next result is the first step toward proving that the pairing is indeed

biadditive.
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4.2.5 Proposition.

Ψrm(f1, . . . , fm, g, . . . , g)Ψsm(φ1, . . . , φm, g, . . . , g) =

Ψ(r+s)m(f1φ1, . . . , fmφm, g, . . . , g)

Proof. Suppose that

Ψrm(f1, . . . , fm, g, . . . , g)Ψsm(φ1, . . . , φm, g, . . . , g) =

Ψ(r+s)m(f1φ1, . . . , fmφm, g, . . . , g)

and

Ψrm(F, f2, . . . , fm, g, . . . , g)Ψsm(φ1, . . . , φm, g, . . . , g) =

Ψ(r+s)m(Fφ1, f2φ2, . . . , fmφm, g, . . . , g),

then it follows from the multilinearity of Ψij that

Ψrm(f1 + cF, f2, . . . , fm, g, . . . , g)Ψsm(φ1, . . . , φm, g, . . . , g) =

[Ψrm(f1, . . . , fm, g, . . . , g) + Ψrm(cF, f2, . . . , fm, g, . . . , g)] Ψsm(φ1, . . . , φm, g, . . . , g) =

Ψ(r+s)m(f1φ1, f2φ2, . . . , fmφm, g, . . . , g)+Ψ(r+s)m(f1φ1+cFφ1, f2φ2, . . . , fmφm, g . . . , g) =

Ψ(r+s)m((f1 + cF )φ1, . . . , fmφm, g, . . . , g).

Therefore, it suffices to prove the statement in the case that f1 is a monic
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monomial. Analogously, it suffices to prove the statement in the case that

every fi is a monomial and φi is a monomial. That is, we must show

Ψrm(xi11
· · ·xi1r

, . . . , xim1
· · ·ximr

, g, . . . , g)Ψsm(xk1
1
· · ·xk1

s
, . . . , xxm

1
· · ·xims

, g, . . . , g) =

Ψ(r+s)m(xi11
· · ·xi1r

xk1
1
· · ·xk1

s
, . . . , xim1

· · · ximr
xkm

1
· · ·xks

m
, g, . . . , g) (4.3)

without loss of generality we may assume that iwa ≤ iwb if a ≤ b and kw
a ≤ kw

b

if a ≤ b. We will prove equation 4.3 by induction on r and s.

Base: r = 1 and s = 1. Notice that by lemma 4.2.2

Ψ(xi11
, . . . , xim1

, g) = g(zi11j1
1
, . . . , zim1 j1

m
)

therefore,

Ψ(xi11
, . . . , xim1

, g)Ψ(xk1
1
, . . . , xkm

1
, g) =

g(zi11j1
1
, . . . , zim1 j1

m
)g(zk1

1j1
1
, . . . , zkm

1 j1
m
)

On the other hand, if

g(y0, . . . , ym−1) =
∑

aj1···jr
yj1 · · · yjr
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then

Ψ(xi11
xk1

1
, . . . , xim1

xkm
1
, g, g) =

Ψ(xi11
xk1

1
, . . . , xim1

xkm
1
,
∑

aj1
1 ···j

1
r
yj1

1
· · · yj1

r
,
∑

aj2
1 ···j

2
r
yj2

1
· · · yj2

r
) =

∑

aj1
1 ···j

1
r
aj2

1 ···j
2
r
Ψ(xi11

xk1
1
, . . . , xim1

xkm
1
, yj1

1
· · · yj1

r
, yj2

1
· · · yj2

r
) =

∑

aj1
1 ···j

1
r
aj2

1 ···j
2
r
zσ1

1j1
1
· · · zσm

1 j1
m
zτ1

1 j2
1
· · · zτm

1 j2
m

(4.4)

where

σt
s =







its, if its ≤ kt
s

kt
s, if its > kt

s

and τ t
s =







kt
s, if its ≤ kt

s

its, if its > kt
s

Now, notice that if we exchange the definition of σ and τ the sum on the right

hand side of 4.4 remains unchanged. This happens because we are taking two

copies of g. Therefore we may assume without loss of generality that σt
s = its

and τ t
s = kt

s. In this case, equation 4.4 becomes

Ψ(xi11
xk1

1
, . . . , xim1

xkm
1
, g, g) =

∑

aj1
1 ···j

1
r
aj2

1 ···j
2
r
zi11j1

1
· · · zim1 j1

m
zk1

1j2
1
· · · zkm

1 j2
m

=
(∑

aj1
1 ···j

1
r
zi11j1

1
· · · zim1 j1

m

) (∑

aj2
1 ···j

2
r
zk1

1j2
1
· · · zkm

1 j2
m

)

=

g(zi11j1
1
, . . . , zim1 j1

m
)g(zk1

1j1
1
, . . . , zkm

1 j1
m
) (4.5)

and the base of the induction is proved.

Inductive step: Essentially the same argument proves that both sides of 4.3

are equal to
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g(zi11j1
1
, . . . , zim1 j1

m
) · · · g(zi1rjr

1
, . . . , zimr jr

m
)·

g(zk1
1j1

1
, . . . , zkm

1 j1
m
) · · · g(zk1

sjs
1
, . . . , zkm

s js
m
) (4.6)

4.2.6 Corollary.

(f1f2)⊗̃g = (f1⊗̃g)(f2⊗̃g)

Proof. This follows immediately from the definitions and the proposition.

Analogously the following is true

4.2.7 Corollary.

f⊗̃(g1g2) = (f⊗̃g1)(f⊗̃g2)

This theorem gives some insight into the geometry of the hypersurfaces

obtained as ⊗̃ products. The next lemma provides the description in the case

that one of the factors is a linear space.

4.2.8 Lemma. If f =
∑

aixi then

f⊗̃g = g
(
f

(
z00, . . . , z(n−1)0

)
, . . . , f

(
z0(m−1), . . . , z(n−1)(m−1)

))

That is, the codimension 1 cycle defined by f⊗̃g is isomorphic to the linear

join of a linear space and the cycle defined by g (Using Lawson’s terminology,

it is the iterated suspension of the cycle defined by g)
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Proof. Let g =
∑

aj1···je
yj1 · · · yje

. Then,

f⊗̃g = Ψ(f, . . . , f, g) = Ψ(f, . . . , f,
∑

aj1···je
yj1 · · · yje

) =

∑

aj1···je
Ψ(f, . . . , f, yj1 · · · yje

) =
∑

aj1···je
f⊗̃(yj1 · · · yje

) =

∑

aj1···je
(f⊗̃yj1) · · · (f⊗̃yje

)

This last expression is exactly what we are looking for, it says that we should

substitute the variable yji
in the polynomial g with the polynomial f⊗̃yji

which

in turn is equal to the polynomial f evaluated in the variables z0ji
, . . . , z(n−1)ji

Now let us recall that there is a one to one correspondence between homoge-

neous polynomials in the variables x0, . . . , xs and the codimension 1 algebraic

cycles in Ps. The correspondence is given in the following way: If f is a poly-

nomial and it decomposes as a product fα1

1 · · · fαt

t where each fk is irreducible,

then the corresponding cycle C(f) is given by
∑

αiV (fi) where V (fi) is the

(necessarily irreducible) variety defined by the polynomial fi. The disjoint

union of all codimension cycles C1(Ps) forms a monoid with respect to the

formal addition of cycles. The following theorem expresses the results of this

section in terms of cycles.

4.2.9 Theorem. There is an algebraic pairing ⊗̃ in the space of codimension

1 cycles in projective space:

⊗̃ : C1(Pn−1) × C1(Pm−1) → C1(Pmn−1)
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which satisfies the following properties

1. ⊗̃ coincides with the tensor product ⊗ on linear cycles.

2. ⊗̃ is biadditive:

η1η2⊗̃ξ = η1⊗̃ξ + η2⊗̃ξ

and

η⊗̃ξ1ξ2 = η⊗̃ξ1 + η⊗̃ξ2

3. ⊗̃ stabilizes to a pairing

⊗̃ : C1(P∞) × C1(P∞) → C1(P∞)

Since the pairing is biadditive, it induces a pairing in the group completion

⊗̃ : Z1(PN) × Z1(PM) → Z1(PNM+N+M)

Following the idea used for the join pairing in [LJM88] we construct the

associated pairing ⊗̂:

⊗̂(η, ξ) := η⊗̃ξ + η⊗̃ξ0 + η0⊗̃ξ

where ξ0 and η0 are two fixed hyperplanes.
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4.2.10 Theorem. The following diagram commutes

G1(P∞) × G1(P∞) //

i

��

G1(P∞)

i

��

Z1(P∞) × Z1(P∞)
⊗̂

// Z1(P∞)

Lawson and Michelsohn also prove in [LJM88] that the space Z1(P∞) splits as

Z × Z1
0(P

∞), where Z1
0(P

∞) is the subgroup of all cycles of degree zero.

Since we know that deg(η⊗̃ξ) = deg(η) deg(ξ) we only have to calculate

what happens with the pairing ⊗̂ when we restrict it to cycles of degree 0.

Lawson proved that Z1
0(P

∞) is an Eilenberg-Maclane space of type K(Z, 2).

Using this fact we will show that the pairing ⊗̃ restricted to the subgroup of

cycles of degree zero is nullhomotopic.

4.2.11 Theorem. Any continuous biadditive pairing

⊗̃ : Z1
0(P

∞) × Z1
0(P

∞) → Z1
0(P

∞)

is nullhomotopic.

Proof. Since the pairing is biadditive it factors through the smash product

Z1
0(P

∞) ∧ Z1
0(P

∞) → Z1
0(P

∞)

homotopically this last function is equivalent to

K(Z, 2) ∧ K(Z, 2) → K(Z, 2)
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Now, notice that K(Z, 2)∧K(Z, 2) is a CW-complex with cells only in dimen-

sion 4 and higher, therefore, the pullback in the second cohomology groups of

the fundamental class in K(Z, 2) is zero.

This theorem allows us to calculate the class pulled back via the pairing

⊗̂.

4.2.12 Corollary. Let ⊗̂ be the pairing

⊗̂(η, ξ) := η⊗̃ξ + η⊗̃ξ0 + η0⊗̃ξ

and let i2 be the fundamental class in H2(Z1(PNM+N+M); Z). Then

⊗̂
∗
(i2) = i2 ⊗ i0 + i0 ⊗ i2

Proof. The formula follows at once from pulling back the last two summands

of the pairing ⊗̂, since by the previous theorem the first summand is nullho-

motopic.

4.2.13 Corollary. Let L1 and L2 be two line bundles. Then

c1(L1 ⊗ L2) = c1(L1) + c1(L2)

where c1 denotes the first chern class.

Proof. Lawson and Michelsohn proved in [LJM88] that the inclusion i in theo-

rem 4.2.10 classifies the chern class of the universal quotient bundle. Therefore

the formula follows from the previous corollary.
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4.3 Topological Obstruction for a General Pair-

ing

T
he pairing constructed in the last section might be considered as a hint

for a pairing in higher codimensions. We will prove that there is a topo-

logical obstruction for the existence of such a pairing. The general strategy

is to factor the inclusion of the grassmannian Gp(Pn) into the space Zp(Pn) of

all codimension p cycles. This inclusion factors through the free abelian group

ZGp(Pn) generated by the points of the grassmannian. The existence of this

factorization and the chern class formula for the tensor product of bundles will

yield a contradiction if we assume the existence of a pairing.

Let us start by observing that the Dold-Thom theorem implies that the free

abelian group ZG1(Pn) is homotopically equivalent to the product
∏n

i=0 K(Z, 2i).

Also, if we consider the subgroup Z0G
1(Pn) which is the kernel of the degree

homomorphism i.e. the subgroup of 0-dimensional cycles of degree 0, we get

the following homotopy equivalence

Z0G
1(Pn) ≃

n∏

i=1

K(Z, 2i)

Dold and Thom also proved that the inclusion

i : G1(Pn) →֒ Z0G
1(Pn)

induces the Hurewicz map when the πi functors are applied. The next theorem
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calculates the class pulled back in cohomology by the inclusion i.

4.3.1 Theorem. The Hurewicz map

h : G1(Pn) →֒ ZG1(Pn) ≃
n∏

i=0

K(Z, 2i)

induces the following map in cohomology

h∗(i2k) = ωk

where i2k is the generator of H2k(K(Z, 2k), Z) and ω is the generator of H2(G1(Pn), Z).

Proof. By induction on n.

Base: The case n = 1 is a result of Lawson and Michelsohn in [LJM88].

Namely, they prove that the inclusion i : G1(P1) →֒ Z1(G1(P1)) classifies the

total chern class of the universal quotient bundle, i.e. that i ≃ 1 × ω. But in

this case Z1(G1(P1)) = ZG1(P1) and i is the Hurewicz map h. Thus h ≃ 1×ω.

Inductive Step: Notice that G1(Pn) = Pn∨ ∼= Pn so we will substitute

throughout G1(Pn) with Pn Suppose that h∗(i2k) = ωk for h : Pn →֒ ZPn.

The inclusion of Pn →֒ Pn+1 is a cofibration and the quotient Pn+1/Pn is

homeomorphic to the sphere S2(n+1). Dold and Thom proved in [DT58] that

a cofibration sequence induces a quasifibration sequence when taking the free

abelian group functor. Hence we have the following commutative diagram:

Pn �

� j
//

h

��

Pn+1

h

��

// S2(n+1)

h
��

ZPn �

�

// ZPn+1
p

// ZS2(n+1)
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where j is a cofibration, p is a quasifibration and each h is the corresponding

Hurewicz map. This diagram is equivalent to the following

Pn �

� j
//

h
��

Pn+1

h
��

// S2(n+1)

h

��∏n

i=0 K(Z, 2i) �

�

//
∏n+1

i=0 K(Z, 2i)
πn+1

// K(Z, 2(n + 1))

The induction hypothesis implies that the arrow on the left satisfies the con-

dition h∗(i2k) = ωk. Therefore we are only concerned with what happens to

the pullback of i2(n+1). But this is determined by the Hurewicz map on the

far right of the diagram.

4.3.2 Theorem. For p > 1 there is no continuous biadditive pairing

⊗̂ : Z1(Pn) × Zp(Pm) → Zp(Pnm+n+m)

such that η⊗̂ξ = η⊗ ξ where η and ξ are linear spaces and ⊗ is the map which

classifies the tensor product of bundles via the universal quotient bundle.

Proof. Suppose that such a pairing exists. Then it must necessarily satisfy the

following relation in the degrees

deg(η⊗̂ξ) = deg(η) deg(ξ)

This is because it is biadditive and continuous and it maps the degree one ef-

fective cycles into the degree one effective cycles. Thus it induces a continuous

47



pairing in the subgroup Z0 of cycles of degree zero:

Z1
0(P

n) × Z
p
0(P

m) → Z1
0(P

nm+n+m)

Let µ : Z1
0(P

n) × Zp(Pm) → Z1
0(P

nm+n+m) be the function defined by

µ(η, ξ) = η⊗̂ξ + η0⊗̂ξ + η⊗̂ξ0

Then the following diagram commutes:

G1(Pn) × Gp(Pm)
⊗

//

c

��

Gp(Pnm+n+m)

c

��

Z1
0(P

n) × Z
p
0(P

m)
µ

// Z
p
0(P

nm+n+m)

(4.7)

where the vertical maps are the inclusions mapping a linear space η into η−η0

where η0 is a fixed subspace. Lawson and Michelsohn proved in [LJM88] that

this inclusion classifies the total chern class map of the universal quotient bun-

dle. Now, notice that we can restrict the pairing µ on the first factor to the

subspaces Z0G
1 of cycles generated by the points of the grassmannian, that

is, to the cycles which are formal sums of linear hypersurfaces with coeffi-

cients adding up to zero. Let ρ be the restriction, then we have the following
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commutative diagram

G1(Pn) × Gp(Pm)
⊗

//

i×c

��

Gp(Pnm+n+m)

c

��

Z0G
1(Pn) × Z

p
0(P

m)
ρ

//

j×id

��

Z
p
0(P

nm+n+m)

id

��

Z1
0(P

n) × Z
p
0(P

m)
µ

// Z
p
0(P

nm+n+m)

where i is the same map as before, i(L) = L − L0 and j is just the natural

inclusion. The previous theorem gives a description of what i and j are in

terms of the homotopy equivalences with the products of Eilenberg-Maclane

spaces, namely i is the Hurewicz map and j is the projection onto the first

factor. Hence we have the following diagram:

G1(Pn) × Gp(Pm)
⊗

//

h×c

��

Gp(Pnm+n+m)

c

��∏n

i=1 K(Z, 2i) ×
∏p

i=1 K(Z, 2i)
ρ

//

π1×id

��

∏nm+n+m

i=1 K(Z, 2i)

id
��

K(Z, 2) ×
∏p

i=1 K(Z, 2i)
µ

//
∏nm+n+m

i=1 K(Z, 2i)

(4.8)

Now, to fix ideas, let us examine the case p = 2. The chern class formula for

the tensor product of a line bundle and a 2-dimensional bundle yields:

c2(L ⊗ E) = c2
1(L) + c1(E)c1(L) + c2(E)

The vertical arrows in the diagram 4.7 induce isomorphisms in rational coho-

mology. So the chern class formula implies that in the 4-th cohomology groups
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ρ should induce the following map:

ρ∗(i4) = 1 ⊗ i4 + i2 ⊗ i2 + ai4 ⊗ 1 + bi22 ⊗ 1

where each ik is the generator of Hk(K(Z, 2k); Q) and a + b = 1.

We claim that a = 1 and b = 0. This claim is the content of proposition

4.3.3. The argument to prove the theorem is then the following:

The existence of the product ⊗̂ implies the existence of the function µ

which in turn implies the existence of the restriction ρ. But then, the claim

implies that the diagram 4.8 cannot commute!

This is because diagram 4.8 implies that

ρ∗(i4) = (π1 × id)∗µ∗(i4)

but there is no element in H4(K(Z, 2) ×
∏2

i=1 K(Z, 2i); Q) which gets pulled

back to i4 ⊗ 1 in H4(
∏n

i=1 K(Z, 2i)×
∏2

i=1 K(Z, 2i); Q) because π1 is the pro-

jection into the first factor:

π1 :
n∏

i=1

K(Z, 2i) → K(Z, 2)

therefore we can only pullback elements of the form aip2 ⊗ j where i2 is the
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generator of

H∗(K(Z, 2); Q) = Q[i2] ⊂ H∗(
n∏

i=1

K(Z, 2i); Q) = Q[i2, . . . , i2n]

(These last equalities being a classical result of Serre).

Now we prove the claim mentioned in theorem 4.3.2

4.3.3 Proposition. Using the notation of theorem 4.3.2 we have the formula

ρ∗(i4) = 1 ⊗ i4 + i2 ⊗ i2 + i4 ⊗ 1

Proof. The chern class formula for the tensor product of bundles and the

commutativity of 4.8 implies that

ρ∗(i4) = 1 ⊗ i4 + i2 ⊗ i2 + a(i4 ⊗ 1) + b(i22 ⊗ 1)

with a + b = 1. Consider the diagram

[G1(Pn) × G1(Pn)] × G2(Pm)
⊗1×⊗2

//

φ×c

��

G2(Pmn+n+m) × G2(Pmn+n+m)

c+c

��

Z0G
1(Pn) × Z2

0(P
m)

ρ′
// Z2

0(P
nm+n+m)

(4.9)

where

• φ : G1(Pn) × G1(Pn)] → Z0G
1(Pn) is given by

φ(L1, L2) = (L1 − L0) + (L2 − L0)
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where L0 is a fixed linear space.

• ⊗1 ×⊗2 is given by

(⊗1 ×⊗2)(L1, L2, E) = (L1 ⊗ E,L2 ⊗ E)

• c + c is given by

(c + c)(E1, E2) = (E1 − L0 ⊗ E0) + (E2 − L0 ⊗ E0)

• ρ′ = ρ + τ where

τ(η, ξ) = L0⊗̂ξ

We will verify that diagram 4.9 commutes:

(c + c)(⊗1 ×⊗2)(L1, L2, E) = (c + c)(L1 ⊗ E,L2 ⊗ E) =

(L1 ⊗ E − L0 ⊗ E0) + (L2 ⊗ E − L0 ⊗ E0)

On the other hand:

ρ′(φ × c)(L1, L2, E) = ρ′((L1 − L0) + (L2 − L0), E − E0) =

ρ((L1 − L0) + (L2 − L0), E − E0)) + τ((L1 − L0) + (L2 − L0), E − E0) =

ρ((L1 − L0) + (L2 − L0), E − E0)) + L0⊗̂(E − E0) =

((L1−L0)+(L2−L0))⊗̂(E−E0)+2(L0⊗̂(E−E0))+((L1−L0)+(L2−L0))⊗̂E0 =

L1⊗̂E + L2⊗̂E − 2(L0⊗̂E0)
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Now recall that the space Z2
0(P

nm+n+m) on the lower right corner of diagram

4.9 is homotopically equivalent to K(Z, 2) × K(Z, 4). We will compute the

pullback through the whole diagram of the generator i4 of the cohomology

group H4(K(Z, 4); Q), considered as a subgroup

H4(K(Z, 4); Q) ⊂ H4(K(Z, 2) × K(Z, 4); Q) = Qi4 ⊕ Qi22

To simplify the notation we will denote by L1, L2 and E the universal

quotient bundles on G1, G1 and G2 correspondingly. Then the chern class

formula for the tensor product and the fundamental result of [LJM88] compute

the composition (⊗1 ×⊗2)
∗(c + c)∗:

(⊗1 ×⊗2)
∗(c + c)∗(i4) = (⊗1 ×⊗2)

∗(c2(E) ⊗ c2(E)) =

c1(L1)
2 + c1(L1)c1(E) + c2(E) + c1(L2)

2 + c1(L2)c1(E) + c2(E) (4.10)

Now, notice that theorem 4.1.2 implies that in rational cohomology

φ∗(i2) = ω ⊗ 1 + 1 ⊗ ω and φ∗(i4) = ω2 ⊗ 1 + 1 ⊗ ω2 (4.11)

Hence, using the previous equation and the description that we have for ρ

we get

(φ× id)∗(ρ′)∗(i4) = (φ× id)∗(i2 ⊗ i2 +1⊗ i4 +a(i22 ⊗ 1)+ b(i4 ⊗ 1)+1⊗ i4) =

c1(L1)c1(E) + c1(L2)c1(E) + c2(E)+

a(c1(L1) + c1(L2))
2 + b(c1(L1)

2 + c1(L2)
2) + c2(E) (4.12)
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Setting equal the compositions 4.10 and 4.12 we get that a = 0 and there-

fore b = 1, since there is no term 2c1(L1)c1(L2) in 4.10.

4.4 A Pairing for Higher Codimension

I
n the previous section we proved that there is no pairing in the space of

cycles which extends the map which classifies the tensor product of bundles.

The proof is based on the fact that a pairing on the space of cycles would

induce by restriction a pairing in the free group generated by the points of

the grassmannian.This induced pairing would in turn make it impossible to

have a pairing in the space of cycles. In this section we will prove that there

is indeed a pairing restricting the first factor to the subgroup of the space of

cycles generated by the points of the grassmannian.
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4.4.1 Definition. Let H be a linear hypersurface defined by a linear form

L =
∑

aixi ∈ C[x0, . . . , xn]

.

Let X be an algebraic cycle defined by an ideal

I = 〈f1, . . . , fs〉 with fi ∈ C[y0, . . . , ym]

.

The tensor product of H and X, denoted by H⊗̃X is the algebraic cycle

defined by the ideal

L⊗̃I = 〈f1⊗̃L, . . . , fs⊗̃L〉

Lemma 4.2.8 implies that this definition does not depend on the choice

of generators for the ideal defining X. Geometrically the cycle H⊗̃X is iso-

morphic to a suspension of X, the position of this suspension depends on the

linear form defining H. This proves the following lemma

4.4.2 Lemma. The function

⊗̃ : G1(Pn) × Zp(Pn) → Zp(Pnm+n+m)

defined by

(H, η) 7→ H⊗̃η

is continuous and additive in the second variable.
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This continuous function in turn, induces a continuous function

G1(Pn) → Hom
(
Zp(Pn),Zp(Pnm+n+m)

)

defined by

H 7→ {X 7→ L⊗̃X}

by the universal property of the free abelian topological group, this function

factors through a function

⊗̂
′
: ZG1(Pn) → Hom

(
Zp(Pn),Zp(Pnm+n+m)

)

4.4.3 Definition. The pairing

⊗̂ : ZG1(Pn) × Zp(Pn) → Zp(Pnm+n+m)

is the continuous pairing defined by

⊗̂(η, ξ) = ⊗̂
′
(η)(ξ)
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