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Abstract of the Dissertation

Chow Motive of
Fulton-MacPherson configuration spaces

and wonderful compactifications

by

Li Li

Doctor of Philosophy

in

Mathematics

Stony Brook University

2006

Advisor: Mark Andrea de Cataldo

We study the Chow groups and the Chow motives of the so-called

wonderful compactifications of arrangements of subvarieties. Given

a variety Y and a “building set” G associated to an arrangement

of subvarieties of Y , the wonderful compactification YG can be con-

structed by a sequence of blow-ups of Y along the subvarieties of

the arrangement. Our main result is that the Chow motive of

YG can be decomposed into a direct sum of the motive associated

with Y and the twisted motives associated with the subvarieties of

the arrangement. The decomposition obtained is canonical, for we
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prove it to be independent of the order of the blow-ups. Moreover,

the correspondences that give the motivic decomposition are ex-

plicitly expressed in terms of the exceptional divisors in YG and of

the Chern classes of the normal bundles of the subvarieties of the

arrangement.

In the special case of the Fulton-MacPherson configuration space

X[n], we prove a stronger result expressing the Chow group and the

Chow motive in terms of X and n only. We provide a generating

function for the Chow groups and for the Chow motive of X[n]. In

the last chapter, we prove that the cobordism class of X[n] depends

only on n and on the cobordism class of X.
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Chapter 1

Introduction

The purpose of this thesis is to study the so-called wonderful compactifications

of arrangements of subvarieties, in particular the Fulton-MacPherson config-

uration spaces. We focus on the decomposition of their Chow groups and of

their Chow motives.

The theory of motives is built by considering algebraic cycles modulo suit-

able equivalence relations, e.g. rational equivalence (Chow motives), numerical

equivalence (Grothendieck motives), homological equivalence.

An important idea in this theory is the motivic decomposition of the diago-

nal of a projective variety into pairwise orthogonal projectors. We consider the

following simple example of a decomposition of the diagonal of the projective

space Pn into pairwise orthogonal projectors (modulo rational equivalence) and

the associated motivic decomposition. In §2.1.4 We shall give the definition

of h(X) (the Chow motive of X) and of h(X)(i) (the twisted Chow motive of

X). Let pt be a fixed point in Pn. We have

[∆] = [Pn×pt] + [Pn−1×P1] + ... + [pt×Pn] (up to rational equivalence),
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h(Pn) ∼= h(pt)⊕ h(pt)(1)⊕ ...⊕ h(pt)(n).

Motivic decompositions are interesting because of the following

Principle: A result proved for Chow motives is valid if we replace them

by homological/numerical motives, Chow groups A∗
Q, cohomology groups H∗

Q,

Grothendieck groups, Hodge structures, etc. (the aforementioned groups are

taken with Q-coefficients.)

By this principle, the above motivic decomposition of Pn immediately im-

plies the familiar cohomological decomposition

Hk
Q(Pn) = Hk

Q(pt)⊕Hk−2
Q (pt)⊕ ...⊕Hk−2n

Q (pt), ∀k ∈ Z

as well as the analogous decompositions of the Chow groups, Hodge structures,

Grothendieck groups, etc.

In [dCM02], de Cataldo and Migliorini consider the Hilbert-Chow mor-

phism, π : X [n] → X(n), from the Hilbert scheme X [n] of n points on a surface

X to the n-fold symmetric product X(n) := Xn/Sn of X. They show that the

motive of X [n] can be decomposed into motives of products of symmetric prod-

ucts of X (where they use a generalized notion of motives for possibly singular

quotient varieties). More precisely, let P(n) denote the set of partitions of n;

For any v = 1a1 · · ·nan ∈ P(n), denote by l(v) its length (=a1 + · · ·+ an) and

define X(v) = X(a1)× · · ·×X(an); We have

h(X [n]) ∼=
⊕

ν∈P(n)

h(X(v))(n− l(ν)).
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As per our principle, this motivic decomposition implies the analogous

decompositions for the Chow groups, for singular cohomology, for mixed Hodge

structures, for Grothendieck groups, etc. Moreover, de Cataldo and Migliorini

give a Chow motive decomposition for any semismall algebraic map of complex

algebraic varieties [dCM04].

Our aim is to get similar motivic decompositions for the wonderful com-

pactifications of arrangements of subvarieties, in particular for the Fulton-

MacPherson configuration spaces.

First we point out two differences between the Hilbert scheme X [n] and the

Fulton-MacPherson scheme X[n]:

• The Hilbert-Chow morphism X [n] → X(n) is not a blow-up along a

smooth center (or the composition of a sequence of blow-ups along smooth

centers), thus the formula of blowup along smooth center (Theorem

2.1.5) cannot be applied; On the other hand, the formula can be applied

to the wonderful compactifications in the thesis, since the compactifica-

tions can be constructed by a sequence of blow-ups along smooth centers.

• The Hilbert-Chow morphism is semismall, consequently the correspon-

dences which give the motivic decomposition can be expressed canoni-

cally at the level of cycles. On the other hand, the morphism X[n] → Xn

is not a semismall map, hence a priori the motivic decomposition of X[n]

depends on the order of the blow-ups and a canonical decomposition

might not exist at all.

In the thesis we shall find the correspondences (on the level of rational
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equivalent classes of cycles) which give the motivic decomposition of a wonder-

ful compactification (in particular X[n]) and show that they are independent

of the order of the blow-ups, therefore the motivic decomposition is canonical.

The thesis is at first written exclusively for the Fulton-MacPherson con-

figuration spaces X[n]. The motivic decomposition of X[n] is established and

shown to be independent of the order of blow-ups. We state the theorem with

no attempt to go into details (see Theorems 4.1.1 and 4.1.2 for a precise dis-

cussion). The point is that the motive of X[n] can be decomposed into a direct

sum of (twisted) motives of the cartesian products of X.

Main Theorem of Fulton-MacPherson configuration spaces. Let X be

a nonsingular variety over C. There is an isomorphism of Chow groups

A∗(X[n]) ∼=
⊕
S

⊕
µ∈MS

A∗−||µ||(Xc(S)).

When X is complete, there is also a natural isomorphism of Chow motives

h(X[n]) ∼=
⊕
S

⊕
µ∈MS

h(Xc(S))(‖µ‖).

Then the author realize that the theorem can be generalized to a more gen-

eral setting: the wonderful compactification of an arrangement of subvarieties.

Here we give a brief review on this compactification.

The notion of an arrangement of subvarieties used in this thesis (Defini-

tion 2.3.5) is taken from [Hu03]. Briefly speaking, we consider a collection of

nonsingular subvarieties whose mutual intersections satisfy certain properties.

The inspiring paper by De Concini and Procesi [DP95] gives a thorough
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discussion of an arrangement of linear subspaces of a vector space. Let Y be a

vector space and S be an arrangement of subspaces. De Concini and Procesi

give a condition for a subset G ⊆ S such that there exists a so called wonderful

model YG of the arrangement, i.e. the elements in G are replaced by a simple

normal crossing divisor, and YG can be obtained from Y by a sequence of

blow-ups along smooth subvarieties. A G satisfying the condition is called a

building set. The paper also gives a criterion of whether the intersection of a

collection of such divisors is nonempty. This brings in the notion of a nest.

Later, this idea has been generalized to nonsingular varieties over C with

conical stratifications by MacPherson and Procesi [MP98]. The language of

stratifications replaces the use of local coordinates in [DP95]. The notion of

building set and nest is also generalized in this setting.

On the other hand, to the author’s knowledge, the wonderful compactifi-

cations of arrangements of subvarieties, which should also be thought of as a

natural generalization of the wonderful models of arrangements of subspaces,

do not seem to be adequately discussed in the literature. Since a general

arrangement of subvarieties may be far away from a conical stratification, the

results for conical wonderful compactifications do not imply immediately the

ones of arrangements of subvarieties.

In the thesis, we give the definition of arrangements of subvarieties, building

sets and nests. The wonderful compactifications are shown to have analogues

properties as the ones in [DP95] or [MP98]. The proof is a combination of

local coordinate discussion and algebro-geometric methods (e.g. ideal sheaves,

residue schemes) to overcome the difficulty that an arrangement of subvarieties

may not induce a conical stratification. The idea of the induction used in the
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proof is inspired by [MP98].

After the setting of arrangements of subvarieties being fully established,

we prove the main theorems about the Chow group and Chow motive decom-

position of the wonderful compactification.

Let Y be a nonsingular projective variety endowed with an arrangement of

subvarieties (Definition 2.3.5). Suppose G is a building set (Definition 2.3.6)

and YG is the wonderful compactification with respect to G (Definition 2.3.16).

We now state the main theorem, with no attempt to go into details (see The-

orems 3.1.1 and 3.1.2 for a precise discussion).

The point is that the motive of YG can be decomposed into a direct sum of

the motive of Y and the twisted motives of the subvarieties of the arrangement.

Moreover, this decomposition is independent of the order in which the sequence

of blow-ups YG → YN−1 → · · · → Y1 → Y is carried out. The word ’canonical’

in the following theorem means this independency.

Main Theorem. There is a canonical Chow group decomposition

A∗YG ∼= A∗Y ⊕
⊕
T

⊕
µ∈MT

A∗−‖µ‖(Y0T )

where T runs through all G-nests.

Moreover, when Y is complete, there is a canonical Chow motive decompo-

sition

h(YG) ∼= h(Y )⊕
⊕
T

⊕
µ∈MT

h(Y0T )(||µ||)

where T runs through all G-nests.

The outline of the thesis is as follows.
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Chapter 2 is devoted to background material. Section 2.1 gives a brief

review of the definition of motives. In §2.1.5 we prove a formula (Theorem

2.1.5) for the motive of a blow-up which is used to prove the main theorem.

The formula proved here is, as far as we know, slightly more precise than

the ones we could find in the literature (see Remark 2.1.7). Section 2.2 is an

introduction to the Fulton-MacPherson configuration spaces. Section 2.3 is

devoted to the definitions and proofs of properties of the so-called wonderful

compactifications of an arrangement of subvarieties. This could be seen as

a natural generalization of wonderful model of subspace arrangement. §2.4

briefly introduces several special examples of wonderful compactifications: the

wonderful models of subspace arrangements given by De Concini and Procesi

(§2.4.1), Ulyanov’s polydiagonal compactification and Hu’s compactification

(§2.4.2) and Kuperberg-Thurston’s construction (§2.4.3).

In Chapter 3, we state and prove the main theorems (Theorems 3.1.1 and

3.1.2) in the most general setting, i.e. for the wonderful compactification of an

arrangement of subvarieties. The proof requires keeping track of the changes

of subvarieties occurring at each blow-up (Proposition 2.3.20). The blow-up

formula (Theorem 2.1.5) plays an important role in this context.

In Chapter 4, we prove more precise results for the Chow groups (Theo-

rem 4.1.1) and the Chow motives (Theorem 4.1.2) of the Fulton-MacPherson

configuration space X[n]; they depend only on X and n. We give a generat-

ing function which can be used to calculate the Chow groups and the Chow

motives recursively (Theorem 4.2.1). Examples of Chow groups and Chow

motives of X[n] for n = 2, 3, 4 are given in Section 4.3.

Chapter 5 is independent of the previous chapters. We show that for certain

7



kinds of wonderful models of Xn (e.g. the Fulton-MacPherson configuration

spaces), the cobordism classes of the wonderful models depend only on n and

the cobordism class of X.
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Chapter 2

Background material

This chapter contains two quite different parts. The first part, §2.1, gives

a brief review of the definition of motives. The second part, §2.2, §2.3 and

§2.4, present various wonderful compactifications. §2.2 is an introduction to

the Fulton-MacPherson configuration spaces, which people might be more fa-

miliar with. Then §2.3 shows the definitions and properties of the general

setting: the so-called wonderful compactifications of an arrangement of sub-

varieties. As examples of other wonderful compactification, §2.4 reviews the

wonderful models of subspace arrangements given by De Concini and Pro-

cesi, Ulyanov’s polydiagonal compactification and Hu’s compactification and

Kuperberg-Thurston’s construction.

2.1 Motives

Our understanding of the theory of motives has greatly increased since it was

introduced in the middle 1960’s by Alexander Grothendieck. His original idea

was to attempt to give a universal cohomology theory encompassing existent
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cohomology theories for projective manifolds. Though the main part of the

theory is still conjectural, a lot of developments and applications have been

produced. We shall give a brief review here. For beautiful introductions to

the subject see [Fu98] §16, [Man68], [Maz04],[Mu04]. For developments, see

[JKS94].

2.1.1 Chow groups

A variety is a reduced irreducible algebraic scheme over a fixed algebraically

closed field. Let X be a variety. Consider the cycle group

ZkX =
{∑

niVi : Vi ⊆ X irreducible subvariety of dimension k, and ni ∈ Z
}

.

A codimension one cycle in a variety W is called rationally equivalent to zero

if it is equal to div(r), the divisor of the zeroes minus the poles of a non-zero

rational function r on W . Two k-cycles α, β are called rationally equivalent

if their difference can be expressed as the sum of divisors of some (k + 1)-

subvarieties, i.e., there are a finite number of (k + 1)-dimensional subvarieties

Wi of X and non-zero rational functions ri on each Wi, such that

α− β =
∑

div(ri).

Denote by RatkX the group of k-cycles in X which are rationally equivalent

to zero. The Chow group of dimension k is defined as

AkX := ZkX/RatkX.
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A Chow group with Q-coefficient is defined as

(AkX)Q := AkX⊗ZQ.

2.1.2 Push-forward, pull-back, and intersection product

For a proper morphism f : X → Y , there is a natural push-forward homomor-

phism f∗ : ZkX → ZkY , which induces a push-forward homomorphism

f∗ : AkX → AkY.

For a flat morphism f : X → Y , the natural pull-back homomorphism

f ∗ : ZkY → Zk+nX (n = dim X − dim Y ) induces a pull-back homomorphism

of Chow groups:

f ∗ : AkY → Ak+nX.

Using techniques in intersection theory, we can drop the flatness condition and

define f ∗ : AkY → Ak+nX for any morphism f whenever Y is non-singular

(see [Fu98], §8).

When a variety X is non-singular, there is an intersection product on its

Chow group:

AiX ⊗ AjX → Ai+j−dim XX

and we define AkX := Adim X−kX. We define the Chow ring of X to be the

graded ring A(X) := ⊕AkX. Define

Ak
QX := AkX⊗ZQ, A(X)Q := A(X)⊗ZQ.

11



2.1.3 Correspondences

Let X,Y be complete and non-singular varieties. A correspondence from X

to Y is a rational equivalence class of cycles on X × Y . The group of corre-

spondences (with integer coefficient) from X to Y is defined as

Corr(X,Y ) := A(X × Y ).

The group of correspondences of degree r from X to Y is defined as

Corrr(X,Y ) := Adim X+r(X × Y ).

Define

CorrQ(X,Y ) := A(X × Y )Q, Corrr
Q(X,Y ) := Adim X+r

Q (X × Y ).

The composition of two correspondences f ∈ Corr(X1, X2), g ∈ Corr(X2, X3)

is defined as

g ◦ f := π13∗(π
∗
12f · π∗23g).

Here πij is the projection from X1×X2×X3 to Xi×Xj. The product π∗12f ·π∗23g
is the intersection product on the non-singular variety X1×X2×X3. If we

specify the degrees, then the composition gives

Corrr(X,Y )⊗ Corrs(Y, Z)
◦−→ Corrr+s(X,Z).

A correspondence f ∈ Corrr(X,Y ) induces a push-forward f∗ : Ai(X) →

12



Ai+r(Y ) and a pull-back f ∗ : Ai(Y ) → Ai+r+dim X−dim Y (X) as follows

f∗(a) := πY ∗(f · π∗X(a)), f ∗(b) := πX∗(f · π∗Y (b)).

It is easy to see that f ∗ = (f t)∗, where f t ∈ Corr(Y, X) is the transpose of f .

Remark: The notion of correspondence is an important generalization of the

notion of morphism. It includes, as a special case, “multi-valued” maps. It is

associative, i.e. given α ∈ Corr(X,Y ), β ∈ Corr(Y, Z), γ ∈ Corr(Z, W ), we

have γ ◦ (β ◦α) = (γ ◦ β) ◦α. Sending a morphism f : X → Y to its graph Γf

is functorial, in the sense that Γg ◦ Γf = Γgf . By considering correspondences

in place of morphisms, we can deal with (co)homology or Chow groups more

effectively. The following two examples explain this idea.

Example: Let P1 be the projective line over the complex field C. Consider

the following three correspondences in P1×P1: the diagonal ∆, α = P1×pt and

β = pt×P1, where pt is a fixed point in P1. We have ∆ = α + β and

∆2 = ∆, α2 = α, β2 = β, α ◦ β = β ◦ α = 0.

Moreover, ∆∗ and ∆∗ both induce the identity on A(P1); α∗ and β∗ send

pt 7→ pt,P1 7→ 0; α∗ and β∗ send pt 7→ 0,P1 7→ P1.

(Indeed, ∆ is the graph of identity map id : P1 → P1, so ∆2 := ∆ ◦ ∆ =

Γ(id)◦(id) = Γid = ∆. Similarly, α2 = α since α is the graph of a constant

morphism sending every point in P1 to pt. We can calculate β2 using the
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definition:

β2 = π13∗(π∗12β · π∗23β) = π13∗(pt×P1×P1 · P1×pt×P1)

= π13∗(pt×pt×P1) = pt×P1 = β.

The proof of the other statements is similar.)

2.1.4 Motives

A reference is [CH00].

A correspondence p ∈ Corr0(X,X) is called a projector of X if p2(:=

p ◦ p) = p.

Let V denote the category of (not necessarily connected) non-singular pro-

jective varieties over a field k. The category of Chow motives over k (denoted

by CHM) is defined as follows:

Definition 2.1.1. An object of CHM is a triple (X, p, r), where X is a non-

singular projective variety, p is a projector of X, r ∈ Z.

Morphisms are defined as

HomCHM
(
(X, p, r), (Y, q, s)

)
:= q ◦ Corrs−r(X,Y ) ◦ p.

The composition of morphisms is defined as the composition of correspon-

dences.

Remark:

14



• The original definition of morphisms in CHM by Grothendieck is

HomCHM((X, p, r), (Y, q, s)) :=

{f ∈ Corrs−r(X,Y ) : f ◦ p = q ◦ f}/{f : f ◦ p = 0}.

This definition is equivalent to the one given here.

• In some literature (e.g. Grothendieck), a motive (X, p, r) is also written

as (X, p)(r), while in others (e.g. Manin [Man68]) as (X, p)(−r). We

use the latter notation.

The functor h : Vopp → CHM. There is a contravariant functor from the

category of non-singular projective variety over a field k to the category of

Chow motives over k, which sends X to (X, idX , 0) and sends a morphism

f : X → Y to Γt
f : h(Y ) → h(X), the transpose of the graph of f .

The Lefschetz and Tate motives. The Lefschetz motive is defined as

L := (Spec k, id,−1). Tate motive is defined as T := (Spec k, id, 1). We

denote 1 = (Spec k, id, 0).

It can be show that L ∼= (P1,P1×p, 0) in CHM, which corresponds to

Tensor product in CHM. For f ∈ Corr(X1, X2), g ∈ Corr(X3, X4), we

define the tensor product

f⊗g := s23∗(π∗12f · π∗34g) ∈ Corr(X1×X3, X2×X4),

where s23 : X1×X2×X3×X4 → X1×X3×X2×X4 is the isomorphism which

switches the second and third factors. This tensor product satisfies (f1⊗f2) ◦

15



(g1⊗g2) = (f1 ◦ g1)⊗(f2 ◦ g2).

The tensor product of two Chow motives is defined as

(X, p, r)⊗ (Y, q, s) := (X×Y, p⊗ q, r + s).

Example:

• Define Lr := L⊗r. We have Lr ∼= (Spec k, id,−r).

Moreover, (X, p, r) = (X, p, 0)⊗L−r.

• Let X be a projective space Pn or a product of projective spaces with

dim X = n. Let pt be a fixed point in X. Then (X,X×pt, 0) ∼= Ln. In

particular,

(P1,P1×pt, 0) ∼= L.

(See [Man68], §6.)

CHM is a pseudo-abelian category. A category is pseudo-abelian if it

is additive and projectors have kernels and images. (See [Man68] §5.) To be

precise:

Definition 2.1.2. An additive category D is called pseudo-abelian if for any

projector p ∈ Hom(M,M), M ∈ OB(D), there exists a kernel ker p, and the

canonical homomorphism ker p⊕ ker(idX − p) → M is an isomorphism.

The category CHM is pseudo-abelian. The direct sum is defined as follows:
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for any t ≥ r and s, let r′ = t− r, s′ = t− s, α = P1×pt;

if M = (X, p, t)⊗Lr′ = (X, p, t)⊗((P1)r′ , α⊗r′ , 0) = (X×(P1)r′ , p⊗α⊗r′ , t),

and N = (Y, q, s)⊗Ls′ = (Y×(P1)s′ , q⊗α⊗s′ , t),

then define

M ⊕N =
(
X×(P1)r′ q Y×(P1)s′ , p⊗α⊗r′ ⊕ q⊗α⊗s′ , t

)
.

The direct sums defined by different choices of t are canonically isomorphic,

so that the direct sums are well-defined.

Manin’s Identity Principle. The principle asserts that an identity between

correspondences holds if and only if a collection of certain identities between

morphisms of Chow groups hold. To be precise,

Fact 2.1.3. (Manin’s Identity Principle) Given ϕ, ψ ∈ A(X × Y ), define

ϕT : A(T×X) → A(T×Y ) by ϕT (g) = ϕ◦g as composition of correspondences

and define ψT similarly. Then the following are equivalent:

(i) ϕ = ψ;

(ii) ϕT = ψT for all smooth complete schemes T ;

(iii) (idT ⊗ ϕ)∗ = (idT ⊗ ψ)∗ for all smooth complete schemes T .

Proof. For (i) ⇔ (ii), see [Fu98] §16. For (ii) ⇔ (iii), see the first lemma of

[Man68] §3 .
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2.1.5 A Formula for the motive of a blow-up

Suppose f : Ỹ → Y is the blow-up of a smooth algebraic variety Y along a

smooth subvariety V , and P is the exceptional divisor. Denote by i, j, f, g the

morphisms as in the following fibre square

P
j //

g

²²
¤

Ỹ

f

²²
V

i
// Y

Denote by N := NV Y the normal bundle of V in Y . Let h := c1(ON(1)) ∈
A1(P ). Let r := codimV Y be the codimension of V in Y .

We use the notation j£g : P → Ỹ×V for the composition of the diagonal

map P → P×P with j×g : P×P → Ỹ×V (g£j is defined similarly). Given

a ∈ A(P ), denote by {a}i the image of the projection A(P ) → Ai(P ) of the

Chow ring to its degree i direct summand. For 1 ≤ k ≤ r − 1, define





αk := −(j £ g)∗
( ∑r−1−k

l=0 g∗cr−1−k−l(N)hl
)

= −(j £ g)∗
{

g∗c(N) 1
1−h

}
r−1−k

∈ Corr−k(Ỹ , V ),

βk := (g £ j)∗hk−1 ∈ Corrk(V, Ỹ ),

pk := βk ◦ αk ∈ Corr0(Ỹ , Ỹ ),

α0 := Γf ∈ Corr0(Ỹ , Y ),

β0 := Γt
f ∈ Corr0(Y, Ỹ ),

p0 := β0 ◦ α0

(
= Γt

f ◦ Γf = (f×f)∗∆Y

) ∈ Corr0(Ỹ , Ỹ ).

(2.1)

Proposition 2.1.4.

(1) α0β0 = ∆Y , αkβk = ∆V for 1 ≤ k ≤ r − 1, αiβj = 0 for i 6= j.
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(2) p0, p1, p2, ..., pr−1 are pairwise orthogonal projectors of Ỹ , and

r−1∑
i=0

pi = ∆eY in A(Ỹ×Ỹ ),

i.e. equality holds up to rational equivalence.

(3) We have the following isomorphisms of motives,

α0 : (Ỹ , p0, 0) ' h(Y ),with inverse morphism β0,

αk : (Ỹ , pk, 0) ' h(V )(k),with inverse morphism βk, for 1 ≤ k ≤ r − 1.

Define Γ :=
r−1⊕
i=0

αi, Γ′ :=
r−1∑
i=0

βi, then Proposition 2.1.4 can be conveniently

reformulated as follows:

Theorem 2.1.5. The correspondence Γ gives a canonical isomorphism in

CHM,

Γ : h(Ỹ ) ∼= h(Y )⊕
r−1⊕

k=1

h(V )(k).

with inverse isomorphism given by Γ′.

Remark 2.1.6. When the normal bundle N of V in Y is trivial (for ex-

ample, when V is a point), P is isomorphic to a product space V×Pr−1

and h = c1(OP (1)) can be represented (not canonically) by a product space

H = V×Pr−2 in P . In this case, we have simple forms for the projectors:

pk = −(j×j)∗(Hr−1−k×V Hk−1), for 1 ≤ k ≤ r − 1;

p0 = ∆ +
r−1∑

k=1

(j×j)∗(Hr−1−k×V Hk−1).
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In general, for a nontrivial normal bundle N , more terms involving the Chern

classes of N are needed, and the correspondences cannot be represented by

explicit and natural algebraic cycles.

Remark 2.1.7. The isomorphism of motives in Theorem 2.1.5 is also a con-

sequence of “Theorem on the additive structure of the motif” of Ỹ in [Man68]

§9, which states, in our notation, that there is a split exact sequence

0 // h(V )(r) a // h(Y )⊕ h(P )(1) b // h(Ỹ ) // 0 .

The correspondences given in our theorem are not given, at least not explicitly,

in Manin’s paper.

In order to clarify this point, define

Φ = cr−1(g
∗N/ON(−1)) ∈ Ar−1(P ), cΦ = δP∗(Φ) ∈ Corr(P, P ),

a = (i∗, cΦ ◦ g∗), a′ = g∗,

b = f ∗ + j∗, b′ its right inverse,

d = ∆Y×P − aa′, d′ = ∆Y ⊗ (∆P − pP
0 ) (where pP

0 = chr−1 ◦ g∗ ◦ g∗),

denote by e : ⊕r−1
k=1V (k) → (P, ∆P − pP

0 ) the isomorphism implicitly defined in

[Man68] §7, and denote by e′ the inverse of e.
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We have the following isomorphisms

h(Y )⊕
r−1⊕
k=1

h(V )(k)
∆Y ⊗e// (Y t P, (∆Y , ∆P − pP

0 ))
∆Y ⊗e′
oo

d //
d′

oo

(Y t P, ∆Y tP − aa′)
b // (Ỹ , ∆eY )
b′

oo .

Hence the following is an isomorphism of Chow motives,

(∆Y ⊗ e′) ◦ d′ ◦ b′ : h(Ỹ ) ∼= h(Y )⊕
r−1⊕

k=1

h(V )(k).

with inverse b ◦ d ◦ (∆Y ⊗ e).

Therefore, to write down the correspondence (∆Y ⊗ e′) ◦ d′ ◦ b′, we need to

find explicitly the right inverse b′ of b. However, in [Man68] the construction

of b′ is based on the surjectivity of γ : A(Ỹ × (Y tP )) → A(Ỹ × Ỹ ) as follows:

by the surjectivity of γ, there is a cycle class c ∈ A(Ỹ × (Y t P )) (which is

not given, at least explicitly, in [Man68]) such that γ(c) = ∆eY ∈ A(Ỹ × Ỹ ).

Then b′ is defined to be (1− aa′)c.

On the other hand, the correspondences Γ and Γ′ we have constructed in

Theorem 2.1.5 give an explicit construction of b′. Indeed, b′ = d◦ (∆Y ⊗ e)◦Γ.

Idea of proof of Proposition 2.1.4 (The proof, based on a series of pre-

liminary results, is given at the end of this section.) It is well known that the

Chow groups of the blow-up space Ỹ can be naturally decomposed in terms of

the Chow groups of Y and of the center V . The exact version we need is listed

as Lemma 2.1.8. Then in Lemma 2.1.9 we will study the morphisms αi∗, βi∗

and pi∗ of Chow groups induced by the correspondences αi, βi and pi. As a
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consequence, the identities of morphisms of Chow groups which are induced

by the identities in Proposition 2.1.4 (1) (2) hold, see Corollary 2.1.10. On the

other hand, Manin’s Identity Principle (Fact 2.1.3) asserts that the identities

of morphisms of Chow groups imply the identities of correspondences, provid-

ing that the correspondences are universal in some sense. Hence we conclude

(1) and (2). The proof of Proposition 2.1.4 (3) is standard.

Lemma 2.1.8. Using the notation at the beginning of this section, the follow-

ing group morphism

γ :
r−1⊕
i=1

Ak−r+i(V )
⊕

Ak(Y ) → Ak(Ỹ )

(a1, a2, ..., ar−1, y) 7→
r−1∑
i=1

j∗(g∗ai · hi−1) + f ∗y

is an isomorphism.

Proof. See [Vo03] Theorem 9.27.

Remark: For convenience, we also write the above isomorphism in terms of

degrees of Chow rings as

r−1⊕
i=1

A∗−i(V )
⊕

A∗(Y ) = A∗(Ỹ ).

From now on to the end of this section, we assume

1 ≤ k ≤ r − 1, 0 ≤ i, j ≤ r − 1.

In the following lemma we compute the morphisms of Chow groups induced
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by the correspondences αi, βi:

Lemma 2.1.9. Let ỹ ∈ A(Ỹ ) be expressed as according to Lemma 2.1.8 as:

ỹ =
r−1∑
i=1

j∗(g∗ai · hi−1) + f ∗y.

Then we have

(1) The morphism αk∗ : A(Ỹ ) → A(V ) maps ỹ 7→ ak.

(2) The morphism βk∗ : A(V ) → A(Ỹ ) maps x 7→ j∗(g∗x · hk−1).

(3) The morphism α0∗ : A(Ỹ ) → A(Y ) maps ỹ 7→ y.

(4) The morphism β0∗ : A(Y ) → A(Ỹ ) maps y 7→ f ∗y.

Proof. Denote by π2 the projection V × Ỹ → Ỹ . In the following calculation

we will use the fact that ∀x ∈ A(X),

δX∗(x) = x× 1 ·∆P = 1× x ·∆P .

For (2),

βk∗(x) = π2∗[x×1 · (g×j)∗δP∗hk−1] = π2∗(g×j)∗[g∗x×1 · hk−1×1 ·∆P ]

= π2∗(g×j)∗δP∗(g∗x · hk−1) = j∗(g∗x · hk−1).

For (3), denote a0 = −i∗y for simplicity of notation, and note that j∗j∗z =

−h · z for ∀z ∈ A(X), we have

j∗ỹ =
r−1∑
i=1

j∗j∗(g∗ai · hi−1) + j∗f ∗y = −
r−1∑
i=1

g∗ai · hi + g∗i∗y = −
r−1∑
i=0

g∗ai · hi.
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By definition (see [Fu98] §3), the i-th Segre class of N is

si(N) := g∗(hi+r−1),

hence

αk∗(ỹ) = −g∗
(
j∗ỹ ·

r−1−k∑

l=0

g∗cr−1−k−l(N) · hl
)

= −g∗

(
(−

r−1∑
i=0

g∗ai · hi) ·
( r−1−k∑

l=0

g∗cr−1−k−l · hl
))

= g∗
( r−1∑

i=0

r−1−k∑

l=0

g∗(aicr−1−k−l)h
i+l

)
=

r−1∑
i=0

ai

( r−1−k∑

l=0

cr−1−k−lsi+l+1−r

)
,

.

Since we have the relation c(N)s(N) = 1, where c(N) :=
∑

ci(N) is the

total Chern class and s(N) :=
∑

si(N) is the total Segre class, then

r−1−k∑

l=0

cr−1−k−lsi+l+1−r =
+∞∑

l=−∞
cr−1−k−lsi+l+1−r = {c(N)s(N)}i−k = δik,

where the first equality is because si+l+1−r = 0 for l < 0, and cr−1−k−l = 0 for

l > r − 1− k. It follows that αk∗(ỹ) = ak.

Since α0∗ = (Γf )∗ = f∗, β0∗ = (Γt
f )∗ = f ∗ (see [Fu98] Proposition 16.1.2(c)),

we immediately have (4). For (3), to calculate

α0∗(ỹ) = f∗(ỹ) = f∗
( r−1∑

i=1

j∗(g∗ai · hi−1) + f ∗y
)
,
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Notice that

f∗(f ∗y) = y, by the projection formula;

f∗j∗
(
(g∗ai · hi−1)

)
= i∗g∗(g∗ai · hi−1) = i∗

(
ai · g∗(hi−1)

)

= i∗(ai · si−r) = 0, since i− r < 0.

Then α0∗(ỹ) = y.

Corollary 2.1.10. We have the following identities:

αk∗βk∗ = idA(V ), α0∗β0∗ = idA(Y ), αi∗βj∗ = 0 for i 6= j,

(pipj)∗ = δijpi∗,
r−1∑
i=0

pi∗ = idA(eY ).

Proof. They are deduced immediately from the above lemma. Indeed,

∀x ∈ A(V ), αk∗βk∗x = αk∗j∗(g∗x · hk−1) = x, so αk∗βk∗ = idA(V );

∀y ∈ A(Y ), α0∗β0∗y = α0∗f ∗y = y, so α0∗β0∗ = idA(Y );

The proof of αi∗βj∗ = 0 for i 6= j is similar. For the proof of (pipj)∗ = δijpi∗,

notice that

(pipj)∗ = βi∗αi∗βj∗αj∗ =





0, if i 6= j;

βi∗idA(V )αi∗ = (pi)∗, if i = j > 0;

βi∗idA(Y )αi∗ = (pi)∗, if i = j = 0.
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Finally,

∀ỹ =
r−1∑
i=1

j∗(g∗ai · hi−1) + f ∗y ∈ A(Ỹ ),

since

p0∗(ỹ) = β0∗α0∗(ỹ) = f ∗y,

pk∗(ỹ) = βk∗αk∗(ỹ) = βk∗ak = j∗(g∗ak · hk−1),

then
r−1∑
i=0

pi∗(ỹ) =
r−1∑
i=1

j∗(g∗ai · hi−1) + f ∗y = ỹ.

Therefore
∑r−1

i=0 pi∗ = idA(eY ).

We now prove Proposition 2.1.4:

Proof of Proposition 2.1.4. For any smooth scheme T , T×Ỹ is the blow-up of

T×Y along the smooth subvariety T×V . Denote j′ = idT×j, g′ = idT×g,

f ′ = idT×f , i′ = idT×i, we have the following fiber square:

T×P
j′ //

g′

²²
¤

T×Ỹ

f ′

²²
T×V

i′ // T×Y

We can construct the correspondences α′i, β
′
i, p

′
i for this fiber square as we

did in (2.1). We have

α′i = idT ⊗ αi, β
′
i = idT ⊗ βi, p

′
i = idT ⊗ pi.

Indeed, the normal bundle N ′ of T ×V in T ×Y is the pullback of N under the

morphism T×V → V , therefore c(N ′) = 1T×c(N) and h′ := ON ′(1) = 1T×h.
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The proof of the above three identities are similar and we only show the first

identity,

α′i := −(j′ £ g′)∗
{
g′∗c(N ′)

1

1− h′
}

r−1−k

= −(j′ £ g′)∗
{
1T ×

(
g∗c(N)

1

1− h

)}
r−1−k

= (s23)∗(∆T × (j £ g))∗
(
1T ×

{
1T × g∗c(N)

1

1− h

}
r−1−k

)

= (s23)∗
(
∆T × (j £ g))∗

{
1T × g∗c(N)

1

1− h

}
r−1−k

)

= idT⊗αi.

Then Corollary 2.1.10 and Manin’s Identity Principle imply (1) and (2) of

Proposition 2.1.4.

For (3), to show that αk gives an isomorphism (Ỹ , pk, 0) ' h(V )(k) with

inverse βk, we need to show that pk = pk ◦ βk ◦ αk and id = id ◦ αk ◦ βk. but

they are direct consequences of the fact that αk ◦βk = ∆V from (1). The proof

for (Ỹ , p0, 0) ' h(Y ) is similar.

2.2 Fulton-MacPherson configuration spaces

Fulton and MacPherson have constructed in [FM94] a compactification of the

configuration space of n distinct labeled points in a non-singular algebraic

variety X. It is related to several areas of mathematics. In their original

paper, Fulton and MacPherson use it to construct a differential graded algebra

which is a model for F (X,n) in the sense of Sullivan [FM94]. Axelrod-Singer

constructed the compactification in the setting of smooth manifolds. P1[n]
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is related to the Deligne-Mumford compactification M0,n of the moduli space

of nonsingular genus-0 projective curves. Now we give a brief review of this

compactificaton.

For each subset I ∈ [n] := {1, . . . , n} with at least two elements, let

Bl∆(XI) denote the blow-up of the corresponding cartesian product XI along

its small diagonal. Denote by ∆I the diagonal in Xn where xi = xj if i, j ∈ I.

The configuration space F (X,n) is the complement of all diagonals in Xn,

i.e.,

F (X,n) = {(x1, . . . , xn) ∈ Xn : xi 6= xj,∀i 6= j}.

Fulton and MacPherson give two constructions of their compactification

X[n] as follows.

I. Construction as a closure. There is a natural locally closed embedding

i : F (X,n) ↪→ Xn×
∏

|I|≥2

Bl∆(XI).

The closure of this embedding is the Fulton-MacPherson compactification

X[n].

Remark 2.2.1. This definition is equivalent to define X[n] as the closure of

i′ : F (X,n) ↪→ Xn×
∏

|I|≥2

Bl∆I
(Xn).

Indeed, denote by Ic the complement of I in [n]. There is a natural isomor-

phism

Bl∆I
(Xn) ∼= XIc×Bl∆(XI),
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and there is a natural closed embedding Xn ↪→ Xn × ∏
|I|≥2 XIc

, therefore a

natural closed embedding

j : Xn×
∏

|I|≥2

Bl∆(XI) ↪→ Xn×
∏

|I|≥2

XIc×
∏

|I|≥2

Bl∆I
(Xn) ∼= Xn×

∏

|I|≥2

Bl∆I
(Xn).

Then one can factor i′ through j ◦ i. So the closure of the image of i is

isomorphic to the closure of the image of i′.

II. Construction by a sequence of blow-ups. The construction is in-

ductive. X[2] is the blow-up of X2 along the diagonal ∆12. X[3] is a se-

quence of blow-ups of X[2]×X along non-singular subvarieties corresponding

to {∆123; ∆13, ∆23}. More specifically, denote by π the blow-up X[2]×X →
X3, we blow up first along π−1(∆123), then along the strict transforms of ∆13

and ∆23 (the two strict transforms are disjoint, so they can be blown up in any

order). In general, X[n+1] is a sequence of blow-ups of X[n]×X along smooth

subvarieties corresponding to all diagonals ∆I where |I| ≥ 2 and (n + 1) ∈ I.

A symmetric construction of X[n] has been given by several people: De

Concini and Procesi [DP95], MacPherson and Procesi [MP98], and Thurston

[Th99]. We will discuss this in detail in the next section. For now we only

mention that to get X[n] we can blow up along diagonals by the order of

ascending dimension, which is different from the non-symmetric order of the

original construction. For example, X[4] is the blow-up of X4 along diagonals

corresponding to:

1234; 123, 124, 134, 234; 12, 13, . . . , 34.
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Compare it with the order in [FM94]:

12; 123; 13, 23; 1234; 124, 134, 234; 14, 24, 34.

Geometrical description. We may say very roughly that Fulton-MacPherson

compactification records the relative directions when points collide. The pre-

cise description is using screens (see [FM94]) to record the limiting configura-

tions. Each screen is a tangent space at some point x ∈ X, with several points

in it, modulo translation and homothety. For each configuration we may need

several screens which satisfy certain compatibility condition.

Example: Figure 1 gives a point corresponding to a degenerate configuration

in X[4] which can be described by three screens.

Figure 1. A point in X[4]

X•

•
•

•
1 •

2 •
3

•
4

Stratification. The set of degenerate configurations X[n]\F (X,n) is a simple

normal crossing divisor. To describe the intersection of divisors, the notion of

a nest (of [n]) is introduced.

Definition 2.2.2. A set S of subsets of [n] := {1, 2, . . . , n} is called a nest if

any two elements I, J ∈ S are either disjoint or one contains the other, and

all singletons {1}, . . . , {n} are in S.
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Remark: : The definition of a nest (of [n]) we give here is a little different

from the one in [FM94]: we require all singletons to be in S for convenience

in this thesis, while in [FM94] a nest is defined to contain no singletons. The

difference is not essential.

The following property has been proved in [FM94]:

Theorem 2.2.3. For each I ⊆ [n] that |I| ≥ 2, there is a non-singular divisor

DI of X[n], such that

X[n] \ F (X,n) =
⋃

I⊂[n], |I|≥2

DI .

Any set of these divisors meets transversally. The intersection of divisors

DI1 , . . . , DIr is non-empty if and only if I1, . . . , Ir and all singletons form a

nest of [n].

This property immediately gives a stratification of X[n].

Each divisor DI also has a geometric description: DI consists of those

degenerate configurations that have a screen containing exactly points {xi}i∈I .

(For example, a point as in Figure 1 is contained in three divisors D12, D34,

D1234.)

Each stratum one-one corresponds to an oriented forest with n labeled

leaves such that each ‘father’ should have more than one ‘son’. (For example, in

the following figure, the forest on the left hand side is allowed and corresponds

to the stratum consists of points of configuration as in Figure 1, the forest on

the right hand side is not allowed since one of the nodes has exactly one ’son’.)

31



•
• •

• • • •

1234

12 34

1 2 3 4

®®
®®
®®

33
33

33

¶¶
¶¶
¶

++
++

+

¶¶
¶¶
¶

++
++

+

•
• • •

• • •

1234

12 3 4

1 2 4

®®
®®
®®

77
77

77

¶¶
¶¶
¶

++
++

+

2.3 Arrangements of subvarieties and the won-

derful compactifications

This section is devoted to the fundamental material on the arrangements of

subvarieties. First (§2.3.1), the definitions and criterions of transversal inter-

sections and clean intersections are given. Secondly, in §2.3.2, the definition of

an arrangement of subvarieties (Definition 2.3.5, which is adapted from [Hu03])

is given. For simplicity, we focus on simple arrangement of subvarieties. The

notion of a building set (Definition 2.3.6) is explained. Then in §2.3.3, inspired

by the idea of [MP98], we show that a building set of an arrangement of Y in-

duces a building set of an arrangement of the blow-up Ỹ , therefore an inductive

construction of blow-ups can keep on going until all elements in the building

set become divisors at which point one stops. This processing of successively

blowing up is one way to construct the wonderful compactification. We then

show this construction coincides with a construction as a closure (Proposition

2.3.17). Finally, we show that a nest induces a nest after a blow-up.

2.3.1 Transversal intersections and Clean intersections

Transversal intersections and clean intersections play important roles here. We

give the definitions and compare them at the beginning of this section.
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Definition 2.3.1 (of transversal intersection). Let Y be a nonsingular variety.

Let A and B be two nonsingular subvarieties of Y . we call A and B intersect

transversally, denoted by A t B, if they intersect transversally at every point

y ∈ A ∩ B, i.e. their tangent spaces TA,y and TB,y at y generate the tangent

space Ty of the ambient variety at y; equivalently, T⊥
A,y ⊕ T⊥

B,y form a direct

sum in the dual space T ∗
y of Ty.

More generally, a finite collection of nonsingular subvarieties A1, . . . , Ak

intersect transversally, denoted by A1 t A2 t · · · t Ak, if their tangent spaces

{TA1,y, . . . , TAk,y} at each point y ∈ Y induce a direct sum T⊥
A1,y ⊕ · · · ⊕ T⊥

Ak,y

in T ∗
y .

Definition 2.3.2 (of clean intersection). Let Y be a nonsingular variety. Let

A and B be two nonsingular subvarieties of Y . We call A and B intersect

cleanly if their intersection is nonsingular and the tangent bundles satisfy

T(A∩B) = TA|(A∩B) ∩ TB|(A∩B).

Remark: Transversal intersection must be clean. Indeed, if A and B intersect

transversally, then there exist local coordinates containing defining functions of

A and B. Therefore one can think of A and B locally as two linear subspaces,

so A and B intersect cleanly.

Examples:

1. Suppose Y = SpecC[u, v] ∼= C2, A is defined by v = 0, and B is de-

fined by v = u2. Then the intersection of A and B is neither clean nor

transversal.
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2. Suppose Y = C3, and A, B are two lines in Y intersecting at a point.

Then A and B intersect cleanly but not transversally.

3. Suppose Y = C3, and A is a smooth surface containing a smooth curve

B. Then A and B intersect cleanly but not transversally.

The following lemma states that, to verify the transversality of two subvari-

eties which already intersect cleanly along a connected subvariety, it is enough

to check the transversality at a point of the intersection.

Lemma 2.3.3. Let A and B be two nonsingular closed subvarieties of Y that

intersect cleanly along a closed nonsingular subvariety C. If A and B intersect

transversally at a point y0 ∈ C, then they intersect transversally (at every point

y ∈ C).

Proof. By dimension counting,

dim
(
(TA)y + (TB)y

)
+ dim

(
(TA)y ∩ (TB)y

)
= dim(TA)y + dim(TB)y.

On the other hand, A and B intersecting cleanly implies

(TA)y ∩ (TB)y = (TC)y, ∀y ∈ C.

Hence dim
(
(TA)y ∩ (TB)y

)
= dim(TC)y = dim C. So

dim
(
(TA)y + (TB)y

)
= dim(A) + dim(B)− dim(C)

does not depend on the choice of y ∈ C. Now since A and B intersect transver-
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sally at y0, so

(TA)y0 + (TB)y0 = Ty0 ,

then

dim(TA)y0 + dim(TB)y0 = dim Ty0 = dim Y,

which implies

dim(TA)y + dim(TB)y = dim Y,

so (TA)y + (TB)y = Ty. Then A intersects B transversally at every point

y ∈ C.

We now give a criterion for clean intersection by ideal sheaves. Denote by

IU the ideal sheaf of U .

Lemma 2.3.4. If U , V and W = U ∩ V are all nonsingular closed (not

necessarily irreducible) subvarieties of Y , then

IU + IV = IW if and only if U and V intersect cleanly.

Proof. Both IU +IV and IW are subsheaves of the structure sheaf O of Y . An

equality between these two subsheaves is equivalent to an equality between

their germs for every point y ∈ Y . i.e., the condition IU + IV = IW is

equivalent to

(IU)y + (IV )y = (IW )y, ∀y ∈ Y . (2.2)

On the other hand, U and V intersecting cleanly means

(TU)y ∩ (TV )y = (TW )y, ∀y ∈ W. (2.3)
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Since

(TU)y = {v ∈ Ty|df(v) = 0,∀f ∈ (IU)y}.

Define φ : my → my/m
2
y to be the natural quotient. It is well known that

my/m
2
y is the dual of Ty, in this sense we have (TU)y = φ((IU)y)

⊥. Therefore

the equation (2.3) is equivalent to

φ((IU)y)
⊥ ∩ φ((IV )y)

⊥ = φ((IW )y)
⊥,

which is equivalent to

φ((IU)y) + φ((IV )y) = φ((IW )y).

Notice that φ((IU)y) = ((IU)y + m2
y)/m

2
y, so the above equality is equivalent

to

(IU)y + (IV )y + m2
y = (IW )y + m2

y, ∀y ∈ W . (2.4)

Obviously (2.2) ⇒ (2.4). To see (2.4) ⇒ (2.2), observe first that (IU)y +

(IV )y ⊆ (IW )y. We also have (IW )y ∩ m2
y = (IW )ymy, which can be easily

checked using local coordinates. Equality (2.4) implies the surjection

(IU)y +(IV )y ³ ((IW )y +m2
y)/m

2
y

∼=→ (IW )y/((IW )y ∩m2
y)

∼=→ (IW )y/(IW )ymy.

Hence (IU)y + (IV )y + (IW )ymy = (IW )y. Now apply Nakayama’s lemma (see

[AM69] Corollary 2.7), we have (IU)y + (IV )y = (IW )y. For a point y /∈ W ,

both sides of (2.2) are Oy hence the equality trivially holds. Therefore the

lemma has been proved.
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2.3.2 Arrangements of subvarieties

Let Y be a nonsingular algebraic variety over C.

Definition 2.3.5. An arrangement of subvarieties of Y is a finite set S =

{Si} of nonsingular closed irreducible subvarieties of Y satisfying the following

conditions

(1) Si and Sj intersect cleanly (i.e. their intersection is nonsingular and the

tangent bundles satisfy T (Si ∩ Sj) = T (Si)|(Si∩Sj) ∩ T (Sj)|(Si∩Sj)),

(2) Si ∩ Sj is either empty or a disjoint union of some Sk’s.

If instead of satisfying condition (2), S satisfies a stronger condition that

Si ∩ Sj is either empty or one Sk, then we call S a simple arrangement.

For simplicity of notation only, here we discuss simple arrangements. A

general arrangement is locally simple, so that all the following discussion will

apply.

Definition 2.3.6. Let S be an arrangement of subvarieties of Y . A subset

G ⊆ S is called a building set (with respect to S) if ∀S ∈ S, the minimal

elements in G which are ≥ S intersect transversally and their intersection is

S (this condition is always satisfied if S ∈ G). These minimal elements are

called the G-factors of S.

Remark 2.3.7. Fix a point y ∈ Y . Let S∗ be the set {(TSi
)⊥y }Si∈S , and

G∗ ⊆ S∗ be the set {(TSi
)⊥y }Si∈G. The definition of arrangement of subvarieties

(Definition 2.3.5) asserts that the set S∗ is a finite set of nonzero subspaces

of T ∗
y closed under sum, and that each element of S∗ is equal to (TS′)

⊥
y for a

unique S ′ ∈ S.
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Definition 2.3.6 just says that G is a building set if the following holds:

∀S ′ ∈ S, ∀y ∈ S ′, let T⊥
1 , . . . , T⊥

k be the maximal elements of G∗ contained

in (TS′)
⊥
y , then they form a direct sum

T⊥
1 ⊕ T⊥

2 ⊕ · · · ⊕ T⊥
k = (TS′)

⊥
y .

Remark 2.3.8. [DP95] §2.3 Theorem (2) asserts that the above condition

implies the following: If S ′′ ∈ S that S ′′ ⊇ S ′, then

(TS′′)
⊥
y =

k⊕
i=1

(
(TS′′)

⊥
y ∩ T⊥

i

)
.

Moreover, if (TS′′)
⊥
y = T

′⊥
1 ⊕ · · · ⊕ T

′⊥
s where T

′⊥
1 , . . . , T

′⊥
s are the maximal

elements in G∗ contained in (TS′′)
⊥
y , then each term (TS′′)

⊥
y ∩ T⊥

i is a direct

sum of some T
′⊥
j .

In the following two facts, assume S is a simple arrangement of subvarieties

of Y and G is a building set.

Fact 2.3.9. Suppose S ∈ S and let G1, . . . , Gk be all the G-factors of S (see

Definition 2.3.6). Then

i) For any 1 ≤ m ≤ k, let S ′ = G1 ∩ · · · ∩ Gm. Then G1, . . . , Gm are all

the G-factors of S ′.

ii) Suppose G ∈ G is minimal, G ∩ S 6= ∅, G ⊆ G1, . . . , Gm and G *

Gm+1, . . . , Gk. Then G,Gm+1, . . . , Gk are all the G-factors of G ∩ S.

Proof. It is convenient to prove using the dual tangent space T ∗
y .

i) Fix a point y ∈ S and consider the tangent spaces at y. The statement

i) is equivalent to the following:
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Suppose T⊥
1 , . . . , T⊥

k are all the maximal elements in G∗ which are ⊆ (TS)⊥y .

For 1 ≤ m ≤ k, let T⊥ = (T1)
⊥ ⊕ · · · ⊕ (Tm)⊥. Then (T1)

⊥, . . . , (Tm)⊥ are all

the maximal elements in G∗ which are ⊆ T⊥.

The proof is as follows: notice that T⊥ ⊆ T⊥
1 ⊕ · · · ⊕ T⊥

k = (TS)⊥y . So any

element V ∈ G∗ which is ⊆ T⊥ is also a subspace of (TS)⊥y . By the maximality

of T⊥
1 , . . . , T⊥

k , we know V lies inside T⊥
i for some 1 ≤ i ≤ k. But V ⊆ T⊥, so

i ≤ m. The statement follows.

ii) Fix a point y ∈ G ∩ S and consider the tangent spaces at y. The

statement ii) is equivalent to the following:

Suppose T⊥
1 , . . . , T⊥

k are all the maximal elements in G∗ that are ⊆ (TS)⊥y ,

T⊥ ∈ G∗ is maximal, T⊥ ⊇ T⊥
1 , . . . , T⊥

m and T⊥ + T⊥
m+1, . . . , T

⊥
k . Then

T⊥, T⊥
m+1, . . . , T

⊥
k are all the maximal elements in G∗ which are ⊆ T⊥+(TS)⊥y .

The proof is as follows: Let C1, . . . , Cs be the maximal elements in G∗ that

are ⊆ T⊥ + (TS)⊥y . Since G is a building set, we have

T⊥ + (TS)⊥y = C1 ⊕ · · · ⊕ Cs. (2.5)

Then T⊥ is contained in one of Ci. With out loss of generality, assume T⊥ ⊆
C1. By the maximality of T⊥, we have T⊥ = C1. The equality (2.5) becomes

T⊥ + (T⊥
m+1 ⊕ · · · ⊕ T⊥

k ) = T⊥ ⊕ C2 ⊕ · · · ⊕ Cs.

Since each Ti (m + 1 ≤ i ≤ k) is contained in Cj for some 2 ≤ j ≤ s, it follows

that each Cj (2 ≤ j ≤ s) is the direct sum of some Ti’s (m + 1 ≤ i ≤ k). But

then Cj ⊆ (TS)⊥y , hence the maximality of T⊥
1 , . . . , T⊥

k implies that Cj ⊆ T⊥
i
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for some 1 ≤ i ≤ k. Therefore Cj = T⊥
i for some m + 1 ≤ i ≤ k. Then

{T⊥, T⊥
m+1, . . . , T

⊥
k } = {C1, C2, . . . , Cs}. The statement is proved.

Fact 2.3.10. Suppose G ∈ G is minimal. Then

i) Any G′ ∈ G either contains G or intersects transversally with G.

ii) Every S ∈ S satisfying S ∩ G 6= ∅ can be uniquely expressed as A ∩ B

where A,B ∈ S satisfy A ⊇ G and B t G (hence A t B). We call this

expression the G-factorization of S.

iii) Suppose the G-factors of S are G1, . . . , Gk, where G1, . . . , Gm (0 ≤ m ≤
k) contain G. (m = 0 means that no G-factors of S contain G.)

Then in the G-factorization of S, {Gi}m
i=1 are all the G-factors of A

(so A = ∩m
i=1Gi) and {Gi}k

i=m+1 are all the G-factors of B (so B =

∩k
i=m+1Gi). (Here we assume A = Y if m = 0, and assume B = Y if

m = k.)

iv) Suppose S ′ ∈ S also intersect G and the G-factorization of S ′ is A′∩B′.

Then G t (B∩B′), so the G-factorization of S∩S ′ is (A∩A′)∩(B∩B′).

Proof. i) is induced directly from the definition of the building set: if G is

disjoint from G′ then of course G t G′; otherwise G′ contains some G-factor

of G ∩ G′. But a G-factor of G ∩ G′ is either G or is transversal to G (which

implies G′ t G).

ii) and iii). We prove A and B as defined in iii) satisfy A ⊇ G and B t G.

A = ∩m
i=1Gi ⊇ G is because of the definition of m. Fact 2.3.9 ii) asserts

G t Gm+1 t · · · t Gk, so G is transversal to (Gm+1 ∩ · · · ∩Gk) = B.
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Statement iii) follows from Fact 2.3.9 i).

Now we show the uniqueness of G-factorization in ii). Assume S = A′∩B′

such that A′ ⊇ G and B′ t G. Since B′ ⊇ G∩B′ = G∩S and the G-factors of

G∩S are G,Gm+1, . . . , Gk by Fact 2.3.9 ii), so each G-factor G′ of B′ contains

G or Gi for some m + 1 ≤ i ≤ k. But B′ t G implies G′ t G, hence G′ + G.

So G′ ⊇ Gi for some m + 1 ≤ i ≤ k. Take the intersection of all G′, we have

B′ ⊇ ∩k
i=m+1Gi = B. Fix a point y ∈ G ∩ S, we have

(TG)⊥y ⊕ (TB)⊥y = (TG)⊥y ⊕ (T ′
B)⊥y

and (TB)⊥y ⊇ (T ′
B)⊥y , therefore (TB)⊥y = (T ′

B)⊥y hence B = B′. Similarly A = A′.

iv). Suppose the G-factorization of S ∩ S ′ is A′′ ∩B′′. Then G ∩B′′ is the

G-factorization of the intersection. Since B ⊇ (G∩ s) = (G∩B′′) but B t G,

so B ⊇ B′′. Similarly B′ ⊇ B′′. So B ∩ B′ ⊇ B′′. By an analogues argument

using the dual of tangent space as above, B ∩B′ = B′′. So G t (B ∩B′).

2.3.3 Wonderful compactifications

We show that, if G ∈ G is minimal, then there is a simple natural arrangement

S ′ of subvarieties in Y ′ = BlGY ; moreover, the induced G ′ in Y ′ = BlGY is

again a building set.

Denote by E the exceptional divisor of the blow-up π : Y ′ = BlGY → Y .

Step 1: The arrangement S ′ of subvarieties in Y ′ = BlGY .

Definition 2.3.11 (Definition of ∼). For any irreducible nonsingular subva-

riety V in Y , we define Ṽ ⊆ BlGY to be the strict transform of V if V * G
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and to be π−1(V ), the preimage of V , if V ⊆ G. For a reducible nonsingular

subvariety V = ∪Vi where Vi are the connected components of V , we define

Ṽ = ∪Ṽi.

Proposition 2.3.12. The collection of subvarieties

S ′ := {S̃}S∈S ∪ {S̃ ∩ E}∅(S∩G(S

is a (simple) arrangement of subvarieties in BlGY .

Moreover, G ′ := {G̃i}Gi∈G is a building set (with respect to the arrangement

S ′).

Lemma 2.3.13. (i) Let A be a nonsingular closed subvariety of Y that con-

tains G as a proper subvariety. Then Ã∩E intersect transversally (hence

cleanly).

(ii) Let A1 and A2 be two nonsingular closed subvarieties of Y that intersect

cleanly. Suppose A1 * A2, A2 * A1, and A1∩A2 = G. Then Ã1∩Ã2 = ∅.

(iii) Let A1 and A2 be two nonsingular closed subvarieties of Y that intersect

cleanly, and suppose G is a proper subvariety of a connected component

of A1 ∩ A2. Then Ã1 ∩ Ã2 = Ã1 ∩ A2. Moreover Ã1 and Ã2 intersect

cleanly.

(iv) Let B1 and B2 be two nonsingular closed subvarieties of Y that intersect

cleanly, and assume G is a nonsingular closed subvariety that intersects

transversally with B1, B2 and B1 ∩ B2 respectively. Then B̃1 ∩ B̃2 =

B̃1 ∩B2. Moreover B̃1 and B̃2 intersect cleanly.
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(v) Let A and B be two nonsingular closed subvarieties of Y that intersect

transversally, and G ⊆ A, G t B. Then Ã ∩ B̃ = Ã ∩B. Moreover,

Ã t B̃, (E ∩ Ã) t B̃.

Proof. (i) and (v) can be easily checked using local coordinates, which we omit

here.

(ii) In the complement of the exceptional divisor E, we have

(Ã1 ∩ Ã2) \ E ∼= (A1 \G) ∩ (A2 \G) = (A1 ∩ A2) \G = ∅.

Inside E, we have

(Ã1 ∩ Ã2) ∩ E = P(NGA1) ∩ P(NGA2) = P(TA1/TG) ∩ P(TA2/TG)

= P((TA1 ∩ TA2)/TG) = P(TA1∩A2/TG) = P(TG/TG) = ∅.

Hence Ã1 ∩ Ã2 = ∅.

(iii) In the complement of the exceptional divisor E, we have

(Ã1 ∩ Ã2) \ E ∼= (A1 \G) ∩ (A2 \G) = (A1 ∩ A2) \G = Ã1 ∩ A2 \ E.

Inside E, we have

(Ã1 ∩ Ã2) ∩ E = P(NGA1) ∩ P(NGA2) = P(TA1/TG) ∩ P(TA2/TG)

= P((TA1 ∩ TA2)/TG) = P(TA1∩A2/TG) = P(NS(A1 ∩ A2))

= Ã1 ∩ A2 ∩ E,
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where the fourth equality is because A1 and A2 intersect cleanly.

Hence Ã1 ∩ Ã2 = Ã1 ∩ A2.

According to Lemma 2.3.4, Ã1 and Ã2 intersect cleanly if and only if

I eA1
+ I eA2

= I
Ã1∩A2

. (2.6)

But Ã1 = R(E, π−1(A1)), the residue scheme to E in π−1(A1) (see [Ke93]

Theorem 1, [Fu98] §9.2). By a property of residue scheme, we have

IR(E,π−1(A1)) · IE = Iπ−1(A1),

which is same as

I eA1
· IE = Iπ−1(A1).

Similarly, we have

I eA2
· IE = Iπ−1(A2),

I
Ã1∩A2

· IE = Iπ−1(A1∩A2).

Since A1 and A2 intersect cleanly, so IA1 + IA2 = IA1∩A2 , which implies

π−1IA1 · OY ′ + π−1IA2 · OY ′ = π−1IA1∩A2 · OY ′ .

This is equivalent to

Iπ−1(A1) + Iπ−1(A2) = Iπ−1(A1∩A2).
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Thus we get an equality

I eA1
· IE + I eA2

· IE = I
Ã1∩A2

· IE.

Since IE is an invertible sheaf, the above equality implies (2.6), hence

(iii) is proved.

(iv) In the complement of the exceptional divisor E, we have

(B̃1 ∩ B̃2) \ E ∼= (B1 \G) ∩ (B2 \G) = (B1 ∩B2) \G = B̃1 ∩B2 \ E.

If a nonsingular closed (not necessarily irreducible) subvariety B inter-

sects transversally with S, then we have the following standard fact:

B̃ ∩ E = P(NG∩BB) = P(NG|G∩B).

By this fact,

(B̃1 ∩ B̃2) ∩ E = P(NG|G∩B1) ∩ P(NG|G∩B2) = P(NG|G∩B1∩B2)

= B̃1 ∩B2 ∩ E.

Hence B̃1 ∩ B̃2 = B̃1 ∩B2.

Similarly to (iii), to show B̃1 intersect cleanly with B̃2, it is enough to

show that

I eB1
+ I eB2

= I
B̃1∩B2

. (2.7)

Since B1 intersect transversally with the center G of the blow-up, it can
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be easily checked (using local coordinates) that

I eBi
= π−1IBi

, for i = 1, 2.

By the assumption that B1 and B2 intersect cleanly, we have

IB1 + IB2 = IB1∩B2 ,

hence

π−1IB1 · OY ′ + π−1IB2 · OY ′ = π−1IB1∩B2 · OY ′ ,

and (2.7) follows.

Proof. (of Proposition 2.3.12)

Suppose S, S ′ ∈ S. By Fact 2.3.10, consider the G-factorization of S =

A∩B and S ′ = A′∩B′. Then the G-factorization of S∩S ′ is (A∩A′)∩(B∩B′).

Lemma 2.3.13(v) asserts that S̃ = Ã∩ B̃, S̃ ′ = Ã′∩ B̃′. We prove first that

S̃ and S̃ ′ intersect cleanly along some element in S ′. There are three cases:

1) G ( A ∩ A′. In this case we have (S ∩ S ′)∼ = (A ∩ A′)∼ ∩ (B ∩ B′)∼,

and

S̃ ∩ S̃ ′ = (Ã ∩ Ã′) ∩ (B̃ ∩ B̃′) = (A ∩ A′)∼ ∩ (B ∩B′)∼ = (S ∩ S ′)∼.

Moreover, the tangent bundles satisfy

TeS ∩ TeS′ = T eA ∩ T eB ∩ T eA′ ∩ T eB′ = T(A∩A′)∼ ∩ T(B∩B′)∼ = T(S∩S′)∼ .
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Thus S̃ intersects S̃ ′ cleanly along (S ∩ S ′)∼ ∈ S ′.
2) G = A ∩A′ but G 6= A and G 6= A′. By Lemma 2.3.13 (ii), Ã ∩ Ã′ = ∅,

hence

S̃ ∩ S̃ = (Ã ∩ Ã′) ∩ (B̃ ∩ B̃′) = ∅.

3) S = A or A′. Without loss of generality, we assume S = A.

S̃ ∩ S̃ ′ = (Ã ∩ Ã′) ∩ (B̃ ∩ B̃′) = E ∩ (Ã′ ∩ B̃ ∩ B̃′) = E ∩ (A′ ∩B ∩B′)∼.

Moreover, by Lemma 2.3.13 (i) and (v), the tangent bundles satisfy

TeS ∩ TeS′ = (TE ∩ T eB) ∩ (T eA′ ∩ T eB′) = (TE ∩ T eA′) ∩ T(B∩B′)∼ = TE∩(A′∩B∩B′)∼ .

Thus S̃ intersects S̃ ′ cleanly along E ∩ (A ∩B ∩B′)∼ ∈ S ′.

Next we show that ∀S̃, (S̃ ′ ∩ E) ∈ S ′, they intersect cleanly along some

element in S ′. There are again three cases, similar as above:

1’) G ( A ∩ A′. In this case

S̃ ∩ (S̃ ′ ∩ E) = (S ∩ S ′)∼ ∩ E,

and the tangent bundles satisfy

TeS ∩ TeS′∩E = T eA ∩ T eB ∩ T eA′ ∩ T eB′ ∩ TE = T(A∩A′)∼∩E ∩ T(B∩B′)∼ = T(S∩S′)∼∩E.

Thus S̃ intersects S̃ ′ ∩ E cleanly along (S ∩ S ′)∼ ∩ E ∈ S ′.
2’) G = A ∩ A′ but G 6= A and G 6= A′. We have S̃ ∩ (S̃ ′ ∩ E) = ∅.
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3’) G = A. (Notice that G 6= A′ by the definition of S ′.) We have

S̃ ∩ (S̃ ′ ∩ E) = E ∩ (A′ ∩B ∩B′)∼

and the equality of tangent bundles

TeS ∩ TeS′∩E = (TE ∩ T eB) ∩ (T eA′ ∩ T eB′ ∩ TE) = TE∩(A′∩B∩B′)∼ .

Then we show that ∀(S̃ ∩ E), (S̃ ′ ∩ E) ∈ S ′, they intersect cleanly along

some element in S ′. There are two cases:

1”) G ( A ∩ A′. In this case

(S̃ ∩ E) ∩ (S̃ ′ ∩ E) = (S ∩ S ′)∼ ∩ E,

and the tangent bundles satisfy

TeS∩E ∩TeS′∩E = T eA∩T eB ∩T eA′ ∩T eB′ ∩TE = T(A∩A′)∼∩E ∩T(B∩B′)∼ = T(S∩S′)∼∩E.

Thus S̃ ∩ E intersects S̃ ′ ∩ E cleanly along (S ∩ S ′)∼ ∩ E ∈ S ′.
2”) G = A ∩ A′ but G 6= A and G 6= A′. We have (S̃ ∩ E) ∩ (S̃ ′ ∩ E) = ∅.

Finally we show that G ′ := {G̃i}Gi∈G is a building set, that is, ∀S̃ (resp.

(S̃ ∩ E) ) ∈ S ′, the G ′-factors of S̃ (resp. of (S̃ ∩ E) )intersect transversally

along S̃ (resp. along (S̃ ∩ E) ).

By Fact 2.3.10, we can assume S = (G1 t · · · t Gm) t (Gm+1 t · · · t

Gk) = A t B, G ⊆ G1, . . . , Gm, and G t Gm+1, . . . , Gk. Then S̃ = Ã ∩ B̃ by

Lemma 2.3.13 (v).
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Case I: G ( A. Lemma 2.3.13 implies that

S̃ = G̃1 t · · · t G̃k.

Moreover, G̃1, . . . , G̃k are all the G ′-factors ofS̃. (Indeed, if G̃′ ∈ G ′ satisfies

G̃′ ⊇ S̃, then π(G̃′) ⊇ π(S̃), i.e. G′ ⊇ S. Since G1, . . . , Gk are all the minimal

elements in G that are ⊇ S, so G′ ⊇ Gr for some 1 ≤ r ≤ k. Then their strict

transforms still have the inclusion relation G̃′ ⊇ G̃r.) Therefore the G ′-factors

of S̃ intersect transversally.

Next we show that the G ′-factors of (G̃′ ∩ E) intersect transversally.

S̃ ∩ E = E t Ã t B̃ = E t G̃1 t · · · t G̃k.

We show that E, G̃1, · · · , G̃k are all the G ′-factors of (S̃ ∩ E). It is enough to

show that ∀G̃′ ∈ G ′ satisfying G̃′ ⊇ (S̃∩E), we have either G̃′ = E or G̃′ ⊇ G̃r

for some 1 ≤ r ≤ k.

G̃′ ⊇ (S̃ ∩E) implies G′ ⊇ (S ∩G) by taking the image of π. By Fact 2.3.9

(ii), we know that G, Gm+1, . . . , Gk are all the G-factors of (S ∩G). Therefore

G′ contains either G or one of Gr for m + 1 ≤ r ≤ k. In the latter case, we

immediate get the conclusion. So we assume that G′ contains G.

If G′ = G, then G̃′ = E and we get the conclusion. Thus in the following

we assume G′ ) G. Since

G̃′ ∩ E = P(TG′/TG),

S̃ ∩ E = P((TA/TG)|G∩B)
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and G̃′ ∩ E ⊇ S̃ ∩ E, so ∀y ∈ G ∩ B, we have (TG′)y ⊇ (TA)y, which implies

G′ ⊇ A = G1 ∩ · · · ∩Gm. But G1, . . . , Gl are the G-factors of A by Fact 2.3.9

(i). Therefore G′ ∈ G contains Gr for some 1 ≤ r ≤ l.

Case II: G = A. By Fact 2.3.9 (ii), S1, . . . , Sm are all the G-factors of A.

But A = G is already in G, so m = 1 and G1 = G. Then S = G t B and

hence S̃ = E t B̃.

Now we show that E, G̃2, . . . , G̃k are all the G ′-factors of (E t B̃). Suppose

S̃ ⊆ G̃′ ∈ G ′. Take the image under π, we have S ⊆ G′, hence G′ ⊇ G or

G′ ⊇ Gr for some 2 ≤ r ≤ k. The latter case is the expected conclusion. In

the former case, if G′ = G then G̃′ = E which also gives the conclusion. So

we can assume G′ ) G. Fix a point y ∈ S,

G̃′ ∩ π−1(y) = P((TG′)y/(TG)y),

S̃ ∩ π−1(y) = P(Ty/(TG)y).

Then G̃′ ⊇ S̃ implies

P((TG′)y/(TG)y) ⊇ P(Ty/(TG)y),

hence (TG′)y ⊇ Ty, contradicts the fact that G′ is a proper nonsingular subva-

riety of Y .

Therefore, G ′ is a building set with respect to the arrangement S ′.

Lemma 2.3.14. Let Y be a nonsingular algebraic variety over C. G and

V are two nonsingular subvarieties of Y either intersect transversally or one
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contains the other. Let f : Y1 → Y (resp. g : Y2 → Y ) be the blow-up of Y

along G (resp. V ). Let Ṽ be the the f−1(V ) if V ⊆ G, be the strict transform

of V with respect to f otherwise. Let g′ : Y3 → Y1 be the blow-up of Y1 along

Ṽ . Then there exists a morphism f ′ : Y3 → Y2 such that the following diagram

commutes:

Y3
f ′ //

g′
²²

Y2

g

²²
Y1

f // Y

Moreover, g′£f ′ : Y3 → Y1×Y2 is a closed immersion.

Proof. Because of the universal property of blowing up (see [Ha77] Proposition

7.14), to show the existence of f ′, we need only to show that (fg′)−1IV · OY3

is an invertible sheaf of ideals on Y3. This is true because

f−1IV · OY1 = IeV or IeV · IE

where E is the exceptional divisor of the blow-up f : Y1 → Y . Hence

(fg′)−1IV · OY3 = g′−1(f−1IV · OY1) · OY3 = g′−1IeV · OY3 or g′−1(IeV · IE) · OY3 .

g′−1IeV is invertible by the construction of g′, therefore the above ideal sheaf

is invertible.

The fact that g′£f ′ is a closed immersion can be checked using local coor-

dinates.

Lemma 2.3.15. Suppose X1, X2, X3, Y1, Y2, Y3 are nonsingular varieties such
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that the following diagram commutes,

X1
f1 //

g1

²²

X2
f2 //

g2

²²

X3

g3

²²
Y1

h1 // Y2
h2 // Y3

If g1£f1 : X1 → Y1×X2 and g2£f2 : X2 → Y2×X3 are closed immersions,

then g1£(f2f1) : X1 → Y1×X3 is also a closed immersion.

As a consequence, if we have the following commutative diagram

X1
f1 //

g1

²²

X2
f2 //

g2

²²

· · · fk−1 // Xk

gk

²²
Y1

h1 // Y2
h2 // · · · hk−1 // Yk

and gi£fi : Xi → Yi×Xi+1 is closed immersion for all 1 ≤ i ≤ k − 1, then

g1£(fk−1 · · · f1) : X1 → Y1×Xk is also a closed immersion.

Proof. The composition of two closed immersion is still a closed immersion, so

g£(g2f1)£(f2f1) : X1 → Y1×Y2×X3

is a closed immersion. Denote by X ′
1 the image (which is a closed subvariety

of Y1×Y2×X3). Consider the projection π13 : Y1×Y2×X3 → Y1×X3, and the

morphism Γh1×1X3 : Y1×X3 → Y1×Y2×X3. Notice that π13 ◦ (Γh1×1X3) is

the identity automorphism of Y1×X3, and (Γh1×1X3) ◦ π13|X′ is the identity

automorphism of X ′. The conclusion that g1£(f2f1) : X1 → Y1×X3 is also a

closed immersion follows from this.

Step 2: Construction of YG.
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Let Y be a nonsingular algebraic variety over C with an arrangement of

subvarieties S (see Definition 2.3.5). Let G be a building set with respect to

S (see Definition 2.3.6).

Similar to the Fulton-MacPherson compactification, we give two construc-

tions of YG and show that they coincide.

I. Construction as a closure.

Definition 2.3.16. Define Y ◦ = Y \∪G∈GG. There is a natural locally closed

embedding

Y ◦ ↪→ Y×
∏
G∈G

BlGY.

The closure of this embedding is called the wonderful compactification with

respect to G, denoted by YG.

II. Construction by a sequence of blow-ups. Suppose

G = {G1, . . . , GN}

is indexed in an order compatible with inclusion relations, i.e. i ≤ j if Gi ⊆ Gj.

We give an inductive construction of YG, by defining Yk with an arrangement

of subvarieties S(k), and a building set G(k) = {G(k)
i }N

i=1 with respect to S(k).

For k = 0, Let Y0 = Y , S(0) = S, G(0) = G.

Assume Yk−1 is already constructed.

In Yk−1, G
(k−1)
k is minimal in the building set G(k−1) (because G

(k−1)
i for

i < k become divisors hence are not contained in G
(k−1)
k ).

Let Yk be the blow-up of Yk−1 along the nonsingular subvariety G
(k−1)
k .

Define G(k) := G̃(k−1) for ∀G ∈ G (cf. Definition 2.3.11). By Proposition 2.3.12,
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let S(k) be the induced arrangement (S(k−1))′, and let G(k) be the induced

building set (G(k−1))′ = {G(k)}G∈G.

Finally, we get a nonsingular variety YN where all elements in the building

set G(N) are divisors. We show that YN is isomorphic to YG defined in Definition

2.3.16.

Proposition 2.3.17. YN is isomorphic to YG, the closure of the inclusion

Y ◦ ↪→ Y×
∏
G∈G

BlGY.

Proof. We prove by induction that Yk is the closure of the inclusion

Y ◦ ↪→ Y×
k∏

i=1

BlGi
Y.

The proposition is the special case k = N .

Let 0 ≤ i ≤ k−1. Since G
(i)
i+1 is minimal in G(i), Fact 2.3.10 (i) asserts that

there are only two possible relations between the nonsingular subvarieties G
(i)
k

and G
(i)
i+1 of Yi: either G

(i)
k ⊇ G

(i)
i+1 or G

(i)
k t G

(i)
i+1.

Therefore Lemma 2.3.14 applies. Since G
(i+1)
k = G̃

(i)
k , then there exists a

morphism f ′ such that following diagram commutes,

Bl
G

(i+1)
k

Yi+1
f ′ //

g′

²²

Bl
G

(i)
k

Yi

g

²²
Yi+1

f // Yi

meanwhile, the morphism g′£f ′ : Bl
G

(i+1)
k

Yi+1 → Yi+1×Bl
G

(i)
k

Yi is a closed
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immersion. Use Lemma 2.3.15 on the following diagram

Bl
G

(k−1)
k

Yk−1 //

²²

Bl
G

(k−2)
k

Yk−2 //

²²

· · · // Bl
G

(0)
k

Y0

²²
Yk−1

// Yk−2
// · · · // Y0

and notice that Yk = Bl
G

(k−1)
k

Yk−1, G
(0)
k = Gk, Y0 = Y , we have

Yk → Yk−1×BlGk
Y is closed immersion.

Since composition of closed immersions is still a closed immersion, so

Yk → Y×
k∏

i=1

BlGi
Y

is a closed immersion by the inductive assumption. (Actually, the only case

we need the factor Y is when G = ∅.) Then since Y ◦ is an open subset of Yk

and Yk is irreducible, the following composition

Y ◦ ↪→ Yk ↪→ Y×
k∏

i=1

BlGi
Y

implies that the closure of Y ◦ is Yk.

Step 3: G-nests.

Definition 2.3.18. A subset T ⊆ G is called a G-nest(or G-nested) if it

satisfies one of the following equivalent relations:

55



1. There is a flag of elements in S: S1 ⊆ S2 ⊆ · · · ⊆ Sk, such that

T =
k⋃

i=1

{A : A is a G-factor of Si}.

(We call T is induced by the flag S1 ⊆ S2 ⊆ · · · ⊆ Sk.)

2. Let A1, . . . , Ak be the minimal elements of T , then they are all the G-

factors of certain element in S, and each set {A ∈ T : A ⊇ Ai} is also

G-nested defined by induction.

Now we show that after blowing up Y along a minimal element G ∈ G, a

G-nest T gives a G ′-nest T ′.

Proposition 2.3.19. Let T be a subset of G. Define T ′ := {Ã}A∈T ⊆ G ′.
Then T is a G-nest if and only if T ′ is a G ′-nest.

Proof. “⇒”: Suppose T is induced by the flag S1 ⊆ S2 ⊆ · · · ⊆ Sk. If S1 * G

or Sk ⊆ G, then T ′ is induced by the flag S̃1 ⊆ S̃2 ⊆ · · · ⊆ S̃k; otherwise there

is 1 ≤ m ≤ k − 1 where Sm ⊆ G but Sm+1 * G. In this case T ′ is generated

by the flag

(S̃1 ∩ S̃m+1) ⊆ · · · ⊆ (S̃m ∩ S̃m+1) ⊆ (S̃m+1 ∩ E) ⊆ · · · ⊆ (S̃k ∩ E). (2.8)

Indeed, for 1 ≤ i ≤ m, take the G-factorization Si = S∩Bi and Sm+1 = A∩B

(see Fact 2.3.10). Notice that B is the intersection of all the G-factors of Sm+1

which are transversal to G, and each G′ of these G-factors contains Si, hence

contains some G-factor of Si. But G′ is transversal to G hence does not contain

G, so G′ must contain some G-factor of Bi. Therefore B ⊇ Bi, which implies
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B̃ ⊇ B̃i. Then

S̃1 ∩ S̃m+1 = (E ∩ B̃i) ∩ (Ã ∩ B̃) = (Ã ∩ E) ∩ B̃i = E ∩ (A ∩Bi)
∼.

In the proof of Proposition 2.3.12, we have shown that the G ′-factors of E ∩
(A ∩ Bi)

∼ are E and all the G ′-factors of (A ∩ Bi)
∼. Equivalently, the set

of G ′-factors of E ∩ (A ∩ Bi)
∼ consists of all G ′-factors of Ã, all G ′-factors of

B̃i, and E. For m + 1 ≤ i ≤ k, the G ′-factors of (S̃i ∩ E) are E and all the

G ′-factors of S̃i. Hence the flag (2.8) induces a G ′-nest consists of E (= G̃), all

the G ′-factors of B̃i (which are the strict transforms of the G-factors of Bi) for

1 ≤ i ≤ m, and all the G ′-factors of S̃i (which are the strict transforms of the

G-factors of Si) for m + 1 ≤ i ≤ k. This G ′-nest is exactly T ′.

“⇐”: Suppose T ′ is induced by the flag S ′1 ⊆ S ′2 ⊆ · · · ⊆ S ′k. If S ′1 * E,

then T is induced by the flag π(S ′1) ⊆ π(S ′2) ⊆ · · · ⊆ π(S ′k). Now let m be the

maximal integer satisfying S ′m ⊆ E. Since E is both minimal and maximal in

G ′, we have the E-factorization S ′i = E ∩C ′
i for 1 ≤ i ≤ m. Then T is induced

by the following flag

(G ∩ π(C ′
1)) ⊆ π(C ′

1) ⊆ · · · ⊆ π(C ′
m) ⊆ π(S ′m+1) ⊆ · · · ⊆ π(S ′k). (2.9)

We first show this is really a flag by showing that π(C ′
m) ⊆ π(S ′m+1). Since

E ∩ C ′
m ⊆ S ′m+1, and each G ′-factor G′ of S ′m+1 contains either E or C ′

m.

But G′ cannot contain E, otherwise G′ must be E (since E is maximal) and

hence S ′m+1 ⊆ E which contradicts our assumption. So every G ′-factor of S ′m+1

contains C ′
m. This implies C ′

m ⊆ S ′m+1, hence π(C ′
m) ⊆ π(S ′m+1).
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Then we show that the flag (2.9) induces T . By Proposition 2.3.12, for

1 ≤ i ≤ m, there exists Ci ∈ S where Ci * G, such that C ′
i = C̃i. Then

π(C ′
i) = Ci, and the G ′-factors of C ′

i are the strict transforms of the G-factors

of Ci. Similarly, the G ′-factors of S ′i are the strict transforms of the G-factors

of π(Si). Moreover, suppose the G-factorization of C1 is A1 ∩ B1 (see Fact

2.3.10), then

G ∩ π(C ′
1) = G ∩ A1 ∩B1 = G ∩B1.

Hence the G-factors of (G ∩ π(C ′
1)) are G and all G-factors of B1 (notice

that their strict transforms are G ′-factors of C ′
1, hence are G ′-factors of S ′1).

Therefore, the flag (2.9) induces the nest consists of G, all G-factors of Ci

(1 ≤ i ≤ m) and all G-factors of π(S ′i) (m+1 ≤ i ≤ k). This is exactly T .

For any subset T ⊆ G, define YkT =
⋂

G∈T G(k).

Proposition 2.3.20. Let 0 ≤ k ≤ N − 2 and let T ⊆ {Gk+2, Gk+3, . . . , GN}
be a G-nest. Then Yk+1T is an irreducible nonsingular subvariety of Yk+1 with

the following property:

If T ∪ {Gk+1} is not a G-nest, then G
(k)
k+1 ∩ YkT = ∅ and Yk+1T ∼= YkT ;

otherwise, Yk+1T is isomorphic to the blow-up of YkT along G
(k)
k+1 ∩ YkT , and

the exceptional divisor is G
(k+1)
k+1 ∩ Yk+1T . In the latter case, the codimension

of G
(k)
k+1 ∩ YkT in YkT is equal to





dim∩Gk+1(G∈T G− dim Gk+1, if {G : Gk+1 ( G ∈ T } 6= ∅;
dim Y − dim Gk+1, otherwise.

Proof. Use induction. The case k = 0 is obvious. Assume the proposition is
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true for k.

1) We show that if T ∪ {Gk+1} is not a G-nest, then G
(k)
k+1 ∩ YkT = ∅. The

conclusion Yk+1T ∼= YkT follows immediately.

Since T is a G-nest, then {G(k)}G∈T is a G(k)-nest by applying Proposition

2.3.19 k times. Suppose the nest {G(k)}G∈T is induced by a flag

S ′1 ⊆ S ′2 ⊆ · · · ⊆ S ′l

where S ′i ∈ S(k). We assert that if G
(k)
k+1 ∩ YkT 6= ∅ then by adding one more

subvariety G
(k)
k+1 to the nest {G(k)}G∈T we still get a nest. More precisely, we

assert

{G(k)
k+1} ∪ {G(k)}G∈T ⊆ G(k)

is a G(k)-nest induced by the flag

G
(k)
k+1 ∩ S ′1 ⊆ S ′1 ⊆ S ′2 ⊆ · · · ⊆ S ′l. (2.10)

(Indeed, YkT = S ′1, so G
(k)
k+1∩S ′1 6= ∅. By Fact 2.3.9 (ii), the G(k)-factors of

G
(k)
k+1∩S ′1 are G(k) and some G(k)-factors of S ′1. Therefore, the flag 2.10 induces

the nest {G(k)
k+1} ∪ {G(k)}G∈T ⊆ G(k).)

Proposition 2.3.19 asserts that {G(k)
k+1} ∪ {G(k)}G∈T is a G(k)-nest if and

only if {Gk+1} ∪ T is a G-nest. Then 1) follows.

2) Suppose the G(k)-factors of YkT are G′
1, . . . , G

′
r, they are also minimal

elements in the G(k)-nest {G(k)}G∈T by the definition of a nest (see Definition

2.3.18). Assume without loss of generality that the first m subvarieties contain

G
(k)
k+1. Define A = ∩m

i=1G
′
i, B = ∩r

i=m+1G
′
i, then YkT = A ∩ B is the G

(k)
k+1-
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factorization of YkT by Fact 2.3.10.

Yk+1T = ∩G∈T G(k+1) by definition. Notice that for p, q ≥ k + 2 and

G
(k)
p ⊆ G

(k)
q , we have G

(k+1)
p ⊆ G

(k+1)
q because strict transforming keeps the

containing relation. Moreover, G′
1, . . . , G

′
r are the minimal elements in G(k)

which contain YkT . Therefore Yk+1T = ∩r
i=1G̃

′
i. Then

Ã = ∩m
i=1G̃

′
i,

B̃ = ∩r
i=m+1G̃

′
i,

Ã ∩B = Ã ∩ B̃ = ∩m
i=1G̃

′
i

by Fact 2.3.13. Thus Yk+1T = ỸkT . We also know that YkT and G
(k)
k+1 intersect

cleanly, so Yk+1T is the blow-up of YkT along the center YkT ∩ G
(k)
k+1. The

exceptional divisor is the preimage of the center, hence is Yk+1T ∩G
(k+1)
k+1 .

The codimension of the center YkT ∩G
(k)
k+1 in YkT is

codim
A∩B∩G

(k)
k+1

A ∩B = codim
G

(k)
k+1∩B

A ∩B = codim
G

(k)
k+1

A,

where the second equality is because of the transversality of the intersection

G
(k)
k+1 ∩B. If no elements in T contain Gk+1, then A = Y and

codim
G

(k)
k+1

A = dim Y − dim Gk+1;

otherwise codim
G

(k)
k+1

A is equal to

codim
G

(k)
k+1

m⋂
i=1

G′
i = codimGk+1

⋂
Gk+1(G∈T

G = dim
⋂

Gk+1(G∈T
G− dim Gk+1.
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Thus the proof is complete.

2.4 Examples of wonderful compactifications

In this section, several examples of wonderful compactifications are given.

Namely, the wonderful models of subspace arrangements given by De Concini

and Procesi (§2.4.1), Ulyanov’s polydiagonal compactification and Hu’s com-

pactification (§2.4.2) and Kuperberg-Thurston’s construction (§2.4.3).

2.4.1 Wonderful model of subspace arrangements

Given a finite collection of subspaces of a vector space V , there are many ways

to construct a smooth variety birational to V which is unchanged in the com-

plement of those subspaces and replace those subspaces by a normal crossing

divisor. In the paper [DP95], De Concini and Procesi gave a combinatorial

condition saying that, one can blow up a set of subspaces satisfying this con-

dition (which is then called a building set, and coincides with the Definition

2.3.6 ) using certain orders, and the resulting space will not depend on the

chosen order. More precisely, if G is a building set, we get a smooth variety

YG by blowing up all elements in G in the order of ascending dimensions. This

variety YG is isomorphic to the closure of the natural locally closed embedding

i : V \
⋃

W∈G
W ↪→ V×

∏
W∈G

P(V/W ).

Therefore YG does not depend on the order of blow-ups.
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Remark: The ambient space V×∏
W∈G P(V/W ) can be replaced by a larger

space V×∏
W∈G BlW V without changing the closure YG (up to isomorphism).

To see this, fix a projection of πW : V → W for each W ∈ G, hence an

isomorphism V ∼= W × V/W and therefore a closed immersion

V ↪→ V ×
∏
W∈G

(V/W ).

The exceptional divisor of the blow-up BlW V → V is isomorphic to W ×
P(V/W ). So there is a closed immersion W × P(V/W ) ↪→ BlW V (which

depends on the projection πW ). Apply a similar argument as in Remark 2.2.1

to the following factorization

V \
⋃

W∈G
W

i
↪→ V×

∏
W∈G

P(V/W ) ↪→
(
V×

∏
W∈G

W
)
×

∏
W∈G

P(V/W ) ∼=

∼= V×
∏
W∈G

(
W×P(V/W )

)
↪→ V×

∏
W∈G

BlW V

and the statement follows.

Remark: De Concini and Procesi’s work on subspace arrangements can be

easily adapted to arrangements of subvarieties once the subvarieties ‘locally’

appear as a collection of subspaces. However, it does not cover the general

cases of arrangement of subvarieties discussed in this paper, since in general it

is impossible to find a local coordinate that all the subvarieties in the arrange-

ment are linear subspaces.
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2.4.2 Ulyanov’s polydiagonal compactification and Hu’s

compactification

Ulyanov’s compactification. After Fulton and MacPherson’s paper ([FM94]),

Ulyanov has discovered another compactification of the configuration space

F (X,n), which he denoted by X〈n〉 ([Ul02]). The construction consists of

blowing up more subvarieties in Xn than Fulton-MacPherson’s construction.

Namely, we blow up not only diagonals but also intersections of diagonals

(those intersections are called polydiagonals, each of which corresponds to a

partition of {1, . . . , n}). The order of the blow-ups is the ascending order of

the dimensions of polydiagonals. For example, X〈4〉 is the blow-up of X4 along

polydiagonals in the following order:

(1234); (123), (124), (134), (234), (12, 34), (13, 24), (14, 23); (12), . . . , (34).

Those sets separated with commas will be disjoint before being blown up, so

they can be blown up in any order.

This polydiagonal compactification shares many similar properties with the

Fulton-MacPherson’s compactification. Moreover, in the case of characteristic

0, under the action of Sn on X〈n〉, the isotropy group of any point in X〈n〉 is

abelian, while the isotropy group in X[n] is only solvable.

The polydiagonal compactification has a geometric description similar to

the Fulton-MacPherson compactification. The screens are leveled. Screens

at the same level need extra data called scale factors to record their relative

speed.
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Figure 2. A point in X〈4〉
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Figure 3. Another point in X〈4〉
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Example: Figure 2 gives a point in X〈4〉. Notice that the scales α12 = 5 and

α34 = 1 gives us the ratio of speed of point x1, x2 approaching together and the

speed of x3, x4 approaching together. so only the pair (α12 : α34) = (5 : 1) ∈ P1

matters. If we change the scale to α12 = 10 and α34 = 2, it will give the same

point. Figure 3 gives a case when α34 = 0, so the screen containing x3, x4

descends to level 3.

Hu’s compactification. We now consider the general situation where Y is

nonsingular with an arrangement of subvarieties S. By blowing up all S ∈ S in

the order of ascending dimesions, we get a nonsingular variety BlSY ([Hu03]).

Define Y ◦ := Y \∪S∈SS, the open strata of Y . It is isomorphic to an open set

of BlSY . Then

1. The boundary BlSY \Y ◦ = ∪S∈SDS is a simple normal crossing divisor.

2. For any S1, ..., Sn ∈ S, the intersection of DS1 . . . DSk
is nonempty if and

only if {Si} form a chain, i.e., S1 ⊆ · · · ⊆ Sk with a rearrangement of

indices if necessary.

Hu’s compactification generalized Ulyanov’s polydiagonal compactification.

It is a special case of the wonderful compactification of arrangement of subva-
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rieties given in this paper where the building set G = S. (In this special case,

a G-nest is simply a chain of subvarieties.)

2.4.3 Kuperberg-Thurston’s compactification

In their paper [KT99], Kuperberg and Thurston construct an interesting com-

pactification of configuration space F (X,n). They did it in real field R and

we adapt here their compactification to complex field C. We give a brief

introduction here.

Let Γ be a connected graph with n labeled vertices (assume without loss

of generality that Γ has no self-loops and multiple edges). If Γ′ is a subgraph

of Γ, denote by ∆Γ′ the diagonal in Xn where xi = xj if i, j are connected

in Γ′. We call a graph Γ′ vertex-2-connected if the graph is connected and

will still be connected if we remove any vertex (In particular, a single edge is

vertex-2-connected).

It is mentioned with a sketched proof in [KT99] that blowing up along

∆Γ′ for all vertex-2-connected subgraphs Γ′ ⊆ Γ gives a compactification XΓ.

When Γ is the full graph with n vertices (i.e. any two vertices is joint with an

edge), the compactification XΓ is exactly the Fulton-MacPherson compactica-

tion X[n].

The Kuperburg-Thurston’s compactification XΓ is also a special case of the

wonderful compactification of arrangement of subvarieties given in this paper.

Indeed, let Y = Xn and let S be the set of all polydiagonals of Xn. Then XΓ
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is canonically defined without depending on the order of the blow-ups, once

G := {∆Γ′ : Γ′ is vertex-2-connected}

is a building set with respect to S. G is indeed a building set because of the

following observation:

1. We call a subgraph Γ′′ ⊆ Γ is full if the following is satisfied:

(a) It contains all vertices in Γ.

(b) For any edge e ∈ Γ, if its endpoints p and q are connected in Γ′′,

then e ∈ Γ′′.

There is a one-one correspondences between the set of all full subgraphs

of Γ and the set S, which maps Γ′′ to ∆Γ′′ .

2. Any full subgraph Γ′′ has a unique decomposition into vertex-2-connected

subgraphs Γ1, . . . , Γk. Notice that ∆Γ1 , . . . , ∆Γk
are the minimal elements

in G which are ≥ ∆Γ′′ , and they intersect transversally with the inter-

section ∆Γ′′ . Therefore G is a building set by Definition 2.3.6.

It is also easy to describe a general G-nest: it corresponds to a set of

vertex-2-connected subgraphs of Γ, where any two subgraphs should be either

“disjoint” or “intersect at one vertex” or “one contains the other”.

66



Chapter 3

Main theorems on wonderful compactification

of arrangements of subvarieties

This chapter is devoted to the Chow groups and Chow motives decomposition

of the wonderful compactification of arrangement of subvarieties.

3.1 Statement of the theorems

Notations:

• Let Y be a nonsingular algebraic variety over C with an arrangement of

subvarieties S (see Definition 2.3.5). Let G be a building set with respect

to S (see Definition 2.3.6). Let YG be the wonderful compactification of

the arrangement S associated to G (see Definition 2.3.16). Let T denote

a G-nest (see Definition 2.3.18).

• Denote DT to be the divisor in YG that corresponds to T ∈ G. When

no confusion arise, we use the same notation DT for its restriction to a

subvariety of YG.

67



• Y0 := Y , Y0T :=
⋂

T∈T T , YGT :=
⋂

T∈T DT .

Denote jT : YGT → YG to be the natural imbedding.

Denote gT : YGT → Y0T to be the restriction of the natural morphism

YG → Y .

• Suppose j : B → C and g : B → D are two morphisms of varieties.

Denote by j£g : B → C×D the composition of the diagonal map ∆

with f×g:

j£g : B
∆→ B×B

f×g→ C×D.

• (We assume
⋂

G(T∈T T = Y if no T satisfies G ( T ∈ T .)

Define rG := dim(
⋂

G(T∈T T )− dim G.

Define NG := NG(
⋂

G(T∈T T )|Y0T , the restriction to Y0T of the normal

bundle of G in the ambient space (
⋂

G(T∈T T ).

Define

MT :=
{
µ = {µG}G∈G : 1 ≤ µG ≤ rG − 1

}

and define ||µ|| := ∑
G∈G µG for µ ∈ MT .

Theorem 3.1.1. We have the Chow group decomposition

A∗YG = A∗Y ⊕
⊕
T

⊕
µ∈MT

A∗−‖µ‖(Y0T )

where T runs through all G-nests.
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Moreover, when Y is complete, we have the Chow motive decomposition

h(YG) = h(Y )⊕
⊕
T

⊕
µ∈MT

h(Y0T )(||µ||)

where T runs through all G-nests.

Theorem 3.1.2. The correspondence that gives each of the above direct sum-

mand can be explicitly expressed as follows,

α : h(YG) → h(Y0T )(‖µ‖)

α = (jT £gT )∗
∏
G∈T

{
c
(
g∗T (NG)⊗O(−

∑

(F)

DG′
)) 1

1 + DG

}

rG−1−µG

,

where the condition (F) is: G′ ( G and T ∪ {G′} is a G-nest.

The inverse correspondence is

β : h(Y0T )(‖µ‖) → h(YG)

β = (gT £jT )∗
∏
G∈T

(−DG

)µG−1
.

3.2 Proof of the theorems

Apply the formula for the motive of a blow-up(Theorem 2.1.5) to Proposition

2.3.20 immediately gives the following lemma:

Lemma 3.2.1. Given a G-nest T ⊆ {Gk+2, . . . , GN}. Suppose T ′ := T ∪

69



{Gk+1} is also a G-nest. Define rk,T (or r if no confusion arises) to be





dim∩Gk+1(G∈T G− dim Gk+1, if {G : Gk+1 ( G ∈ T } 6= ∅;
dim Y − dim Gk+1, otherwise.

Then the following Chow group decomposition holds:

A∗(Yk+1T ) = A∗(YkT )⊕
r−1⊕
t=1

A∗−t(YkT ′).

When Y is complete, we also have the motivic decomposition

h(Yk+1T ) = h(YkT )⊕
r−1⊕
t=1

h(YkT ′)(t).

Applying inductively the above lemma gives the proof of the Chow group

and Chow motivic decompositions of the wonderful compactification YG in

Theorem 3.1.1 as follows,

Proof of Theorem 3.1.1. Define

M
(k)
T =

{
µ = {µG}G∈G : 1 ≤ µG ≤ dim(

⋂
T∈T

G(k)(T (k)

T (k))− dim G(k) − 1
}

and define ||µ|| := ∑
G∈G µG for µ ∈ M

(k)
T .

We prove the following statement using the downward induction on k :

A∗YG = A∗Yk ⊕
⊕
T

⊕

µ∈M
(k)
T

A∗−‖µ‖(YkT ). (3.1)

where T runs through all G-nest such that T ⊆ {Gk+1, Gk+2, . . . , GN}.
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The assertion for k = N is trivial because all G(N) are divisors in YG hence

of codimension 1 and M
(k)
T = ∅.

Assume (3.1) has been proved for k + 1, i.e.,

A∗YG = A∗Yk+1 ⊕
⊕
T

⊕

µ∈M
(k+1)
T

A∗−‖µ‖(Yk+1T )

where T runs through all G-nest such that T ⊆ {Gk+2, Gk+3, . . . , GN}. Apply

Lemma 3.2.1, we have

A∗YG =A∗Yk ⊕
( s−1⊕

t=1

A∗−t(G
(k)
k+1)

)

⊕
(

A∗−‖µ‖(YkT )

)
⊕

( rk+1,T −1⊕
t=1

A∗−‖µ‖−t
(
Yk({Gk+1} ∪ T )

))

where s = codimGk+1
Y . This immediately gives the Chow group decomposi-

tion (3.1) for k. Indeed, any G-nest contained in {Gk+1, Gk+2, . . . , GN} must

be one of the three: {Gk+1}, G-nest T contained in {Gk+2, Gk+3, . . . , GN},
or {Gk+1} ∪ T . They correspond to the second, third and last summands

respectively.

Therefore, the Chow group decomposition (3.1) holds for all k, in particular

the case k = 0 gives the desired Chow group decomposition. The proof of the

Chow motive decomposition is almost an repetition of the above proof and

been omitted here.

Our next step is to explicitly express the correspondences that give the

Chow motive decomposition i.e. to prove Theorem 3.1.2. We first introduce

some notations.
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Fix a G-nest T .

• Define Tk := T ⋂{Gk+1, Gk+2, . . . , GN} for 0 ≤ k ≤ N . Then we have a

chain

(T =)T0 ⊇ T1 ⊇ · · · ⊇ TN(= ∅).

• For 1 ≤ i ≤ N , define

µi :=





µTi
, if Ti ∈ G;

0, otherwise.

• jkl and gkl (N ≥ k > l ≥ 0) are the natural morphisms as in the following

diagram

YNT0

ON ML
jT

²²

GF

@A

gT

//

jN0 //

gN0

²²
¤

YNT1
jN1 //

gN1

²²
¤

... // YNTN−1

jN,N−1 //

gN,N−1

²²

YNTN

αN

xx
YN−1T0

jN−1,0//

gN−1,0

²²
¤

YN−1T1

jN−1,1//

gN−1,1

²²

... // YN−1TN−1

βN

>>

...

g20

²²
¤

...

g21

²²

...

Y1T0
j10 //

g10

²²

Y1T1

α1

xx
Y0T0

β1

>>

(3.2)

Lemma 3.2.2. Denote by g : Yk → Yk−1 the natural morphism. Then for

l ≤ k − 1, we have

g−1(G
(k−1)
l ) = G

(k)
l .
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Proof. First, notice that G
(k−1)
l + G

(k−1)
k since their image under the natural

morphism Yk → Y0 are Gl and Gk, respectively. By the assumption of the

order of {Gi}, we have Gl + Gk. On the other hand, G
(k−1)
l is a divisor,

so G
(k−1)
l * G

(k−1)
k . We also know that G

(k−1)
l and G

(k−1)
k intersect cleanly,

therefore they must intersect transversally. Then it is standard to show by

local coordinates calculation that the following isomorphism between ideal

sheaves holds:

g−1I(G
(k−1)
l ) · OYk

∼= I(G
(k)
l ).

The desired conclusion follows from this.

Proposition 3.2.3. In Diagram (3.2), all squares are fiber squares. Moreover,

for any N ≥ k > l ≥ 0, jkl is injective; gkl is the projection of a projective

bundle with fiber of dimension rk,T − 1 if Gk ∈ T (see Lemma 3.2.1 for defin-

ition of rk,T ); gkl is the blow-up of Yk−1Tl along G
(k−1)
k ∩ Yk−1Tl if Gk /∈ T but

{Gk} ∪ Tl is a G-nest; gkl is an isomorphism if {Gk} ∪ Tl is not a G-nest.

Proof. It is obvious that jkl is injective.

To show that gkl is the projection of a projective bundle if Gk ∈ T , we apply

Proposition 2.3.20: YkTk is the blow-up of Yk−1Tk along the center Yk−1Tk−1,

and the exceptional divisor is YkTk−1. Therefore gk,k−1 : YkTk−1 → Yk−1Tk−1

is a projective bundle, and the dimension of a fibre is rk,T − 1. Next we show

that for any l ≤ k − 1, gkl is the restriction of gk,k−1 to a smaller base Yk−1Tl,

then gkl is also a projective bundle with fiber of the same dimension rk,T − 1.

Fix k and use downward induction on l. By inductive assumption, gk,l+1 is a
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restriction of gk,k−1. Since

g−1
k,l+1(G

(k−1)
l+1 ∩ Yk−1Tl) = G

(k)
l+1 ∩ YkTl

by Lemma 3.2.2, the restriction of the projective bundle gk,l+1 to a smaller

base space Yk−1Tl = Yk−1Tl+1 ∩G
(k−1)
l+1 is exactly gkl.

Next, we show gkl is birational if Gk /∈ T . This is again implied by Propo-

sition 2.3.20. Notice that G
(k−1)
k is minimal in

T ′ := {G(k−1)
k } ∪ {G(k−1)}G∈Tl

.

If T ′ is a G(k−1)-nest, then gkl : YkTl → Yk−1Tl is a blow-up along the cen-

ter G
(k−1)
k ∩ Yk−1Tl; otherwise, gkl is an isomorphism. In both cases, gkl is

birational.

Finally, all squares in Diagram (3.2) are fiber squares since ∀l ≤ k − 2, gkl

is a restriction of gk,l+1. The proof is complete.

Proposition 3.2.4. Suppose W,U, V,X, Y, Z are nonsingular varieties, the

square in the following diagram is a fiber square, and dim W−dim V = dim U−
dim Y ,

W
j3 //

g3

²²
¤

U

g2

²²

j2 // X
α2

§§
V

j1 //

g1

²²

Y
β2

FF

α1

§§
Z

β1

FF

Also assume jk, gk(1 ≤ k ≤ 3) are proper and l.c.i. (local complete intersec-

tion) morphisms (cf. [Fu98]). If there exists γ1, γ
′
1 ∈ A(V ), γ2, γ

′
2 ∈ A(U),
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such that the correspondences

αk = (jk £ gk)∗γk, βk = (gk £ jk)∗γ′k for k = 1, 2

then we have

α1α2 = (j2j3 £ g1g3)∗(j∗3γ2 · g∗3γ1),

β2β1 = (g1g3 £ j2j3)∗(g∗3γ
′
1 · j∗3γ′2).

Proof. Denote by πXY Z
13 the projection X × Y × Z → X × Z.

α1α2 = (πXY Z
13 )∗[(j2 £ g2)∗γ2 × 1Z · 1X × (j1 £ g1)∗γ1]

= (πXY Z
13 )∗[(j2 × g2 × 1Z)∗(δU∗γ2 × 1Z) · 1X × (j1 × g1)∗δV ∗γ1].

By projection formula, the expression in the bracket equals to

(j2 × g2 × 1Z)∗[δU∗γ2 × 1Z · (j2 × g2 × 1Z)∗(1X × (j1 × g1)∗δV ∗γ1)]

=(j2 × g2 × 1Z)∗[δU∗γ2 × 1Z · 1U × (g2 × 1Z)∗(j1 × g1)∗δV ∗γ1].

Next, we show that (g2 × 1Z)∗(j1 × g1)∗ = (j3 × g1)∗(g3 × 1V )∗. Indeed,

notice that in the following fiber square, the relative dimensions of the left

arrow (g3 × 1V ) and right arrow (g2 × 1Z) are equal,

W × V
j3×g1 //

g3×1V

²²
¤

U × Z

g2×1Z

²²
V × V

j1×g1 // Y × Z
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Apply the push-forward formula and excess intersection formula for l.c.i. mor-

phisms gives the desired equality. ([Fu98] Proposition 6.6, asserts that Theo-

rem 6.2 and Theorem 6.3 in [Fu98] are also valid for l.c.i. morphisms.)

α1α2 = (πXY Z
13 )∗(j2 × g2 × 1Z)∗[δU∗γ2 × 1Z · 1U × (j3 × g1)∗(g3 × 1V )∗δV ∗γ1]

= (j2×1Z)∗(πUUZ
13 )∗(1U × j3 × g1)∗[(1U × j3)

∗δU∗γ2 × 1V · 1U × (g3 × 1V )∗δV ∗γ1]

The expression in the bracket equals to

(1U × j3)
∗(∆U · (1U × γ2))× 1V · 1U × (g3 × 1V )∗(∆V · (γ1 × 1V ))

= (1U × j3)
∗∆U × 1V · 1U × j∗3γ2 × 1V · 1U × (g3 × 1V )∗∆V · 1U × g∗3γ1 × 1V ]

Since (1U × j3)
∗∆U = Γt

j3
= (j3 × 1W )∗∆W and (g3 × 1V )∗∆V = Γg3 = (1W ×

g3)∗∆W , the above expression equals to

(j3 × 1W )∗∆W × 1V · 1U × (1W × g3)∗∆W · 1U × (j∗3γ2 · g∗3γ1)× 1V

= (j3 × 1W × g3)∗[∆W × 1W · 1W ×∆W · 1W × (j∗3γ2 · g∗3γ1)× 1V ]

Then, because of

(j2 × 1Z)∗(πUUZ
13 )∗(1U × j3 × g1)∗(j3 × 1W × g3)∗ = (j2j3 × g1g3)∗(πWWW

13 )∗,

and

∆W × 1W · 1W ×Γ× 1W = ∆W × 1W ·Γ× 1W × 1W = ∆W × 1W · π∗13(Γ× 1W ),
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We have

α1α2 = (j2j3×g1g3)∗π13∗[∆W × 1W · 1W ×∆W · π∗13(Γ× 1W )]

= (j2j3×g1g3)∗[π13∗(∆W × 1W · 1W ×∆W ) · Γ× 1W ]

= (j2j3×g1g3)∗[∆W · Γ× 1W ]

= (j2j3×g1g3)∗δW∗Γ

= (j2j3 £ g1g3)∗Γ.

Where Γ = j∗3γ2 · g∗3γ1.

Notice a simple fact: If A, Bi, Cij are motives such that

1.
⊕

i αi : A ∼= ⊕
i Bi is an isomorphism with inverse

∑
i βi,

2.
⊕

j αij : Bi
∼= ⊕

j Cij is an isomorphism with inverse
∑

j βij,

then
⊕

i,j αij ◦ αi : A ∼= ⊕
i,j Cij is also an isomorphism with inverse

∑
i,j βi ◦

βij.

For Gk ∈ T , define hk ∈ A1(YkTk−1) to be first chern class of the invertible

sheaf O(1) of the projective bundle gk,k−1. Define

αk =





(jk,k−1£gk,k−1)∗1, if Gk /∈ T ;

(jk,k−1£gk,k−1)∗
{
g∗k,k−1c(Nk)

1
1−hk

}
rk−1−µk

, if Gk ∈ T ,

where Nk := NYk−1Tk−1
Yk−1Tk, and define

βk =





(gk,k−1£jk,k−1)∗1, if Gk /∈ T ;

(gk,k−1£jk,k−1)∗h
µk−1
k , if Gk ∈ T .
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Thanks to the formula of the motive decomposition of a blow-up (Theorem

2.1.5), the correspondence

ak : h(YkTk)(
N∑

i=k+1

µi) → h(Yk−1Tk−1)(
N∑

i=k

µi)

expresses h(Yk−1Tk−1)(
∑N

k µi) as a direct summand of h(YkTk)(
∑N

k+1 µi) with

right inverse βk.

By the above simple fact, the correspondence

αT ,µ : h(YG) → h(Y0T )(‖µ‖)

that gives the direct summand h(Y0T )(‖µ‖) in Theorem 3.1.1 can be expressed

as the composition α1 ◦ α2 ◦ · · · ◦ αN , with right inverse βN ◦ · · · ◦ β1.

Now combine Proposition 3.2.3 and Proposition 3.2.4 with the above dis-

cussion, we arrive at the following proposition:

Proposition 3.2.5. Denote by fk : YNT0 → YkTk−1 the natural map in Dia-

gram (3.2). (i.e. gk+1,k−1 · · · ◦ gN,k−1 ◦ jN,k−2 ◦ · · · ◦ jN0.) Then

α1 ◦ · · · ◦ αN = (jT £gT )∗
∏

Gk∈T

{
f ∗kg∗k,k−1c(Nk)

1

1− f ∗khk

}
rk−1−µk

,

βN ◦ · · · ◦ β1 = (gT £jT )∗
∏

Gk∈T
f ∗khµk−1

k .

The following two standard facts about normal bundles of subvarieties are

used in the proof of Theorem 3.1.2.

Fact 3.2.6. Let Y, W be nonsingular proper subvarieties of Z and assume Y
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intersects transversally with W . Let π : Z̃ → Z be the blow-up of Z along W

and let Ỹ be the strict transform of Y . Then

NeY Z̃ ' π∗NY Z.

Fact 3.2.7. Let W ( Y ( Z be nonsingular varieties and π : Z̃ → Z be the

blow-up of Z along W . Denote by Ỹ the strict transform of Y , and denote by

E the exceptional divisor on Ỹ . Then

NeY Z̃ ' π∗NY Z ⊗O(−E).

Proof of the above two facts. Prove by local coordinates. Or see [Fu98].

Proof of Theorem 3.1.2. The proof contains three steps.

Step 1: Show f ∗khk = −DGk
|YNT0 .

Recall that for Gk ∈ T , hk is first chern class of the invertible sheaf O(1)

of the projective bundle gk,k−1.

Consider the following diagram (not necessary a fiber square) where π and

j are the natural morphisms:

YNT0
jT //

fk

²²

YN

π

²²
YkTk−1

j // Yk

By Proposition 2.3.20, YkTk−1 is the exceptional divisor of the blow-up

gk,k−1 : YkTk−1 → Yk−1Tk−1. So hk = −j∗k,k−1[YkTk−1]. Since YkTk−1 is the

79



transversal intersection YkTk ∩G
(k)
k , hk = −j∗[G(k)

k ]. so

f ∗khk = −f ∗k j∗[G(k)
k ] = −j∗T π∗[G(k)

k ] = −j∗T DGk
= −DGk

|YNT0 .

where the third equality is by successively applying Lemma 3.2.2.

Step 2: Let 0 ≤ s < k ≤ N . Denote gsk : YsTk → Ys−1Tk to be the

natural map induced from Ys → Ys−1. We show that, if Gk ∈ T (hence

Tk−1 = Tk ∪ {Gk}), then the normal bundle NYsTk−1
YsTk is isomorphic to





g∗s,k−1

(
NYs−1Tk−1

Ys−1Tk

)⊗(−[G
(s)
s ]|YsTk−1

), if (**) holds;

g∗s,k−1

(
NYs−1Tk−1

Ys−1Tk

)
, otherwise.

where condition (**) is: Gs ( Gk and Tk ∪ {Gs} is a G-nest.

For the proof, we discuss three cases.

Case I: when (**) holds. It is a direct conclusion of Fact 3.2.7. To apply

this Fact, we need

Ys−1Tk ∩G(s−1)
s ( Ys−1Tk ∩G

(s−1)
k ( Ys−1Tk.

The second inequality is obvious. The first inclusion is strict because of the

following reason. G
(s−1)
s is a G(s−1)-factor of Ys−1Tk ∩ G

(s−1)
s , therefore G

(s−1)
k

is not a G(s−1)-factor because it strictly contains G
(s−1)
s . On the other hand,

G
(s−1)
k is a G(s−1)-factor of Ys−1Tk ∩G

(s−1)
k . So the first inclusion is strict.

Case II: Tk ∪ {Gs} is not G-nested. In this case, G
(s−1)
s ∩ Ys−1Tk = ∅ by

Proposition 2.3.20. Hence no twisting is needed for the normal bundle.
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Case III: Tk ∪ {Gs} is G-nested but Gs is not strictly contained in Gk.

If Tk−1 ∪ {Gs} is not a G-nest, then G
(s−1)
s ∩ Ys−1Tk−1 = ∅ by Proposition

2.3.20. Hence blowing up along G
(s−1)
s will not affect the normal bundle of

Ys−1Tk−1, so no twisting is needed. Otherwise, assume Tk−1∪{Gs} is a G-nest.

Both Gs and Gk are minimal in the G-nest Tk−1 ∪ {Gs}. Then G
(s−1)
s and

G
(s−1)
k are minimal in a nest and neither one contains the other, therefore they

intersect transversally by the definition of nest. Thus, Ys−1Tk ∩ G
(s−1)
k and

Ys−1Tk ∩ G
(s−1)
s , regarded as subvarieties of ambient space Ys−1Tk, intersect

transversally. Therefore Fact 3.2.6 applies, hence no twisting is needed for the

normal bundle.

Step 3: Apply the result of Step 2 successively for s = 1, 2, . . . , k−1. The

normal bundle NYk−1Tk−1
Yk−1Tk is isomorphic to

(
g∗k−1,k−1 . . . g∗1,k−1

(
NY0Tk−1

Y0Tk

))⊗(−
∑

(∗∗)
[G(k−1)

s ]|Yk−1Tk−1

)

where the sum is over all s that satisfying condition (**) holds. (Here we use

Lemma 3.2.2.) Therefore

f ∗kg∗k,k−1c(NYk−1Tk−1
Yk−1Tk)

= c

(
g∗T

(
NY0Tk−1

Y0Tk|Y0T
)⊗O(−

∑

(∗∗)
[DGs ]|YNTk−1

))
.

Notice that

(
NY0Tk−1

Y0Tk

)|Y0T = NGk
(

⋂
Gk(G∈T

G)|Y0T
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which is denoted by NGk
by our notation. (The proof is as follows: Sup-

pose T1, ..., Tm, Tm+1, ..., Tr are the minimal elements of the nest Tk, where the

first m elements contain Gk. Then the minimal element of the nest Tk−1 are

Gk, Tm+1, ..., Tr. By the definition of nest, Y0Tk is the transversal intersection

T1 ∩ · · · ∩ Tm ∩ Tm+1 ∩ · · · ∩ Tr, and Y0Tk−1 is the transversal intersection

Gk ∩ Tm+1 ∩ · · · ∩ Tr. Therefore the normal bundle

NY0Tk−1
Y0Tk = NGk

(T1 ∩ · · · ∩ Tm)|Y0Tk−1
.

Since T1 ∩ · · · ∩ Tm =
⋂

Gk(G∈T G, the conclusion follows immediately.)

Now put everything into Corollary 3.2.5, we have

α1 ◦ · · · ◦ αN

= (jT £gT )∗
∏

Gk∈T

{
c(g∗T (NGk

)⊗O(−
∑

(∗′)
[DGs ]|YNT )

1

1 + DGk
|YNT

}
rk−1−µk

,

βN ◦ · · · ◦ β1 = (gT £jT )∗
∏

Gk∈T
(−DGk

)µk−1|YNT .

Finally, we show that the condition (**) can be replaced by the following

condition:

(F) : Gs ( Gk and T ∪ {Gs} is a G-nest.

Indeed, (F) is stronger than (**). However, for those Gs satisfying (**)

but not (F), the divisor [DGs ]|YNT would be trivial because DGs ∩ YNT = ∅.
Therefore, replacing (**) by (F) will not change the result.

Hence the proof is complete.

we write a direct conclusion from Step 3 for later usage:
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Corollary 3.2.8. Denote π : G
(k)
k+1 → Gk+1. Then

c(N
G

(k)
k+1

Yk) = c
(
π∗N(Gk+1)Y⊗

∑
Gk+1)G∈T

(−[DG])|
G

(k)
k+1

)
.

Proof. Apply Step 3 to the nest T = {Gk+1}.
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Chapter 4

Theorems on the Fulton-MacPherson

configuration spaces

In this chapter, we prove more precise results for the Chow groups (Theorem

4.1.1) and the Chow motives (Theorem 4.1.2) of the Fulton-MacPherson con-

figuration space X[n]. We also give a generating function which can be used to

calculate the Chow groups and the Chow motives recursively (Theorem 4.2.1).

Examples of Chow groups and Chow motives of X[n] for n = 2, 3, 4 are given

in Section 4.3.

4.1 Statements and proofs

Notation:

1. We call two subsets I, J ⊆ [n] := {1, 2, . . . , n} are overlapped if I ∩ J is

a nonempty proper subset of I and of J . For a set S of subsets of [n],

we call I is compatible with S (denote by I ∼ S) if I does not overlap

any element in S.
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A nest S is a set of subsets of [n] such that any two elements I 6= J ∈ S
are not overlapped, and all singletons {1}, . . . , {n} are in S. Notice that

the nest defined here, unlike the one defined in [FM94], is allowed to

contain singletons.

Given a nest S, define S◦ = S \ {{1}, . . . , {n}}. In the description of

nests by forests below, S◦ correspond to the forest S cutting of all leaves.

A nest S naturally corresponds to a not necessarily connected tree (which

is also called a forest), each node of which is labeled by an element

in S. For example, the following forest corresponds to a nest S =

{1, 2, 3, 23, 123}.

•
• •

• •

123

23 1

2 3

¨̈
¨̈

¨̈
77

77
77

¨̈
¨̈

¨̈
77

77
77

Denote by c(S) the number of connected components of the forest, i.e.,

the number of maximal elements of S. Denote by cI(S) (or cI if no

ambiguity arise) the number of maximal elements of the set {J ∈ S|J (
I}, i.e. the number of sons of the node I. In the above example, c(S) = 1,

c123 = c23 = 2.

2. Let X be a nonsingular variety of dimension d.

It is shown in [FM94] that X[n] \F (X,n) = ∪DI , where I runs through

all subsets of [n] with at least two elements. ∪DI is a simple normal

crossing divisor. For every nest S, X(S) := ∩I∈SDI is a nonsingular

subvariety of X[n].
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Define jS : X(S) ↪→ X[n] to be the natural inclusion.

Define ∆S := ∩I∈S∆I . Define gS : X(S) → ∆S to be the restriction of

the morphism π : X[n] → Xn to the subvariety X(S).

3. Let pI : X[n] → X be the composition of π : X[n] → Xn with the

projection Xn → X to the i-th factor for an arbitrary i ∈ I. (The

choice of i ∈ I is not essential: indeed, the only place we need pI is in

the formulation of αS,µ below, where need the composition j∗Sp
∗
I . By the

following diagram

X(S)
jS //

gS
²²

X[n]

pi

²²
∆S

qi // X

where i ∈ I, we have j∗Sp
∗
i = g∗Sq

∗
i , but qi is independent of the choice of

i ∈ I since ∆S ⊆ ∆I , so j∗Sp
∗
I is independent of the choice of i ∈ I for

pI .)

4. For a nest S 6= {{1}, . . . , {n}} (i.e. S◦ 6= ∅), define

MS :=
{
µ = {µI}I∈S◦ : 1 ≤ µI ≤ d(cI − 1)− 1

}
.

(recall that d = dim X, cI = cI(S) is defined in Notation 1) and define

||µ|| := ∑
I∈S◦ µI , ∀µ ∈ MS .

For S = {{1}, . . . , {n}}, assume MS = {µ} with ‖µ‖ = 0.

Define function ζ(x) :=
∑d

i=0(1 + x)d−ici(TX).

Define αS,µ ∈ Corr−||µ||(X[n], ∆S), βS,µ ∈ Corr||µ||(∆S , X[n]), pS,µ ∈
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Corr0(X[n], X[n]) as follows,

αS,µ = (jS £ gS)∗j∗S

( ∏
I∈S◦

{− p∗Iζ(−
∑
J∼S
J)I

DJ)cI−1 1

1 + DI

}
d(cI−1)−1−µI

)
,

βS,µ = (gS £ jS)∗j∗S

( ∏
I∈S◦

DµI−1
I

)
,

pS,µ = βS,µ ◦ αS,µ.

(In the above definition of αS,µ and βS,µ, the products are assumed to

be 1X(S) ∈ A0
(
X(S)

)
if S◦ = ∅.)

The following are the main theorems on the Chow groups and Chow mo-

tives of Fulton-MacPherson configuration spaces.

Theorem 4.1.1. Let X be a (not necessarily complete) nonsingular variety.

There is an isomorphism of Chow groups:

A∗(X[n]) =
⊕
S

⊕
µ∈MS

A∗−||µ||(Xc(S)).

where S runs through all nests of [n].

Theorem 4.1.2. Let X be a complete nonsingular variety defined over an

algebraically closed field. Then there is a natural isomorphism of Chow motives

⊕
S

⊕
µ∈MS

αS,µ : h(X[n]) ∼=
⊕
S

⊕
µ∈MS

h(∆S)(‖µ‖)
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with the inverse
∑
S

∑
µ∈S

βS,µ. Equivalently, we have

h(X[n]) ∼=
⊕
S

⊕
µ∈MS

h(Xc(S))(‖µ‖).

Remark 4.1.3. Observe that the two sets of correspondences {αS,µ}, {βS,µ}
are Sn-symmetric, in the sense that for any σ ∈ Sn,

ασ(S),σ(µ) = σ(αS,µ), βσ(S),σ(µ) = σ(βS,µ),

where the actions of σ are the obvious ones.

Thus the Sn-action on X[n] is compatible with Sn-action on the motive

decomposition in the sense that the following diagram commutes, where Γ =
⊕

S,µ αS,µ:

h(X[n]) Γ //

σ

²²

⊕
S,µ h(∆S)(‖µ‖)

σ

²²

h(X[n]) Γ //
⊕

S,µ h(∆S)(‖µ‖)

.

Proof of Theorem 4.1.1. Apply Theorem 3.1.1 with the ambient space Y =

Xn and the building set

G = {∆I}I⊆[n],|I|≥2

First notice that a nest S of [n] gives a G-nest T = {∆I}I∈S◦ . Moreover,

the inverse is also true: a G-nest will give a nest of [n]. Indeed, given a partition

Π = (I1, . . . , It) of [n], a G-factor of ∆Π by definition is a minimal element in G
that is ⊇ ∆Π, so {∆I1 , . . . , ∆It} are all the G-factors of ∆Π. By the definition

88



of G-nest (Definition 2.3.18), a G-nest T is induced from a flag of strata

∆Π1 ⊇ ∆Π2 ⊇ · · · ⊇ ∆Πt .

Then

Π1 ≥ Π2 ≥ · · · ≥ Πk.

(Here Π ≥ Π′ means Π is a finer partition than Π′, e.g.(12, 3, 4) ≥ (123, 4).)

The nest T is induced by “taking the union of all factors of each ∆Π”, which

corresponds to “take all I’s that appears in any of the partition Πi”. Since

the partitions is totally ordered, the set of I’s forms a nest of [n].

Next we prove the range of µ is as stated. Theorem 3.1.1 says

1 ≤ µG ≤ rG − 1.

Now G = ∆I is a diagonal, by definition

rG := dim(
⋂

G(T∈T
T )− dim G

= dim(
⋂

I)I′∈S
∆I′)− dim ∆I

= d(cI − 1).

Finally, observe that

Y0T =
⋂

G∈T
G =

⋂
I∈S

∆I = ∆S ∼= Xc(S).
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The proof is complete.

Proof of Theorem 4.1.2. The statement of the motive decomposition is proved

exactly as the above proof.

The correspondences are induced from Theorem 3.1.2. The improvement of

this theorem than Theorem 3.1.2 is: we can say more about the chern classes

appeared in the correspondence αS,µ in Theorem 3.1.2.

First, for G = ∆I , let Π = (I1, . . . , IcI
) be the partition containing all sons

of I in S. We calculate the normal bundle NG := N∆I
∆Π. Without loss of

generality, assume I = (12 . . . m), where m ≤ n.

Denote pi : ∆I → X, qi : ∆Π → X be the projections induced from the

projection of Xn to the i-th factor. For each 1 ≤ i ≤ cI , pick an ai ∈ Ii.

T∆I
= p∗1TX ⊕ p∗m+1TX ⊕ · · · ⊕ p∗nTX

T∆Π
= q∗a1

TX ⊕ · · · ⊕ q∗acI
TX ⊕ q∗m+1TX ⊕ · · · ⊕ q∗nTX

T∆Π
|∆I

= p∗1TX ⊕ · · · ⊕ p∗1TX ⊕ q∗m+1TX ⊕ · · · ⊕ q∗nTX

Therefore, c(NG) = p∗1c(TX)cI−1.

To calculate the chern classes of NG twisted by a line bundle L, we use

the chern root technique. For any vector bundle N on X, define the chern

polynomial as

cy(N) := c0(N) + c1(N)y + c2(N)y2 + . . . .
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Define x = c1(L). Recall that the rank of NG is rG = d(cI − 1). Then

c(NG ⊗ L) = crG
(NG) + crG−1(NG)(1 + x) + ... + c0(NG)(1 + x)rG

= (x + 1)rGc 1
x+1

(NG)

= (x + 1)d(cI−1)p∗1c 1
x+1

(TX)cI−1

= p∗1[(x + 1)dc 1
x+1

(TX)]cI−1 = p∗1ζ(x)cI−1.

Finally, by restricting to ∆S and pulling back to X(S) we get the expected

formula for correspondences αS,µ.

4.2 A formula for the generating function of

Chow groups and Chow motive of X [n]

In this section, we show that the decompositions of the Chow groups (The-

orem 4.1.1) and the Chow motive (Theorem 4.1.2) can be expressed using

exponential generating functions.

Define [xitn

n!
] to be a function to pick up the coefficient of xitn

n!
from a power

series with two variables x and t, i.e.,

[
xitn

n!
]
∑
j,m

ajm
xjtm

m!
:= ain.

The main theorem of this section is the following:

Theorem 4.2.1. Define fi(x) to be the polynomials whose exponential gener-
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ating function N(x, t) =
∑
i≥1

fi(x) ti

i!
satisfies the identity

(1− x)xdt + (1− xd+1) = exp(xdN)− xd+1 exp(N).

where d = dim X. Then

A∗(X[n]) =
⊕

1≤k≤n
i≥0

A∗−i(Xk)⊕[xitn

n!
]Nk

k! .

Moreover, if X is complete, then we have the motive decomposition

h(X[n]) =
⊕

Π=(I1,...,Ik)
partition of [n]

(
h(∆Π)(i)

)⊕[xi](f|I1|(x)...f|Ik|(x))

=
⊕

1≤k≤n
i≥0

(
h(Xk)(i)

)⊕[xitn

n!
]Nk

k! .

Remark 4.2.2. One can write down by hand the first several terms of N .

Define σj =
∑dj−1

i=1 xi (when d = 1, define σ1 = 0). Then

N = t + σ1
t2

2!
+ (σ2 + 3σ2

1)
t3

3!
+ (σ3 + 10σ1σ2 + 15σ3

1)
t4

4!

+ (σ4 + 15σ1σ3 + 10σ2
2 + 105σ2

1σ2 + 105σ4
1)

t5

5!
+ ....

Proof of Theorem 4.2.1. We prove only the statement for motives, since the

statement for Chow groups can be proved by exactly the same method.

By Theorem 4.1.2, we want to count for any given i and k, how many

possible S and µ ∈ S satisfy c(S) = k and ‖µ‖ = i. First, consider the case

when c(S) = 1, i.e. S is a connected forest.
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Define

fn(x) :=
∑

S:c(S)=1

∑
µ∈MS

x||µ||,

and define f1(x) = 1.

For a nest S of [n] with c(S) = 1, we have

∑
µ∈MS

x‖µ‖ =
∏
I∈S◦

σ(cI−1),

i.e., I goes through all non-leaves of S (if n = 1, then the sum is assumed to

be 1). Since the sons of the root of S correspond to a partition {I1, . . . , Ik} of

[n], we have following formula for n ≥ 2,

fn(x) =
∑

{I1,...,Ik}partition of [n]

f|I1|f|I2|...f|Ik|σk−1.

where σk =
∑dk−1

i=1 xi for k > 0, and σ0 = 0. Since the equality does not hold

for n = 1 where f1(x) = 1 but the right side is 0, so one define

f̃n(x) =





fn(x), if n > 1;

0, if n = 1.

Then the following holds for any n ≥ 1:

f̃n(x) =
∑

{I1,...,Ik}partition of [n]

f|I1|f|I2|...f|Ik|σk−1.

Recall the Compositional Formula of exponential generating functions (cf.
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[St99], Theorem 5.1.4), which asserts that if an equation as above holds, then

Ef̃ (t) = Eσ(Ef (t)),

where

Ef̃ (t) = 1 + f̃1t + f̃2t
2/2! + f̃3t

3/3! + . . .

Eσ(t) = 1 + σ0t + σ1t
2/2! + σ2t

3/3! + . . .

Ef (t) = f1t + f2t
2/2! + f3t

3/3! + . . .

By the definition of f̃ , Ef̃ = Ef − t + 1. Denote N = Ef , one has

N − t + 1 = Eg(N),

A standard Calculation shows

Eg(N) = 1 + N +
1

x− 1

[ 1

xd
(exdN−1 − 1)− xeN + x

]
.

Therefore

(1− x)xdt + (1− xd+1) = exp(xdN)− xd+1 exp(N).

Now consider the case when c(S) is not necessarily 1, i.e., the forest S is

not necessarily connected. For a partition Π = {I1, ..., Ik} of [n], the number

of times that h(∆Π)(i) appears in the decomposition of h(X[n]) is equal to

[xk](f|I1|(x)...f|Ik|(x)), the coefficient of xk in the product. Denote by ak,i the
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sum of these numbers for all partitions with k blocks. Then ak,i is the number

of times that h(Xk)(i) appears in the decomposition of H(X[n]).

Define

Fn(y) =
∑

{I1,...,Ik}partition of [n]

f|I1|f|I2|...f|Ik|y
k.

Then the coefficient [yk]Fn(y) =
∑

ak,ix
i. Use the Compositional Formula

again,

Fn = [
tn

n!
] exp(yN).

Therefore

[yk]Fn(y) = [yk][
tn

n!
] exp(yN)

= [
tn

n!
][yk] exp(yN)

= [
tn

n!
]
Nk

k!
.

This yields the formula for the decomposition of the Chow motive h(X[n]).

4.3 Description of X [n] for small n

In this section we explain the previous Theorems (4.1.1, 4.1.2, and 4.2.1) about

Fulton-MacPherson configuration space X[n] for small n = 2, 3, 4.

For unification of notation, assume d > 1 in the following examples (1),

(2) and (3). (The case d = 1 is simpler but needs a revise of notation.)

1. n = 2. The morphism π : X[2] → X2 is a blow-up along the diagonal
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∆12. Theorem 4.2.1 asserts

h(X[2]) ∼= h(X2)⊕
d−1⊕
i=1

h(∆12)(i) ∼= h(X2)⊕
d−1⊕
i=1

h(X)(i).

There are 2 possible nests: S = {1, 2} and S = {1, 2, 12}. Theorem 4.1.2

asserts the follows:

For the first nest, MS = {µ} with ‖µ‖ = 0. Therefore α = Γπ, β =

Γt
π, p = Γt

π ◦ Γπ. They give the first direct summand in the above

decomposition.

For the second nest, S◦ = {12}, 1 ≤ µ12 ≤ d−1, so there are d−1 direct

summands for this nest. Denote j : D12 ↪→ X[2], g : D12 → ∆12 as the

natural map, we have

αS,µ = −(j £ g)∗j∗
( d−1−µ12∑

i=0

p∗1ci(TX)(−D12)
d−1−µ12−i

)
,

βS,µ = (g £ j)∗j∗
(
Dµ12−1),

pS,µ = βS,µ ◦ αS,µ.

They give the direct summand h(∆12)(µ12).

Figure 1. X[3] by the symmetric construction.
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2. n = 3. Apply Theorem 4.2.1,

h(X[3]) ∼= h(X3)⊕
d−1⊕
i=1

h(∆12)(i)⊕
d−1⊕
i=1

h(∆13)(i)⊕
d−1⊕
i=1

h(∆23)(i)

⊕
2d−1⊕
i=1

(
h(∆123)(i)

)⊕min{3i−2,6d−3i−2}

∼= h(X3)⊕
d−1⊕
i=1

(
h(X2)(i)

)⊕3 ⊕
2d−1⊕
i=1

(
h(X)(i)

)⊕min{3i−2,6d−3i−2}

Now we write out all the correspondences that give the decomposition of

motives. There are 8 possible nests, correspond to 8 trees (see the right

side of Figure 1).

The tree on the left side of Figure 1 helps us to understand the relation

between subvarieties of different Yi’s (i.e. at different levels): each node

with label I at level k correspond to the subvariety YkI := (∆I)
(k) in Yk.

The node at level k without label correspond to Yk. For example, the

root at level 4 corresponds to Y4, its two successors correspond to Y3 and

Y3(23), and the relation is that Y4 is the blow-up of Y3 along Y3(23).

We list below those correspondences α, β, p for the 8 trees:

1© gives α = Γπ, β = Γt
π, p = Γt

π ◦ Γπ.

2© (and 3©, 4© are similar) gives

αS,µ = (jS £ gS)∗j∗S
({−p∗1ζ(−D123)

1

1 + D12

}d−1−µ12

)
,

βS,µ = (gS £ jS)∗j∗S
(
Dµ12−1

12

)
.

where X(S) = D12, 1 ≤ µ12 ≤ d− 1.
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5© gives

αS,µ = (jS £ gS)∗j∗S
({−p∗1ζ(O)2 1

1 + D123

}2d−1−µ123

)
,

βS,µ = (gS £ jS)∗j∗S
(
Dµ123−1

123

)
.

where X(S) = D123, 1 ≤ µ123 ≤ 2d− 1.

6© (and 7©, 8© are similar) gives

αS,µ =(jS £ gS)∗j∗S
({p∗1ζ(−D123)

1

1 + D12

}d−1−µ12{p∗1ζ(O)
1

1 + D123

}d−1−µ123

)
,

βS,µ =(gS £ jS)∗j∗S
(
Dµ12−1

12 Dµ123−1
123

)
.

where X(S) = D12 ∩D123, 1 ≤ µ12, µ123 ≤ d− 1.

Remark 4.3.1. If we use Fulton and MacPherson’s nonsymmetric con-

struction of X[3], we would get another set of correspondences which also

gives a decomposition of the motive h(X[n]). This set of correspondences

turns out to be different than the ones given above: a straightforward

calculation shows that, by the nonsymmetric construction of X[3], the

correspondence that gives the direct summand h(∆12)(µ12) is

α : h(X[3]) → h(∆12)(µ12),

α = (j12 £ g12)∗j∗12
({p∗1ζ(O)

1

1 + D12

}d−1−µ12

)
.

where j12 : D12 ↪→ X[3] and g12 : D12 → ∆12 are the natural morphisms.
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However, the correspondence giving the direct summand h(∆13)(µ13) is

α′ : h(X[3]) → h(∆13)⊗Lµ13 ,

α′ = (j13 £ g13)∗j∗13

({p∗1ζ(−D123)
1

1 + D13

}d−1−µ13

)
.

where j13 : D13 ↪→ X[3], g13 : D13 → ∆13 are the natural morphisms.

Notice that α and α′ are not of similar forms (Compare ζ(O) with

ζ(−D123)). Therefore the non-symmetry of the construction of X[3] in-

duces the non-symmetry of correspondences. Actually, this is a reason

why we choose the symmetric construction of X[n] (cf. Remark 4.1.3).

3. For n = 4, we just look at one nest S:

S• •• • • •
1 2 3 4
 444  444

We have X(S) = D12 ∩D34, 1 ≤ µ12, µ34 ≤ d− 1 and

αS,µ =(jS £ gS)∗j∗S
({p∗1ζ(−D1234)

1

1 + D12

}d−1−µ12{p∗3ζ(−D1234)
1

1 + D34

}d−1−µ34

)
,

βS,µ =(gS £ jS)∗j∗S
(
Dµ12−1

12 Dµ34−1
34

)
.

Since ∆12 and ∆34 intersect and would not be disjoint in the procedure of

blow-ups, so a priori we have to make a choice of order that whether blow

up along (the strict transform of) ∆12 first, or along (the strict transform

of) ∆34 first. Although an order is chosen to calculate the correspon-

dences, it turns out that the correspondences (hence projectors) which
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give the motive decomposition in Theorem 4.1.2 are actually indepen-

dent of the choice. This independence is a special case of Remark 4.1.3:

for σ = (13)(24) ∈ S4, the above correspondences is invariant under the

action induced by σ.

4. An application of Theorem 4.2.1 is: we can calculate the rank of A(X[n])

(as an abelian group) once given the ranks of A(Xk) for all 1 ≤ k ≤ n

(assuming that the ranks of A(Xk)’s are finite).

Let us take Pd[5] for example. Since the rank of A((Pd)k) is (d + 1)k,

Theorem 4.2.1 implies that the rank of A(Pd[5]) is

∑

1≤k≤5

(d + 1)k
(
[
t5

t!
]
(Nk

k!
|x=1

))
.

By Remark 4.2.2, we can calculate the following

N2

2!
=

t2

2!
+ 3σ1

t3

3!
+ (15σ2

1 + 4σ2)
t4

4!
+ (105σ3

1 + 60σ1σ2 + 5σ3)
t5

5!
+ ....

N3

3!
=

t3

3!
+ 6σ1

t4

4!
+ (45σ2

1 + 10σ2)
t5

5!
+ ....

N4

4!
=

t4

4!
+ 10σ1

t5

5!
+ ....

N5

5!
=

t5

5!
+ ....

Now plug in x = 1, we have σj = dj− 1. The above sum is a polynomial
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of d as follows

(d + 1)5 + (d + 1)410σ1 + (d + 1)3(45σ2
1 + 10σ2)

+ (d + 1)2(105σ3
1 + 60σ1σ2 + 5σ3)

+ (d + 1)(σ4 + 15σ1σ3 + 10σ2
2 + 105σ2

1σ2 + 105σ4
1).

In particular, the rank of A(P1[5]) is 178, the rank of A(P2[5]) is 7644.

Remark: For the example X = Pd, since X[n] has an affine cell de-

composition, the rank of the Chow group Ak(X[n]) coincides with the

2k-th Betti number of X[n]. Therefore we could also get the above rank

by the Poincaré polynomial of X[n] calculated in [FM94]. However, the

rank of A(X[n]) for a general variety X is not implied by the Poincaré

polynomial of X[n].
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Chapter 5

On the cobordism class

Consider the complex cobordism ring with rational coefficients Ω = ΩU⊗Q.

The complex cobordism class of a stably complex manifold is completely de-

termined by the collection of its Chern numbers. In this chapter we show

that for certain wonderful compactifications of Xn, in particular the Fulton-

MacPherson configuration spaces, their cobordism classes depend only on the

cobordism class [X] ∈ Ωdim X .

The proof of our theorem is based on a well-known blow-up theorem of

Chern classes (see Theorem 5.2.2), which asserts that the Chern classes of the

blow-up variety are determined by the Chern classes of the original variety, the

ones of the center and the ones of the normal bundle. We apply the theorem

inductively since the wonderful compactification is constructed by a sequence

of blow-ups. The key ingredient is: during the procedure of blow-ups, each

center is again a wonderful compactification of Xn′ for some n′ < n, and the

normal bundle of each center can be expressed using the Chern classes of X

and certain exceptional divisors.

The discussion is inspired by the result on the cobordism class of the Hilbert
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Schemes of a surface [EGL01].

5.1 Theorems

Denote d = dim X. Let Y = Xn. Fix an arrangement of subvarieties of Y ,

where every subvariety is a polydiagonal of Xn. (Notice here the arrangement

does not necessarily contain all polydiagonals. For example, the arrangement

{∆12, ∆123} in X3 is allowed.)

Let G = {∆Π}Π∈H be a building set of Y with respect to the fixed arrange-

ment. The set H of partitions of [n] is independent of X. Denote XH := YG.

Before we state the main theorem, recall that for a partition λ = {i1, . . . , it}
of dim Y , the Chern number cλ(Y ) is defined as

cλ(Y ) =

∫

Y

ci1(Y )ci2(Y ) · · · cit(Y ).

Theorem 5.1.1. For any partition λ of dn(= dim Y ), there is a universal

polynomial Pλ (depends on λ, d, n, and set H, but does not depend X) such

that the Chern number

cλYG = Pλ

(
c1(X)d, c1(X)d−2c2(X), . . . , cd(X)

)
.

In particular, for Fulton-MacPherson configuration spaces, we have

Corollary 5.1.2. Define

H(X) :=
∞∑

n=0

[
X[n]

]zn

n!
,
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then H(X) depends only on the cobordism class [X] ∈ Ωd. Therefore, if a1, a2 ∈
Q such that [X] = a1[X1] + a2[X2], then

H(X) = H(X1)
a1H(X2)

a2 .

Remark: This is true in general for any H(X) :=
∑∞

n=0[X
H] zn

n!
. In partic-

ular, it applies to Ulyanov’s polydiagonal compactification X〈n〉, Kuperberg-

Thurson’s compactification XΓ.

Proof of Corollary 5.1.2. Consider the case X = X1 tX2. Obviously

X[n] =
⊔

I⊆[n]

X1[I]X2[I
c].

(Ic := [n] \ I). Since X[I] ∼= X[|I|], H(X) = H(X1)H(X2) follows from the

following fact:

If a power series H(x) :=
∑∞

n=0 cn(x) zn

n!
satisfies

cn(x + y) =
n∑

k=0

(
n

k

)
ck(x)cn−k(y),

then H(x)H(y) = H(x + y).

Then use induction to show H(X)m = H(X1)
m1H(X2)

m2 if m[X] = m1[X1]+

m2[X2] for positive integers m,m1,m2. The corollary follows.
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5.2 Proof

Fix 0 ≤ k ≤ k. Denote by pl : Yk → X the composition of Yk → Xn with

Xn → X, the projection to the l-th factor.

Theorem 5.1.1 is a special case of the following proposition:

Proposition 5.2.1. Given a polynomial Q of cm(Yk) (∀m), p∗l cm(X) (∀l, m)

and divisors [G
(k)
m ] (∀m ≤ k). There exists a polynomial P depending only on

Q such that

∫

Yk

Q = P (c1(X)d, c1(X)d−2c2(X), . . . , cd(X)).

Before the proof of the above Proposition, recall a blow-up theorem of

chern class proved by Porteous [Po60], later been proved by Lascu and Scott

[LS78] using a simpler method.

Suppose Ỹ is the blow-up of a nonsingular algebraic variety Y along a

nonsingular subvariety V , and P is the exceptional divisor. Denote by i, j, f, g

the morphisms as in the following fibre square

P
j //

g

²²
¤

Ỹ

f

²²
V

i
// Y

Denote by N := NV Y the normal bundle of V in Y , define h := c1(ON(1)) ∈
A1(P ), define r := codimV Y to be the codimension of V in Y . Denote

C(t, N) := tr + c1(N)tr−1 + · · ·+ cr(N).
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Theorem 5.2.2 (of Porteous [Po60], Lascu and Scott [LS78]).

C(t, Ỹ )− f ∗C(t, Y )

= j∗

[−1

h
g∗C(t, V )

{
(1− h

t
)(t + h)g∗C(t + h,N)− tg∗C(t, N)

}]

In brief, the above theorem asserts that ci(Ỹ )− f ∗ci(Y ) = j∗(R) where R

is a polynomial of g∗(cl(V ))(∀l), g∗(cl(N))(∀l) and h.

Proof of Proposition 5.2.1. Use induction first on n, then on k. When k = 0,

we have Yk = Y0 = Xn, so Q is a polynomial of cm(Xn)(∀m), p∗l cm(X)(∀l, m).

Since

TXn = p∗1TX ⊕ · · · ⊕ p∗nTX ,

So Q can be expressed as
∑

(const)(p∗1cλ1)(p
∗
2cλ2) . . . (p∗ncλn), where each λi is

a partition (of some integer). Then

∫

Xn

Q =
∑

(const)

∫

Xn

(p∗1cλ1)(p
∗
2cλ2) . . . (p∗ncλn)

=
∑

(const)

∫

X

cλ1

∫

X

cλ2 . . .

∫

X

cλn .

Assume the case k has been proved, consider the case k + 1. We have the

following blow-up diagram

G
(k+1)
k+1

j //

g

²²
¤

Yk+1

f

²²
G

(k)
k+1 i

// Yk

Now Q is a polynomial of cm(Yk+1)(∀m), p∗l cm(X) (∀l, m), Gk+1
m (∀m ≤
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k + 1). By Theorem 5.2.2, Q it is a linear combination of P1P2P3P4, where Pr

(1 ≤ r ≤ 4) are of the form

P1 =
∏

f ∗cm(Yk), P2 =
∏

[G(k+1)
m ], P3 =

∏
p∗l cm(X), P4 =

∏
m∗(R).

To distinct from pl : Yk+1 → X, we denote p′l : Yk → X. Obviously

pl = p′l ◦ f .

The product P1P2P3P4 can be expressed as f ∗P ′
1 or (f ∗P ′

1)(j∗P
′
2), where P ′

1

is a product of terms as cm(Yk), [G
(k)
m ](m ≤ k), p

′∗
l cm(X), and P ′

2 is a product

of terms as g∗(cm(G
(k)
k+1)), g∗(cm(N

(G
(k)
k+1)

)) and h = [−G
(k+1)
k+1 ]|

G
(k+1)
k+1

. (Indeed,

[G(k+1)
m ] =





f ∗([G(k)
m ]), for m < k + 1;

j∗1, for m = k + 1.

Notice that p∗l cm(X) = f ∗
∏

p
′∗
l cm(X),

j∗a · j∗b = j∗(a · j∗j∗b) = j∗(a · b · h),

the desired expression follows.)

Now discuss these two cases for the product P1P2P3P4.

Case I: P1P2P3P4 = f ∗P ′
1.

∫

Yk+1

P1P2P3P4 =

∫

Yk+1

f ∗P ′
1 =

∫

Yk

P ′
1.

This can be expressed as a polynomial of Chern numbers of X by inductive

assumption on k.
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Case II: P1P2P3P4 = (f ∗P ′
1)(j∗P

′
2).

∫

Yk+1

P1P2P3P4 =

∫

Yk+1

(f ∗P ′
1)(j∗P

′
2) =

∫

Yk+1

j∗[(j∗f ∗P ′
1)P

′
2]

Use the fact that
∫

Yk+1
j∗ω =

∫
G

(k+1)
k+1

ω =
∫

G
(k)
k+1

g∗ω for any form ω,

above =

∫

G
(k)
k+1

g∗[(g∗i∗P ′
1)P

′
2] =

∫

G
(k)
k+1

(i∗P ′
1)(g∗P

′
2).

Now we claim that the last integral can be expressed by a polynomial

of Chern numbers of X by inductive assumption on n. Indeed, G
(k)
k+1 is a

wonderful compactification of Gk+1
∼= Xn′ for some n′ < n. Observe the

following facts:

i∗c(Yk) = c(Yk|G(k)
k+1

) = c(G
(k)
k+1)c(NG

(k)
k+1

Yk).

Similar to the proof of Theorem 4.1.2, c(NGk+1
Y ) can be expressed as product

of p∗l cm(X). By Corollary 3.2.8 and Chern root technique, c(N
G

(k)
k+1

Yk) can be

expressed as a polynomial of the chern classes of NGk+1
Y and i∗[DGl

] (l ≤ k).

Moreover, g∗(hl) = sl(NG
(k)
k+1

Yk), but the Segre class sl can be expressed in

terms of chern classes. By routine check, the induction goes through.

From the proof we see that the polynomial we got depends only on the

polynomial Q (so is independent of X).
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