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Abstract of the Dissertation

Bi-invariant Norms on the Group of
Symplectomorphisms

by
Zhigang Han
Doctor of Philosophy
in
Mathematics
Stony Brook University

2006

The group of diffeomorphisms of a symplectic manifold (M, w)
preserving the symplectic form is called the symplectomorphism
group of (M, w) and denoted by Symp{M, w). It has a very impor-
tant subgroup Ham(M,w) called the Hamiltonian diffeomorphism
group. The group Ham(M, w) admits a natural bi-invariant norm,
known as the Hofer norm, In this thesis we study several aspects of
bi-invariant norms on Symp(M, w), including the bounded isome-
try conjecture of Lalonde and Polterovich. In particular, we prove
the conjecture for the Kodaira-Thurston manifold and for the 4-
torus with all linear symplectic forms, Relatedly, we observe that

there is an obstruction to extending the Hofer norm bi-invariantly
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to the identity component Sympy(M,w) of Symp(M,w). This

obstruction is shown to be non-trivial in some cases. We also
prove that no Finsler norm on Ham(T%*,w) satislying a strong
form of the invariance condition can extend to a bi-invariant norm
on Sympy(T?*,w}. Other bi-invariant norms on Sympy(M,w) are

studied as well and the induced topologies are discussed.
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Chapter 1

Introduction and main results

1.1 The bounded isometry conjecture

Let (M, w) be a closed symplectic manifold, There is a natural bi-invariant
norm, called the ‘Hofer norm p, defined on the Hamiltonian diffeomorphism
group Ham(M,w). That is, p(f) is the Hofer distance between the identity
map id and f for all f € Ham(M, w), see Section 2.3 for details. Lalonde and
Polterovich [14] have studied the full symplectomorphism group Symp(M,w)
within the framework of Hofer’s geometry. We first recall the notion of bounded
and unbounded symplectomorphisms. Namely, for each ¢ € Symp(M ,w), de-

fine

r{¢) := sup{ p([¢, f]) | f € Ham(M,w)},
where [¢, f] := ¢f¢ ' f~" is the commutator of ¢ and f.

Definition 1.1.1. An element ¢ € Symp{M,w) s bounded if r(¢) < oo, and

is unbounded if r(¢) = oo.




Denote by BIy(M,w) the set of all bounded elements in the identity com-
ponent Sympg(M,w) of Symp(M,w). Since p is bi-invariant, it follows from
the inequality p([¢, f]) < 2p(¢) that Ham(M,w) is a subgroup of Blo{M,w).

The converse is the following conjecture in [14].

Conjecture 1.1.2 (Bounded isometry conjecture). For all symplectic mani-

folds (M,w), BIy(M,w) = Ham(M, w).

Thig conjecture was proved in [14] for closed surfaces with area form and
for arbitrary products of closed surfaces of genus greater than 0 with preduct
symplectic form; Lalonde and Pestieau [15] confirmed it for product symplectic
manifolds M = N x W with N being any product of closed surfaces and W
being any closed symplectic manifold of first real Betti number equal to zero.
We give a positive answer here to this conjecture for the Kodaira-Thurston
manifold with the standard symplectic form. The detailed descriptions and

proofs are contained in Chapter 2.

Theorem 1.1.3. The bounded isometry conjecture holds for the Kodaira-

Thurston manifold M with the standard symplectic form w.

1.2 Extending the Hofer norm

While studying the bounded isometry conjecture, we realized that this
conjecture is closely related to another interesting question of extending the

Hofer norm from Ham(M,w) to Sympy(M,w). Since the Hofer norm is a

bi-invariant norm defined on Ham(M,w), it is natural to consider its exten-




- slons to Sympy(M,w). Banyaga and Donato [2] constructed such an extension

in two different ways, but neither of the resulting norms is bi-invariant on
Sympy{M,w). By bi-invariant, we mean that the corresponding distance func-

tion d satisfies

d(0¢, 0v) = d(¢0,98) = d(¢, %)

for all ¢, 4,8 € Sympy(M,w), see Section 3.1.

It turns out that the existence of unbounded symplectomorphisms serves as
an obstruction to bi-invariant extensions of the Hofer norm to Sympy{M,w).
The following theorem follows almost immediately from the definition of un-

‘bounded symplectomorphisms.

Theorem 1.2.1. Let (M,w) be a closed symplectic manifold. Assume that
there ewists some ¢ € Sympy(M,w) which is unbounded in the sense of Def-
inition 1.1.1. Then the Hofer norm p on Ham({M,w) does not extend to a

bi-invartant norm on Sympy(M, w).

Proof. Assume p extends to a bi-invariant norm on Sympy(M,w), which we
still denote by p. Then given ¢ € Sympy(M,w), using the properties of a

bi-invariant norm listed in Section 3.1, we have

p([¢, 1) = p(dfd f 1) < p(@) + p(f& ' F71) = p(@) + p(d7") = 20(9)

for all f € Ham(M,w). Taking the supremum over all f € Ham(M, w) gives
r(¢) < 2p(¢) < oco. It follows then from Definition 1.1.1 that all elements

¢ € Sympy(M,w) are bounded, which contradicts our assumption. O

In particular, Theorem 1.2.1 applies to all symplectic manifolds where the




bounded isometry conjecture holds. However, it is in general difficult to prove
the bounded isometry conjecture, since one has to show that all nonHamil-
tonian symplectomorphisms are unbounded. On the other hand, it ig often
easier to find one single unbounded element. This is sufficient to show the
Hofer norm does not extend. For instance, combining Theorem 1.2.1 with

Theorem 2.5.2 below, one has the following

Corollary 1.2.2. Let L. C M be a closed Lagrangian submanifold admitting a
Riemannian metric with non-positive sectional curvature, and whose inclusion
in M induces an ingection on fundamental groups. If there exists some ¢ €
Sympo(M,w) such that $(L) N L = @, then the Hofer norm p on Ham(M,w)

does not extend to a bi-invariant norm on Sympy(M,w).

Proof. In view of Theorem 2.5.2, such ¢ must be unbounded. The corollary

follows from Theorem 1,2.1, O

Thus, we propese the following conjecture which seemis more accessible

than the bounded isometry conjecture.

Conjecture 1.2.3. For any symplectic manifold (M, w) such that Sympy (M, w)
is not identical to Ham(M, w), the Hofer norm on Ham(M,w) does not extend

to a bi-invariant norm on Symp,(M,w).

Remark 1.2.4. Besides all manifolds mentioned above, Conjecture 1.2.3 also
holds for M = ¥ x W with 3I being any closed surface of genus > 0 and W
being any closed symplectic manifold. One can simply argue, using the sta-
ble energy-capacity inequality as in Lalonde and Pesticau [15], that ¢ x id €

Sympg(M) is unbounded with ¢ being any nonHamiltonian symplectomor-

phism in Symp,(X) and id being the identity map on W, Note that we are




able to drop the assumption on W, i.e. W has first real Betti number zero,
from Lalonde and Pestieauw’s result (¢f. Theorem 1.3 [15]) simply because the

bounded isometry conjecture is stronger than Conjecture 1.2.3.

1.3 Extending y-invariant norms

In this section, we state one of our main results concerning the so-called
x-invariant (which is necessarily bi-invariant) Finsler norms on Ham(T**,w),
see Section 3.2. The detailed formulation of this result and its generalizations,

together with their proofs, are contained in Chapter 3.

Theorem 1.3.1. Let (T?,w) be the torus with the standard symplectic form
w, and p be a x-invariant Finsler norm on Ham(T*",w), i.e. a Finsler norm
induced by a x-tnvariant norm ||+ ||. Then p does not extend to a bi-invariant

norm on Symp,y(T?",w).

Question 1.3.2. We shall see in Chapter 3 that we are using the fact in
our proof that the diameter of Ham(T*", w) with respect to any x-invariant
Finsler norm p is infinite. Actually if the diameter with respect to p is fi-
nite, one can always extend p bi-invariantly to Symp,(T?*,w) by giving a
sufficiently large constant value for all nonHamiltonian symplectomorphisms
(cf. Remark 4.3.3). The question is, will the infiniteness of the diameter of

Ham(T?",w) be sufficient to prove that p does not extend to a bi-invariant
P

norm on Sympg (T, w)?




Chapter 2

The bounded isometry conjecture

In this chapter, we study the bounded isometry conjecture proposed by
Lalonde and Polterovich in [14], i.e. Conjecture 1.1.2. We begin with some
preparations and related results. Then in Section 2.5 we prove Theorem 1.1.3
which asserts tha;t the bounded isometry conjecture holds for the Kodaira-
Thursi;on manifold M with the standard symplectic form w. We also prove
in Section 2.6 the bounded isometry conjecture holds for the 4-torus with all
linear symplectic forms. In Section 2.7 we study the same conjecture for the
Kodaira-Thurston manifold M with all linear symplectic forms. While we are
not able to prove the conjecture, some partial results are provided and the

difficulties are discussed.

2.1 The flux subgroup

The flux homomorphism is best defined on the universal cover %G(M , W)




of SympO(M:w)>
flux : %O(M, w) — H'(M,R).

Let {¢:} € ’S_;f?nT)O(M,w), i.e ¢; is a smooth isotopy in Sympy(M,w). There

exists a unique family of vector fields X; which generates the flow ¢, i.e.
d
b= Xi0¢r.

Define
Aux({g}) = fo WX dt.

In particular, if {¢;} is the flow of the time-independent symplecitc vector field

X on the time interval 0 < ¢ < 1, then

fux({ge}) = «(X)w. (2.1

This fact will often be used in later calculations.

The flux subgroup I' :== T, is the image
flux(7r; (Sympe(M,w)) € H*(M,R)

of the fundamental group of Sympy(M,w) under the flux homomorphism.

Thus there is an induced map from Symp,(M,w), still denoted by flux,

flux : Sympy(M,w) — H(M,R)/T.

It is well known that this map is surjective, and its kernel is equal to Ham(M, w).




In other words, we have the following exact sequence of groups
0 ——» Ham(M,w) —— Sympo(M,w) —2 HY{(M,R)/T —— 0.

We refer to [17] Chapter 10 for more details.

Since whether or not the flux is equal to 0 distinguishes a Hamiltonian
diffeomorphism from a nonHamiltonian symplectomorphism, one main step in
our applications is to understand the flux subgroup I'.

For this, we denote as in [9] by C(M) the space of continuous maps from
M to M with the compact open topology. Given p € M, we define the
evaluation map ev, : C(M) — M by ev.(f) = f(p). Denote by ev, the restric-
tion of ev, to Sympy(M,w). We will use the same notation for the induced
maps on the fundamental groups. By év, we denote the homomorphism from
71 (Sympy (M, w)) to H1(M, Z), which is the composition of ev, with the Hure-
witz map from 7, (M) to H (M, Z). |

The following commutative diagram due to Lalonde, McDuff and Polterovich

[13] plays a crucial role in the calculation of the flux subgroup I

Lemma 2.1.1 (LMP). Let (M,w) be a closed symplectic manifold of dimen-

sion 2n. Then the following diagram commutes.

Ty (Sympo(M,w)) 2 H\(M,Z) —2— H*'(M,Z)
idl l.(n—l)lvo](M)

r(Sympo(M,w)) -5 HU(M,R) 2 i w),




2.2 The Kodaira-Thurston manifold

Let G be the group (Z%,-) where

(mlu 1, klagl) ’ (m2} o, k2:'€2) = (ml +m2;n1 + Ma, k;l + k?. + m1€2:£1 + ’EQ)

(7 acts on R* via
G — Diff(R4) (M, Ky £) > prnke

where

pmnkﬂ(sst}m:y) = (3 +m7t+n9$ +k +my,y +£)

Note that pmnie preserves the symplectic form w = ds A dt +dz Ady on R*.
Hence the quotient (M := R*/G,w) is a closed symplectic manifold, known as
the Kodaira-Thurston manifold, see [26]. It was the first known example of
a closed symplectic. manifold which admits no kéhler structure, since its first

bettl number by = 3, see [17] Example 3.8.

The manifold M = R*/G can also be described as a torus bundle over a

torus, that is M = R? xz2 T?. Here Z? acts on R? in the usual way, and it acts

on T? via

L
(m,n) > Apn —
Y 01 Y

Therefore M =R x §* x T?/ ~, where

(S,t,.')?,y)N(S-l—l,ﬁ,fE—I-y,y). |




Our first task is to understand the flux subgroup I' of the Kodaira-Thurston

manifold described above. In particular, we have

Theorem 2.2.1. The fluz subgroup I' C H'(M,R) of the Kodaira- Thurston
manifold with the standard symplectic form w = ds A dt + dz A dy has rank 2
over Z. Namely, I = Z{ds, dy).

To prove Theorem 2.2.1, we need the following result on the cohomology

groups of the Kodaira-Thurston manifold.

Lemma 2.2.2. The cohomology groups of the Kodaira-Thurston manifold M
described above are as follows: H'(M,R) is of rank 3, generated by ds, dt and
dy; H*{M,R) is of rank 4, generated by yAds, y Ady, dsAdi and dy Adt; and
H3(M,R) is of rank 3, generated by y Ady Adt, y Ady Ads and v Ads A dt,

where v = dx — sdy.
P’roof.= It follows from an easy calculation. : [l

Proof of Theorem 2.2.1. We use the commutative diagram in Lemma 2.1.1.

For manifolds of dimension 4, the diagram reads as

m(Sympo(M, w)) —2 Hy(M,Z) —2- H3(M,7)

‘idl l.vol(M).

1 (Sympe(M, w)) —22 HA (M, R) 5L I3 (M, R).

Denote by Co(M) the identity component of C(M). It was proved in
Gottlieb [5] (Theorem I11.2) that for all aspherical manifolds M,

eve : m(Co(M)) & Z(m (M)

10




is a group isomorphism, where Z{m1(M)) stands for the center of mi(M).
For the Kodaira-Thurston manifold M = R*/G, we have m(M) = G. Tt
is easy to check that Z(m(M)) = Z(%,B%), and the commutator group
[m1(M), m(M)] = Z(£), see Example 3.5 in [17]. Thus the image of év,

in H1(M,Z) is contained in

Note that PD(%) = —dr Ady Ads = —y Ady A ds, where v = dx — sdy.
Now look at the map Aw : HY{(M,R) — H*(M R), |

ds—dsAw=vAdyAds+#0,

dt—dtAw=yANdyAdt+#0,
dy— dyAw=dyAdsAdt=0,

Here we have used the fact that the 3-form dy A ds A dt = d(y A dt) is exact,
so it vanishes on the cohomology level. Since vol(M) = 1, we conclude from
the above commutative diagram that the flux subgroup I' ¢ H!(M,R) is
contained in Z{ds, dy). An explicit construction shows that I is actually equal
to Z{ds, dy). Namely, we take two elements {¢} and {t} in m(Symp,(M,w))
such that

do(s,t,z,y) = (8,6 — 0,2,9),0< 0 < 1, -

Yo(s, tyz,y) = (s,t,z+0,4),0<0< 1.

Using (2.1) in Section 2.1, one can show that flux({¢s}) = ds and flux({«s}) =

11




dy. This completes the proof of Theorem 2.2.1. a
2.3 The Hofer norm

Let {M,w) be a closed symplectic manifold of dimension 2n. Denote by A
the space of all normalized smooth functions on M with respect to the volume

form w", i.e.

A= {F € C®(M) | /MFw”“—:O}.

It is well known that A can be identified with the space of Hamiltonian vector
fields, which is the Lie algebra! of the oo-dimensional Lie group Ham({M,w).
The L, norm on A

|| F]|co = max F' — min F

gives rise to the Hofer metric d on Ham({M, w) in the following way: we define

the Hofer length of a smooth Hamiltonian path « : [0, 1] — Ham(M,w) as

1 1
length(c) :=f ||df(15)||oodt=/ || F2[|oodlt
0 0

where Fi(z) = F({,z) is the time-dependent Hamiltonian function generating

the path «. The Hofer distance d between two Hamiltonian diffeomorphisms

1As a vector space, the Lie algebra is by definition the tangent space to the Lie group at
the identity. The tangent spaces to the Lie group at other points are identified with the Lie
algebra with the help of right shifts of the group.

12




f and g is defined by

d(f,g) += inf { length(a)},

where the infimum is taken over all Hamiltonian paths « connecting f and g.

'The Hofer norm p(f) is the Hofer distance between the identity map id and !

f,ie. : '
o(f) i= d(id, f).

It is easy to check that d ig bi-invariant in the sense that

d{fh, gh) = d(hf,hg) = d(f,9)

for all f,g,h € Ham(M,w). The fact that d is nondegenerate is highly non-
trivial. This was proved by Hofer [8] for the case of R, then generalized
by P(;iterovich [21] to some larger class of symplectic manifolds, and finally
proved in the full generality by Lalonde and McDufl {11] using the following

energy-capacity inequality
1 .
e(S) = §capacmy(8)

for a subset S of M. Here the capacity of S is equal to 7r? when S is a
symplectically embedded ball of radius r, and is defined in general as the ’
supremum of the capacities of all symplectically embedded balls in S. The |
displacement energy e(S) is defined to be the infimum of the Hofer norms of

all f € Ham(M,w) such that f{(S)NS =40

13 '




Note that the energy-capacity inequality provides a lower bound for the

Hofer norm. Namely, we have
F(S)NS =0, capacity(S) > ¢ == p(f) > ¢/2.

This fact will be crucial in our proof of Theorem 1.1.3.
Recall in Definition 1.1.1 that an element ¢ € Symp(M,w) is called un-
bounded if

r(¢) = sup { p([¢, f]} | / € Ham(M,w)} = o0.

Note that all Hamiltonian diffeomorphisms are bounded since r(g) < 20(g) <
oo for all g € Ham(M,w), where p(g) is the Hofer norm of g. According to
Proposition 1.2.A in [14], r satisfies the triangle inequality r(¢¢) < r(@)+r(2).
Since Ham(M ,w) is the kernel of the flux homomorphism, two symplectomor-
phisms ¢ and ¢ have the same flux if and only if they differ by a Hamiltonian

diffeomorphism. Combining these facts, we have the following

Observation A. [14] In order to prove BIy(M,w) = Ham{M,w), it suffices
to show that for each nonzero value v € H'(M,R)/I', there exists some un-

bounded element ¢ € Symp,y(M,w) with flux(¢) = v.

2.4 The admissible lift

To prove an element ¢ € Sympy(M, w) is unbounded, one has to show that

p([qﬁ, f]) can be arbitrarily large by choosing different f € Ham{M,w). Hence

14




the energy-capacity inequality will not work directly for closed manifolds since
the capacity of the manifold itself is finite. To go around this difficulty, we
recall the notion of admissible lifts which was first introduced by Lalonde and
Polterovich [14]. We shall point out that our definition is slightly different
from theirs, but the two definitions are equivalent.

Let 7 - (ﬁ, @) -- (M,w) be a symplectic covering map, ie. a covering

map 7 between two symplectic manifolds such that & = w*w.

Definition 2.4.1. For every g € Ham(M,w), assume g is the time-1 map of
the Hamiltonian flow generated by time-dependent Hamiltonian function H,.
An admissible lift § € Ham(H,LU) of g with respect to 7 1s defined to be the

time-1 map of the Hamiltonian flow generated by Hyo 7.

Lemma 2.4.2 (existence and uniqueness of admissible lifts). For all g €

rHam(-M ,w), such an admissible lift g Ham(ﬁ , W) exists and is unique.

Proof, The éxistence follows from the definition. For the uniqueness, it suflices
to show that the admissible lift § of g is independent of the choice of the
Hamiltonian function H;.

Note that the choice of H; is equivalent to the choice of the Hamiltonian

isotopy g connecting id to g. For every point p € M, let
€ty : m(Ham(M,w),id) — m (M, p)

be the map induced by the evaluation map ewv, : Ham(M,w) — M which
takes g to g(p). It follows from Floer theory that for all symplectic manifolds

M,w), the induced map éw, is trivial, see Chapter 11 [17] for instance. This
»

15




deep result implies that for any two different paths g} and g? in Ham(M , W)
connecting id to g, gi (p) and g7 (p) must be homotopic paths in M. Therefore,
for every point p € M. , the image §(p) of p under g, being the endpoint of the
lift of the path g;(p), is independent of the choice of the Hamiltonian isotopy

gt. This proves the uniqueness of admissible lifts. (]

For our purposes, we consider the universal cover M of M. Note that M
is not necessarily compact, and the admissible lift § of ¢ € Ham(M, w) i not
necessarily compactly supported in M. Instead, it belongs to Ha,Inb(f'T/iF ,w) of
time-1 maps of bounded Hamiltonians M x [0,1] -+ R. The Hofer norm is
still well defined and the same energy-capacity inequality still holds for this
setting, This idea. is due to Lalonde and Polterovich [14]. We shall spell out
some details here for the sake of clarity.

Denote by (N, o) a noncompact symplectic manifold without boundary.
We do not often consider the group Ham{N, ¢) of all Hamiltonian diffeomor-
phisms with arbitrary support. One reason in our context is that it would not
be possible to define the Hofer norm on Ham(N, o) using the L., norm on
the space A of all Hamiltonian functions with arbitrary support, since not all
elements in A have finite L., norms.

One may consider the group Ham,(N, o) of Hamiltonian diffeomorphisms
with compact support. The Hofer norm p is well defined on Ham,(N, o), and

the energy-capacity inequality

e.(S) = %capacity(S')

16




is valid as usual, where

ec(S) == nf { p(f) | f € Ham,(N, o), f(S) NS =d}.

As we have already pointed out, however, this setting is not sufficient for our
purposes since the admissible lift is usually not compactly supported. Hence we
need to consider the larger group Ham,(N, o) of Hamiltonian diffeomorphisms
which are time-1 maps of bounded Hamiltonians H : N x[0,1] — R. Note that
one can not use an arbitrary bounded Hamiltonians #, since the Hamiltonian
flow generated by H need not be integrable, Instead, we only restrict to those
bounded Hamiltonians whose flows are integrable.

The Hofer norm can be defined on Ham,(N, o) exactly the same way as in
Section 2.3, For a subset S of N, define also the bounded displacement energy
ep(S) as

C e(S) = inf { p(f) | F € Hamy(NV, o), £(S) N S = 0},

Note that Ham.(N, o) C Hamy(N, o) implies e,(S) < e.(S) for any subset

S C N. In fact, for any compact subset S, we have
ep(S) = e.(9).

To prove the other inequality, note that if f € Hamy(N, o) displaces a compact
subset S from itself, one can easily construct some cut-off fo; € Ham (N, o) of
f which still displaces S from itself, and the Hofer norm satisfies p(f) = p(fous)-
Taking the infimum implies ey(S) = e.(5).

The above afg;ument implies that the energy-capacity inequality still holds

17




for the bounded displacement energy. That is

es(S) = %capacity(S).

Now back to our discussion about the admissible lift. Note that the admissgible
lift § of ¢ € Ham(M,w) belongs to Hamb(ﬂ ,@). And it follows from the

definition of the admissible lift that

plg) = p(@)

for all g € Ham(M,w) and the admissible lift § € Ham,(M, %) of g. Here
the two p's are the Hofer norms on Ham(M, w) and Hamb(ﬂ/\f ,&) respectively.
The readers may find an argument for this in Lemma 3.4.2 and Remark 3.4.3.

Combining all the above discussions, we have

Observation B. [14] To construct ¢ € Ham(M, w) of arbitrarily large Hofer
norm, it suffices to make sure that the unique admissible lift § € Ham, (M, &)

of g displaces from itself a symplectic ball in M of arbitrarily large capacity.

2.5 Proof of Theorem 1.1.3

In this section, we prove Theorem 1.1.3. Recall that (M, w) is the Kodaira-
Thurston manifold with the standard symplectic form w = ds A dt + dz A dy.
Recall also that H(M,R) == R{ds, dy, dt) and the flux subgroup I' = Z({ds, dy)

by Lemma 2.2.2 and Theorem 2.2.1. In view of Observation A, to prove
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BIy(M,w) = Ham(M,w), it suffices to show that for every nonzero element
v € HY(M,R)/I' = R/Z{ds, dy) ® R{dt), there exists some unbounded sym-
plectomorphism with flux equal to v. We begin with an explicit construction

of symplectomorphisms with given fluxes.

Lemma 2.5.1. Let v be an element in H'(M,R)/I' = R/Z{ds, dy) & R(d%),
say v = ads + fdy + cdt where a, 5 € R/Z and ¢ € R. Then there exists an

element pag. € Sympy(M,w) with flux(d.s.) = v. Namely,

¢aﬁc(3,t,$,y) = (S -+ C,t -, T+ ﬂ:y)

Proof. First ¢p. Is well-defined. For instance, since (s, ¢, z,y) and (s-+1,¢, z-+

1,y) represent the same point on M, one has to show that

¢aﬂc(sit?$= y) ~ ¢a5c(8 + 17 ta z -+ y}y)'

This is true since

¢aﬂc(81t:$;y) = (S+C;.t"“ a1m+ﬁiy)1
and
Gape(s+ L,z +y,y) = (s+1+ct—a,z+y+5,y).

It is easy to see that ¢ag. preserves w, and the obvious isotopy from id to
$ase Implies that ¢og. € Sympy(M,w). The calculation for flux(dag.) = v is

straightforward using (2.1} in Section 2.1, O

The following theorem due to Lalonde and Polterovich [14] is an important
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criteria for unbounded symplectomorphisms.

Theorem 2.5.2 (Theorem 1.4.A [14]). Let L. C M be a closed Lagrangian
submanifold admitting a Riemannian metric with non-positive sectional cur-
vature, and whose inclusion in M induces an injection on fundamental groups.
Let ¢ be an element in Sympy(M,w) such that ¢(LY N L = 0. Then ¢ is un-
bounded.

For the proof, one passes to the universal cover M of M. The hypothesis
implies that the lift of a neighbourhood U of L has infinite capacity. One then
constructs a Hamiltonian isotopy f; supported in U/ so that the admissible lift
m of the commutator [¢, f,] will displace a symplectic ball of arbitrarily

large capacity as 7 goes to infinity. This implies ¢ is unbounded according to

Observation B. See [14] for details.

Proof of Theorem 1.1.3. In view of Observation A, it suffices to show that
the symplectomorphisms ¢ag, constructed in Lemma 2.5.1 are unbounded in
all cases, as long as the flux v = ads + fdy + cdt does not vanish. We argue
case by case. In the first two cases, this is a direct consequence of Theorem
2.5.2.
Case 1. o # 0 € R/Z.

Let L C M be the subset of M defined by

L:={(s,t,z,y) € M|t =0,y =0}

It is easy to check that L is a Lagrangian torus satisfying the hypothesis of

Theorem 2.5.2, and ¢qg. displaces L from itself. Thus ¢qs. is unbounded.
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Case 2. a =0€R/Z, f#0€R/Z and c =0 € R.
In this case, ¢g := dage maps (s,t,z,y) to (s,t,2 1+ 3,y). As in the first

case, ¢g displaces from itself a Lagrangian torus L of M defined by
L:={(s,t,z,y) e M |s=0,z =0}

We again get ¢4 is unbounded in view of Theorem 2.5.2.

Case 3. a=0€R/Zand c£0 € R.

We write ¢g, for ¢,g. in this case,

QS’BC = ¢0.’,'38: (S}t,a:,y) — (8+Cyt)m+ﬁ)y)'

Consider two different situations, one of which is simple, while the other is

more complicated.

3A.a=0€R/Zand c ¢ 7.

As in case 1 and 2, ¢g, is unbounded as it displaces from itself

L:={(s,t,z,y) e M| s=0,2=0}.

3B. a =0¢€ R/Z and c € Z\{0}.
Note that (s+c,t,2+3,y) ~ (s,t, 2+ 8—cy,y). So the map ¢g. : M — M

can also be expressed as

qbﬁc(satax:y) = (S,t,.’L‘ + ﬁ - Cy,y)-

21




In contrast to all previous cases where we used the same argument, here
we are facing a difliculty. The trouble is that in this case we are unable to find
a Lagrangian torus of M which is disjoined from itself by the map ¢z,. Thus
the above argument breaks down.

To resolve this difficulty, we take f, to be the Hamiltonian isotopy whose

support is in the subset
U = {(5,t,,5) € M | |s] < |s] <}

of M. We require [, to flow only along y and ¢ direction in I/ and its restriction
to

Vi {(s,t,e,y) € M| |s| < ¢/2, ]| < e/2}

is defined by

fT(S,t,fL','y) = (Svtam)y - T)'

In the discussion below, [f, g] := fgf'g~! stands for the commutator of f
and g. Our goal is to show that the unique admissible lift [@g, f-] of [Pge, fr]
still displaces from itself a subset of R* of arbitrarily large capacity when

goes to infinity. For this, we need the following

Lemma 2.5.3. Let ¢ ¢ Sympy(M,w), and f, be o Hamiltonian isotopy of M.
Let ¢ M~ M be any lift of ¢, and [p, f;] and f, be the unique admissible
ift of [¢, 7] and f, respectively. Then

———

[¢1 fr] = [%} ﬁ']

22




Proof. Note that f. is Hamiltonian implies [¢, f;] is Hamiltonian. So both

admissible lifts [¢, f,] and f, make sense. To simplify notation, denote

— "

Ar =4, f;] and B, =3, J.].

We want to show A, = B;, which is equivalent to A,B;! = id. Since A, and

B, are both lifts of [¢, f;], A, B! is the deck transformation of the covering

map 7 : M — M. Now AgBy = id, and 7 — A.B-! is a continuously

parametrized path into the discrete set of all deck transformations. Thus

A, Bt =id for all 7. ' O

Now back to the proof of Theorem 1.1.3. To prove ¢g, is unbounded, we
P need to show that the commutator [¢g., f;] has arbitrarily large Hofer norm

when 7 goes to infinity. Let Vo C R* be the subset of R?* defined by
Vor={(s,t,z,9) e R' | |s| <e/2,t € R, |z| < ¢/2,0 <y < 7/2},

Since Vy has arbitrarily large capacity as 7 goes to infinity, according to Ob-
servation B, it suffices to show that the admissible lift [M] of [Pge, I+]
displaces Vg from itself.

For this, denote by agc : R* — R* the preferred lift of the map ¢z, such
that

5}5’6(3? t: z, y) = (Sa ta T+ 26 — cY, y)'

By the above lemma, it suffices to show that [q~5ﬁc, ﬁ](Vo) N Vo = 0, which is i
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equivalent to
| Sot (Vo) 0 Fi @52 (Vo) = 0.

Note that the restriction of f, 170)
Vo {(s,t,z,y) e R | |s| < ¢/2,t € R, |z| < ¢/2,y € R}

is defined by

fT(S)t:m)y) = (S,t,iﬂ,‘y - T)‘

We have
' (Vo) = {ls| < e/2,t € R, |z < €/2,7 < y < 37/2}.

Hence

Socf (Vo) = {Is| < e/2,t € R, |w + B — ey < ¢/2,7 <y < 37/2}.

On the other hand,
Bae (Vo) = {ls| < ¢/2,6 € R, |z + B — cy| < ¢/2,0 <y < 7/2}.
Note that in the set %53}}1(%) we have

2] > leyl = 18] — €/2 > icm = |B] — /2,
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and in ¢! (Vp) we have

|lz| < ley| + |8 + €/2 < |e|7/2 + | 8] + /2.

Thus for sufficiently large 7, these two sets do not share the same values in
z coordinates. Since the flow f;‘l only changes the ¥ and {-coordinates when

restricted to 5,64:1(1/0)1 we conclude
G I (Vo) N F 85 (Vo) = 6,

As we have already mentioned above, this implies ¢g, is unbounded in case

3B, which completes the proof of Theorem 1.1.3. O

2.6 Bounded isometries for (T4 w)

In this section we study bounded isometries for the 4-torus with all linear
symplectic forms. We have already menticned in Chapter 1 that the bounded

isometry conjecture holds for the torus with the standard symplectic form.

The following theorem generalizes this result.

Theorem 2.6.1. The bounded isometry conjecture holds for the 4-torus (T, w)
with any linear symplectic form w 1= Eiq aij deiAdzy. That is, BIj(T!, w) =
Ham(T*,w).

Remark 2.6.2. The 2-form w=3_, <j i 4z A dx; is symplectic, i.e. nonde-

generate if and only if a19a34 — 13024 + @14003 # 0.
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For each 1 < ¢ < 4, let {¢}} € m(Sympy(T* w)) be the loop of rotations
of T along z; direction. Let & € H'(T%,R) be the image of {¢}} under the

flux homomorphism. Using (2.1) in Section 2.1, one easily gets

= flux{({¢4}) = Z @ dicy,

Here we take the convention that a;; = —a;;. In particular, ay; = 0.

Lemma 2.6.3. For the 4-torus (T4, w) with the lincar symplectic form w :=
> < @i dzs A dz;, the fluz subgroup T' C H YTY R) 4s generated by the above
s over Z. That is, I' = Z{£), &, €3, €q).

Proof. According to Lemma 2.1.1, we have the following commutative diagram

for the manifold (T4, w).

m(Sympy(T4, w)) —2 Hy(T4,Z) —=- H3(T*,7)

'EdJ’ l.vol(*xr*i)

1 (Sympo (T, w)) 25 g4, ®) L (T4, R).

Note that év, is surjective, and Afw] : HY (T R) — H3(T* R) is an isomor-
phism. Note also that vol{T?) = aj2a34 — a13094 + aaaz3. It follows from a
similar argument as in the proof of Theorem 2.2.1 that &(1 < i < 4) span the

flux subgroup I' over Z. (I

Now let ¢ € Sympo(T*, w) such that

Py, To, T3, T4) = (B1 + 1, Tz + g, T3 + 3, 4 + 4)
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where o; € R/Z for 1 €4 < 4. Then

4

flux(¢) = Z o &

i=1

Recall that in view of Observation A in Section 2.3, to prove Theorem
2.6.1, it suffices to show ¢ is unbounded as long as at least one oy € R/Z
is nonzero. One may attempt to apply Theorem 2.5.2 by showing ¢ disjoins
some Lagrangian torus L C T* from itself. For a general symplectic form w,
however, there may not exist any such Lagrangian torus in T?. Nevertheless,

we can still prove ¢ is unbounded using the following

Lemma 2.6.4. Let (M,w) be an aspherical symplectic manifold. Let f, €
Ham(M,w) be the flow generated by an autonomous Hamiltonion which has
no nonconstant contractible orbits. Then the Hofer norm p(f;) goes to infinity

as T goes to infinity.

This result can be found in Oh [19], Schwarz [25] and Kerman-Lalonde [10].
The main idea of the argument is that the Hofer norm is bounded from below
by the spectral norm (cf. Remark 3.3.3), while the spectral norm of such f,

grows linearly with respect to 7.

Proof of Theorem 2.6.1. Let ¢ € Sympy(T%,w) such that
G(x1, T2, T3, 24) = (T1 + 1, Ty + Qz, T3 + €3, T4 + 0ug).

As discussed above, it suffices to show ¢ is unbounded when at least one o €

R/Z is nonzero. Assume oy # 0 without loss of generality. Thus ¢(U)NU =@
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where U C T* is defined by
U= {(mlymZ} 583,‘.1:4) € T4 | I.CL'll < ﬁ}_

for sufficiently small e.

Let H be a time-independent Hamiltonian function of T* supported in
U. Denote by f; the (autonomous) Hamiltonian flow generated by H. Since
$U)NU = B, we know that [¢, f] := ¢fr¢ 1 f! is also an autonomous
Hamiltonian flow supported in the union of two disjoint sets U U ¢{(U7). If we
further require that 7 depend only on the first coordinate z,, using the fact
that w is a linear symplectic form, we conclude that [¢, f,] has no nonconstant
contractible orbits, Thus it follows from Lemma 2.6.4 that the Hofer norm
p([#, fr]) goes to infinity ag 7 goes to infinity. Hence ¢ is unbounded in the

sense of Definition 1.1.1. [

2.7 The Kodaira-Thurston manifold with lin-

ear symplectic forms

So far we have studied bounded isometries for the Kodaira-Thurston man-
ifold with the standard symplectic form and for the 4-torus with all linear
symplectic forms, In particular, we have shown that the bounded isometry
conjecture holds in both cases. In thig section we will study the same question

for the Kodaira-Thurston manifold with all linear symplectic forms.
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Question 2.7.1. Does the bounded isometry conjecture hold for the Kodaira-

Thurston manifold with all linear symplectic forms?

We expect the answer to be positive. Although we are not able to give a
complete proof yet at this time, we shall provide some partial results including

the following

Theorem 2.7.2. For the Kodaira- Thurston manifold (M,w) with any linear
symplectic form w, the Hofer norm p on Ham(M,w) does not extend to a

bi-invariant norm on Sympy(M,w).

We begin by describing the linear symplectic forms on the Kodaira-Thurston
manifold M. Recall that it follows from Lemma 2.2.2 that H*(M,R) is of rank
4, generated by v A ds, ¥y A dy, ds A dt, anddy A dt where v = dz — sdy. We

consider lincar 2-forms
Wapep = @y Ads + by Ady + eds A dt + fdy A dt.

Note that wepeyr is a symplectic form if and only if be — af # 0. In particular,
the standard symplectic form corresponds to b == ¢ = 1 and a = f = 0. The

following lemma on the flux subgroup generalizes Theorem 2.2.1.

Lemma 2.7.3. The flur subgroup I' C H'(M,R) of the Kodaira- Thurston
manifold with the linear symplectic form wapes has rank 2 over Z. More pre-

cisely, we have [' = Z{eds + fdy, ads + bdy).

Proof. The proof follows the same lines as that of Theorem 2.2.1. According

to Lemma 2.1.1, we have the following commutative diagram.
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Wl(sympo(M:Wabef)) S, H(M,Z) D, Ha(M,Z)

idl J/.VO](M )

71 (Sympo(M, waner) —5 HI(M,RY 220, pr3(1,R),

As in the proof of Theorem 2.2.1, the image of év, in H,(M,Z) is contained
in Z{Z). Note that PD(Z) = —y Ady Ads, where v = dz — sdy. Now look
at the map Aweses : HY(M,R) — H*(M,R),

ds 1= d8 A wepey = by Ady Ads — fdy Ads Adt = by Ady Ads,
dt v dt A wepey = ay Ads A dt + by Ady Adt,

dy = dy A weper = —ay Ady Ads +edy Ads Adt = —ay A dy A ds.

Here we have used the fact that the 3-form dy A ds Adt = d(yAdt) is exact, so
it vanishes on the cohomology level. Since vol(M) = be —af # 0, we conclude
by tracing the diagram that the flux subgroup I' C H*(M, R) is contained in
Zieds+ fdy, ads + bdy). Note that the fact be — af # 0 implies that eds+ fdy
and ads + bdy are linearly independent. An explicit construction shows that

I' is actually equal to Z{eds + fdy, ads + bdy). Namely, we take two elements
{¢e} and {we} in 7 (Sympgy(M, wepes)) such that

dols, b, z,y) = (s,t —0,2,94),0 € 0 < 1,

o(s,t,z,y) = (8,8, z+6,y),0 < 8 < 1.

A straightforward calculation using (2.1) in Section 2.1 shows that Alux({¢s}) =
eds + fdy and flux({¢s}) = ads + bdy. O
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As in Lemma 2.5.1, we explicitly construct symplectomorphisms below

with given fluxes.

Lemma 2.,7.4. Let v be an element in
H'(M,R)/T =R/Z(eds -+ fdy, ads + bdy) & R{dt),

say

v = afeds + fdy) + Blads + bdy) + c(be — af)dt

where o, § € R/Z and ¢ € R. Then there exists ¢og. € Sympy(M, watep) with

flux(gage) = v. Namely,
bapels,t, 2, y) = (s + be,t — o,z + 3 — acs,y — ac).

Proof. First dag,. is well-defined. For instance, since (s,%,2,y) and (s+1,¢, 2+

y,y) represent the same point in M, one has to show that
Page(s, t, T, Y) ~ Page(s + 1, t, 2+ y,¥).
This is true since
Pape(s, b3, y) = (s +be,t — o,z + 3 — acs, y — ac)
and

¢aﬁc(3+1:tam+y:y): (S+1+bcat_a:$+y+ﬁ_a'c(5+1);y_a’c)
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also represent the same point, One can check that qaﬁj;ﬁcwabe F = Wabes, and the
obvious isotopy from id to ¢ug, implies that qﬁapc € Sympo(M, wapes).
It remains to show that flux(¢ags.) = v. Note that ¢ug. is the time-1 map

of the flow generated by the time-independent symplectic vector field

2] d d 0 : i
—be L — ol (B acs) 2 — acl I
X :=bc 5 Yo T (8 — acs) 5~ 5 |

Using (2.1) in Section 2.1, we have ' ‘

ﬂux(qﬁagc) = L(X) Wabe f i

ds ot
= —agbc(dz — sdy) -+ beedt -+ aeds + o fdy

o 9 9 |
= t(be— —a— + (0 — acs)-—m — ac—é—g) Wabef !‘i
|

+ a(B — acs)ds + b( — acs)dy + a*csds + abedz — acfdt
= afeds + fdy) + flads + bdy) + c(be — a f)dt

= .
(|

Proof of Theorem 2.7.2. In view of Theorem 1.2.1, it suffices to find some
unbounded symplectomorphism. Note that since be — af = ( implies « and b
can not both vanish, there exists some constant ¢ such that ac and bc are not

both integers. Thus ¢,s. disjoins a Lagrangian torus
L:={(s,t,z,y) e M |3=0,y =0}

It then follows from Theorem 2.5.2 that ¢.s. is unbounded. This completes
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the proof. O

Note that in the above proof, we have showed that most clements in
Sympg(M, wapey) are unbounded for the Kodaira-Thurston manifold M with
any linear symplectic form wesep. To answer Question 2.7.1, however, one has
to check whether ¢4, constructed in Lemma. 2.7.4 is always unbounded when-
ever its flux v is nonzero in H'(M,R)/T. As we have mentioned already, this
is in general a very hard question. In the remaining of this section, we will
study this question. In particular, we will give a proof for some known cases.

For the unknown cases, we will try to point out what difficulty is involved.

Case 1: a # 0 € R/Z. In this case we will prove ¢ug. is always unbounded.
Note that @ag.(U) NU = @ where U C M is defined by

U= {(s,t,z,9) € M| [t| < e}

for sufficiently small ¢. We will apply Lemma 2.6.4 as in the proof of Theorem
2.6.1. Recall that the only thing we need to do is to construct time-independent
Hamiltonian A supported in {7 whose flow has no nonconstant contractible or-
bits. This follows from a tedious but straightforward calculation which asserts
that

(X)) Wapes = dt

where

1 i 0 )
X = be — af(—GS% - aa—y +b%).

Note that this is actually a special case of the construction in Lemma 2.7.4,
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And the fact that X is a well defined vector field on M follows from the
equivalence relation (s,t,z,%) ~ (s + 1,4,z + y,y). Since a and b can not
be both zero, if we further require H to depend only on the t-coordinates,

we know that the Hamiltonian flow generated by H will have no nonconstant

contractible orbits. Therefore ¢4, is always unbounded in this case.

Case 2! a = 0 € R/Z and ¢ # 0 € R. First we assume ac¢ and be¢ are not both

‘integers. Note that this is always the case when the ratio ¢ : b is irrational.

Under this assumption, ¢a. := ¢ag. is unbounded in view of Theorem 2.5.2 as ié"
|
it disjoins a Lagrangian torus i

L:={(s,t,z,y) e M |s=0,y =0}

If the ratio @ : b is rational, then there exists ¢ # 0 such that both ac
and be are integers. In this case, using the equivalence relation (s, t,z,y) ~

(s+ 1, 2+ y,v), we can write the map R
bpe: (8,4, 2, y) v (s +be, b,z + 8 — acs,y — ac)
as

Qbﬁc : (S:tam?y) = (Sat:a:'i'ﬁ — acs — bcyay)'

It is natural to attempt the admissible lift argument ag in Case 3B of Theorem
1.1.3 for the standard Kodaira-Thurston manifold. One would try to construct

a Hamiltonian isotopy f; on R* supported in

U= {(s,t,z,9) € R* | |es + fy| < ¢, |z| < ¢}
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which flows only along s and ¥ directions, and whose restriction to
Vi={(s,t,2,9) € R* | |es + fy| < ¢/2,]a| < €/2}
is defined by

_}:—(S,t,ﬂ?,y) = (S+fT,t,iE,y_8T).

Note that the above construction allows us to show that the lift
aﬁc (s, t,x,y) — (s, t,x + B — acs — bey, )

of ¢z, is unbounded on the universal cover level. For this, one would argue
as in Case 3B of Theorem 1.1.3, that the commutator [5,30, J?;} displaces some
subset Vo C R* of arbitrarily large capacity with respect to the symplectic

form Wepep 1= T wWapes. Namely,
Vo= {les+ fy| < e¢/2, t € R, |z] < €/2,0 < as + by < |be — af|r/2}.

The problem here is that f:, does not descend to a Hamiltonian isotopy on
M. Note that in proving ¢g. itself is unbounded, it is crucial to have such a
Hamiltonian isotopy on M, not just on the universal cover R4, Hence this case -

is still unsolved.

Case 3: a =0€R/Z, c=0€ R and g # 0<€ R/Z. In this case, the map

$g := Page has the simple form
Gb,@ : (S,t,.’L‘,’y) = (S,t,ﬂ:—l—ﬁ,’y).
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We do not know in general how to prove ¢z is unbounded for this seemingly

eagsy case. The difficulty in applying Theorem 2.5.2 is that the obvious torus
L:={(s,t,z,y) € M| s=0,2=0}

displaced by ¢g is not necessarily Lagrangian with respect to all symplectic
forms wgpes. If we assume f = 0, then L is actually a Lagrangian torus, and
45,3 will be unbounded in view of Theorem 2.5.2.

Note also that Lemma 2.6.4 does not work here either since our situation

here is different from Case 1 above. The main reason is that
U:={(s,t,z,y) € M | |z| < e}

is not a well defined set in M. Thus one can no longer apply Lemma 2.6.4 by
constructing a time-independent Hamiltonian H supported in I/ whose flow

has no nonconstant contractible orbits.
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Chapter 3

Extending bi-invariant norms

In Chapter 1 we have already seen that for a number of symplectic mani-
folds (M, w), the Hofer norm on Ham(M,w) does not extend to a bi-invariant
norm on Sympy(M,w). In this chapter we will study the question of extend-
ing more general bi-invariant norms on Ham{M, w). In order to formulate our

main result, we begin with some preliminaries.

3.1 Bi-invariant Finsler norms

Let G be either Ham(M, w) or Sympy(M,w). Let d: G x G — R be a bi-

invariant distance function in the sense that d satisfies the following properties.
a) d(f,g) 2 0,and d(f,g) =0 f=g.

b) d{f,g) = d(g, ).

c) d(f,h) < d(f,9) + d(g,h).

o
i
S
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Define p to be the function on G such that for all f € G,

p(f) = d(id, f).

Then the function p satisfies the corresponding properties below.,

Such a function p is called a bi-invariant norm!. If p satisfies all the above
properties except the nondegeneracy, i.e. the second part of (a), then p is
called a bi-invariant pseudo-norm. For our purposes, it is sometimes more
convenient to deal with a bi-invariant norm p than to deal with a bi-invariant
distance function d, although they are certainly equivalent.

Now we recall the notion of Finsler norms on Ham(M,w). As in Section
2.3, since the tangent spaces to the group Ham(M,w) are identified with the
space A of all normalized smooth functions on M, every choice of norm || - ||
on A gives rise to a pseudo-metric d on Ham(M,w) in the same manner as
the Hofer metric. Namely, we define the length of a stmooth Hamiltonian path
a: [0,1] — Ham{M, w) as

1 1
length(a) = f &) \de = [ |F\dt,
0 Q

In view of property (d), it might be more consistent to call p a conjugate-invariant norm.
However, we shall call it bi-invariant to emphagize that the corresponding distance function
is bi-invariant.
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where Fy(z) = F'(L, ) is the time-dependent Hamiltonian function generating
the path «. This is the usual notion of Fingler length, The distance between

two Hamiltonian diffeomorphisms f and g is defined by

d(f,g) := inf {length{a}},

where the infimum is taken over all Hamiltonian paths o connecting f and g.
It is easy to verify that d is a pseudo-distance function. Denote by p(f) the

distance between the identity map id and f, i.e.

p(f) = d(id, f).

Then p is a pseudo-norm. Such a pseudo-norm is called a Finsler pseudo-norm,
and the corresponding pseudo-metric is called a Finsler pseudo-metric.
The adjoint action of Lie group Ham{3,w) on its Lie algebra A is the

standard action of diffeomorphisms on functions, i.e.

AdsG =G o f!

for all G € A and f € Ham(M,w). We say a norm || - || on A is Ham{M,w)-

invariant if || - || is invariant under the adjoint action of Ham{M,w), i.e.

1G o £71 = llc]

for all G € A and f € Ham(M,w). Note that || - || is Ham({M, w)-invariant

implies that the induced Finsler pseudo-norm is bi-invariant.
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As mentioned in Section 2.3, it is highly non-trivial to check whether such
a pseudo-norm p is non-degenerate. When it is, p will be called a Finsler norm,
and p(f) will be referred to as the Finsler norm of f. On one hand, it is now
well known that the L., norm on A gives rise to a nondegenerate bi-invariant
norm known as the Hofer norm on Ham(M, w). On the other hand, Eliashberg
and Polterovich showed in [3] that for 1 < p < oo, the Fingler pseudo-norm
on Ham(M,w) induced by the L, norm on A vanishes identically. Thus the

following question arises in [3] and [22].

Question 3.1.1. Which invariant norms on A give rise to genuine bi-invariant
Finsler metrics? Is it true that such norms are always bounded below by

Cil + lleo ?

This question was studied by Ostrover and Wagner in [20]. One of their

main results is the following

Theorem 3.1.2 (Theorem 1.3 [20]). Let||-|| be @ Ham{M, w)-invariant norm
on A such that ||+ || € C|| |l for some constant C, but the two norms are
not equivalent. Then the associaled pseudo-distance function on Ham(M,w)

vanishes identically.

In general, Question 3.1.1 is still open, although the above theorem suggests
that the answer to the second question is likely to be positive. If this was the
case, it would imply that all bi-invariant Fingler norms are bounded below by
a constant multiple of the Hofer norm. Therefore all the nonextension results
concerning the existence of unbounded symplectomorphisms would still be
valid for all bi-invariant Finsler norms on Ham(M, w). However, gince all of

these questions are not completely understood yet at this time, we find it
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interesting to have some kind of nonextension result for general Finsler norms,
In particular, we consider Finsler norms induced by x-invariant norms which

we shall define in the next section.

3.2 y-invariant Finsler norms

Definition 3.2.1. Let H be a normalized Hamiltonian function in A. The

characteristic function g : R — [0,1] of H is defined by

_vol{{pe M| H(p) < c},w)
vol{M, w) '

xu(c) :

Definition 3.2.2. For F.G € A, we say F' is x-equivalent to G if xr = Yc.

For instance, if ' = G o ¢ for some volume preserving diffeomorphism ¢,
then I and G are y-equivalent. Also, let 7 : T%* — T?® be a covering map of
T?* over itself, and H be a smooth Hamiltonian function on T?*. Then H is

y-equivalent to H o 7.

Definition 3.2.3. A norm||-|| on A is said to be x-invariant if all x-equivalent

Hamiltonian functions have the same norm, i.e. ||F|| = ||G|| if xr = xc-

For example, L, norm and L., norm are y-invariant, Observe that a x-
invariant norm || - || on A is necessarily Ham(M,w)-invariant. Hence the
induced Finsler norm p on Ham(M,w) must be bi-invariant, The following

proposition, which follows from a result by Ostrover and Wagner [20], explains
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why the x-invariance hypothesis in Theorem 1.3.1 on the norm || - || is of
interest.

Proposition 3.2.4. Any Ham(M,w)-invariant norm || - || on A which is
bounded from above by || - ||oo 8 x~tnvariant.

Proof. It is proved in [20] (Theorem 1.4) that such a norm ||-|| can be extended
to a (semiynorm |||} € C||||eo o0 Leo(M) which is inveriant under all measure
preserving bijections on M.

Let F, G € A such that ¥z = x¢. Then there exist two sequences of step
functions Fy,, Gy, € Leo(M) converging to F and G respectively in L, norm,
and a sequence of measure preserving bijections ¢, on M such that for each
n, F, coincides with G, o ¢, outside of a set of measure zero. Thus we have
|[Fnll = ||Gn © @n|| = ||Gnl|- The first equality holds because F,, and G, ¢ ¢,
only differ at a measure zero set and || - || € ||+ ||oe; the second one holds
since || - || is invariant under measure preserving bijections. Note that it also
follows from || - || € || - ||eo that ||Ex|| — || F]] and ||Gy|| — ||G]]. Therefore

we conclude that ||F|| = ||G||, which completes the proof. 0

The main result of this chapter is Theorem 1.3.1. In the coming sections,

we will give a proof to this theorem and discuss its possible generalizations.

3.3 A generalization of Theorem 1.3.1

In this section, we formulate and prove Theorem 3.3.1, a generalization of

Theorem 1.3.1 which works for all (not necessarily Finsler) bi-invariant norms.
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Then we use it to prove Theorem 1.3.1 in the next section.

Let 7 be the symplectic covering map

(T, 2w) — (1%, w), (z,y) — (2, 2y)

where {x,y) = (Z1,-+* , Zn; Y1, "+, Yn), and

w:=dx Ady =dxy Adyy + -+ + dzgy A dyy.

Theorem 3.3.1. Let (T?",w) be the torus with the standard symplectic form
w, and p be a bi-invariant norm on Ham(T?",w). Assume that 3 some A > 1
s.t. plg) = Ap(g) for all g € Ham(T?",w), where § s the admissible lift of g
with respect to the covering map m defined above. Then p does not extend to a

bi-invariant norm on Symp,y (T, w).

Remark 3.3.2. For all g € Ham(T?", w), the admissible lift § of g with respect
to 7 is by definition an element in Ham(T?*,2w). Since Ham(T?*,2w) =
Ham(T?" w) as sets, one can think of § as an element in Ham(T?",w). Thus

it makes sense to talk about the norm p(g} of §.

Remark 3.3.3. The above theorem should also apply to the spectral norm
on Ham(T?*, w) such that

Y(9) :=c([1];9) — ([«"]; 9)

for all g € Ham(T?",w). Here ¢([1];-} and ¢([w™];-) denote the section of the

action spectrum bundle over Ham(T?", w) associated to the cohomology classes
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[1} € H(T?) and [w"] € H**(1*") respectively. For details, the readers are
referred to Schwarz [25] for the case of symplectically aspherical manifolds,
and to Oh [19] for general symplectic manifolds. We expect to prove that v
does not extend to a bi-invariant norm on Symp,(T?", w) by showing that «

satisfies the hypothesis of Theorem 3.3.1. This will be studied elsewhere.

We shall recall the following notion of displacement energy which will be
used in the final step of the proof of Theorem 3.3.1. Let p be any bi-invariant
pseudo-norm on Ham(M, w). For each subset U of M, recall that its displace-

ment energy with respect to p is defined to be

de(U, p) == inf { p(f) | f € Ham{M,w), f(U)NU = 0}.

If the set of such f is empty, we say de(U, p) = oo. The following result is due
to Eliashberg and Polterovich [3].

Theorem 3.3.4 (Theorem 1.3.A [3]). Let p be a bi-invariant pseudo-norm on

Ham{M,w). Then p is nondegenerate if and only if de(U,p) > O for every

non-empty open subset U.

We refer to [3] for the proof. One can also find the same argument in the
proof of Lemma 4.2.2 below which is an analogy of the above theorem for

bi-invariant norms on Sympgy(M, w).

Proof of Theorem 3.3.1. Let p be any bi-invariant norm on Ham(T%"*,w).
As for the Hofer norm in Definition 1.1.1, one can define bounded and un-

bounded symplectomorphisms with respect to p. More precisely, for each
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$ € Sympy(T?, w), we define

ro(®) = sup { p([8, f]} | f € Ham(T*",w}},

where [¢, f] := ¢f¢ 1 f ! is the commutator of ¢ and f. We say ¢ is bounded
with respect to p if r,(¢) < co, and unbounded otherwise.

If p can extend to a bi-invariant norm on Sympy(T?",w), still denoted
by p, then given ¢ € Sympy(T?*,w), we have p([¢, f) < 2p(¢) for all f €
Ham(T?",w). This implies that all elements ¢ € Symp,(T?*,w) are bounded
with respect to p. Thus as in Theorem 1.2.1, to show p does not extend to a bi-
invariant norm on Symp,(T?", w), it suffices to find some symplectomorphism
unbounded with respect to p.

Let ¢ € Symp,y(T?", w) be the halfway rotation of T** along z-axis, i.e.
¥pPg Y

1
gb(xl"" 1 s Y1yt - :y'n.) = ($1+ 5)"' y Ty, >yn)

We want to show that ¢ is unbounded with respect to any bi-invariant norm
o satisfying the hypothesis of Theorem 3.3.1. Ior this, we denote by V the
subset of T?* defined by {|z1| < ;} which is obviously displaced by ¢. It is
easy to construct a smooth family f; € Ham(T?",w) supported in V' such that

the restriction of f; to the subset {|z;| < 1} is defined by

fs(mls"' s Ens Y1, :yn) = ('(L'l:"' y i1 T 8y ayn)-

Denote by g, the commutator of ¢ and f,, i.e. g5 := [¢, fs] = ¢fsd71f; L In




order to prove ¢ is unbounded with respect to p, it suffices to show that

limsup p(gs) = oo.

§—00

For this, we need to consider the admissible lift 7, of g,. Let m = 2% for

some positive integer &. Consider the symplectic covering map
T ¢ (T2, mw) — (T, w), (z,9) — (z,my).

For each g, € Ham(T?", w) constructed above, denote by g, € Ham(T?*, mw)
the unique admissible lift of g, with respect to #,. Since Ham(T?", mw) =
Ham{T?",w), as in Remark 3.3.2, we think of §, as an element in Ham(T?", w).
Thus the norm p(gs) makes sense. _

It follows from the definition of ¢, and g, that the restriction of g, to the
subset {|z1| < £} is defined by

—~ 8
g3($l1"' y Ty Y1, 0 :yn) = (ml)"' 2 Ty Y1 — E:"' )yﬂ)'

Thus when 2 < s < £, g, displaces an open subset U C T?" defined by

1 1 1
U = {("L'l:"' y By Y1, ,yn)GTQ"I—é<m1<§,0<y1<1}.

Using the definition of the displacement energy, we get o{gs) = de(U, p) > 0.
The second inequality holds because of Theorem 3.3.4.
Since ., = ¥ where 7 is the covering map in the theorem, it follows from

the hypothesis on p that p(gs) = Ap(gs). Here A > 1 is the same constant
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as in the theorem. We conclude that p(gs) can be arbitrarily large when & is

arbitrarily large. This cormpletes the proof of Theorem 3.3.1. O

Remark 3.3.5. The choice of the symplectic covering map # in Theorem
3.3.1 is a very subtle question. One might expect the same result to hold

when choosing different covering maps. This is the case for all
T ¢ (T2, mw) — (T W), (z,y) — (z, my)

with m = 2 a positive integer. The proof goes exactly as in the m = 2 case
above. On the other hand, the argument breaks down if we choose for instance,

the covering map
p: (T* dw) — (T, w), (z,y) — (2z, 2y).

The reason is as follows.

In view of Theorem 3.3.4, the displacement energy de(U, p) of any open
subset U C T* with respect to any bi-invariant norm p is always positive.
This is sufficient for the proof of Theorem 3.3.1 since we have been able to
show that, by carefully choosing s and m, the admisgible lift of g, with respect
to m, = @ displaces some fixed subset U of T?* despite of the rescaling
(enlarging the symplectic form) of the torus. One the other hand, for the
covering map p, the admissible lift of g, with respect to p,, = p® can only be
arranged to displace a shrinking portion U,, of T?*. One would still be able

to get the same result by carefully analyzing the effect on the capacity of the
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rescaling process if as for the Hofer norm, the encrgy-capacity inequality

de(U, p) = ¢ - capacity (U, w)

holds for our bi-invariant norm p. However, we do not know if this is true, nor .

do we have any counter-examples. It would be interesting to have an answer

in either direction.

3.4 Proof of Theorem 1.3.1

Now back to Theorem 1.3.1 for x-invariant Finsler norms. We begin with

a remark on the y-invariance hypothesis.

Remark 3.4.1. We have already mentioned that a y-invariant norm || - || is
necessarily Ham(T*", w)-invariant. Hence a y-invariant Finsler norm g must
be bi-invariant. Moreover, for any y-invariant norm, ||H|| = || o «|| for all
H e A, where m: T?* — T? is any covering map of T?® over itself, The latter

will be crucial for the proof of Theorem 1.3.1.

"The following lemma, gives a relation between the Finsler norms of a Hamil-

tonian diffeomorphism and its admissible 1ift.

Lemma 3.4.2. Letw : (M, &) — (M, w) be a covering map such that & = mw.
Let [ﬁl and || - || be norms on A and A respectively, such that ||§:>d7’r|| =
|E||. Denote by & and p the induced Finsler pseudo-norms on Ham(M,)
and Ham(M,w) respectively. Then p(g) 2 p(3), where § € Ham(M, ) s the

admissible lift of g € Ham({M, w) with respect to .
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Proof. By the definition of the admissible lift, if g € Ham(M,w) is the time-1
map of the Hamiltonian flow generated by time-dependent Hamiltonian func-
tion H; € A, then g € Ham(]\ﬂf ,w) is the time-1 map of the Hamiltonian flow
generated by Hyom € A. Now ||HJ| = ||ch?¥||, by taking the infimum we get

p(g) = p(g) since the first infimum is taken on a smaller set. O

Remark 3.4.3. For instance, Lemma 3.4.2 applies when both |ﬁ| and || - ||
are Lo norms. This implies p(g) = p(g) where g is the admissible lift of g and

the two p’s are both Hofer norms.

We continue with the following lemma. We will use it to deduce Theorem

1.3.1 from Theorem 3.3.1.

Lemma 3.4.4. Let p be a Finsler norm on Ham(T?, w) induced by a x-
invariant norm || < ||. Then p(g) = 2p(g) for all g € Ham(T™,w) and the ad-
missible lift § of g with respect to the symplectic covering map 7 (T**,2w) —

(T*, w) such that w(z,y) = (z,2y).

Proof. Tn view of Remark 3.3.2, Ham(T?*, 2w) = Ham(T?",w), so they share
the same Lie algebra A. Let 5 and p be the Finsler norms on Ham(T?", 2w)
and Ham(T?, w) respectively, but both are induced by the same norm || - || on
A. We claim that 5 = 2p. In fact, an element g € Ham(T*?,w) is the time-1
map of the Hamiltonian flow generated by some time-dependent Hamiltonian
function H; if and only if the same g considered as an element in Ham{T?", 2w)
is the time-1 map of the Hamiltonian flow generated by 2H;. Taking the

infimum gives the equality p{g) = 2p(g) for all g.
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On the other hand, || - || is x-invariant implies ||Z o x|| = ||H]|| for all
H € A, where 7 is the covering map in the lemma. Lemma 3.4.2 implies that
p(9) 2 #(y). Combining this with the previous equality p = 2p, we obtain
plg) = p(§) = 2p(7) as desired. 0o

Proof of Theorem 1.3.1. It follows from the above lemma that any x-
invariant Finsler norm p on Ham(T*" ) must satisfy the hypothesis of The-

orem 3.3.1 with the constant A = 2. Thus Theorem 1.3.1 follows. O

3.5 Further remarks

In this section, we try to see how we can push Theorem 3.3.1 to other
symplectic manifolds such as (T** x M,w@® ). Here (T?",w) is the torus with
the standard symplectic form, and (M, ) is any closed symplectic manifold.

Let 7 : (T* x M, 20 ® 0) - (T™ x M,w & o), (z,y,p) — (z,2y,p)
be a symplectic covering map, i.e. 7(w @ ¢) = 2w & ¢. Thus for every g €
Ham (T x M, w®a), one can define the admissible lift § € Ham(T?" x M, 2w
o) with respect to 7. Let p be a bi-invariant norm on Ham(T?* x M,w @ 7).
Note that Ham(T** x M, 2w @ o) # Ham(T?" x M,w ® o). Therefore p(7) is
not defined for all §. Hence the assumption p(g) = Ap() for all g and § in
Theorem 3.3.1 makes no sense in this context.

However, both groups Ham(T*" x M, 2w® ) and Ham(T?" x M, w&c) con-
tain the product Hamiltonian diffeomorphisms f x g where f & Ham(T?*, o) =

Ham(T?", 2w) and g € Ham(M, o), and the admissible lift m = fxgof
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[ x g with respect to  is also a product Hamiltonian diffeomorphism. So we

can think of m as an element in Ham(T?" x M,w @ o). Thus the norm

———

p(f x g) does make sense.

The following theorem slightly generalizes Theorem 3.3.1.

Theorem 3.5.1. Let p be a bi-invariant norm on Ham(T? x M,w @ o).
Assume that A X > 1 s.t. p(f x id) > )\p(m) for all f xid € Ham(T?" x
M,w® o) and m the admissible lift of f x id with respect to the covering
map 7 described above. Then p does not extend to a bi-invariant norm on

Sympg (T x M,w ® o).

Proof. The proof follows the same lines as that of Theorem 3.3.1. Let ¢, f,
and g, = [, fs] be those maps as in the proof of Theorem 3.3.1. One has to
show that ¢ x id is unbounded with respect to p satisfying the hypothesis in
this theorem. It suffices to show that p(g, x id) = p([¢ x id, f,x id]) can be
arbitrarily large. This can easily be achieved by considering the admissible lift

of g, % id as in Theorem 3.3.1. _ J

Remark 3.5.2. Theorem 3.3.1 is a special case of Theorem 3.5.1 with M
being a point. We have already seen that Theorem 3.3.1 can be applied to -
invariant Finsler norms including the Hofer norm. On the other hand, we are
not able to find any application of Theorem 3.5.1 since it is very hard to check
its hypothesis, In particular, we do not know if the hypothesis will be satisfied
by the Hofer norm. In view of Remark 1.2.4, however, we already know that
the Hofer norm on Ham(T* x M,w @ o) does not extend bi-invariantly to

Sympg(T* x M,w @ o).
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Chapter 4

Bi-invariant norms on Symp,(M, w)

In this chapter, we first introduce the notion of (*-continuous norms
on Ham(M,w) or Symp,(M,w). Then we will study the Hofer norm and
other bi-invariant norms in this context. One of the main results is Theo-
rem 4.2.1, which states that there exists no C'-continuous bi-invariant norm
on Symp,(T*,w). We also construct two families of bi—invariént norms on

Sympy(M, w) and study their topological properties,

4.1 C*-continuous norms

We begin with the definition of C*-continuous bi-invariant norms. Here we

use the term p-topology for the topology induced by the norm p,

Definition 4.1.1. Let k = 0 or 1, G be either Ham (M, w) or Sympg (M, w).

A bi-invariant norm p on G is said to be C*-continuous if the C*-topology on
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G is finer than p-topology, or in other words, if the identity map on G

Ide : (G, C*-topology) — (G, p-topology)

18 a conlinuous map.

The following proposition is trivial from the definition of the Hofer norm.

Proposition 4.1.2. For all (M,w), the Hofer norm on Ham(M,w) is -

continuous.

In general, the Hofer norm is not C%-continuous. This seems obvious since
the definition of the Hofer length of a smooth path uses the derivative of
the path. To produce a counter-example, however, one is forced to use the

following deep result by Polterovich [23].

Theorem 4.1.3 (Theorem 1.A [23]). Let L < S? be an equator of the standard
2-sphere S* with area form w. Let f € Ham(S?%,w) be the time-1 map of the
flow generated by a time-dependent Hamiltonian function F,. Assume there
exists ¢ > 0 such that F(x,t) > ¢ for allz € L and t € [0,1]. Then the Hofer

norm p(f) satisfies p(f) = e

Using the above theorem, Polterovich was able to prove the following propo-

sition in [24]. We include the proof below for the sake of completeness.

Proposition 4.1.4 (Polterovich [24]). The Hofer norm on Ham(S? w) is not

CC-continuous.

Proof. Tor any ¢ > 0, take a sequence of autonomous Hamiltonian functions

F, € A such that F, = ¢ except for a small disc B, C $? whose diameter
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goes to 0 as n goes to infinity. Let f, € Ham(S? w) be the time-1 map of

the Hamiltonian flow generated by F,. It follows from Theorem 4.1.3 that
the Hofer norm p{f,) = ¢. On the other hand, the C%limit of the sequence
fr 18 the identity map id € Ham(S?% w) with p(id} = 0. This shows p is not

C°-continuous. O

Remark 4.1,5. In view of [22] Theorem 7.2.C, the above construction works
also for closed surfaces 3 of genus > 0 where any non-contractible closed curve
L in ¥ plays the same role as the equator in 5%, It also holds for S? x $2 with
the split symplectic form w®w and CP® endowed with the Fubini-Study form,
using the Calabi quasimorphism constructed by Entov and Polterovich on the

Hamiltonian diffeomorphism group of these manifolds (cf. Remark 1.10 [4]).

w

4.2 A result on C''-continuous norms

We have seen in Proposition 4.1.2 that Cl-continuous bi-invariant norms
such as the Hofer norm always exist on Ham{M,w) for all {M,w). However,

this is not true in general for Sympy(M,w). In particular, we have

Theorem 4.2.1. For the standard torus there erists no Cl-continuous bi-

invariant norm on Sympy (T2, w),

To prove this theorem, we need the following lemma which is analogous to
Theorem 3.3.4 (Theorem 1.3.A [3]). Let p be any bi-invariant pseudo-norm on

Sympy(M,w). For each subset U of M, we define its symplectic displacement
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energy with respect to p

de®(U, p) = inf { p() | ¢ € Sympo(M,w), $(U)NU = #}.

If the set of such ¢ is empty, we say de®*(U, p) = oc.

Lemma 4.2.2. A bi-invariant pseudo-norm p on Sympy(M,w) is nondegen-

erate if and only if de®(U, p) > 0 for every non-empty open subset U

Proof. Our argument goes along the same lines as that of Theorem 1.3.A in
[3]. Assume de*(U, p) > 0 for all non-empty open subsets UJ. Since each
nonidentity map ¢ € Symp,(M,w) must displace some small ball U C M,
we get that p(¢) > de?(U, p) > 0. For the converse, note that for any non-
empty open set U C M, there exist ¢,y € Symp,(M,w) supported in U such
that [¢, ] # id. Since p is nondegenerate, o([¢,%]) > 0. To complete our

argument, it suffices to prove the following claim.

Claim: Let U be a non-empty open subset of M. For all ¢, € Sympy(M,w)
supported in U, de*(U, p) = 1p([¢, %))

For the argument of the claim, assume there exists n € Sympy(M,w) such
that n{U)NTU = P (if such an 7 does not exist we are done because de’(U, p) =

o0} Set

0= ¢,n) = gng "0 "

Using the fact that # displaces U and that ¢, ¢ are supported in [, one can
easily verify that [¢, ¥] = [6,)]. Therefore we get

p(l: 1) = p([0,4]) < 2p(8) = 2p([p, 1)) < 4p(n).
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Here we have used the bi-invariance of p and the triangle inequality. Since this

holds for all n € Symp, (M, w) with n{U) N U = §, we obtain

4" (U, ) > 7p(16,9)

by taking the infimum over all such #’s. O

Proof of Theorem 4.2.1. Let ¢, : T?* — T?" be the maps such that

GalZi, Yty Unt = (T O iYL, Un),

Claim : For each 0 < a < é, there exists 1, € Sympy(T?*,w) such that
the conjugate ¥,Pat;" of ¢, will displace an open set U of T2® which is

independent of a.

Assume the claim to be true for the moment. For any bi-invariant norm p

on Symp,(T%*, w), we have

p(ba) = plhadattT) > de(U, p),

where the last term de(U, p) is a positive number by Lemma, 4.2.2, Since the
C'-limit of ¢, as « approaches 0 is the identity map id € Sympy (T, w), we
conclude that p is not Cl-continuous.

It suffices to prove the claim by direct construction. For each 0 < a < %,
let fiq : S — R be a smooth function such that for 1 <z < 2,

ol + )~ hafz) = 7.
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Define 1, : T?" — T?® such that

wa(ﬂ:h" L2 Y 1yn) - (3::1:"' y Ly Y1 +ha($1)z'” ayn)

It is obvious that 1, € Symp,(T**,w). It also follows that 9,da;! maps
(3317' SRR/ S :yn) to ('r'cl -|—Od, oy Ina + ha(Q?] + O{) - h'af(ml): e =yﬂ)'
Thus, padap; " displaces an open set U € T defined by

1 3 1
U:{(mla"' »y Tny Y1, :y‘n)erﬂ:‘gnlz<$1<1,0<y1<i}.

This completes the proof of the claim, hence the theorem. ]

Remark 4.2.3. Theorem 4.2.1 can be generalized to (T* x M,w @ o). That
is, there exists no C''-continuous bi-invariant norm on Sympo(T* x M,w ®
), where (T*",w) is the standard torus and {M,¢) is any closed symplectic
manifold. This is true since one can show, as in the proof of Theorem 4.2.1,
that the conjugate of ¢, X id will displace some fixed subset I/ x M of T?" x M.

Here ¢, denote the same rotation maps of T?* as above.

4.3 Bi-invariant norms on Symp,(M,w)

In this section we give two explicit constructions of bi-invariant norms on
Sympy (M, w) and discuss their topological properties. In both constructions,
we only consider closed symplectic manifolds (M, w), and p stands for the Hofer

norm on Ham(M,w). The first construction is due to Lalonde and Polterovich
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[14]. For every positive number a, we define r, : Sympy(M,w) — R such that

for all ¢ € Symp,(M,w),

ra(¢) := sup { p([¢, f]) | f € Ham(M,w), p(f) < a},

where (¢, f] := ¢f¢™1 f! is the commutator of ¢ and f.

Proposition 4.3.1 (Prop 1.2.A [14]). For every a € (0,c0), the function 7,

is a bi-tnvariant norm on Sympy(M, w).

For the second comstruction, let K > 0. Define pg : Sympy(M,w) — R

such that for all ¢ € Symp,(M,w),

min(p(¢), K), if ¢ € Ham(M,w),
pr($) =

K, otherwise.

Proposition 4.3.2. For every K € (0,00), the function px is a bi-invariant

norm on Sympy (M, w).

The proofs of both propositions are straightforward and therefore omitted.

Remark 4.3.3. 7, and pg restrict to bi-invariant norms on Ham(M,w). One
can think of r, and px as bi-invariant extensions of their corresponding norms
on Ham(M,w). Note that the diameter of Ham(M,w) with respect to these
norms is finite, so one can always extend them bi-invariantly to Sympg(M, w)
by giving a sufficiently large constant value for all nonHamiltonian symplec-

tomorphisms., Compare this with Question 1.3.2.
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For the properties concerning these norms, first we shall see that for any

(M, w) such that Sympy(M,w) is not identical to Ham(M,w), px is not C'-
continuous on Symp,(M,w). This is true since px(¢) = K for all nonHamil-
tonian symplectomorphisms ¢ and px(id) = 0. We do not know as much for
bi-invariant norms r,. However, we do know that r, is not C''-continuous on
Sympg (T, w) for the standard torus ('T%",w) in view of Theorem 4.2.1. This
can also be proved directly, based on a direct calculation that r,(¢) = 2a for
every non-identity rotation ¢ and r,(id) = 0. On the othef hand, the restric-
tions of 7, and px to Ham(M,w) are Cl-continuous, since both are bounded
from above by the Hofer norm. More precisely, we have 7,(f) < 20(f) and
pr(f) < p(f) for all f € Ham(M,w). Since the Hofer norm is C'-continuous

according to Proposition 4.1.2, r, and px are also.

For bi-invariant norms pg, we also have the following easy result.

Proposition 4.3.4. For each K > 0, the identity component of Sympq(M,w)

with respect to the pr-topology is Ham{M, w).

Proof. For all f € Ham(M,w) and ¢ ¢ Ham{M,w), we have the distance
d(f,¢) = plgpf™") = K since ¢f! ¢ Ham(M,w). On the other hand,
Ham(M,w) is obviously path-connected with respect to pg-topology. The

proposition follows immediately. [

This leads us to the following question. We content ourselves with formu-

lating the question only in terms of the standard torus (T?",w).

Question 4.3.5. Is Ham(T?,w) the identity component of Symp,(T?",w)

with respect to the r;-topology? Is it true for all bi-invariant norms on

Sympo (TQn 3 w) ?
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Proposition 4.3.4 gives a positive answer to the above question for bi-

invariant norms px. For bi-invariant norms r,, as a partial answer, we have
the following theorem which states that an r,-continuous smooth isotopy in

Sympy(T?*,w) must lie entirely in Ham (T, w).

Theorem 4.3.6. Let «y : [0,1] — Symp,(T?*, w) be a smooth isotopy, i.e. a
Cl-continuous path starting from id. Then -y is rq-continuous if and only if it

is @ smooth isotopy in Ham (T w).

Proof. Let v be a smooth isotopy in Ham(T**,w), i.e. 7 is a ("-continuous
path with vy = 4d. We have pointed out above that the bi-invariant norm r,,
when restricted to Ham(T",w), is C"'-contimuous in the sense of Definition
4.1.1. Thus v is a C'-continuous path implies that it is also 7,-continuous.
On the other hand, we have to show that if there exists some ¢, € [0, 1]
such that -y, ¢ Ham(T?",w), then « is not 7,-continuous. For each ¢ & [0, 1],
we have the unique decomposition v; = ¢; 0 f;, where ¢ is the unique rotation
of the torus such that f; = ¢; ' oy, is in Ham(T?",w). Note that ¢y = fp = id,
and the assumption 7, ¢ Ham(T?*,w) for some #, implies ¢y, # id. Now ~ is a
C'-continuous path, so are the paths ¢ and f. Since 7, is Cl-continuous when
restricted to Ham(T**,w), f is a C'-continuous path in Ham{T?*,w) implies
f is also r,-continuous. If the path v were r,-continuous, it would imply that
the path ¢ is also. However, as we already pointed out before, for each a, 7,
only assumes two values on rotations, i.e. r,(id) = 0, and r,(¢)) = 2a for all
nonidentity rotations . Since we have ¢ = id, and ¢, # id for some 2, it
is not possible for the path ¢ to be re-continuous, which is the contradiction.

The proof is therefore cotnpleted. a
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Remark 4.3.7. The proof of Theorem 4.3.6 implies that for (T?*,w), the

distance between Hamiltonian diffeomorphisms and nonHamiltonian symplec-
tomdrphisms with respect to r, is bounded away from 0 by some constant if
the two elements are C'-close. If this remains true when they are not Cl-close,
then the answer to Question 4.3.5 would be positive for bi-invariant norms r,.
However, we do not know this yet at this time. More study concerning the
topology of the symplectomorphism group with respect to bi-invariant norms

will be attempted in the future.
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