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Abstract of the Dissertation
Algebraic cycles and Lawson homology
by
Wenchuan Hu
Doctor of Philosophy
in

Mathematics

Stony Brook University

2006

This thesis is a collection of several independent results in theory of
algebraic cycles and Lawson homology. In Chapter One, new bira-
tional invariants are defined by Lawson homology. In Chapter T'wo,
we prove that the Generalized Hodge Conjecture is a birationally
invariant statement for l-cycles and codimension two algebraic cy-
cles for smooth projective varieties. In Chapter Three, we obtain
new relations between the geometric filtration and topological fil-
tration on the integral cohomology of a smooth projective vareity.

We partially prove the Friedlander-Mazur Conjecture in lower di-

mensions. In Chapter Four, we get to a dual result of C. Peters. In
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Chapter Five, we construct some rational 4-dimensional projective
varieties which carry infinitely generated Lawson homology groups.
We also construct two rational 3-dimensional projective varieties
which have the same homeomorphism type but different Lawson
homology. In Chapter Six, we generalize the Criffiths’ Abel-Jacobi
map to Lawson homology and give examples of smooth projective
varieties which have infinitely generated Lawson homology groups.
In Chapter Seven, we generalize the result in Chapter Six, i.e., we

defined a map from Lawson homology to Deligne Cohomology.

Each chapter is a self-contained paper. Some chapters of this thesis

have been put on the web of preprints : http://www.arxiv.org.




To my wife, Lihua and my son, Brooks.
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Introduction

0.1 The general context

The purpose of my rescarch is to understand the structure of algebraic cy-

- cles on projective varieties by homotopy-theoretic methods, in particular, to

develop Lawson homology theory and apply it to tackle problems in algebraic
geometry. The homotopy-theoretic approach to algebraic cycles is based on
the “Algebraic Suspension Theorem” [L1] and has been developed by E. Fried-
lander, B. Lawson, P. Mazur, O. Gabber, P. Lima-Filho, and others ([F1], [F2],
[FL1], [FL2], [FM], [FG], [I1], [L2], [Li2], etc.). The Lawson homology groups
for a complex projective variety are defined by taking homotopy groups of the
space of algebraic cycles of a given dimension. They are functorial and yield
invariants of varieties up to isomorphism [F1]. They generalize the group of
algebraic cycles modulo algebraic equivalence just as the Bloch’s higher Chow

groups generalize algebraic cycles modulo rational equivalence.

We obtain the following results in my thesis from Chapter 1 to Chapter 7:

Chl. New birational invariants for a projective manifold are defined by us-

ing Lawson homology. These invariants can be highly nontrivial even
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Ch3.

for projective threefolds. Our techniques involve the weak factorization
theorem of Wlodarczyk and tools developed by Iriedlander, Lawsomw,
Lima-Filho and others. It is hoped that this will lead to an effective cri-
terion for the irrationality of smooth, rationally connected varieties. A
blowup formula for Lawson homology is given in a separate section. As
an application, we show that for ecach n > 5, there is a smooth rational
variety X of dimension n such that the Griffiths groups Grifl,(X) are

infinitely generated even modulo torsion for all pwith 2 <p<n-—3.

In this chapter, we prove that the statement: “The (Generalized) Hodge
Conjecture holds for codimension-two cycles on a smooth projective va-
riety X7 is a birationally invariant statement, that is, if the statement
is true for X, it is also true for all smooth varieties X' which are bira-
tionally equivalent to X. We also prove the analogous result for l-cycles.
As direct corollaries, the Hodge Conjecture holds for smooth rational
projective manifolds with dimension less than or equal to five, and, the
Generalized Hodge Conjecture holds for smooth rational projective man-

ifolds with dimension less than or equal to four.

In the first part of this chapter, we show that the assertion “TyHi(X,Q) =
GpHy(X,Q)” (which is called the Friedlander-Mazur conjecture) is a bi-
rationally invariant statement for smooth projective varieties X when
p = dim{X)—2 and when p = 1. We also establish the Friedlander-Mazur
conjecture in certain dimensions. More precisely, for a smooth projective
variety X, we show that the topological filtration TpHop1 (X, Q) coin-

cides with the geometric filtration G, Hap1(X, Q) for all p. (Friedlander
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and Mazur had previously shown that T,Hy,(X, Q) = GpHap(X, Q).
As a corollary, we conclude that for a smooth projective threefold X,
T H(X,Q) = GHi(X,Q) for all £ > 2p > 0 except for the case
p = 1,k = 4. Finally, we show that the topological and geometric

filtrations always coincide if Suslin’s conjecture holds.

Let X be a smooth projective variety of dimension n on which ratio-

nal and homological equivalence coincide for algebraic p-cycles in the

range 0 < p < s. We show that the homologically trivial sector of ra-

tional Lawson homology LpH(X, Q)nom vanishes for 0 <n—p < 54 2.
This is an analogue of a theorem of C. Peters in “dual dimensions”.
Together with Peters’ theorem we get that the natural transformation
L, Hi (X, Q) — Hi(X,Q) is injective for all p and &k when X is a smooth

projective variety of dimension 4 and Chy(X) = Z.

In this chapter, we construct rational projective 4-dimensional varieties
with the property that certain Lawson homdlogy groups tensored with
Q are infinite dimensional @-vector spaces. More generally, each pair of
integers p and k, with £ > 0, p > 0, we find a projective variety Y, such
that L,Hap (V) is infinitely generated. This is totally different from

the smooth case (cf. [Pe]).

We also construct two singular rational projective 3-dimensional varieties
Y and Y’ with the same homeomorphism type but different Lawson
homology groups, specifically L H3(Y) is not isomorphic to Ly Hs(Y")

even up to torsion.
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1n this chapter, we extend Griffiths’ Abel-Jacobi map to the homologi-
cally trivial part of Lawson homology and showed that this veneraliza-
tion is not trivial in general. As an application, we show that for certain
smooth varieties X, the Lawson homology LyHopyi(X) 18 infinitely gen-
erated for § > 0. In fact for any p > 0 and j > 0, there exists a smooth

variety X such that LyHop (X)) is infinitely generated.

By using the notions of “spark” and “differential character” systemat-
ically studied by Harvey, Lawson and Zweck ([HLZ]) and the theory
of D-bar sparks developed by Harvey and Lawson ([HL2]), we define
a homomorphism from Lawson homology to Deligne cohomology for a
gmooth projective variety. The generalized Abel-Jacobi map we defined

in Chapter six is the restriction of this map to the homologically trivial

part of the Lawson homology.

The exact statements of the main results and applications will be given

below.

0.2 Lawson homology

In this section | briefly describe the basic objects studied in my thesis. Let

X be an n-dimensional projective variety defined over C. Let Z,(X) be the

group of all algebraic p-cycles on X.

The Lawson homology L,Hy(X) of p-cycles is defined by

LyHp(X) == mpop(Zp(X)) for k2 2p > 0,




where Z,(X) is provided with a natural, compactly generated topology (cf.
(F1], [L1]). For convenience, we set (cf. [FHW])

LyHu(X) = LoHi(X), if p<O.

For general background, the reader is referred to [L.2].
In [FM], Friedlander and Mazur showed that there are natural maps, called

cycle class maps

@p,k . Lka(X) -y Hk(X)

To state the main results, we need the following definitions:

Definition 0.2.1. Set
Ly Hi{ X ) pom = ker{ @y : Ly Hp(X) — Hp(X)},

ToHe(X) = Image{ Py : LpyH,(X) — H(X)};

T, He(X, Q) 1= Ty Hy(X) ® Q.

It was shown in [[FM], §7] that the subspaces T, H (X, Q) form a decreasing

filtration:
e g Tka(Xv Q) (_: Tp—lsz(X7Q) g e g.. TOHk(X: Q) = Hk(X) Q)

and ¥, H (X, Q) vanishes if 2p > k. This is called the topological filtration.




Definition 0.2.2. ({[FM]§7]) Denote by
FHy(X,Q) € Hi(X,Q)

the mazimal sub-Mized Hodge structure of span k — 2p.(See [Gro] and [FM].)
The sub-Q vector spaces F, iy (X, Q) form a decreasing filtration of sub-Hodge

structures:
o C R H(X,Q) C P Hy(X,Q) C -+ € Fy (X, Q) € Hy(X, Q)

and F,Hy(X, Q) vanishes if 2p > k. This is the homological version of the

Hodge filtration.

Definition 0.2.3. ([[FM], §7]) Denote by
G'ka:(Xa Q) g Hk(Xa Q)

the Q-vector subspace of Hip(X, Q) generated by the images of mappings
Hy(YV,Q) — HW(X,Q), induced from all morphisms Y — X of varieties of

dimension< k — p.

‘The subspaces G, H (X, Q) also form a decreasing filtration:
e C Gka(Xa Q) - Gp—lHk(X) Q) C.-C GOHk(X: @) - Hk(X: Q)

called the geometric filtration.

It was proved in [FM] that, for any smooth variety X, the topological




fltration is finer than the geometric filtration, i.e., T, H, (X, Q) C GpH, (X,Q),
for all p and k.

The Friedlander-Mazur Conjecture: Let p, k¥ be non-negative integers,

For any smooth projective variety X,

T,Hp(X,Q) = Gp,H(X,Q).

It was proved in [Gro] that, for any smooth variety X, the geometric fil-
tration is finer than the Hodge filtration, l.e., GpHi(X,Q) C FPH;C(X ,Q), for

all p and k.

The Hodge Conjecture (for codimension-q cycles): The rational cycle

class map

cly®Q: Z9X)®Q — HY(X) N H*(X,Q)

is surjective.

The Hodge Conjecture over Z: The rational cycle class map

cl, : 29X) — HY(X) N p(H*(X,Z))

is surjective.

The Generalized Hodge Conjecture: For any smooth projective variety
X,
Gka:(Xa @) = ﬁ‘ka(Xa @)

for all p and k. Using the notation given in [Lew1], we denote by é}}‘é(p, k,X)




the assertion that this conjecture holds for given p, & and X.

For convenience later, we recall the following definition:

Definition 0.2.4. A smooth projective variety X over C is called rationally
conmnected if there is a rational curve through any 2 points of X. A necessary

condition Jor Z to be rationally connected 1s that Chy(X) = Z.

For equivalent descriptions of this definition, see the paper of Kolldr, Miyaoka

and Mori [KMM].

0.3 The main results

In this section I shall give a detailed presentation of the results summarized

in section 0.1.

Theorem 0.3.1. If X is a smooth n-dimensional projective variety, then

LiHy(X ) hom and Ln—o Hp(X )hom are smooth birational invariants for X. More

precisely, if p: X — X' ds a birational map between smooth projective man-

ifolds X and X', then ¢ induces isomorphisms In He(X )hom = Ly Hy( XV hom

for k> 2 and Ly—oHi(X)hom = Lo Hi (X Vpor for k2> 2(n — 2). In particu-

lar, L1 Hy(X)hom = 0 and Ln_oH 2{X Yhom == 0 for any smooth rational variety
X.

Corollary 0.3.1. Let X be a smooth rational projective variety with dim(X) <
4, then ®, 1 : LyHy(X) — Hip(X) is injective for all k> 2p = 0.

Remark 0.3.1. In general, for 2 <p < n—3, Lpflg(X)nom is not a birational
invariant for the smooth projective variety X. This follows from the blowup

formula in Lawson homology given in Theorem 0.8.2 below.




Remark 0.3.2. Ifp=0,n—1,n, then Ly H(X )hom = 0 for allk > 2p. In
these cases, the statement in the theorem is trivial. The case for p = 0 follows
from the Dold-Thom theorem. The case for p = n — 1 is due to Friedlander

[F1]. The case for p=n follows from the definition.

Using the notation in section 0.2, we have the following;

Theorem 0.3.2. (Lawson homology for a blowup) Let X be smooth projective

manifold and Y € X @ smooth subvariety of codimension r. Let o : Xy — X
be the blowup of X along Y, m: D = o YY) — Y the natural map, and

v: D=0 (Y) — Xy the exceptional divisor. Then for each p, we have

b prs'Hk—%(Y)} ¢ LyHp(X) "

1<j<r—1

LoHy(Xy) = {

From the blowup formula for Lawson homology and Clemens’ result [Cl], i

we have the following il
Corollary 0.3.2. For each n = 5, there exists rational manifold X with I

dim(X) = n such that H

dimg {Griffp(X) ® @} =00, 2<p<n—3. A

We can apply our method to obtain the following: i

Theorem 0.3.3. Let X be a smooth projective variety. If the Hodge conjecture !

for codimension 2 cycles over 7. holds for X, i.e., if we have Hodge®?(X, Z),




then it holds for any smooth projective variety X' birational to X. That is,

Hodge®2(X, Z) is o birationally invariant assertion for smooth varieties X.

As a corollary, we have

Corollary 0.3.3. If X is o rational manifold with dim(X) < 5, then the
Hodge conjecture HodgeP?(X, Q) 4s true for 1 < p < dim(X). In foct,

Hodge®P (X', Z) is true except possibly for p = 3,dim(X) = 5.

Remark 0.3.3. By using the technique of the diagonal decomposition Bloch
and Srintvas [BS] showed that Hodge>*(X, Q) holds if the Chow group of 0-
cycles Cho(X) = Z for any smooth projective variety X. Laterveer [Lat] gen-
eralized this techﬁz’que and showed the Hodge congecture holds for o class of

projective manifolds with small Chow groups.

More generally, we have
Theorem 0.3.4. ‘@E’(n —2,k,X)7” is a birationally invariant property of
smooth n-dimensional varieties X when k > 2(n — 2) + 1. More precisely, if

éﬁ'é(n — 2,k,X) holds for a smooth variety X, then for any smooth variety
X' birational to X, EEE'(n — 2, k, X') holds.

Similarly we can show that

Theorem 0.3.5. (/}’df\fé(l,k,X) for X for any integer k > 2 is a birationally

invariant property of smooth varieties X.

Corollary 0.3.4. For any smooth rational variety X with dim(X) < 4, the

Generalized Hodge Congjecture holds.

Applying the method to the topological filtration, we obtain the following:

10




Theorem 0.3.6. Let X be a smooth projective variety of dimension . If
T,H (X, Q) = GpH (X, Q)

forp=1, (resp. p=mn—2) and k = 9p, then this also holds for any smooth
projective variety X' which is birationally equivalent to X withp =1, (resp.p =
n—2) and k 2 2p.

The following theorem takes a result of Friedlander and Mazur [FM] one

step further:

Theorem 0.3.7. The Friedlander-Mazur Conjecture holds for k =2p +

1. That is, for any smooth projective variety X,

TpH2p+l(X: Q) = GpH2p+l(X> Q)

As corollaries, we have shown the Friedlander-Mazur Conjecture in

the following cases:

Corollary 0.3.5. Let X be a smooth projective threefold. Then TpH(X, Q) =
G Hy(X,Q) for all k > 2p > 0 except for the case p =1,k = 4.

Corollary 0.3.6. Let X be a smooth projective threefold with H*°(X) = 0.
Then TyHy(X, Q) = GpHy(X,Q) for any k 2 2p = 0. This holds whenever X

is a smooth complete intersection of dimension 3.

By using the Kiinneth formula in homology, we have

11




| Corollary 0.3.7. Let X be the product of a smooth projective curve and o
smooth simply connected projective surface. Then ToHy(X, Q) = G,Hi(X, Q)

for any k 2 2p > 0.

Corollary 0.3.8. For a smooth projective fourfold X, the assertion that
TPHk(X: @) = GPHFJ(X3 @)

holds for all k > 2p > 0 is a birationally inveriant statement. In particular, if
X 45 a rational manifold with dim(X) < 4, then this assertion holds for any

k>2p=>0.

Remark 0.3.4. A Conjecture given by Suslin (cf. [FHW], §7) implies that
LpHner(Xn) = Hﬂ+p(Xn) for any p > 0.

As an application of Theorem 0.3.7, we have the following result:

Corollary 0.3.9. If the Suslin’s Conjecture is true, then the topological filtra-

tion is the same as the geometric filtration for any smooth projective variety.

We generalize the higher Abel-Jacobi map introduced by Griffiths to Law-

son homology and obtain the following result:

Theorem 0.3.8. Let X be a smooth projective variety. There is a well-defined

map

b - LpH2p+k(X)ham — { @ Hp+r,p+s(X)} /H2p+k+1(X, Z)
r>ktl,r+s=k+1

which generalizes the Griffiths’ higher Abel-Jacobi map defined in [G]. More-

over, for any p > 0 and k > 0, we can find examples of smooth projective

12




parieties such that the tmage of this map is infinitely generated.

Theorem 0.3.9. For any k > 0, there exists a projective manifold X of
dimension k + 3 such that L Hy5(X )hom ® Q is nontrivial, in fact, infinite
dimensional over Q.

By applying the projective bundle theorem in [FG], we have the following

result:

Corollary 0.3.10. For any p > 0 and k > 0, there exists a projective manifold

X such that LyHyy0p(X ) hom ® Q is an infinite dimensional vector space over

Q.

Theorem 0.3.10. Let X be a smooth projective manifold with dimension n.

There exists a well-defined homomorphism to Deligne cohomology
6 LyHyppap(X) — HX PR X Zin —p— k — 1)),

whose restriction to LpHi (X)) hom coincides with the generalized Abel-Jacobi
map defined in Theorem 0.3.8 above. Furthermore, the cycle class map ©pp

Joctors through 4.

Using results in Peters’ paper [Pe], we have the following:

Theorem 0.3.11. Let X be a smooth projective variety of dimension n for
which rational and homological equivalence coincide for p—cycles in the range

0<p<s. Then LyH (X )hom @ Q=0 in the range 0 <n—p < s+ 2.

Corollary 0.3.11. Let X be a smooth projective variety with dim(X) = 4 and
Cho(X) 2 Z. Then LyHy(X)hom ® Q = 0 for all p and k. In particular, all

13




the smooth hypersurfaces of dimension 4 with degree less than or equal lo 5
have this property (cf. [Ro]).

Remark 0.3.5. Lawson homology could give a criterion for the difference
between rationality and rational connectivity. For example, Corollary
2.1 tells us that for any smooth projective rational variety X of dim(X) = 4,
Lka(X)hom = 0 for any p and k. Hence the nontriviality of any Ly H(X ) hom

for a rationally connected fourfold X would imply the irrationality of X.

Based on a result of Clemens [Cl], we get the following:

Theorem 0.3.12. There exists a rational projective 4-dimensional variety

X such that L1H3(X) ® Q is not a finite dimensional Q-vector space.

14




Chapter 1

Birational invariants defined by Lawson
homology

1.1 Introduction

In this chapter, all varieties are defined over C. Let X be an n-dimensional

projective variety. The Lawson homology L, H,(X) of p-cycles is defined by
Lka(X) = Wk_gp(zp(X)) fO’f’ k Z Zp Z U,

where Z,(X) is provided with a natural topology (cf. [F1], [L1]). For general
background, the reader is referred to [L2].
In [FM], Friedlander and Mazur showed that there are natural transforma-

‘tions, called cyéle class maps

q)p,k . Lka(X) — HR(X)

Define

LoHe(X ) om = ker{®, 4 : Ly Hy(X) — Hi(X)}.

15




The Griffiths group of codimension g-cycles is defined to
Griff?(X) = ZY X hom! Z9(X )aig

It was proved by Friedlander [F'1] that, for any smooth projective variety
X, LpHZp(X) = Zp(X)/Zp(X)agg. Therelore

Ly Hap(X Yhom 2 Griff,(X),

where Griff,(X) = Griff" "(X).
The main result in this chapter is the following

Theorem 1.1.1. If X is a smooth n-dimensional projective variety, then
LiHe(X Vhom and Lo Hg(X)hom ore smooth birational invariants for X. More
precisely, if w1 X — X' is a birational map between smooth p%ojective mani-
folds X and X', then  induces isomorphisms Ly Hiy (X hom = LiH (X hom for
k> 2 and Lo oHu(X)hom = Ln-2He(X Yhom for k 2 2(n — 2). In particular,

LiHe(X ) hom = 0 and Ly_aHg(X)hom = 0 for any smooth rational variety.

Corollary 1.1.1. Let X be a smooth rational projective variety with dim(X) <
4, then @, « LyHp(X) — Hp(X) is injective for allk>2p=>0.

Remark 1.1.1. In general, for2 <p <n—3, Ll (X Yhom 15 NOL @ birational
| invariant for the smooth projective variety X. This follows from the blowup

formula in Lawson homology (See Corollary 1.1.2, 1.1.3).

Remark 1.1.2. Ifp = 0,n — 1,n, then LyHo(X)nom =0 for all k = 2p. In

‘these cases, the statement in Theorem 1.1.1 is trivial. The case for p = 0

16




follows from Dold-Thom theorem ([DT]). The case for p = n — 1 is due to
Friedlander [F 1]. The case for p = n is from the definition. In particulor,
these invariants are trivial for smooth projective varieties with dimension less

han or equal to two.

Another result is this chapter is the following:

Theorem 1.1.2. (Lawson homology for a blowup) Let X be smooth projective
manifold and Y C X be a smooth subvariety of codimension r. Let o : Xy —
X be the blowup of X along Y, mw: D = o YY) — Y the natural map, and
i D=0c"Y) = Xy the exceptional divisor of the blowing up. Then for each

p, k with k > 2p > 0, we have the following isomorphism
Ipk {@15;;9—1 Lp—ij—2j(Y)} D Lpti(X) = Lka(XY)

As applications, we have the following

Corollary 1.1.2. For each n > b, there exists o rational manifold X with

dim(X) = n such that

dimg{Griff,(X) ® Q} =00, 2<p<n—3.

Corollary 1.1.3. For any integer p > 1 and k& 2 0, there e:ﬁists rational

projective manifold X such that LyHyiop(X) ® Q is an infinite dimensional

vector space over Q.

17




The main tools used to prove the main result are: the long exact localiza-

+jon sequence given by Lima-Filho in [Li2], the explicit formula for the Lawson

nomology of codimension-one cycles on a smooth projective manifold given by

Friedlander in ("1}, and the weak factorization theorem proved by Wlodarczyk

and others in [W]] and in [AKMW].

1.2 Some fundamental materials in Lawson ho-
mology

- Tirst recall that for a morphism [ : U/ — V between projective varieties,

" there exist induced homomorphism
fo o LyH(UY — LyH(V)

forall k> 2p >0, andifg: V — W is another morphism between projective

varieties, then

(gof)*:*g*of*.

Furthermore, it has been shown by C. Peters [Pe] that if U and V are
smooth and projective, there are Gysin “wrong way’ homomorphisms f* :
] LoH(V) — Lp_oHp—0o(U), where ¢ = dim(V) - dim(U). Hg:V - W is

another morphism between smooth projective varieties, then

(gof)*=frog"
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Recall also the fact that there is a long exact sequence {cf. [Li2], also [FG])
Ve o= Lka(U — V) — Lka(U) — Lka(V) — Lka_l(U ——V) — e

where U is quasi-projective and U — V' is any algebraié closed subset in U.

Let X be a smooth projective variety and 4g : ¥ < X a smooth subvariety
of codimension r > 2. Let o : Xy — X be the blowup of X along Y,
a: D =c¢"'(Y) - Y the natural map, and 7 : D = o7 1(Y) — Xy the
exceptional divisor of the blowup. Set U := X~V 2 Xy —D. Denote by jo the
inclusion U C X and 7 the inclusion U < Xy. Note that = : D = oY) =Y
makes D into a projective bundle of rank r—1, given precisely by D = P(Ny,x)
and we have (cf. [[V2], pg. 271])

O, (D)lp = Op(ay) (—1)-

Denote by h the class of Opy (—1) in Pic(D). We have h = —D|p

Nyyx)
and —h = 4%, : LyH, (D) — Ly_1Hp (D) for 0 < 2¢ < m (J[FG], Theorem

2.4], [[Pe], Lemma 11]). The last equality can be equivalently regarded as a

Lefschetz operator

—h = %y LgHp(D) — Loy Hmo(D), 0<2q<m. (1.1)

The proof of the main result is based on the following lemmas:
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Lemma 1.2.1. For each p > 0, we have the following commaudtative diagrom

LW B L&) D LH(O) S L)

= L 7

J,'ﬂ—* »LU* j,

4 o 80)
oy LY T LEX) P L) Go) o Hea(Y) —

Proof. This is from the corresponding commutative diagram of fibration

sequences of p-cycles. More precisely, to show the first square, we begin from

the following commutative diagram

i

D — Xy
lm lo
Yy & X

From this, we obtain the corresponding commutative diagram of p-cycles:

Z,(D) & Z,(Xy)
lﬂ'* 1,0'*
Zv) & Z(X).

Since Y is a smooth projective variety, Xy and D are smooth projective

varicties, we have the following commutative diagram

Z,(Xy) = Zp(Xy)/Zs(D)
| ow 1=
Z(X) = Z(X)/Z(Y).
Therefore we obtain the following commutative diagram of the fibration

sequences of p-cycles
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2,(D) & ZXy) - Z(Xy)/Z(D)
17 | oy =

2 B 2 - EX)/EY).

where the fact that the rows are fibration sequences is due to Lima- Filho [Li2].
By taking the homotopy groups of these fibration sequences, we get the
: long exact sequences of commutative diagram given in the Lemma.

O

: 'Proposition 1.2.1. Ifp = 0, then we have the following commautative diagrom

s H(D) B HXy) D OHPME) B He(D) &
e { o = ] me
Loy M ogeo B o) M He) -

Moreover, if ¢ € Hy(D) maps to zero under m, and iy, then T = 0 € Hy(D).

~ Proof, The first conclusion follows directly from Lemma 1.2.1 with p == 0
and the Dold-Thom Theorem. For the second conclusion assume 4,(z) = 0 and
me(z) = 0. Then there exists an element y € HZN (U) such that the image
of ¥ under the boundary map (8o)« : HEM(U) — HR(Y) is 0 by the given
condition. Hence there exists an element z € Hy1(X) such that (Go)*(z) = ¥
Now the surjectivity of the map oy : Hep1(Xy) — Hea(X) implies that there
is an element # € Hyy1(Xy) such that 5*(%) = y. Therefore, =0 ¢ Hy(D).

a
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~ Corollary 1.2.1. If p=n— 2, then we have the following commutative dia-

- gram

b 5 " 5
il DnoHe(D) B LpeaHi(Xy) 5 Dn-aH{U) S Lp—2Hi (D) —
l’,'(* ,LO'* l% l,ﬂ-*

. 3 S0)w
co Ep—aHe(Y) ot po oHi(X) B Ln_aHy(U) @ade g gy (Y) -

Temma 1.2.2. For each p, we have the following commutative diagram b

. . " s |
o LpHR(D) B LyHu(Ry) b LpHi(U) S LpHpa(D) — e it

1 Pp.k 1l P,k 1 @k A Bpe—1 |
r— Hi (I LY Hk()Zy) L fEM(U) LY Hy, _1(D) — e . \‘-‘-

In particular, it s true forp=1,m— 2. i

< 1

Proof. See [Ii2] and also [FM]. !
0 s

!

| ‘ i

Lemma 1.2.3. For each p, we have the following commutative diagram 3
fo L) O L) D L@ O L) - :

1 @pp L ®pk L Ppk L ®p k-1 _

e omn 9 omeo Doapre) B Heam - :

g

In porticular, it is true for p=1,n — 2.
Proof. See [Li2] and also [FM]. , :
O !'
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1.3 Lawson homology for blowups

As an application of Lemma 1.2.1, we give an explicit formula for a blowup
in Lawson homology. Since it may have some independent interest, we devote
5 separate section to it. First, we want to revise the projective bundle theorem
given Dy Friedlander and Gabber ([FG], Prop.2.5). 1t is convenient to extend

the definition of Lawson homology by setiing
LyHy(X) = LoHp(X), tf p<0

Now we have the following revised “Projective Bundle Theorem”:

Proposition 1.3.1. Let E be an algebraic vector bundle of rank v over a

smooth projective variety Y, then for each p > 0 we have

r—1

LoHp(P(E)) = €D Ly H-2(Y)
§=0

where P(E) is the projectivization of the vector bundle E.

Remark 1.3.1. The difference between this and the projective bundle theorem

of [FG] is that here we place no restriction on p.

Proof. For p > r — 1, this is exactly the projective bundle theorem given
in [FQL. Tf p < 7 — 1, we have the same method of [FG], i.e., the localization

sequence and the naturality of @, to reduce to the case in which E is trivial.

‘From
Zo(PT ' % Y) = Zo(P" x ¥) = Zp(C7 x Y,
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~we have the long exact localization sequence given at the beginning of section

2

Voo Lo (PT 1 X Y) — LoHp(PT x Y) — LoHy(C" x Y) — LoH (P77 P xY)— v, ‘[!f'f

From this, and the Kinneth formula for P™ x Y, we have the following b

gomorphism: l
Tk

() Hi_a(Y) & LoHi(CT x V) =2 HPM(CT x Y). |

I
Note that !

(**) Hk—ZT(Y) = Lp—erQZT'(Y) if Y <. ‘ ‘ﬁi

All the remaining arguments are the same as those in [[FG], Prop. 2.5], as
we review in the following,.
We want to use induction on 7. For r — 1 = p, the conclusion holds. From |

the commutative diagram of abelian groups of cycles: i

(O o2y j T DUSTTL  Zo(X X € TN} = {08 _oZpmg (X0} B {Bfopyr Z0(X X TI7)} |
l ! il
Z,(X x Pr-1) - Zp(X X PT) i

We obtain the commutative diagram of fibration sequences: &
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{@-0Zp—J (X)} 69{@§;;+1Zp—j (X)) - {®foFp (DD 1807 X0}

{ L
Zp(X x PT7Y) — Zp(X x PT)
- Zp(X x C"P)
L
— Za(X % C7)

where Zpj(X) = Zo(X X Ci#) for p — § < 0.
The first vertical arrow is a homotopy equivalence by induction. The last
one is a homotopy equivalence by Corplex Suspenéion Theorem [L1]. Hence
by the Five Lemma, we obtain the homotopy equivalence of the middle one.

The proof is completed by combining this with (*) and (**) above.
O

' Remark 1.3.2. The isomorphism

in Proposition 1.8.1 is given explicitly by

r—1
Pltioy Uty -+, Upr) = D W
§=0

where h is the Lefschetz hyperplane operator h : LoHm(P(E)) — Ly H,,_o(P(E))
3deﬁned in 1.1. Forp > r — 1, this explicit formula has becn proved in [[FG],

P rop. 2.5]. In the remaining cases, h is the Lefschetz hyperplane operator
o Hy(P(E)) — Hy, o P(E)) defined in 1.1,

Using the notations in section 2, we have the following:

‘Theorem 1.3.1. (Lawson homology for a blowup) Let X be smooth projective
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manifold and v c X be a smooth subvariety of codimension . Let o Xy —
X be the blowup of X along ¥, D =g Y) = Y the natural map, and
;iD= o }Y) — Xy the exceptional divisor of the blowing up. Then for each

p, k with k > 2p > 0, we have the following isomorphism

Lo { B Lp—ijij(Y)} @ Ly Hi(X) — IpHi(Xy)
1<j<r1

given by
r—1

Lpw(un, -+ oy, ) = E i Uy ot

i=1

 Proof. We use certain idea of the proof of Chow groups for blowups. Let
U .= Xy — D = X —Y. By the definitions of the maps i, « and o, and
Lemma 1.2.1, we have the following commutative diagram of the long exact

localization sequences:

o LeHAD) B LyHWRy) D LHW(U) %5 LpHea(D) -
| 7x Lo = 1 e (1.2)
e LYY O L B Lme Y L) -

From this, and the surjectivity of j*, we have

LpHﬁp(XY) = J*LPHZP(X) + i*LDHQP(D)'

By the “revised” projective bundle theorem above, for any p > 0, there is
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5 jsomorphism

r—1
LyHi(D) & DWW Ly jHe;(Y), 0<2p <.
F=0
Hence we sce that
LyHop(Xy) = 0" LyHyp(X) + Siginh/m* Ly Hop—2;(Y). (1.3)

But clearly by Lemma 1.2.1 and the projective bundle theorem, if u €

L,Hy(Y), then

o (007 () = (io)e(w).

Sincé o is a birational morphism, it has degree one. As a directly corollary
the projection formula (cf. [Pe], Lemma 11 ¢.), we have o,(0™a) = a for any

€ L,H{X). We have

oo (0 ((G0)wu)) = (io)att, w € LHyp(Y').

Thus we obtain the relations

v == Gt — o*((fg)su) € ker 0n,  w € LpyH(Y)

~Since j* = (jo)*o, in (1.2), we get j*(v) = 0. From the exactness of the
bper row in (1.2), we get
r—1

vE S iuh Ly jHy (V). (1.4)

i=1
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The equality (1.3) and the relation (1.4) together imply immediately that
the map Ip2p 18 surjective for the case &k = 2p.

To prove the injectivity for the case that & = 2p, consider
(ulau% T 1ur~1:u) € ker Ip,zp-

- Applying o., we find that u = 0. Note that 7*i. = —h. Now applying ¢* to

he equality

r—1
Z whlmru; =0,
i=1

¢ get

r—1
> hiTrtu; =0 € Ly Hy o(D).

i=1
The isomorphism in Proposition 1.3.1 implies that w; = 0 for 1 < j < —1.
his completes the proof for the case k = 2p.

~ From this and (1.2), we have

= LHpy(D) B LpHypn(Ry) D LiHpa(U) S0

} e } oy = (15)
. L (i) o (512*
- pHopy1(Y) = LyHoypy1(X) > LpHopir ) 0

Now the situation for k = 2p + 1 is the same as that in the case & = 2p.
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(1.5) and the “revised” projective bundle theorem, we have

From

LpH2p+1 (XY) == J*Lpflgp+1(X) + Eg;éi*th*LpﬁH%H%j (Y). (1.6)

From (1.4) and (1.6), we obtain the surjectivity of I, gp+1 for the case that
ck=2p+ 1
o prove the injectivity, consider (g, Ug, U1, u) € ker Ipgpi. Ap-

- plying 0w, We find that » = 0. Note that i*i, = —h. By applying ¢* to the

equality

r—1

> ihintu; =0,

j=

we get

r—1
Zhj+lﬂ*?,bj =0e€ Lp_lﬂk;_g(D).
=1

The isomorphism in Proposition 1.3.1 again implies that u; = 0 for 1 <
j <7 — 1. This completes the proof for the case k == 2p + 1.

Now for k > 2p + 2, we reach the same situation as those in the case that
k== 2p or k = 2p+ 1. More precisely, we give the complete argument by using

athematical induction.
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quppose that we have

~ ;¥ 8y
o LpHapgm(DY 7 LpHapem(Xy) L LpHopym{U) = 0

1 7 ] o 1= (17)
y (ip}* ‘Sﬁ (w:«
g LPH2p+m(Y) — LPHzp+m(X) LpHopym{l) 0

We want to prove that [ 2pm is an isomorphism and

b i * [
co o LpHopimar (D) 2 LpHapimr (Xy) AN LpHopgm+1(U) = 0
.L R .], Ts l%

is

. .
v DpHaprmer ™) S LoHapmi(X) B LpHapimir (U) Goj g

(1.8)
Once this step is done, it completes the proof of the theorem.

From the assumption (1.7), we have

LyHaprm(Xy) = 0% LyHopym (X) + Z g’ n* Ly_jHopim-o3 (V). (1.9)

From (1.4) for k = 2p -+ m and (1.9), we obtain the surjectivity of I, ap4m
or the case that &k = 2p + m.

To prove the injectivity, consider (ug,ug, -+ ,Ur—1,%) € KeT Jpopim. Ap-
ying o, we find that u = 0. Note that 7", _ —h. By applying 4* to the
uality

r—1

. )
Zt*hjw u; = 0,
j=1
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=1
Zhj-l_lﬂ*’u;j =0¢c Lp_lHk_g(D).

j=1

The isomorphism in Proposition 1.3.1 once again implies that u; = 0 for
1 < j <7 — 1 This completes the proof for the case k = 2p +m. Now (1.7)
;.:a,utomaticaﬂy reduces to (1.8) and this completes the proof of the theorem.

.
As an application, this result gives many exampl'esxof smoloth projective
imanifolds (even rational ones) for which the -Griffiths group of p-cycles is
nfinitely generated (even modulo torsion) for p > 2. Recall that the Griffiths
.roup Ciriff,(X) is defined to be the p-cycles homologically equivalent to zero

modulo the subgroup of p-cycles algebraically equivalent to zero.

Example: Note the fact in [F'1] that Griffo(Xy) & Lo Hy( Xy ) hom For X =
P?, Y ¢ P* the general hypersurface of degree 5, we obtain an infinite dimen-
sional Q-vector space Griffs(Xy) ® Q from the fact dimg(Griff, (V) ® Q) = oo

(cf. [C1])). It gives the example mentioned in Remark 1.1.

¥rom the blowup formula for Lawson homology and Clemens’ result [Cl],

e have the following

orollary 1.3.1. For each n > 5, there exists a rational manifold X with

:m(X) =1 such that

dimg {Griﬁ"p(X) ®@} =oc0, 2<p<n—3.

31




proof. Note that Griff,(X) & LpHap(X)nom for any smooth projective
ariety X. Now the remaining argument is the direct result of Theorem 1.1.2
é,nd the above result of Clemens [C1].

O

given in Chapter 6 ([H6)), we have the following

orollary 1.3.2. For any integers p > 1 and k > 0, there exists a rational

ojective manifold X such that LyHy. oy (X)®Q is infinile dimensional vector
ace over Q.

Proof. It follows from the blowup formula for Lawson homology and The-
'ém 1.4 in [H6]. For example, if p = 2, k = 1, we can find a rational projective

manifold X with dim(X) = 6 such that LyHs(X } ® Q is infinite dimensional

eorem 1.4.1, (Friedlander [F1]) Let X be any smooth projective variety of

ension n. Then we have the following isomorphisms
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L’J‘L—].HQTL(X) = Z’;
Ln—IHZn—l(X) = H2n—1(X: Z)a
L1 Hon 2(X) 2 Hyoana (X, Z) = NS{X)

L Ln_lHk(X) =0 fO'l" k> 2n.
O

Remark 1.4.1. In the following, we adopt the notational convention H(X) =

Hi(X, ).

Now we begin the proof of our main results. There are two parts of the

“proof of the main theorem: p = land p=n-—2.

roof of the main theorem (p = 1):
Case A: o, @ L Hio(Xy ) hom — Ly Hg (X Y nom 18 injective.

We will use the commutative diagrams in Lemma 1.2.1-1.2.3.

Let a € Ly Hi(Xy)hom be such that o.(a) = 0. By Lemma 1.2.1, we have
;.#(a) = 0 € LiHy(U) and hence there exists an element b € LiH(D) such
that 4,(b) = a. Set b = m,(b). By the commutative diagram in Lemma 1.2.1
again, we have (ig).(h) = 0 € LiHi(X). By the exactness of the rows in
f“c:.:he commutative diagram, there exists an element & € LyHpp(U) such that
tho image of & under the boundary map (Jo)« ° LiHgpa(U) — LiHi(Y) is
b. Note that &, is the other boundary map &, : LiHp(U) — L1 H (D).
Therefore, m,(b — 6,() = 0 € LiHx(Y) and ji(b — 8.()) = a. Now by
the “revised” Projective Bundle Theorem and Dold-Thom theorem ([DT]),

33




' we have I Hy(D) & LiH(Y) @ LoHe o(Y)® Hyy(Y) D -+ = LiHY)®
Hk—2(Y) @Hk_f;(Y) @ . We know 6—5*(5) € Hk_z(Y) @H’ﬂ_4(Y) @G-+, By
. the explicit formula of the echomology (and homology) for a blowup (|GH],

v 1), we know each map Hy_o(Y) — Hy (Xy) ig injective. Hence @ must be

gero in LInHy (Xy). This is the injectivity of ..
Case B: oy : LlHk(X'y)hom —r Ly Hi( X Y hom 18 surjective.

Let @ € LiHg(X)hom. From the surjectivity of the map o : LiHx(Xy) —

L H(X), there exists an element & € L1 Hy(Xy) such that 0,(d) = a. Set

j = ®,,(d@). By the commutative diagram in Lemma 1.2.1, we have j*(b) =
0 HPM(U). From the exactness of the rows of the diagram in Lemma 1.2.1,
‘we have an clement & € Hy(D) such that 4,(¢) = b. Set ¢ = (). Then
(7/[])*(6) = 0 by the assumption of a and the commutative of the diagram in
Lemma 1.2.1. Using the exactness of rows in Lemma 1.2.1 again, we can find
“an element d € HPM(U) such that (8o)«(d) = ¢. Hence in(E = 0u(d)) = b €
«(Xy) and (& — 8,(d)) = 0. Now we need to use the formula Ly Hy(D) =
H (Ve Ho(Y)® Hs(Y)® -+ again. From this we can find an element
€ Ly Hy,(D) such that @, x(e) = &— d(d). Obviously, @ (@ —i.(e)) = 0 and

(& — iy {€)) = a as we want.

Proof of the main theorem (p =n — 2):
Case 1: o, is injective.

The injectivity of j5 : Ln. o He(X hom — Ln—2Hix(U)hom is trivial since the
dim(Y) < n — 2, where jo : U — X is the inclusion. In fact, if dim(Y) <

=2, 43 ¢ Lp_oHWw(X) — Ln_oHy(U) is an isomorphism and so is j§ :
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Ln_ng(X)hom —> L2 Ho{U ) phom I dim(Y) =n—2, then for k = 2(n—2)+1

the injectivily of 7% is from the commutative diagram in Lemma 1.2.2, and the
vanishing of Lo_aHp(Y) and Hy(Y); for k = 2(n — 2), the injectivity of j5
ig from the commutative diagram in Lemma 1.2.2, and the nontriviality of
(io)« : H2n-2) (Y} — Hyn-2)(X), since ¥ is & Kshler submanifold of X with
complex dimension n — 2.

Now we need to prove 5* : Ln_aHy(Xyhom — In-2Hi(Uhom I8 injective,
where 7 : U — Xy the inclusion. Let a € Ln_ng(f(y)hom such that 7*(a) =
-:0 € LnaHi(U)pom, then there exists an element b € L, _oHi(D) such that
i(b) = a. Now by the commutative diagram in Corollary 1.2.1, we have

Ji(ou(a)) = 0. Set ¢ = 0.(a). From the exactness of localization sequence in
‘E-_'the bottom row in Corollary 1.2.1, there is an element ¥ € Ly _oHi (V') such
“that (i0)a (1) = @'

| Claim: In the commutative diagram in Corollary 1.2.1, there exists an
lement ¢ € Lp_gHy1(U) such that (8o)«(¢) = & under the map (80)s
m—aHpy1(U) = Ln_oHy(Y) and 8,(¢/) = bunder the map 8, : L 2 Hp1 (U) —
Ln-sHi(D).

Proof of the claim: Since ®p_pi : La_aHk(Y) = Hy(Y) (note: & 2>
2(n — 2) > dim(Y)), we use the same notation b for its image in Hy(Y)
since Ly, oHy(Y) — Hy(Y) is injective for all k > 2(n — 2). At the beginning
of the proof of the injeétivity of the main theorem, we have already shown that
8 Lo Hi (X hom — Lo Hp(U)pom 18 injective. That is to say, (i)s (V') =
0: € Ly oHy(X )hom. Hence there exists an element ¢ € Lp_aHy1 (U) such that

whose image is & under the boundary map (60) : Ln-aHi41(U) — Ln—2H #(Y).
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Let b be the image of ¢ under the map Loy oHe1 (U) — Ly_oHg(D). Now

(B — b) =0 € Ln_ng(Y) and i*(@n_g,k(a - b)) =0z Hk(j{—y), by PI‘OpOSi—

T
(b - b) = 0. Since Py ig injective on Lo Hi (D)

tion 1.2.1, we have ®n_2k

‘(gee Theorem 1.4.1), we get b —b = 0. This ¢ satisfies both conditions of the

claim.
O

Now everything is clear. The element @ comes from the element ¢ in

LnﬂZHkH(U). By the exactness of the localization sequence in the upper

ow in Lemma 1.2.1, we get @ = 0 € Ly_oHi(Xy). This completes the proof

o the injectivity.
b (lase 2: 0, is surjective.

Gimilar to the injectivity, the surjectivity of

j; : Ln~—2Hk(X)hom — Ln—ZHk:(_U)hom

“trivial since-the dim(Y) < n—2, where jo : U — X is the inclusion. In fact,

dim(Y) <n—2, j5 1 In—2H, W(X) — L oHy(U) is an isomorphism and so is
Ln—sHi(X ) nom — In-2He{U Yhor: 1 dim(Y) = n—2, then the surjectivity

is from the commutative diagram in Lemma 1.2.3, and the isomorphism

—2,2(n-2) - Ln—ZHQ(n_Z) (Y) = Hz(nr2) (Y) =Y
‘We only need to show 7* : Lo He(Xy nom = Lo Hi (U ) hom, Where j

— X v the inclusion. There are a few cases.
(a) For the-case that k = 2(n — 2), the map j*: Lo Hi(Xy) = LnaHix(U)

s a sutjective map. Hence the induced map j* on Ln_oHk (X ) hom 18
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also surjective by trivial reason.

The case that &k = 2(n - 2) + 1. By the commutative diagram in
Lemma 1.2.2, and note that the map ®p_92m—2) 1 Ln_aHom-9(D) —
Hyn-2) (D) is injective, we have, for d € Lo Hotri-2)41(U)nom, the im-
age of a under the boundary map 6. : Ln_sHopm—0)41(U) — Ln_gHgn(D)
must be zero. Hence a comes from an element b € Ln_gﬂg(n_z)Jrl(X'y).
Tth = ®p aom-a+1(b) # 0, then Jec € Ly_oHyn_941(D) such that
b—1.(c) € Lnuzﬂz(nmg)“()z'y)hom and j*(b — i.(c)) = a. In fact, since
7*(B) =0, there exists ¢ € Hag2y41(D) such that (4).(¢) = b Note
that ®p_2om-2+1 © In-aHagm-2y+1(D) — Hapm-24:(D) is an isomor-
phism by Theorem 1.4.1), then there exists ¢ € L,y Hapn—9)-1(D) such

that ®p..22(n-2)41(¢) = & This shows the surjectivity in this case.

Now we only need to consider the situation that £ > 2(n — 2) +2. In
this case, the surjectivity of 7* @ Ln_ o Hy(Xy ) hom — Ln-oHy([ ) hom 18
- from the commutative diagram in Lemma 1.2.2, and the surjectivity of
the map ®,_p 4 : Lo Hx (D) — Hy(D) (see Theorem 1.4.1)). In fact, if
@ € Lol (U)hom, then by the exactness of the commutative diagram in
Lemma 1.2.2, there is an clement b € L, H,(Xy) such that j*(b) = a.
Set b = @, 9,(b). Since 7*(B) =0 € HPM(U)), ¢ € Hy(D) such that
w(€) = b. Now ®,_py ¢ Ly oHy(D) =2 Hy(D) (See Theorem 1.4.1)),
there exists ¢ € L,,.,Hy(D) such that &, 54(c) = & The commutative
diagram in Lemma 1.2.2 implies that ®,_, x(b—i.(c)) = 0, i.e., b—i,(c) €
Ln—2Hk(XY)hom. The exactness of the upper row in Lemma 1.2.2 gives

7*(b —4.(c)) = a. This completes the surjectivity in this case.
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This complotes the proof for a blow-up along a smooth subvariety ¥ of
codimension at least 2 in X,
Now recall the weak factorization Theorem proved in [AKMW| (and also

[Wl]) as follows:

Theorem 1.4.2. ([AKMW] Theorem 0.1.1, [Wlj) Let w: X — X' be a bi-
tional map of smooth complete varielies over an algebraically closed field of

haracteristic zero, which is an isomorphism over an open set U. Then f can

¢ factored as a sequence of birational maps

here each X; 18 @ smooth complete variety, and @ipq + Xy — X 18 either a

lowing-up or a blowing-down of o smooth subvariety disjoint from U.

Note that ¢ : X -+ X' is birational between projective manifolds. We
lete the proof of for the birational invariance of Ly Hp (X ) hom for any

mooth X by applying the above theorem.
(]

mark 1.4.2. Griffiths [G] showed the nontriviality of the Griffiths group
8 0f 1-cycles of general quintic hypersurfaces in P* and Friedlander [F1] showed
h@t Ly Ho(X ) nom = Griff (X) for any smooth projective variety X. Hence, in

neral, this is « nontrivial birational invariant even for projective threefolds.
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Chapter 2

The Generalized Hodge Conjecture for
1-cycles and codimension two algebraic cycles

.1 Introduction

In this chapter, all varieties are defined over C. Let X be a smooth pro-
ective variety with dimension n. Let Z,(X) be the space of algebraic p-cycles

n X. Set 2" ?(X) = Z,(X). There is a natural map

dy: 29X) - H(X,Z)

alled the cycle class map.

Tensoring with QQ, we have

e, ®Q: 29X)®Q — HY(X,Q).

It is well known that cl,(Z,(X)) € H®I(X) N p(H*(X,Z)), where p :
HY(X,7) — H%(X,C) is the coeficient homomorphism and H%¢(X) denotes
the (q,q)-component in the Hodge decomposition (cf.[GH], [Lewl]). There
are known examples where cly(Z,(X)) # H%(X) N p(H¥(X,Z)) (cf. [BCC]
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p,134—125], [Lew2]). We recall:

Hodge Conjecture (for codimension-q cycles): The rational cycle class

The
d,®Q: Z7(X) ®Q — HY(X) N H*(X, Q)

‘ is surjective.

he Hodge Conjecture over 7 'The rational cycle class map

l, : Z9(X) - HYI(X) N p(H* (X, Z))

. surjective.
" We shall denote by Hodge*%(X, Q) the statement that: “ The Hodge Con-
ecture for codimension-q cycles is true for X”. Similarly, we denote by

Hodge®(X,Z) the corresponding statement for the Hodge Conjecture over

‘More generally, we can define a filtration on H,(X,Q) as follows:

De_ﬁnition 2.1.1. ([FM],§7]) Denote by FHL(X,Q) C Hk(X,Q) the magimal
b-(Mized) Hodge structure of span k— 2p. (See [Gro] and [FM].) The sub-Q

ctor spaces F,Hy(X,Q) form a decreasing filtration of sub-Hodge structures:
o C B H(X,Q) C By Hi(X,Q) € -+ € FoHu(X, Q) € Hi(X, Q)
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© and o He(X, Q) vanishes if 2p > k. This filtration s called the Hodge fil-
:E:: trﬂ't’f:on- ‘
A homological version of the arithmetic filtration (see [[Lew1],§7]) is given

in the following definition:

Definition 2.1.2. ([FM),§7]) Denote by GpHi(X, Q) C Hy(X,Q) the Q-
vector subspace of Hy(X, Q) generated by the images of mappings H, (Y, Q) —
| H(X ,Q),induced from all morphisms Y — X of varieties of dimension< k—p.

:The subspaces GpHy(X, Q) also form a decreasing filtration called the geomet-

TiC filtration:
0 C G HR(X,Q) € Gp Hi(X,Q) C -+ € GoHip(X, Q) & (X, Q).

Since X is smooth, the Weak Lefschetz Theorem implies that GoHp(X,Q) =
.k(X ,Q). Since Hy(Y, Q) vanishes for k greater than twice the dimension of
', GpH(X, Q) vanishes if 2p > k.

It was proved in [Gro] that, for any smooth variety X, the geometric fil-
ration is finer than the Hodge filtration, i.e., Gka(X ,Q) C ﬁ'ka(X ,Q), for
Il p and k.

The Generalized Hodge Conjecture: For any smooth variety X,

Gy H(X, Q) = FHi(X, Q) (2.1)
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_ the assertion that the equation (2.1) is true.

Definition 2.1.8. The Lawson homology LyHy(X) of p-cycles is defined

by

Lka(X) = Wk_gp(zp(X)) fOT k Z 2p Z O,

where Z,(X) is provided with a natural topology (cf. [F1], [L1]). For general

background, the reader is referred to Lawson’ survey paper {L.2].

There are two special cases.

(a) If p = 0, then for all & > 0, LoHi(X) = Hy(X,Z) by Dold-Thom
Theorem [DT].

(b) If k = 2p, then LyHap(X) = Z,(X)/Zp(X )y, where Z,(X),, denotes

the algebraic p-cycles on X which are algebraic equivalent to zero.

In [FM], Friedlander and Mazur showed that there are natural maps, called

cycle class maps

q)p,k: : Lka(X) - Hk(X,Z)
Lo Hy (X ) pom = ker{®px : LpHy(X) — Hp(X,Z)}.

TpH(X) == Im{®y ) : LyH(X) — Hi (X, Z)}
and

T, Hy(X,Q) = T,H,(X) ® Q.
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It was proved in [[FM],§7] that, for any smooth variety X, TpHy (X,Q) C

.GPH;C(X,@) for all p and k. Hence

T, Ho(X, Q) C GpHi(X,Q) C I, Hi(X, Q). (2.2)

In this chapter, we will use the tools in Lawson homology and the methods

iven in [H1] to show the following main result:

neorem 2.1.1. Let X be a smooth projective variety. If the Hodge conjecture
or codimension 2 cycles over 7 holds for X, i.e., if we have Hodge**(X, 7.},
hen it holds for any smooth projective varicty X' birational to X. That is,

lodge®2(X, Z) is a birationally invariant assertion for smooth varieties X.

Remark 2.1.1. The above theorem remains true if Z is replaced by Q. Since
ﬁo.dgez’z(x, Q) implies Hodge™ 22%(X, Q) for n.> 4 (cf. [[Lewl], p.91]),
Hodge" 22 2(X, Q) is also e birationally invariant property of émooth
n-dimensional varieties X.

As a corollary, we have

Corollary 2.1.1. If X is a rational manifold with dim(X) < 5, then the
dge conjecture HodgePP (X, Q) is true for 1 < p < dim(X). In fact,

dgeP? (X!, Z) is true except possibly for p = 3,dim(X) = 5.

emark 2.1.2. By using the technique of the diagonal decomposition, Bloch
d Srinivas [BS] showed that, for a smooth projective variety X, Hodge®*(X, Q)
lds if the Chow group of 0-cycles Cho(X) =& Z . Laterveer [Lat] generalized
is technique and showed the Hodge Conjecture holds for a class of projective

anifolds with small chow groups.
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Clorollary 2.1.2. Let X be a smooth projective variety of dimension <5 such
that the Hodge Congecture is known to be true, i.e., HodgePP(X, Q) holds for
all p. Then the Hodge Conjecture holds for all smooth projective varietics X'
.whz’ch are birationally equivalent to X . Non-rational ezamples of such an X

include general abelian varieties or the product of at most five elliptic curves.

- For more examples, the reader is referred to the survey book [Lewl].

Our second main result is the following

heorem 2.1.2. The assertion a‘ﬁa(n — 2,k, X) is a birationally invarient

roperty of smooth n-dimensional varieties X when k > 2(n —2). More pre-

.isely, if @E(n — 9.k, X) holds for a smooth variety X, then GHC(n —

., k, X') holds for any smooth variety X' birational to X

We also show that

Proposition 2.1.1. The assertion that “Tn_2H(X, Q) = F, o Hy(X,Q) holds”
is o birationally tnvariant property of smooth n-dimensional varieties X when
k>2(n--2).

Similarly, for 1-cycles, we can show the following.

Proposition 2.1.2. For integer k > 2, the assertion that “I1Hy (X,Q) =

ﬁ‘l Hi,(X, Q) holds” is a birationally invariant property of smooth n-dimensional

_ arieties X .
and

Theorem 2.1.3. For any integer k > 2, the assertion 5}3’—6’(1,&,}() is a

Dirationally invariant property of smooth varieties X.
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Remark 2.1.3. For the case k = dim(X), Lewis has already obtained this
result in [Lewl].

Corollary 2.1.3. For any smooth rational variety X with dim(X) < 4, the

Generalized Hodge Congecture holds.

The main tools used to prove this result are: the long exact localization se-
quence given by Lima-Filho in [Li2], the explicit formula for Lawson homology
of codimension-one cycles on a smooth projective manifold given by Friedlan-

der in [F1], and the wesk factorization theorem proved by Wlodarczyk in [WI]

“and in [AKMW]),

'2.2  The proof of the main theorems

Let X be a smooth projective manifold of dimension n. In the following, we
ill denote by H,q(X) the image of " P""4(X) under the Poincare duality
somorphism H2>*P~9( X, C) = Hy (X, C).

et X be a smooth projective manifold and 4 : ¥ — X be a smooth
ubvariety of codimension r. Let o : Xy — X be the blowup of X along
Y,i:D = oY) — Xy the exceptional divisor of the blowing up, and
D > Y the restriction of o to D. Set U := X — Y & Xy — D. Denote by

0 the inclusion U ¢ X and j the inclusion U C Xy.

Now T list the Lemmas and Corollaries given in [H1].

45




Lemma 2.2.1. For each p, we have the following commutative diagram

e LpHR(D) B LpHi(Xy) L LHpU) B LpHe (D) —

™ Jra* -Lg } e

o L) S LX) B L) % LHY) o

'Remark 2.2.1. Since m, is surjective (this follows from the explicit formula
for the Lawson homology of D, i.c., the Projective Bundle Theorem in [FGJ),
it is easy to see that o, is surjective.

Corollary 2.2.1. If p= 0, then we have the following commutative diagram

v H(D) B om(Xyy S oEEM@y S B WD) -

1 e | o 182 L 70
s @ m B ompMuy () -

| Moreover, if x € Hyp(D) vanishes under m, and ix, then z = 0 € (D).

Corollary 2.2.2. If p=n — 2, then we have the following commutative dia-

gram b

7 LaaHy(D) B LyoHy(Xy) D LaogHu(U) 5 LaaHin(D) — - I

L | o = L7 i
D= Leo (V) P Lo H(X) B L) N LaaH () - i)

‘Lemma 2.2.2. For each p, we have the following commutative diagram !

tre e Lka(D) j:) Lka(XY) J_'; Lka(U) ﬁ) LPH""“}"(D) -
L Dy L @p 1 Pppk L @pkt | 1

o HY(D)Y B Hy(Ky) D omPMuy B H(D) -

An particular, it is true forp=1,n — 2. i
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Lemma 2.2.3. For each p, we have the following commutative diagram

o LE®) O Lmx) D Lmw) N LHoy) -

‘I' (I)Psk ‘l' @Ihk l (I)p)k j’ Qlﬂ,k*1

L =YY omyx) D oaproy O By -

In particular, it s true forp=1mn-—2.

Remark 2.2.2. All the commutative diagrams of long exact sequences TEMIn
commautative and exact after tensoring with Q. We will use these Lemmas and

corollaries with rational coefficients.
The following result proved by Friedlander will be used several times:

Theorem 2.2.1. (Friedlander [F1]) Let X be any smooth. projective variety of

dimension n. Then we have the following isomorphisms

Lnlezn(X) = Z,
L'n.—lHZ'n.fl(X) = H211.—1(X: Z)a
Ln—IHQn—Q(X) = Hn—l,n—l(X; Z’) = NS(X)

\ Ly 1 Hy(X) =0 for k>2n.

where NS(X) is the Néron-Severi group of X.

2.1  The proof of Theorem 2.1.1 for a blowup

In what follows we drop reference to the coeflicient homomorphism p, and

enote by Hi(X,Z) its image in H(X,C).

There are two cases to consider:
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Case 1: If @22 ¢ L3 Ha(n-2(X) = Hon-2(X; Z)NHygp—2(X) is sur-
jective, we will show that ®, g2(n—2) : In—2Ham-n( %y) — Hymny(Xy, Z)
anz,n—2(XY) is also surjective.

Tet b € H fz,n—z(ffy) N HZ(n—Q)(XY;Z). Set o = 0.(b) € Hopnony(X,Z).
Since o preserves the type, we have a € Hyn—) (X, Z) N Hygpa(X). Now

by assumption, there exists an element & € Ly—s Hagm-2) (X) such that
(I)n—2,2(n72) (a) = Q.

Now since 0y : Ln—2Hagm—9y(Xy) — Ln—gHam-2)(X) is surjective, there ex-
ists an element b € Ln_gﬂg(n_g)(f(y) such that o (b) = &. Now @nﬁg)g(n_g)(g)—
"p is mapped to zero under oy, on Ham_g) (Xy,Z). By the commutative di-
gram in the long exact sequences in Corollary 2.2.1, there exists an ele-
"1'Iﬁent ¢ € Hoga(D,Z) such that i.(c) = By _a2n-2(0) — b. " Using Corol-
ary 2.2.1 once again, we have m.(c) = 0. This follows from the fact that
im(Y) = n —r < n — 2 and hence (i) : Hopn-9)(Y,Z) — Hyn (X, Z)
s injective, From the blowup formula for the singular homology, e | xor w18
njec’pive. Now by assumption, b and b are non-torsion elements. Hence c is
“not a torsion element in Hyp—9y(D, Z), 1.e.,¢ € Hapn-2{D; Z)tree, the torsion
ree part of Hyp—9y(D, 7).

Since 1, preserves the type, we have the following

Claim: ¢ € Hyg, (D, Z) N Hy_g52(D).

Proof. Note that

H2(n_2)(D,Z)free C Han-2(D,C) = Hpgpn o(D)SH —me3(D)YBHy 30-1(D).
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c=c+c+té € Hyn—9y(D,C) such that ¢y € Hy ona(D), 1 €

; Hot n_3( 1)) and hence & € H, _S,nﬁl(D). Note that the complexification of i,
o the map 1= ®C : Hyn2)(D, C) = Ha2)(Xy, C). If i, ®Cler) = 0, we have

, = 0. In fact, 4 ® C(c1) = 0 and the exactness of the long exact sequence in

he upper row in Corollary 2.2.1 implies that an element d € oM 1 (U, C)

uch that 6.(d) = c1. We use the commutative diagram in Corollary 2.2.1

gain. From the commutativity of the diagram in Corollary 2.2.1, we have
he image of d under the boundary map (do). must zero in Hyp ) (Y, C).
‘his follows from the fact that the complex dimension of dim(Y) < n —2
.nd the Hodge type of d is of type (n — 1,n — 3). Now by the exactness
f the long exact sequence in the lower row in Corollary 2.2.1, there exists
in element ¢ € Hom-n)41(X,C) such that jg(e) = 4. It is Well—.known that
: Hg(n_g).},l()z}/, C) = Hym-a41(X, C) is surjective. Therefore, there exists
€ Hg(nm2)+1(Xy,C) such that 0.(8) = e. We get d = j*(é) and hence
= (0 € Hypn-g(D,C) by the exactness of the the upper row sequence in
rollary 2.2.1. This implies & = 0 and hence ¢ € Hy..gn—2(D). This finishes

g

Since dimD = n — 1, hence by Theorem 2.2.1, the map ®p_no@m_2) :
;2H2(n_2)(D) — Hynoy(D,Z) N Hy 2, 2(D) is an isomorphism. Set ¢ =
~22(n—2(¢). Therefore, Q‘)n_g‘g(n_g){g — ix(8)} = b. Hence @, _93m-2) :
~2Hyn_g) (Xy) — H2(n_2)(}z’y,Z) N Hy_ypn2(Xy) is surjective .

On the other hand, we need to show

ase 2: 1f (I)n—212(n—2) : Ln_—ZH2(n—2) (XY) - H2(n—2) (XY: Z‘) an—2,n—2(XY) s
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surjective, then Pn_a.s(n-2) : L oHom-2(X) = Hatnay(X, Z) N Hyy_gp2(X)
g also surjective.

This part is relatively easy. Let a € Hopm_2)(X) N Hygn-2(X). Since o, :
Hz{nfz)(Xy,Z) — Hyg 2(X,Z) is surjective and 0, ® C : Hypn_p){Xy,C) —

Hyn-2) (X, C) preserves the Hodge type, there exists an clement
be Hz(n—Z)(XY; ZyN Hnmz,n—z(ffy)
uch that o,(b) = a. Now by assumption, we have an element

b€ Ly_aHapm2(Xy)

uch that @,_gom-n(b) = b. Set & = oy (b). Then from the commutative of
he diagram, we have ®,,_z2(,-2(@) = a. This is exactly the surjectivity in
hig case.

This completes the proof for a blowup along a smooth codimension at least

two subvariety ¥ in X.

2.2.2 The proof of Theorem 2.1.2 for a blowup

Now we have the following:

Proposition 2.2.1. The assertion that “T,_oH(X, Q) = F,_oHy(X, Q) holds”
a b:rjmtz'_onazly invariant property of smooth n-dimensional varieties X when

2 2(n - 2).

Proof. There are two cases to consider:
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Case A: If Op gy Ly oHi(X) 0 Q — E o Hp(X,Q) is surjective, we
ant to show @n_o * Ln—oHk (Xy) © Q — F_sHy(Xy, Q) is also surjective,

.Let o € B o Hy(Xy,Q), set b= o.(a) € Fy_oHy(X,Q). By assumption,
here exists b ¢ L, oHp (X, Q) such that fI)n_ggk(B) = b. By the blowup for-
ala in Lawson homology (see [H1]), we know that o : Lp_oHo( Xy, Q) —
_,Hy(X, Q) is surjective, there exists an element 4 € Ln_ng()z'y, Q).such
at 0,(@) = b. By the commutative diagram in Lemma 2.2.1 and Corol-
vy 2.2.1, we have F*H(®@pax(@) —a) = 0 € HPM(U,Q). The exactness of
¢ Jocalization sequence in the rows 'in Corollary 2.2.1 implies that there
ists an element ¢ € Hy(D,Q) such that 4.(¢) = ®p ox(d@) — a. Since
e dim(D) = n — 1 and D is smooth, by Theorem 2.1, we know the nat-
A transformation @, oy @ Ln-oHy(D) — Hy(D) is an isomorphism for
2 2n — 2) + 1. Hence ®,,_ a4 1 Ly_oHpy(D) ® Q & Hp(D,Q). Therefore
éfe exists & € Ly oHy(D) ® Q such that @, _54(¢) = c¢. Now it is obvious
®p2i(@ — 4.(6)) = a. The proof of the case k = 2(n — p) is from the

oof of Theorem 2.1.1. This is the surjectivity as we want.

Case B: If o : Ly o Hy(Xy) ® Q — ooy Hy(Xy, Q) is surjective, we
tto show @, g 1 Ln_o Hi(X)®Q) — Fr o H (X, Q) is also surjective. We
use an argument similar to the Case 2 above. Suppose b € Fi,_oH, X, Q).
n there exists a b € F,_yHy(Xy, Q) such that o.(b) = b by the blowup
ula, for the singular homology with Q-coefficients. By assumption, there
‘;s an g & anzﬂk(xy) ® @ such that ®,_,x(d) = b. Set a = 0. (@).
nae Ly 2 Hi(X) ® Q and ®,_54(a) = b. This finishes the proof of the

ectivity in this case.

51




Now we give the proof of Theorem 2.1.2. First, we suppose that
GHHZHk(X: Q) = Fn—2Hk(X: Q)

We will show
oo Hi(Xy, Q) = F, 2 Hi(Xy, Q)

g6 by case.

- For k > o, E,_oH, (Xy) = 0 and hence nothing needs to be proved.

. For k = 2n, Gﬂ_ng()z’y) = Fn_ng()Z'y) = 7, so the result is true.

For k=2 — 1,20 — 2, GuaHi(Xy, Q) = Foalli(Xy, Q) = Hy(Xy, Q)
llows from the definitions of the geometric filtration and the Hodge filtration.
The .'only case left is & = 2n — 3 since the case that k.= 2n — 4 has
proved in Theorem 2.1.1. In this case, T, o Hx(M, Q) == Gr_oHr(M, Q)

81155 been proved in [H3] for any smooth projective variety M. The assumption

his situation. Hence T7,_o Hy (f(y, Q) = E,_oH, (Xy, Q) follows from Propo-
n 2.2.1. Now by (2.2), we have Gn_gﬁk()z’y, Q) = ﬁ‘n_gﬂk()?y, Q).

On the other hand, it has been proved in [[Lewl], Lemma 13.6] that
2Hu(X,Q) & Fy yHy(X, Q) holds if Gu_oHi(Xv, Q) & By 2Hi(Xy, Q).
last part is exactly the assumption. This finishes the proof of Theorem

2 for one blowup over a smooth subvariety of codimension at least two.
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9.2.3 The proof of Theorem 2.1.3 for a blowup

imilarly, for 1-cycles, we have the following.

‘Proposition 2.2.2. For integer k > 2, the assertion that ‘“TyHi(X,Q) =

B He(X, Q) holds” is a birationally invariant property of smooth n-dimensional

varieties X.

Proof. As before, there are two cases to consider:

Case a: If TV H (X, Q) = F‘lHk(X, Q) holds, then
T Hy(Xy, Q) = B Hy(Xy, Q)

holds. By the theorems in [[FM],§7], T1Hx(M, Q) C FAH (M, Q) holds for any
smooth variety M. We only need to show T Hy, (Xy, Q) 2 1 H,(Xy,Q). The

argument is similar to the proof of the Theorem 1.3 in [I3]. T give the detail

as follows:

Let o € FyHy(Xy,Q), set b = 0,(a) € FLH(X,Q). By assumption, there

exists b € LuHy(X, Q) such that @, 4(B) = b. By the blowup formula in Law-
- son homology (see [H1]), we know that o, : InHy(Xy, Q) — L1 Hy(X, Q) is
surjective, there exisfs an element & € LiHy(Xy,Q) such that o.(@) = b.
By the commutative diagram in Lemma 2.2.1 and Corollary 2.2.1, we have

F(@1(8) — a) = 0 € HEM(U,Q). The exactness of the localization se-

- quence in the rows in Corollary 2.2.1 implies that there exists an element
¢ € Hy(D,Q) such that i,(c) = ®1,(@) — a. Set d = m.(c) € LiH(Y) ® Q. ‘
By the commutative diagram in Corollary 2.2.1, d maps to zero under (éo)y : |

Hy(Y,Q) — Hy(X,Q). Hence there exists an element e € HPY (U, Q) such
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that (8o)«(e) = d. Let d € Hy(D, Q) be the image of e under this boundary
map O HEM(U,Q) — Hy(D,Q), ie., d = 8,(e). Therefore, the image of
¢ —d is zero in Hy(Y,Q) under m, and is zero in Hi(Xy, Q) under i,. By the
- blowup formula in Lawson homology (see [H1]), we know such an element c—d
n the image of some f € LiHy(D) @ Q, L.e.,®1,(f) = ¢ d. Hence we get

@, (& — 1:(f)) = 0. This is the surjectivity as we want.

Case b: If T\ Hu(Xy,Q) = 1 H(Xy,Q) holds, then T1Hy(X,Q) =
- H(X,Q) holds. This part is relatively easy. As before, we only need to
how T1Hr(X,Q) 2 FH(X,Q).

Let b € FiH(X,Q). Since o : Xy — X is the blowup along the smooth
variety Y, we have o.(F1 Hi(Xy,Q)) € FiH(X,Q). In fact, the inclusion
¢ an equality. (See [Lew2] Lemma.13.6) Therefore, there is an element a €
P Hy(Xy,Q) such that o,(a) = b. By assumption, there is an element & €
- LiHy(Xy, Q) such that ®, (@) = a. Set b = &1,(d) € L1Hy(X, Q). By the
naturality of ®; 4, we have o,(b) = b. This is the surjectivity as we need.

1
Now we give the proof of Theorem 2.1.3. First, suppose G1Hy(X,Q) =
- FyHy(X, Q). We want to show that Gy Hy(Xy, Q) = Fi Hy(Xy, Q).
Now comparing the blowup formula for Lawson homology (cf. [H1]) and for
| singular homology {(both with @ coefficients) along the same smooth subvariety

- Y of codimension at least two, we find the same new components, i.e.,

r—1
P H—2(Y, Q),

j=1

g both in LiHy(Xy,Q) and Hy(Xy, Q).
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This, together with (2.2), implies that the new component of this blowup
ong Y in Gy Hy(Xy, Q) contains @;;i Hy,_0;(Y, Q). Since GiHy(Xy, Q) C
o Xy, Q), the new component of this blowup along Y in G]Hk,()?y,@)‘ is

so contained in @)1 Hy—2;(Y; Q). Therefore

G Hy(Xy,Q) = { éﬂk—Zj(Ya @)} B G H(X,Q) (2.3)

j=1

~Similarly,

A Hy(Xy, Q) = { TG_; Hy95(Y, @)} @ FLH (X, Q) (2.4)

From (2.3) and (2.4), we deduce that G Hy(Xy,Q) = FLH,(Xy, Q).

On the other hand, we also need to show that if G1H, ()"{y, Q) = L H, (f(y, Q),
G H (X, Q) = P HW(X,Q). An argument similar to the one given in

e B works. Lewis [[Lewl], Lemma 13.6] proved this part in a more gen-

segting.

This finishes the proof of Theorem 2.1.3 for a blowup along a smooth

variety with codimension at least two.

Now recall the weak factorization Theorem proved in [AKMW] (and also

W1]) as follows: !

eorem 2.2.2, (JAKMW] Theorem 0.1.1, [Wlj) Let f: X — X' be a bi- '_‘
;cmaz map of smooth complete varieties over an algebraically closed field of

racteristic zero, which is an isomorphism over an open set U. Then f can

Ve ifactored as
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where each X; 15 @ smooth complete variety, and @41 @ X; — X1 15 either a
; lowing-up or & blowing-doum of a smooth subvariety disjoint from U.

Moreover, if X —U and X' — U are simple normal crossings divisors, then

ine same is true for each Xy~ U, and the center of the blowing-up has normal
ossings with each X; —U.
“Hence Hodge?*(X, Q) , E;'?—fé(n — 2,k, X) and E}?I'—é(l,k,)() are bira-

nally invariant properties about the smooth manifold X.

O

he proof of the Corollary 2.1.1 and 2.1.2 are based on Theorem 2.1.1,

mark 1.1 and the strong Lefschetz Theorem. By using the strong Lefschetz

orem, one can show that Hodge??(X,Q) = Hodge" »"7 (X ,Q) for 2p <

cf. [Lewl] for the details.)

he Corollary 2.1.3 is obvious from Theorem 2.1.2 and Theorem 2.1.3.

A remark on generalizations

From the proof of the Theorem 2.1.1 and 2.1.2, we can draw the following

lusions:
Fix n > 0 and 0 < p < n. If we have Hodge™ (Y, Q) for all ¢ < p and all
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smooth projective variety Y, i.e., the Hodge conjecture is true for every
gmooth projective variety Y with dim(Y") = n and for algebraic cycles
with codimension < p, then Hodge”™*' (X, Q) is a birational invariant
statement for every smooth projective X with dim{X) < n 4+ 2. For
example, if we have Hodge™*(Y, Q) for all 4-folds Y, then ﬁodgep’p (X, Q)
is a birational statement for any integer 0 < p < dim(X) and smooth

projective varicties X with dim(X) < 7.
For the Generalized Hodge Conjecture, we have

Fixn > 0and 0 < p < n. If we have é—ﬁa(z, kYY) for i < p, ie,
the Generalized Hodge Conjecture is true for every smooth projective
Y with dim(Y) = n and for algebraic cycles with codimension < p,
then é‘ﬁf—é’(m —p—1,k,X) is a birational invariant statgment for every

smooth projective variety X with dim(X) =m <n+ 2.
Similarly,

Fixn > 0and 0 < p < n. If we have a_ff_é(z, kYY) for i < p, e,
the Generalized Hodge Conjecture is true for every smooth projective

Y with dim(Y") = n and for algebraic cycles with dimension < p, then

D~

GHC(p +1,k,X) is a birational invariant statement for every smooth

_Projective variety X with dim(X) =m <n + 2.

‘As a corollary of part (b) and (c), we have, for example, if we have
GHC(1,3,Y) for all 3-folds Y, then E}'—f}_é(p, k, X) is a birational state-
ment for X with dim(X) < 5.

57




hapter 3

ome relations between topological and
seometric filtrations on smooth projective

anifolds

Introduction

In this chapter, all varieties are defined over C. Let X be a projective
oty With dimension n. Let Z,(X) be the space of algebraic p-cycles.

The Lawson homology L,H(X) of p-cycles is defined by
LoH(X) = m0p(Zp(X)) for kE2>2p >0,

re Z,(X) is provided with a natural topology (cf. [F1], [L1]). For general
kground, the reader is referred to Lawson’ survey paper [L.2].

[FM], Friedlander and Mazur showed that there are natural maps, called

q)p,k : Lka(X) —* Hk(X)
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Definition 3.1.1.

Lka(X)hom = ker{q)p,k . Lka(X) —* H,'C(X)},
Ty Hi(X) = Image{ Py : LpHp(X) — He(X)};

It was shown in [[FM], §7] that the subspaces T, H (X, Q) form a decreasing

fltration:

v g Tka(X) Q) g Tp—lHk:(X) @) g e g TUHk:(X: Q) = Hk:(Xa Q)

d 1, Hy (X, Q) vanishes if 2p > k.

efinition 3.1.2. ([FM]) Denote by G,H(X,Q) C Hy(X,Q) the Q-vector
bspace of Hi(X, Q) generated by the images of mapp'iﬁgs Hy(Y,Q) — Hi(X,Q),
d@ced from all morphisms Y —— X of varieties of dimension <k —p.

The subspaces G, Hi(X,Q) also form o decreasing filtration (called geo-

wetric filtration):
v CGH(X, Q) C Gpor Hi(X, Q) € -+ © GoHi(X,Q) € Hi (X, Q)
I X is smooth, the Weak Lefschetz Theorem implies that GoH(X, Q) =

w(X, Q). Since Hy(Y, Q) vanishes for k greater than twice the dimension of
» GpH,(X, Q) vanishes if 2p > k.
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The following results have been proved by Friedlander and Mazur in [FM]:
; heorem 3.1.1. ([FM]) Let X be any projective variety.

1. For non-negative integers p and k,

T, Hp(X,Q) C GpHi(X, Q).

9, When k= 2p,

TpHop(X, Q) = GpHyp(X, Q).

uestion ([FM], [L2]): Does one have equality in Theorem 3.1.1 when X is

ooth projective variety?

Friedlander [F2] has the following result:

neorem 3.1.2. ([F2]) Let X be a smooth projective mm’et{g of dimension
Assume that Grothendieck’s Standard Conjecture B ({Grof) is walid for a
lution of singularities of each irreducible subvariety of Y C X of dimension
P, then

ToHy (X, Q) = G,Hp(X,Q).

mark 3.1.1, ([Lew1],815.32) The Grothendieck’s Standard Conjecture B is -

&roum to hold for a smooth projective variety X in the following cases:

. Flag manifolds X.
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3. Smooth complete intersections X.

4. Abelian varieties (due to D. Lieberman [Lieb]).

In this chapter, we will use the tools in Lawson homology and the methods

given in [H1] to show the following main results:

heorem 3.1.3. Let X be a smooth projective variety of dimension n. If the
nelusion in Theorem 3.1.2 holds (without the assumption of Grothendieck’s
andard Conjecture B) for X with p = 1,(resp.p = n—2) (k arbitrary), then it
s0 holds for any smooth projective variety X' which is birationally equivalent

X withp = 1,(resp.p=mn--2).

heorem 3.1.4. For any smooth projective variety X,

TpHapia (X? Q) = GpHop (Xa Q)

As corollaries, we have

brollary 3.1.1. Let X be a smooth projective 3-fold. We have T,Hy(X,Q} =
WX, Q) for all k > 2p > O except for the case p =1,k = 4.

ollary 3.1.2. Let X be a smooth projective 3-fold with H**(X) = 0. Then

6 X, Q) = GpHy(X, Q) for any k > 2p > 0. In particular, it holds for X

mooth hypersurface and a complete intersection of dimension 3.

By using the Kiinneth formula in homology with rational coefficient, we




;
)
il

Corollary 3.1.3. Let X be the product of a smooth projective curve and a
smooth simply connected projective surface. Then ToHp(X, Q) = GpHp(X, Q)

for any k>2p=0.

Corollary 3.1.4. For 4-folds X, the assertion that'T, Hy (X,Q) = GpHy(X,Q)

i

holds for all k > 2p > 0 is a birational invariant statement. In particular, if

3 X is a rational manifold with dim(X) < 4, then the conclusion in Theorem
3.1.2 holds for any k > 2p > 0 without assumption of Grothendieck’s Standard
~ Conjecture B .

| Romark 3.1.2. 4 Conjecture given by Suslin (see [FHW}, §7) implies that
.

LpHn-FP('Xn) = Hn+p(Xn)-

As an application of Theorem 3.1.4 and Proposition 3.3.1, we have the

‘iiﬁ?following result:

' orollary 3.1.5. If the Suslin’s Congecture is true, then the topologicel filtra-

on is the same as the geometric filtration for a smooth projective variety.

~ The main tools to prove this result are: the long exact localization sequence
ven by Lima-Filho in [Li2], the explicit formula for Lawson homology of
_dimension—one cycles on a smooth projective manifold given by Iriedlander
{F1], {and its generalization to general irreducible varieties, see below), and

e weak factorization theorem proved by Wlodarczyk in [W1] and in [AKMW].

3.2  The proof of the Theorem 3.1.3

e

o Let X be a smooth projective manifold of dimension n and 4 : Y < X be

& 8mooth subvariety of codimension r > 2. Let o : )N{y — X be the blowup of

-
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x along Y, m: D= o~ (V) — Y the nature map, and 7: D = oY) — Xy
he exceptional divisor of the blowup. Set U/ := X —Y 2 X — D. Denote by
o the inclusion U C X and j the inclusion U7 ¢ Xy.

Now I list the Lemmas and Corollaries given in [H1].

.emma 3.2.1. For each p > 0, we have the Jollowing commutative diagram

?:*

ot Lka(D) - LPHk(XY) z Lka(U) & Lka.ﬁl(D). —+

lﬂ'* iO'* l% l'fr*

(da)*

o LEY) W LX) B Lmw) S ey -

mark 3.2.1. Since m, is surjective (there is an explicitly formula for the
ison, homology of D, i.e., the Projective Bundle Theorem proved by Fried-

inder and Gabber, see [FG]), it is easy to see that o, is surjective.

rollary 3.2.1. If p =0, then we have the Jollowing commutative diagram

om Hy(D) B H(Xy) D omPMu) 5 Hy1(D) —
b | o 1= L 7

co H(Y) 9 gy B gemgy G Hy a(Y) —

Loall(D) 5 LooH(Ry) D Lo oH(U) B LgHe (D) o
Cm, | o | | 7

) o,
Lo-sHu(X) 2 Lo oH(U) © Loomo . v) -
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emma 3.2.2. For each p 2> 0, we have the following commutative diagram

s LHWD) B LEdXy) D LH(U) B LoHpa(D) -
L Pp ! (D.'P,-'ﬂ ! lI)p,k J (I)p,k—l
i HU(D) B Xy L oEPMOTY S m(D) —

In particular, it s true forp=1,n—2.

Proof. See [Li2] and also [FM].

rﬁma 3.2.3. For each p > 0, we have the following commutative diagram

o L) O Lo D L) N Ly o

} @y L ®oke } Cok L @kt
gy) @ O omproy O moy) o

l

| particular, it is true for p=1,n — 2.

Proof. See [Li2] and also [FM]. 0

mark 3.2.3. All the commutative diagrams of long ezact sequences above
ndin commutative and ezact when tensored with Q. We will use these Lem-

and Corollaries with rational coefficients.

he following result will be used several times in the proof of our main

rem,

orem 3.2.1. (Friedlander [F1]) Let W be any smooth projective variely
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of dimension . Then we have the following isomorphisms

4

Ln~1I{2ﬂ(W) e Z:
Ly 1Hop (W) =2 Hyp (X, Z),
Ln—1H2n—~2(W) = Hn—l,n—l(X, Z) = NS(W)

LnﬁlHk,(X) = 0 fO’T' k> 2n.

The proof of Theorem 3.1.3 { p=n—2 ):

There are two cases:

Case 1. Tt ToH(X, Q) = Gy Hy(X, Q), then T, Hy(Xy, Q) = G,Hi(Xy, Q).

The injectivity of T, Hy(Xy, Q) — GpH +(Xy, @) has been proved by Fried-
lander and Mazur in [FM]|. We only neced to show the surjectivity. Note that
the case for K = 2p 4+ 1 holds for any smooth projective variety (Theorem
3.1.4). We only need to consider the cases where & > 2p + 2. In these cases,
k—p > p+2=n, from the definition of the geometric filtrations, we have
GpHi(X, Q) = Hy(Xy, Q) and GpHi(X, Q) = H(X, Q).

Let b e Gka(Xy, Q}, and a be the image of b under the the map

oy Hy(Xy,Q) — Hi(X,Q),

ie., 04(h) = a. By assumption, there exists an element & € L, oHy(X) @ Q
such that &, 94(d) = a. Since 0y @ L oHu(Xy) ® Q — L, 2Hx(X) @ Q
is sutjective ([H1]), there exists an element b € L, pH(X) ® Q such that

04(b) = &. By the following commutative diagram




Ly oHi(Xy)@Q 3 L, oHy(X)®Q
} ®Pnai L @nog
}Ik(}ZY:Q) Ef) Hk:(X: Q)a

e have Pp_op(h) — b maps to zero in Hi(X,Q). By the commutative di-
gram in Corollary 3.2.1, P D sr(B) —b) = 0 € HPM(U,Q). From the
g.actness of the upper long exact sequence in Corollary 3.2.1, there exists
1 element ¢ € Hi(D,Q) such that i,(c) = ®,_54(b) — b. From Theorem
1, we find that ®n_ny 1 Ly 2Hy(D) ® Q — H(D) ® Q is an isomorphism
or k > 2n — 2. Hence there exists an element & € L, oH(D) ® Q such
t in(@n2k(@) = Bnse(B) — b Therefore Cpok(b —i(2)) = b, ie., the

tivity of TpHi(Xy, Q) — GpHi(Xy, Q).
On the other hand, we need to show
tase 2. If T,Hy(Xy, Q) = GpH(Xy,Q), then T, Hy(X, Q) = G, Hy(X, Q).

This part is relatively easy. By Theorem 3.1.4, we only need to consider
}}e cases that k > 2p+2 = 2n — 2. Let o € G, Hy(X,Q) = H(X,Q).
m the blow up formula for singular homology (c¢f. [GH], [V1]), we know
; Hk()zy,@) — Hp(X,Q) is surjective. Then there exists an element b €
(Xv,Q) such that o,(b) = a. By assumption, we can find an element b &
LoHi(Xy, Q) such that ®p_sz(0) = b. Set & = 0. (b). Then &p_yy(d) = a
der the natural map ®,_5 . This is exactly the surjectivity we want.

This completes the proof for a blow-up along a smooth codimension at

st two subvariety ¥ in X.
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;'The proof of Theorem 3.1.3 (p=1)

The injectivity of the map T1 H, (W, Q) — G1Hy(W, Q) has been proved
for any emooth projective variety W by Friedlander and Mazur in [FM]. We
=-only need to show the surjectivity under certain assurmption.

~ Gjmilar to the case p = n — 2, we also have two cases:
Case A, If TLHy(X, Q) = G1H(X,Q), then Ty Hi(Xy, Q) = G Hy(Xy, Q).

From Theorem 3.1.4, the case where & = 3 holds for any smooth projective
ariety. We only need to consider the cases Whe:e k> 4.

| Let b € GlH}c(Xy,@). Denote by a the image of b under the the map
.* : Ho( Xy, Q) — He(X,Q), ie., 0u(b) = a. From the blow up formula
or singular homology and the definition of the geometric filtration, we have
;*(G1H:c(j€y, @) = G1H(X, Q).

By assumption, there exists an element @ € LiHp(X) ® Q such that
@) 4(@) = a. Since o : L1 Hx(Xy) ® Q — L Hy(X) ® Q is surjective ([H1]),
here exists an element b € LiH(Xy) ® Q such that o,(b) = 4 By the

llowing commutative diagram

L @4
Hk(XY;Q) E’;
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LH(X)®Q B LiH(X)®Q

1 @1
Hk(X'n Q):

have ,,(B) — b maps to zero in H,(X,Q). By the commutative diagram
Corollary 3.2.1, j*(®,,(8) — b) = 0 € HEM(U,Q). From the exactness
f the upper long exact sequence in Corollary 3.2.1, there exists an element

Hy(D,Q) such that i,(c) = 1 ,(b) — b. Set d = m,(c) € Hp(Y,Q). By




he commutative diagram in Corollary 3.2.1, d maps to zero under {i0)s :
(Y, Q) — Hi(X, Q). Hence there exists an element e € HEM (U, Q) such
hat whose image is d under the boundary map (dp).. Let d ¢ Hy(D,Q)
¢ the image of e under this boundary map &, : HPN(U,Q) — Hy(D,Q).
herefore, the image of ¢ — d is zero under 7y in Hp(Y,Q) and is also zero
} nder i, in Hy (Xy, Q). Note that D is a bundle over Y with projective spaces
iag fibers. From the “projective bundle theorem” for the singular homology
£[GH]), we have Hy(D,Q) & Hy(Y, Q) ® Hy oY, Q) @ @ Hy r12(¥, Q).
om this, we have ¢ — de He oY, Q) B+ © Hy0,42(Y, Q). By the revised
;bjective Bundle Theorem ([FG], and [H1] the revised case essentially due
i Complex Suspension Theorem [L1]) and Dold-Thom Theorem [DT]|, we
e Lil1(D, Q) = LiHi(Y, Q) @ LoHp—o(Y, Q) @ -+ & Lo Hy_gp1o(Y, Q) &
(Y. Q)@ Hia(Y,Q) @ -+ - @ Hyppi0(Y, Q), where r is the codimension
(Y. Since c—d € Hy oY, Q) ® - & Hy_gia(Y, Q) and LoHyo(Y,Q) @
© Ly Hy9r12(Y, Q) &2 Hy (Y, Q) @ -+ - ® Hy_2r42(Y, Q), there exists an
ment f € LiHy(D,Q) such that ©1(f) = ¢ - d. Therefore we obtain

(b—i.(f)) = b. This is the surjectivity we need.

fase B. If T\ Hy(Xy, Q) = G1Hi(Xy, Q), then T1 Hy (X, Q) = G1 Hx(X, Q).

¢ This part is also relatively easy. Note that k > 4. Let a € G1H,(X,Q) C

X,Q), then there exists an element b € G Hy,(Xy, Q) such that o,(b) = o.
)y assumption, we can find an element b € L; 11, (Xy, @) such that ®, ,(b) = b.
& == 0,(b). Then @, 4(4) = o under the natural transformation ®; . This

jexactly the surjectivity in these cases.

This completes the proof for one blow-up along a smooth codimension at
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east twWo subvariety ¥ in X.

C

Now recall the weak factorization Theorem proved in [AKMW] (and also

WI1]) as follows:

Theorem 3.2.2. ([AKMW] Theorem 0.1.1, [WI]) Let ¢: X — X' be a bi-
rational map of smooth complete varieties over an algebraically closed field of
éhamcteristz'c zero, which is an isomorphism over an open set U. Then [ can

he factored as a sequence of birational maps
X=X %Bx 3.0 x, =X

inhere each X; 1s a smooth complete variety, and @1 X; — X1 s either a
outing-up or a blowing-down of a smooth subvariety disjoint from U,

O

temark 3.2.4. From the proof of the Theorem 4.1.3, we can drow the follow-

q conclusions:

I
T.Hy(Y,Q) = G, Hy(Y, Q)

Jor all k is true for algebraic r-cycles with v > p for dim(Y) = n, then
“TP—IHJ’C(X: Q) = Gp~1Hk(X: Q)1 vk”

i a birationally invariant statement for smooth projective varieties X

with dim(X) < n + 2,
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2. If
T'r'Hk(Y': Q) = Ger(Yﬂ Q)

for all k is true for r-algebraic cycles with r < p for dim(Y") = n, then
‘Do He(X,Q) = G Hy(X,Q), VK

is o birationally invariant statement for smooth projective varieties X

with dim(X) < n+ 2.

.3 The proof of the Theorem 3.1.4

i}oposition 3.3.1. For any irreducible projective variety Y of dimension n,

Ly 1 Hon(X) & Z,

L1 Hop 1 (X) = Hop 1 (X, 7},

Ly-1Han o(X) = Hono(X,Z) is injective,
Ly 1Hy(X)=0 for k>2n.

8" is the union of subvarieties with dimension <n—-2 Let V=Y —5he

stnooth open part of Y. According to Hironaka [Hil], we can find ¥ such
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hat ¥V is a smooth compactification of V. Let D =Y — V. D is a divisor on
> with normal crossing. Denote by 4p: S — Y andi: D — Y the inclusions

f closed sets. Denote by fo: V — Y and j: V — Y the inclusions of open

There are a few cases:

Case 1: k£ > 2n.

By the localization long exact sequence in Lawson homology

cor = Ly 1 Hp(8) = L 1 Hp (Y)Y = Ly 1 Hi (V) — Ly g Hyp 1(S) — -

H

we have

LN,IHk(Y) & Ln_lHk,(V) fOT‘ k > 2n

e Ln'_in(S) =0for k> 2n—1.

By the localization exact sequence in homology

H(Y) 2 IPM (VY for k>2n

& Hy(5) = 0 for k > 2n — 1. Here HPM (V') is the Borel-Moore homology.

Similarly,

Ln—lHk(?) = LnﬁlHk(V) f-O?" k > 2n

H (V)= HEM(WV) for k> 2n.
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|

1 ®r-ti,2n—1

Hyn—1{Y)

d Pno1,20-1

0. o EporHopa(Y) &

~ j*
Hap—1(Y) s

Ln—1Han (V)
l ‘Pn—l,m@— 1

HB M]. (V)

2n—

l Qn—l,Zn—l
HEM, (V)

ima, we have the isomorphism

Since V is smooth, we have L, _1H(Y)

(80)

(8o)x

This completes the proof for the case k > 2n.

Ln—11{2n——2(5)
1l ®rn_1,2n—2

HZn—z(S)

Lp—1Hap 2(D)
1 ®n—1,9n—2
HZnﬁ‘Z (D)

H,(Y) for k >

Applying Lemma 3.2.3 to the pair (Y,S) for p = n — 1, we have the

(io}+*

(ip )+
-y

Eu

ix

Note that &)n—l,QnMQ ' an1H2n~2(Y/) - HZn—z(?) is
1Hon 1(Y) & Hop (V) and &, 190 9 ¢ Lyt Hanoo(D) & Hypn (D) 2 Z™,

re ™ s the number of irreducible varieties of D. From (3.2) and the Five

Pp1an-1: L 1o 1 (V) =2 HEM (V).

on(ct. [F1)).

= Lnp—1Hgp2(Y) —

I Pr—1,2n—3

Hap2(¥) -
(3.1)

Lyp—1Hap—2 (?) -

) ®n_1,2n-2
Han—3(¥) -
(3.2

inj ective, (I)n— 1,2n—1 -

(3.3)




from (3.1), (3.3) and the Five Lemma, we have the following isomorphism

Q1901 In—1Hoy oY) 2 Hyp 5(Y).

"gfjase 3 k=2n—2

Now the commutative diagram (3.1) is rewritten in the following way:

” y

LoctBana(V) 3" Lusilan a($) O LaliHaeoa(vy B Lp—1Hon—2(V) — 0
1 Bne1,2n-1 | ®pe1,2n—2 |l ®rn-1,2n—-23 1 ®n_1,2n—2
aEM vy PP ey Y meavy B mBMy L o

(3.4)

In the commutative diagram (3.2), we can show that the injective maps

35 Hop 1 (Y) — HEM (V) (3.5)

~

j* . Ln_]_Hgn_l(Y) — Lnﬁngn_l(V) (36)

re actually isomorphisms. Hence the commutative diagram (3.2) reduces to

following diagram:

¢ = Lnp—iHon—3(D) — Lp1Hapo¥) — LpeiHagpea(V) — 0

$ Pn-1,2n-2 L ®n-1,2n—2 1 &n_1,9n-2 (37)
0 - Han-o(D) — Haon—o(¥) — HBEM (V) - 0

rTo see (3.5) are surjective, by the exactness of the rows in (3.2) we only

d to show that the maps 4, : Han_o(D) — Hon_o(¥) are injective. Note

; it Visa compact Kahlar manifold, and the homology class of an algebraic
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gubvariety s nontrivial in the homology of the Kéahlar manifold. From these,

we get the injectivity of 4. The surjectivity of (3.6) follows from the same

We need the following lemma.

Lemma 3.3.1. The natural transformation ®, 1902 @ Ln1Hom o(V) —

PM. (V) is injective.

Proof. a € Ly1Hon o(V) such that &, 10, 2(a) = 0 ¢ HEM, (V). Since
¢ map j* : Ly_1Hon o(Y) — L, 1Hy, o(V) is surjective, there exists an

ment b € Ln_1Hym-2(Y) such that j*(b) = a. Set b = Bp_1 9, 5(b) €
. o(Y). By the commutativity of the diagram, we have 7*(b) = 0 under
é map j* : Hyn oY) — HEM,(V). By the exactness of the bottom row
the commutative diagram (7), there exists an element ¢ € Hy,_o(D) such

é,t the image of & under the map 4, : Hop_o(D) — Hgnmg(f’) is b. Now note

at Pu1,0n-2 * L 1Hon (D) — Hyn_5(D) is an isomorphism, there exists an

ment ¢ € Ly Hon—o(D) such that $p,_1 9,,_2(¢) = & Hence ®p_1 9p—2(i.(c)—
0. Note that ®,_1 955 L1 Hon oY) — Hop_o(Y) is injective since ¥
smooth and of dimension n (¢f. [F1]). Hence we get i.(c) = b, e, bis in
Biile image of the map iy 1 Ln_1Hon—o(D) = Ln_1Hon_o(Y). Therefore a = 0

‘the exactness of the top row of the commutative diagram (3.7).

We need to show that Ppton—2 : Ln—1Hono(Y) — Hap—o{Y)) is injective.
T a C Lp1Hon 5(Y) such that @, jon-2(a) = 0 € Hyy»(Y). By the
mutative diagram (3.4) and the Lemma 3.3.1, the image of a under 53 :

Hona(YV) — Lyp_1Hy, o(V) is zero. Hence there exists an element b €
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he map (io)s + Han—a(S) — Hzu—(Y') is zero. By exactness of the bottom
ow in the commutative diagram (3.4), there exists an element & such that
s image under the map HJM (V) — Hyp 5(S) is b. By the result in Case
 Bpion-l Lo1Hon 1(V) — HBM (V) is an isomorphism. Hence there
vista an element ¢ € Ty 1 Hon 1(V) such that ®,_;9,-1(c) = & Now since
a1 gn—2 : L 1Hon_o(S) — Hay, 2(S) is an isomorphism, the image of ¢ under
he map Lp_1Hon-1(V) = Lp_1Han 2(S) is exactly b. Now the exactness of
lie top row of the commutative diagram (3.4) implies the vanishing of a.

“The proof of the proposition is done.

By using this proposition, we will give a proof of Theorem 3.1.4.

oof of Theorem 3.1.4:

For any smooth projective variety X, the injectivity of T, Hopt1(X, Q) —
Hyp11(X, Q) has been proved in [[FM], §7]. We only need to show the
jectivity of Ty Hypy1(X, Q) — GpHap1 (X, Q). For any subvariety i : ¥ C
‘we denote by V = X — Y the complementary of Y in X. We have the

owing commutative diagram of the long exact sequences (Lemma 3.2.3, or

20):

= LpHy1(Y) = LpHapp(X) — LpHp(V) — LHp(Y) —
L ®p0p11 } Ppoprt | ®p2ps1 L Ppop
= Hpn(Y) = Hpp(X) - HPMV) —  Hy(Y) -

Jbviously, the above commutative diagram holds when tensored with Q. In

Jollowing, we only consider the commutative diagrams with Q-coeflicient.
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Now let @ € GpHapy1(X, Q), by definition, we can assume that a lies in the
' jmage of the map & 1 Hap (Y, Q) — Hop1(X, Q) for some subvariety ¥ € X
| with dimension dim Y = (2p+ 1) — p = p+ 1. Hence there exists an element
b € Hypy1(Y, Q) such that 4,(b) = a. By the Proposition 3.3.1, we know that
By opil ! LyHop1(Y) @ Q — Hapy1 (Y, Q) is an isomorphism. Therefore there
 exists an element b € LyHa,(1(Y) ® Q such that By 0p41(0) = b. Set & = i.(b).
“Then @ maps to ¢ under the map Ly,Hoy (X)) @ Q — Hopy (X, Q). By the
" definition of the topological filtration, a € T;,Hy,11 (X, Q). This completes the
proof of surjectivity of ToHop1(X,Q) = GpHopy1 (X, Q).

Remark 3.3.2. In the proof of the surjectivity in Theorem 3.1.4, the as-
;s‘umption of smoothness is not necessary, more precisely, for any irreducible

projective variety X, the image of the natural transformation

Ppapr1 : LpHopi1 (X, Q) — Hap 1 (X, Q)

contains GpHap1(X, Q).

Bemark 3.3.3. Independently, M. Warker has recently also obtained this re-
sult ([Wa/, Prop. 2.5]).

Now we prove the corollaries 3.1.1-3.1.5.

":he proof of Corollary 3.1.1: By Theorem 3.1.1 and 3.1.4, Dold-Thom

Theorem and Proposition 3.3.1, we only need to show the cases that p =




1.k > 5. Now the following commutative diagram ([FM], Prop.6.3)

LH(X)®Q S Li(X)eQ
} Pay } Pu
Hy(X,Q) Hy(X,Q).

Il

hows that if Ly Hp(X)®Q — Hy(X,Q) is - surjective, then L1 Hy{X)®Q —
(X, Q) must be surjective. Proposition 3.3.1 gives the needed surjectivity
or k > b even if X is singular variety of dimension 3.

| O
he proof of Corollary 3.1.2: By Corollary 3.1.1, we only need to show
hat Ty Hy(X, Q) = G1H4(X,Q). By the assumption and Poincaré duality,
WX, Q) & Hy(X,Q) = Q. Therefore, G1Hy(X,Q) = H{X,Q) = Q and

gain by the commutative diagram

LiH(X)®Q 5 LiH(X)®Q
i (I)Q,k l (I)I,k:
Hk(X,Q) Hk(X:Q)a

12

e have the surjectivity of L; H;(X) ® Q — H,(X, Q).

he proof of Corollary 3.1.3: Suppose X = S x (, where S is a smooth
i‘:Ojective surface and C' is a smooth projective curve. We only need to consider
1€ surjectivity of L1 Hy(X) ®@Q — Hy(X, Q) because of Corollary 3.1.1, Now
he Kiinneth formula for the rational homology of Hy(S x C, Q) and Theorem

2.1 for S and ¢ gives the surjectivity in this case.
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O

The proof of Corollary 3.1.4: This follows directly from Theorem 3.1.3.

The proof of Corollary 3.1.5: By Theorem 3.1.4, we only need to show
that TpHe(X, Q) = GpHi(X, Q) for & > 2p--2. By the definition of geometric
definition, an element a € GpHp(X,Q) comes from the linear combination
;f elements b; € Hy(Y;, Q) for subvarieties Y; of dimY; < &k - p. From the

following commutative diagram

it LyHp(Y)®Q — LH(X)®Q
l q)p,k J, q)P‘k
W I (Y,Q) —  Hi(X,Q),

is enough to show that L,H(Y) — Hy(Y) is surjective for any irreducible
bvariety Y € X with dim(Y") = k — p. By Suslin’s conjecture, this is true
r any smooth variety ¥ since dim(Y) = k£ — p. Now we need to show that it
also true for singular irreducible varieties if the Sulin Conjecture is true.

- Using induction, we will show the following lemma.

smma 3.3.2. If the Suslin Conjecture is true for every smooth projective

riety, then it is also true for every quasi-projective variety.

. Proof. Suppose that Y is an irreducible m-dimensional quasi-projective

tiety, S is an irreducible quasi-projective variety with dim(S) = n < m and

LpHn+p_1(S) — Hop 1 (S) is  injective,
Ly o(S) 2 Hyio(S) for g>p.
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Denote by Y a projective closure of Y and S = sing(Y) the singular point
et of Y. Let U = Y—SLeto: ¥ — Y be a desingularization of ¥ and denote
by D= ¥ —U. The existence of a smooth ¥ is guaranteed by Hironaka [Hi1].

) Then D is the union of irreducible varieties with dimension < m - 1.

By Lemma 3.2.3, we have the following commutative diagram

Ve — LPH;G(Z) — Lka;(V) — Lka(U) — L Hp 1(Z) —
| Bpk L ok 1 ®pe L ®pp-1

e HW(Z) = Hy(VY - HPMU) - LHya(Z) —

where U C V are quasi-projective varieties of dim(V) = dim(U) = m and

7 =V — U is a closed subvaricty of V.

Claim: By inductive assumption, the above commutative diagram and the

Five Lemma, we have the equivalence between

LyHpip1(U) = Hpgp 1 (U)  is  injective,

LpHm+q(U) = Hm+q(U) for g>p.

LpHryp—1 (V) = Hmyp 1 (V) ds  injective,

LpHp o V) = Hypyo(V)  for q>p.

The proof of the claim is obvious.

By using the claim for finite times beginning from V = 57, we have the

esult for any quasi-projective variety U. The proof of Lemma 3.3.2 is done.
0

By Lemma 3.3.2, we know that the Suslin’s Conjecture is also true for

ngular varieties, This completes the proof of Corollary 3.1.4.
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Chapter 4

A note on Lawson homology for smooth
varieties with small Chow groups

4.1 Introduction

In this chapter, all projective varieties are defined over C. Let X be a
projective variety with dimension n. Let Z,(X) be the space of algebraic

p-cycles on X,

The Lawson homology I, H,(X) of p-cycles is defined by

Th—ap(Zp( X)), k> 2p;
Lka(X)z ke 210( p( )) 7Y

0, k< 2p

Wwhere Z,(X) is given a natural topology (cf. [F1], [L1]). For a general discus-
sion of Lawson homology, see the survey paper [L2].

In [FM], Friedlander and Mazur showed that there are natural maps, called

cycle class maps

®pp : Lyl (X) — Hy(X).
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Definition 4.1.1. Set.

Ly Hi( X Jhom = ker{®pr : LyHp(X) — H (XD}
Lka:(Xy Q)hom = LpH*(X)hom & @

(. Peters proved the following result by using the decomposition of the
diagram for the smooth varieties with small Chow groups first shown by Bloch

" and Srinivas [BS] and generalized by Paranjape [Pa|, Laterveer [Lat] and oth-

ers.

Theorem 4.1.1. (Peters [Pe]) Let X be a smooth projective variety for which
rational and homological equivalence coincide for p—-cycles in the range 0 <
p < 8 (that is, in the terminology of [Lat], X has small chow groups up to
rank s). Then LyH (X )hom ® Q=0 in the range 0 < p < s+ 1.

By carefully checking the proof of Peters, we discover the symmetry of the

decomposition of the diagonal Ay C X x X and note that the proof works for

p-cyeles with 0 <n —p < s+ 2.

In this note, we will use the tools of Lawson homology and the methods 3

and notations given in [Pe] (and the references therein) to show the following

‘:ma'm result: F !

Theorem 4.1.2. Let X be a smooth projective variety of dimension n for

which rational and homological equivalence coincide for p—cycles in the range

U<p<s. Then LyHy(X)pom ® Q =0 in the range 0 <n —p < s+ 2.

- For convenience, we introduce the following definition:




- Definition 4.1.2. A smooth projective variety X over C is called rationally
connected if there is a rational curve through any 2 points of X. A necessary

condition for Z to be rationally connected is that Cho(X) = Z.

For equivalent descriptions of this definition, see the paper of Kollar, Miyaoka

a,nd MOI‘i [KMM] .

Corollary 4.1.1. Let X be a smooth projective variety with dim(X) =4 and
Cho(X) & Z. Then LyHy (X)) hom @Q = 0 for all p and k. In particular, all the

smooth hypersurfaces in PS with degree less or equal than § have this property
(cf. [Rof).

Remark 4.1.1. It is shown by the author in [H1] that for any smooth pro-
jective rational variety X of dim(X) = 4, LyHp(X)pom = 0 for any p and k.
Hence the nontriviality of LyHg(X )pom for some p,k for a rationally connected

fourfold X would imply irrationality of X.

Corollary 4.1.2. Let X .be a general cubic hypersurface of dimension less

than or equal to 6, then L.H (X )pom ® Q = 0.

Remérk'4.1.2. Laterveer [Lat] showed that Griffiths groups are torsion for a
:geneml cubic hypersurface of dimension less than or equal to 6. For the general
cubic sevenfold in P¥, Albano and Collino showed that Griff3(X) (which is

& LyHe(X ) pom, by Friedlander in [F1]) is nontrivial even after tensoring with

emark 4.1.3. This work was done in Spring of 2005 as part of my Ph. D.
:-ihesz’s. 1t was included in my research statement and put on my web page

http: / /www.math.sunysb.edu/~wenchuan/job/rs.pdf
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in November 2005. I recently learned that M Voineagu has independently

obtained this result (cf. [Vn]).

4.2 The proof of the main result

The proof of the main theorem is based on: the Lemma 12 in [Pe], the
decomposition of the diagonal given in [Pa), and the computation of Lawson
homology of codimension 1 cycles for a smooth projective variety given by
Friedlander [F1].

For convenience, we write the results we need as follows:

Theorem 4.2.1. (Friedlander [F1]) Let X e any smooth projective variety of

dimension n. Then we have the following isomorphisms

( Ltn(X) 27,

L Hop1(X) 2 Hy, (X, Z),

L1 Hopo(X) ® Hy 10 1(X,7) = NS(X)
LiaH(X)=0 for k> on.

Remark 4.2.1, From this theorem we have Ly 1 Hy (X ) pom = 0 for any smaooth

Tojective variety X with dim(X) = n.
Now we need to review some definitions about the action of COITESpOn-
ences. Let X and Y be smooth projective varieties with dim(X) = n. For
€ Zn1a(X x Y), one puts
@ (u) = (p2)alpi(u) - 0], we Z,(X)
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where (p2)« is the proper push-forward, pi is the flat pull back and the “”
denotes the intersection product of cycles [[Pe], definition 10]. In this way, o,

gives a correspondence homomorphism

o 2,(X) = Z,a(Y).

| This o induces a map (also denoted by a.) on Lawson homology groups

@ 1 Ly H(X) — ptaflr2qa(Y)

algebraic equivalence. For the details of the argument here, see [[Pe], section

The key Lemma we need was given by Peters as follows:

Proposition 4.2.1. (/Pe¢/, Lemma 12) Assume that X and Y are smooth
rojective varieties and let o C X XY be an irreducible cycle of dimension
Im(X) = n, supported on V x W, where, V C X is a subvariety of dimension
and W C Y ¢ subvariety of dimension w. Let V , resp. W be a resolution
f singularities of V, resp. W oand leti:V — X and j : W = Y be the
orresponding morphisms. With & C V x W the proper transform of o and

1; Tesp. py the projections from X XY to the first. resp. the second factor,

there is a commutative diagram
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Lp—n+1:+wHk+2(v+wwn) (ﬁr X W) "_&‘t“" Lka(‘:} X W)

K2 | (p2)«
Ly Hipatu—ny (V) LypH,,(W)
KA 1 J
Ly Hy(X) 2 LH(Y).

Here i* 18 induced by the Gysin homomorphism, p} is the flat pull-back, and
(p2)« and ji come from proper push forward. In particular, c, = 0 if p<n—v
cor if p > w. Moreover, ay,_, acts trivially on Lp_,H.(X )pom, while oy acts

- trivially on Ly Ho (X ) hom.

There is a corollary of this proposition given by Peters:

Corollary 4.2.1. ([Pe|, Corollary 13) An irreducible cycle o C X x X sup-
ported on a product variety V x W with dimV + dim W = n = dim(X) acts
trivially on LH (X )pom-

Combining Friedlander’s result (Theorem 4.2.1) and Peters’ Lemma (Propo-

ion 4.2.1), we have the following:

Corollary 4.2.2. Under the assumptions of Proposition 4.2.1, we have that

Q-1 acts trivially on Lny—1 Hy(X Y hom.-

Now we want to recall some results about the decomposition of the diagonal
given in [BS] and generalized by Paranjape [Pa] and Laterveer [Lat] with more
g(}nerai triviality hypotheses on the Chow group as stated in Theorem 4.1.1.
Since the decomposition of diagonal is symmetric, we have the following version

of the diagonal (cf. [V2], Theorem 10.29):
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Theorem 4.2.2. Let X be a smooth projective variety. Assume that forp < s,

the maps
e : CHy(X) ® Q — H* (X, Q)

are injective. Then there exists a decomposition

Ax=a® 4. +a® + e CHX x X)) ®Q,

where o' is supported in V, x Wy—py, p = 0,+++ ,8 with dimV, = p and

dim Wy p =n — p, and 3 is supported in X x Wys.1.

Using the above theorem and Corollary 4.2.1, we deduce that the identity
acts as B on the homologically zero part of the Lawson homology L. H,(X }nom.
Applying Proposition 4.2.1 and Corollary 4.2.2, we have the following main

result:

Theorem 4.2.3. Let X be a smooth projective variety such that the maps

cl: CHy(X) ® Q — H™ (X, Q)

are injective for p < s. Then L pHi(X)pom®@Q =0 forp=0,--+ ,s+1,542.

As the application, we get Corollary 4.1.1 immediately.

Recall & result in [Pa] and [8], i.e., the general cubic hypersurface X of
dimension greater than or equal to 5 has Chy(X) 2 Z (Certainly Cho(X) = Z

by Roftman [Ro].) Hence we have the following

Corollary 4.2.3. Let X be a general cubic hypersurface of dimension less

‘than or equal 6, then, Lo H (X )hom = 0. -
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Chapter 5

Infinitely generated Lawson homology groups
on some rational projective varieties

5.1 Introduction

In this chapter we give examples of singular rational projective 4-dimensional
varieties with infinitely generated Lawson homology groups even modulo tor-

sion. This is totally different from the smooth case ([Pe], also [H1]), where

it is known that all Lawson homology groups of rational fourfolds are finitely
generated.
In this chapter we also give examples of singular rational projective 3-

dimensional varieties with the same homeomorphism type but different Lawson

homology groups.

For an algebraic variety X over C, the Lawson homology L,H.(X) of
p-cycles is defined by

Lka(X) = Wk_gp(zp(X)), k Z 2p 2 0

Where Z,(X) is provided with a natural topology. For general background,

the reader is referred to the survey paper [L.2].
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Clemens showed that the Griffiths group of 1-cycles (which is defined
to be the group of algebraic 1-cycles homologically equivalent to zero mod-
ulo l-cycles algebraically equivalent to zero) may be infinitely generated even
modulo the torsion elements for general quintic hypersurfaces in P4 (cf. [Cl]).
Friedlander showed that L; Hy(X) is exactly the algebraic 1-cycles modulo al-

gebraic equivalence (cf. [F1]). Hence the Griffiths group of 1-cycles for X is a

subgroup of Ly Hy(X).

This leads to the following question:

(Q): Can one show that L,Ho, ;(X) is not finitely generated for some pro-

jective variety X where 7 > 07

In this chapter we shall construct, for any given integers p and j > 0,
examples of rational varieties X for which L,Hj,;(X), as an abelian group,

is infinitely generated. Thus, we answer affirmatively the above question :

Theorem 5.1.1. There exists rational projective variety X with dim(X) = 4

such that L1 H3(X) ® Q is not « finite dimensional Q-vector space.

By using the projective bundle theorem given by Friedlander and Gabber

([FG]), we have the following corollary:

Corollary 5.1.1. For any p > 1, there exists projective algebraic variety X

such that LyHap 1 (X) is not a finitely generated abelian group.

More generally, we have

Theorem 5.1.2. For integers p and k, with k > 0,p > 0, we can find a

Projective variety Y, such that LyHyp (Y 4s infinitely generated.
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Remark 5.1.1. The smoothness is essential here. Compare Theorem 5.1.1

with the following result proved by C. Peters.
Theorem 5.1.3. ({Pe]) For any smooth projective variety X over C with
Cho(X) ®Q = Q, the natural map @ : LiH(X)2Q — H.(X,Q) is injective.
In particular, L1H(X) ® Q is a finite dimensional Q-vector space.

Any rational variety X (smooth or not) has the property that Cho(X)®Q &
Q.
Applying the same construction to hypersurfaces in P3, we obtain the fol-
- lowing:
Theorem 5.1.4. There exist two rational 3-dimensional projective varieties

'Y and Y' which are homeomorphic but for which the Lawson homology groups

W Hy(Y,Q) and LHs(Y', Q) are not isomorphic even up to torsion.

Remark 5.1.2. In fact, these varieties in Theorem 5.1.4 have exactly one

solated singular point.

5.2 Lawson Homology

In this section we briefly review the definitions and results used in the next
ection, Let X be a projective variety of dimension m over €. The group

f p-cycles on X is the free abelian group Z,(X) generated by irreducible

p-dimensional subvarieties.

Deﬁnition 5.2.1. The Lawson homology L,H,(X) of p-cycles on X is

Loy He(X) = mepp(Zp(X)), k> 2p > 0,
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where Z,(X) is provided with o natural, compactly generated topology (cf. [F1],

(L1, [L2].

Definition 5.2.2. The Griffiths group Griff,(X) of p-cycles on X is defined
by
GriEP(X) = ZP(X)hmn/Zp(X)alg

where Z,(X )pom denotes algebraic p-cycles homologous to zero and Zp(X)ag

denotes algebraic p-cycles which are algebraically equivalent to zero.

Remark 5.2.1. It was shown by Friedlander that L,Hy(X) 2 Z,(X)/ 2, (X)ag
(¢f. [F1]). Hence the Griffiths group Griff,(X) is a subgroup of the Lawson

: hémology LyH2(X). Therefore, for any projective variety X (its homology
- groups are finitely generated), Griff,(X) 4s infinitely generated if and only if

" Remark 5.2.2. For a quasi-projective variety U, L,H,(U) is also well-defined
and independent of the projective embedding (cf. [Li2], [L2]).

Let V C U be a Zariski open subset of a quasi-projective variety U. Set
- Z=U~V. Then we have b

i
- Theorem 5.2.1. (fIi2]) There is a long exact sequence for the pair (U, 7), “‘if:j

NS

)

v Ly H(Z) — Loy (U) — LyHR(VY — LyHy 1{Z) - - (5.1)
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Remark 5.2.3. For any quaesi-projective variety U, LoHy(U) = HEM(U),
where HPM(U) is the Borel-Moore homology. This follows from the Dold-
Thom Theorem [DT].

As a direct application of this long exact sequence, one has the following

results [Li2]:

5.9.1 Let U = P*! and V = P**! —P", By the Complex Suspension Theorem
[L1], we have, LypHy,(C") = Z; L,H,(C*) = 0 for any & # 2n and

kE>2p2>0.

5.2.2 Let U = C™and V,_1 C C" be a closed algebraic set. Set V,, = C"—V,,_4.-
Then we have

0— Lsz,H.l(Vn) — LpHon(Vo—1) — Lszn(Cﬂ) — Lszn(Vn) — Lszn_]_(Vn_1) — 0

and

LpHy1 (V) = LyHp(Vei), k# 2n,2n+ 1.

.3 An Elementary Construction

Construction Let X = (f(zo, -+ ,%ny1) = 0) be a general hypersurface i
i P**! with degree d, and let Vj, ;= X — X N {P" = (zo = 0)} be the affine ‘{|l'

part, ie. ¥, C C™', Define V; 4y := C"*! — V,,, then V,.1 can be viewed as 1 .

n affine variety in C**? defined by T2+ f(L, %1, ,Zny1) — 1 = 0, where

n={f(1,24,-- yZnt1) = 0). Denoted by V41 the projective closure of V41

n P™2 and set Z, = Viopq — Vs

We leave the study of this case where n = 1, and X is a smooth plane




curve, as an exercise.

5.3.1 Application to the Case n = 2

In this subsection, I will show that there exist two rational projective 3-
dimensional varieties with the same singular homology groups but different

Lawson homology.

The following result proved by Friedlander will be used several times:

~ Theorem 5.3.1. (Friedlander [F1]) Let X be any smooth projective variety

of dimension n.. Then we have the following isomorphisms

;

Ly Hon(X) = Z,
n J.H2n 1 X) gHzﬂ,_ (X Z)

(
L1 Hop 5(X) & Hy 1 pa (X, Z) = NS(X)
)

n—1H (X) =0 for k> 2n.

For a finitely generated abelian group G, we denote by rk(G) the rank of
G.

Let X C P® be a general surface with degree d = 4. Then V, = X — X NP2

and C' := X NP3 is a smooth curve in P2,

Lemma 5.3.1. rk(Ly Ho(X)) & tk(Li Hy(Va)) + 1; tk(Z H3(Va)) = 0,

Proof. Applying Theorem 5.2.1 to the pair (X,C) and Theorem 5.3.1 for
X y We get

0— L1H3(V2) — L1 Hy(C) — L1H2(X) - L1H2(V2) — 0.
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Note that L1H3(C) & Z and the map Ly Hy(C) — LiHy(X) is injective,
and so we get Ly H3(Va) = 0. Therefore, by the above long exact sequence, we

have tk(L1 Ha(X)) & th(Ly Ha(Va)) + 1. | O

Lemma 5.3.2. I‘k(Llﬂz(Zg)) = 1,‘ I‘k(L1H3(Z2)) = 6,' rk(L1H4(Z2)) =2,

Proof. Note that Z; = Vz—V; is defined by (24 f(0,21, ..., z3) = 0,9 = 0)
inPY Let C' = (24 = 0)N(f(0,21, -+ ,23) = 0) in the hyperplane (zq = 0) C
P3. It is easy to see that ¢ = C. Then Z; = P2U Ep(C), where X,(C') means
the joint of C' and the point p = [1:0:---:0]. By applying Theorem 5.2.1 to

the pair (Z,, £C), we get
ree —> L1H3(Zg — EO) — Lle(EG) —* Lng(Zg) — Lng(Zg — EC) — 0.

Note that

Zy—SC =P

and L H3(P? — C) = 0. Therefore rk(L;H3(Z;)) = 1. Moreover, since
LiHy(P?* ~C) = Z and L1 H,(SC) = Z and PN £C = C is a curve. The last
statement follows. Recall that the Complex Suspension Theorem and Dold-
Thom Theorem, we have Ly Hs(2C) = LoH,(C) = Hy(C). By assumption,
C'is a plane curve of degree 4. The adjunction formula gives rk(H,(C)) = 6.

The second statement follows. L

- Lemma 5.3.3. We have

rk(Li Hy(V5)) < 1
rk(Ly Hs(V3)) = rk(Ly Ha( X)) + rk (D, Hy (V) + 4.
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Proof. Applying Theorem 5.2.1 to the pair (Vs, Zg) with p = 1, we have
0 — L1Hy(Zy) — L1 H3(V3) — Ly H3(Vs) — LiHy(Zy) — LiHy(V3) — 0

gince Lemma 5.3.1 gives L1H2(V:3) = ( and L1H4(I/3) & Ll_st(V'z) = 0.
Hence rk(L: Hy(V3)) < 1. Morcover, we have rk(L1 Hy(Zs)) — tk(Ly Hy (V) -+-
rk(Ly Hy(Vs)) — rk(L1Hy(Z2)) + tk(In Ha(V3)) = 0. By Lemma 5.3.2, we get

6 — k(L1 H3(Va)) + (tk(L1 Ha(X)) 1) — 1 + k(L Hy(V5)) = 0

Lemma 5.3.4. Sing(Va) 2 {X n(zo =0)} U{p} 2 CU {p}.

Proof. It follows from a direct computation. By definition,

F($0,$1,$2,$3,$4) = 01

Sing(V3) =
dF (xg, 1, %2, T3, T4) = 0
s 3
»”CgH — T4 f(l"O:xl:xQ:mB) = O:
(d+1)$0—$4'% =0,
8
—Z4 - a%% =0, f
g
—&y E‘c% = 0)
{ f(.’.ﬂ(),ﬂ:l,a?g,x;g) =0 J
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zo =0,

£y 2 —

dxp '

of _
= 4 T ,

$4'_6L:0:

dan

$4'”QL=U:

das

\ f(zo, 1, Z0,23) = 0 )

| o B _of of _8f _af
_—:{$0—ﬂ33~f($0,$1;$2)—O}U{xo—"&Boﬁaml B 852 _8563_0}

&~ Lo = flmo, 21, 22) = 0} U {p} = C U {p}

gince € = (f = 0) is smooth by our assumption.

Remark 5.3.1. Note that p is an isolated singular point and the singularity

C=XnN(xg=0) is of Ay-type. We can resolve the singularity of this part by

blowing up twice over the singularity, i.e., by blowing up over the singularity for

“the first time and then blowing up the singularity of the proper transform of the

first blowup. We denote by Vs the proper transform of Vi with the exceptional

divisor Dy for the first blowup and V3 the proper transform of Vy with the

-esceptional divisor Dy for the second blowup. Both Dy and Dy are isomorphic

o a fiber bundle over C with fibre the union of two P! intersecting at ezactly

-one point. See the appendiz for the computation of a concrete ezample.

Now V; has only one singular point, denote by q.




o~

Lemma 5.3.5. The singular point q in Vi can be resolved by one blow up

whose exceptional divisor is isomorphic to X.
Proof. It follows from a trivial computation. |

We denote by W3 the proper transform of the blow up in the above lemma.
Note that W3 is a smooth rational threefold. We have the following property
on ng

Proposition 5.3.1. For a smooth surface X C P23, the Wy thus constructed
is a smooth rational threefold with a fized homeomorphic type, i.c., for two
smooth surfaces X and X' in P3, the corresponding smooth rational .threefolds

Wy and W} are homeomorphic.

Proof. Note that V; is a hypersurface in P4, Let (fi(zg,+ -+ ,z4) = 0) C P*
be a family of hypersurface such that V5 = (fy = 0) is transversal to the
hypersurface H = (zo = 0). Let A be a neighborhood of £ = 0 such that
(fe = 0) is transversal to H for all t € A. Let W C P* x A be the (analytic)
variety defined by F(z,t) ;= fi(z) = 0. Then we have the following incidence

correspondence

W C PixA
im L
A = A,

with 771ty N W = W,
By Remark 3.1 and Lemma 3.5, we get a smooth variety W by blowing up
twice along 2-dimensional singularity of Sing(W) and once for the remainder

l-dimensional singularity of Sing(W). Denote by F the exceptional divisor
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of the last step. We claim that the map 7 : W — A is a smooth proper
submersion. In fact, let v be a vector field of A and let ¥ be a lifting in
F(W, TW) such that 7.(%) = v.

Denote by ¢; (resp. @;) the flow determined by v (resp. ). Then @ :
/0 — W gives the homeomorphism between two fiber of # from Ehresmann’s

Theorem [V1]. This implies the result of the proposition.

From this proposition, we have the following

o~

Corollary 5.3.1. For all smooth surfaces X C P? of fized degree, the Vs thus

constructed has a fized homeomorphism type.

Proof. In this proof of the proposition, we actually can choose @ such that
1)o is tangent to W; 2) @ is tangent to the exceptional divisor E. Then the
flow of © gives the homeomorphism of any two fibers.

|

We want to show that some Lawson homology group of V3 may vary when

the general X varies in P2,

Theorem 5.3.2. There exist two rational $-dimensional projective varieties
Y, Y such that Y is homeomorphic to Y' but the Lawson homology group

LiHy(Y') is not isomorphic to LiHs(Y") even up to torsion.

Proof. If X C P? is a general smooth quartic surface, then the Picard
group Pic(X) & Z by Noether-Lefschetz Theorem. For details, see e.g. Voisin
[V2]. But it is well known that there are still many special smooth quartic

surfaces X' in P? with rk(Pic(X’)) as big as 20. Note that by Theorem 5.3.1
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and the Weak Lefschetz Theorem L, Hy(X) & Pic(X) for any smooth surface

X in P2
Now we choose smooth X with Ly Hy(X) & Z and X' with L, Hy(X') = 7720,
Qet Y = ﬁg and Y’ := VJ. Let Wj (resp. W) be as in Proposition 5.3.1. From

the prbof of Lemma 2.1 in [H1], we have the commutative diagram

o L1H3(E) — Lng(Wg) — D1H3(W3—E) e L1H2(E) —

1 ! 12 !
ver — L1H3(q) — L1H3(Y) — L1H3(Y - q) ) Lng(q} —

By Lemma 3.5, we know F = X. By Theorem 5.3.1, we have L H3{X) &

H3(X). By the Lefschetz Hyperplane Theorem, we know X is simply con-

nected. Since g is a point, we have Ly Hy(Y) = L1 H3(Y — q) & L1 H3(W;3 — E)
and Lng(Y) = LlHQ(Y — Q') = Llﬁg(Wg — E)

The top row of the above commutative diagram turns into the long exact

sequence

0‘*L1H3(W3)“+L1H3(Y)—>L1H2(X) — L]_HQ(W;;) — L1H2(Y) — 0

Therefore, we have

rkLIHS(W3) - I‘kL1H3(Y) + rkLng(X) — I‘kL1HQ(W3) + rkLng(Y) ={

Since Wy is a smooth rational threefold, we have L Hs(W3) = Hy(Ws),
InHy(Ws3) = Hy(Ws) (([FHW], Prop. 6.16]) and by Proposition 5.3.1 H; (W) &
(W) for all 4.
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(:k) I‘kLlH3(Y) = I'ng(Wg) + I‘kLlﬂg(X) - rkH2(W3) -+ I‘kL]_HQ(Y)
By applying Theorem 5.2.1 to (;va, D), we get

- — LnHy(Dh) — LiHy(V3) — Ly Hy (Vs — D) — 0

Hence
kI Hy(Vs) < rkInHy(D:) + tkLyHy (Vs — Dy)
= tkIyHy(Dy) + tkli Ha(V5)
< tkIiHy(Dh)+1 (Lemma 3.3) |
. i
Similarly,
kg Hy(Vs) < tkLy Hy(Dy) + rkLy Hy(VA) I
I
Therefore, S

I‘kLle(ﬁ-) S I‘kLlﬂg(Dg) + rkLlﬂg(Dl) + 1.

Since D (also D,) is isomorphic to a P! U P'-bundle over a smooth curve

C, it is easy to compute, by using Theorem 5.2.1 and the Projective Bundle
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Theorem [FG], that

I‘kLng(Dl) < rkLlffg(O) + 2. I‘kLgH{)(O) =142x1=23.

Therefore

kI Hy(Va) <3+3+1=7,

—
ot

The same computation applies to VJ and we get

—

rkIZ Ho (V) <343+1=1.

From this together with (x), we have

—~

I'kLlff_g(V'g) S : I'ng(Wg,) -+ I'kLle(X) - I'kHQ(Wg) + 7
= 1kH3(Wy) — tkHy(Ws) + 8 (since L; Ha(X) 2 7)

On the other hand, we have

—

tkL Hs(V)) = rk Hy(W3) + rk L Ha(X') — tkHy (W))
= I'ng(Wg) +l"kL1H2(X,) — I’kHz(W;;) '
= I'ng(Wg) - I'ng(Wg) + 20 (since L1H2(X’) = Z20) ‘1‘

ot

This shows that Lng(ﬁ) is not isomorphic to L, H3(VJ).
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5.3.2 Application to the Case n =3

With this construction, if we choose n = 3 and X C P* to be a general
hypersurface of degree d = 5, then V3 = X — X NP? and § = X NP% is a

smooth surface in P3.

The proof of Theorem 5.1.1: By applying Theorem 5.2.1 to the pair

(X, S), we get
o =5 LyHy(Va) — LiHy(S) — LiHa(X) — LiHa(Va) — 0. (5.2)

The above long exact sequence (5.2) remains exact after being tensored
with @. Note that L1 Ha(X)®Q D Griff; (X) ®Q is an infinite dimensional Q-
vector space by [Cl]. Recall that L H(S) is finitely generated since dimS = 2
(cf. [F1]). Hence LiHy(V3) ® Q is an infinite dimensional Q-vector space.
By (5.2.2), we have L1 H3(Vy) ® Q & L1 Hy(V3) ® Q is an infinite dimensional

Q-vector space.

Note that Z3 = V3 — V, is defined by (z5 - f(0,21,...,24) = 0,29 = 0) in
P, Let §' = (x5 = 0) N (£(0, 21, ..., 24) = 0) in the hyperplané (zo = 0) C P5.
It is easy to see that §" 2 8. Then Z3 = P3 U 3,(5), where £,(S) means the
joint- of S and the point p=[1:0:--.:0]. By applying Theorem 5.2.1 to the
pair (Z3,35), we get '

T L1H3(23 —_— ES) — Lle(ES) — L1H2(23) — LlHQ(Zg — ES) — 0.
(5.3)
Note that Z;— %8 = P38, Therefore Ly H2(Z3)®Q is of finite dimensional




since both Li H>(37 ) © Q & LoHy(S, Q) = Q ([1.1]) and L Hy(P? - §) @ @
are. By the same type argument, we have Li H3(Z3)®Q is of finite dimensional
since both L1 Hs(~ S)®Q = LoH, (S, Q) = O(note that S is simply connected)
and L1 H3(P? — 5) ® Q are.

By applying Theorem 5.2.1 to the pair (Vy, Zs), we have the following long

exact sequence
v L]_Hg(Zg) — L]_HQ,(E) - LIHE(‘/LI) - Lle(Zg) —r (54)

From (5.4), the infinite dimensionality of L, H3(Vs) @ Q, the finite dimen-
sionality of Ly Hy(Z5) ® Q and L, I3(Z3) ® Q, we obtain that LiH;(V) ®Qis
an infinitely dimensional -vector space, This completes the proof of Theorem
5.1.1. O

We can continue the procedure. Set V5 1= C5 — Vs, then V5 éan be viewed
as an affine variety in C® defined by zg - (165 f(l,zq, - ,2q) 1) —1=10. Set
Zy = Vs — Vi, and so on. It can be shown in the same way that L, H3(Z,) is
finitely generated by using Theorem 5.2.1 and Lawson’s Complex Suspension
Theorem. Note that L; Hy(Vs) ¢ L Hy(V4) is infinitely generated by 2.2.

By applying Theorem 5.2.1 to the pair (Vs, Z.), we get the long exact

sequence
— LiHi(Zy) — LiHy(Vs) — L1 Hy (Vi) — Ly\Hy(Zy) — - -

From these we obtain that L, H,(Vs) is infinitely generated.

Proposition 5.3.2. In this construction, L1 H,(Viy1) is not finitely generated
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for k= 3.

From the Complex Suspension Theorem [L1], we have

L1 Hapy o (35 Vigy1) & L Hy (Viya).

Therefore we get:

Theorem 5.3.3. For integers p and k, with & > 0,p > 0, we can find a

rational projective variety Y, such that LyHy, (Y is infinitely generated.

a

Remark 5.3.2. If k = 0 and p > 0, there also exists projective varieties Y

such that LyHq(Y') is infinitely generated. This follows from the Projective
Bundle Theorem [FG| and a result of Clemens [CI].

Remark 5.3.3. All the Y thus constructed above are singular projective vari-
eties. Can one find some smooth projective variety such that the answer to the
question (Q) is positive? Yes, we can. The author has constructed ezamples

of smooth projective varieties such (Q) is true (cf. [H6]).

Remark 5.3.4. Note that all Vi, are singular rational projective varieties.
For smooth rational projective varieties Y, LiH,(Y) ® Q are finite dimen-

stonal Q-vector spaces [Pe]. The author showed L1 H(Y) are finitely gencrated
- abelian groups [H1].
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5.4 Appendix

Let f(zo,- - ,%4) be a general homogenous polynomial of degree 5 and X be
a hypersurface of degree 6 in P® given by F(zg, -+ ,x5) 1= w5 f(xo, 0 ,24) —
z§ = 0. It is easy to see from the proof of Lemma 5.3.4 that the singular
points set of X is the union of a smooth 2-dimensional variety ¥ given by

2o = %5 = f(Zo, 71, , x4} = 0 and an isolated point defined by {z, = —L =
of - __Lu—...ﬁ_i_o}_

Oy dxa deg

pr—

Let o : P{ — P® be the blow up of P’ along the surface ¥ and Xy
be the proper transform in the blow up I%’; Denoted by £ = P(Nyps) the
exceptional divisor of the blow-up. Then D = Eﬂ)?y C P(Ny/pﬁ) corresponds
to the image of the tangent cones T, X C T,,(P°) in P(Ny,ps) at points p € Y,

Now

dF
T,X = E —————& m =0
P { dalo ... 9z 0 T }

bt ig =2

a degree 2 polynomial in P°. Directly computation shows that

T,X = {%(p)mgmg, 4t %(p)m%) = 0}

= (25 = 0) U {%(p)xo +oe Qf-(pm) = o}.

8564

Hence D = Xy N E is a fiber bundle over Y with singular conics as fibers.
Clearly, )Z'y is smooth away from D. Since D C E is a 3-dimensional variety

with singular points set $ 2 Y, we can show that it is the only singularity on

Xy!

Proposition 5.4.1. The proper transform Xy is a 4-dimensional variety in
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P(Nysps) with singularity S =Y U {q}, where q is an isolated singular point.

Proof. From the proof of Lemma 5.3.4, we see that the singular points S
of X consist of two components. One is a smooth surface and the other is an
isolated point g.

Since f is nonsingular on Y = {z¢ = f(0, 21, -~ ,x4) = 0}, we have df # 0
on Y. Let us restrict ourselves to a neighborhood of a point p in Y. There,
we can take the neighborhood of p as the affine space C® with p the origin.
Hence we can choose y = f as a coordinate in the neighborhood of each point
on Y since it is smooth. Locally, Y is defined by z¢g = 25 =y = 0 in C3 We
denote it by Yy. For convenience, we denote zg by =, x5 by 2. The blow up

—

C3)y, of C® along Y; is defined by the system of equations
O .

Tv = uy,
TWw = uz,
Yyw = zu.

in C° x P2, where [u : v : w] is the homogenous coordinates on P2. Let

o : (C%)y, — C® be the map of this blowup. Then the inverse image of X is

- given by the following equations:

b - yz =0,
TU = uy,

4
TW = Uz,
yw = 2v.

——

The above equations define two divisors on (C5)y,. One of them is the excep-
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——

tional divisor Fg, the intersection of F with (C5)y, and the other is exactly
the proper transform )’(vyo of Xy in EEE)YD, where X is the part of X in C5.

We want to show that )?yﬂ is smooth away from Y. Now it is clear. The
blow up (@E)YO is covered by 3 open charts

t (w#0), (v 0) and (w # 0).
On the chart (u # 0), we can set w = 1. The equations for the inverse

image of X under o are given by

2 — gz =0,
v =y,
g
Tw =z,
yw = zv.

‘The equations zv = y and zw = z imply yw = zv. Replacing y and z by zv
and zw, respectively, we can factor z? in the first equation z® — (zv}(zw) = 0,
Hence the proper transform )?yo are given by

zt —vw =0,
TV =Y,
W= 2.

and the exceptional divisor is given by

z? =0,
TV = 9,
Tw = 2.

1€, 2 =9y =2 =v = w =0, which is isomorphic to Y.
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It is easy to show that on the charts (v £ 0) and (w # 0), the proper trans-

form )?yo is smooth everywhere. This completes the proof of the proposition.

O

Remark 5.4.1. In fact, the 2-dimensional singularity of X is of the A, -type.

It can be resolved by blowing up one more time. The isolated singularity q can

be resolved by one blowup.




Chapter 6

Generalized Abel-Jacobi map on Lawson
homology

6.1 Introduction

In this chapter, all varieties are defined over C. Let X be a smooth pro-

jective variety with dimension n. Recall that the Hodge filtration

< CF'HMX,C) C FF'HMX,C)C --- C FH*(X,C) = H*(X,C)

is defined by
FUHF(X,C) = P HH(X).

i>q
Note that F2H*(X,C) vanishes if ¢ > k.
In [G], Grifliths generalized the Jacobian varieties and the Abel-Jacobi map

on smooth algebraic curves to higher dimensional smooth projective varieties,

Definition 6.1.1. The g-th intermediate Griffiths Jacobian of a smooth
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projective variety X is defined by

JUX): = H¥YX,C){FH*Y(X,C)+ HY (X, Z)}

Fn—q+1H2n—2q+1 (X, C)*/H2q~1 (X, Z)*

Let Z,(X) be the space of algebraic p-cycles on X, Set Z"2(X) = Z,(X).

There is a natural map
cly 1 ZYX) - H*(X,Z)
called the cycle class map. Set

Zn— o X hom = ZYX ) phom 1= ker clg.

Definition 6.1.2. The Abel-Jacobi map
D7 ZY X pom — JUHX)

sends © € ZYUX )hom to R, where ®Y, is defined by

Pl (w) = /Uw, w € Froatt =2+l X Q).

Here ¢ = OU and U is an integral current of dimension 2n — 2¢ + 1.

Now let

T (X ) g © T (X)
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be the largest complex subtorus of J*~1(X) whose tangent space is contained
in H9719(X). Tt has been proved that ®9(Z7(X},,) is a subtorus of J*1(X)
contained in J21{X) g, (cf. {V1], Corollary 12.19), where Z29{X )y, C Z29(X)

are the subset of codimension g-cycles which are algebraically equivalent to

Zero.

The Griffiths group of codimension g-cycles is defined to

Grift!(X) := 29X )hom/ Z(X Jaig

Therefore we can define the transcendental part of the Abel-Jacobi map

O : Griff!(X) — JUX )y :== J4 X))/ T X g (6.1)

as the factorization of @9,

By using this, Grifliths showed the following:

Theorem 6.1.1. ([G]) Let X C P* be a general quintic 8-fold, the Griffiths

group Griff>(X) 4s nontrivial, even modulo torsion.

Remark 6.1.1. Clemens has obtained further results: Under the same as-

sumption as in Theorem 6.1.1, Griff*(X) ® Q is an infinitely generated Q-

vector space [Cl].

In this chapter, the Griffiths’ Abel-Jacobi map is generalized to the spaces

of the homologically trivial part of Lawson homology groups.

Definition 6.1.3. The Lawson homology L,H(X) of p-cycles is defined




Ly Hy(X) i= mpegp(Z,(X))  for k>2p>0,
where Z,(X) is provided with a natural topology (cf. [F1], [L1]). For general
background, the reader is referred to [L2].

In [FM], Friedlander and Mazur showed that there are natural maps, called
cycle class maps

®, 5 ¢ LyHi(X) — Hy(X).

Define

Lka(X)hO‘m = ker{(:[)p_k : Lka(X) — }Ik(X)}

The domain of Abel-Jacobi map can be reduced to Griffiths groups as in
(6.1). Similarly, our generalized Abel-Jacobi map is defined on homologically
trivial part of Lawson homology groups. As an application,lwe show that
the non-triviality of certain Lawson homology group, even modulo the usual

homology.

The main result in this chapter is the following:

Theorem 6.1.2. Let X be a smooth projective variety. There is a well-defined

mdp

P+ LpHop k(X ) hom — { & HPH’HB(X)} /H2p+k+1(Xa Z)
r>ktl,r+a=k+1

which generalizes Griffiths’ Abel-Jacobi map defined in [G]. Moreover, for any
p >0 and k = 0, we find examples of projective manifolds X for which the

image of the map on Ly Hy (X Ynom 18 infinitely generated.
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As the application of the main result together Clemens’ Theorem {Remark

6.1.1), we obtain

Theorem 6.1.3. For any k > 0, there exist a projective manifold X of di-
mension k + 3 such that L1 Hyyo(X)hom @ Q is nontrivial, in foct, infinite

dimensional over Q.

Using the Projective Bundle Theorem proved by Friedlander and Gabber

in [FG], we have the following result:

Theorem 6.1.4. For any p > O and k > 0, there exist a smooth projective
variety X such that Ly Hygop (X hom @Q is an nfinite dimensional vector space

over Q.

In section 6.2, we will review the minimal background materials about
Lawson homology and point out its relation to Griffiths groups. In section
6.3, we give the definition the generalized Abel-Jacobi map. In section 6.4, the
non-triviality of the generalized Abel-Jacobi map is proved by using Griffiths
and Clemens’ results through examples. The construction in our examples
also shows this generalized Abel-Jacobi map really generalizes Griffiths’ result

in [G].

6.2 Lawson homology

Let X be a projective variety of dimension n. Denote by C,(X) be the
space of effective algebraic p-cycles on X and Z,(X) be the space of algebraic

p-cycles on X, There is natural, compactly generated topology on Cp(X) (resp.
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Zp(X)) and therefore C,(X) (resp. Zp(X)) carries a structure of an abelian
topological group.

The Lawson homology L,H(X) of p-cycles is defined by
Lo Hp (X)) i= mp_0p(Zp(X))  for k=>2p>0.
It has been proved by Friedlander in [F1] that
Ly H(X) = limm(Cp(X)a)

for all & > 0, where the limit is taken over the connected components of Cp(X)
with respect to the action of m(Z,(X)). For a detailed discussion of this

construction and its properties we refer the reader to [FM], §2 and [FL1],§1.

In [FM], Friedlander and Mazur showed that there are natural maps, called
cycle class maps

Dy 0 LyH(X) — Hy(X)

where Hy(X) is the singular homology with the integral coefficient.

Define
Lka(X)ham = ker{CI)p,k : Lka(X) — Hk(X)}

It was proved by Friedlander [F1] that LyHo,(X) = Z,(X)/Zp(X)ay.
Therefore we have
LPHQP(X)h,om = Griﬁp(X), (6.2)
where Griff,(X) := Griff™ ?(X).
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For general background on Lawson homology, the reader is referred to [L2].

6.3 The definition of generalized Abel-Jacobi
map on L,Hoy (X )pom

In this section, X denotes a smooth projective algebraic manifold with
dimension. n. Note that Z,(X) is an abelian topological group with an identity
element, the “null” p-cycle.

For [] € L,Hap4x(X), we can construct an integral (2p + k)-cycle ¢ in X.

To see how to construct ¢ from [¢] for the case that p = 0, the reader
is referred to [FL3]. The construction that ¢ is morphism from a projective
variety to Z,(X).

We will use this construction several times in the following. We briefly

review the construction here.

A class

[0} € LpHap (X)) = limmie(C; (X))

—

is represented by a map

¢ S* — Cy(X).

(For k = 0, [y] is represented by a difference of such maps.)
We may assume ¢ to be piecewise linear (PL for short) with respect to
a triangulation of C,(X) D I'y D T’y D -+ respecting the smooth stratified

structure ([Hi2]). Here I'; is a subcomplex for every ¢ > 0.
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Let ¢ be as above and fix sy € S* and zp € Supp (¢(ss)) € X. There
exist affine coordinates (1, 2,, (1, -+ , {u—p) on X with my = 0 such that the
projection pri(z,¢) = 2z, when restricted to UxU’ = {(z,w) : |2| < 1and |w| <
1}, gives a proper (finite) map pry : Supp (p(s0)) N (U x U’) — U. Slicing this
cycle @(s0)|uxer by this projection gives a PL map o : U — SPHU’) (with
respect to a triangulation of SP4(U")) for some d. Furthermore, given any such
a map, we can construct a cycle in I/ x U'. (cf. [FL3].) Choose a finite number
of such product neighborhood U, x Ul, &« = 1,--+ , K, so that the union of
Uy X UL(3) covers Supp (¢(sq). After shrinking each U7, slightly, we can find a
neighborhood NV of sp in §* such that pr : Supp ((s))N(Us x UZ) — U, for all
s € N and for all . Then ¢ is PL in A/ if and only if ¢ : N x U, — SP*U?)
is PL for all &. One defines the cycle ¢(¢p) in each neighborhood N x U, x U,
by graphing this extended o. From the construction, the cycle c(¢) depends

only on the PL map ¢. (The argument here is from [[FL1], page 370-371].)

Lemma 6.3.1. The homology class ¢, := (pra)«(c()) is independent of the
choice of PL map ¢ 1 SF — Cp(X) in [p], where pry 1 S¥ x X — X s the

projection onlo the second factor.

Proof. Suppose that ¢’ : % — C,(X) is another PL map in [¢]. Hence,
we have a continuous map H : 5% x [0, 1] — C,(X) such that H|guy o) = ¢ and
H| skx (1} = ¢'. Furthermore, this map can be chosen to be PL with respect to
the triangulation of C,(X). Therefore, by thé same construction as above, we
obtain that an integral current cg := (pro)«(c(H)). It is clear 8(cy) = ¢, —

since the push-forward (pra)s commutes with the boundary map &,
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Alternatively, the restriction of ¢ to the interior of each top dimensional
simplix A? (1< § < N, N is the number of top dimensional simplices) gives a
map @ : A¥ — Ty, where A¥ is the j-th k-dimensional simplex and n, is the
maximum number such that I'y; contains the image of | Nt The piecewise
linear property of ¢ with respect to the stratified structure of Gy (X) have the

following property:

(%) For each t € AY, p(s) = 32, ai(s)Vi(s) with the property that a;(s} = a; Is

constant in s and V;(s) is irreducible.

For each j, 1 < j < N, set ZA;; = ZiaiZf,j, where Zifj = {(s,2} €

A¥ x X1z € Vi(s)}. It is clear that Zx 1s an integral current. Therefore,

8 = (pra)u(Zas) (63)

is then an integral current of real dimension 2p + k, where pry : A? x X =X

is the projection onto the second factor. Set Z(yp) 1= Z;V:l ¢5.

Lemma 6.3.2. The closure of Z(y) is an integral cycle in X.

Proof. Since ¢ is piecewise linear with respect to the triangulation of
Cp(X). The image of ¢ on each (k — 1)-dimensional simplex AF s in Ty,
where m; is the maximum number such that I',, contains the image of P k1

Each | e-1 defines a current ¢f " := (pra)s(Z-1) a8 in (6.3). The sum

it

1
is zero since, for each ¢f !, there is exactly one #E~1 such that they have the

same support but different orientation.
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Let ¢, be the total (k + 2p)-cycle in X determined by ¢. We will simply

use ¢ instead of ¢, unless it arises confusion.

Remark 6.3.1. ¢, as current, has réstfrz'cted type ¢, = [ColpthpTlColpti—1pr1t
o [eplp ke

If ¢ is homologous to zero, we denote it by ¢ ~pom 0, 16, [p] — 0 in
Hop(X,Z) under the natural transformation LypHopir(X) — Hoppn(X, Z)
(see, e.g., [L2], p.185). This condition translates into the fact that there exists
an integral topological (2p + k + 1)—chainb ¢ such that 8¢ = c.

We denote by Map(S*,C,{X)) the set of piecewise linear maps with re-
spect to a triangulation of C,(X) from the k-dimensional sphere to the abelian
topological monoid Cp(X)) of p-cycles.

Set,

Ma,p(Sk,Cp(X))hm - Ma,p(Sk, CP(X))

the subset of such maps  : S¥ — C,(X) whose total cycles ¢, is homologous
to zero in Hyyy (X, Z). There is a natural induced compact open topology on
the space of such maps Map(S¥,C,(X)) (see, e.g., Whitehead [Wh]).

Now Z,(X) is the group completion of the topological monoid C,(X) ([F1],
[L1]). In the following, we will denote by Map(S*, Z,(X)) the set of piecewise
linear maps with respect to a triangulation of Z,(X) from the k-dimensional
sphere to the abelian topological group Z,(X) of p-cycles.

Let ¢ : S¥ — Z,(X) be a PL map which is homotopic to zero. Hence

there exists a map ¢ : D¥1 — Z,(X) such that ¢ is PL with respect to a
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triangulation of Z,(X) and @|gx = ¢. Then ¢ determines an integral current,
i.e., the total (k + 1 + 2p)-chain & such that the boundary of ¢ is ¢, ie.,
9¢ = c¢. From the definition, we have ¢ € Map(Sk,Zp(X Nhom. Denote by
Map(S*, Z,(X))o the subspace of Map(S¥, Z,(X))rom consisting of clements

¢ which are homotopic to zero.

6.3.1 The generalized Abel-Jacobi map on Map(S*, Z,(X ))}wm

In this subsection, suppose that ¢ ~pom 0, L., [¢] — 0 in Hep k(X Z)
under the natural transformation LyHopyr(X) — Hop(X, Z) (see, e.g., [L2],
p.185). This condition translates into the fact that there exists an integral
topological (2p + k + 1)-chain & such that 92 = ¢.

Consider

w e { _ @ EI’J”"_'”S}, dw =0

Tkt 1 rts=k+1

and we define

We claim:

Proposition 6.3.1. <I?(p is well-defined, i.e., O, (w), as an element in

{ éb H"+’"'3’+S(X)}*/Hzp+k+1(X= 7),

820, r+s=k+1

depends only on the cohomology class of w. Here we identify Hopypi1(X,Z)
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with the image of the composition

*
Hopit1(X, Z) O Hopyiy1(X,C) & HPPFX,C)* 5 { b HMT’pH(*X}} ’
r,e>0,r+s=k+1
{6.4)

where p is the coefficient homomorphism and 7 is the projection onto the

subspace.

Proof. We need to show

1. For another choice of W' € B,op 11 skt gptrets o — ' = da, we have
. /
faw - fé W

9. If & is another integral topological chain such that 8¢ = ¢, then we also

have fﬁw = fé, w, where & is the currents determined by ¢.

To show the part 1), note that we can choose « such that w — ' = da for
some « with @™ = 0 if r < k + p by the Hodge decomposition theorem for

differential forms on X. Hence

/Ew»—/Ew’=/ada::/Ca=0

by the Stokes Theorem and the reason of type. This shows that the definition

of &, is independent of the cohomology class of

W) { @  mre( X).}.

r>kylr+s=k+1

To show the part 2), note that (¢ — &) = 0 and hence ¢ — ¢ = Alisan

integral topological cycle and hence | , lies in the image of the composition
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in (64). Hence [ is well-defined independently of the choice of & such that

d¢ = c, as an element in

{ b Hrtreex )}* / H 2ptkt1(X, Z).

ra>0,r+e=k41

Hence we obtain a well-defined element

vel @ ) e

r>k+1lrda=k+1

This completes the proof of the Proposition.

Therefore by Proposition 6.3.1 we have a well-defined homomorphism

¢ : Map(S¥, Zép(X))hom - { D Hp+r’p+s(X)}*/H2p+k+1(X, z)

rktlpba=ktl
- (6.5)

given by ®(p) = @,

6.3.2 The restriction of & on Map(S*, Z,(X))o

In this subsection, we will study the restriction of ® in {6.5) to the sub-
space Map(S*, Z,(X))o C Map(S*, Z,(X))aom, Le., all PT. maps from S*
to Z,(X) which are homotopic to zero. Note that the image of ® is in
UDrshiroamin HPPH(X) 1 Hop g (X, 7).

Let ¢ : S* — Z,(X) be an element in Map(S*, Z,(X))y. Denote by c
the total (£ + 2p)-cycle (maybe degenerated) determined by ¢. Hence there

exists a map @ : D* — Z (X) such that @|s» = @ and the associated total
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R IO e ;

(k + 1+ 2p)-chain & such that the boundary of éis ¢, i.e., 83 = c.

The restriction of the generalized Abel-Jacobi map @ to the subspace of

Map(S¥, Z,(X))o is the map

®O:Map(8k,2p(X))g—+{ b Hp”"’“(X)}* / Hoppra (X, 7).

r>k+1,r4-s=k+1
Now
ce { @ gp+r,P+s}
r820,r+s=k+1
and
cE { @ gp+T,p+8 } .
rs>0,rta=k
Hence

(I)w(w)=/6w=0

for w € Srupt1 prs=kt1EPTPTE with dw = 0 by the reason of type. Therefore
P, = 0 on Drojt1 st HPTPH(X), That is to say, the image of ® on the

subspace Map(S*, Z,(X)), is in

HPH52(X)* [{ P2 (X)) o Hoppon (X, Z0)
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6.3.3 The reduction of ® to L,Hopii(X)nom

We reduce the domain ® to the quotient
Map(S*, Zp(X ) hom/Map(5*, Z,(X))o = mo{Map(S¥, Z,(X))nom.

Now, if there are two maps ¢ : S* — Z,(X) and ¢’ : §% — Z,(X) such
that ¢ is homotopic to ¢'. Denote by ¢ (resp. ¢) the total (k + 2p)-cycle

determined by  (resp. ¢'). For

we { @ gp+r,p+s}’ dw = 0,

okt lir+s=k+1

since ¢ — ¢’ ~pom 0, we have ®y_pw = Ppw — ®pw = 0 and

Dy = Dy € { D Hp+r’p+s(X)} /H2p+k+l(X: 7)

r>kt-1r+s=k+1

by the discuss in §3.2.

Therefore, we have a commutative diagram

M&p(Sk,Zp(X))o ‘i* Map(Sk, ZP(X))hom
1 ®g L@

HPHERVP (X [ Hop g1 (X, ) < {®r2k+1,r+s=k+1HHT,pH(X)} /HQP%H(X’Z)'

From this, we reduces ® to a map

*
@tr:wo(Map(Sk,Zp(X))hom—;{ P HW’PH(X)} /HQPMH(X,Z) (6.6)
rxkt+lr+a=k+1 '
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given by @4 () = $,. Here /Hypipy1(X, Z) means modulo the image of the

composition map

~

.
Hopims (X0 & My, ={ @  weeof -{ @ e
r4a=2p-+k+tl r>k+1l,r4s=k+1

*

We complete the construction of the generalized Abel-Jacobi map on ho-

mologically trivial part in Lawson homology

LpHZp—l—k(X)hom = WO(Map(Sk} ZP(X))homa

i.e., the kernel of the natural transformation Ly, Ho, (X)) — Hopyi(X, Z). ' i

Remark 6.3.2. This map defined above is exactly the usual Abel-Jacobi given
by Griffiths when k = Q since there is a natural isomorphism Ly Hop(X ) pom = l

Griff,(X) (¢f. [F1]). This map © on LoHi(X)pom s trivial since LoH(X ) pom = i

0 by Dold-Thom theorem (cf. [DTY]).

Remark 6.3.3. Our generalized Abel-Jacobi map has been generalized to Law-

son homology groups by the author. The range of the more generalized Abel-

Jacobi map will be certain Deligne (co}homology. The tools used there are

“sparks” and “differential characters” systematically studied by Harvey, Law-

son and Zweck (HLZ] and [HLZ].

Remark 6.3.4. Sometimes we also use AJx(c) to denote ®u. (), where ¢ is i

the cycle determined by . i
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6.4 The non-triviality of the generalized Abel-
Jacobi map

The natural question is the existence of smooth projective varieties such
that the generalized Abel-Jacobi map @y on LyHop k(X )hom i8 non-trivial
for both p > 0 and k > 0. The following example is a family of smooth 4-
dimeﬁsional projective varieties X with Ly H3(X )pom # 0, even modulo the

torsion.

Example: Let F be an elliptic curve and Y be a smooth projective alge-
braic variety such that the Griffiths group of 1-cycles of Y tensored with Q is
nontrivial. Set X = E x Y. Let [w] € H*®(X) be a non zero element. By
Kiinnuth formula, we have [w] = [a] A [8] for some 0 # [ € HM(E) and
0 6] & (). |

Let 2 : S! — F be a homeomorphism onto. its image such that ¢($*) C E
is not homologous to zero in Hy(E,Z). Let ¢ : §* — Z1(X) be a continuous
map given by

o(t) = (), W) € Z1(X), (6.7)

where W € Z;(Y) a fixed element such that W is homologous to zero but W
is not algebraic equivalent to zero, i.e.,, W € Griff;(Y). The existence of W is
the assumption. Then there exists an integral topological chain U such that
AU = W. Using the notation above, the cycle ¢ determined by ¢ is 2(S") x W.

Now ¢ = 1{S') x W is homologous to zero in X. Indeed,

B(1(S1) x U) = 8u(SY)) x U + (8) x OU = (S x W = ¢ (6.8)
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Hence 0% = #(S') x U -+ «y + 8(something), where dy = 0. Therefore we have

[ L= ) 2)

Proposition 6.4.1. Suppose Y is a smooth threcfold and W € Z1{Y) such
that the image AJy (W) of W under the Griffiths’ Abel-Jacobi map AJy is non
torsion in H3O(Y)* /ImHs(Y,Z). The map ¢ is giveﬁ by (6.7) as above. Then

the map Py () € HH(X)/ImH (X, Z) is nontrivial, even modulo torsion,

Proof. By Kiinneth formula, we have H**(E x Y) = H'0(E) @ H**(Y)
ond Hy(ExY,E) = (Y, Z)®{ H: (B, 2)® Hy(Y, Z)} & { Ha( B, ) ® HalY, 1)}

modulo torsion. Let
7 Hy(B x Y, Z) — {H*(E x Y)}*

be the natural map given by m(u)(e® 8) = [, oA B for u € H(E xY,Z) and
a € H(E) and f € H*(Y). Now n(u) # 0 only if v € H1(E, Z) ® H3 (Y, Z).

Hence we get

(HY(E x Y)}* [ImHy(E x Y, 2) = {H"(B)* @ H*°(Y)"}/Im{H\(E, Z) @ H3(Y, Z)}.

Therefore, by the definition of generalized Abel-Jacobi map and (6.8), we

have

Ady(US") x W)(a A B) = Tu(p)(a A f)

= L(Sl)a '(fuﬁ)

ﬁ(sl) a ) - (AJy(W)(B))
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i.e., AJY(@(SI) X W) = L(Sl) ®AJY(W)
Note that the map [ : HY(E) — C is in the image of the em-

bedding H((E,Z) — HY“(E)*. But AJy(W) is a non-torsion element in

H3(Y)*/ImH4(Y, Z). Now the conclusion of the proposition is from the fol-

lowing lemma.

Lemma 6.4.1. Let V,, and V,, be two C-vector spaces of dimension of m and

n, respectively. Suppose that Ay, C Vi, Ay C Vi, be two lotlices, respectively.

If b € V,, is a non torsion element in V,, i.c., kb is not in A, for any k € 2%,

then a ® b is not in A, ® Ay, for any 0 # a € A,

Proof. Set rank(A,,) = mo, rank(Az) = no. Let {e:};2, {f;}72, be two

integral basis of A;,, A,, respectively. If the conclusion in the lemma fails,

then

Mg Mo

a®b s Zka,a‘@fN

i=1 j=1

for some k;; € Z. By taking the conjugation, we can suppose that V,, and Vp,

are real vector spaces with lattices A,, and A, respectively.

Suppose that @ = ) ;% k;e;, where k; € Z, i = 1,- - ,my are not all zeros.

The above formula reads as

Mo fio

E’ﬂfl%@b_zzkﬂe?’@fi

i=1 j=1

mo
E e; ®
i=1

Since {e; }129 is a basis in A,, and hence they are linearly independent over

na
(kb= > kijfy) = 0.
j=1




R in V,,, we get
g
]ﬁ,‘b — E k?;jfj = ()

=1
for any 4 =1,2,-++ ,mg. By assumption, at least one of k; is nonzero since a
is nonzero vector in V,,. The last formula contracts to the assumption that &b
is not in A, for any &k € Z*. This completes the proof of the lemma and hence
the proof of the proposition. O

]

More generally, we have the following Proposition

Proposition 6.4.2. Suppose Y is a smooth threefold such that the image
AJy (Griff (Y)) of Griffy(Y) under the Griffiths’ Abel-Jacobi map AJy len-

sored by Q is are infinitely dimensional Q-vector space over Q in
{H3(YY*/ImH3(Y,Z)} @ Q.

For each W € Griff;(Y), The map pw 1is given by (6.7) as above. Then

the image
{Cbt,ﬂ(cpw)IW C Griffl(Y)} ®QC {H4’0(X)/ImH4(X, Z)} ®Q

is an infinite dimensional Q-vector space.

Proof. We only need to show that:

(x) Let N > 0be an integer and Wh,--- , Wy € Griff1(Y') be N linearly inde-
pendent elements under Griffiths Abel-Jacobi map. Then @y, <+, 0w, €

L1 H3(E XY Yo ®Q are linearly independent even under the generalized
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Abel-Jacobi map.

The claim () follows easily from Proposition 6.4.1 above since if ow,, -+ , ow,
are linearly dependent implies that Wy, .- , Wy are linearly dependent by
Proposition 6.4.1. This contradicts to the assumption.

X

Now for suitable choice of the 3-dimensional projective Y, for example,

the general quintic hypersurface in P* {c¢f. [G]) or the Jacobian of a general
algebraic curve with genus 3 (cf. [Cel]) and the l-cycle W whose image un-
der Abel-Jacobi map is nonzero, in fact, it is infinitely generated for general
quintic hypersurface in P* (cf. [C]]). Recall the definition of Abel-Jacobi map, i
Ady (W) = [, module lattice H*(Y, Z), we have [, 8 # 0 for this choice of W
and some nonzero [§] € H*(Y). ‘ H

This ‘example also gives an affirmative answer the following question:

Question: Can one show that L,Hopt (X )pom is nontrivial or even infinitely

generated for some projective variety X where § > 0 7

Remark 6.4.1, From the proof of the above propositions, we see that the non- it

triviality of Griffiths’ Abel-Jacobi map on Y implies the non-triviality of the

generalized Abel-Jacobi map on homologically trivial part of certain Lowson
homology groups for X, i.e., all the Abel-Jacobi invariants can be found by
generalized Abel-Jacobi map. In [CY, Clemens showed the for general quintic
3-fold, the image of the Griffiths group under the Griffiths’ Abel-Jacobi map

can be infinitely generated, even modulo torsion.

Remark 6.4.2. Friedlander proved in [F2] the non-trivielity of L, Hop(X)hom

for certain complete intersections by using Nori’s method in [N], which is to-
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tally different the construction here. There is no claim of any kind of infinite

generated property of Lawson homology in his paper.

Remark 6.4.3; Nori [N] has generalized Theorem 6.1.1 and has shown that
even the Griffiths’ Abel-Jacobi map is trivial on some Griffiths group but the
Griffiths group itself is nontrivial, even non torsion. By using a total different,
explicit and elementary construction, the author has constructed singular ro-
tional 4-dimensional projective varieties X such that Ly H(X)nom is infinitely
generated [H{]. But the Able-Jacobi map is nol defined on singular projective

variety (at least I don’t know).

From the proof of Proposition 6.4.1, we observe that, for Y as above, and

M is a projective manifold, if there is a map i : §* — M such that

f c H(M) - C
i(5k)

is non-trivial as element in {H®O(M)}*, then the value of the generalized

Abel-Jacobi map @, at ¢ : §* — Z1(X) defined by
o(t) = (i(t), W) € Z(M x Y)

is non-trivial, even modulo torsion.

Note that if the complex Hurewicz homomorphism p @ C : m(X) @ C —

H,(M,C) is surjective or even a little weaker condition, i.e., the composition

m(X) ® C — Hy(M,C) — {H* (M)}




is surjective, we have the non-triviality of the map fﬁ.( g0y H O(M) — Cif
H*O(M) # 0. Here the map 7 : Hy(M,C) — {H%°(M)}* is the Poincaré
duality the projection H*(M,C) — H*%(M) in Hodge decomposition.

As a direct application to the Main Theorem in [[DGMS], §6] and also

Theorem 14 in [NT|, we have the following result on higher dimensional hy-

persurface.

Proposition 6.4.3. Let M be a smooth hypersurfoce in PP and n > 1.

Then the composition map
m(X) ® C — Hy(M,C) — {H**(M)}*

18 surjective for any simply connected Kdhler manifolds.
Therefore we obtain the following result:

Theorem 6.4.1. For any k > 0, there exist a projective manifold X of di-

mension k + 3 such that LiHgpo(X)hom ® Q 4s nontrivial or even infinite

dimensional over Q. 0

By using the Projective Bundle Theorem in [FG|, we get the following

result:

Theorem 6.4.2. For anyp > O and k > 0, there is a smooth projective variety
X such that LyHpiop(X hom ® Q ts infinite dimensional vector space over Q.

O
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Chapter 7

A homomorphism from Lawson homology to
Deligne Cohomology

7.1 Introduction

In this chapter, all varieties are defined over C. Let X be a projective
variety with dimension n. The Lawson homology L,Hi(X) of p-cycles is
defined by

LoHi(X) 1= mp_op(Zp(X)) for k2=2p=0,

where Z,(X) is provided with a natural topology such that it is an abelian
topological group (cf. [F1], [L1]). For general background, the reader is re-
ferred to [L2].

In [FM], Friedlander and Mazur showed that there are natural maps, called
cycle class maps

Dy LpHi(X) = Hy(X)

from Lawson homology to singular homology.

Define

LpHi(X ) hom = ker{®@p s : LpHp(X) — Hp(X)}.




Temporarily suppose X is a complex manifold. Let % the sheaf of holo-
morphic k-form on X. The Deligne complex of level p is the complex of

sheaves
Zp(p):OﬁZ(zﬂpQg(ﬁ»Q}{%Qg(—%-'—ﬂlﬁ’;lﬁﬂ

The Deligne cohomology of X in level p we mean the hypercohomology of
this complex:

Hp(X, 2(p)) := H'(X, Zp(p))-

For more details on Deligne cohomology, the reader is referred to [EV].

Using the theory of differential characters introduced by Cheeger-Simons in
[Ch] and [CS], systematically studied by Harvey, Lawson and Zweck in [HLZ)
and the theory of D-bar sparks developed by Harvey and Lawson in [HL1] and
[HL2], we can defined a natural homomorphism from the Lawson homology
to the corresponding Deligne cohomology, which coincides to the generalized
Abel-Jacobi map defined by the author in [H6]. The main result in this chapter

is the following:

The main result in this chapter is the following

Theorem T7.1.1. Let X be a smooth projective manifold with dimension n.

We have a well-defined homomorphism

6 LyHypop(X) — HXPH(X Zn —p—k — 1)),
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given by
a([f1) = ay

which coincides with the generalized Abel-Jacobi map defined in [H6] when &
is restricted on Ly He(X )pom and the projection of the image of & under & is

the natural map Pp .

The notation d; and J; will be defined below.

7.2 Sparks and differential characters

It might necessary to sketch the background materials of sparks and differ-
ential characters for our construction later. For the details of the materials
used here, see [HLZ|,[HL1| and [HL2]. First we recall some definitions we need.

In this section X denotes smooth manifold unless otherwise nated.

Definition 7.2.1. Set E¥(X) := the space of smooth differential forms k-form
on X with C*-topology; DF(X) :={¢ € EX(X)| supp(¢) is compact}. We say
the space of currents of degree k (and dimension n — k) on X, it means the
topological dual space D'*(X) = D'y (X) := {DV*(X)}.

RF(X) := the locally rectifiable currents of degree k{dimensionn — k) on X
TF5(X) := the locally integrally flat currents of degree k on X

TH(X) 1= the locally integral currents of degree k on X
The following notation was firstly given in [HLZ]:

Definition 7.2.2. The space of sparks of degree k on X is defined to be

SH(X) = {s € D*(X)|do =¢p— R where ¢ (X) and ReIF*TH(X)}
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Definition 7.2.3. For each integer k, 0 < k < n, we define the de Rham-

Federer characters of degree k to be the quotient
H*(X) = S5 (X)/{dD* " (X)} + TF*(X)}

The equivalence class in H* (X) of a spark a € S*(X) will be denoted by 4.
It has been proved that ¢ and R in the decomposition of da above is unique

[[HLZ], Lemma 1.3]. Moreover, there are two well-defined surjective maps:
o B X) = ZEM (XY au@) = ¢

and

5y s HE(X) — H*'(X,Z); 85(a) = [R),

where ZETH(X) denotes the lattice of smooth d-closed, degree k + 1 forms on
X with integral periods.

Now we can give the definition of Riemannian Abel-Jacobi map. Let X be
compact Riemannian manifold. Any current R on X, has a Hodge decompo-
sition (cf. [HP])

| R = H(R) + dd*G(R) + d*dG(R)

where H is harmonic projection and & is the Green operator. Also recall that d

commutes with G, so that if R is a cycle, then dG(R) = 0. For R € ZF*(X),
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set a(R) := —d*G(R) then

i.e., a(R) is a Hodge spark. Let @ e H*(X) denote the differential character

corresponding to the Hodge spark a(R). Set
Jac®(X) .= H*(X;R)/HE (X;7Z); B**(X):=dIF*(X)
then we have a well-defined map
b BFYX) — Jack(X)

which is.called the k-th Riemannian Abel-Jacobi map.
In [HL1], the concept of homological spark complex and its associated
group of homological spark classes are given. In [HL2], a generalized

version of homological spark complex is given as follows:

Definition 7.2.4. A homological spark complex is o triple of cochain

complexes (F*, E* I*) together with morphisms
V[ F*OF

such that:
1. W(I*) N E* = {0} fork >0,

2. H*(E) = H*(F), and
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8. W(1% — F° is injective.

Definition 7.2.5. In a given spark complex (F*, E*,I*) a spark of degree
k is a pair

(a,r) € FF o IF!
which satisfies the spark equation

1. da=e— U(r) for some e € E**!, and

The group of sparks of degree k is denoted by S* = S*¥(F*, E*, I*).

Definition 7.2.6. Two sparks (a,r), (¢/,r"} € S¥(F*, E*, I*) are equivalent if
there exists a pair '

(b,s) € F* "t I*
such that
1. a—d =db+ ¥(s), and
2, r—r' = —ds.

The set of equivalence classes is called the group of spark classes of degree
k associated to the given spark complex and will be denoted by ]ﬁI’“(F*, E*, I*)
or simply HF(F).

As usual, let Z*(E) = {e € E¥|de = 0} and set

Z¥E) = {e € Z¥E)|[e] = W.(p) for some pe H(I)}
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where [e] denotes the class of e in H¥(F) (note that de — 0). The following

lemma was proved in [HLZ]:

Lemma 7.2.1. There exist well-defined surjective homomorphisms:
8 HNF)Y — ZH(E) and 6, BF(F) — H*(])
given on any representing spark (a,r) € S* by
di(a,r) =e and &y(a,r) = [r]

where da = e — U(r) as in definition 7.2.5.

Example: The following concrete example is the main object which will be
dealt with in the next section. Now let X be a projective  manifold with

dimension n. Set
F™" =D™(X,q) = SriommpegD™(X) and d=Wod

where

T:D™(X) - D"(X,q)

Is the projection ¥(a) = %™ 4. glm—1 4 ... 4 go~lm—qt1,
E™ =E™(X,q) = OrpsmmreE™(X) and d=Tod

and

I™ = I™(X)
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It has been shown in [[HL2|,§14] that the above triple {F*, £*,I*}) is a
homological spark complex . The group of associated spark c.lasses in degree
m will be denoted by ﬁm(X ,¢). To this homological spark complex, it has
been that

ker (8,) = HR' (X, Z(q)).

7.3 The construction of the homomorphism
from Lawson homology to Deligne coho-

mology

In this section, X denotes the projective manifold. Let Zp(X ) be the space
of algebraic p-cycles with a natural topology (cf. [F1], [L1]) and a base point,
i.e., the ull? p-cycle 0 and let 2% Z,(X) be the loop space with the given base

point. Explicitly, suppose S* == R* U co. We have
kap(X) ={f: 8" Z,(X)|f is continuous with f(co)} = 0}.

Given such a continuous map f : S* — C,(X), we can find a map g: $*¥ —
Cyp(X) such that g is homotopic to f and g is piecewise linear with regard to &
triangulation of C,(X) and hence one can define a current ¢, over X and this
current ¢, is a cycle. Moreover ¢, depends only on the homotopy claés of g.
For the detail of the construction, see [FL1] and [H6).

Counsider the example from the last section with m = 2(n—p)—k —1,¢ =

n - p--k—1. All the following argument will focus on this homological spark
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complex.

Definition 7.3.1. et p = ~W(d*G(cs)). Then (a7, ¢r) is called the Hodge

spark of the map f . s% _, Zp(X). Let Gy € Iﬁlz(”‘p)“k‘l(X, n—p-—k—1) be

the differential character corresponding to the Hodge spark (az,cp).

Lemma 7.3.1, J7 7 ¢ D Z,(X), then 6,(@;) = 0 < HP-2)-b-1(x
k1),

p-__

of the same (*, %) type. Moreover,

Cr & ®f+3=k,|'T~SISkD;+T,p+S (X) )

By the type reason, the projection of I (¢f) on

/!
@r+s=k,r2k+; Dy irpes(X)

is zero, This ig exactly the image of @5 under §,. O

(X,Z(n——p—»k»l)). We
denote this map by the notation 4 : Q"“ZP(X) — Hé(”—p)_k(X, Z(n—p—Jf— 1)),
a(f) = a.

Hence we get an element d; € ker (4,) = H2n—p)—k

Remark 7.3.1. By the argument above, we haye actually defined an element

G € Hy" P=*(x g0n k).

If the map f is contractible, then we haye the following:
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Lemma 7.3.2. If f: 8% — Z,(X) is contractible, then &(f) = 0.

Proof. Let F: D" — Z,(X) be the extension of f, Le., Flaprsry = f.
Let c¢p be the current over X defined by F. As showed in Lemma 7.3.1, ¢y is

a cycle. Moreover, it is a boundary, ie., ¢y = 9(cy). By Corollary 12.11 in
[HLZ], we have @} = H{®¥(cz)). Since

cr € { @ D;J+r,p+s (X) }1

7ta=k+1,|r—s|<k+1

the projection of H(cp) under ¥ on

@ D;)+fr,p+s (X )

r+s=k,r>k+1
is zero. Note that ¥ commutes with the Laplace operator, we have @y = 0.

3

By the Lemma 7.3.1 and Lemma 7.3.2, we have a well-defined map
i DyHi(X) — HXP k(X Z(n—p =k — 1)),

given by
a([f]) = a;.

Recall that the Deligne cohomology can be written as the middle part of an

short exact sequence

H¥n=p)—k-1(X k1)
H2(n—p)—k-1 (X, Z)

= Hy" DX, i —p— k= 1)) > ker (¥,) =,

00—
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where

Aokl X p k- 1) = { &b H’"*S(X)}

r+a=2{n—p)—k—1r<n—p—k—1

and

ker (0,) = HXP=h(X Z) N { P HT’S(X)}
r4-5=2{n—p)—k,|r—s|<k|-2
Proposition 7.3.1. The restriction of the above map to LyHp(X)pom =
ker {®, ¢ @ LoH(X) — Hp(X)} is the generalized Abel-Jacobi map defined
in [H6] if we identify the H(X) with {HY " (X)}* for all 0 < r,5 < n
and HY(X,Z) with Hy_o(X, ).

Prqof. Recall the definition that

@ 2 Lyt (X )nom — { . Hp“’pH(X)}*/H%;kH(Xa Z)

r>k+1r+s=kt+1

is given by ®([f]) = Py, where ®p(w) = [;w (mod Hyy(X, 7)) with
0(¢) = ¢;. The Lemma 12.10 in [HLZ] implies that the two constructions
coincide,

O

Remark 7.3.2. 1t is easy to see that the image of @py is in ker (¥,). Hence
the natural map ®pp, : L H(X) — Hi(X)} factors through & and the map &,
in the first 3 x 3 grid given in [[HL2]§14).

Remark 7.3.3. Gillet and Soulé [GS] first showed that the Griffiths’ inter-

mediate Abel-Jacobi map coincides with the Riemannian Abel-Jacobi. Harris
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{Haj also discussed some related topics.

In summary, we have the following

Theorem 7.3.1. Let X be a smooth projective manifold with dimension n.

We have a well-defined homomorphism
6 LyHppsp(X) — HAWPIF(X 7n—p— k — 1)),

given by
a([f]) = a;

which coincides with the generalized Abel-Jacobi map defined in [H6] when &

is restricted on LyHg(X )hom; and the projection of the image of & under 8y is

the natural map Py, o

Remark 7.3.4. In general, the map & is a nontrivial homomorphism even if i
restricted on LyHy(X)pom in the case of k = 2p, which has been proved by
Griffiths [G]. For the case that k > 2p, the author showed the nontriviality by

examples in [H6].
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