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We consider toric surfaces X with an orbifold structure such that
the anti-canonical line V-bundle K~! is positive which admit a cer-
tain involution. Such a toric variety X with its orbifold structure is
called a symmetric toric Fano surface. It is deseribed by a convex
polyhedron with integral vertices in the plane which is invariant un-
der the antipodal map. Using the theory of multiplier ideal sheaves
of A. Nadel [54, 55] we show that the appropriate Monge- Ampére
equation is solvable, so X admits an orbifold Kahler Einstein met-
ric of positive scalar curvature. By [14] the total space of & Seifert
S! bundle on X has a Sasakian-Einstein structure. We obtain ex-

amples of smooth toric Sagakian-Einstein 5-manifolds with every
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odd second Betti number. Certain divisors in the twistor gpace of
toric anti-self-dual Einstein orbifolds M of positive scalar curva-
ture (cf. [22]) are toric surfaées of the above type. The associated
Sasakian-Einstein space is smooth if the 3-Sasakian orbifold associ-
ated to M(cf. [16, 12, 13, 18]) is smooth. Thus associated to every

toric 3-Sasakian manifold is a Qasakian-Finstein 5-manifold. Us-
L

ing the quaternionic/3-Sasakian reduction procedure as in [18] one
constructs infinitely many toric 3-Sasakian manifolds providing us
with a machine producing infinitely many smooth examples of toric
Sasakian-Finstein 5-manifolds. All the exarmples constructed are
diffeomorphic to #k(5?x 5%} and we produce infinitely many exam-
ples for every odd k > 1. Furthermore, this produces Einstein met-
rics with infinitely many Einstein constants on each #k(S? x §%),
for 1 > 0 odd. An inferesting aspect of these exampies is that
they are submanifolds of 3-Sasakian 7-manifolds. Furthermore,
these examples are non-homogeneous Einstein manifolds of posi-
tive scalar curvature which are spin and admit real Killing spinors.
See [8] for a definition of Killing spinors and [1],{53] for their rele-
vance to physics. Toric Sasakian-Einstein manifolds have been of
interest in physics very recently as examples which can be used to
test the AdS/CFT correspondence [30, 51, 52]. This work expands
the list of examples of toric Qasakian-Einstein manifolds to include

examples of arbitrarily high second Betti number.
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Chapter 1

Introduction

This work started with an observation in [69] concerning toric anti-self-dual
Einstein orbifolds of positive scalar curvature (see (22]). These are anti-self-
dual Finstein orbifolds (M, g) with a torus 7% of isometries. If M is such
an orbifold, then its twistor space Z is a Kahler-Einstein orbifold of positive
scalar l:urvature with an effective divisor X; corresponding -to each nonzero
t € £ ® C, where t is the Lie algebra of T2. For generic ¢, X; is an irreducible
toric S;urface. Furthermore, X is Fano, that is the anti-canonical V-bundle is
posiﬂve K}}l > 0. And it is embedded as a suborbifold, meaning that X only
has singularities coming from those of Z. The analytic structure of the toric
surface is described by a fan A in Q x Q which is symmetric across the origin,
—A = A, This corresponds to a holomorphic involution 5 : X — X which
acts on the anti-canonical cycle of curves U;D; which are the compliment of
! the algebraic torus Tg = C* x C* C X. And 3 acts on U;D; without fixed
points or fixing any of the curves D;. Such a surface is called a symmetric
toric Fano surface.

The orbifold structure on X will be crucial. A complex orbifold has a




canonical analytic structure, but the orbifold structure is much stronger. It is
possible to have many different orbifold structures on the same analytic space,
and the existence of certain metrics such as Kahler-Einstein metrics depends
on the orbifold structure. The orbifold structure of X will be described by a
convex polyhedron A* in @ x Q with integral vertices. The fan A consists of
the rays through the vertices of A* and the 2-cones spanned by these. Again,
A* is symmetric under the antipodal map. There is a simple relation between
the orbit structure of M under T? as described in [22] using methods as in
58] or [37] and A*. In chapter 2 the relevant toric geometry is discussed,
and we describe the relationships between symmetric toric Fano surfaces and
anti-self-dual Einstein orbifolds.

Using the technique of multiplier ideal sheaves, ag in [54, 55] and [24], in
chapter 3 we show that a symmetric toric Fano surface X admits a Kihler-
Einstein metric with positive scalar curvature. That is, X admits a Kahler
form w so that

Ricci(w) = Aw, with A >0

where Ricci(w) is the Ricei form of w which in a local coordinate patch is
Ricci(w) = -001log det(wy;). The basic argument is as follows.

A Kahler-Einstein metric is precisely a solution to the Monge-Ampére equa-
tion

Wy + —=88¢,)? = wle Wt [0,1], 1.1
2m 0

for t = 1 where wg € ¢1(X) is a Kaher form and f € C%(X) is given by

Ricci{wy) == wo + -2-’;;85 f. The Kahler-Einstein metric is then given by w =

wo + £80¢:. Tt is well known that there exists an ¢ € {0,1] so that (1.1) is




solvable for ¢ € [0,¢). To complete the continuity argument one must show
that the subset of ¢ € [0, 1] for which (1.1) has a solution is closed. For this it
is enough to have an a priori C° estimate on solutions to (1.1). (cf. [4, T1])
We have 8 € N(T¢) C Aut(X), where A (T¢) is the normalizer of T in
Aut(X). Let G ¢ N(T¢) be a compact subgroup containing T2 and 3. Recall
that W(A) := N (T¢)/Tc is the finite group of automorphisms of the fan A.
Let Wy © W(A) be the subgroup preserving the polyhedron. So we may take
G to be the maximal compact subgroup of A/(Z¢) which is generated by T?
and W,. In the above discussion take wp and f € C*° to be G invariant. A
solution to equation (1.1) for ¢ < 1 is unique, therefore must be G-invariant.
Suppose that X does not admit a Kahler-Einstein metric. So equation (1.1)
has no solution for £ = 1, and the C° a priori estimate fails to hold. There
exits an increasing sequence {tx} ¢ (0,1) and a sequence {¢y} of smooth G-
invariant functions such that ¢ is a solution to (1.1) with ¢ = &, and with
sup |¢x| — o0 as k — oo. In chapter 3 we define a coherent sheaf of ideals J
in Oy from the sequence {@}, the multiplier ideal sheaf. By construction J
is G-invariant. And as ig shown in [55) the sheaf 7 satisfies certain conditions

which include:
i. J is proper, that is 7 is equal to neither the zero sheaf nor all of O.
i, Foralli >0, H{X,J)=0.

Denote by V € X the subscheme, or the possibly non-reduced complex an-
alytic subspace, determined by J We have 0 < dimV < 2. And a corollary

to ii. is

HYV,0y) =0fori> 0 and HYV,0y)=C. (1.2)




From these properties it is easy to see that such a sheaf does not exist on X.
Therefore (1.1) must have a solution for ¢ = 1.

In chapter 4 the basics of Sasakian geometry are presented. Given a
Kshler-Einstein orbifold with positive scalar curvature we construct as in [14]
a Sasakian-Einstein metric on an S* V-bundle over X. The V-bundle is some
power of the S* bundle associated to K. Taking the maximum root of Ky
gives a simply connected Sasakian-Einstein orbifold M. The condition for
smoothness of M is that the local uniformizing groups of the orbifold struc-
ture on X inject into the bundle group over each uniformizing neighborhood on
X. In particular, for each symmetric toric Fano surface X we have a Sasakian-
Finstein orbifold M. Results of 8. Smale [63] on the clagsification of smooth
5-manifolds imply that M is diffeomorphic to #&(5? x 5%) if it is smooth and
simply.connected.

Applying this construction to the twistor space 2 of the anti-self-dual
Einstein orbifold M gives the associated 3-Sasakian space S.(see [12] and [16])
Associated to any toric anti-self-dual Einstein orbifold A4 with (M) = e,
we have the following inclusions and fibre maps.

M—S8

!

X— Z (1.3)

l
M

The horizontal arrows are inclusions. By the adjunction formula we have
—1
Ky = K;%|x = L|x, where L is the V-bundle associated with the contact

structure on Z. It follows that if S is smooth, then so is M, This remark and

the work of C. Boyer, K. Galicki, et al [18] provides us with a tool for producing




smooth Sagakian-Einstein 5-manifolds. One can easily produce examples of
toric anti-self-dual Einstein orbifolds with positive scalar curvature by taking
quaternionic Kéhler quotients of HLL™ by a torus ™ C Sp(m + 2). In [18)
the condition on the m x m + 2 weight matrix €2 is determined for which
the associated 3-Sasakian space Sq is smooth. Examples of toric 3-Sasakian
7_manifolds are constructed with every second Betti number. We make use
of a computation of the integral cohomology of these 3-Sasakian manifolds
due to R. Hepworth [40]. The group G = H*(Sq,7) is finite, and one can
make its order arbitrarily high for weight matrices satisfying the smoothness
condition. Thus for each second Betti number there are infinitely many distinct

3-Sagakian 7-manifolds. We have the following:

Theorem 1.1 Associated to every simply connected toric 3-Sasakian 7-
manifold 8 is a toric Sasakian-Einstein 5-manifold M with m{M) =e If

by(S) = k, then by(M) =2k + 1 and
M %}#m(S’z x 8%, where m = by(M).

In porticular, there exist toric Sasakian-Einstein 5-manifolds of every possible

odd second Betti number.

_The results of theorem (1.1) as pictured in diagram (1.3) give an invertible
correspondence. That is, given either M or X, one can recover M and the
other spaces in (1.3). This makes use of results of D. Calderbank and M.
Singer [22] on the classification of toric anti-self-dual Einstein orbifolds.

The volume of a Kahler toric variety is the volume of the associated poly-

tope. One can make use of this to determine the Einstein constants of the




examples in theorem (1.1).

Theorem 1.2 For each odd m > 1 there is a countably infinite number of
Binstein metrics on M = #m{5? x 8°) constructed in theorem (1.1). If g,
is the sequence of Einstein metrics normalized so that Vol, (M) = 1, then we

have Ric,, = Mg; with the Einstein conslants A — 0 as i — co.

The restriction of k& to be odd in the theorems is merely a limitation
of the technique used. And some examples of Sasakian-Finstein metrics on
#k(S% x 8%) for k even can be produced by this method. Sasakian-Einstein
structure are known to exist on #k(S? x S%) for all & > 1. Examples
with & = 1,...,9 were produced by C. Boyer, K. Galicki, and M. Naka-
maye [15, 19, 20]. More recently J. Kollar constructed families of Sasakian-
Einstein metrics in all of the cases k > 6 [45] The Sasakian-Einstein structures
produced here are distinguished from the above examples by; the presence of
a T2 automorphism group.

In chapter 5 the basics on 3-Sasakian manifolds and related geometries are
covered. In particular we review 3-Sasakian reduction and some results of C.
Boyer and K. Galicki and others in [18]. We also cover results on anti-self-
dual Einstein orbifolds and twistor spaces which are needed in completing the
picture given in diagram (1.3). Then chapter 6 contains the main theorems
on the new toric Sasakian-Einstein manifolds. Tn chapter 7 we give a more
detailed description of some examples, starting with the simplest. There is an
appendix giving some results on orbifolds that are needed. This includes a

overview of orbifold cohomology and characteristic classes and a summary of

the results of A. Haefliger and E. Salem on toric orbifolds [37].




Chapter 2

Symmetric toric Fano surfaces

We give some basic definitions in the theory of toric varieties that we will need.
See [27, 56, 57] for more details. In addition we will consider the notion of a
compatible orbifold structure on a toric variety and holomorphic V-bundles.
We are_interested in Kahler toric orbifolds, and will give a description of the

Kihler structure due to V. Guillemin [34].

2.1 Toric varieties

Let N & Z7 be the free Z-module of rank r and M = Homg(N,Z) its dual.
We denote Ng = N ® Q and MQ = M ® Q with the natural pairing

(a):MQXN@'—}Q'

Similarly we denote Ng = N ® R and Mg = M QR.
Let Te := N ®z C* = C* x -+ x C* be the algebraic torus. Each m € M

defines a character ¥™ : Te — C* and each n € N defines a one-parameter

subgroup A, : C* — T¢. In fact, this gives an isomorphism between M (resp.




N) and the multiplicative group Homgg (T, C*) (resp. Homay, (€, Tt)).

Definition 2.1 A subset ¢ of Ng is @ strongly convex rational polyhedral

cone if there are ny,...,n, so that
o =Ryony + -+ + Ryony,

and one has o N —o = {0}, where 0 € N is the origin.

The dimension dim ¢ is the dimension of the R-subspace o 4 (—¢) of Ng. The

dual cone to ¢ is
oV ={z € My:{z,y)20fralyeco},

which is also a convex rational polyhedral cone. A subset 7 of o is a face,
<o, if

r=cnNm-={yco:{my)=0}formeo’.
And 7 is a strongly convex rational polyhedral cone.

Definition 2.2 A fan in N is a collection A of strongly convex rational poly-

hedral cones such that:
i. For o € A\ every face of o is contained in A.
. For any 0,7 € A, the intersection o N7 is a face of both o and T.

We will consider complete fans for which the support |J,-a 0 is Ng. We will

denote

A(D):={ceA:dimo=i}, 0<i<n




Definition 2.3 A fan in N is nonsingular if each o € A(r) 1s generate by
r elements of N which can be completed to a Z-basis of N. A fan in N is
simplicial if each o € A(r) is generated by r elements of N which can be

completed to a Q-basis of Ng.

If o is a strongly convex rational polyhedral cone, S, = o¥ N M is a finitely
generated semigroup. We denote by C[S,] the semigroup algebra. We will
denote the generators of C[S,] by &™ for m € §,. Then U, := Spec C[S,] is
a normal affine variety on Whiéh Te acts algebraically with a (Zariski) open

orbit isomorphic to T¢. If o is nonsingular, then Us & cr.

Theorem 2.4 ([27, 56, 57]) For a fan A in N the affine varieties U, for

o € A glue together to form an irreducible normal algebraic variety
Xa=J Us
cEA
Furthermore, Xa is non-singular if, and only if, A is nonsingular. And Xa

is compact if, and only if, A is complete.

Proposition 2.5 The variety Xa has an algebraic action of Tg with the fol-

lowing properties.

i, To each 0 € A9),0 < i < n, there corresponds @ unique (n — )-

dimensional Te-orbit Orb{(c) so that Xa decomposes into the disjoint union

Xa = | Orb(o},

gEA

where Orb(0) is the unique n-dimensional orbit and is isomorphic to Tg.




#. The closure V(o) of Orb(c) in X5 is an irreducible (n — i)-dimensional
Te-stable subvariety and

V(o) = ] Orb(r).

T>0

We will consider toric varieties with an orbifold structure.

Definition 2.6 We will denote by A* an augmented fan by which we mean a

fan A with elements n(p) € N N p for every p € A(1).

Proposition 2.7 For a complete simplicial augmented fan A* we have a nat-
ural orbifold structure compatible with the action of Te on Xa. We denote Xa

with this orbifold structure by Xax.

Proof. Let ¢ € A*(n) have generators p1,pa, ..., Ps 88 in the definition. Let
N' C N be the sublattice N' = Z{p1,p2,...,Pa}, and ¢’ the equivalent cone
in N'. Denote by M’ the dual lattice of N’ and T¢, the torus. Then U, 2 C™,

It is easy to see that

N/N' = Homg(M'/M,C").

And N/N' is the kernel of the homomorphism
é = HOIIlz(M’,C*) — TC = Homz(M, C*)

Let [' = N/N’. An element ¢ € T is a homomorphism ¢ : M’ — C* equal to
1 on M. The regular functions on U, consist of C-linear combinations of z™
for m € o™ N M'. And t- 2™ = t(m)s™. Thus the invariant functions are
the C-linear combinations of ™ for m € ¢V N M, the regular functions of

U,. Thus U, /T = U,. And the charts are easily seen to be compatible on

10




intersections. g

Proposition 2.8 Let A be a complete simplicial fan. Suppose for simplicity
that the local uniformizing groups ave abelian. Then every orbifold structure

on X compatible with the action of Te arises from an augmented fan Ax,

Proof. Notice that the points with non-trivial stablizer groups are contained
in X\7% =% ;. Let ¢ : U — U be alocal uniformizing chart with group L'
We may assume that {7 € C" is a neighborhood of 0 € C" and ' C GL(n,C).
Let H < T be the subgroup generated by g € I' with rank(g — / d) = 1. Then
by results of [60], C*/H is analytically isomorphic to C", and we have a, local
uniformizing chart v : U/H — U. Let 0 € A{n) be such that ¢(0) € Us.
Let p1,Ps2, ... ,Pn be primitive elements of N generating o over Q. Let N' =
Z{p1, P2y - - Pu}, and let @ : Ugr & C™ — Up be the uniforrﬁizing chart with
group N/N' as above. By a result in [60] there is an injection U/H — Uy
intertwining the group actions. Therefore, we may assume U /H = U, and
¥ = 7. A generator g € H, i.e. rank(g — Id) == 1, must fix a coordinate
plane {z; = 0} C C", and g*z; = ¢?z;. Thus H = Zo, ® ++* @ Zq,. Define
7:C" — C" by 7(21,. .., %) = (2{",...,22"). Then we have a lifting of group

actions

0o H Tt T" o1,

and T' = 7 1(N/N"). Thus ¢ is 7 o 7, the latter casily seen to be canonical

chart obtained by taking Q-generators aip1, agpa; . .., GnPn- (I




Let A* be an augmented fan in N. We will assumed from now on that the

fan A is simplicial and complete.

Definition 2.9 A real function h : Ng — R is ¢ A* -linear support function
if for each o € A* with given Q-generatorsp,,...,pr in N, thereis anl, € My
with h(s) = {l,, 8) and l; is Z-valued on the sublattice Z{pi,...,p,}. And we
require that {l,, s} = {l,, s} whenever s € oN7. The additive group of A*-linear

support functions will be denoted by SF(A*).

Note that h € SF(A*) is completely determined by the integers i(n(p)) for
all p € A(1). And conversely, an assignment of an integer to h(n(p)) for all

p € A(1) defines h. Thus
SF(A*) =2 750,

Definition 2.10 Let A* be a complete augmented fan. For h € SF(A*),
Ty = {m € Mg : {m,n) > h(n), for all n € Ng},

is a, possibly empty, convex polytope in M.

We will consider the holomorphic line V-bundles on X = Xa,.. All V-
bundles will be proper in this chapter. See appendix A.l for a definition
of proper and other basics of V-bundles. The set of isomorphism classes of
holomorphic line V-bundles is denoted by Pic®™®(X), which is a group under

the tensor product.

Definition 2.11 A Baily divisor s a Q- Weil divisor D € Weil(X) ® Q whose
inverse image Dy € Weil(DT) in every local uniformizing chart m : U — U is

Cartier. The additive group of Baily divisors 1s denoted Diver?(X).

12
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A Baily divisor D defines a holomorphic line V-bundle [D] € Pic®®(X) in a
way completely analogous to Cartier divisors. Given a nonzero meromorphic

function f € .# we have the principal divisor

div(f) =Y _w(f)V,

where vy (f)V is the order of the zero, or negative the order of the pole, of
f along each irreducible subvariety of codimension one. We have the exact

sequence

1 — C* — . #* — Divo™(X) u Pic™®(X). (2.1)

A holomorphic line V-bundle 7« : L -+ X is equivariant if there is an
action of Tp on L such that 7 is equivariant, #(tw) = tw(w) for w € L and
t € Tg and the action lifts to a holomorphic action, linear on the fibers,
over each uniformizing neighborhood. The group of isomori)hism classes of
equivariant holomorphic line V-bundles is denoted Pic®®r.(X). Similarly, we
have invariant Baily divisors, denoted Div®™p,(X), and [D] € Pic®Pr.(X)

whenever D € Div®™q, (X).

Proposition 2.12 Let X = Xa» be compact with the standard orbifold struc-

ture, i.e. A* is simplicial and complete.

i. There is an isomorphism SE(A*) & Dive™y (X) obtained by sending b €
SF(A*) to
Dyi=— Y h(n(p))V(p).

pEA(T)

i. There is a natural homomorphism SF(A®) — Pic™g,(X) which asso-

13




ciates an equivariant line V-bundle Ly, to each h € SF(A*).

ii. Suppose h € SF(A*) and m € M satisfies v

(m,n} > h(n) for all n € N,

then m defines a section 1 : X — Ly which has the equivariance property ;
9lia) = X" (0)(E(z). ’
iv. The set of sections HY(X, O(Ly)) is the finite dimensional C-vector space !
with basis {x™ :m € B N M}, I
v. Every Baily divisor is linearly equivalent to a Tg-invariant Baily diviser.
Thus for D € Pic”*(X), (D] 2 [D4) for some h € SF(A®). i
vi. If L s any holomorphic line V-bundle, then L = Ly for some h €
SF(A*) The homomorphism in part i. induces an isomorphism SF(A*) &

Pico™y (X)) and we have the ewact sequence

0 — M — SF(A*) — Pic™(X) — 1.

Proof. i. For each o € A(n) with uniformizing neighborhood 7 : Uy — U,

as above the map h — D}, assigng the principal divisor

dive™)=— Y hln(e)V'(p),

pEA(L),p<o i

where V'(p) is the closure of the orbit Orb(p) in U,s. An element Div®™Pr, (X) i

must be a sum of closures of codimension one orbits V' (p) in proposition (2.5), |

14




and by above remarks the map is an isomorphism.

ii. One defines Ly, := [Dy], where [Dj)] is constructed as follows. Consider a
uniformizing chart « : U, — U, as in proposition (2.7). Define Ly|y,, to be the
invertible sheaf Oy, (Dy), with Dy, defined on Uy by z7%. So Lyly, 2 Uy xC

with an action of T¢,
t(z,v) = (tz,x " (t)v) where t € Tg, (z,v) € Uy x C.

Then Ly|y, is the quotient by the subgroup ¥, /N' C T¢, so it has an action of
Te. And the Lyly, glue together equivariantly with respect to the action.

iti. For o € A we have (m,n) > (I;,n) foralln ¢ 0. Thenm—i, € M'naY
and ™% ig a section of the invertible sheaf Oy, (Dy) and is equivariant
with respect to N/N' so it defines a section .of Ly|y,. And these sections are
compatible.

iv. We will make use of the GAGA theorems of A. Grothendieck (32,
33]. As with any holomorphic V-bundle, the sheaf of sections O(L,) is a
coherent sheaf. It follows from GAGA that we may consider O(Ly) as a
coherent algebraic sheaf, and all global sections are algebraic. If ¢ is a global
section, then ¢ € H%(Tg, O(Ly)) € C[M]. And in the uniformizing chart
Uy — Ua,“ ¢ lifts to an element of the module Oy, - z's which has a
basis {x™ : m € I, + M' N o’} So ¢ly, is a C-linear combination of 2™ with
m € M and {m,n) > h{n) for all n € . Thus m € Zs.

v. The divisor TeND is a Cartier divisor on Tt which is also principal since
C[M] is a unique factorization domain. Thus there is a nonzero rational func-

tion f so that D' = D — div(f) satisfies D' N Tg = @. Then D' € Divo™g, (X)),

15




and the result follows from i.

vi. Consider Ly, on a uniformizing neighborhood U, as above. For
cach p € A(1),p < o the subgroup H, € N/N' fixing V'(p) is cyclic and
generated by ' € N where 7' is the primitive element with a,n" = n(p).
Now H, acts linearly on the fibers of Ly, over V’ (p). Suppose n’' acts
with weight €%, then let D, = kV{(p). If D' := 3 ¢y Dp then
L' := L ® [-D'] is Cartier on Xy = X \ Sing(X), where Sing(X) has
codimension at least two. The sheaf O(L') is not only coherent but is a
rank-1 reflexive sheaf. By GAGA O(L/) ® E® O', where F is an algebraic
reflexive rank-1 sheaf and @ is the sheaf of analytic functions. It is well
known that E = O(D) for D € Weil(X). And as a Baily divisor, we have
L' = [D]. So L & [D+D'], and by v. we have L = L, for some h € SE(A*). O

The sign convention in the proposition is adopted to make subsequent dis-
cussions involving X, consistent with the existing literature, although having
D_,. = div(z™) maybe bothersome. Note also that we denote a Baily di-
visor by a formal Z-linear sum the coefficient giving the multiplicity of the
irreducible component in the uniformizing chart. This is different from its
expression as a Weil divisor when irreducible components are contained in
codimension-1 components of the singular set of the orbifold.

For X = Xa there is a unique k € SF(A*) such that k(n(p)) = 1 for all

p € A(1). The corresponding Baily divisor

Dii=— Y V(o)

peEA(L)

e e i S




is the (orbifold) canonical divisor. The corresponding V-bundle is Ky, the
V-bundle of holomorphic n-forms. This will in general be different from the

canonical sheaf in the algebraic geometric sense.

Definition 2.13 Consider support functions as above but which are only re-
quired to be Q-valued on Ng, denoted SF(A, Q). h is strictly upper convex if
hn +n') > h(n) + h{n') for all n,n’ € Ng and for any two 0,0’ € An), s

and ly are different linear functions.

Given a strictly upper convex support function £, the polytope Xy, is the convex

hull in Mg of the vertices {l, : ¢ € A(n)}. Each p € A(1) defines a facet by

{m,n(p)) = h(n(p))-

If n(p) = a,n' with ' € N primitive and a, € Z* we may label the face
with a, to get the labeled polytope 5% which encodes the orbifold structure.
Conversely, from a rational convex polytope X we agsociate a fan A* and a
support function ki as follows. For an I-dimensional face 6 ¢ ¥*, define the
rational n-dimensional cone o¥(6) C My consisting of all vectors A(p — p'),
where A € Rsq,p € T, and p’ € 6. Then o(f) C N is the (n — l)-dimensional
cone dual to oV (8). The set of all o(f) defines the complete fan A*, where one
assigns n(p) to p € A(1) if n(p) = an’ with n’ primitive and a is the label on
the corresponding (n — 1)-dimensional face of &*. The corresponding rational

support function is then

h(n) = inf{{m,n) : m € $*} for n € Ng.




Proposition 2.14 ([57, 27]) There is a one-to-one correspondence between

the set of pairs (A*, h) with b € SF(A,Q) strictly upper conves, and rational I
convex marked polytopes Xy,
We will be interested in toric orbifolds Xa+ with such a support function and

polytope, L. More precisely will will be concerned with the following.

Definition 2.15 Let X = Xa« be a compact toric orbifold. We say that X
is Fano if —k € SF(A*), which defines the anti-canonical V-bundle Ky, is

strictly upper conver.

These toric variety aren't necessarily Fano in the usual sense, since
K%' is the orbifold anti-canonical class. This condition is equivalent
to {n € Ng:k(n) <1} C Ng being a convex polytope with vertices n(p),
pE A(l) We will use A* to denote both the augmented fan and this polytope i

in this case.

If Ly, is & line V-bundle, then for certain s > 0, L = L will be a holomor-

phic line bundle. For example s = Ord(X), the least common multiple of the
orders of the uniformizing groups, will do. So suppose Ly is a holomorphic line
bundle. If the global holomorphic sections generate Ly, by proposition (2.12)
M NSy, = {mg,m1,...,my} and we have a holomorphic map ¥, : X — Ccpr

where

Yn(w) = [g™ (w) : g™ (w) - 2T (w)]. (2.3)

Proposition 2.16 ([57]) Suppose Ly, is a line bundle, so h € SF(A”) ds inte-

gral, and suppose h is strictly upper convezs. Then Ly is ample, meaning that

for large enough v > 0
Pop 1 X — (CPNs
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is an embedding, where M NY,, = {mo,m1,...,my}.

Corollary 2.17 Let X be a Fano toric orbifold. If v > 0 is sufficiently large

with —vk integral, K=Y will be very ample and_pp, : X — CPY an embedding.

2.2 Kahler structures

We review the construction of toric Kahler metrics on toric varieties. Any com-
pact toric orbifold associated to a polytope admits a Kilhler metric (see [49]).
Due to T. Delzant [23] and E. Lerman and S. Tolman [49] in the orbifold case,
the symplectic structure is uniquely determined up to symplectomorphism by
the polytope, which is the image of the moment map. This polytope is 2y of
the previous section with / generalized to be real valued. There are infinitely
many Kihler structures on a toric orbifold with fixed polytope X}, but there
is a distinguished K#hler metric obtained by reduction. V. Guillemin gave an
explicit formula [34, 21] for this Kéhler metric. In particular, we show that
every toric Fano orbifold admits a Kahler metric w € ¢1(X).

Let ©* be a convex polytope in Mg = R"* defined by the inequalities
(9.’?,'”»,;) 2)\4, i = ].,...,d, (24)

where u; € N C Ng =2 R” and )\; € R, If 5} is associated to (A%, k), then the
u; and )\; are the set of pairs n(p) and k{n{p)) for p € A(1l). We allow the A,
to be rea] but require any set u;,, . .., u;, corresponding to a vertex to form a
Q-basis of Ng.

Let (e, ...,eq) be the standard basis of R? and 8 : RY — R™ be the map
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which takes e; to u;. Let n be the kernel of 3, so we have the exact sequence
tonsRELR 0, (2.5)
and the dual exact sequence
0= R LR S o0, (2.6)
Since (2.5) induces an exact sequence of lattices, we have an exact sequence
1 =-N-=-T T o1, (2.7)

where the connected component of the identity of N is an (d — n)-dimensional

torus. The standard representation of 7¢ on C? preserves the Kahler form

d
Z dzy A dZy, (2.8)
k=1

B | ==

and is Hamiltonjan with moment map

d

ue) =53 laen ¢ (29)
k=1

unique up to a constant c. We will set ¢ = Zgil Axer. Restricting to n* we

get the moment map for the action of N on Ce

d
1 2
un(2) = 5 :4; |2k |20 + X, (2.10)

=




with ap = tfep and XA = > Ay Let Z = wy (0) be the zero set. By the

exactness of (2.6) z € uy'(0) if an only if there is a v € R™ with u(z) = 0"v.

Since A* is injective, we have a map
v Z o R™,

where f*v(z) = p{z) forall z € Z. For z € 2

(V(z)5ui> = (ﬁ*v(z),ei)
= (u(2), &)

1
= E‘Z.I|2 + A',",,

(2.11)

(2.12)

thus v(z) € £* Conversely, if v € X7, then v = v(z) for some z € Z and

in fact a T¢ orbit in Z. Thus Z is compact. The following is not difficult to

show.

Theorem 2.18 The action of N on Z is locally free. Thus the quotient

Xgw = Z/N
is a compact orbifold. Let

i Z =X
be the projection and

Vi Z = C8

the inclusion. Then Xy has a canonical Kihler structure with Kdihler form w




untquely defined by
Y
% . wgl —
W =1 (5 ;dzk A dZy).

The canonical Kahler metric in the theorem is call the Guillemin metric.
We have an action of T = T¢/N on X5 which is Hamiltonian for w. The

map v is T% invariant, and it descends to a map, which we also call v,
V. sz — Rﬂ*, (2.13)

which is the moment map for this action. The above comments show that
Im(r) = ¥*. The action 7™ extends to the complex torus T and one can show
that as an analytic variety and orbifold Xy is the toric variety constructed
from X* in the previous section. See [35] for more details.

Let o : C% — €% be the involution ¢(z) = z. The set Z is stable under o,
and ¢ descends to an involution on X. We denote the fixed ﬁoint sets by Z,

and X,. And we have the projection
T Zp — X, (2.14)

We equip Z, and X, with Riemannian metrics by restricting the Kahler metrics

on C% and X respectively.

Proposition 2.19 The map (2.14) is a locally finite covering and is an isom-

etry with respect to these metrics
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Note that Z, is a subset of R? defined by

d

1

5 E Ty = —A
k=1

(2.15)

Restrict to the orthant 2 > 0k = 1,...,d of R% Let Z. be the component

of Z, in this orthant. Under the coordinates

2
xr
S = -Ek, k= ]., ces
The flat metric on R?* becomes
d 2
Ly
2 1 Sk

. (2.16)

(2.17)

Consider the moment map v restricted to Z.. The above arguments show that

v maps Z! diffeomorphicly onto the interior ¥° of ¥. In particular we have

(), ug) =X+ 8k, K=1,...

Let I, : R"* — R be the affine function

lk(ﬂ?) = (:l’,‘,uk) - )\}c, k

Then by equation (2.18) we have

lkOI/-:Sk;.

,d, for z € Z,. (2.18)

1,...,d

(2.19)




Thus the moment map v pulls back the metric

> (dl’“)g, (2.20)

d
f
k=1

B =

on ¥° to the metric (2.17) on Z.. We obtain the following.

Proposition 2.20 The moment map v : X, — E° is an isometry when 2° is

given the metric (2.20).

Let W C X be the orbit of T{ isomorphic to T¢. Then by restriction W
has a T"-invariant Kihler form w. Identify 1% = C"/2miZ", so there is an

inclusion ¢ : R® — T¢.

Proposition 2.21 Let w be a T"-invariant Kdhler form on W. Then the
action of T™ is Hamiltonian if and only if w has a T"-invariant potential

function, that is, a function F' € C*®(R") such that

w = 2100F.

Proof. Suppose the action is Hamiltonian. Any T™-orbit is Lagrangian, so w
restricts to zero. The inclusion T™ C T¢ is a homotopy equivalence. Thus w
is exact. Let v be a T™-invariant 1-form with w = dvy. Let v = 8+ 3 where
3 e Q% Then

w = dy =06+ 38,

since 83 = 88 = 0. Since H**(W)pm = 0 for k > 0, there exists a T"-invariant
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function f with 8= 8f. Then

w=00f +38f = 2idd Im f.

The converse is a standard result, [

Suppose the 7™ action on W is Hamiltonian with moment map
v W — R™. Denote by  + 4y the coordinates given by the identification
W =C"/2riZ".

Proposition 2.22 ([34]) Up to a constant v is the Legendre transform of F,
e

ar
vz +iy) = %—I—c, c e R™

Proof. By definition

But by proposition (2.21),

n 2
W= j,kz:: 3:?33;;% dz; A dyy,
80
dvy, = —L(%)w = d(g—i)
Therefore vg = £ + cp. O

Oy

We can eliminate ¢ by replacing F with F' — > | k.




Notice that the metric (2.20) on X° can be written

: 0*G
7 dydu, 2.21
with
1 d
G =35> ky)logh(y). (2.22)
k=1

V. Guillemin [34] showed that the Legendre transform of G is the inverse

Legendre transform of F, i.e.

oF oG
5 =Y and o T. (2.23)
From this it follows that
= OF
F(z) = ;m@ — G(y), where y = ——. (2.24)
Define
d
loo(ﬂ'}) == Z(CE,’U@').
i=1

From equations (2.22) and (2.24) it follows that I has the expression

d
Lo
Fow= EV (Z )\]g log 5k + loo) y (2.25)

k=1

which gives us the following.

Theorem 2.23 ([34, 21]) On the open T orbit of Xz« the Kéhler form w
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is given by

d
10OV (Z M log I + zoo) .

k=1

Suppose we haye an embedding as in proposition (2.16),
Wy X — CPV.

So ¥ is an integral polytope and M NE, = {mg, m1,...,mn}. Let wes be
the Fubini-Study metric on CPY. Note that ¢jwpg is degenerate along the
singular set of X, so does not define a Kéhler form.

Clonsider the restriction of 1, to the open T% orbit W C X. Let ¢ = ¥nlw.

It is induced by a representation
7: T8 — GL(N +1,C), (2.26)

with weights mo,ma,...,my. If 2 = 2+ 4y € C*/2mZ" = 1g, and w =

(wo, . . ., wy), then
T(exp 2)w = (efmo=t Wy, ... el g, (2.27)
Recall the Fubini-Study metric is

wrg = 100 log |w|*. (2.28)

Lot [wg : -+ : wy] be homogeneous coordinates of a point in the image of W,




?— I

then

N
wpg = 100 (Z l’wk|2(—32<'m"'c ’m)') )

k==0

From equation (2.22) we have

G  1(<
T=—— == u; lo l-+fu,),
3 = 5( e

where w = Y, u;. Then

d

oG

2(?’?’&@, ZU) = Z(mi, gy“) = Z(mi,uj) log lj -} (ma,u)

=1
So setting d; = /™% gives
d
ez(mi,:c) — * (d,,, H l}mnw)) i
j=1

But from (2.25),

d
2 = (ezm 1 z;‘ﬁ).

i=1

Combining these,

d
ey _ G2 (die_zw T (ma) _

j=1
Let k; = |w;|?d;, then summing gives
N
Z |wi|262(m,:,w) — 82FV*(6_E°°Q),
i1
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where
N d

Q=S k™.
=1 =1 ]

Thus we have

Prwpy = w + 100V (— o +10g Q). (2.30)

Using that X is integral, and k; # 0 for m, a vertex of X, it is not difficult
to show that () is a positive function on ;. Thus equation (2.30) is valid on

all of X.

Theorem 2.24 Suppose Ly, is very ample for some h € SF{A*) strictly upper

conver and integral, ond let w be the Guillemin metric for the polytope Yj. .
Then ’

[w] = 2mey (L) = [Yhwrs]-
Corollary 2.25 Suppose X = Xa» is Fano. Let w be the Guillemin metric of

the integral polytope X* . Then

[w] = 2me (K1) = 2meq (X).
Thus ¢y (X) > 0. Conversely, if c1(X) > 0, then K™ is very ample for some
p> 0 and X is Fano as defined in definition (2.15).

Proof. For some p € Zt, —pk € SF(A*) is integral and L_p, == K™ is very |
ample. Let & be the Guillemin metric of the integral polytope X2 . From the | ?

theorem we have

(@] = 2me (K P) = 2mpei (X)),

' Let w be the Guillemin metric for 3* . Theorem (2.23) implies that [&] = plw]
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For the converse, It follows from the extension to orbifolds of the Kodaira
embedding theorem of W. Baily [6] that K™? is very ample for some p > 0
sufficiently large. It follows from standard results on toric varieties that —&

is strictly upper convex (see [57]). O

The next result will have interesting applications to the Einstein manifolds

constructed later.

Proposition 2.26 With the Guillemin metric the volume of Xy« is (2m)"

times the Buclidean volume of X.

Proof. Let W C X be the open T orbit. We identify W with C*/2miZ"
with coordinates z + 4y. The restriction of w to W is

" 82F
Oz,

Jk=1

a!:t:J A dyp.

Thus

W™ & F
i det (Bzcjamk) dz A dy.

Integrating over dy gives

82
Vol(X,w) = (2m)" / dEt(é’acJ@xk)dm

3F

By proposition (2.22) x — z = v(z + iy) = 5. is a diffeomorphism from R"®

to ¥°. By the change of variables,

FF
Vol(Z) = f dz = /I;n det (8:5983:;6)
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Corollary 2.27 Let X = Xa« be a toric Fano orbifold. And let w be any

Kihler form with w € ¢1(X). Then

1
Vol(X,w) = Ecl(X)”[X] = Vol(Z_4).
Proof. Let wg be the Guillemin metric associated to $*, then £we € e1(X)
by corollary (2.25). Then

1
(@m)"

Vol(X,w) = Vol(X, we) = Vol (k).

2.3 Symmetric toric orbifolds

Let X be an n-dimensional toric variety. Let AM{Zg) C Aut(X) be the nor-
malizer of Te. Then W(X) := N (1I¢)/T¢ is isomorphic to the finite group of
all symmetries of A, i.e. the subgroup of GL(n,Z) of all v € GL(n,Z) with

v(A) = A. Then we have the exact sequence,
1= Te = N(Tg) > W(X) = L (2.31)

Choosing a point z € X in the open orbit, defines an inclusion T C X. This

also provides a splitting of (2.31). Let Wo(X) € W(X) be the subgroup which
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are also automorphisms of A*; v € Wy(X) is an element of M (7¢) C Aut(X)
which preserves the orbifold structure. Let G C A (T¢) be the compact sub-
group generated by 7™, the maximal compact subgroup of T, and Wo(X).

Then we have the, split, exact sequence
1—T" = G- Wo(X) — 1. (2.32)

Definition 2.28 A symmetric Fano toric orbifold X is o Fano toric orbifold
with Wy acting on N with the origin as the only fized point. Such a variety
and its orbifold structure is characterized by the convex polytope A* invariant
under Wy. We call a toric orbifold special symmetric if Wo(X) contains the

involution o : N — N, where o(n) = —n.

Conversely, given an integral convex polytope A*, inducing a simplicial fan A,
invariant under a subgroup Wy C GL(n,Z) fixing only the ofigin, we have a

symmetric Fano toric orbifold Xas.

Definition 2.29 The index of a Fano orbifold X s the largest positive integer
m, such that there is a holomorphic V-bundile L with L™ & K. The index of

X is denoted Ind(X).

Note that ¢;(X) € H2,(X,Z), and Ind(X) is the greatest positive integer m
such that --ci1(X) € Hy(X, Z).

orb
]

Proposition 2.30 Let Xa» be a special symmetric toric Fano orbifold. Then

Ind(X) =1 or2,

Proof. We have K~ & L_; with —k € SF(A*) where —k(n,) = 1 for all

~S

p € A(l). Suppose we have L™ = K'. By proposition (2.12) there is an
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h € SF(A*) and f € M so that mh = —k + f. For some p € A(1),

mh{n,) = —1+ f(n,)

mh(—n,) = =1 — f(n,).

Thus m(h(n,) + h(—n,)) = —2, and m =1 or 2. [

We will now restrict to dimension two, symmetric toric Fano surfaces.
In the smooth case every Fano surface, called a del Pezzo surface, is either
CP! x CP' or CP? blown up at r points in general position 0 < r < 8. The
smooth toric Fano surfaces are CP! x CP!, CP?, the Hirzebruch surface F1,
the equivariant blow up of CP? at two Tg-fixed points, and the equivariant
blow up of CP? at three Tg-fixed points. There are only three examples of
smooth symmetric toric Fano surfaces, which are CP* x CP', CP?, and the
equivariant blow up of CP? at three Te-fixed points. The problem of the
existence of Kihler-Einstein metrics on smooth Fano surfaces is completely
solved by G. Tian and S.T. Yau [67, 68]. Such a surface admits a Kéhler-
Einstein metric if the Lie algebra of holomorphic vector fields is reductive.
These are the cases CP xCP!, CP?, and CP? blown up at 3 < r < 8 points in
general position. The smooth toric Fano surfaces admitting a Kahler-Einstein
metric are precisely the symmetric cases. In the next chapter we will prove
that all symmetric toric Fano orbifold surfaces admit Kéhler-Einstein metrics.
The surfaces we consider are, strictly speaking, log del Pezzo surfaces, since
we require the orbifold anti-canonical bundle to be ample. Note that by the

work of 8. Bando and T. Mabuchi [7] we may suppose that the Kahler-Einstein
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Figure 2.2: Example with 8 point singular set and Wy = Zo

Figure 2.3: Example with by = 7 and Wy = D;
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Chapter 3

Kahler-Einstein metrics

This section will present the methods and results from the analysis of Monge-
Ampere equations and the theory of multiplier ideal sheaves that we will use

to prove that symmetric toric Fano surfaces admit Kéhler-Einstein metrics.

3.1 Kahler-Einstein metrics and the complex
Monge-Ampeére equation

Let X be an n-dimensional Fano orbifold and G ¢ Aut(X) a compact group
of holomorphic automorphisms. Let g be a Kahler metric on X with Kéahler
form w € ¢,(X). By averaging over the compact group & we may assume that
g is G invariant. In local holomorphic coordinates we have g = Y Gopdza®dig
and w = ﬁ Y- GapdZa A dZg. If Ric = > Rypdza @ dZj is the Ricel curvature

of X, then the Ricci form Ricci(w) is the associated (1, 1)-form and we have

Ricci{w) = Lg@logdet(ga- : 3.1
2w &
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Definition 3.1 A Kahler-Einstein metric on a Kdhler orbifold X is a Kdhler
metric g with |

Ricci(w) = Aw,
where w is the Ricet form and A is a constant.

In our case X is Fano, so we must have A > 0. Since w and Ricci(w) are in

¢1(X), we have
Ricci(w) = w + %&ﬁf for some f € C*°(X). (3.2)
For each ¢ € [0, 1] consider the complex Monge-Ampére equation
(w+ 2%85@)” _ et (3.3)

for an unknown real-valued function ¢ = ¢ It is a;utomatic that
wy =W+ {;6‘5@ > 0. It is well known that the existence of a Kahler-Einstein
metric on X is equivalent to a solution of (3.3) with ¢ = 1. Take —5-081log of
equation (3.3) to get

Ricei(w;) = Rieci(w) + t%@c’%t — —;;Waéf 54
= (1 — tw + twy

3

So if t = 1, we have Ricci(wy) = wi. By Yau'’s solution to the Calabi con-
jecture [71], see also [5], equation (3.3) is solvable when ¢ = 0. We use the
continuity method to attempt to go from t = 0 to ¢ = 1. This is not always

possible as there are known obstructions to the existence of a Kahler-Einstein
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metric on a Fano orbifold.(cf. [50, 28])

A function ¢ € C? is admissible if w + 5%;85(;5 > 0. Note that a solution
to (3.3) is automatically admissible. Let © be the set of C°'* admissible
functions. And define a map [" by

Rx8>5(te) L log [Eﬂ] +tp € O3,

w'n.

Differentiating I' with respect to ¢ at ¢t € (0, 1) gives

Dyl'(L, ) = — Dyt -+ teh, (3.5)

where A, is the Laplacian with respect to the metric g, associated to

wp=w+ %85@, ie A= gf‘ﬂ Bai;g. ‘We will use the following:

Theorem 3.2 Suppose the the Ricci curvature of the compact Kéihler manifold

(X, g) satisfies Ric > A. Then the first eigenvalue iy of A salisfies pn > A.

Because of equation (3.4) we have py > ¢. It follows from the implicit function
theorem that the map (¢,¢) — (¢, T(¢,¢)) is a diffeomorphism of a neigh-
borhood of (¢,¢) € (0,1) x © to a neighborhood of (¢,T'(t,¢)), where ¢ is
a solution of (3.3);. If ¢, is a solution to (3.3); for ¢ = 5 € (0,1), then
there are \solutions to (3.3); for ¢ € (s — 4,8 +6),0 > 0. Thus the set
E = {r € (0,1] : (3.3); has a solution with t = 7} is open.

There is a difficulty at ¢t = 0. Suppose we chose f so that [efdu, = [ du,.
Then I'(0,¢) = f will have a solution ¢y, unique up to a constant by the

solution to the Calabi conjecture [5, 71]. But the map L' is not invertible at
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(0, o). Therefore consider the modified map I''Rx© — e,
D(t, ¢) =Tt ¢) + C/gbd,u,g, for ¢ > 0. (3.6)
Then I is continuously differentiable with
DyI(t, ¢ = —Agth + 11 + f WYs,.

Then I is locally invertible at any solution to f‘(t, $) = f,for 0 < ¢ < L
And T(0,¢) = f has a unique solution éo by the Calabi conjecture. Apply
the implicit function theorem at (0, ggo) to get for some small € > 0 a solution
I'(e,¢) = f. Then ¢, = b + ‘—éfqgedpg is a solution to (3.3); with ¢t = e
Therefore K is non-empty and open. Equation (3.3); has a solution for t = 1
and X admits a Kdhler-Einstein metric if E is also closed.

It is worth noting that a solution ¢4 to (3.3); for ¢ = s € (0,1) is unique.
One shows that the required a priori estimate exits for ¢ € (0, s) thus (0,] C
E. Then one considers solutions to 3.6 back to ¢ = 0 using the implicit
function theorem and the uniqueness at £ = 0 gives the result. Thus a solution
¢, 8 € F,s < 1is invariant under G.

It to show that F is closed suffices to prove an a priori C*t®-estimate with
a € (0,1) ..on the solutions ¢;,t € F to (3.3). Given ¢’ € £ and a sequence
{s;} ¢ E with s; — t/. By Ascoli’s theorem there is a subsequence {s;, }
such that ¢;, — ¢y € C?, where convergence is in C?, and ¢y is a solution

to (3.3) with ¢ = ¢. It follows that Kéahler-Einstein metric obtained will be

G-invariant. One can improve this to merely requiring a C%estimate.
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Lemma 3.3 ([71]) There exist constants b and ¢ depending only on (X, g)

such that all solutions ¢ to (3.3), satisfy
0 < n+ Ag < et d—infe)

Theorem 3.4 ([71]) Let ¢ be a solution te (3.3),, then there is a CP-estimate

of the mized derivatives ¢npy depending on
léleo, g I flleos [IVFlleo,  supl|Veaflice, and S%PHVaE'erGO-
o a,3,7

Using the above and the ellipticity of A we see that if there is a constant C > 0
with ||¢|lce < C for all solutions ¢ to (3.3),¢t € E, then there is a constant G’
50 that ||@||ca+e < C" for all solutions ¢ for any « € (0,1).

For the remainder of this section we suppose 1 ¢ F. So a C%estimate fails
to hold. There exists an increasing sequence {t;},% € {0,1) and a sequence
{¢r}, ¢ € C* such that

i. ¢y is a solution to equation (3.3); for t = ¢, k = 1,2,...; In particular

each ¢ is admissible;
ii. each &y, k= 1,2,... is G-invariant, and

iif. {|¢kllco — oo as & — oo.
We will make use of the following Harnack-type inequality (cf. [64] or [66]).

Proposition 3.5 For ¢ > 0 there is a constant C > 0, depending on €, such

that
sup(~¢x) < (n + €)supgy + C for all k.
b X
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It follows from this inequality that sup,s ¢r — o0 as k& — oo, The following

will be crucial.

Proposition 3.6 ([65, 64]) For every vy € (;1=,1), we have

g7 Pm "5’“/ e "dp, — 0o as k — oc.
M

Proof. In the following C' > 0 will denote an arbitrary constant, indepen-
dent of %, that will change between equations. Since Vol, = %ﬁ fuwr =
% [ wi = Vol,,, where wy, = w + %35% and gg is the associated metric, we

have from (3.3);,t =t
fe‘tmkd,ug > e %S Vol, .
Thus we have
C / e "dpy > inf el M for all k > 0. (3.7)

Suppose the proposition does not hold, then after replacing {¢x} by a subse-

quence we have
/ e " Pkdy, < C il}}f e 1% for all k > 0. (3.8)

First consider the case where t; < . Combining the above two inequalities

we have

(tx — v)sup ¢ < —ysup ¢ + C.
% X
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Thus supy ¢x < C. So ty < «y for only finitely many k. Now suppose that 1

ty > v. Then we have .
(b — 7)infe < —ysupdy +C. ]

From this and proposition (3.5) we have
y(ty — fy)_lsglfpgﬁk < —igl(fqbk +C<(n+ e)SL_1qu1’);c +C. (3.9)

But since ;%5 < v <ty < 1, we have y(ix — v)7! > n. Choosing € > 0

sufficiently small (3.9) we have supy ¢ < C for all & > 0, a contradiction. O

Recall that g is invariant under the compact group G C Aut(X) and has

Kéhler form w € ¢1(X). Define
Pa(X,9)={¢cC® w+ 5%6&{) >0, and ¢ is G-invariant}.

It is proved in [65] that there are positive constants e, C, depending on (X, g),
!

such that b
Pl

f e s gy, < C for all ¢ € Pa(X, g). (3.10) :

Definition 3.7 ag(X) =sup{a > 0:3C >0, s.t. (3.10) holds V¢ € Pg}.

It is not difficult to see that ag(X) is a holomorphic invariant of a Fano
orbifold, defined with respect to any metric G-invariant metric g with Kahler

form in ¢;(X). Proposition (3.6) proves the following. i

Theorem 3.8 ([65]) Let (X,g) be a Kihler orbifold with Kéhler form !
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we ei(X). If ag(X) > 5, then X admits a Kihler-Einstein metric.

This was used by V. Batyrev and E. Selivanova [9] to prove that any sym-
metric toric Fano manifold admits a Kahler-Einstein metric by proving that
ag(X) > 1. We take a different approach in this work.

We will need the following proposition. See [65] for a proof.

Proposition 3.9 After replacing {¢x} by a subsequence, there is a nonempty

open subset U C X such that
eSPx "S'“/ e Pdu, < O(1), as k — oo.
U _

Replace the each ¢ by ¢r — supy ¢p. Then S = {¢}32, is a sequence
of G-invariant functions which satisfy the following properties which will be

crucial for the next section.

P1. There exists a Kahler-metric g with Kéhler form w € ¢;(X) such that
W + %a(%h >Qforal k> 0.

P2. supy ¢r = 0 for all £ > 0.
P3. For every v € (35, 1) we have [, e " dy, — 0o as k — oo,

P4. There exists a nonempty open subset U C X such that f; e Predp, <

O(1) as k — oo.

3.2 Multiplier ideal sheaves

Suppose S is a sequence of functions satisfying P1-P4. In this section we will

show how to associate to S a coherent algebraic sheaf of ideals J(X, S), the
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multiplier ideal sheaf. The definition of J(X,S) is due to A. Nadel [54, 55].
One can work instead with coherent analytic sheaves, but the ideal sheaf one
obtains is equivalent. We will need the following version of Hormander’s L2
estimate for & which follows from from the Weitzenbick formula for the -
Laplacian Ay = 85* + 8*8 acting on AP(X, L), the smooth (p, ¢)-forms with
values in L. Let X be any compact Kéhler orbifold with Kéhler form w, L a

hermitian holomorphic line V-bundle on X, and f € €. Denote by © the

curvature of L.

Proposition 3.10 Suppose that
o= i
* icci o> .
27r88f + Ricci{w) + 50 2 ew, (3.11)
for some € > 0. Let o be a smooth (0, p)-form with ¢ > 0 and values in L such
that 8o = 0. Then there exists an L-valued (0,p — 1)-form n on X such that
1. on=o0,

2. [y InPefduy < ¢ [y lofPe™! dug.

Furthermore, if G acts holomorphic and isometrically on (X ,9) and L, and

also f and o are G-invariant, then we may take n to be G-invariant.

Proof. Replacing the hermitian metric  on L by e~ ! h reduces the proposition
to the case f = 0. Let GP4 be the Green’s operator of A7 acting on AM7(X, L).

By the Weitzenbock formula for A2 (cf. [10] p. 52) and (3.11) we have

(A5%0,0) = ello?
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for all ¢ € A%(X,L). This implies that
0 Lo 2
(6%%0,0) < 2ol

for all o € A%(X,L). Let o be as in the proposition and define n = F*G™g,
Then we have dn = D9*G%1o = G*498* 0 = G*1AY o = 0. And we have

- ~ 1
Inlf = (3 G%%0,m) = (%40, 8n) = (6*10,0) < =l

Finally, if ¢ is as in the proposition, then Az and G will be G-invariant. O

Definition 3.11 Let {03}, € C®(X,L) be a sequence of sections of a
smooth vector bundle. We say that {o} is S-bounded if there exists a

v E (;%,1) s0 that
/% loxle” " dp < O(1) as k — . (3.12)
We say that {og} is S-null 4f there ewists a v € (57, 1) so that
/).( |aklé_7¢kdu — 0 as k — oo. (3.13)

For this definition the choice to the volume form dy and the metric on L is
irrelevant.
Proposition 3.12 Suppose {o1} and {g}} are sequences of smooth sections

of smooth vector bundle. If the sequences {0y} and {o}} are S-bounded (resp.

S-null), then so is the sequence {0y + o)}
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Proof. Because of P2, if (3.12)(resp. (3.13)) holds for v € (;f5,1) then it
holds for any smaller 7y, So we may suppose both sequences satisfy (3.12)(resp.
(3.13)) for the same 7. Then the proposition follows from the inequality

|ow + oil* < 2leef” + 2o |, O

Definition 3.13 Suppose E is a holomorphic vector bundle on X. We define
HY(X,E)s be the set of all 7 € H°(X,E) such that there is an S-bounded
sequence {o} C HY(X,E) converging uniformly to . We call H*(X,E)g the

space of sections vanishing along S in the scheme-theoretic sense.

The following proposition is an easy consequence of proposition (3.12).

Proposition 3.14 Suppose E and ¥ are are holomorphic vector bundles on
X. Then HYX,E)s is a complex vector subspace of H*(X,E). Also, for
o€ H(X,E)s and 7 € HYX,F), we have c @ 7 € H*(X,EQF)3.

Let L be an ample line bundle on X and consider the homogeneous coor-

dinate ring

R(X,L) = éH”(X, O(LYY)) (3.14)

v=0
of X relative to L. We can define the homogeneous ideal of I{X,L,S) of
R(X,L) as

I(X,L,8) = é HO(X, O(L"))s. (3.15)

v=0
We now define the coherent sheaf of ideals 7 (X, L, S) depending on L and S
which is associated to the homogeneous ideal I(X,L, S) C R(X,L). Given a
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Zariski open set U C X and a regular function f € I'(U, Ox). We have i

fel(U,J(X,L, 5)),

if and only if for every p € U there exists a global section ¢ € H*(X, O(L")) for |
some v > 0 which does not vanish at p, and fo € H(X,O(L”))s. Since the .‘
homogeneous ring R(X, L) is Noetherian, the ideal 1(X,L, S) is finitely gen-
erated. Thus the sheaf 7(X, L, S) is a locally finitely generated Ox-module, ‘
hence is coberent.

We show next that J(X,L,S) is independent of the ample line bundle L.

Proposition 3.15 Suppose L and E are ample line bundles on X. Then g
T(X,L,5) = T (X, 5). :

Proof. It is sufficient to show J(X,L,5) C J(X,E,S). Let U C X be a
nonempty Zariski open set, and let f € T'(U, J(X,L, S)). Given p € U there
exists a section ¢ € H(X, O(L")) for some v > 0 such that o(p) # 0 and
fo € H(X,O(L"))s. Now there exist an integer y sufficiently large such that
there is a section p € H(X,O(L @ E*)) such that p(p) # 0. This follows
from the Kodaira-Baily embedding theorem [6]. Then op € H*(X, O(E*))
does not vanish at p. And fop € HY(X,O(E#))s by proposition (3.14). [

Definition 3.16 We define J(X,S) := J(X,L,S), for any ample L. This

is independent of L by the proposition.

|

|

In order for J(X, ) to be useful some further properties must be deter- X
mined. For example we show that J(X,9) C Ox is a proper subsheal of :
|
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ideals. This is the aim of the rest of this section.
Let V(X,S) be the, possibly non-reduced, subscheme cut out by the co-
herent sheal J(X, S).

Proposition 3.17 The set V(X, S) is nonempty.

Proof. Suppose that V (X, S} is empty. Let p € X be a arbitrary point.
There exits a v > 0 and 7 € HY(X, O(L*))s such that 7(p) # 0. We may
assume 7(p) = 1. There exists an S-bounded sequence {7} C H(X, O(L"))
converging uniformly to 7. ‘There exists an open neighborhood W, in the

classical topology, of p so that ||| > § for large enough k. Then
f e "rdu, < O(1) as k — oo, (3.16)
w

for some v € (;37,1). By the compactness of X, there exists a finite col-
lection W-,..., Wy, covering X for which (3.16) holds for ~,...,vm. Let

v =min{vyi,...,¥m} Then we have
/ e "rdp, < O(1) as k — oo,
X

which contradicts P3. d

In order to guarantee that 7(X,S) is nonzero we must consider what
happens when we pass to a subsequence S’ C S. For any subsequence S of

S we have J(X,S5) € J(X,9'). We replace S by a subsequence to make

J(X,S) as large as possible.




Proposition 3.18 Suppose X is a projective variety and € is a nonempty
collection of coherent sheaves of ideals portially ordered by inclusion. Then €

has a mazimal element.

Proof. Take an embedding of X into CPV. Let R denote the homogeneous
coordinate ring of CPY. Let I C R be the homogeneous ideal of X. Each
coherent sheaf J on X corresponds uniquely a homogeneous ideal J C R,
and the correspondence J — J is one-to-one (cf. [38] ex. 5,10} and order
preserving, If ¥ is the collection of homogeneous ideal in R corresponding
to coherent sheaves in %, then %’ possesses a maximal element because R is

Noertherian, Thus ¥ has a maximal element. ]

Apply the proposition to the set of ideals 7(X,5") where S’ is any sub-
sequence of S. We get a subsequence S’ of S so that J(X,S8") = J(X,9")

for all subsequences S” of §’. Replace S with &', then we have the further

propetty.

P5. For every subsequence S’ of S we have J(X, 5} = J(X, S)
We finally have a complete definition.

Definition 3.19 Suppose X is a Fano orbifold. A multiplier ideal sheaf on
X 18 a pair (S, J(X,8)) consisting of a sequence S satisfying P1-P5 and the
coherent sheaf of ideals J(X,S). A multiplier ideal subscheme of X is a pair
(S,V(X,8)) consisting of o sequence S satisfying P1-P§ and the subscheme
V(X,8)C X.

We are now able to prove the second half of the properness of J(X, S}.
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Proposition 3.20 Suppose that L is an ample line bundle on X Then there
exists an integer v > 0 and o subsequence S' of § such that H°(X, O(L¥))s

1S MONZETO.

Proof. Let U C X be a nonempty subset which satisfies P4, And let
(#1,...,2n) be holomorphic coordinates centered at p € U. Let p € C®(U) be
a compactly supported function such that p = 1 on a neighborhood U s p.

Now define for each positive integer k 1 € C°(X) as

1

We will use the fact that e ¥ converges monotonically on U’ as k — o0 to
(|22 + - - - + |2,*)™ which is not integrable at p. Let w be a Kéhler form as
in P1. And fix a metric on L with positive curvature, i.e. %@ > (. There

‘exists a constant C; > 0 so that
90 + Crw 2 0 (3.17)
2m

for all £ > 0. The number Cj exists because 1 is plurisubharmonic on v,
and {4} converges to nplog(|z1|? + -+ + |2:|?) in the C* norm on X \ U".

By (3.17) and P1 we may choose an integer v > ( large enough that
i .z i
— icei —0 > :
o 80y, + ¥n) + Ricei(w) + V=0 zw, (3.18)

for all k > 0. Let 7 € H%X,O(L")) be nonzero at p. By proposition

(3.10) and the above inequality, we obtain for each k > 0 a smooth section

o0




7w € C°°(X, 1) such that O, = 8(pr) and
/ |me|Pe " Vrdpy < / |0(p7)Pe % Prdpy. (3.19)
X X
Since &(pr) vanishes on U, there exist a constant Cp > 0 so that
[B(pr)|Pe™¥* < Caxw

for all & > 0, where yy is the characteristic function of U/, Therefore the

righthand side of (3.19) is bounded by

02 / e_¢kdﬂg>
u

which is bounded by P4 as k — oo, Thus we have

T 26_¢k—¢kdﬂ < O(]_) as k — oo. 3.20
[ x ’

Consider the sequence {0y} where o = 7, — pr € H°(X,O(L”)). And we o

have i"!‘i
fX o |*e™ P dpy < 2 fx |7 |?e™ P dprg + 2 fX or[Pe™* dug i

<0 (f |Tk|28“¢k—¢kdﬂ’g +f e_¢kdpg) (3.21)
X ¥
< 0(1)
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it
]
The second inequality follows because ), is bounded from above uniformly as L
k - oo and pr is supported in U. Since ¢, < 0 by P2 ‘5;
f low*dpy < O(1) as k — o0, (3.22) ‘|
X
;1
Since {0y} is a bounded sequence in the finite dimensional vector space :‘
HO(X,0O(L¥)), there is a subsequence {ok;} converging uniformly to iti
o€ H(X,O(L")). So o € H(X,O(L"))s, where &' is the subsequence {¢, } T1
.1;;
of S. We claim that o(p) # 0. Otherwise, pT + o is nonzero at p. Since 7y, TW
X
converges uniformly to p7 + o, there is a C3 > 0 and a neighborhood W of p ﬁ};f
1
so that H
3%
|7, |2 = Cson W (3.23) |
Ey
i
for all large 5. We have l ;
/ e—'llbkjd‘u'g <0 (f e-%;;‘%:idpg) by P2, |ﬂ
v v
<0 (/ |Tkj|26_¢kj_wkj d,ug) by (3.23), |1
<O(1)asj— oo by (3.20) ;
:
But we know that e ¥ converges monotonically to a non-integrable function. 1‘ ]
0 |
i
Corollary 3.21 The coherent sheaf J(X,S) is not identically zero, and i
V(X,5) is not all of X. ,
|I




Proof. Let ¢ € HYX,O(L"))s be not identically zero.  Since
V(X,5) = V(X,S), it is easy to sce that o vanishes along V(X,5) in

the scheme theoretic sense defining nonzero sections in J(X, S). O

The group of symmetries G C Aut(X) of (X, g) will play a crucial role in

our applications.

Proposition 3.22 Suppose every every element in the sequence S is G-
invariant. Then the coherent sheaf J (X, S) is G-invariant. Thus both J(X,.S)

and V(X,8) are Ge-invariant, where G is the complezification of G.

Proof. Take L = K™, where m is taken to be a multiple of Ord(X), so L is
an ample line bundle. And G lifts to an action on L. It follows that ¢ acts on
HY%X,Q(L")) for each v > 0 and the subspace H°(X,O(L"))s is invariant.
So the sheaf of ideals J(X, S) = J(X,L, S) is G-invariant. 4 !Z]

So as to simplify notation, in what follows we denote J = J(X,S) and
V = V(X,8). We have the vanishing theorem of A. Nadel [55].

Theorem 3.23 H¥(X,J) =0 for k > 1.

The proof for the case of a Fano orbifold X goes through verbatim as the
smooth case in [55]. The proof makes use of the fact that X is covered by
affine Zariski open sets U1, ..., U, and H*U;, J) =0, for k& > 0, because J
is coherent. One then uses Leray’s theorem and the Weitzenbdck formula,

proposition (3.10).

Corollary 3.24 H*(V,0y) =0 fork > 1, and H*(V,0y) =C.
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Proof. The proof follows from the exact sequence of coherent sheaves
0—=J—0x—=0y—0

By Kodaira vanishing we have H¥(X,0x) = 0 for ¥ > 0. Also, note that

H°(X,J) = 0. Now take the long exact cohomology sequence. C

3.3 Kaihler-Einstein metrics on symmetric

toric Fano surfaces

For our applications X is 2-dimensional, so the irreducible components of the
subscheme V (X, §) can be 0 or 1-dimensional. Also from corollary (3.24) it is
clear that V(X S) is connected. We consider the case in which V = V(X, 5)
is a 1-dimensional subscheme. Let V,.q be the reduced scheme associated to

V.

Theorem 3.25 Suppose V is o 1-dimensional multiplier ideal subscheme of
X. Then every trreducible component of Vieq is isomorphic to CPL, any two
irreducible components meet at at most one point, and Vieq does not contain a

cycle.
Tn other words, Veq is a tree of CPV's. We first prove a series of lemmas.

Lemma 3.26 Suppose V is a 1-dimensional projective scheme with

HYV,0) =0, then H(Vyea, Ov,.,) = 0.
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Proof. We have the exact sequence of coherent sheaves on V:

0'—>R—k(9v—+0wcd—%0,

where R is the sheaf of nil-radicals of Oy, The lemma follows from the coho-

mology exact sequence:

HI(V: OV) — Hl(v;ed: Ode) - H2(Va R) = 01

where the last group is zero because dim V' = 1. ]

In the following W will denote a reduced complex scheme of pure dimension

one. Consider a morphism 7 : W — W of reduced schemes of pure dimension
one which is finite, surjective, and the cokernel of Ow — w0y has zero-

dimensional support. We call such a map a partial normalization.

Lemma 3.27 Suppose HY(W, Ow) =0 and 7 : W — W is a partial normal-
ization. Then H'(W,Oy) = 0.

Proof. We have the exact sequence of coherent sheaves on W i
0 — Ow — 7Oy — L — 0,

where the sheaf £ has zero dimensional support, l.e. is a skyscraper sheaf.

The long exact cohomology sequence gives H HW,04) =0, 0
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The following part of the cohomology sequence will be useful:
0 — HYW,Ow) — HY(W,Op) — H(W, L) — 0.
Thus

#{connected components of W} = #{connected components of WHRY(W, £).
(3.24)

Lemma 3.28 If W is irreducible and HY(W, Ow) = 0, then W = CP'.

Proof. Tet w : W — W be the normalization of W. Then (3.24) gives
1=1+H%W,L). So £ =0and 7 is an isomorphism. Thus W is nonsingular
and H'(W, Ow) = 0 by the last lemma. O

Lemma 3.29 Suppose H*(W, Ow) =0 and W' C W is a nonempty collection

of irreducible components of W. Then we have H' (W', Oy) = 0.

Proof. Let W*" be the irreducible components not contained in W’. So
W =W UW" Andlet = : W U W”"” — W be the partial normalization,

where W/ U W is the disjoint union. Then the Jemma follows from lemma

(3.27). O

Lemma 3.30 Suppose H' (W, Ow) = 0. The number of singular points of W

is strictly less that the number of irreducible components of W. So W cannot

be a cycle of CP’s.
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Proof. Let 7 : W — W be a desingularization. Then we have from (3.24)

RO(W, £) < #{connected components of W}

= #+{irreducible components of W}

We also have #{singular points of W} < h%(W, £). O

Proof.(of theorem) Since H*(V,0y) = 0, we have H'(Vieq,Ov,.,) = 0.
Every component of Vg is isomorphic to CP! by lemma (3.28). Every two
irreducible components meet at at most one point and Vg does not contain

a cycle by lemmas (3.29) and (3.30). O

For remainder of this section X will be a symmetric toric Fano surface.
So X is represented by a complete fan A in Z x Z and a convex polygon A*,
Let G C N(T¢) be the compact subgroup generated by T° and Wy(X) as
in chapter (2). And we may consider Wy(X) to be the subgroup of GL(2,Z)
which preserves A*. By hypothesis the only fixed point of the action of Wy (X)

on Z x Z is the origin.

Theorem 3.31 Let X be a symmetric toric Fano surface. Then X admits a

Kéhler-Einstein metric invariant under G.

Proof. Suppose that X does not admit a Kéhler-Finstein metric. Then
there is a multiplier ideal sheaf J(X,S) with multiplier ideal subscheme
V = V{(X,9), both invariant under Gg, the complexification of G. Note

that 7¢ C Ge. If V is zero dimensional, then V.4 consists of a single point.
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But there are no fixed points of G¢. Suppose V is one dimensional. Then
V,..q consists of a non-cyclic connected chain of anti-canonical curves. If Vg
consists of an odd number of curves then Gg¢ fixes a curve. And if it con-

sists of an even number then G fixes a point. Either case is a contradiction. [
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Chapter 4

Sasakian-Einstein manifolds

We define the notion of Sasakian and in particular Sasakian-Einstein man-
ifolds. Under relatively weak assumptions a Sasakian manifold is a Seifert
St-bundle with additional structure over a Hodge Kahler orbifold. We use an
inversion construction which goes back to Kebayashi [43] and Hatakeyama. [39)
to construct 5-dimensional Sasakian-Einstein orbifolds and masifolds from the

Kahler-Einstein orbifold surfaces of chapter 3.

4.1 Fundamentals of Sasakian geometry

Definition 4.1 Let (M,g) be a Riemannian manifold of dimension n =
29m+1, V the Levi-Civita connection, and B(X,Y) € End(T'M) The Rieman-
nian curvature. Then (M, g) is Sasakian if either of the following equivalent
conditions hold:

(i) There exists a unit length Killing vector field & on M so that the (1,1)
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tensor ©(X) = Vx€ satisfies the condition

for vector fields X andY on M.
(i) There exists a unit length Killing vector field £ on M so that the Riemann

curvature tensor satisfies
R(X,f)y = g(ga Y)X - Q(X: Y)§

for vector fields X andY on M.

We say that the triple {g,&, ®} defines a Sasakian structure on M. Define 7 to
be the one form dual to &, i.e. n(X) = g(X,&). Let No(X,Y) = O[X,dY] +
O[OX,Y] - [‘I)X , Y] — ®*[X, Y] be the Nijenhuis tensor of &. The following

are easy consequences of definition (4.1).

Proposition 4.2 The elements of a Sasakian structure satisfy the equalions

i, ®2(X) = —X + n(X)E,
i, g(®X,Y)+g(X,2Y) =0, g(®X,0Y)=¢(X,Y)—n(X)n(¥),
. dp(X,Y) = g(®X,Y), Na(X,Y)=2dn(X,Y)&¢.

Easy calculation shows that 5 is a contact form with Reeb vector field £, and

& defines a CR-structure on the orthogonal compliment to the subbundle of
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TM defined by €. Sometimes one denotes a Sasakian manifold by (M, g, €, ®)

to be more explicit.

Proposition 4.3 Suppose (M, g) has a unit length Killing vector field &, so
that the (1,1) tensor ®(X) = Vx¢ satisfies ®*(X) = —X + n(X)E. If the
CR-structure satisfies No(X,Y) = 2dn(X,Y)®&, then {g,£, P} is a Sasakian

structure.

Proof. First note that by the hypothesis all the properties in proposition (4.2)

are satisfied. Kasy computation shows that
Ne(X, V) = —(VaxP)(V)+ (Vey P)(X) +PoVxP(Y) - Do Vy®(X). (4.1)
Differentiating the equation ®*(X) = —X + (X)£ gives
PoVx®(Y)=-VxPo(Y)+g(®X,Y)E +n(Y)D(X). (4.2)
Applying this to the last i;wo terms of (4.1) gives

Q(N‘i’(Xa Y)! Z) = [_g(VX@(@Y)J Z) + Q(V@Yq)(x): Z)] + g((I)X, Y)'U(Z)
+ g(@X, Zm(Y) [-9(Vex®(Y), Z) + ¢(Vy®(2X), Z)]

— 9(®Y, X)n(Z) — g(®Y, Z)n(X). (4.3)
Since dn is closed we have

g(qu)(V)a W) +g(Vy (W), U) + g(Vw®(U),V) = 0.
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Thus

Q(N@(X:Y)! Z) = Q(VZ(I)(X)?(I)Y) + Q(VZCI)((I)X):Y)

+ g(X, Y n(Z) + g(@X, Z)n(Y) — g(2Y, X)n(Z) — g(@Y, Z)n(X) (1.4)

Applying equation {4.2) to the second term on the right of the equality gives

9(Na(X,Y), Z) = 29(Vz8(X), 8Y)—29(QY, Z)n(X)+2¢(2X,Y)n(Z) (4.5)

By assumption, we have

g(NCI’(XaY)ﬂ Z)= 29(2 X, Yin(%).

Thus ‘
9(V2®(X), Y) = g(BY, Z)n(X). (4.6)

Using ®2(X) = —X + n(X)&, we have !

g(V48(X),Y) = g(Vz0(X),)n(Y) + (¥, Z)n(X) — n(¥Y)n(X)n(Z)
_ _g(@X, 3Z)n(Y) + oY, Z)n(X) — n(¥ ) (X)n(Z) !

= —g(X, Z)n(Y) + g(¥, Z)n(X)

which gives the formula in part 4. of definition (4.1}, 1 B

The following can be taken as a definition of a Sasakian manifold. It

shows that Sasakian manifolds are the odd dimensional versions of Kéhler
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manifolds in the sense that contact manifolds are the odd dimensional versions
of symplectic manifolds. The metric cone of a Riemannian manifold (M, g) is

the manifold C(M) = R, x M with the cone metric § = dr? +r%g.

Proposition 4.4 Let (M, g) be a Riemannian manifold of dimension n =
om -+ 1. Then (M, g) is Sasakian if, and only if, the holonomy of the metric
cone (C(M),7) is a subgroup of U(m~+1). In other words, (C(M),g) is Kdhler.

We see from definition (4.1) that Ric(X,£) = 2mn(X). Thus if (M,g) is

Einstein, then the scalar curvature of g is s = 2m(2m + 1).

Definition 4.5 A Sasakian manifold (orbifold) (M, g) is Sasakian-Finstein if
the Riemannian metric g is Finstein, in which case, the scalar curveture is

g = 2m(2m + 1).
Direct calculation shows the following.

Proposition 4.6 A Sasakian manifold (orbifold) (M, g) is Sasakian-Einstein
if, and only if, (C(M),§) is Ricci flat. That is, (O(M), g) is Calabi- Yau which

is equivalent to the restricted holonomy Holo(g) © SU{m +1}.

By Meyer’s theorem if (M, g) is Sasakian-Einstein then (M) is finite and

diam(M) < w. Furthermore, we have

Proposition 4.7 If (M, g) is a simply connected Sasakian-Einstein manifold

then M is spin.

Proof. The frame bundle of (C(M), §) reduces to SU(m+ 1). It follows that

the frame bundle of M reduces to SU(m) x 1. : O




Let F be the 1-dimensional foliation defined by £. The foliation F is quasi-

reqular is every p € M has cubical neighbor such that every leaf £ intersects

a transversal slice through p at most a finite number of times N(p). This is

equivalent to all the leafs of F being compact. We call M regular if N(p) =1

for all p € M. In this case M is an S* fibre bundle. In the quasi-regular case £

generates a locally free circle action, and the space of leaves Z is an orbifold.

The projection # : M — Z is a Seifert fibration.

Theorem 4.8 Let (M,g) be a compact quasi-reqular Sasakian manifold of

dimension 2m + 1, and let Z be the space of leaves of the foliation F then

4.

i1,

The leaf space Z is a compact complex orbifold with Kdhler metric h and
Kéhler form w such that 7 : (M, g) — (Z,h) is an orbifold Riemannian

submersion, and a multiple of [w] is in H2.,(Z,Z).
Z is a normal Q-factorial algebraic variety.

(Z,h) has positive Ricci curvature if and only if Ricy > —2. In this case

m1(2) = ¢, and Z is uniruled with Kodaira dimension k(Z) = —oo.

(M, g) is Sasakian-Einstein if and only if (Z, h) is Kéhler-Einstein with

scalar curvature 4m({m + 1).

See [13, 14] for more details. We want to invert theorem (4.8). First a couple

definitions.

Definition 4.9 A Kdhler orbifold (Z,w) is Hodge if [w] € H2,(Z,Z).




X
k1]

Recall the definition (2.29) in chapter 2 of Ind(2Z) and that it is the largest
integer d such that &ﬁl) is an element of H2,(Z,Z). If d = Ind{Z), there ex-
ists a holomorphic line V-bundle F with F¢ = Kgl. The following is promised

inversion result.

Theorem 4.10 Let (Z,h) be o Hodge Kihler orbifold. Then there is an St
V-bundle m: M — Z with first Chern class [w]. Let 8 be the connection 1-form
with %d@ = w, then the 1-form n = %9 and the metric g = n®@n+7*h define

a Sasakian structure on M.

Proof. Let £ be the vector field generated by the Sl action on M. Then
clearly € is a unit length Killing vector field for g. Since we have dn = mw,
®(X) = Vx£ defines a (1,1) tensor which is the lift of the complex structure

Jon Z.That is, dp(X,Y) = mw(X,Y) = g(®(X),Y). And we have
X)) =—X +n(X)E, € =0, n(®(X)) =0

Let X,Y be vector fields m-related to X,¥ on Z. Since m.®(X) = Jm(X) =

JX,
T No(X,Y) = J[X, IV + JUJX, Y] - [JX,JY] - PP[X, Y] =0.
Thus Np(X,Y) is vertical. And

g(Na(X,Y),£) = —n([2X, ®Y]) = 2dn(2X, ®Y) = 2dn(X,Y).
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Thus it follows from proposition {4.3) that {g,§, ®} is a Sasakian structure.
[

Note that we have a 1-parameter family of Sasakian structures {ga, £a, ®a} for
o € RT, where g, = a?n ® 1+ am*h and £, = 1.

In general M in the above theorem is an orbifold rather than a smooth
manifold. We are interested in construction smooth manifolds. Suppose
7' M — Z is an 8! V-bundle over an orbifold Z. For z € Z, let {¢,U,I'}
be a local uniformizing neighborhood centered at z € Z. Thus U C Z is open
and covered by ¢ : U — U, where the finite group I fixes %, ¢(%) = 2z, and
acts on U/ with U/I' = U. Then T acts on 0 x St by (&,u) — (y7&,vh, (7))
for v € T, where h, : I' — S' is a homomorphism. And n~!(U) is isomorphic
to U x St /T. We see that M is a manifold if, and only if, h, is an injection

for each.z. We come to the inversion result of main interest.

Corollary 4.11 Let (2, h) be a compact Fano orbifold with 7{"™(Z) = e. Let
7 M — Z be the S* V-bundle with first Chern class Sci(Z), where d =
Ind{Z). Suppose that the local uniformizing groups inject into St Then M
is o simply connected manifold and has a Sasakian structure {g,§ , D} with

Ric, > 0. If (Z,h) is Kihler-Einstein, then (M, g, &, D) is Sasakian-Einstein.

Proof. By theorem (4.10) there is a family of Sasakian structures {ga, &4, ®q}
on M, which is a smooth compact manifold, with g, = a’n @ n + ar*h, for
a > 0. By the solution to the Calabi conjecture [71, 5] we may assume that
h is a Kihler metric of positive Ricci curvature. The O’Niell tensors 7" and

N vanish, and for A we have AxY = —¢($,X,Y)¢ and Ax{ = P,X for
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horizontal vectors X and Y .(cf. [10]) And we have
Ricg, (X,Y) = Ricy(X,Y) — 20,(X, ). (4.7)

Since Ricg, (X, £) = 2mn(X) and M is compact, we see that for o sufficiently
small Ricg, > 0. If (£, k) is Einstein then (4.7) shows that there is a unique
a > 0 with Ricg, = 2mg,.

Suppose M is not simply connected, then M has at most a finite cover
M by Meyer’s theorem. Since 7"(Z) = e, # : M — £ is an 8 V-bundle
covering 7 : M — Z which contradicts that the Chern class of 7 : M — Z is
not divisible in HZ,,(Z,Z). a

The following will have interesting applications.

Proposition 4.12 Let (M,g,£,®) be a simply connected quasi-regular

Sasakian-Einstein manifold(orbifold) of dimension n = 2m + 1. Then

d

Vol(M, g) = Vol(Z, h) = %( "

m+1
(=) a@r),

m1

where h 15 the Kdhler-Binstein meiric on Z such that m : M — Z 1s a Rie-

mannian submersion and d = Ind(Z).

Proof. Since 7¢"(Z) = e from an exact sequence in appendix A.2, M is the
total space of an S* V-bundle L with ¢i(L) = 3¢i(Z). Recall that Ric, =
2(m+1)h. Let n = z-f where 6 is the connection induced on I with curvature
(?im—;'l—))w, where w is the Kahler form of h. Then it follows from the abo-ve
arguments that

9= (Z&)n®n+="h
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is the Sasakian-Einstein metric. Integrating over the fibre gives the result. [

4.2 Construction of toric Sasakian-Einstein 5-

manifolds

The results in chapter 3 and corollary (4.11) give a method for constructing
toric Sasakian-Finstein 5-manifolds. We then calculate their homology using
know results on Seifert $'-bundles. We then make use of the classification of
simply connected spin 5-manifolds of S. Smale to determine the diffeomorphism

type of the smooth examples M that our method constructs when m (M) = e.

Theorem 4.13 Let X be a symmetric toric Fano surfoce. Let w: M — X be
the S V-bundle with Chern class 1ci(X), with d = Tnd(X). Then M has a

Sasakian-Einstein structure. If m{™(X) = e, then M is simply connected.

Proof. This follows from theorem (3.31) and corollary (4.11) O
Tn most of our examples X will be special symmetric, in which case Ind(X) = 1

or 2 from proposition (2.30). Then the M will be the 51 V-bundle associated

i
to K3 or K 2.

Proposition 4.14 Let (M,g,§,®) be a simply connected quasi-regular
Sasakian-Einstein 5-manifold(orbifold) with leaf space X a toric orbifold sur-
face. Then
83
Vol(M, g) = d (5) Vol(E i),
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where Y.y, is the polytope associated to X and its anti-canonical support func-

tion —k.

Proof. This follows from proposition (4.12) and corollary (2.27). O
This will be useful for the families of examples we will construct, for which
d=1or 2.

In general M constructed in this theorem is an orbifold. See the remarks be-
fore corollary (4.11) for the condition necessary for the smoothness of M. Pro-
ducing smooth examples is not difficult. In chapter (5) we will develop a tech-
nique for producing infinitely many smooth examples via theorem 4.13. This
will give infinitely many examples of Sasakian-Einstein manifolds (M, g,¢, @)
with by(M) = m for every odd m > 3.

For any orbifold X with local uniformizing systems {ﬁ,;, Ty, ¢}, the order
of X is the least common multiple of the orders of the uniformizing groups
T; and is denoted Ord(X). In the case we are considering X is a projective
surface with an orbifold structure. Let Sx C X be the orbifold singular set of
X Let Dj, 5 =1,...,n be the irreducible curves contained in Sx. The order of
the stablizer group ['; for z € D; is constant on an open dense subset. Denote
it by ;. Note that the singular set of X as a complex variety has codimension
two, i.e. is discreet in this case, and is contained in Sx.

Since the Seifert S'-bundle M — X is an S* V-bundle, it has a Chern class
e (M/X) € H*(X,Q). Taking its Ord(X) power we get an S' fiber bundle.
Thus we can take Ord(X)e;(M/X) € H*(X,Z). Let d be the largest integer
such that Ord(X)e,(M/X) € H*(X,7Z) is divisible by d. The following is due
to J. Kollar.
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Theorem 4.15 ([44, 46]) Let M — X be an S* Seifert bundle with smooth

total space over a projective orbifold surface. Suppose that H,(M, Q) =0 and
HM(X,7) = 0. Ifr = rankH*(X,Q), then the cohomology of M s

p |01 2 3 4 5

B |7 0 Z'+Z/d Tt 4 ,(Z/m) %P0 Zjd 7
where g(D;) = dim HY(D;, Op,) is the genus of D;.
Note that if X toric, then the curves D;,j = 1,...,n are a subset of the
anti-canonical divisor, and each has genus zero.

We make use of the classification, due to S. Smale, of smooth compact
simply connected 5-manifolds which in addition are spin. Recall that M is

spin when wz(M) = 0, where w(M) is the second Stiefel-Whitney class of M.

Theorem 4.16 ([63]) There is a one-to-one correspondence between compact
smooth simply connected spin 5-manifolds M and finitely generated abelian

groups. The correspondence is given as follows.
i. For any such M, Hy(M,Z) 2 Z" & T & T, where T is torsion.
4. For amy finite abelian group T and m > 0 there is a uniqgue M with
Hy(M,Z)=2Z"oToT.

In particular, if Hy(M,Z) & Z™ then M d’%;F #m{5? x 5%). We have the

following restriction on M.

Corollary 4.17 Suppose the Sasakian-Einstein space in theorem (4.13) is

smooth and simply connected. Then

o~ 2., g3
M d?ﬁ#m(s x §°),
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where m = bo(X) — 1.

4.3 Some classification results

We consider the problem of which smooth 5-manifolds M admit toric Sasakian-
Einstein structures. Of course, we have the well known properties discussed
above. We must have (M) finite, and the universal cover M is spin. We

have the following partial converse to the result of the previous section.

Theorem 4.18 Let M be a simply connected toric Sosakion-Einstein o-

manifold which s quasi-regular. Then the leaf space Z of F is a toric variety fd
and M d":;ﬁ( #m(S? x §%), for some m. Furthermore, the Sasakian-Einstein f
structure (M, g,€,®) is non-deformable as a Sasakian-Finstein manifold fiz- lJ‘

ing the foliation F determined by §.

The condition that F is preserved in the last statement can probably be re-

moved. Tt is sufficient to assume that quasi-regularity is preserved.

Proof. We have 72 acting on M a Sasakian isometries. By theorem (4.8)
(Z,h) is a normal orbifold surface with a positive scalar curvature Kéhler- :
Einstein metric h. Thus KZ' > 0. And for some n > 0, K" is very ample.

Thus tye-n © 2 — P(W*), where W = HY(Z,0(K;")), is an embedding.

Since 7 acts holomophically on Z, it complexifies to an action of T2 = C*xC*.

Furthermore, T2 acts on W*. Thus the action of T¢ is the restriction of that on
P(W*) to Z C P(W?*). The action of the torus on W* is completely reducible,
Let M be the group of characters of T¢. Then W* = ©pep Wi, where W, =

{we W*: tw = m(t)w for all t € TZ}. Thus TZ acts algebraically on Z.
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N ) ) ) j o
B 4

There exists a 2-dimengional orbit P C Z which must be dense. It is easy to

see that the stablizer of z € P is a finite subgroup of 7% C T3. Thus P = T¢. I5'.j
And it follows that Z is a toric variety. (See [56])

We have the exact sequence [37]

v (Y = m (M) = 7 Z) e

Thus 77" (£) = e. And corollary (4.17) determines the diffeotype.

Suppose {g;, 7, 1} is a 1-parameter family of Sasakian-Finstein structure.
Then we have a family (2, k) of Kéhler-Einstein structures, i.e. each Z; Il

carries a complex structure an Kihler-Einstein metric on the same underlying 3

orbifold. Let D = 37, D; be the anti-canonical divisor of Z. Let {2} and

O (log D) denote respectively the orbifold sheaves of differential forms and
differential forms with logarithmic poles along D = > D;. That is, they are L
the quotients of the corresponding sheaves on uniformizing neighborhoods.

Note that they are coherent analytic sheaves. Then

. d
0 % — b (0g D) — ) Op, 0 )
i=1
and
QL (log D)2 Oz ® O3, (4.9)

See [27, 57] for a proof. By Serre duality H*(Z,0z) = H'(Z,02'(Kz)). Tensor

|
i
(4.8) with O(Kz) and take the long exact cohomology sequence r:_"i

o @HO(Di,oDi(Kz)) — HY(Z,0Y(Kz)) —» H{(Z2,0(Kz))®* — ...,

3 |
72 [ ?‘\




Since Kz < 0, Kodaira vanishing shows that H®(D;,Op,(Kz)} =
HYZ,0(Kz) = 0, thus HY(Z,01(Kz)) = 0. Also H2(Z,0;) =
H°(Z,0'(Kz)) = 0. Thus for small ¢ the Z; are biholomorphic to Zy.

By the work of 8. Bando and T. Mabuchi [7] the Kéhler-Einstein metric
h; is unique up to the action of Aut(Z;)e, the connected component of the
identity in Aut(Z;). Thus there exists a family ¢, € Aut(Z;)o = Aut(Zo)o
with ¢zhy = ho. -

Proposition 4.19 Let (M, g,&, ®) be a quasi-regular toric Sasakian-Einstein
5-manifold with m (M) = e and Ho(M,Q) = 0. Then M %35 and {g,€, @}

is the standard round Sasakion structure.

Proof. Since wy(M) = 0 and M is simply connected, by corollary (4.17) we
have M d_%ﬂ 3%, Also the space of leaves Z of the foliation J has T (Z) =e
and b,(Z) = 1. And the toric orbifold Z is characterized by three vectors
{01, 09,03} C ZxZ, and has cyclic orbifold uniformizing groups. Furthermore,

from theorem A.8 we have
coo o 7T W) = Z2Z{01, 09,03} = 7TY(E) = mT (W) =6, (410)

where W =& Z/T? is an orbifold with boundary. In our case W is home-
omorphic to a disk, so Z{o),09,03} = Z x Z. Consider the sublattice
Z{o1, 02} C Z x Z. We have Z x Z/Z{01, 02} = Zy. Thus pos = —a101 — 020
with aq,as positive. If 73 = Rygo1 + Ryoog, then let U, < Z be the

the corresponding affine neighborhood. We have the uniformizing system
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;2L 52 .
62m o kzla 62m p kZQ), for

C? — U, with group Z, acting by (z1,23) — (
k= 0,1,...,p— 1. Set a3 = p. Then repeating the same argument gives

affine neighborhoods U, , U, with uniformizing groups Z,, and Z,,, where

.Ez- . 0
2mﬂ1k 1;‘1”4:

U, is the quotient of C? by the action (z1,72) — (e 2,67 w ), for

k=0,1,...,a1, and mutatis mutandis for U,,. We see that Z = CP; ,, ..,

the weighted projective plane with the standard orbifold structure. Then the

proposition follows from the next proposition. ]

We are considering the We;ighted projective space CFp , with the
following orbifold structure. For ¢ € {0,1,...,n}, consider the map
¢y Cr = CP2 . given by (21, z) = (2ot Loz ot 2],
Then the {¢;, ['; = Z,, } are a system of uniformizing neighborhoods. Note that
as analytic spaces or toric varieties we have CP, = CP"/Zy, X +++ X Zg,,.
But they are not isometric orbifolds. For one thing nf*(CPZ ) = e and
TN CPY Ly X+ v+ X L) = Bigg X =+ X Lg,. The existence of metrics with

certain properties depends strongly on the orbifold structure.

Proposition 4.20 The only weighted projective plane admitting o Kdhler-
Einstein metric is CPE) | = CP?, and in this case it s up to isometry and

homothety the Fubini-Study metric.

Proof. Consider the canonical V-bundle K of CF;? . . Denote by + the
action of C* on C™*, y(w)(z, ..., zm) = (W™20,...,w*™2,). The meromor-
phic m + 1-form 2 = %9- A A %’:& is invariant under this action. Let ¥ be

the vector field generated by v, ¥ = 'y*(%). Then w = Y {2 is a meromorphic
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section of K. We have ¥ = Ez;oakzka%, and

d d dz
w—Zm ’“akﬂ/\ AR A /\%. (4.11)
k e

Note that we are considering the V-manifold canonical bundle. As an algebraic
variety the canonical sheaf and divisors on CPJy  are in general different.

Consider the V-manifold map ¢ : CP™ — CPT - with 9([z0,.. ., 2m]) =

ydm
[22°,.. ., 2%"]. Then ¢*K is the line bundle on CP™ associated to the divisor
—apHy — ayHy — -+ — apHy,, where Hy is the hyperplane 2z, = 0, which is

linearly equivalent to —(ag -+ - - + am)H.
Suppose m = 2, and X = CF2 ., ,,. We have

Qp*Cl(X)Z[CPZ] = T!)*Cl(K)Z[CPQ] = (GLO +a; | CL2)2.

Thus we have ¢1(X)?*[X] = ("L::—;f;:—z)z Note that here, and in the following,
we are using V-bundle characteristic classes which can be computed via Chern-
Weil forms. (cf. [36])

For any compact smooth orbifold X we define the orbifold Euler charac-
teristic xors(X) = e(X)[X], where e(X) is the Euler class of X. And define
the orbifold signature to be Top(X) = %pl(X }[X]. On a Kéhler orbifold we

have (see Besse [10])

1

Xo00) = g [ [1BaF 435 = bl (4.12)




where By = W~ is the Bochner curvature and pq is the trace-free Ricci form.,

Likewise, we have

1 52
Torp(X ) = 52 /}; [ﬁ — [BOIQJ ds. (4.13)

Combining {(4.12) and (4.13) we get

1
Xorb(X) — STorb(X) == '8_*"5/ [3'3{}‘2 - I,O0|2] dp‘, (414)
T Jx

Thus if pg = 0 we get the orbifold Miyoaka-Yau inequality yors = 37orp.

Suppose M = CP?

0,01 ,02

Xors(X) = 22 + & + L. (see [62]) We have

with ap < a1 < a9 and (ag,a1,a2) = 1. Then

1 1 1a2+a? + a2
(X)) = =(c? — 26)[X] = S(F[X] — 2xp ) = =L [ 2 4.15
s(X) = 36 = 2)X]) = §(1X] — 230 = SELAEA
and we have xy = Siodridon But it is easy to see that
a0y + aotz + agay < aj + a2 + a3 with equality only if ag = a; = as.

So we have a contradiction unless aqg = a1 = ag == 1. In this case from (4.14)

we have By = (0, and the metric has constant holomorphic sectional curvature.

4

In other words, any toric Sasakian-Einstein rational homology 5-sphere is
just a quotient of the round metric on S There are infinitely many quasi-
regular toric Sasakian structures on S° with positive Ricci curvature. The
assoclated Kéhler orbifolds Z are the weighted projective planes which admit

positive Ricei curvature Kahler metrics by the solution to the Calabi conjec-
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ture. {cf. [71] or [5])




Chapter 5 | 4

3-Sasakian manifolds

In this chapter we define 3-Sasakian manifolds, the closely related l
quaternionic-Kahler spaces, and their twistor spaces. These are sister ge- ;

ometries where one is able to pass from one to the other two by considering

the appropriate orbifold fibration. Given a 3-Sasakian manifold S there is the

associated twistor space Z, quaternionic-Kéhler orbifold M, and hyperkéhler :

cone C(S). This is characterized by the diamond:

| c(S)

N |
| Nt
| M

The equivalent 3-Sasakian and quaternionic-Kéhler reduction procedures

provide an elementary method for constructing 3-Sasakian and quaternionic-
Kihler orbifolds. This method is effective in producing smooth 3-Sasakian
| manifolds, though the quaternionic-K&hler spaces obtained are rarely smooth.
In particular, we are interested in toric 3-Sasakian 7-manifolds & and their as-
sociated four dimensional quaternionic-Kéhler orbifolds M. Here toric means

‘that the structure is preserved by an action of the real two torus 72, In four
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dimensions quaternionic—Kéhler- means that M is Einstein and anti-self-dual,
i.e. the sell-dual half of the Weyl curvature vanishes W, = (. These examples
are well known and they are all obtained by reduction. (cf. [18] and [22]) In
this case we will associate two more Einstein spaces to the four Einstein spaces
in the diamond. To each diamond of a toric 3-Sasakian manifold we have a
special symmetric toric Fano surface X and a Sasakian-Einstein manifold M
and the following diagram where the horizontal arrows are inclusions.

M—3&

Xz o

|
M

The motivation is twofold. First, it adds two more Einstein spaces to the
examples on the right considered by C. Boyer, K. Galicki, and others in [18, 13]
and also by D. Calderbank and M. Singer [22]. Second, M is smooth when
the 3-Sasakian space & is. And the smoothness of § is ensured by a relatively
mild condition on the moment map. Thus we get infinitely many Sasakian-
Einstein manifolds with arbitrarily high second Betti numbers paralleling the

3-Sagakian manifolds constructed in [18].

5.1 Definitions and basic properties

Definition 5.1 Let (S, g) be a Riemannian manifold of dimensionn = 4m+3.
Then S is 3-Sasakian if it admits three Killing vector fields {€1, €%, €3} each

satisfying definition (4.1) such that g(€%,€F) = & and [€%, 8] = 2e,".
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We have a triple of Sasakian structures on §. For ¢ = 1,2,3 we have 7 (X) =
(€%, X) and ®H(X) = Vx&. We say that {g,&, 7", : i = 1,2,3} defines a
9-Sasakian structure on 8. Fach of the three Sasakian structures satisfies the
properties of proposition (4.2), and the quaternionic nature of a 3-Sasakian

structure is reflected in the following,.

Proposition 5.2 The tensors ', =1,2,3 satisfy the following identities.

i D) = —eyutt,
i, O o = —ei®* + & @9 — 6;;1d

Notice that if @ = (a1, az,a3) € 5% C R® then £(a) = 016! + a2€? + 3% is
a Sasakian structure. Thus a 3-Sasakian manifold come equipped with an 52

of complex structure.
Similar to proposition (4.4), the following proposition can be taken as a

definition of a 3-Sasakian manifold.

Proposition 5.3 Let (8,g) be ¢ Riemannian manifold of dimension n =
4m + 3. Then (S,g) is 3-Sasakian if, and only if, the holonomy of the met-
ric cone (C(M),g) is o subgroup of Sp(m - 1). In other words, (C(M),3) is

hyperkdhler.

Proof.(sketch) Let ¢ = 72 be the Euler vector field on C(4). Then define

almost complex structures I;,i =1,2,3 by

LX = &H(X) — n(X)¢, and Lo = £

80




It is straight forward to verify that they satisfy I; o I; = eIy — 6;;/d. And
from the integrability condition on each ®* in definition (4.1) each I;,¢ = 1,2, 3

is parallel. O

Since a hyperkéahler manifold is Ricci flat, the remarks following proposition

(4.4) imply the following.

Corollary 5.4 A 3-Sasakian manifold (S,q) of dimension n = 4m 4 3 is
Einstein with positive scalar curvature s = 2(2m + 1)(dm + 3). Furthermore,

if (8,9) is complete, then it is compact with finite fundamental group.

The structure group of a 3-Sasakian manifold reduces to Sp(m) x I3 where

I3 is the 3 x 3 identity matrix. Thus we have
Corollary 5.5 A 3-Sasakian manifold (M, q) is spin.

Suppose (S, g) is compact. This will be the case in all examples considered
here. Then the vector fields {£!,£2,£3} are complete and define a locally free
action of Sp(1) on (S, g). This defines a foliation Fa, the 3-Sasakian foliation.
The generic leaf is either SO(3) or Sp(1), and all the leaves are compact. So
F3 is quasi-regular, and the space of leaves is a compact orbifold, denoted M.
The projection w : § — M exhibits § as an SO(3) or Sp(1) V-bundle over M.
The leaves of F are constant curvature 3-Sasakian 3-manifolds which must be
homogeneous spherical space forms. Thus a leaf is T\S® with I < Sp(1). We
say that (8, g) is regqular if the foliation F3 is regular.

For 8 € S? we also have the characteriétic vector field £(3) with the as-

sociated 1-dimensional foliation Fs C Fs. In this case Fp is automatically
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quasi-regular. Denote the leaf space of Fp as Zg or just £. Then the natural
projection 7 : & — Z is an §* Seifert fibration. And Z has all the properties
of theorem (4.8).

Fix a Sasakian structure {¢!, &, n'} on §. The horizontal subbundle H =
kern! to the foliation F of ¢! with the almost complex structure I = —®"|y
define a CR structure on 8. The form n = 2 +in? is of type (1, 0) with respect
to 1. And dnlymeryy € V*°(H Nker(n)) is nondegenerate as a complex 2-form
on H N ker{n). Consider the complex l-dimensional subspace P C AMOH
spanned by 7. Letting exp(it€') denote an element of the circle subgroup
U(1) ¢ Sp(1) generated by ¢! one see that exp(it€') acts on P with character
e 2, Then L & 8 Xy P defines a holomorphic line V-bundle over Z. And

we have a holomorphic section 8 of A¥(Z) ® L such that
8(X) = n(X),

where X is the horizontal lift of a vector field X on Z. Let D = ker(#) be the
complex distribution defined by 8. Then df|p € I'(A* D ®L) is nondegenerate.
Thus D = ker(f) is complex contact structure on Z, that is, a maximally
non-integrable holomorphic subbundle of THZ. Also, # A (df)™ is a nowhere
zero section of Kz ® L™, Thus I & K;E%’T as holomorphic line V-bundles.

We have the following strengthened version of (4.8) for 3-Sasakian manifolds.

Theorem 5.6 Let (S, g) be a compact 3-Sasakian manifold of dimension n =
dm + 3, and let Zg be the leaf space of the foliation Fg for B € 8% Then Zg
is a compact Q-factorial contact Fano variety with a Kihler-Einstein metric

h with scalar curvature s = 8(2m + 1)(m + 1). The projection w : § — Z is
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an orbifold Riemannian submersion with respect to the metrics g on S and h

on 2.

The space £ = Zjg is, up to isomorphism of all structures, independent
of 3 € $2 We call Z the twistor space of §. Consider again the natural
projection w : § — M coming from the foliation F3. This factors into = :
S — Zand p: Z — M. The generic fibers of p is a, CP* and there are possible
singular fibers T\CP! which are simply connected and for which I' C U(1) is
a finite group. And restricting to a fiber L|¢p: = O(2), which is an V-bundle
on singular fibers. Consider g = exp(3£?) € Sp(1) which gives an isometry of
8¢, : 8§ — 8 for which (€'} = —£'. And ¢, descends to an anti-holomorphic
isometry o : Z2 — Z preserving the fibers.

We now consider the orbifold M more closely. Let (M, g) be any 4m
dimensional Riemannian orbifold. An almost quaternionic structure on M
is a rank 3 V-subbundle @ C End(1'M) which is locally spanned by almost
complex structures {J;}i—1 23 satisfying the quaternionic identities J? = —Id
and JiJy = —JoJ; = Ja. We say that @ is compatible with ¢ if J¥g = g for

i = 1,2,3. Equivalently, each J;,i =1, 2,3 is skew symmetric.

Definition 5.7 A Riemannian orbifold (M, g) of dimension 4m,m > 1 is
quaternionic Kahler if there is an almost quaternionic structure @ compatible

with g which is preserved by the Levi-Civita connection.

This definition is equivalent to the holonomy of (M, g) being contained in
Sp{1)Sp(rn). For orbifolds this is the holonomy on M\ Srq where Sy is the
singular locus of M. Notice that this definition always holds on an oriented

Riemannian 4-manifold (m = 1). This case requires a different definition.
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Consider the curvature operator R : A? -» A? of an oriented Riemannian
4-manifold. With respect to the decomposition A% = A?,_ D A%, we have
Wi+ 7

R=| "~ B , (5.2)
T W+ 35
where W, and W_ are the selfdual and anti-self-dual pieces of the Weyl cur-
vature and 7 = Ric—2g is the trace-free Ricci curvature. An oriented 4 di-
mensional Riemannian orbifold (M, g) is quaternionic Kéhler if it is Einstein

and anti-self-dual, meaning that 7 =0 and Wi =10.

Theorem 5.8 Let (S, g) be a compact 3-Sasakian manifold of dimension n =
dm+3. Then there is a natural quaternionic Kahler structure on the leaf space
of F3, (M, §), such that the V-bundle map w : § — M is a Riemannian

submersion. Furthermore, (M, §) is Einstein with scalar curvature 16mm +

2)).

Proof. For any z € M choose 2 € w (z) and a slice W C § through z
invariant under I' = Stab(z) C Sp(1). This gives a local uniformizing chart
for M, ¢ : U = W — U, where W/T = U € M. And W x Sp(1) —
W xp Sp(1) uniformizes the V-bundle w : & — M. Let H be the horizontal
distribution to the foliation F3. Given X & T'S denote its horizontal projection
by AX. The bundle @ of almost complex structures is given over U by J; =
—®*|4; with local basis of section J;,4 = 1,2,3 over W given by (J;)y = (Ji)ap-
Here we are identifying the tangent space of W with H thereby giving W
the submersion metric. Then proposition (5.2) ii) shows that J;,i = 1,2,3

satisfy the quaternionic identities. To compute the covariant derivative of
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fvv:.

the J;,4 = 1,2,3 notice that they are the sections of the associated bundle
W x Sp(1) xXgpy 5p(1) corresponding to W and {¢',£% &%} < sp(1). Let
X € T,W with X = hX + V with vertical component induced by ¢ € sp(1).
Let Y be a basic vector field on W x Sp(1), meaning horizontal and projectable.

Then if V denotes the Levi-Civita connection on W, we have

Vx (YY) = —hVx®(Y) — Vy[(, €]
= —h[g(€", V)X — g(X,Y)¢] - Vy[(, & (5.3)

And since —V[(, €] is a local section of @, we have a quaternionic Kéahler
structure. Any quaternionic Kéhler space is Einstein (c¢f. [61]). The scalar
curvature is a simple consequence of the O’Niell tensors.

We will settle the m = 1 case. Let X,Y, Z, W be basic vector fields on S.
For simplicity they will be identified with their projections on M, The O’Niell

tensors are
AxY =) g(X, &), Axg =0Y(X), T=0. (5.4)

See Besse [10] for more details on Riemannian submersions. Straight forward

calculation gives the relation between the Riemannian curvature tensors R of
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(S, g) and R of (M, §):

R(X,YVZ=R(X,Y)Z -2 Z g(X, &Y ) 2Z) :
+Zg Y, ' 2)%(X) - ZQX P Z)0HY) (5.5)

Let J be the almost complex structure on U/ associated to &z for § € 5% and i

O = —VE;. If Rxy denotes the curvature of End(T'S), then from (4.1)
Rxy®(Z) = g(@X,2)Y — g(®Y, 2)X + ¢(X, Z)2(Y) — g(Y, Z)P(X). (5.6) A i

Using the curvature formulae (5.5) and (5.6) and the identities in proposition

(5.2) we have

RXyJ(:Z’) = R(X,Y)J(Z)- JR(X,Y)Z ‘ )
—R(X,Y)®(Z) + ®(R(X,Y)Z)
= —Rxy®(Z) — gY, Z)0(X) + g(Y, 82)X + g(X, 2)B(Y) ~ g(X, ®Z)Y
—2 Z 9(X, BY) [P o B(Z) — o B (Z)]
=2 (X, JY )0 JZ ~ J o J, ).
| (5.7)

Thus the curvature R of End(TM) restricts to Skewsym(Q) C

Skewsym{T'M) = A% Let A2 C A? denote the subspace corresponding to |
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Q@ under this identification. So

A*=AT @ AT, (5.8)

where A2 is the orthogonal compliment to A2, Furthermore, denote by A2 <
A% the subspace commuting with AZ. So A? 22 sp(m). And using the natural
identification Skewsym(Q) = Q, J — i[J,—] € Skewsym(Q), if my : A — A2
is the projection,

R=cny, for ¢ > 0. (5.9)

Let R : A2 — A? be the curvature operator of (M, §). If @ € A2 and y € A2,
then
0= R(a)y = [R{a), 7).

So R(a) € A?. Also, by the symmetry of the curvature operator,

So for any v € A%, R{y) € A}. And we see that R(y) = cy. Thus the

curvature operator is

R =cmy + 9, (5.10)

where /(8) € A% for all B € A? and vanishes on (A2)L c A% When
m = 1, and M is 4 dimensional, A3 is the usual bundle of selfdual forms,
and A2 = A2 is the bundle of anti-self-dual forms. In view of the decompo-

sition (5.2) of R we have precisely that (M, §) is anti-self-dual and Einstein. O
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Both theorems (5.6) and (5.8) can be inverted. See [12] for the inverse of
theorem (5.6). The inverse of theorem (5.8) was first proved by Konishi [47] ,

in the regular case. We state it below for orbifolds as we will make use of

it later. Alternatively, starting with a positive scalar curvature quaternionic h
Kahler orbifold M one constructs its twistor space Z as the bundle of unit ‘
vectors in Q. Then as in [61] Z is positive scalar curvature Einstein with ?
a complex contact structure and anti-holomorphic involution preserving the
fibers, which are generically CP'. Then as in corollary (4.11) one constructs ‘
&, and the complex contact form lifts to define the 3-Sasakian structure on

8. {cf. [12])

Theorem 5.9 Let (M, §) a quaternionic Kdhler orbifold of dimension 4n with
positive scalar curvature normalized to 16n(n + 2). Then there is a principle 31
SO(3) V-bundle w : S — M, for which the total space S admits a 3-Sasakian

structure making w o Riemannion submersion.

In many cases the SO(3) bundle lifts to an Sp(1) bundle. The obstruction i
F to this lifting is the Marchiafava-Romani class. An almost quaternionic struc-

;? ture is a reduction of the frame bundle to an Sp{(1)Sp(m) bundle. Let G be

the sheaf of germs of smooth maps to Sp(1)Sp(m). An almost quaternionic

structure is an element s € H} (M, G). Consider the exact sequence

0 — Zy — Sp(1) x Sp(m) — Sp(1)Sp(m) — 1. (5.11)

Definition 5.10 The Marchiafava-Romani class is ¢ = 6(s), where

55 Hyy(M, G) — F2,(M, Z,) |
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is the connecting homomorphism.

One has that ¢ is the Stiefel-Whitney class wy(Q). Also,  is the obstruction
to the existence of a square root L of L. In the four-dimensional case n = 1,
€ = wy(AY) = wy(T'M). When £ = 0 for the 3-Sasakian space S associated to
(M, §) we will always mean the one with Sp(1) generic fibres.

The above is all encapsulated in the following “diamond” where the maps

are orbifold fibrations. See [13] for more details.

o(S)

N
s —]— z (5.12)
NS
M

On a quaternionic Kéhler orbifold (M, g) one has the moment map
p € T(M, 9" ® Q), where g C Jsom(g) is a Lie subalgebra of the Lie algebra.
of Killing vector fields. If X € g, then VX is in the subspace of End(T.M) de-
termined by the holonomy algebra sp(1) @ sp(m) by a result of B. Kostant [48].

Since Vx — VX = Ly, X preserves the quaternionic structure. We define
{teat, X) = m (VX). (5.13)

We will make use of the quaternionic Kihler quotient to construct new
examples. Let G C Isom(g) be a compact subgroup with moment map

# €M, g* @ Q). Then G acts on u~1(0). If the action is locally free, then

M )G = 0)/G (5.14)
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naturally has the structure of a quaternionic Ké&hler orbifold. Each of the
four gpaces in the diamond (5.12) has a moment map and reduction procedure
which results in another diamond. For our purposes it will be more convenient
to use the equivalent notion of 3-Sasakian reduction discussed in the next

section.

5.2 3-Sasakian reduction

We will need 3-Sasakian reduction to construct examples of 3-Sasakian 7-
manifolds. In particular, we are interested in toric 3-Sasakian 7-manifolds
which have T2 preserving the the 3-Sasakian structure, Up to coverings they
are all obtainable by taking 3-Sasakian quotients of S**~! by a torus T*,
k= n — 2. See [18, 13] for more details.

Let (S, g) be a 3-Sasakian manifold. And let I(S, g) be the subgroup in the
isometry group Isom(S, g) of 3-Sasakian automorphisms. Of course Isom(S, g)

contains the group generated by {£,£2,£3}, We mention the following.

Proposition 5.11 ([13]) Let (S, g) be a complete 3-Sasakian manifold which
is mot of constant curvature. Then Isom(S,g) = I(S,g) x Sp(1l) or
Isom(S,g) = I(S,9) x SO(3). If (S,g) does have constant curvature, then
Tsom(8) strictly conteins Isom(S,g) = I(S,g) x Sp(l) or Isom(S,g) =
I(S, g} x SO(3) with lsom(S, g) the centralizer of Sp(1) or SO(3).

Let G C I{S,g) be compact. The group I(S,g) extends to the group
I(C(8),§) of hyperkshler isometries of (C(S),7) preserving the factor R;.

See proposition (5.3). Due to [41] there is a moment map p : C(S) — g* @ R3,
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where g is the Lie algebra of G. One can define the 8-Sasakian moment map

ps S —g* ®R3 (5.15)

by restriction pus = pls. For 3-Sasakian reduction to work we must require
the level set u5'(0) to be invariant under the Sp(1) action generated by the
3-Sasakian vector fields £%,i = 1,2,3. From this requirement the 3-Sasakian
moment map must have the following form. (cf. [13])

Let X be the vector field on S induced by X € g. The moment map is
given by

1 o
(p%, X) = En“(X), a=1,23for X €g, (5.16)

We have the following version of reduction.

Proposition 5.12 Let (S, g) be a 8-Sasakian manifold and G C I(S,g) a con-
nected compact subgroup. Assume that G act freely (locally freely) on ug'{0).
Then S | G = 15" (0)/G has the structure of a 3-Sasakian manifold (orbifold).
Let o : u5(0) — S and w1 u5'(0) — pz'(0)/ G be the corresponding embedding
and submersion. Then the metric § and 9-Sasakian vector fields are defined

by 7§ = t*g and m&ilﬂy(m = &

Note that for z € 8, Imd{us)s == g+ ® R® where g C g* is the annihilator of
the Lie subalgebra of the stablizer of z € 8. So G acts locally freely on u3z'(0)
if, and only if, 0 is a regular value of us.

Consider the unit sphere %1 C H" with the metric g obtained by re-
stricting the flat metric on H™. Give $*~! the standard 3-Sasakian structure

induced by the right action of Sp(1). Then I(S**~1,g) = Sp(n) acting by
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the standard linear representation on the left. We have the maximal torus
™ C Sp(n) and every representation of a subtorus T* is conjugate to an

inclusion 1 : 7% — 7™ which is represented by a matrix

e, - o
w71,y Th) = : : ) (5.17)
0 T H?:l o
where {7y,...,7:) € T*. Every such representation is defined by the k x n
integral weight matriz
¢ \
al ay, ay
2 2 2
a cen (L e @
o= | k " (5.18)
ka’f ay ak

Let {e;},# = 1,...,k be a basis for the dual of the Lie algebra of T%,

t = R*. Then the moment map pgo : S*1 — tf ® R?® can be written as
pa=2_; phe; where
ph(u) =" arddu. (5.19)
i

In terms of complex coordinates vu; == z + w7 on H" we have
uh(z,w) =13 af(|laf® — |wl®) + 2k ) ajma. (5.20)
! l

Assume rank(Q2) = k otherwise we just have an action of a subtorus of T,
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Denote by

Gy 7 O
Any,.op =det | : (5.21)
0 af,

the (:) k x k minor determinants of €.

Definition 5.13 Let © € #,(Z) be a weight matriz.

(i} € is non-degenerate if Ay, o, #0, forall 1 <oy < - <oy <,

Let Q be non-degenerate, and let d be the ged of all the Ay, . o, the kth
determinantal divisor. Then §2 is admissible

(i) if ged(Day,aprrr - - - r Datyoditrnirnr - - - Daynay) = @ for all length k + 1

sequences 1 < op < oo <op <o < gy <n+ 1

The.quotient obtained in proposition (5.12) Sp = 51 /T*(1) will depend
on 2 only up to a certain equivalence. Choosing a different basis of t, results
in an action on 2 by an element in Gi(k, Z). We also have the normalizer of 7™
in Sp(n), the Weyl group # (Sp(n)) = L, x Z% where L, is the permutation
group. #(Sp(n)) acts on $*"~! preserving the 3-Sasakian structure, and it
acts on weight matrices by permutations and sign changes of columns. The
group Gl{k,Z) x #(Sp(n)) acts on M (Z).

The ged d; of the jth row of  divides d. We may assume that the ged of
-each row of 2 is 1 by merely reparametriziﬁg the coordinates 7; on T%. We

say that 2 is in reduced form if d == 1.

Lemma 5.14 Every non-degenerate weight matriz  is equivalent to o reduced

matriz.
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So Sq will only depend on the reduced form of  and equivalence up to the

action of Gl(k,Z) x # (Sp(n)).

Theorem 5.15 ([13, 18]) Let @ € 44, ,(Z) be reduced. |
(1) If Q is non-degenerate, then Sq is an orbifold. |

(i) Supposing § is non-degenerate, Sq is smooth if and only if Q) is admissible. ‘

Notice that the automorphism group of S contains T % &2 7 /10 (TF),
We are primarily interested in 7-dimengional toric quotients, In this case *

there are infinite families of distinct quotients. We may take matrices of the

form ) .
10 .-~ 0 [43] bl I
* :
01 v 0 ag b |
Q= = (5.22) |
LO o --- 1 ap bk )
Proposition 5.16 ([18)) Let Q € Myry2(Z) be as above. Then Q is ad-

missible if and only if a;,b;,4,5 = 1,...,k are all nonzero, ged(ay, b)) =1 for
i=1,...,k, and we do not have a; = a; and b, = b;, or a; = —a; and b; = —b, L

for some i # 7.

Proposition (5.16) shows that for n = k + 2 there are infinitely many
reduced admissible weight matrices. One can, for example, choose a;,b,,4,5 =
1,... k% be all pairwise relatively prime. We will make use of the cohomology
computation of R. Hepworth [40] to show that we have infinitely many smooth
3-Sasakian 7-manifolds of each second Betti number b, > 1. Let A, , denote

the & x k minor determinant of £ obtained by deleting the p** and ¢** columns.
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Theorem 5.17 ([40][17, 18]) Let Q € .y x42(Z) be a reduced admissible

weight matriz. Then m(Sq) = e. And the cohomology of Sq s

p |0 1 2 3 4 5 6 7

H|Z 0 ZF 0 Gq ZF 0 Z

where Gg is a torsion group of order

Z |A81,t1| e |A8k+1,tk+1|

with the summand with index s1,t1,.. ., Skt1, tey1 wncluded if and only if the

graph on the vertices {1,...,k + 2} with edges {s;, t;} is a tree.

I we consider weight matrices as in proposition (5.16) then the order of

G is greater than |a; - --ag| 4 by - - - bx]. We have the following,.

Corollary 5.18 ([40][18]) There are smooth toric $-Sasakian 7-manifolds
with second Betli number by = k for all k > 0. Purthermore, there are in-

finitely many possible homotopy types of examples Sq for each k > 0.

Let @ € #pi2(Z) be a reduced admissible weight matrix, so Sq is a
smooth 3-Sasakian 7-manifold. Recall that we have a right action of Sp(1) on
Sq and Sq/Sp(l) = Mg is the associated quaternionic kihler orbifold. We
will denote N(§2) = ug'(0) which has an action of 7%+? x Sp(1). Since 2 is

reduced, the exact sequence

e TF B P2 72 0 (5.23)
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induces an exact sequence
0—ZF - ZF2 . 72 0, (5.24)

Denote B(£) := N(2)/Sp(1) and Q() := T**2\ B(f2). Then we have the

following commutative diagram

o) (5.25)

where the upper left arrow is a principal Sp(1) fibration, lower left is a locally
free T* fibration, the diagonal has generic T*+? fibers, and the bottom map
has generic T% fibers. We will define a stratification of B(f), and likewise
N{§). -From the non-degeneracy of (2 it follows that at most one coordinate

e, @ = 1,..., k+ 2 can vanish on either set.

No(}) ={u € N(Q) : uy == 0, forsome a=1,...,k+ 2}

N(Q)={ue N(Q):u, #£0, forall a=1,...,k+ 2 and there exists a pair
(e, tg) lying on the same C-line in H} i:

No(Q) ={u e N(Q) 1 uo #0, forall = 1,...,k+ 2 and there is no pair

(e, up) lying on the same C-line in H}
(5.26) |

Let T%t2 be the quotient of 7%+2 by the diagonal element, (—1,...,—1) which
acts on B(Q).

Proposition 5.19 Let Q) € My pi2(Z) be reduced and non-degenerate. Then

!
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(i) T2 acts freely on By(Q).

(i) B1(Y) consists of k + 2 components | |"2 By (a, 2) where the stablizer of
each point of By(a, ) is a subgroup G, C TF? with G, = SL.

(i5) Bo(Q) consists of k -2 orbits of T*V2 with stabilizer groups F, C T*+?2
with Fy = T? generated by G and Gyy1.

(tv) Q(2) is a polygon with edges and vertices corresponding to components of

B1(Q2) and Bo(Q) respectively.

Proof. The action of T% x Sp(1) on N(R) in terms of quaternionic coordinates
Uq 18 given by u, — ePousg for o = 1,...,k+ 2 and ¢ € Sp(1). We will
consider the u, as homogeneous coordinates on B(}) ¢ HP*!. Consider
complex coordinates u, = 2, + wsj. We may act by an element of Sp(1) so
that wg = 0 for any § € {1,...,k+ 2}. Suppose [u] € B;(£2}, so each u, # 0.
After .é,bting by Sp(1) we have uy, = z, and ug = zg, and it follows from
equation (5.20) and non-degeneracy that z,w, = 0, for all & = 1,.,.,k + 2.
Acting by j if necessary, we may assume that we42=0. The stablizer of [u] is
the projection of the stablizer of u which is contain in T%% . 8! onto T%12,

The action of T%+2. 81 ig
2q — €0 2 and wy - Dy fora=1,...,k+2, (5.27)

where €' is the coordinate of the S factor. We have e##12 = ¢~ and effe =
et for i = 1,...,k + 1 depending on whether z, = 0 or w, = 0. So the
stablizer group of u € By() is the S! subgroup (e, ..., e, ) € T2
where there is a -+ if w, =0 and a — if 2, = 0.

Suppose [u] € By(2). Then as before we may suppose wy.p = 0. There
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exists a § with zgwg # 0. Again the stablizer of [u] is the projection onto
T*+2 of the stablizer of u in T%" . §*. From equations (5.27) we have either
e = e =1 or % = ¥ == —1. But since either 2, # 0 or w, 5 0 for all
we have either e =1 fora=1,...,k+2o0r e = —lfora=1,... k+2.
Thus T*t2 act freely on By(S2).

By a transformation by an element of Gi(k, Q) we may normalize Q to get

'4 N

Lo -0 fi &

01 -+ 0
0 = | ooy (5.28) j

\0 0 -1 f)‘c Q'FcJ

for which we have pg/(0) = ug'(0). Then the fi,4 = 1,...,k and g;,5 =
1,...,k are nonzero. And we may assume that g;/f; < -+ < g;/f; <+ <
9k/ fr after making a further transformation, Then the equations for N(Q) in

complex coordinates u, = 24 + Wej become

l2l® = lwil® + fillzz41]® — [wes1]®) + @ zus2]? — [wisal?) = 0, and (5.2

W2 + [l 12641 + GWkyo2k42 =0 1=1,... k.
Suppose [u] € Bi(£2), with wera = 0 and 2w, = 0 for @ = 1,...,k + 2.
Assume that 0 < g/f1 < -+ < ¢/fi < +++ < gr/fx, for simplicity. The

general case is only slightly more complicated. To [u] we associate a vector,

which denotes the stablizer group, with a + in the o®* component if z, # 0 and

i wo = 0 and a — otherwise. We have the following: v; = (+,...,+,—, ..., —, +)

i for 7 = 1,..., k&, which has 4 plus signs, Vg1 = (—,...,—, +,+), and vpyy =
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(—y...,—,— +). Denote the corresponding stablizer group to v; by Gj.

Let Bo(f, Q) be the subset of By(Q) with ug = 0. Suppose [u] € Bo(3,2).
As before, we may fix g2 = 2Zp42, where we choose another coordinate if
8 = k + 2. Then we have either 2z, = QO or wy = 0 for o = 1,..., k+ 2.
The stablizer of [u] is the S subgroup generated by e¥% along with the St
subgroup in the N1(f) case. Using equations (5.29) and ||u|| = 1, one can
show that Bo(B, ) consists of a single orbit of 7412,

As discussed in [58] or [37] the quotient Q(Q) of B(2) by T%12 is a closed

polygon with k-2 edges, that we may label with the v;, and k+ 2 vertices. [

Recall the orbifold Mg has an action of T2 & Tk+2 /1a(T*), and can be
characterized as in [58] and [37] by its orbit space and stablizer groups. See
Appendix A.3 for more details. The orbit space is Mg/T? = Qn. We also
use G;,4 = 1,...,k + 2 to denote the image of the G; in Té, which are !
subgroups by the non-degeneracy of {2. Then Qg is a polygon with kK42 edges
Cy,Cy, . . ., Cyya, labeled in cyclic order, with the interior of C; are orbits with
stablizer ;. Choose an explicit surjective homomorphism ® : Z¢2? — 72
annihilating the rows of §2. So

s | " k+2 (5.30)

€1 Cg -+ Cpag
It will be helpful to normalize ®. After acting on the columns of ® by
# (Sp(k + 2)) and on the right by GI(2,7Z) we may assume that b; > 0 for

i=1,....,k+2and e1/by < +++ < /by < -+ < Cprgf/brra. Now in the
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above proof one has, up to a cyclic permutation, v; = (+ — -+ —),..., 95 =

(+--+—+-=),. ., Upt2 = (+++-+). Then the stablizer groups G; C 77 are

characterized by (m;, n;) € Z* where

i k-2
(mi i) =Y (b))~ 3 (ya), i=1,-k+2. (5.31)
=1 I=it1
It is convenient to take (1o, no) = — (M2, Nira)-

5.3 Anti-self-dual Einstein orbifolds

We will congider toric anti-self-dual Einstein orbifolds in greater detail. Such
an orbifold M is toric if it admits an effective action of 72, By the previous
gection quaternionic Kéhler reduction gives us infinitely many examples. By
reducing HP** by a subtorus 7% C Sp(k+2) defined by an admissible matrix
§2 we get a toric anti-self-dual orbifold Mg with by(M) = k. The orbifold M is
characferized by a polygon Qq = M /T? with k42 edges labeled in cyclic order
with (mo, no), (M1, 71), - - . (M, Pkr2) in Z2 with (mo, no) = — (M2, Terz).

These vectors satisfy the following:
a. The sequence my, i==0,...k + 2 is strictly increasing.
b. The sequence (n;—-n;—1)/(mi—my1), i = 1,... k+2 is strictly increasing.

We will make use of the following classification result of D. Calderbank and

M. Singer.

Theorem 5.20 Let M be a compact toric 4-orbifold with w¥™*(M) = e and

k= by(M). Then the following are equivalent.
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i. One can arrange that the isotropy date of M satisfy a. and b. above by

cyclic permutations, changing signs, and acting by Gl(2,Z).

is. M admits a toric anti-self-dual Einstein metric unigue up to homoth-
ety and equivariant diffeomorphism. Purthermore, (M, g) is isometric to the

quaternionic Kahler reduction of HLP* by a torus T* C Sp(k + 2).

It is well known that the only possible smooth compact anti-self-dual Ein-
stein spaces with positive scalar curvature are S* and TP, which ate both
toric. Note that the stablizer vectors vy = (mg, 70), 1 = (M1, M), ..., Vpa =

(M2, re) form half a convex polygon with edges of increasing slope.

Theorem 5.21 There is a one to one correspondence between compact toric
anti-self-dual Binstein orbifolds M with n{™(M) = e and special symmelric
toric Fano orbifold surfaces X with 79"%(X) = e. By theorem (8.831) X has o
Kéhler- Einstein metric of positive scalar curvature, Under the‘ correspondence

Proof. Suppose M has isotropy data vg,vy,...,Uk+2. Then it is immediate
that vg,v1,. .., Vkes, —V1, —Va, - . ., —Up+1 8re the vertices of a convex polygon
in Ng = R?, which defines an augmented fan A* defining X. The symmetry
of X is clear.

Suppose X is a special symmetric toric Fano surface. Then X is charac-
terized by a convex polygon A* with vertices vg, vy, . .., Usgya With vapia = vo.
Choose & primitive p = (u,w) € Z X Z,w > 0 which is not proportional to
atty v; — ¥i_1,4 = 1,...,k + 2. Choose s,t € Z with su + tw = 1. Then

W —u

let vi,4 = 0,...,2k + 4 be the images of the v; under There
s ¢
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! L f !
s a vy = (mn

L) with m} smallest. And v}, vj. ...,V gy, Where the

subscripts are mod 2k + 4, satisfy a. and b. Such a toric orbifold is simply
connected if and only if the isotropy data span Z x Z. One can show that the

correspondence does not depend on the particular isotropy data. ]

In the next section we will prove a more useful geometric correspondence
between toric anti-self-dual Einstein orbifolds and symmetric toric Kahler-

Einstein surfaces.

Example. Consider the admissible weight matrix

1011
0112

Then the 3-Sasakian space Sg is smooth and »(8q) = bo(Mg) = 2. And the

anti-self-dual orbifold Mg has isotropy data
vg = (—7,—2),(~5,-2),(=1,-1),(5,1),(7,2) = v4.

The singular set of M consists of two points with stablizer group Zj and two

with Z4. The associated toric Kihler-Einstein surface is that in figure (2.3).

¢

Proposition 5.22 Let X be the symmetric toric Fano surface associated to
the anti-self-dual Einstein orbifold M. Then Ind(X) = 2 if and only if
wy(M) = 0. In other words, Ky' has a square root if and only if the contact

line bundle on Z, L, does.
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Recall that wy(M) is equal to the Marchiafava~-Romani class €. Thus the
vanishing of wq(M) is equivalent to the existence of a square root L3 of the

contact line bundle L on Z.

Proof. Suppose Ind(X) = 2 which is equivalent to wy(X) = 0, where W,
denotes the orbifold Seifel-Whitney class. Recall that the orbit space of M
is a k + 2-gon W with labeled edges Ci, ..., Cgya. Since w§"°(M) = e, there
exists an edge C; for which the orbifold uniformizing group I" has odd order.
Let U be a tubular neighborhood of an orbit in C;. So U 2 §' x I x D/T,
where [ is an open interval and D is a 2-disk. And let V' be a neighborhood
homotopically equivalent to M\ U with U UV = M. Consider the exact

homology sequence in Zs-coefficients,

oo = Hy(BUY @ Hy(BV) — Ho(BM) — Hi(B{U NV))

— Hy(BU) @ H\(BV) — 0. (5.32)

We have BU = S! x I x EO(4)/T. Since EO(4) is contractible,
H(EO(4)/T,A) = H,(I',A) for any abelian group A. In particular,
H™I,Zy) = 0 for all n > 0, since |I'| is odd. Thus Hy(BU,Zy) = 0 and
H(BU, Zsy) = Zy. Similarly, it not hard to show that Hi(B(U NV, Zs) = Zy.
From the exact sequence (5.32) the inclusion j : V' — M induces a surjec-
tion j. : Ho(BV,Zy) — Hy(BM,Zy). Considering the orbit spaces one sees
that there ig a smooth embedding ¢ : V — X. The tangent V-bundle T M

lifts to a genuine vector bundle on BM which will also be denoted 7'. See
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appendix A.2. Then

’UJQ(M) = 'UJQ(TM) < Hz(BM,Zg) = HOIH(HQ(BM, Zz),Zg).

Let o € Hy(BM,Zy). Then there exists a § € Hy(BV,7Z) with j.0 = a.
Then

wo(TM)(a) = wao(TV)(B) = wa(TX){e.) = 0.

Thus wa(M) = 0.

The converse statement will follow from the main result of the next

gection. O

5.4 Twistor space and divisors

We will consider the twistor space Z introduced in theorem (5.6) more closely
for the case when M is an anti-self-dual Einstein orbifold. For now suppose
(M, [g]) is an anti-self-dual, i.e. Wy = 0, conformal orbifold. There exists a

complex three dimensional orbifold Z with the following properties:

a. There is a smooth V-bundle fibration w : 2 — M.

b. The general fiber of P, = w™(z),z € Z is a projective line CP with

normal bundle N & O(1) @ O(1), which holds over singular fibers with
N a V-bundle.

¢. There exists an anti-holomorphic involution ¢ of Z leaving the fibers P

invariant.
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Let T be an oriented real 4-dimensional vector space with inner product

g. Let C(T') be set of orthogonal complex structures inducing the orientation,

ie. if r,s € T is a complex basis then r, Jr, s, Js defines the orientation. One

has C(T) = 8% C A%(T), where S? is the sphere of radius v/2. Now take T to

be H. Recall that Sp(1) is the group of unit quaternions. Let

Sp(1)4 x Sp(1)-

act on H by

w— gug?, for we Hand (g,9) € Sp(1)+ x Sp(1) .

Then we have

Sp(1)+ xz, Sp(1)_ & SO4),

where Z, is generated by (—1, —1). Let

C={ai+bj+ck:a®+b+c=1,a,bceR}

={geSp(l)y:¢*=—1}= 5%

Then g € C defines an orthogonal complex structure by

w — gw, for w & H,

(5.33)

(5.34)

(5.35)

(5.36)

giving an identification C = C(H). Let V, = H considered as a represen-

tation of Sp(1); and a right C-vector space. Define 7 : V. \ {0} — C by

n(h) = —hih~!. Then the fiber of 7 over hih~! is AC. Then 7 is equivariant
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if Sp(1)y acts on C by ¢ — ggg', g € Sp(1).. We have a the identification
C = Vi \ {0}/C" = B(V}). (537

Fix a Riemannian metric ¢ in [g]. Let ¢ : U — U C M be a local
uniformizing chart with group I, Let F5 be the bundle of orthonormal frames

on /. Then

F(} X.S’O(4) IP(V,|_) = Fg X30(4) C (5.38)

defines a local uniformizing chart for 2 mapping to
iy X0y P(V4)/T' = F /T X504y P(V4.).

Right multiplication by j on Vi = H defines the anti-holomorphic involution
o which is fixed point free on (5.38). We will denote a neigﬁborhood as in
(5.38) by Us.

An almost complex structure is defined as follows. At a point z € Uz the
Levi-Civita connection defines a horizontal subspace H, of the real tangent

space T, and we have a splitting
L,=H,0T,P, =T, 0T,P,, (5.39)

where w(z) = & and T, is the real tangent space of . Let J, be the complex
structure on T, given by 2 € P, = C (T%), and let J, be complex structure on
T, @ T, P, arising from the natural complex structure on P,. Then the almost

complex structure on 7, is the direct sum of J, and J,. This defines a natural
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almost complex structure on Zy; which is invariant under T'. We get an almost
complex structure on Z which is integrable precisely when W, = 0.

Assume that M anti-self-dual Einstein with non-zero scalar curvature,
Then Z has a complex contact structure D ¢ T2°Z with holomorphic contact
form ¢ € (A" Z ® L) where L = ™92/ D,

The group of isometries Isom(M) lifts to an action on 2 by real holo-
morphic transformations. Real means commuting with . This extends to a
holomorphic action of the complexification Isom{M)¢. For X € Fgom(M)QC,
the Lie algebra of Isom(M)¢, we will also denote by X the holomorphic vec-
tor field induced on Z. Then 0(X) € H(Z,O(L)). By a well known twistor

correspondence the map X — 6(X) defines an isomorphism
Jsom(M) ® C = H(Z, O(L)), (5.40)

which maps real vector fields to real sections of L.

Suppose for now on that M is a toric anti-self-dual Einstein orbifold with
twistor space Z. We will assume that 79"(M) = e which can alway be
arranged by taking the orbifold cover. Then as above T2 acts on Z by holo-
morphic transformations. And the action extends to T¢ = C* x C*, which in
this case is an algebraic action. Let t be the Lie algebra of 7% with ¢ the Lie

algebra of T¢. Then we have from (5.40) the pencil

P =Pltc) C |1, (5.41)

107




where for ¢ € P we denote X; = (f(¢)) the divisor of the section 6(t) €
H°(2,0(L)). Note that P has an equator of real divisors. Also, since T2 is
abelian, every X,,t € P is 1¢ invariant.

Consider again the T2-action on M. Let K, denote the stablizer of z € M.
Recall the set with non-trivial stabilizers of the 7-action on M is B = [ J? B,
where B; is topologically a 2-sphere. Denote z; = B;NB;., B = B\{z;, ©;-1}
and B' = f:f B]. And denote the stabilizer of B, = B; \ {z;,zi_1} by
K; = S*(my,n;). The stablizer of z; is K = T2. We will first determine the

singular set ¥ C Z for the T?-action on Z,

Lemma 5.23 For z € B there exists on P, precisely two fived points 2%, z~
for the action of K, which are o conjugate. For z € B!, the stablizer group in

T? of any other z € P, is trivial.

Proof. Let ¢ : U — U be a uniformizing chart centered at z with group .
We may assume that K, acts on U with v C K, and R'm/fy = K. Then the

uniformized tangent space splits
T:=TaT. (5.42)

When = € B’ we take T} to be the space on which K; acts trivially and T3
on which K’i act faithfully. When z = z;, K, =K & IE}_H assume R’i acts
faithfully on 7} and trivially on T4, and f(i_,_l trivially on 77 and faithfully on
Ts.

We determine the action of K, on z € B,. Identify (5.42) with H = C&jC,

considered as a right C-vector space. The action of K, = S'(¢) in the first
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case is

(z,9) — (z,ty),

and the action of K, = S'(s) x S'(t) in the second is

(z,y) — (sz,ty).

If (u,v) € 8T x §* C Sp(1)4 x Sp(1)_, then the action of (u,v) on Ty is

(z,y) — (wv 'z, (uv) " y).

In the first case the action of K; is realized by the subgroup {(u,u)} with

t = u~'. Considering the representation of Sp(1); on V, = H, = acts by
(w, 2) — (uw,u " 2).

One sees that the only fixed points on P, = P(V,) are [1 : 0] and [0 : 1. It
is easy to see that K; acts freely on every other point of P,. This also proves

the statement for z = x;. &

Denote the two K, fixed points on P, for x = z; by z¥. We will denote
B, :=P,,,i=1,...,k+ 2. The next result is an easy consequence of the last

lemma.

Lemma 5.24 There exist two irreducible rational curves C‘f,i =1,...,k+2

mapped diffeomorphically to B; by w. Purthermore, o(CF) = CF.

109




The singular set for the T?-action on Z is the union of rational curves

= (U U(ugc ey ). (5.43)

The fixed points for T2 are 2,4 = 1,...,k+ 2. And the stablizer group of

O = G\ {2, %5 |} is K;. If Sz is the orbifold singular set, then Sz C .
In this case Sz = Sing(Z), the singular set of £ as an analytic variety.

We will denote the union of the curves C= by

k—+2
¢ = Jcruey).

=1

Then either C is a connected cycle, or it consists of two o-conjugate cycles. It
will turn out that C' is always connected. Thus it may be more convenient to
denote its components by C;,4 = 1,...,2n, where n = k£ + 2, and the points

2 by 2 and 24, such that
Z; xO,;ﬂCH_l,i: 1,...,2%,

where we take the index to be mod 2n.
We now consider the action of 7§ on Z. The stablizer group of z € Z in

T2 will be denoted G,. Let G; C T¢ be the complexification of Xj.

Lemma 5.25 For z € C},i=1,...,2n, the stablizer group G, coincides with

G;.

Proof. We have G; C G, with dim G; = 1. Suppose G; # G, then G,/G; is

a discrete subgroup of T¢/G; = C*. It is easy to see that G,/G; is an infinite
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cyclic subgroup of Tg/G;. Then the orbit of z, G} 2 T2/G, must be a one

dimensional complex torus, which is a contradiction, [

Recall that a parametrization of a stablizer group K; = S(my,n;), of B,
¢=1,...,n,is only fixed up to sign. This amounts to a choice of orientation of
B;. In view of proposition (5.27) for the stablizer group G of C, i = 1,...,2n,
there is a fixed parametrization p; : C* — TZ. One picks one of two possibilities

by the rule: For z in a sufficiently small neighborhood of a point of C] one has

%%pf;(t)z € C;.

Lemma 5.26 We have p; = —pipy, fori=1,...,n, where we consider the Pi

to be elements of the Z* lattice of one parameter subgroups of TE.

Proof. Let z € B;. And consider the action of G; on the twistor line P, as
described in the proof of lemma (5.23). If z € F;, then lim;_q p;(2) = 2z, € G, Ay

i
implies lim, o p; 1 (2) = 2. € Cip. 0 | 4

We now consider the isotropy representations of G,. The proof of the 1”;"

following is straight forward.

Proposition 5.27 Let z € C with w(z) = 2. Andlet ¢ : U — U be o K-
invariant local uniformizing chart with group v C K,. Also G, denotes the

complezification of K. .

. Letz€ Cji=1,...,2n. Then there are C-linear coordinates (u,v,w) on
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T:Uz and an identification G, = C*(t) so that G, acts by
(u, v, w) — (u, tv, tw).

And the subspace v = w =0 maps to the tangent space of Cloat 2,

W Let z =2z fori=1,...,2n. Then there are C-linear coordinates (u, v, w)

on T30z and an identification G, = C*(s) x C*(t) so that G, acts by

(u, v, w) — (stu, sv, tw).
And the uniformized tangent space of P, (resp. Ci, and Civ1) at z is the
subspace v =w = 0 (resp. u=v =0 and u = w = 0},

We will determine the T¢-action in a neighborhood of C. Let z € C, and

let Uz be a K,-invariant uniformizing neighborhood as above with local group

v C K,. Then there is
i. a K, -invariant neighborhood W of the origin in 730z,
ii. a K, -invariant neighborhood V of % in Uz, and

iii. a K,-invariant biholomorphism w: W =V, ie.
plgz) = gp(z), for x € W,g € K, (5.44)

This is a well known; see for example [11].
This linear action extend locally to G‘z, where G, is the complexification

of K,. Let Wy C W be a connected relatively compact neighborhoed of the
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origin. And define the open set A = {{g,w) € G, x Wy : gw € W}, and
let Ay C A be the connected component containing K, x Wo. Then for any
(9,w) € Ao, we have gp(w) € V and (5.44).

We now describe the local action of T¢ around a point z € (. There are
two cases, 1. and ii., distinguished as in proposition (5.27). In case i. z ¢ (]
for some i = 1,...,2n. And in case ii. z = z; for some 1 = 1,...,2n. we will
use proposition (5.27) and the above remarks to produce a neighborhood U of
z as follows.

Case 1. Suppose z € C]. There exists an equivariant uniformizing neigh-
borhood ¢ : U — U centered at z with group v C K;. One can lift the
corresponding one parameter group 7; : C*(#) — T¢ with image Gy, Let
G’ = C*(s) be a compliment to G; in T¢. There exists coordinates (4, v,w) in

U so that

U

{{tu,v,0) t Ju—1j <¢fv] <1, |w| <1},e>0,2=(1,0,0).  (5.45)
And v = w = 0 is the subset mapped to C' and G acts by
(u, v, w) — (u,tv,tw), for |t| < 1. (5.46)

The action of & is given by (u,v, w) — (su, v, w) for lsu — 1] < e.
Case ii. Suppose z = z; for some ¢ = 1,...,2n. There exists an equivariant
uniformizing neighborhood ¢ : U — U centered at z with group v C K, =

T2, And one can lift the one parameter groups to g; and fiy;pi+1 to give an
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isomorphism
pi X P11 C*(s) x C*(t) — T,

where T2 is the complexification of T2, There exists coordinates (u,v,w) in U
so that

U= {{u,0,w): [u| <1,v] < 1,|w| <1}, = (0, 0,0), (5.47)

where the equations 4 = v =0, u = w =0, and v = w = 0 are the equations
defining the subsets mapped to C;, Ciyq, and P, respectively. And the action
of (s,t) € C*(s) x C*(t) is given by

(u, v, w) — (stu, sv, tw), for [s| < 1,[¢] < 1. (5.48)

We will call such a neighborhood U of a point of C an admissible neigh-

borhood, and ¢ : U — U with group 7y an admissible uniformizing system. Let

U be an admissible neighborhood. We set

U:=U\Z. *

Denote by U’ the preimage of U’ in 7. We will define subsets U, 04y, and |
Un of 0.
Case 1. For (a,b) # 0, ;

Ul = {(w,v,w) € U : av = buw}, /

et
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Case ii. For (a,b) with a # 0,

ﬁéb = {(u,v,w) € U ou = bvw},
and
ET(I)I = {(u,v,w) € U v = 0}, and ~(’]’1 = {(u,v,w) € U w= 0}.

Lemma 5.28 The subsets defined above are connected closed submanifolds of

" and each consists of a single local Té-orbit with these being all the orbits.

And the closure of each orbit is an analytic submanifold of U.

This follows from the above description of the Tg-action. Note that v preserves
the orbits so this gives a description of the local orbits of 7¢ in U. We will
denote by U/, Uj,, and Uy, the corresponding local orbits in U,

We have the local leaf structure of the orbits in an admissible neighborhood.

In most cases this gives the global leaf structure.

Lemma 5.29 Let U be an admissible neighborhood. Let E, F C U’ be separate

local leaves not both being of type U, or Uy Then E and F are not contained

5 in the same Tg-orbit.

Proof. After acting by an element of 73 we may assume U is an admissible
neighborhood as in case i. with coordinates (u,v,w) and v = w = 0 defining
C,NU. Let z € E and 2 € F both have v = 1. There is a g € T3 with

gz = 2. Let zp = lim;_,o p;(t)z = lim,_,0 p4(t)2". Then

= i . = i i = i : ! =
gzo—g(%grgpa(t)Z) lim pi(t)gz = lim p:(£)2" = 0.
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S0 g € Gy, and g = pi(ty). If |to| < 1, then g preserves the local leaves. If

[ta! > 0, the equation z = g2/ gives a contradiction. O

Lemma 5.30 For any z € U’, an admissible neighborhood, the stoblizer group

G, is the identity.

Proof. If g € GG,, then g fixes the entire Té-orbit of z. Therefore g fixes the
entire set U7, containing 2. But the closure of U/, intersects either ¢ or Ciy1.
S0 g is contained in either G; or Git1. But from the above description of the

action on U’, we see that ¢ = e. O

Lemma 5.31 Let z be any point of Pl = P\ {z,z0m}. And let U be an
admissible neighborhood of z; or z,,. Then there exists a neighborhood V' of

z and g € T¢ so that g(V) C U.

Proof. The stablizer group of P/ is the image of the one parameter group
pipir1~! 1 C*(s) — TE. Then the orbit of z by ¢ for example is P/. So a

suitable element g € G; will work. Ol

By lemmas (5.30) and (5.31) there is a small neighborhood W of ¥ ¢ 2 ,
so that if we set W' := W\ ¥, the stablizer of every point or W’ in 72 is the
" identity.

Our goal is to determine the structure of the divisors in the pencil P. As

before we will consider the one parameter groups p; € N = 7 x Z, where N
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Define elements {; € P by #; = piy1 — p,% = 1,...,n. Recall that the

stabilizer of P, is ppiy : C* — TE. If t € P\ {t,ts,...,t,}, then a vector
field induced by t is tangent to, and non-vanishing on, #;,% = 1,...,n. Since
the contact structure D = ker# is transverse to the twistor lines, P, N X, =
{z*,27}. Let z € Z; be in an admissible neighborhood of C. Then the TE-
orbit O of # satisfies O \ O C €. The intersection of O with any admissible
neighborhood is a leaf U, which has analytic closure. Let Y = O, then Y is
an analytic subvariety.

Suppose C' consists of two disjoint cycles with ¥ N C' = |JI_, Ci. Then ¥

is a degree one divisor, i.e. intersecting a generic twistor line at one point. If

Y = o(Y), then Y NY =i, Py, a disjoint union of twistor lines with x; ¢

B,i=1,...,m. Since Y NY is T¢-invariant, we must have Y NY = @. Thus
Y intersects each twistor line at one point. This is impossiblet Y defines a,
positively oriented, almost complex structure J on M. Then if ¢; = ¢;(M, J), i
2 = 2xorp + 3Torp Where Xorp and 7oy are defined as in the proof of proposition | 1*
(4.20). We have ﬁl“

1

2 il

s :

3o = — —d > 0. v
2Xord + 3Tors 4W2/A424dﬂ 0 :‘:;i

But a familiar Bochner argument shows the intersection form is negative def- [,
inite. Therefore ¢' C Y, Y is a degree two divisor, and X; = Y. From the Y

description of the admissible uniformizing systems and the local leaves, we see ny
that X, is a suborbifold. Since X is the closure of an orbit isomorphic to T# it i

is a toric variety and has the anti-canonical cycle C and stabilizers p; defining 18

A*, i
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The adjunction for X = X, formula gives Ky ¥ Kz ® [(X]lx = K;%LX =
Kg] z. Thus K3' > 0. Now corollary (2.25) implies that X is Fano and A*
is & convex polytope. It follows that ¢y,...,%, C P form a cycle of distinet
points.

Suppose ¢ = t;,i = 1,...,n. Then X, NY = CUP,. Tet z X; be
in an admissible neighborhood of type i. with orbit O. Let D = . Then
D\O CCUP,. And P, C D, for otherwise we would have D — X, as in the
last paragraph. For an admissible neighborhood U of z or 2., O must inter-
sect U in a leaf Ugy or Ugy. This can be seen from lemma (5.29). We must have
either DN Y = CUPF, or a cycle of the form C4,...,C;, B, Civntts- - Con.
In the first case D = X, is irreducible. Since X is a real divisor, arguments
as in [59] show that X, must be a suborbifold, i.e. smooth on a uniformizing
neighborhood. But X; has a crossing singularity along F;, a contradiction,
Therefore, DNY = Ciy. o Coy Py Gty oo, Cyy, and D is an analytic
subvariety, and a suborbifold. Since D = O it is a toric variety. Since X is

real, D C X;. And DU D = X, as both are degree two. O

Note that if the isotropy data of M is normalized to satisfy conditions a.

and b. before (5.20), then we have the identification

A1 = (mlﬂnl): o PRtb2 = (mk+2:nk+2):f)k+3 = —(ml,m), ces

ey Pokra = —(Mpya, pya) = (Mo, ng).  (5.49)

Here, as above, we identify p; with a lattice point in N = Z x Z.
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5.5 Sasakian submanifolds

Associated to each compact toric anti-self-dual Einstein orbifold A4 with
m (M) = e is the twistor space 2 and a family of embeddings X, ¢ Z
where £ € P\ {t1,1,,..., trro} and X = X, is the symmetric toric Fano sur-

face canonically associated to M. We denote the family of embeddings by
byl X - Z (550)

Let M be the total space of the $'-Seifert bundle associated to K3
K2, dependmg on whether Ind(X) =1 or 2.

Theorem 5.34 Let M be a compact toric anti-self-dual Einstein orbifold with
T(M) = e. There ezists o Sasakian structure {g,§,®} on M. So that if
(X, h) is the Kihler structure making m : M — X o Riemannion submersion,
then we have the Jollowing diagram where the horizontal maps are isometric

embeddings. _
MAs
Lo

X4 oz (5.51)

|
M

If the 3-Sasakian space S is smooth, then so is M. If M is smooth, then

M c%;?#k(Sz % S%), where k = 265(S) +1

Proof. The adjunction formula gives

1 1
Kx 2Kz ®[X][x =Kz 9 K;?|x = Ki|x.
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Thus

_i
Ky 2 K2y, (5.52)

Let A be the Kihler-Einstein metric on 2 related to the the 3-Sasakian metric
g on & by Riemannian submersion. So Ric, = 8h. Recall that S is the total
space of the S'-Seifert bundle associated to L, or L7 if wy(M) = 0. Also M
is the total space of the S'-Seifert bundle associated to either Ky or K;(%.
Using the isomorphism in (5.52) we lift 2, to z,. Then we have

g=n®n+a'h,

and 1 = £6 with ¢ a connection on L or L} and where d — Ind(Z)=2or 4
respectively. Then it is not difficult to see that by pulling the connection back

by ;L= K3 we can pull i back to 5 on M. And define J — ¢(h). Then

is a Sasakian metric on M.

If S is smooth, then locally the orbifold groups act on L (or L) without

non-trivial stabilizers. By (5.52) this holds for the bundle K%' (or K}%) on
X.

We have 7{"(X) = e from theorem A.8 of appendix A.3. If M is smooth,

then theorem (4.13) and corollary (4.17) fmply that T1(M) = e and give the
diffeomorphism, 0

We are more interested in M with the Sasakian-Einstein metric that exists

121




tI'l S,

2

122




Chapter 6

Main Theorems

In this chapter we present the new infinite families of Sasakian-Einstein man-

ifolds. This gives us the diagram (5.1).

Theorem 6.1 Let (S,g) be a toric 3-Sasakian 7-manifold with m(S) = e.
Canonically associoted to (S, g) are a special symmetric toric Fano surfoce

X and a toric Sasakion-Finstein 5-manifold M which fit in the commutative

diagram (5.51). We have 777%(X) =€ and m (M) =e. And
M2 H#5(S% % S%), where k = 2b5(S) + 1
A,

Furthermore (S, g) can be recovered from either X or M with their torus ac-

tions.
Proof. The homotopy sequence

o= () = m(S) — 7TTHM) — e,
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where G = SO(3) or Sp(l), shows thas TP (M) = e. The surface X iq
uniquely determined by theorem 5.33. Tt follows from the exact SeqUence
in theorem A.8 involving the fundamental group of a toric 4-orbifold thyg
7{?(X) = e. It follows from theorem (5.34) that M is smooth and the
diffeomorphism holds. And an application of theorem (4.13) give the
Sasakian-Einstein structure on M and shows it ig simply connected. Given X
or M with its Sasakian structure we can recover the orbifold M, which has a
unique toric anti-self-dual Einstein metric by theorem (5.20). This uniquely

determines the 3-Sasakian manifold by results of chapter 5. (H

Theorem 6.2 For each odd k > 3 there is a countably infinite number of toric

Sasakian-Einstein structures on #k(S5% x §%).

Proof. Recall from corollary (5.18) there are infinitely homotopically distinct
smooth simply connected 3-Sasakian manifolds & with by(S) = k for £ > 0.
From theorem (6.1} associated to each S is a distinct Sasakian-Finstein

manifold diffeomorphic to #m(S? x 52), where m = 2k + 1. O

Our construction only produces the homogeneous Sasakian-Einstein struc-
ture on S? x S%. The restriction of k to be odd is merely a limitation on the
techniques used. In the next chapter there is an example of toric Sasakian-
Einstein structure on #6(5? x 5%).

If a simply connected manifold has two Sasakian-Einstein structures for

the same metric ¢ then it is S5.
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Corollary 6.3 For each odd k > 3 there is a countably infinite number of
cohomogeneity 2 Finstein metrics on #k(5% x S*). In porticular, the identity

component of the isometry group is T°,
These metrics have the following curious property.

Proposition 6.4 For M = #k(S%x 5*) with k > 1 odd, let g; be the sequence
of Binstein metrics in the theorem normalized so that Vol, (M) = 1. Then we

have Ricy, = Aig; with the Einstein constants A, — 0 as i — oo. '

i

Proof. From proposition 4.14 we have }

T3 I

. Vol(M, g) = d (g) Vol(E_,), |

for the volume of a Sasakian-Einstein manifold with toric leaf space X the anti-
canonical polytope X_,. We have d = 1 or 2. The above Sasakian-Finstein
manifolds have leaf spaces X;, where X; = X ar. Observe that the polygons

A} get arbitrarily large, and the anti-canonical polytopes (X ), satisfy

Vol((3_):i) — 0, as i — co. !

This implies the following,

Theorem 6.5 The moduli space of Finstein structures on each of the mani-

folds #k(S? x S?) for k > 1 odd has infinitely many connected components.
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The case k& = 1 is covered by homogeneous examples by M. Wang and W.
Ziller [70].

There are a couple of consequence of these examples following from some
finiteness results. There is a result of M. Gromov [31] that says that a manifold
which admits a metric of honnegative sectional curvature satisfies a bound on
the total Betti number depending only on the dimension, Further, he proved
that if the diameter is bounded, then as the total Betti number goes to infinity
the infimum of the sectional curvatures goes to —oo. For any x < 0 there exists
ko so that, for & > ky, #k(S? x 5%) does not admit a metric with sectional

curvature i > k. We have the following.

Theorem 6.6 For any £ < 0 there are infinitely many simply connected Fin-

stein 5-mansfolds which do not admit metrics with sectional K > g,

One can also consider these examples in relation to a compactness result of
M. Anderson [3]. He showed that the space of Riemannian n-manifolds (M, 9),
M (A, ¢, d) with Ric, = Ag, inj(g) > ¢ > 0, and diam < d is compact in the C'®

topology. For fixed k& > 1 odd in theorem (6.2) the Sasakian-Einstein metrics

gion M = #k(S? x $%) have A = 4. We have Vol,, (M) — 0 as ¢ — oo, s0 no -

subsequence converges. We have the following,

Theorem 6.7 For the the sequence of Einstein manifolds (M, gi) we have
inj(g;) — 0 as 4 — oo, Also, take any sequence k; > 1 of odd integers and

examples from theorem (6.2) (#k:(S? x S%),91), then we have inj{g;) — 0 as

i — 00.

Examples of Einstein 7-manifolds with properties as in theorem (6.6) and in

the second statement of theorem (6.7) have been given in [18]. These are the
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toric 3-Sasakian 7-manifolds Sq considered here.
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Chapter 7

Examples

We consider some of the examples obtained starting with the simplest. In
particular we can determine some of the spaces in diagram (5.1) associated to

a smooth toric 3-Sasakian 7-manifold more explicitly in some cases.

7.1 Smooth examples

It is well known that there exists only two complete examples of positive scalar
curvature anti-self-dual Einstein manifolds [42] [26], S* and CP? with the
round and Fubini-Study metrics respectively. Note that we are considering

CP? with the opposite of the usual orientation.

M= 5%

Considering the spaces in diagram (5.1) we have: M = $4 with the round
metric; its twistor space Z = CP3 with the Fubini-study metric; the quadratic
divisor X C 2 is CP! x CP! with the homogeneous Kéhler-Einstein metric;

M = 5% x S with the homogencous Sasakian-Einstein structure; and & = §7
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has the round metric. In this case diagram (5.1) becomes the following.

92 x 8% — g7
J |
CP! x CP'— ¢p3 (7.1)
|
84

This is the only example, I am aware of, for which the horizontal maps are
isometric immersions when the toric surface and Sasakian space are equipped

with the Einstein metrics.

M =CP?

In this case M = CP? with the Fubini-Study metric; its twistor space is
Z = Fi, the manifold of flags V C W € C? with dim V = 1 and dimW = 2,
with the homogeneous Kéhler-Einstein metric, The projection 7 : F} 2— CP?
is as follows. If (p,1) € Fy o s0 { is a line in C P2 and p € [, then w(p} ) =p-ni,
where p_ is the orthogonal compliment with respect to the standard hermitian

inner product. We can define F, , ¢ CP? x (CP?)* by

Fro={{lo:pr:pal ¢ : 6" 1 %) € CP? x (CPPY . S pigt = 0.

And the complex contact structure is given by & = ¢*dp; — p;dg*. Fix the action
of T2 on CP? by

(€%, %) 20 1 21 1 2] = [20 : €21 1 ¥ 2],
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Then this induces the action on Fiq

(€, ) [po : py < pa), [¢° : ¢ - ) = (Ipo : e®py : py), [g° - e gl eg?),

Given [a, ] € CP" the one parameter group (&7, ¢7) induces the holomorphic
vector field W, € D(T%0F, ,) and the quadratic divisor X, = (§(W,)) given
by

Xo = (amq' +bpag® =0, pig = 0).

One can check directly that X, is smooth for 7 € TP\ {[1,0],[0,1],[1, 1]}
and X, = (CP(%), the equivariant blow-up of CP? gt 3 points. For 7 ¢
{[1,0],[0,1],[1,1]}, X, = D. + D, where both Dy, D, are isomorphic to the
Hirzebruch surface £y = P(Ogp: @ Ocpi (1))

The Sasakian-Einstein space is M — #3(8% x S%). And ‘we have S —
S(1,1,1) = SU(3)/U(1) with the homogeneous 3-Sasakian structure. This

case has the following diagram.

#3(5? x S%-8U(3)/U(1)
q:f%) — Fi,z (7.2)
|
cp?

7.2  Galicki-Lawson quotients

The simplest examples of quaternionic-K&hler quotients are the Galicki-
Lawson examples first appearing in [29] and further considered in [16]. These

are circle quotients of HP2. In this case the weight matrices are of the form
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2= p = (p1,p2,p3) with the admissible sot

{A13(Z2) ={p € ZIp; £ 0 for i = 1,2,3 and ged(p;, p;) = 1 for 4 =£ J}

We may take p; > 0 for ¢ == 1,2,3. The zero locus of the 3-Sasakian moment
map N(p) C S is diffeomorphic to the Stiefel manifold VQ‘% of complex 2-
frames in C® which can be identified ag Vay = U(3)/U(1) SU(3). Let
Jo 1 U(1) = U(3) be

™0 0

fr)=10 0

0 0
Then the 3-Sasakian space S (p) is diffeomorphic to the quotient of SU(3) by
the action of U(1)

T W = o)W f00,-1-ps-pn)(7) Where € U(1) and W € SU(3).

Thus S(p) = SU(3)/U(1) is a biquotient similar to the examples considered
by Eschenburg in [25].

The action of the group SU(2) generated by {€',€2,¢%} on N(p) SU(3)
commutes with the action of U(1). We have N(p)/SU(2) = SU(3)/8U(2) ~
S® with U(1) acting by

— 15) 3
T-v= f(~p2%p3,—P1—P3,~P1-p2)U forve 57 C C?

We see that Mg = ((L'-"azham3 where a; = pa + p3, a9 = p; + P03 = p1 + po

and the quotient metric is anti-self-dua] with the reverse of usual orientation.
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(¢,9)

(~¢,—q)

Figure 7.1: infinite Fano orbifold structures on (C‘Pé)

If p1,p2, p3 are all odd then the generic leaf of the 3-Sasakian foliation Fa
is SO(3). If exactly one is even, then the generic leaf is Sp(1). Denote by
Xp1,paps the toric Fano divisor, which can be considered as a generalization of

CP(%)‘ We have the following spaces and embeddings.

#3(S? T 33)"5(191:{92,173)

Xm P2pa Z(pl:pZ: 103) _ (7-3)

2
C al:ﬂ'ZyGS

A simple series of examples can be obtained by taking p = (2¢ — 1,1, 1)

for any ¢ > 1. Then the anti-self-dual Einstein space is M = Cp2

1g,q Which is

homeomorphic to CP?, but its metric is ramified along a CP! to order g. For
the toric divisor X € Z we have X == CP (3) With the metric ramified along two
CPl s to order ¢. We get an sequence of distinct Sasakian-Einstein structures
on M = #3(5% x §%).

It is possible to construct new examples of toric Sasakian-Einstein mani-
folds M with b, even. The surface in figure (2.3) is a “generalized blow-up”
of CP? at 6 points. One can check that the total space of K3 minus the
zero section is smooth. Thus we obtain a toric Sasakian-Einstein structure on

M 22 46(57 x $9).
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Appendix A |

Orbifolds ‘f

A.1 Definitions

‘The notion of an orbifold, also called a V-manifold, was developed by I, Satake
in 1956._‘ Subsequently he and W.L. Baily developed the theory of real and
complex orbifolds generalizing familiar results for manifolds. For exammple,
we make use of the Gause-Bonnet theorem for V-manfolds [62] and Baily’s
extention of the Kodiara embedding theorem to V-manifolds. Many familiar
results for manifolds can be proved almost verbatim for V-manifolds. This is
true for de Rham’s theorem, the Hodge decomposition theorem, and Kodaira~

Nakano vanishing as proved in [2].

Definition A.1 A smooth(holomorphic) orbifold is a second countable Haus-

dorff space X together with an open covering {U; }iea satisfying:

i. {Ui}tica is an open cover of X such that fzelUNU;thereisak c A
so thatz € U, C Us nU;.

. For each i € A there is a triple {U,, I;, ¢:} where U; is a connected open
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subset of R™(C) contatning the origin, T; is o finite group of diffeomorphisms

(biholomorphisms) acting effectively and properly on Ui, and ¢, : U, — U; is
continuous with ¢; 0y = ¢;, for each v € Iy, and the induced map U, /U — Uy

is a homeomorphism.

wi. If Uy C Uj, there is a diﬁeomorphism(biholomomhism) Gji U, — ﬁj
onto an open subset such that $i = ¢; 0 gii. This implies that for any v; € T

there is a unigue v € L'y so that Y5 © 93 = gji © V.

One can always take the uniformizing groups I';, C SO(n) acting linearly in
the smooth case, In the complex case one can take holomorphic uniformizing
systems so that I'y C GL(n,C) (see [11]). For z € X let & ¢ (z) for
any uniformizing neighborhood system {U,I, ¢} containing z. Then, up to
conjugaf;jon, the isotropy group of %, only depends on . We denote this group
I'z. The open dense subset of X of points & with I, = {e} ‘ar.e the regular
points. The points with nontrivial isotopy groups are the orbifold singular
points. The set of orbifold singular points is denoted Sx. The least common
multiple of the orders of all the I's,z € X is the order of the orbifold X and
is denoted Ord(X).

We make much use of the orbifold analogue of a fiber bundle.

Definition A.2 A V-bundle E over X consists of a bundle By, over each
U for each local uniformizing system {ﬁi,ﬂ, éi} with group G and fiber I
together with o finite group I and a homomorphism hg, o TF — Aut(By,)

satisfying:

i. The group homomorphism T, 7 — Ty induced by 7 : By — U is

surjective.
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W If g U; — ﬁj is a diffeomorphism onto an open subset, there is o bundie
homomorphism %+ By, — By, | aii(0y)r Such that if v} € T there is UNAGUE
v; € T’} so that h, (V}) o gl = 95 © hg, (). And if gy 0 Uy — Uy is another

diffeomorphism, then (gr5 © gs0)* = G © G-

If F' is a vector space with the group G acting linearly and each Im(hﬁi) consist-
ing of vector bundle automorphisms, then E is a vector V-bundle. Stmilarly, if
Fis a Lie group and each Im(hf,i) consists of principle bundle automorphism,

then E is a principle V-bundle.

We have the notion of a holomorphic V-bundle by making tlhe obvious
changes to the definition. The total space of E is an orbifold. In most cases
the homomorphism 7, in 1. will be injective and I'* = T, for overy i € A,
then F is a proper V-bundle. If E is proper then for each z € X there is a
homomorphism b, : T, — Aut(F). If b, is trivial for all z € X , then F is an
absolute V-bundle which is a fiber in the usual sense.

An important case is that of holomorphic line V-bundles,

Definition A.3 Let X be complex orbifold. Then Pic®™(X) is the abelian

group of equivalence classes of proper holomorphic line V-bundles on X.

The usual Picard group Pic(X) is a subgroup, and the inclusion Pic(X ) —

Pic™®(X) induces an isomorphism

Pic(X) ® Q 2 Pic™®(X) ® Q. (A1)
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A.2 Classifying space and invariants

In this section we give a review of A. Haefliger’s construction of the classifying
space of an orbifold. For more details see [36]. This will be used to define
invariants including characteristic classes of V-bundles. Let A be an n di-
mensional orbifold with uniformizing system { o, [y, ¢i}. Suppose M is given
any Riemannian metric. Let L. be the bundle of orthogonal frames on U;.
‘The Ly, glue together to form the priciple V-bundle L;; of orthogonal frames
on M. Consider the Stiefel manifold V;, .1 = O(n+k)/O(k) of orthogonal n-
frames in R™"*. V,, ., 4 has an action of O(n) and is k-universal as a principal
O(n)-bundle. The sequence - - C Van+k C Vangker C -+ gives rise to the di-
rect limit EO(n), which is a universal O(n)-bundle EO(n) — BO(n). Define
BM = Ly Xomy EO(n). Then there is a natural projection p : BM — M
whose generic fiber is the contractible space EQ{(n). Then the orbifold

(co)homology and homotopy groups are

ors(M, Z) = H'(BM,Z), HI™(M,Z) = H;(BM,Z), n%(M) = m(BM).
(A.2)
An application of the Leray spectral sequence to the map p: BM - M

gives the following,.

Proposition A.4 ([36]) The map p : BM — M induces an isomorphism
H. (M, A) = H(M, A) for A=Q,R,C, or Z, where p 1s relatively prime to
Ord(M).

We will make use of the following generalization of the long exact homotopy

sequence. Let ¢ be a compact group acting locally freely on an orbifold N
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with quotient M. Then G acts on BN with quotient BN/G can be seen to be

a classifying space for M. So we have

+ = (G = wTUNY — 7M) — Ti1(G) = -« (A.3)

The classifying space BM of M gives a convenient description of V-bundles
on M. See [14].

Proposition A.5 Thereis o one-lo-one correspondence between isoemorphism
classes of proper V-bundles on M with group G and generic Jiber F' and iso-

morphism classes of bundles on BM with, group G and generic fiber I

There are two ways of defining characteristic classes of g V-bundle E. Firsi,
one takes the usual characteristic classes of the corresponding bundle on B
giving an‘element in H,,(M, A) for A =17,7,, orR. Second, when using real
coeficients it is more convenient to use Chern-Weil theory giving an element,
of de Rham cohomology H *(M,R). Both definitions are equivalent as we will
explain. Let @ be a compact group, the structure group of E, S(g*) the
invariant polynomials on the Lie algebra g, and BG the classifying space of

G-bundles. Then we have the commutative diagram:

S(g*) W e, R)
| | (A.4)
H*(BG,R)}—H*(BM,R)

The top map is the Chern-Weil homomorphism taking f ¢ S(g*) to [£(©)],
where © is any connection on . The left vertical map is an isomorphism,

the universal Chern-Weil map. The bottom map is induced by the classifying
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map of ¥, and the right vertical map is the isomorphism in proposition (A.4).

A.3 Torus actions

We summarize the description of compact orbifolds with a torus action due
to A. Haefliger and E. Salem [37]. Let M be a smooth compact oriented n
dimensional orbifold with a smooth effective action of an m dimensional torus
G=T"=g/A, m <n. Let {U,, ), ¢: U — U be a uniformizing system
with « centered at z € U/, and let H < @ be the stabilizer of #. Let U/ be a
G-invariant tubular neighborhood of G - z. Let I — #(U). Since my(U) = e,

the universal orbifold cover 7.: 7 — {7 is smooth [36]. Let & be the group of

diffeomorphisms of {7 projecting to the group of diffeomorphism G of /. So

I' < @, normal subgroup, and é/I‘ = (. Let H be the stabilizer of a point
T € n7'(z). We will apply the differentiable slice theorem. There exists a,
ball B C R™™*+* and a representation & — SO{n —m + k). The tubular

neighborhood U7 can be chosen so that there is a G-equivariant diffeomorphism

1

U2 (G xg B)T.

Furthermore, TN = v, and (& xgB)/T = (G/T) X4 (Bf7) = Gxp(B/7).

Since G//H is the universal cover of G/H, we have G/Gy = F /Hy=D, a
finite group, where Gy = 9/Ao and Hy = h/Ag are the identity components.
Here Ay C A is a sublattice, We have the following classification of G-invariant

tubular neighborhoods.

Proposition A.6 ([37]) Let ¢ = 8/A be an m-torus acting effectively on an
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oriented n-orbifold X. And let G-z be an orbit with k-dimensional stabilizer

H. Then we have
t. o rank k sublattice Ag C A,

1. o finite group D and a central extension

0—=A/Ag—T—D—1,

ii. and a faithful representation H — SO(n — m - k), where H is the

mazimal compact subgroup of G=1x Ajre 8/ No.

A G-tnvariant tubular neighborhood U of G+ x is G-equivariantly diffeomor-
phic to (G xg B)/T". This data classifies such a tubular neighborhood up to

equivariant diffeomorphism.

Suppose k = n—mor k = n—m — 1, then ﬁo is a maximal torus in
SO(2k) or SO(2k + 1). Also, H = Hy, since H is in the centralizer of .
Thus I = A/Aq and D = 1, and the tubular neighborhood U is determined
by Ag C A with T =§ /Ag. The tubular neighborhoods are as follows:

a. k =n—m, U/G is homeomorphic to [0,1)"™™, Ay = @™ Ay, where
the A; are rank one linearly independent sublattices of A and A; @ R/A,

is the stabilizer of orbits over the ™ face of U/G.

b. k& = n —m — 1, U/G is homeomorphic to [0,1)" ™! x (—1,1), and
Ag = @v;:_lm_l A

We now pass from the local classification to the global. Let W = X/G.
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Proposition A.7 ([87]) Let W = |J,W; be a union of open sets, and let

{{(Xi, Wi, m)} be a set of G-orbifolds with orbit maps w; » X; — W,. Then
there is a G-orbifold X with orbit map m : X — W and with n=Y(W;) G-
equivariantly diffeomorphic to X; if and only if o Cech cohomology class in
H3(W, A) associated to {(X;, W;,m;)} vanishes. When this is the case, the sel
of such G-orbifolds one to one with elements of H2, (W, A).

Consider the cohomogeneity two case, n —m = 2 and dimW = 2. Let
Xo be the open dense subset of m-dimensional orbits. Then W, = X,/G
is a 2-orbifold. The only other possible orbits are of dimensions m — 1 and
m — 2. That is, with stabilizers of dimensions k=n—m — 1 and k = n —m,

respectively cases b) and a) above.

Theorem A.8 ([37]) Let X be a compact connected oriented n-orbifold with

a smooth effective action of an m = (n — 2)-torus G = g/A.

i. ThenW = X/G is a compact connected oriented 2-orbifold with edges and
corners with each edge labeled with o A;, where A; is a rank 1 sublattice of A

such that the two sublattices at a corner are linearly independent.

i, For any data as in i. there is a G-orbifold. And if H2,(W,A) = 0, then

X 18 unique up to G-egquivariant diffeomorphism.

wi. We have the exact sequence
o (Wo) — A/s A — (X)) 7" (W) — e.

Thus m™(X) = e if and only if Wy is a smooth disk and A=A, or

Wo =W is a simply connected orbifold two sphere and we have n§"™*(W) = Z
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