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Chapter 1

Introduction

Orbifolds are locally modeled on Euclidean Space quotient by finite group
actions. In that sense, they are the simplest generalization of smooth mani-

~folds allowing mild singularities. "They arise naturally in the theory of Moduli
spaces, group action and orbit spaces, as well as mathematical physics. These
objects have been studied individually for a long time. However, the first for-
mal definition has to wait till the 1950’s (Satake, 1956). He (Satake, 1957)
also discovered that many topological and geometrical concepts for manifolds
could be generalized to the category of orbifolds, e.g., homology, cohomology,
the tensor bundles and their sections, in particular, riemmannian metrics and
curvature tensors.

Weighted projective planes are quotient spaces of 5-sphere (8%) by certain
weighted circle actions. They are nice examples of 4 dimensional differen-
tiable orbifolds. While finding smooth manifolds with certain metrics of spe-
cial holonomy may be difficult, weighted projective planes have been found to
admit very interesting metrics. For instance, Galicki and Lawson (1988), gen-~

eralizing the symplectic quotient technique to the quaternionic spaces, demon-




strated existence of self-dual Einstein metrics with positive scalar curvature
on an infinite family of these spaces. On the other hand, Hitchin (1981)
showed that their smooth cousin, the projective plane (CP?), along with S4
both equipped with the standard metrics, are the only examples of smooth
manifolds supporting this kind of metrics. Due to their importance in rieman-
nian geometry and mathematical physics, Galicki-Tawson metrics have been
the subject of many investigations.

Apostolov and Gauduchon (2002) proved that Galicki-Lawson metrics are
Einstein-Hermitian, and provided a local classification of self-dual Einstein-
Hermitian metrics. Drawing on Derdzifiski’s fundamental study (1983) of con-
formal geometry in dimension 4, they also set up a correspondence between the
self-dual Einstein-Hermitian metrics and the self-dual Kéhler metrics. Bryant
(2001) in his comprehensive study of Bochner-kithler metrics proved that ev-
ery weighted projective plane supports a self-dual Kéhler metric which is pre-
sumably unique. Based on the above correspondence and local classification,
Calicki-Lawson metrics and Bryant’s metrics are locally the same. Of partic-
ular interest to us are Galicki-Lawson metrics of positive sectional curvature.
The existence conditions of these metrics are provided by Dearricott (2004).

In the mean time, Gursky and LeBrun (1999) showed that the Fubini-Study
metric is homothetically the unique Einstein metric of positive sectional curva-
ture on CP?%. In fact, their result was much stronger. They proved that the only
4 dimensional Einstein manifold with positive definite intersection form and
positive sectional curvature is CP?. The basic idea of their proof was exploiting
the Weitzenbock formulas and a lower bound on the Weyl curvature to derive

inequalities between the Hirzebruch signature and the Euler characteristic of




Einstein manifolds of positive sectional curvature which are neither seli-dual
nor anti-sel-dual. A simple calculation shows that manifolds with positive def-
inite intersection form violate this inequality and consequently, the Einstein
metrics with positive sectional curvature on such manifolds must be self-dual
(with respect to the natural orientation). Quoting the above-mentioned result
by Hitchin (1981), the conclusion is thus reached.

In regard of these beautiful works, we try to extend the above results on
Finstein metrics of positive sectional curvature to weighted projective planes.

In this direction, we have our intermediate

Theorem 1. On The weighted projective planes, Einslein metrics of posi-
tive sectional curvature are necessarily self-dual (with respect to the canonical

orientation)

Therefore Einstein metrics of positive sectional curvature belong in the
same class as the Calicki-Lawson metrics, thus must be locally isomorphic
to them per the above local classification by Apostolov & Ganduchon (2002).
One can furthermore infer from the recent results on self-dual Kihler geometry
that the Galicki-Lawson metrics are unique in the class of self-dual Einstein

metrics of positive scalar curvature, thus entails the following classification

Theorem 2. On the weighted projective planes, Einstein metrics of positive

sectional curvature are unigue (up to scale).

This is our main result.
The dissertation is organized as follows. In the next chapter, we will recall

the definitions and properties of Einstein orbifolds, and give a detailed analysis




of the orbifold structure of the weighted projective planes. In chapter 3, we
derive geometrical and topological consequences of Einstein 4-orbifolds with
positive sectional curvature, and combine the analysis in chapter 2 to prove
the intermediate theorem 1. The final chapter discusses the uniqueness results

of Guan (2000) and Apostolov et. al. (2003) and establish the main theorem.




Chapter 2

Einstein Orbifolds and Weighted Projective

Planes

2.1 Four dimensional Self-dual Einstein spaces

Before discussing Einstein orbifolds, I want to seb up a few definitions and point
out several well-known results of 4 dimensional Finstein manifolds, which can
be readily generalized to orbifolds. For more details, please refer to Besse

(1987).

Definition 2.1.1. A Riemannian manifold (M, g) is called Finstein if it has
constant Ricci curvature, i.e. if its Ricci tensor v is o constant multiple of the

metric, ¥ = Ag

Remark: Ricei curvature is the trace (with respect to the metric) on the
first and the third indices of the Riemann curvature tensor. Due to the sym-
metry conditions, itself is a symmetric 2-tensor, hence is the same kind of
tensor as the metric, making sense of the above equation. This is precisely the

vacuum Hinstein equation in General Relativity.




In dimension four, under the action of SO(4), the curvature tensor decom-
poses into irreducible picces as follows. The rank 6 bundle of 2-forms A% on

an oriented Riemannian 4-manifold (M*, g) has an invariant decomposition

A= At @ A-

as the sum of two rank 3 vector bundles. Here A¥ arc by definition the

eigenspaces of the Hodge duality operator
* 1A% A% 2 =1

Corresponding respectively to the eigenvalue &1. Sections of At are termed
the self-dual 2-forms, whereas sections of A~ are called the anti-self-dual 2-
forms. The curvature tensor of g may be thought of as a map R A2 o A%

the decomposition then appears as:

s/12+ W 7
7 sf124+ W~

where the self-dual and anti-self-dual Weyl curvatures W= are trace free as
endomorphisms of A*. The scalar curvature s acts by scalar multiplication. 7
represents the trace-free Ricci curvature, and vanishes iff g is Einstein. (Besse,
1937)

With the above decomposition in mind,
Definition 2.1.2. An Einstein metric is (anti-)self-dual if W= =0 (Wt =0).

Remark: Self-dual metrics have many nice properties. In particular, it’s




related to the twistor theory of Penrose. (see e.g. Atiyah, Singer & Hitchin
(1978)). There has been much research done on self-dual Einstein metrics. We

will discuss some of the results that are relevant to us in the last chapter.

Remark: In dimension 4, thanks to the irreducible decomposition, the

Chern-Gauss-Bonnet formula can be writien as

2

X=/ Q:—L/ |W+|2+|W‘|2—m2~+s—d#

and the Hirzebruch signature formula

_1 T Y R
r=g fponde= g [ -

To proceed, we need one more

Definition 2.1.3. An oriented riemannian 4-manifold M is called quater-

ntonic Kdhler if M is Finstein and anti-self-dual.

Remark: quaternionic Kihler condition can be defined for any dimension,
and is a generalization of the Kahler geometry. On the other hand, most

quaternionic Kahler metrics are not Kihler. In dimension 4, quaternionic

Kéhler condition is equivalent to requiring the metric to be Einstein and anti-
self-dual. Reversing the orientation interchanges W#*, hence M is quaternionic
Kéhler iff the metric is self-dual Einstein. Besse (1987) devoted a chapter
on quaternionic Khaler geometry from the point of view of Einstein metrics.

Please refer to this and the references therein for more information.




2.2 Differentiable orbifolds

Orbifolds arise in many mathematical branches such as moduli spaces, alge-
braic varieties and mathematical physics. The concept of an orbifold was first
introduced by Satake (1956) under the name of V-manifolds. It is a general-
ization of an orbit space of a smooth finite group action on a smooth manifold.
However, we must point out that all orbifold are not global quotients spaces
of finite group actions. We include parts of the definitions that are relevant
to us here for the sake of completeness. For the original definitions and more

details, please refer to the original papers of Satake (1956, 1957)

Definition 2.2.1. Let X be a Hausdorff space. A C® local uniformizing
system (Lu.s) {U, G, $} for an open set {7 in X is by definition o collection of
the following objects:

U: a connected open set in R™,

G a finite group of C®-automorphisms of U, with the set of fived points of
dimension < m — 2.

$: a continuous map from U onto U such that Ppoo = ¢ for allo € G, inducing

a homeomorphism from the gquotient space UJG onto U.

Definition 2.2.2. Let {U, G, ¢}, {U, G, ¢'} be Lus. for T, T respectively,
and let U C U'. By o C* injection ) : {U,G, ¢} —= {U, G, ¢'}, we mean
C™-isomorphism X from U onto an open subset of U’ such that ¢ = ¢/ o \.

Fvery o ¢ G can be then considered as an wnjection of {U, G, ¢} into itself

Also composition of injections is an injection. Conversely, we have the

following lemmas.




Lemma 2.2.3. Let A, p be two injections {U, G, ¢} < {U', G, ¢'}. Then there

exists a uniquely determined o' € G' such that p =o' o A,

Lemma 2.2.4. Let A be an injection {U,G, ¢} — {U', G, ¢'}. If ' (MU)) N
MUY # 0 with o' € G, then /(MU)) = MU) and o' belongs to the image of
the isomorphism G — G’ defined above.

Remark: for proofs of these lemmas, see Satake (1957).
With these preliminary resulfs, one can give the definition of an orhifold

and smooth maps between them.

Definition 2.2.5. A differentiable orbifold is @ Housdorff topological space X
_with a family § (colled a defining family for the orbifold) of O Lu.s. for open
Subsets in X satisfying the following conditions.

(1) Every point p of X is contained in at least one §F-uniformized open set (i.e.
an open set U for which there exists Lu.s. (U, G,¢) in § such that qb(‘U) cU.
If p is contained in two F-uniformized open sets Uy, Us, then there exists an
F-uniformized open set Us such that p e Us C UL NUs.

(2) If {U,G,o}, {U,G" ¢} are Lu.s. in §F such that $(U) D ¢'(U'), then
there exists always a C™ injection X : {U, G, ¢} — {U',G",¢'}. (A is uniquely

determined up to o’ € G, by Lemma 2.2.4)

Definition 2.2.6. Let (X1, 1), (X2, F2) be two orbifolds. We mean by a. dif-
ferentiable orbifold map A from (Xy,§1) into (Xy, F2) a system of mappings
hy, {U1, G1, 1} € F1) as follows:

(1) There is a correspondence {Uy, Gi, 1} — {Us, Ga, ¢a} from Fy into Fo

such that for any {Uy,G1, ¢1} € §1 we have a C*° map hy, from Uy into U,.




(2) Let {UlaGl:ﬁqﬁl}:{UiiG'l!qfl} € 31:{U2:G27¢2}7{(jé7G!2:¢’2} € §2 be the
corresponding Lu.s. (in the sense of (1)) and let ¢, (U1) D ¢ (U7). Then
for any injection Xy : {U1,Gh, 1} — {Ui, G, ¢} there evists an injection

Ag . {UQ, Gz, ¢2} — {Ué, ,2,@;2} such that Ag o hU1 = hué oA

Remark: There is an equivalent definition using categorical language, see
Kawasaki (1978) for details. In recent years, another definition of orbifolds
surfaced using the language of groupoids. I adopt the original definitions of
Satake (1957) because it’s the most geometric and intuitive, and because I
don’t understand the other approaches that well.

Example: weighted projective spaces. Fix relatively prime positive integers
Go, @1, . - - , n, and define the weighted projective spaces CPf, o, . 4.y to be the
quotient of €™t by the C* action: (zg,21,...,2n) — (T%020, 721, ..., T 2n)
for 7 € C*. We will discuss the structure of weighted projective planes
(C]P’%ammm) in detail below.

We define next the concept of orbifold bundles. Let V', B be two orbifolds
with a differentiable map 7 : V — B. Let further F' be a smooth manifold

and G be a Lie group operating on F' as a C* group of transformations,

Definition 2.2.7. A pair of defining families (§,§*), § being o defining fam-
ily of B and §* that of V, is called a pair of defining families for a coordinate
orbifold bundle (V, B,m, F, G), if it satisfies the following conditions:

(1) There exists a one-to-one correspondence {U, G, ¢} — {U*,G*,¢"} be-
tween § and F* such that U* = U x F and denoting by my- the projection
U* > U, we have mo¢d* = ¢pomy

(2) Let {U, G, ¢}, (U, G*, ¢}, {U", &, &'}, {U™, G, ¢""} be two pairs of cor-

10




responding Lu.s. in (§,§*) and let p(U) D> ¢'(U'). Then ¢*(U*) D ¢*U™
and there exists a one-to-one correspondence A — \* between injections A :
{U,G, ¢} = {U', ¢, ¢'} and X* : {U*,G*, ¢*} — {U™,G™, ¢} such that for
(,q) € U* = U X F we have X*(p,q) = (Mp), 92(p)q) with grp) € G. The

mapping gy : U — G s a O map satisfying the relation

gua(P) = gu(MP)) 0 gr(p)

sometimes, we call V' a orbifold bundle over B for simplicity.

Let (V, B, w, I',G) be an orbifold bundle with a pair of defining families
(,8"). An orbifold map f = fy : (B,%) — (V,F) is called a C® cross
-~ section of this orbifold bundle if the correspondence § +— F* is given by the
correspondence in the above definition and if w7y o fy = 1. To give a cross
section f : (B,§) — (V,§*) is therefore to give a cross section fyy of each
U* = U x F such that for any injection \ : {U, G, ¢} — {U', G, ¢'} we have
fooA=Mofy.

Example: Tangent space and differential forms. Let (X,F) be an orb-
ifold. Assuming that every U is contained in R™, we fix a coordinate system
ul, ..., u™ in each U once for all. Let V = R™ (vector space of dimension m
over R) and G = GL(m,R) (group of all non-singular matrices of degree m)
For any injection A : {U, G, ¢} — {U',G',¢'} put

o't o A )
ol

Ga(p) = (

{ut}, {/*} being the coordinate systems in U, U’ respectively. Then the systern

11




g», defines an orbifold bundle (T, X, n, F,G) with a pair of defining families
(§,§). This orbifold bundle is called the tangent bundle of X. Note that the
fiber 7! (p)(p € X) is not always a vector space, and the bundle structure is
not necessarily a fiber bundle in the classical sense.

Let p € ¢(U),{U, G, ¢} € F and choose p € U such that ¢(p) = p. Then
7 Hp) = R™/g,(p);o € G,, G, denoting the isotropy subgroup of G at .
Now 7' (p) = p x R™ can be identified with 7}, (the tangent space to U at p)

by the correspondence

. 0
P L™ X = f—
x(z'. .., 2™) e Zx o

o
Then denoting by 73 the linear subspace of T, formed of all Gp-invariant vec-
tors (i.e., vectors invariant under g,(p)(c € Gp)), we see that 71(p) contains
a vector space T}, = q‘)*(Tf "), which is independent of the choice of U/ and p.
An element of T, is called a tangent vector to X at p.

A cross section X of the orbifold bundle T is called a {contravariant) vector
field over X. In the above notations, X, being a G-invariant cross-section of
U* =U xF (i.e. a G-invariant vector field over U in the usual sense), we have
Xy(p) € T5” and X(p) € T,. Thus X(p) being a tangent vector at p for any
p € X, the set of all vector fields over X forms a vector space.

More generally one can construct an (r, s) tensor bundle over X by means

of the system (gy : gx{p) = g—ﬁ} . g—,ﬁ ® ...) Where ® denote the Kronecker

product of matrices. (In this case, V = R™*+%) and G = GL(m,R) operating
on V as an (r, s)-tensor representation.} We can also consider skew-symmetric

or symmetric tensor bundles over X.

12




In particular, consider the skew-symmetric (h, 0)-tensor bundle over X.
As in the case of the tangent vector bundle, 7 (p) (p € X) contains a vector
space Dg, which is isomorphic to the space of Gy-invariant skew-symmetric
(7,0) tensors at p (¢(p) = p). D, can be regarded as a dual space of Ty
It should be noted that €p}" D? is not always an exterior algebra over D).
A cross section § of D" is called a differential form of degree A (h-form in
short). on X. Since Q(p) € Dk for any p € X, the set of all h-forms  on X
forms a vector space. By definition, to give an h-form  on X is to give a
(G-invariant) A-form Qy on each U such that it holds Q= o X for any
injection A : {U, G, ¢} — {U', G, #'}. Using these ‘local expressions’, we can
define the operations A and d just as in the case of ordinary manifold. Also if

h: X — X'1is any orbifold map, we can pull back differential forms.

"The geometric concepts such as the Riemannian metric and connections

and curvature forms can be defined similarly for orbifold. The expressions

are similar to the case of manifolds. The Chern-Weil theory also generalizes
without much modification sc we can talk about the theory of characteristic
classes. (The literature on orbifold is very sporadic and on-explicit. In the
sequel chapters, we will have to freely use the theory of chern classes and
line bundle without offering a proof or quoting a specific source. The best
references for orbifold theory in general are probably the original papers of
Satake (1956, 1957) and a pair of papers by his student Baily (1967)) With
this understood, we can state the analog of Chern-Gauss-Bonnet formula for

orbifolds. (Satake, 1957)

Theorem 3. Let X be a compact riemannian orbifold of even dimension m. o

13




Then for any vector field with singularities at py, ..., p,, we have

xv(X) = me (X) = Z al—iindem(pi) = /MQ

Where n; is the order of the stabilizer group of p;. xv is called the orbifold

Fuler characteristic.

Remark: In general, X-V does not coincide with the topological Euler char-
acteristic x(X} and is not necessarily an integer. By analog of Chern’s argu-
ment, xy(X) is an invariant of the orbifold structure. In case of dimension
4, using the invariant components of the curvature tensor, the above formula
can be written as

82

1 e 7P
(0= 00 = g [ WP e wo =2

Similarly, one can define the signalure 7 of a 4-dimensional orbifold X as

1 1 —2
VX) =5 [ )= g [ W - P

Remark: that 7y(X) is an invariant of the orbifold structure was shown by
Kawasaki (1978). One can also prove this using the Chern-Weil approach.
Again, we use the invariant components when writing out the Pontrjagin class
n

From these formulas, we immediately derive the analog of Hitchin-Thorpe

inequality for orbifolds.

Proposition 2.2.8. Let X be a smooth compact orbifold of dimension 4. If X

14




admits an Einstein metric, then
3 (X)| < 2xv(X)

Remark: This inequality places constraints on which of weighted projective
planes admits Einstein metrics.

It can easily be seen by Lemma (2.2.4) that the structure of the isotropy
subgroup at a point p € M does not depend on the choice of the uniformizing
system. The points whose isotropy group is trivial are called the regular or
manifold points. The points with non-trivial isotropy groups will be called the
singular points. The collection of the singular points will be denoted 31X . X
is itself an orbifold, and can be resolved as follows. Let (1) =A%, hd, ... he=

be all the conjugacy classes of elements of G, the uniformizing group at z.

Consider the set of pairs:
X = {(z,(M)le c BX,5=1,2,..., p,}
Let Zg, (1) be the centralizer of hJ in G, we see that

Pz ,
S, & ([ U2 /26, (H))

=1

Then we have a V-manifold structure Vay on 5X defined by
Vix = {(Za. (W)/ K5, U2%) v T 26, (1))
Here K is the kernel of the representation Zg, (hi) — Dif Feo([i%). The

15




number m| K7} is called the multiplicity of £X in X at (z, (1))
Kawasaki (1978) also proved the corresponding signature theorem for orb-

ifolds.

Theorem 4. Let X be a differentiable orbifold, then the signature of X 05 a

homology manifold is given by
1 ~
H(X) = LOOIX] + 37— H(X) EX]

Here the summand is over the components of the stratification of X de-
scribed above. L is the equivariant I-class defined by Atiyah-Singer (1968).

and the following useful

Lemma 2.2.9. The singular homology group (R coefficient) of a differentiable

orbifold is isomorphic to its de Rham cohomology group.

Less the singularities, an orbifold is simply a smooth manifold. The ge-
ometric definitions in the first section apply in the orbifold sense if they are
Bona Fide objects on orbifolds and satisfy the corresponding conditions on
the smooth part.

Remark: A geometric object on a manifold does not necessarily vanish at a
singular point. As long as it’s invariant under the group action, it’s legitimate
on the orbifold in question. Therefore, for a finite subgroup of the orthogonal
group, in appropriate coordinates, a metric that is rotationally symmetric is
allowed at the singular point. Because orbifold singularities arise from finite
group actions, which regularize by unfolding via l.u.s., the singularity is not so

'wild’. We still have some control over the geometric objects on these spaces.

16




For instance, the tensor field never diverges at the singular points if it's not
already divergent on the l.u.s, and the curvature usually doest’t blow up at

the singular points.

2.3 Weighted Projective Planes

We now describe the orbifold structure of the weighted projective planes.

Definition 2.3.1. For (z,y,2) € C? such that |z|> + |y|? + [2]? = 1, let T & §*
acts by (P, 7%, 7" 2) where p,q,r are positive integers and ged(p,q,7) = 1.

The guotient space of 8% by the above action of 8! is called the o weighted

2

projective plane of weight (p,q,r), denoted as CP, , ..

Remark: when p = ¢ = v = 1, this is the standard definition of the
projective plane CIP?, hence the notatién. Otherwise, we have an infinite family
of differentiable orbifolds. Let Up C C]P’%p’q,r) be the open neighborhood given
in homogeneous coordinates by Uy = {[z,y, 2], z +# 0}, it’s easy to see that the
map ¢y : C? — Up is a Lus for Uy with finite group Gy = Z,. Similarly, one
can define U/; and Us, together they make up the Lu.s. for weighted projective
planes.

Remark: This definition is easily generalized to the higher dimensions to

m
(a0,01,.0m )

weighted projective spaces CIP

When z = 0, the action restricts to the (z,y) plane as (r7z, 7%), geomet-
rically it corresponds to the action on the toroidal decomposition of 8% where
S! acts on the tori by p** power in one homological direction and ¢ power

in the other. The action on each torus is free and the quotient is a circle. At

17




each of the center circles, S actg by ™ power and g*" power respectively, and

the quotients are two points with stabilizers Z, and Zy. Thus, the quotient
space of 8* by this action is g 2-sphere of two singular points with these sta-
bilizer groups. When d == (p,9) # 1, the action on each torus is not free. The
quotient is still a circle all of whose points are singular with a stahilizer group
Z4. The action on the center circles remains the same. The quotient space is
again a sphere with 2 special points with stabilizers Zy and 7Z,,. However, the
other points also hag non-trivial stabilizer group Z,.

Now let |z/2 + |y]2 £ 0, this certainly contains the 2 sphere described above,
This is topologically a complex line bundie quotient by the finite group action
Ziy where Z,. acts in the » direction (fiber direction) (See Galicki & Lawson
(1988) for the explicit coordinates). They also showed that Chern class of
this line bundle is . Adding in the infinite point, we obtain topologically
the Thom space of a topological line bundle with Chern class r, with base g
singular sphere. Tt’s clear that this pictyre is symmetric with respect to the
cyclic order of (p,q,7). We therefore find three Thom Spaces on a weighted
projective plane, depending on which point is chosen to the oo,

Another way to look at these spaces is topologically we have 3 singular
spheres (corresponding to the 3 coordinate planes of CP?) attached on C* x C*,
For this Ieason, weighted projective planes are the so called Toric Varieties.
From this picture, it’s not hard to see the cell structure of the weighted projec-
tive planes consists of g O-cell, 2-cell and a 4-cell, And the singular homology

groups are the same as those of CP2.

18




2.4 Symplectic Quotients and Galicki-Lawson
metrics

Symplectic Quotient construction was developed by Marsden and Weinstein
(1974). The initial intent was to reduce the degree of freedom of a symplectic
manifold acted on by a Lie group as a symplectomorphism. Modding out the
manifold by the group action and the orbit space turns out to have a natural
symplectic structure. In the following years, this construction turns out to
be extremely useful in constructing new metrics of special holonomy. Most
notably, Hitching ef. ol. (1987) employed this technique to construct new
hyperkahler metrics.

Galicki and Lawson (1988) generalized further this technique to quater-
nionic Kahler metrics. They consider the action of S' on the quaternionic
projective spaces HP". Many of the quotient space they obtained are how-
ever, riemannian orbifolds. In particular, they included the following examples

when nn = 2.

Theorem 5. Fach of the weighted projective planes (C]P’%Qa,a +bayty JOT @+ D

odd carries a self-dual Finstein orbifold metric with positive scalar curvature.

This is also true of the weighted projective planes (C]P’?a ath by when a + b is
»T3 0 2

even.

Remark: Choosing other weights for the S'-action on HP? gives similar
metrics on (C]P’?p,q,,.) for other values of the weights. For many combinations of
(p,q,r) (determined by the Hitchin-Thorpe inequality, there exists a quater-

nionic Kéhler metric on the corresponding weighted projective planes. For
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integers 0 < p < q < r satisfying r < p+ ¢, the scalar curvature of the metric

is positive.

Dearricott (2001) claims that infinifely many of these metrics in fact,
have positive sectional curvature, hence established the existence of positively
curved Einstein metrics on an infinite family of these spaces. Understanding
Bryant’s method (2001) for Bochner Kéhler metrics, he gave furthermore the

following classification (2004)
Theorem 6. The Galicki-Lawson metrics on CPE,’(},,., p < g < r have positive
sectional curvature if and only if .

oi{p+q+r,—3p+qtr,p—3¢+rp+q—3r)>4p+q+r)

where os is the third symmetric polynomial.

2.5 Orbifold Euler characteristic and Signa-
ture of Weighted Projective Planes

In this section, we compute the orbifold Euler characteristic xy and the signa-
ture 7 for weighted projective planes. In the next chapter, we will use these

numbers to prove our main results. In these directions, we have the following

Theorem 7. For the weighted profective plane CIP’;,Q’T, the orbifold Euler char-

acteristic xv and the signature Ty are given by

oLl
Yop g
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1p2+q2+?,.2
Ty = ——t
3 pgr

Proof. Choosing a vector field that vanishes at the three singular points. In
fact, any vector field on a weighted projective plane satisfies this condition
by definition. Less the singularities, we have a smooth manifold with Euler
characteristic 0, hence the sum of the index of the vector field over the smooth
part is 0. As a matter of fact, we can construct such a vector field explicitly
using the cell structure of weighted projective planes. Take the constant radial
vector field on the 4-cell, attaching the 2-cell with the radial vector field, it’s
clear that the vector fields match up. Add in the O-cell. We have a global
vector field vanishing at the three singunlar points with index +1 and nowhere
else. hence the orbifold Euler characteristic follows from the formula of Satake.

To prove the second formula, we need to compute the first Pontrjagin class
of weighted projective planes. To this end, look at the following orbifold map
¢ : CP? i (CIP’?p’q,T) that sends [z,y, 2] to [#?,y9, 27|. It’s easy to see this map
is well defined and is an orbifold map in the above sense. It’s also easy to see

that the map is a pgr-fold covering map.

OnlUy={A=a/z,p=y/z,2# 0} C X = (C]P’%p!q,_r), consider the mero-

morphic two form in the inhomogeneous coordinates,

when we change coordinates to Uy, Uy, this form has similar presentations with
coefficients p and ¢. (The coeflicients can be most easily seen by observing that

Up is the quotient of C? by Z,., hence needs a multiple r to compensate for the




fact that the volume is L of the Lu.s.) Hence this form is global and defines
4, section of the canonical line bundle K on X. It’s clear that this form has

divisor —H}— H} — H}, where H] are the three singular spheres. By the orbifold

map ¢, the divisor is pulled back to the divisor —pHy — qff; — rH, on CP?,
which is linearly equivalent to —(p + ¢ + r)I{. That this is true can be seen
as follows. Under ¢, the inverse images of the singular spheres are precisely
the -coordinate planes H; in CP%. 1In fact, H; is a pq {qr, rp resp.) covering
HI, with multiplicity = (p, g Tesp.) (Take, e.g., Ho = [0,y, 2], it’s easy to see
that ¢ is a gr fold covering. Now fix y,z, and consider ¢ in a neighborhood

of z = 0, the map is locally of the form x?, hence Ho has multiplicity p).

Moreover, it’s easy to check that ¢*w is a section of the canonical bundle
of CP?. The above assertion also follow from the Riemann-Hurwitz formula,
because ¢ is a branched covering with branch points the three singular spheres

with multiplicities p, ¢ and r. Hence we have
¢ (X)[CP = ¢* A(K)[CP?] = c{(¢* K) = (p+ g+ 1)

since ¢ is a pgr-fold covering, and the covering map is compatible with the

orbifold structure
(p+q+r)

G0 = L

therefore

_}_p2+q2+7‘2
T3 ogr

() = 3((X) — 262(X)) = 3(EHX) — 2xv (X))

‘g 22




Van Coevering (2004) obtained the same numbers using slightly different
methods. He also established the orbifold Miyaoka-Yau inequality and its
consequences in his Ph.D thesis.

Remark: Using these formulas, it’s easy to see that the constraints on
weighted projective planes admitting Galicki-Lawson metrics are in agreement
with the Hitchin-Thorpe inequality above.

Remark: The orbifold Fuler Characteristic formulas generalize easily to

the Weighted Projective Spaces so that

v(CPP? 1 i 1
= — e
X ( (Go,ﬂl,...,am)) a0 —+ . + -

The computation of ¢; also gives similar results. I don't know how to com-
pute the higher Chern numbers in this case. This could be a very interesting

research project.




Chapter 3

Main estimates and the proof of the main

theorem

In this chapter, we derive estimates involving various invariant components

of the curvature tensor, and as a consequence, inequalities involving the orb- 1'3 ki
ifold Euler characteristics and the signature for Finstein metrics of positive
sectional curvature on weighted projective planes. Most of the results were
worked out in Gursky & LeBrun (1999) for smooth manifolds, here I show
that they generalize to the category of orbifolds. T give detailed proofs only in
the case where they differ from the original source. Combining with the com-
putation on the characteristic numbers in the previous chapter, we obtain the
intermediate theorem I. Note that for local results, we choose to present them
on the smooth part of the orbifolds, i.e., a non-compact manifold. The orbifold
singularities are irrelevant. Some of the results actually are true on the singu-
lar parts as well, but have no bearing on the final results at all. For the global L .
results involving integrals over the whole space, since the singular points are of

measure zero, and since on a local uniformization system, all the concepts are
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invariant under the group action. Choosing the invariant measure, one sees
that the integrations go through just as for smooth manifolds.

We begin with a few preliminary results.

Lemma 3.0.1. Let (X, g) be an oriented 4 dimensional Finstein orbifolds.
If the sectional curvature of g is non-negative, then away from the singular

points,
8

NG

Proof. Under the Hodge decomposition, every 2-form ¢ on X can be uniquely

> [WH + W

written as ¢ = ¢+ + ¢~, where ¢* € A*. Now a 2-form is decomposable iff
é A ¢ = 0. But this condition can be rewritten as [¢|> — |¢~|*> = 0, since the
decomposition is orthogonal. Thus the sectional curvature of g is non-negative

iff the curvature operator ® : A* — A? satisfies

(T +¢7,R(¢*+47)) 20

for all unit-length self-dual 2-form ¢+ and all unit-length anti-self-dual 2-forms
¢~. But for an Einstein manifold, the invariant decomposition tells us that
this can be rewritten as

%+Mﬁd,20 (3.1)

where, for each z € M, Ay(z) < 0 is by definition the smallest eigenvalue of
the trace- free endomorphism W : AT i AZ.

The claim will thus follow immediately from the above inequality (3.1) if
we can show that

1
|As] > %|Wi|
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To see this, let A, < py < v, be the eigenvalues of W+, Thus

W= X+ )+
But since W is trace-free, Ay + py. + vy = 0, hence
WP = 2% 4+ + 05 + O =y — v by +vg) = 2000 — poy]

If gy > 0, this last expression is less than 2{A.|?. Otherwise, AL < puy < 0,
0 < vy < 2[A4], and hence [WH* < 6|A[>. We have |A_] > —Z|W~| by the

same argument, and the lemma is proved. Ol

Applying Lemma 3.0.2 gives us the following estimates

Lemma 3.0.2. Let (X,g) be a compact 4-dimensional Finstein orbifold of

non-negative sectional curvature. If g is not flat, then

xy< > [ Sy (3.2)
xv )_871'2/)(24 Hg '

Proof. Because g is not flat, and the sectional curvature is non-negative, our
Finstein metric ¢ must have positive scalar curvature, and hence positive ricci

Curvature. Lemma (3.0.2) now tells us that

> |anw

(W2 {W, | < (W |+ W, )2 <

so that

1 12 ., S 5 85
e p— - < =
X (X) = gy [V W, P+ Ry < o [ S
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Remark: in the case of smooth manifold, using the Chern-Gauss-Bonnet
formulas, Gursky & LeBrun 1999) showed that the inequality must be strict.

This has an interesting consequence

Lemma 3.0.3. Let (X,g) be a compact j-dimensional Einstein orbifold of

non-negative sectional curvature. Then (M) < 10

Proof. We may assume that g has positive scalar curvature, since otherwise the
orbifold Euler characteristic would vanish. By rescaling, we can thus arrange
for our Einstein metric to have Ricci tensor r = 3g. A generalization of the )
Bishop’s inequality to orbifolds then asserts that the total volume of (M, g) is
less than or equal to that of the 4-sphere with its standard metric g,. Since i

both g and g, have s = 12, Lemma (3.0.3) now asserts that

)< [ Sy 5 [ %, — 5x(5%) = 10
w00 < ooz [ grdn < g [ gt =5x(5) =

- tl

Remark: because for smooth manifolds the inequalities in the previous
Lemma. is strict, it’s possible to claim the stronger result that x(M) < 9 for
(M, g) a smooth Einstein 4-manifold.

The above estimates were basically point-wise in nature, we now turn to

some global results, starting with

Lemma 3.0.4. Suppose (X, g) is a compact oriented Einstein 4-Orbifold of

positive scalar curvature. Then either Wt = 0, or elsc there is a smooth,
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conformally related metric § = u?g such that
/ [sy — 2V6IW; sl dpss <O
X

moreover, one can either arrange for the inequality to be strict, or for the

metric § to be locally Kdihler.

Proof. The proof in Gursky & LeBrun (1999) goes through without any mod-

ification. |

Remark: the proof shows that Einstein metrics of positive sectional cur-
vature on weighted projective planes have degenerate W, meaning that two
of the three eigenvalues of W7 coincide, hence are locally hermitian with re-
spect to some complex structure according to a Riemannian version of the
Goldberg-Sachs theorem (see, e.g., Apostlov & Gauduchon, 2001).

This implies a surprising ‘gap theorem’ for W

Theorem 8. Let (X, g) be a compact oriented 4-dimensional Finstein orbifold

with.s > 0 and W+ # 0. Then

2
59

+2> d
[z [ gyde

with equality iff VWT = 0.
Proof. By the Chern-Gauss-Bonnet type formula
2 l -

_z o S PP
X () = [ QWA+ IW 4 58 = 55l
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for g Einstein, 7, vanishes. Now consider a conformal rescaling of our Einstein
metric § = u?g, we have 73 # 0 hence makes a negative contribution to the

above integral. While the left hand side, being an orbifold invariant remains

constant, hence i

Jx Solity < Sx 8adus St

A/ S ditg - v Jx dpa ‘II !
|

However, assuming that W+ # 0, Lemma 3.0.5 tells us that u can be chosen

go that ”

(ST

/Xsf, dps < 2\/6f|wg|dug < (24/|W@+Izdug)]§(f 1)

Since s, is constant, and because the L2 norm of W is conformally invariant,

it therefore follows that

(/ s2dp,) /2 = Jx 8991ty < Jx sads < (24/ iWﬂ?ng)% - (24/ |Wg+|2dﬁg)%
X \/TX ditg \/ Jxdns
Moreover, equality can occur only if § is both locally Kihler and isometric to
a cohstant times g. The latter, of course, happen iff g is itself locally Kahler.
But since s # 0 is constant and W™ # 0, the latter is equivalent to requiring
that YW+ =0

O

Remark: in the case of smooth manifolds, the first inequality is a conse-
quence of Obata’s result that any Einstein metric is & unique Yamabe min-
imizer. Van Coevering (2005) has shown that this result generalizes to the o

orbifold category, thus arrived at the same inequality from another approach.
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Reversing the orientation, we have

Corollary 3.0.5. Let (X, g) be an oriented compact 4-dimensional Finstein
orbifold with s > 0 and W~ # 0. Then

2
&
[tz [ i, 3)
X X

2xv — 31y 1 / 52
Xv—etvs, 2 S, 3.4
3 Z g2 [, 24 (34)

Moreover, both these inequalities are strict unless VW™ = 0.

Proof. Reversing the orientation of X interchanges W+ and W~. Applying
this observation to theorem 8 immediately yields the first inequality. But this

and the Gauss-Bonnet type formula then tells us that

(2xv — 37 )(X) = /[2|W“|2+82]d >i/‘83d
Xv = STvNA) =g [ W T ogh @ = 5 | 94 %He

Thus proving the corollary L
Now we can prove our main estimates,

Theorem 9. Let (X, g) be a smooth compact oriented 4-dimensional Einstein
orbifold with non-negative sectional curvature. Assume moreover that g s
neither self-dual or anti-self-dual. Then the orbifold Euler characteristic and

the signature of X satisfy

15
102 xv 2 TlTV|
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Proof Combining (3.2) and (3.4), we have

2 1 5 2
Sy g, > —— | 2 y
3XV TV 2 12 | 724 @ > 5XV

- or in other words yy > %f"f‘v. Reversing the orientation of X, we also have
Xy = —»1157‘/. Since Lemma 3.0.3 tells ug that yy < 10, we are thercfore

done. ‘ &

The main result now follows from the Gauss-Bonnet theorem and the sig-

nature theorem for orbifolds

Theorem 10. On the weighted projective planes, any orbifold quaternionic

Kihler metrics of non-negative sectional curvature must be self dual.

Proof. From the formulas for xy and 7y for weighet projective planes respec-
tively, we see that xy < 37y, since p*+¢* +7? > pgt+qr+rp Henee the above
inequality is violated. Choosing the correct orientation, we see that Einstein
metrics of positive sectional curvature on the weighted projective planes must

be self-dual. O
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Chapter 4

Uniqueness and relation to Kihler geometry

4.1 Relations to Kihler geometry

Derdziriski (1983) in his groundbreaking investigation on 4-dimensional confor-
mal geometry showed the following facts for a Riemannian Einstein 4-manifold
with degenerate self-dual Weyl curvature (i.e., at any point at least two of the

three eigenvalues of W coincide)

Lemma 4.1.1. Let (M, g) be a connected oriented Einstein 4-manifold such
that W has at most 2 eigenvalues at each point, then either W+ = 0, or else
W has ézactly 2 distinct eigenvalues at each point. In the lotler case, more-
over, the conformally related metric § = 2/3|W|*3g is locally Kéhler, and
is locally compatible with ezactly one pair £J of oriented complex structures.

The scalar curvature s of ¢ is then nowhere zero, and g = s2§

This result conformally relates Einstein metrics with degenerate self-dual
Weyl curvature to Kahler metrics.

Bryant (2001) in his comprehensive study of Bochner-Kihler geometry,

proved that
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Theorem 11. Every weighted projective plane supports a self-dual Kdihler met-

T

Remark: He also states that these metrics ‘are presumably unique, al-
though all details have not been checked.” Incidentally, when r < p + ¢, these

metrics have positive scalar curvature.

The Galicki-Lawson’s metrics are Einstein Hermitian with respect to some

complex structure because W of these metrics are degenerate. This con-

clusion follows from a Riemannian version of the Goldberg-Sachs theorem (
Apostolov and Gauduchon, 2000). Building on Derdziiski’s result, they also

proved the following bijection between self-dual Finstein-Hermitian metrics

and self-dual Kahler metrics

i
Lemma 4.1.2. Non-locally-symmetric self-dual Einstein-Hermitian metrics ’
4 |
are in one-to-one correspondence with self-dual Kdhler metrics of nowhere 1

vanishing and non-constant scalar curvature {in the same conformal class) ¥

Remark: this result is local and does not require compactness of the man-

|

ifold, i't holds on the open dense subset of a manifold such that the above I

notions make sense, therefore, obviously true on orbifolds. According to this i

Lemma, the uniqueness of the Bryant’s metrics and the uniqueness of the
Galicki-Lawson metrics are equivalent.

Moreover, by solving a system of over determined partial differential equa-

tions, they gave a local classification of the self-dual Einstein Hermitian struc-

tures, and concluded that the Galicki-Lawson’s metrics and the Bryant’s met-

rics are locally the same.

33




4.2  Uniqueness

The above correspondence between Einstein-Hermitian and Kahler metrics
provide strong evidence for the unigueness of self-dya] Einstein metrics of
positive scalar curvature, as the local solutions are completely known, How-
ever, it remaing the possibility that there exists globally different such metrics
on weighted projective planes. Here We present a different approach to the
uniqueness of the Galicki-Lawson’s metrics using the existing results op ex-
tremal metrics on toric varieties. It can easily be shown that self-dual Kahler
metrics are extremal, so the existence of extremal metrics follows from Bryant’s
theorem.

Guan (2000) using a modified version of the Mabuchi functional, proved

the following

Theorem 12. for any two Kdihler melrics in o Kihler class which are in-
variant under a mazimal connected subgroup of the automorphism group on o
toric variety there is g geodesic curve connecting them. In particular, there is

at most one extremal metric in a Kéhler class on a toric variety.

Proof. (Sketch) Fix a riemannian toric variety X, One may define the modified
Mabuchi functional and show that the extremal metrics in a Kéhler class. Now
the moduli space of the modified Mabuchi functional is geodesically convex.
Moreover, on any geodesy that connects two metrics, the second derivative
of the functional with respect to the geodesic length is positive, hence the

uniqueness of extremal metrics, O

Remark: he states his theorem only for smooth toric varieties, the proof
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generalizes verbatim to the toric varieties that are also orbifolds. From this

we conclude that on each weighted projective plane, there is a unique sell-
dual Kahler metric, since the de Rham cohomology group is one dimensional,
thus there is only one Kahler class (this follows from Kawasaki’s lemma that
de Rham cohomology is isomorphic to the R coefficient singular homology
and the cell structure of weighted projective planes. It also follows from the
Smith-Cysin sequence on the orbit space of the defining 5 ! action for weighted
projective planes.) By the above correspondence, this says that the Galicki-
Lawson metrics are the unique self-dual Einstein metrics with positive scalar

curvature on weighted projective planes. Hence, we arrive at our main.

Theorem 13. The only weighted projective planes admitting Einstein mel-
rics of positive sectional curvatures are the ones that also admils the Galicki-
Lawson metrics of positive sectional curvature. That 1s, the ones sotisfy the

Dearricott’s criterion. These metrics are unique up to scale.

Remark: I thank Professor Ziller and Professor Calderbank for pointing
out this approach. The uniqueness of Galicki-Lawson metrics is & brief remark
in CAposto]ov et al. 2004), which they brought to my attention.

Remark: some of the above results can readily be generalized to weighted pro-
jective spaces. It’s possible to state a stronger result of the type of Gursky
& LeBrun (1999) in this direction, that all self-dual Einstein-Hermitian orb-
ifolds of positive scalar curvature are the weighted projective spaces with the
Calicki-Lawson metrics (Ziller 2004). See also Calderbank & Singer (2004) for

the 4-dimensional results from another perspective.
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