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Abstract

For cofinite Kleinian groups, with finite-dimensional unitary representations, we derive the Selberg trace
formula. As an application we define the corresponding Selberg zeta-function and compute its divisor, thus
generalizing results of Elstrodt, Grunewald and Mennicke to non-trivial unitary representations. We show
that the presence of cuspidal elliptic elements sometimes adds ramification point to the zeta function. In fact,

if O = Z[− 1

2
+

√
−3

2
] is the ring of Eisenstein integers, then the Selberg zeta-function of PSL(2,O) contains

ramification points.
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Chapter 1

Introduction

The Selberg theory (Selberg trace formulas, Selberg zeta-functions, and related applications) has
been well studied in both the two-dimensional scalar case ([Iwa02]) and the two-dimensional vec-
tor case1 ([Roe66], [Ven82], [Hej83], [Fis87]). By “Two-dimensional vector case” we mean: cofinite
Fuchsian groups with finite-dimensional unitary representations, and the “Scalar case” refers to
the case with the trivial representation. Elstrodt, Grunewald and Mennicke extended the Sel-
berg theory to the three-dimensional scalar case in [EGM98]. By the “Three-dimensional case” we
mean: cofinite Kleinian groups. The main goal of this thesis is to extend the Selberg theory to the
three-dimensional vector case.

In this thesis we derive the Selberg trace formula for cofinite Kleinian groups2, with finite-
dimensional unitary representations. As an application we define the corresponding Selberg zeta-
function and compute its divisor, thus generalizing results of Elstrodt, Grunewald and Mennicke
[EGM98] to non-trivial unitary representations.

Much of the two-dimensional vector and three-dimensional scalar cases extends in a straight
forward manner to the three-dimensional vector case. However, the extension of several parts of
the Selberg theory are more subtle in the three-dimensional case, especially in the vector case. One
reason for this is because the set of finite-dimensional unitary representations of a fixed cofinite
Kleinian groups is not well understood. Another reason is related to the structure of the stabilizer
subgroup of a cusp. In the two-dimensional case the stabilizer subgroup of a cusp is a purely
parabolic group that is isomorphic to a rank-one lattice, while in three dimensions the stabilizer
subgroup of a cusp is a non-abelian group that contains elliptic elements, with a finite-index purely
parabolic subgroup that is isomorphic to a rank-two lattice. The presence of elliptic elements in the
stabilizer subgroup introduces some subtleties to the three-dimensional vector case, particularly in
the computation of the divisor of the Selberg zeta-function. In addition, the fact that the stabilizer
subgroup (in the three-dimensional case) contains a rank-two parabolic subgroup forced us to
prove some additional estimates involving two-dimensional lattice sums.

A Kleinian group is a discrete subgroup of PSL(2,C) = SL(2,C)/{±I}.Each element of PSL(2,C)

1The works [Roe66], [Hej83], [Fis87], contain not only the two-dimensional vector case, but also its generalization, the
case of unitary multiplier systems of arbitrary real weight.

2A Kleinian groups is referred to in some texts as a discrete group of isometries acting on hyperbolic three-space, or a
discrete subgroup of PSL(2, C) .

5



6 CHAPTER 1. INTRODUCTION

is identified with a Möbius transformation, and has a well-known action on hyperbolic three-space
H3 and on its boundary at infinity− the Riemann sphere P1 (see [EGM98, Section 1.1]) . A Kleinian
group is cofinite iff it has a fundamental domain F ⊂ H3 of finite hyperbolic volume.

We use the following coordinate system for hyperbolic three-space,

H3 ≡{(x, y, r) ∈ R3 | r > 0}≡{(z, r) |z ∈ C, r > 0}≡{z + rj ∈ R3 | r > 0},

with the hyperbolic metric

ds2 ≡ dx2 + dy2 + dr2

r2
,

and volume form

dv≡ dx dy dz

r3
.

The Laplace-Beltrami operator is defined by

∆≡−r2( ∂
2

∂x2
+

∂2

∂y2
+

∂2

∂r2
) + r

∂

∂r
,

and it acts on the space of smooth functions f : H3 7→ V, where V is a finite-dimensional complex
vector space with inner-product 〈 , 〉V .

Suppose that Γ is a cofinite Kleinian group and χ ∈ Rep(Γ, V ) (Rep(Γ, V ) is the space of finite-
dimensional unitary representations of Γ in V ). Then the Hilbert space of χ−automorphic functions
is defined by

H(Γ, χ)≡{f : H3 → V | f(γP ) = χ(γ)f(P ) ∀γ ∈ Γ,

P ∈ H3, and 〈f, f〉≡
∫
F 〈f(P ), f(P )〉V dv(P ) <∞}.

Here F is a fundamental domain for Γ in H3, and 〈 , 〉V is the inner product on V. Finally, let
∆ = ∆(Γ, χ) be the corresponding positive self-adjoint Laplace-Beltrami operator on H(Γ, χ) .

Our first result is the spectral decomposition of ∆ on H(Γ, χ) (see Theorem 3.8.1). Except for
one important point, the proof of the spectral decomposition theorem is analogous to the two-
dimensional vector and three-dimensional scalar cases. The one important point being, singularity
at a cusp. To the best of the author’s knowledge, prior to this thesis, the notion of singularity at
a cusp was only defined for cofinite Fuchsian groups [Sel56] [Roe66] [Ven82] [Hej83]. In §3.1 we
extend the notion of singularity to cofinite Kleinian groups.

In §4.1 we give an explicit form of the Selberg trace formula for cofinite Kleinian groups with
finite-dimensional unitary representations (see Theorem 3.7.1). The new feature in the trace for-
mula is a term of the form,

κ∑

α=1

g(0)

|Γα : Γ′
α|

dimC V∑

k=lα+1

L(Λα, ψkα).

The above term comes about from regularity at a cusp, and its value is computed using Kronecker’s
second limit formula ( see §4.2).

As an application of the spectral decomposition theorem we derive an identity involving con-
jugacy relations of cuspidal elliptic elements. This identity is used in the proof of the Selberg trace
formula and to show that under certain conditions, the Selberg zeta function admits a meromor-
phic continuation (see Lemma 4.4.4 for the identity).
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For Re(s) > 1 the Selberg zeta-function Z(s,Γ, χ) is defined by the following product

Z(s,Γ, χ)≡
∏

{T0}∈R

dimC V∏

j=1

∏

l,k≥0
c(T,j,l,k)=1

(
1 − tja(T0)

−2ka(T0)−2lN(T0)
−s−1

)
.

In §5.1 we introduce the various definitions and notations that are needed in order to define the
zeta function, and meromorphically3 continue Z(s,Γ, χ) to Re(s) ≤ 1 while computing its divi-
sor. The main new difficulty is handling the contribution of the cuspidal elliptic elements to the
topological (or trivial) zeros and poles of Z(s,Γ, χ). We show the following in §5.3:

Corollary. Let Γ = PSL(2,Z[− 1
2 +

√
−3
2 ]), and χ ≡ 1 (the trivial representation). Then Z(s,Γ, χ) is not

a meromorphic function4 (it is the 6-th root of a meromorphic function).

In addition, the methods of §5.3 imply that the Selberg zeta-function of the Picard group is
meromorphic:

Corollary. Let Γ = PSL(2,Z[
√
−1]), and let χ ∈ Rep(Γ, V ) . Then Z(s,Γ, χ) is a meromorphic function.

3We give the meromorphic continuation for certain cases, and for others show that the zeta function is a rational root
of a meromorphic function.

4This is the first example that the author is aware of where the Selberg zeta-function is not meromorphic.





Chapter 2

Prerequisite Material

In order to make our presentation self-contained, we present some well-known results concerning
hyperbolic three-space, the Laplace-Beltrami operator, and cofinite Kleinian groups. For more
details see [EGM98].

2.1 Hyperbolic three-space H3

Let H3 denote the upper half space (of R3) model of hyperbolic three-space. The space H3 is
parametrized by the following coordinates:

H3 ≡{(x, y, r) ∈ R3 | r > 0}≡{(z, r) | z ∈ C, r > 0}.
A point P ∈ H3 will be denoted by (x, y, r), (z, r), or z + rj. The standard hyperbolic metric1

hyperbolic metric and volume form are written respectively as

ds2 ≡ dx2 + dy2 + dr2

r2
and dv≡ dx dy dz

r3
.

Remark 2.1.1. An alternate model of hyperbolic three-space is the open three-ball, B3 ≡{(x, y, z) ∈
R3 | x2 + y2 + z2 < 1 }. When equipped with the metric

4
dx2 + dy2 + dz2

(1 − x2 − y2 − z2)
2 ,

B3 is isometric to H3 .

The boundary (at infinity) of H3 can be realized (by Remark 2.1.1) as the Riemann sphere P =
C ∪∞.

The Laplace-Beltrami ∆ operator lies at the heart of this thesis. In our coordinates it can be
written explicitly as the following differential operator2:

∆≡−r2( ∂
2

∂x2
+

∂2

∂y2
+

∂2

∂r2
) + r

∂

∂r
.

1The metric with -1 sectional curvature.
2In our notation ∆ is a positive self-adjoint operator

9



10 CHAPTER 2. PREREQUISITE MATERIAL

The orientation preserving isometry group of H3 can be identified with the group PSL(2,C) =
SL(2,C)/{±I}. Each element

M =

(
a b
c d

)
∈ PSL(2,C)

acts on H3 as follows: M(z + rj) = w + tj, where

w =
(az + b)(c̄z̄ + d̄) + ac̄r2

|cz + d|2 + |c|2r2 and t =
r

|cz + d|2 + |c|2r2 .

The element M also acts on the boundary at infinity of H3 via standard Möbius action on P,

Mζ =
aζ + b

cζ + d

for ζ ∈ P.

2.2 Harmonic Analysis on H3

For P = z + rj, P ′ = z′ + r′j ∈ H3 denote by d(P, P ′) the (hyperbolic) distance in H3 between P
and P ′, and let δ(P, P ′) be defined by

δ(P, P ′)≡ |z − z′|2 + r2 + r′2

2rr′
.

It follows that cosh(d(P, P ′)) = δ(P, P ′), and that δ is a point-pair invariant3.
We can use the concept of a point-pair invariant to construct the resolvent kernel for ∆. For

s ∈ C, t > 1, set

ϕs(t)≡
(
t+

√
t2 − 1

)−s

√
t2 − 1

.

Lemma 2.2.1. [EGM98, Lemma 4.2.2] Let u ∈ C2
c (H3), s ∈ C and λ = 1 − s2. Then for all Q ∈ H3

u(Q) =
1

4π

∫

H3

ϕs(δ(P,Q))(∆ − λ)u(P ) dv(P ).

(2) The point-pair invariant ϕs ◦ δ is the resolvent kernel for ∆ on the Hilbert space of square integrable
functions on H3 .

Let S ≡S[1,∞) denote the Schwartz space of smooth functions
k : [1,∞) → C that satisfy limx→∞ xnk(m)(x) = 0 for all n,m ∈ N≥0. For each k ∈ S, K ≡ k ◦ δ
is a point-pair invariant and the kernel of an operator K : L2

loc(H
3) 7→ L2

loc(H
3) defined by

Kf(P ) =

∫

H3

K(P,Q)f(Q) dv(Q).

We have

3A point-pair invariant is a map f : H3 ×H3 → C defined almost everywhere satisfying f(MP, MQ) = f(P, Q) for
all P, Q ∈ H3, M ∈ PSL(2, C).
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Lemma 2.2.2. [EGM98, Lemma 3.5.3] Let k ∈ S, K(P,Q) = k(δ(P,Q)) for P,Q ∈ H3, f : H3 → C be
a solution of ∆f = λf , λ = 1 − s2, and

h(λ)≡ h(1 − s2)≡ π

s

∫ ∞

1

k

(
1

2

(
t+

1

t

))
(ts − t−s)

(
t− 1

t

)
dt

t
. (2.2.1)

Then (2.2.2) converges absolutely and

∫

H3

K(P,Q)f(Q) dv(Q) = h(λ)f(P ).

The lemma above says that if f is an eigenfunction4 of ∆ with eigenvalue λ then f is also
an eigenfunction of K with eigenvalue h(λ) depending only on the eigenvalue λ and not on the
particular eigenfunction.

The map sending k ∈ S to holomorphic function h above is called the Selberg-Harish-Chandra
transform of k.

2.3 Kleinian Groups

A subgroup Γ < PSL(2,C) is called a Kleinian group if for each P ∈ H3 the orbit ΓP has no
accumulation points in H3. An equivalent formulation is that Γ is a discrete subset of PSL(2,C) in
the topology induced from C4.

A closed subset F ⊂ H3 is called a fundamental domain of Γ if

• F meets each Γ−orbit at least once,

• the interior Fo meets each Γ−orbit at most once,

• the boundary of F has Lebesgue measure zero.

For each Q ∈ H3 the set

PQ(Γ)≡{P ∈ H3 | d(P,Q) ≤ d(γP,Q) ∀ γ ∈ Γ}

is a fundamental domain for Γ that is centered at the point Q.

We say that Γ is cocompact if it has a fundamental domain F that is compact, and cofinite5 if it
has a fundamental domain F with

vol(Γ)≡
∫

F
dv <∞

(dv is the volume form of H3).

4The function f need not be in any Hilbert space.

5Note that cocompact groups are also cofinite.
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2.4 Möbius Transformations

Each element

γ =

(
a b
c d

)
∈ PSL(2,C)

falls into exactly6 one of the following categories:

• parabolic if | tr(γ)| = 2 and tr γ ∈ R,

• elliptic if 0 ≤ | tr(γ)| < 2 and tr γ ∈ R,

• loxodromic if it is neither elliptic nor parabolic.

There is a useful geometric characterization of the above notions. An element γ ∈ PSL(2,C) is

• parabolic7 iff it has exactly one fixed point in P,

• elliptic iff it has two fixed points in P and fixes the geodesic line in H3 connecting the two
points.

• loxodromic iff it has two fixed points in P and has no fixed points in H3 .

2.5 Stabilizer Subgroups and Cusps

Let Γ be a Kleinian group. For each Q ∈ H3 ∪P the stabilizer subgroup of Q is denoted by
ΓQ ≡{ γ ∈ Γ | γQ = Q } and for ζ ∈ P,

Γ′
ζ ≡{γ ∈ Γζ | γ is parabolic or the identity }.

Set

B(C)≡
{ (

a b
0 a−1

) ∣∣∣∣ 0 6= a ∈ C, b ∈ C

}
/{±I} < PSL(2,C),

N(C)≡
{ (

1 b
0 1

) ∣∣∣∣ b ∈ C

}
/{±I} < PSL(2,C) .

The group B(C) is the stabilizer subgroup of PSL(2,C) that fixes ∞ and N(C) is the maximal
parabolic subgroup of B(C). It contains all parabolic elements fixing ∞, and the identity element.

A point ζ ∈ P is called a cusp of Γ if Γ′
ζ is a free abelian group of rank two. The set of cusps

is denoted by CΓ. Two cusps, α, andβ of Γ called equivalent or Γ−equivalent if8 α ∈ Γβ. The
equivalence class of cusps is denoted by Γ \ CΓ.

The following is well known (see [EGM98, Chapter 2]).

Lemma 2.5.1. Let Γ be a Kleinian group.

6The identity element is an exception. Its trace is ±2 but it is not usually thought of as a parabolic element.

7See the previous footnote.

8Γβ denotes the orbit of the point β ∈ P.
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1. If Γ contains a parabolic element then Γ is not cocompact.

2. If Γ is cofinite and is not cocompact then Γ contains a parabolic element.

3. If Γ is cofinite, ζ ∈ P, and Γζ contains a parabolic element then ζ is a cusp of Γ.

4. If Γ is cofinite then Γ has only finitely many Γ−equivalent classes of cusps.

Next we study the structure9 of the stabilizer subgroup of a cusp for cofinite Kleinian groups.

Lemma 2.5.2. [EGM98, Theorem 2.1.8 part (3)] Let Γ be cofinite with a cusp at ∞. Then Γ ′
∞ is a lattice

in B(C) ≈ C and one of the following three holds.

1. Γ∞ = Γ′
∞

2. Γ∞ is conjugate in B(C) to a group of the form
{ (

ǫ ǫb
0 ǫ−1

) ∣∣∣∣ 0 6= b ∈ Λ, ǫ ∈ {1, i}
}
/{±I}

where Λ < C is an arbitrary lattice. As an abstract group Γ∞ is isomorphic to Z2 ⋊ Z/2Z where the
nontrivial element of Z/2Z acts by multiplication by −1.

3. Γ ′
∞ is conjugate in B(C) to a group of the form

Γ(n, t) =

{ (
ǫ ǫb
0 ǫ−1

) ∣∣∣∣
b ∈ On

ǫ = exp
(

πivt
n

)
for 1 ≤ v ≤ 2n

}
/{±I}

where n = 4 or n = 6 and t|n and where On is the ring of integers in the quadratic number field
Q
(
exp

(
2πi
n

))
. Hence , as an abstract group Γ∞ is isomorphic to the group Z2 ⋊ Z/mZ for some

m ∈ {1, 2, 3, 4, 6}.An element

ǫ ∈ Z/mZ ∼=
{

exp

(
πiv

n

)
|v ∈ Z

}

acts on Z2 ∼= O+
m′ by multiplication with ǫ2, where m′ = 4 in case

m ∈ {1, 2, 4} and m′ = 6 otherwise.

2.6 Cofinite Kleinian Groups

Let Γ be a cofinite Kleinian group. By Lemma 2.5.1 Γ has finitely many equivalence classes of
cusps.

Notation 2.6.1. Unless otherwise noted Γ is a cofinite Kleinian group with

κ≡ |Γ \CΓ| ,

and a maximal set {ζα}κ
α=1 of representatives for the equivalence classes of cusps. We set Γα ≡Γζα

and Γ′
α ≡Γ′

ζα
.

9The following structure theorem is extremely important, and without it we would be unable to extend the Selberg
theory to cofinite Kleinian groups.
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The following is elementary.

Lemma 2.6.2. Let ζα be a cusp of Γ. Then there exists Bα ∈ PSL(2,C) and a lattice Λα = Z ⊕
Zτα, Im(τα) > 0 satisfying the following.

1. ζα = B−1
α ∞,

2. BαΓαB
−1
α acts discontinuously on P \{∞} = C.

3.

BαΓ′
αB

−1
α =

{ (
1 b
0 1

) ∣∣∣∣ 0 6= b ∈ Λα

}
.

Notation 2.6.3. For each cusp class α = 1 . . . κ we fix Bα and Λα from Lemma 2.6.2 and set
Γα∞ ≡BαΓαB

−1
α , and Γ′

α∞
≡BαΓ′

αB
−1
α .

While the action of Γ′
α∞

on C is exactly the action of the (additive) lattice Λα on10 C, the action
of Γα∞ is a combination of the lattice action of Λα and possibly finite ordered euclidean rotations
of C.

The fundamental domain for a cofinite Kleinian group can be realized as the union of a compact
(hyperbolic) polyhedron and κ cusp sectors. Let Pα ⊂ C be a fundamental domain11 for the action
of Γα∞ on C, and let P ′

α be the fundamental parallelogram with base point at the origin of the
lattice Λα. For Y > 0 set

F̃α(Y )≡{ z + rj | z ∈ Pα, r ≥ Y }

and define the cusp sector, Fα(Y )≡B−1
α F̃α(Y ).

Lemma 2.6.4. [EGM98, Prop. 2.3.9] Let Γ < PSL(2,C) be cofinite with κ = |Γ \ CΓ| . Then there exist
Y > 0 and a compact set FY ⊂ H3 such that

F ≡FY ∪ F1(Y ) ∪ · · · ∪ Fκ(Y )

is a fundamental domain for Γ. The compact set FY can be chosen such that FY ∩ Fα(Yα) all are contained
in the boundary of FY and hence have Lebesgue measure 0. Also, Fα(Yα) ∩ Fβ(Yβ) = ∅ if α 6= β.

2.7 Cuspidal elliptic elements

Throughout this section Γ is a cofinite Kleinian group.

Lemma 2.7.1. Let Γ be cofinite. Then Γ has only finitely many elliptic conjugacy classes in Γ.

Proof. Assume not. Then there is an infinite sequence of elliptic Γ−conjugacy classes {[en]}. Next
for each n choose representative en which fixes a point Pn on the boundary of F , the fundamental
domain of Γ given in Lemma 2.6.4. Since Γ is discrete, the points must accumulate at least at one
cusp. After conjugating Γ and passing to a subsequence of {Pn} we may assume that Pn → ∞.

10For z ∈ C, we have

„

1 b

0 1

«

z = z + b.

11The domain Pα is a euclidean polygon.
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An application of [EGM98, Corollary 2.3.3] implies that en ∈ Γ∞. In short we have constructed in-
finitely many elliptic Γ−conjugacy classes with a representative fixing the cusp ∞. An elementary
computation using Lemma 2.5.2 shows that there are only finitely many elliptic Γ∞−conjugacy
classes, a contradiction.

Notation 2.7.2. For each α ∈ {1 . . . κ} set

Υα ≡
{(

ǫ 0
0 ǫ−1

) ∣∣∣∣
(
ǫ 0
0 ǫ−1

)
∈ Γα∞

}
.

If (
ǫ 0
0 ǫ−1

)
∈ Υα,

then for some non-zero natural numberN, ǫN = 1.We have the following application of Lemma 2.5.2.

Lemma 2.7.3. The set Υα is isomorphic to a finite subgroup of the unit circle S1, cyclic, and isomorphic
to Γ∞α/Γ

′
α∞
. Any element γ ∈ Γα∞ can be written uniquely in the form γ = αβ, where α ∈ Υα and

β ∈ Γ′
α∞
.

Definition 2.7.4. An elliptic element γ ∈ Γ, is said to be cuspidal elliptic if at least one12 of its fixed
points in P is a cusp of Γ. Otherwise it is called a non-cuspidal elliptic element. The set of cuspidal
elliptic elements is denoted by Γce.

Notation 2.7.5. For α ∈ {1 . . . κ} define CEα to be the set of elements of Γ which are Γ-conjugate to
an element of Γα \ Γ′

α. We fix representatives of CEα : gα
1 , . . . , g

α
dα

and define qα
i ≡Bαg

α
i B

−1
α

Since qα
i fixes ∞,

qα
i =

(
ǫαi ǫαi w

α
i

0 (ǫαi )
−1

)
, (2.7.1)

where ǫαi is a finite-ordered root of unity and wα
i ∈ Λα.

12Actually by [EGM98, Cor 2.3.11] , if one fixed point is a cusp, then the other fixed point is also a cusp.





Chapter 3

The Spectral Decomposition Theorem

In this chapter we prove the spectral decomposition theorem for cofinite Kleinian groups with
finite-dimensional unitary representations. While much of our work is analogous to the two-
dimensional vector and three-dimensional scalar cases1 there are some new complications that
arise because of cuspidal elliptic elements2.

3.1 Unitary Representations

Throughout this section Γ is a cofinite Kleinian group with κ = |Γ \ CΓ| and cusp representatives
{ζα}κ

α=1.
Let V be an n-dimensional complex vector space, with an inner product 〈·, ·〉V linear in the first

argument and anti-linear in the second argument. For v ∈ V its norm |v|V is given by
√
〈v, v〉V

and the norm of a linear operator L : V → V is defined as

|L|V ≡ sup
v∈V

( |Lv|V
|v|V

)
.

Definition 3.1.1. Define Rep(Γ, V ) to be the set of pairs (χ, V ) where V a finite dimensional com-
plex inner product space and χ is a unitary representation of Γ in GL(V ).

We will abuse notation and identify χ with (χ, V ).

Definition 3.1.2. Let Γ be cofinite, κ = |Γ \ CΓ| and χ ∈ Rep(Γ, V ) . For each α ∈ {1, · · · , κ} define

Vα ≡{v ∈ V |χ(γ)v = v ∀γ ∈ Γα },
V ′

α ≡{v ∈ V |χ(γ)v = v ∀γ ∈ Γ′
α },

kα ≡ dimVα,

lα ≡dimV ′
α, and

k≡ k(Γ, χ)≡
κ∑

α=1

kα.

1We encourage the reader to first read [EGM98, Sections 4.1,4.2,4.3,6.1,6.2,6.3,6.4] and [Ven82, Chapter 1,2,3]

2Fuchsian groups do not have cuspidal elliptic elements.

17
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The subspace Vα is called a singular subspace while V ′
α is called an almost singular3 subspace,

kα is called the degree of singularity of the representation χ at the cusp α, and k = k(Γ, χ) the degree
of singularity of Γ relative to χ.

Definition 3.1.3. A representation χ is singular at the cusp ζα if kα > 0, regular at ζα if kα = 0. It is
singular if k > 0, and regular if k = 0.

Unitary representions of the stabilizer subgroup

Lemma 3.1.4. There exist Eα, Rα, Sα ∈ Γα with the following properties:
(1) Γα = {Ek

αR
i
αS

j
α | 0 ≤ k < mα, i, j ∈ Z }.HereRα, Sα are parabolic elements withBαRαB

−1
α (P ) =

P + 1 and BαSαB
−1
α (P ) = P + τα (here Λα = Z ⊕ Zτα) for all P ∈ H3, and Eα is elliptic of order mα.

(2) Γ′
α = {Ri

αS
j
α | i, j ∈ Z }.

(3) The elements Rα and Sα commute but the group Γα is not abelian when mα > 1.
(4) If in addition, mα > 1, then χ(Eα) maps V ′

α onto itself. Furthermore, there exists a basis of V ′
α so

that χ(Eα)|V ′
α

is diagonal.

Proof. (1), (2), and (3) readily follow from [EGM98, Theorem 2.1.8]. We prove (4): set E = Eα, R =
Rα, S = Sα. SinceERE−1 andR−1 are both parabolic and in Γ′

α it follows that theA≡E−1R−1ER ∈
Γ′

α is parabolic. Since A is parabolic, A = RiSj for some i, j ∈ Z (applying (2)). By definition, the
restriction χ(A)|V ′

α
= IV ′

α
. We have

χ(E)χ(R) = χ(R)χ(E)χ(A).

Next applying an arbitrary v ∈ V ′
α we obtain

χ(E)v = χ(E)χ(R)v = χ(R)χ(E)χ(A)v = χ(R)χ(E)v (3.1.1)

Thus χ(R) fixes χ(E)v and similarly χ(S) fixes χ(E)v, so by definition χ(E)v ∈ V ′
α. Since χ(E) is

unitary, its restriction to V ′
α is also unitary, hence V ′

α has a diagonalizing basis.

We remark that for a cusp α of Γ, the group Γ′
α is abelian. Thus, the unitary representations χ

restricted to Γ′
α is diagonalizable and can be thought of as a direct sum of one-dimensional unitary

representations of Γ′
α.

3.2 Automorphic Functions

The set of Γ-automorphic functions A(Γ, χ) is the set of all Borel-measurable functions f : H3 → V
that satisfy f(γP ) = χ(γ)f(P ) for all γ ∈ Γ. Such functions are uniquely determined by their
values on a fundamental domain. With this in mind we fix a fundamental domain F ⊂ H3 for Γ
and define

H(Γ, χ)≡L2(F , V, dv, χ)≡{f ∈ A(Γ, χ) |
∫

F
〈f(P ), f(P )〉V dv(P ) <∞}.

For f, g ∈ H(Γ, χ) define the inner product 〈f, g〉≡
∫
F 〈f(P ), g(P )〉V dv(P ).With this inner product

H(Γ, χ) is a Hilbert Space. For n ∈ N let Cn(H3, V, χ) be space of Γ-automorphic functions which
are n-times differentiable on H3.

3The notion of almost singularity does not occur in the two dimensional case.
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The Automorphic Laplacian ∆(Γ, χ)

Recall that the Laplace-Beltrami operator ∆ is defined on twice continuously differentiable func-
tions f : H3 → C. Thus ∆ can be defined on the set A(Γ, χ) ∩ C2(H3, V, χ), and for f ∈ A(Γ, χ) ∩
C2(H3, V, χ) it follows (since ∆ commutes with isometries) that ∆f ∈ A(Γ, χ) ∩ C2(H3, V, χ).

Consider the dense subspace D = {f ∈ H(Γ, χ)∩C2(H3, V, χ) | ∆f ∈ H(Γ, χ) }. It follows that
∆ : D → H(Γ, χ) is essentially self-adjoint and has a unique positive self-adjoint extension to a

space D̃ (see [EGM98, Section 4.1]).

Definition 3.2.1. Let Γ be a cofinite Kleinian group and χ ∈ Rep(Γ, V ) .We define the automorphic
Laplacian

∆(Γ, χ) : D̃ → H(Γ, χ)

to be the self-adjoint extension of ∆ : D → H(Γ, χ) .

When there is little possibility for confusion, we will identify ∆ with ∆(Γ, χ). The dense sub-

space D̃ can be realized as the set of functions in H(Γ, χ) whose distributional Laplacian is in
H(Γ, χ) .

3.3 Fourier series expansion at a cusp

The scalar case

Let f ∈ A(Γ, 1) (that is f : H3 → C, and for all P ∈ H3, γ ∈ Γ, f(γP ) = f(P )), and let ζα be a cusp
of Γ with B−1

α ∞ = ζα. Then it is easily seen that f ◦B−1
α ∈ A(BαΓB−1

α , 1), in particular f ◦B−1
α ∈

A(BαΓ′
αB

−1
α , 1). Since BαΓ′

αB
−1
α is isomorphic to the lattice Λα, f ◦B−1

α (P + ω) = f ◦B−1
α (P ) for

all P ∈ H3 and ω ∈ Λα. That is, f ◦ B−1
α is invariant under that lattice Λα. If we suppose further

that f is smooth then we can expand f ◦B−1
α as

f(B−1
α (z + rj)) =

∑

µ∈Λ0
α

gµ(r)e2πi〈µ,z〉.

Here 〈 , 〉 is the (real) euclidean inner product in R2 = C, Λ0
α is the lattice dual to Λα. If we assume

still further that ∆f = λf, and f(B−1
α (z + rj)) = O(rN ) for some N ∈ N, then a simple separation

of variables argument (see [EGM98, Section 3.3]) shows that for λ = 1 − s2, s 6= 0, gµ satisfies the
Bessel equation (

r2
d2

dr2
− r

d

dr
+ λ− 4π2|µ|2r2

)
gµ(r) = 0, (3.3.1)

whose general solution is gµ(r) = aµrKs(2π|µ|r) + bµrIs(2π|µ|r). Here

Is(w) =

∞∑

m=0

ws+2m

m!2s+2mΓ(s+m+ 1)
, Ks(w) =

π

2 sin sπ
(I−s(w) − Is(w)) .

The function Ks(x) decreases exponentially, and Is(x) increases exponentially as x → ∞. Apply-
ing the growth bound of f we obtain

f(B−1
α (z + rj)) = a0r

1+s + b0r
1−s +

∑

06=µ∈Λ0
α

aµrKs(2π|µ|r)e2πi〈µ,z〉. (3.3.2)

We will need the following fact later on:
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Lemma 3.3.1. Let p be a non-negative integer. Then

dp

drp

∑

06=µ∈Λ0
α

aµrKs(2π|µ|r)e2πi〈µ,z〉 = O(e−|c|r) as r → ∞,

for some constant |c| > 0.

Preliminary Lemmas

Our goal in this section is to come as close as possible to diagonalizing the group of unitary trans-
formations {χ(Γα)}. Recall that

Vα ≡{v ∈ V |χ(γ)v = v ∀γ ∈ Γα },

V ′
α ≡{v ∈ V |χ(γ)v = v ∀γ ∈ Γ′

α },
kα ≡dim Vα, and

lα ≡ dimV ′
α.

For each cusp ζα of Γ let (I − Pα) : V → V ⊥
α denote the orthogonal projection onto V ⊥

α . By
definition of singularity, for each 0 6= v ∈ V ⊥

α there exists γ ∈ Γα satisfying χ(γ)v 6= v.
Fix a cusp ζα of Γ. We can partition n = dimV as follows:

1, . . . , kα, kα+1, . . . , lα, lα+1, . . . , n.

We will next chose a particular basis of V that respects the partions above and is a close as possible
to diagonalizing {χ(Γα)}.

Recall from Lemma (3.1.4) that Γα = {Ek
αR

i
αS

j
α | 0 ≤ k < mα, i, j ∈ Z }. Here Rα, Sα are

parabolic and Eα is elliptic.
Let Bsα ≡{vα1, . . . , vαkα

} be an orthonormal basis for Vα. By lemma (3.1.4) there exists a set
Baα ≡{vα(kα+1), . . . , vαlα} of orthonormal elements in V, pairwise orthogonal to the elements of
Bsα so that the following conditions are satisfied: For each v ∈ Baα, χ(γ)v = v for all γ ∈ Γ′

α,
and χ(Eα)v = λv, where here Eα is the primitive elliptic element in Γα chosen in lemma (3.1.4),
and 1 6= λ ∈ C with λmα = 1. Finally, there exists a set Brα ≡{vα(lα+1), . . . , vαn} of orthonormal
elements of V, pairwise orthogonal to the elements of Bsα ∪ Baα so that the following conditions
are satisfied: For each v ∈ Brα, χ(γ)v = λ′v for each γ ∈ Λ′

α and some 1 6= λ′ ∈ C with |λ′| = 1. We
have proven the following.

Lemma 3.3.2. For each cusp ζα let Γα = {Ek
αR

i
αS

j
α | 0 ≤ k < mα, i, j ∈ Z } (see lemma (3.1.4)). Then

there exists an orthonormal basis

{vα1, . . . , vαkα
, vα(kα+1), . . . , vαlα , vα(lα+1), . . . , vαn} = Bsα ∪Baα ∪Brα

of V with the following properties:
(1) For each vαl ∈ Bsα (1 ≤ l ≤ kα), χ(γ)vαl = vαl for all γ ∈ Γα.
(2) For each vαl ∈ Baα (kα + 1 ≤ l ≤ lα), χ(Rα)vαl = χ(Sα)vαl = vαl, and χ(Eα)vαl = λαlvαl.

Here 1 6= λαl ∈ C and λmα

αl = 1.
(3) For each vαl ∈ Brα (lα + 1 ≤ l ≤ n), χ(Rα)vαl = λRαlvαl, and χ(Sα)vαl = λSαlvαl. Here

λRαl, λSαl ∈ C, with |λRαl| = |λSαl| = 1, and λRαl, λSαl are not both equal to one.
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For each cusp ζα and lα + 1 ≤ l ≤ n fix θRαl and θSαl so that

e2πiθRαl = λRαl and e2πiθSαl = λSαl. (3.3.3)

We remark that Bsα and Brα are analogous to the two dimensional singular and regular cases
respectively (see [Ven82] ). We call Baα the almost singular case.

Let Pαl be the orthogonal projection onto the subspace generated by vαl.

Lemma 3.3.3. Let f ∈ A(Γ, χ).
(1) If 1 ≤ l ≤ lα, then

Pαlf(B−1
α (Q+ ω)) = Pαlf(B−1

α Q)

for all Q ∈ H3 and ω ∈ Λα.
(2) If lα + 1 ≤ l ≤ n, then for n,m ∈ Z,

Pαlf(B−1
α (Q+m+ nτα)) = e2πi(mθRαl+nθSαl)Pαlf(B−1

α Q),

where Z ⊕ Zτα = Λα.

Proof. (1) Let ω ∈ Λα. Since Λα is isomorphic toBαΓ′
αB

−1
α there exists γ ∈ Γ′

α satisfyingBαγB
−1
α Q =

Q+ω for allQ ∈ H3 (See lemma (3.1.4)). Since f ∈ A(Γ, χ), it follows thatPαlf(γQ) = Pαlχ(γ)f(Q).
However,

Pαlχ(γ) = (χ(γ)∗P ∗
αl)

∗ = (χ(γ−1)Pαl)
∗ = (Pαl)

∗ = Pαl.

Thus,

Pαlf(B−1
α (Q+ ω)) = Pαlf(B−1

α BαγB
−1
α (Q)) = Pαlf(γB−1

α Q) = Pαlf(B−1
α Q).

(2) A direct calculation similar to (1) shows thatPαlf(B−1
α (Q+m+nτα)) = Pαlf(Rm

α S
n
αB

−1
α Q) =

Pαlχ(Rα)mχ(Sα)nf(B−1
α Q) = e2πi(mθRαl+nθSαl)Pαlf(B−1

α Q).

Fourier Expansion: The vector case

Proposition 3.3.4. Let Γ be cofinite, f ∈ A(Γ, χ) be smooth satisfying
f(B−1

α (z + rj)) = O(rN ) for some N ∈ N and each cusp ζα of Γ, and ∆f = λf with λ = 1 − s2, s 6= 0.
(1) If 1 ≤ l ≤ kα, then

Pαlf(B−1
α (z + rj)) = aαl,0r

1+s + bαl,0r
1−s +

∑

06=µ∈Λ0
α

aαl,µrKs(2π|µ|r)e2πi〈µ,z〉.

(2) If kα + 1 ≤ l ≤ lα, then

Pαlf(B−1
α (z + rj)) =

∑

06=µ∈Λ0
α

aαl,µrKs(2π|µ|r)e2πi〈µ,z〉.

(3) If lα + 1 ≤ l ≤ n, θRαl, θSαl are chosen so that exp(2πiθRαl) = λRαl, and exp(2πiθSαl) = λSαl,
then

Pαlf(B−1
α (z + rj)) =

∑

µ∈Λ0
α

aαl,µrKs(2π|µ′|r)e2πi〈µ′,z〉.

where µ′ = θRµ1 + θSµ2 + µ, Λ0
α is the lattice dual to Λα generated by µ1, µ2, where

〈µ1, 1〉 = 1, 〈µ1, τα〉 = 0, 〈µ2, 1〉 = 0, 〈µ2, τα〉 = 1,

and the aαl,µ are scalar multiples of the vector vαl.
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Proof. (1) By Lemma 3.3.3 Pαlf(B−1
α (z + rj)) is a scalar function multiplied by the vector vαl, thus

an application of equation (3.3.2) concludes the proof.
(2) By (1)

Pαlf(B−1
α (z + rj)) = aαl,0r

1+s + bαl,0r
1−s +

∑

06=µ∈Λ0
α

aαl,µrKs(2π|µ|r)e2πi〈µ,z〉.

We will show that aαl,0 and bαl,0 are both zero. To see this first, observe that (by Lemma 3.3.1)

Pαlf(B−1
α (z + rj)) = aαl,0r

1+s + bαl,0r
1−s +

∑

06=µ∈Λ0
α

aαl,µrKs(2π|u|r)e2πi〈u,z〉

= aαl,0r
1+s + bαl,0r

1−s +O(e−|c|r) as r → ∞.

Next,
Pαlf(B−1

α (BαEαB
−1
α )(z + rj)) = aαl,0r

1+s + bαl,0r
1−s +O(e−|c|r) as r → ∞

since BαEαB
−1
α (z + rj) = z′ + rj for some z′ ∈ Z, that is BαEαB

−1
α fixes the r−coordinate in H3

(this follows from elementary computations and that fact that BαEαB
−1
α ∞ = ∞). However, we

also have
Pαlf(B−1

α (BαEαB
−1
α )(z + rj)) = Pαlχ(Eα)f(B−1

α (z + rj)) =

λαlPαlf(B−1
α (z + rj)) = λαl(aαl,0r

1+s + bαl,0r
1−s +O(e−|c|r)),

a contradiction since λαl 6= 1.
(3) Let h(Q)≡ h(z)≡ exp(〈µ1, z〉 θRαl + 〈µ2, z〉 θSαl), where Q = z + rj. Then h(Q) satisfies

h(Q+m+ ταn) = exp(2πi(mθRαl + nθSαl))h(Q),

thus by lemma (3.3.3)
Pαlf ◦B−1

α

h
(Q+ ω)) =

Pαlf ◦B−1
α

h
(Q)

for all Q ∈ H3 and ω ∈ Λα. Thus we can write

Pαlf ◦B−1
α

h
(Q) =

∑

µ∈Λ0
α

gµ(r)e2πi〈µ,z〉,

which is equivalent to

Pαlf ◦B−1
α (Q) =

∑

µ∈Λ0
α

gµ(r)h(z)e2πi〈µ,z〉.

To conclude the proof recall that ∆f = λf, f grows by at most O(rN ) near each cusp, and apply
the separation of variables technique (see [EGM98, page 105]).

3.4 The Eisenstein series

As usual for this section let Γ be cofinite with cusp representatives {ζα}κ
α=1, B

−1
α ∞ = ζα, and

(χ, V ) ∈ Rep(Γ, V ) .
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Definitions

For P ∈ H3, Re(s) > 1, and v ∈ Vα we define the Eisenstein series by

E(P, s, α, v)≡E(P, s, α, v,Γ, χ)≡
∑

M∈Γα\Γ
(r(BαMP ))1+s χ(M)∗v.

The series E(P, s, α, v) converges uniformly and absolutely on compact subsets of {Re(s) > 1} ×
H3, and is a χ−automorphic function that satisfies

∆E( · , s, α, v) = λE( · , s, α, v).
In addition

E(B−1
β (z + rj), s, α, v) = O(rN )

for any cusp ζβ .

Fourier expansion of the Eisenstein series

In this section we give the explicit Fourier expansion of the Eisenstein series.
For ζα a cusp of Γ and 1 ≤ l ≤ kα, set Eαl ≡Eαl(s)≡E( · , s, α, vαl)

Lemma 3.4.1. Let ζα, ζβ be cusps of Γ, 1 ≤ l ≤ kα, and 1 ≤ k ≤ kβ . Then

PβEαl(B
−1
β (z + rj)) = δαβr

1+svβl+

π

|Γα : Γ′
α||Λβ |s


 ∑

M∈Γ′
α\Γ/Γ′

β

Pβχ
∗(M)vα,l|c|−2−2s


 r1−s+

g(s)
∑

06=|µ|∈Λ0
β

|µ|s

 ∑

M∈Γ′
α\Γ/Γ′

β

Pβχ
∗(M)vα,l

e2πi<µ, d
c
>

|c|2+2s


 rKs(2π|µ|r)e2πi<µ,z>

where

g(s)≡ 2π1+s

|Γα : Γ′
α||Λβ |Γ(1 + s)

,

c = c(BαMB−1
β ) and d = d(BαMB−1

β ) are the bottom left and bottom right indices respectively of the

two-by-two matrix BαMB−1
β .

Proof. An application of Proposition 3.3.4 part (1) gives us the general form of the Fourier series
expansion. Then apply the argument found in [EGM98, page 111].

A Maaß form is a smooth function f ∈ A(Γ, χ) satisfying f(B−1
α (z + rj)) = O(rN ) for some

N ∈ N and for each cusp ζα of Γ, and ∆f = λf with λ = 1 − s2, s 6= 0.
We saw in proposition (3.3.4) that for 1 ≤ l ≤ kα, a Maaß form f can be expanded as

Pαlf(B−1
α (z + rj)) = aαl,0r

1+s + bαl,0r
1−s +

∑

06=µ∈Λ0
α

aαl,µrKs(2π|µ|r)e2πi〈µ,z〉.

The r1+s, r1−s terms will play a promanent role in the what follows. Define ufαl
by

ufαl
(B−1

α (z + rj)) = aαl,0r
1+svαl + bαl,0r

1−svαl.
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The scattering matrix

Since the Eisenstein series is a Maaß form, we can apply the function u to read off its constant term
in its Fourier expansion. Define the scattering matrix Sα,l,β,k(s) by

u(Eαl)βk
(B−1

β (z + rj)) = δαβδlkr
1+svβk + Sα,l,β,k(s)r1−svβk.

We can put the scattering matrix into a k(Γ, χ)×k(Γ, χ) matrix. Let S(s) be the k(Γ, χ)×k(Γ, χ)
matrix given block-wise,

(Sαβ(s))≡(Sα,l,β,k(s))

where 1 ≤ l ≤ kα, 1 ≤ k ≤ kβ .

3.5 The Maaß-Selberg Relations

Our main goal in this section is to prove the Maaß-Selberg relations in the case of cofinite Kleinian
groups with finite dimensional unitary representations. The relations will be needed to prove
the Selberg trace formula. For this section assume Γ is a cofinite Kleinian group and (χ, V ) ∈
Rep(Γ, V ) .

Greene’s Theorem

The basic tool for proving the Maaß-Selberg relations is Greene’s Theorem. LetD ⊂ H3 be compact
with a piece-wise smooth boundary, f, g be complex valued smooth functions, dv the volume form

on H3, and d̃v the induced volume form on the boundary of D, ∂D. Then Greene’s theorem is
∫

D

(f ∆ ḡ − ḡ ∆ f) dv =

∫

∂D

(f
∂

∂n
ḡ − ḡ

∂

∂n
f) d̃v.

Our application of Greene’s theorem will be to the compact part of the fundamental domain

F of Γ. Writing Greene’s theorem in the global coordinates of H3 using dv = dx∧dy∧dr
r3 , ∂

∂n = r ∂
∂r ,

d̃v = ∂
∂n ⊥ dv = dx∧dy

r2 and Greene’s Theorem becomes,
∫

D

(f ∆ ḡ − ḡ ∆ f)
dxdydr

r3
=

∫

∂D

(f
∂

∂r
ḡ − ḡ

∂

∂r
f)
dxdy

r

when ∂D is a two-dimensional region parallel to C on the boundary of H3 .

The scalar Maaß-Selberg relations

For this section, assume Γ has only one class of cusps and that χ = 1. Let f ∈ A(Γ, 1) and assume
that f has polynomial growth as z+rj approaches the cusp at ∞, is smooth, and satisfies∆f = λf
(in other words f is a Maaß form). Let Λ be the lattice corresponding to Γ′

∞. Then we can expand

f(z + rj) =
∑

µ∈Λ0

gµ(r)e2πi<µ,z>

where

(r2
d2

dr2
− r

d

dr
+ λ− 4π2|µ|2r2)gµ(r) = 0.
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Lemma 3.5.1. Let ∆f = λf , ∆g = νg with λ = 1 − s2, ν = 1 − t2, s 6= 0, t 6= 0. Assume Γ has only
one cusp at ∞ and

f(P ) = ar1+s + br1−s +
∑

µ∈Λ0

fµ(r)e2πi<µ,z>

g(P ) = cr1+t + dr1−t +
∑

µ∈Λ0

gµ(r)e2πi<µ,z>

Let uf(P ) = ar1+s + br1−s, ug(P ) = cr1+t + dr1−t

hY (P ) =

{
h(P ) − uh(P ), P ∈ F(Y )

h(P ), P ∈ F0

for h = f, g. Then

(s2 − t̄2)

∫

F
fY ḡY dv =

|Λ|
|Γ∞ : Γ′

∞|
(
(s− t̄)ac̄Y s+t̄ + (s+ t̄)ad̄Y s−t̄

)

− |Λ|
|Γ∞ : Γ′

∞|
(
(s+ t̄)bc̄Y −s+t̄ + (s− t̄)bd̄Y −s−t̄

)

Proof. LetD = F0 = F\F(Y ) (here F(Y ) is the cusp sector that goes to infinity). Then by Greene’s
theorem ∫

D

(f ∆ ḡ − ḡ ∆ f) dv =

∫

∂D

(f
∂

∂n
ḡ − ḡ

∂

∂n
f) d̃v.

Since the (vertical) sides of D are pair-wise identified by isometries (with opposite orientation)
the only surviving boundary term is the horizontal cross section (the boundary where F was
separated into F0 and F(Y )). Greene’s theorem becomes

∫

D

(f ∆ ḡ − ḡ ∆ f)
dxdydr

r3
=

∫

P

(f
∂

∂r
ḡ − ḡ

∂

∂r
f)
dxdy

r
, (3.5.1)

where dv = dx∧dy∧dr
r3 , ∂

∂n = r ∂
∂r , d̃v = ∂

∂n ⊥ dv = dx∧dy
r2 , and P ≡ ∂D is the horizontal boundary

region described above.
The set P is a vertical translation of a fundamental domain of the action of Γ∞ on C. That is

the r−coordinate projection is constant and equal to Y. Set

P ′ ≡
⋃

γ∈Γ′
∞\Γ∞

γP.

Then P ′ is a fundamental domain for Λ = Λ∞.
With our notation the right side of equation (3.5.1) becomes

1

|Γ∞ : Γ′
∞|

∫

P ′

((


∑

µ6=0

fµ(Y )e2πi<µ,z>




∑

µ6=0

ḡ′µ(Y )e−2πi<µ,z>




−


∑

µ6=0

ḡµ(Y )e−2πi<µ,z>


 (


∑

µ6=0

f ′
µ(Y )e2πi<µ,z>


)

dxdy

Y
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+
|Λ|

|Γ∞ : Γ′
∞|
(
(s− t̄)ac̄Y s+t̄ + (s+ t̄)ad̄Y s−t̄

)

− |Λ|
|Γ∞ : Γ′

∞|
(
(s+ t̄)bc̄Y −s+t̄ + (s− t̄)bd̄Y −s−t̄

)
.

In the terms above involving multiplications of lattice sums, after integration over P ′ the only
surviving terms are (by the orthogonality of the family {e2πi<µ,z>})

|Λ|
|Γ∞ : Γ′

∞|
∑

µ6=0

(
fµ(Y )ḡ′µ(Y ) − ḡµ(Y )f ′

µ(Y )
) 1

Y
.

A direct calculation using the fact that gµ and fµ satisfy the Bessel equation (3.3.1) shows that

d

dr
(

(
fµ(r)ḡ′µ(r) − ḡµ(r)f ′

µ(r)
)

r
) =

1

r3
(s2 − t̄2)fµ(r)ḡµ(r)

thus
|Λ|

|Γ∞ : Γ′
∞|
∑

µ6=0

(
fµ(Y )ḡ′µ(Y ) − ḡµ(Y )f ′

µ(Y )
) 1

Y

= (s2 − t̄2)
|Λ|

|Γ∞ : Γ′
∞|
∑

µ6=0

∫ ∞

Y

fµ(r)ḡµ(r)
dr

r3
= (s2 − t̄2)

∫

F(Y )

fY ḡY dv.

By definition
∫

D
fY ḡY dv =

∫
D
f ḡ dv and thus combing the integral of D and F (Y ) we obtain the

lemma.

The vector form of the Maaß-Selberg relations

Let Γ be cofinite with cusps ζα = B−1
α ∞ for α = 1 . . . κ, with fundamental domain F = F0 ∪

F1(Y ) ∪ . . .Fκ(Y ). For (χ, V ) ∈ Rep(Γ, V ) .
Let f ∈ A(Γ, χ) be a Maaß form, that is f is smooth, satisfies f(B−1

α (z+ rj)) = O(rN ) for some
N ∈ N and for each cusp ζα of Γ, and ∆f = λf with λ = 1 − s2, s 6= 0. We define

fY (P ) =

{
f(P ) −∑kα

l=1 ufαl
(P ) ifP ∈ Fα(Y ), α = 1 . . . κ

f(P ) otherwise

Theorem 3.5.2. (Maaß-Selberg Relations) Let Γ be cofinite, (χ, V ) ∈ Rep(Γ, V ), f and g be Maaß forms
satisfying ∆f = λf , ∆g = νg with λ = 1 − s2, ν = 1 − t2, s 6= 0, t 6= 0. Suppose that uf,αl(B

−1
α P ) =

aαlr
1+s + bαlr

1−s and ug,αl(B
−1
α P ) = cαlr

1+s + dαlr
1−s. Then

(s2 − t̄2)

∫

F

〈
fY , gY

〉
V
dv

=

κ∑

α=1

|Λα|
|Γα : Γ′

α|

kα∑

l=1

[
(s− t̄) 〈aαl, cαl〉V Y s+t̄ + (s+ t̄) 〈aαl, dαl〉V Y s−t̄

− (s+ t̄) 〈bαl, cαl〉V Y −s+t̄ + (s− t̄) 〈bαl, dαl〉V Y −s−t̄
]
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Proof. For notational simplicity we assume Γ has only one class of cusps at ∞. We can write P∞ =
P1 + · · · + Pk∞ (see §3.3).

(s2 − t̄2)

∫

F

〈
fY , gY

〉
V
dv

= (s2 − t̄2)

∫

F

〈
(P∞ + (1 − P∞))fY , (P∞ + (1 − P∞))gY

〉
V
dv

= (s2 − t̄2)

∫

F

(〈
P∞f

Y , P∞g
Y
〉

V
+
〈
(1 − P∞)fY , (1 − P∞)gY

〉
V

)
dv. (3.5.2)

The equality follows from the fact that P∞ is an orthogonal projection. We will first show

(s2 − t̄2)

∫

F

〈
(1 − P∞)fY , (1 − P∞)gY

〉
V
dv = 0 (3.5.3)

Since (1 − P∞)f has no constant Fourier expansion coefficients (see Proposition 3.3.4) (1 −
P∞)fY = (1 − P∞)f, and by Lemma 3.3.1

dp

drp
(1 − P∞)f(B−1

α (z + rj)) = O(e−|c|r) (3.5.4)

for p ≥ 0 and as r → ∞.

Next to prove equation (3.5.3) we apply the vector form of Greene’s theorem,

∫

D

(〈f,∆ g〉V − 〈g,∆ f)〉 dv =

∫

∂D

(

〈
f,

∂

∂n
g

〉

V

−
〈
g,

∂

∂n
f

〉

V

) d̃v

and we obtain (by (3.5.4))

lim
R→∞

(s2 − t̄2)

∫

FR

〈(1 − P∞)f, (1 − P∞)g〉V dv

= lim
R→∞

∫

P (R)

(〈
(1 − P∞)f,

∂

∂r
(1 − P∞)g

〉

V

−
〈

(1 − P∞)g,
∂

∂r
(1 − P∞)f

〉

V

)
dxdy

R
= 0.

To conclude the proof write

(s2 − t̄2)

∫

F

〈
P∞f

Y , P∞g
Y
〉

V
dv = (s2 − t̄2)

k∑

j=1

∫

F

〈
Pjf

Y , Pjg
Y
〉

V
dv

and apply Lemma (3.5.1) to (s2 − t̄2)
∫
F
〈
Pjf

Y , Pjg
Y
〉

V
dv.



28 CHAPTER 3. THE SPECTRAL DECOMPOSITION THEOREM

3.6 The resolvent kernel

The definition of the resolvent

One of our main goals in this paper is to understand the spectrum of ∆. The spectrum is best
understood in terms of the resolvent operator. The resolvent set of ∆, ρ(∆), is the set of all z ∈ C

so that (∆−zI) has a bounded inverse, defined on the entire Hilbert space H(Γ, χ). The spectrum
of∆, σ(∆), is the complement of the resolvent set C\ρ(∆). For each z ∈ ρ(∆) we have the resolvent

operator Rz = (∆−zI)−1
.

The resolvent kernel for ∆(Γ, χ)

We will understand the resolvent operator through its kernel. A bounded linear operator K :
H(Γ, χ) 7→ H(Γ, χ) is said to have a kernel if there exists a function k : H3 ×H3 ×V 7→ V so that for
all f ∈ H(Γ, χ) , P ∈ H3, Kf(P ) =

∫
F k(P,Q)f(Q) dv(Q). Recall (from §2.2) that for t > 1, s ∈ C,

ϕs(t)≡
(
t+

√
t2 − 1

)−s

√
t2 − 1

,

and for P,Q ∈ H3, δ(P,Q) = cosh(d(P,Q)), where d is the hyperbolic distance function.

Definition 3.6.1. Let Γ be a cofinite Kleinian group, χ ∈ Rep(Γ, V ), and s ∈ C with Re(s) > 1.
Define the Maaß-Selberg Series

Fχ(P,Q, s) =
1

4π

∑

M∈Γ

χ(M)ϕs(δ(P,MQ)). (3.6.1)

Since
∑

M∈Γ |ϕs(δ(P,MQ))| converges uniformly when P,Q, and s are restricted to compact
subsets of
{Re(s) > 1}×

(
H3 ×H3 \ { (P,Q) ∈ H3 ×H3 |ΓP = ΓQ}

)
(see [EGM98, page 96]) and χ is a unitary

representation (χ(γ) has norm one for all γ ∈ Γ) the sum in equation (3.6.1) converges absolutely
and uniformly when P,Q, and s are restricted to compact subsets of
{Re(s) > 1} ×

(
H3 ×H3 \ { (P,Q) ∈ H3 ×H3 |ΓP = ΓQ}

)
.

The function Fχ(P,Q, s) is the kernel for the resolvent operator of ∆.

Theorem 3.6.2. Let Γ be cofinite with χ ∈ Rep(Γ, V ), and λ = 1 − s2 ∈ ρ(∆) with Re(s) > 1. Then

Rλ : H(Γ, χ) → D̃ has kernel Fχ(P,Q, s).

To prove the theorem one shows that for λ = 1 − s2 with Re(s) > 1, any element u ∈ D̃ can be
represented by a continuous function which satisfies

u(Q) =
1

4π

∫

F
Fχ(P,Q, s)(∆−λ)u(P ) dv(P ). (3.6.2)

Equation (3.6.2) can be seen by unfolding the integral in (3.6.2) and applying Lemma 2.2.1. See
[EGM98, theorem 4.2.6, page 150] for more details.
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Fourier expansion of the resolvent kernel

In this section we will concern ourselves with a sub-sum of the resolvent kernel that causes the
resolvent kernel to not be of Hilbert-Schmidt type. For notational simplicity we assume that Γ
is cofinite with only one cusp at ζα = ∞. Fix a fundamental domain F = FY ∪ F(Y ), and let
χ ∈ Rep(Γ, V ) .

Recall that for Re(s) > 1 the resolvent kernel can be expressed as a sum

Fχ(P,Q, s) =
1

4π

∑

M∈Γ

χ(M)ϕs(δ(P,MQ)).

Let

F∞(P,Q)≡ 1

4π

∑

M∈Γ∞

χ(M)ϕs(δ(P,MQ)),

and

F0(P,Q) = Fχ(P,Q, s)−F∞(P,Q).

Let {v∞l} be the basis constructed in §3.3. For convenience we drop the ∞ subscript and
consider {vl} and corresponding orthogonal projections {Pl}.

The following lemmas are all proved using a standard separation of variables technique. See
[Ven82, Pages 20-23] and §3.3

Lemma 3.6.3. Let P,Q ∈ H3 satisfy P 6= Q. Then

P∞F∞(P,Q) = P∞R0(rP , rQ, s) + P∞
∑

06=µ∈Λ0
α

aµRµ(rP , rQ, s)e
2πi〈µ,zP −zQ〉,

where

R0 =
c

s

{
r1+s
P r1−s

Q rP ≤ rQ
r1−s
P r1+s

Q rP ≥ rQ

for some constant c, and

Rµ(rP , rQ, s) =

{
rPKs(2π|µ|rP ) rQIs(2π|µ|rQ) rP ≥ rQ
rP Is(2π|µ|rP ) rQKs(2π|µ|rQ) rP ≤ rQ

.

Lemma 3.6.4. Let P,Q ∈ H3 satisfy P 6= Q, k∞ + 1 ≤ l ≤ l∞. Then

PlF∞(P,Q) =

Pl

∑

06=µ∈Λ0
α

al,µRµ(rP , rQ, s)e
2πi〈µ,zP −zQ〉,

where

Rµ(rP , rQ, s) =

{
rPKs(2π|µ|rP ) rQIs(2π|µ|rQ) rP ≥ rQ
rP Is(2π|µ|rP ) rQKs(2π|µ|rQ) rP ≤ rQ

.
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Lemma 3.6.5. Let P,Q ∈ H3 satisfy P 6= Q, l∞ + 1 ≤ l ≤ n. Then

PlF∞(P,Q) =

Pl

∑

06=µ∈Λ0
α

al,µR
′
µ(rP , rQ, s)e

2πi〈µ′,zP−zQ〉,

where

R′
µ(rP , rQ, s) =

{
rPKs(2π|µ′|rP ) rQIs(2π|µ′|rQ) rP ≥ rQ
rP Is(2π|µ′|rP ) rQKs(2π|µ′|rQ) rP ≤ rQ

,

and µ′ = θRµ1 + θSµ2 + µ. (See Proposition 3.3.4 for an explanation of the notation used).

Estimates of the resolvent kernel

It follows from [EGM98, Theorem 4.5.2] that
∫

F
|F0(P,Q)|2V dv(P ) dv(Q) <∞.

In other words, F0(P,Q) is a Hilbert-Schmidt kernel. On the other hand, F∞(P,Q) is not. How-
ever, from the Fourier series expansion of F∞(P,Q), and the decay properties of the Bessel func-
tions rIs(2π|µ|r), rKs(2π|µ|r) it follows that the only component of the resolvent kernel that de-
stroys square-integrability is,

R∞(P,Q)≡ c

s
P∞

{
r1+s
P r1−s

Q rP ≤ rQ
r1−s
P r1+s

Q rP ≥ rQ

Definition 3.6.6. Let Γ be cofinite with one cusp at ζα = ∞. ForB ≥ Y decompose F = F0∪F(B),
and let χ ∈ Rep(Γ, V ), define

FB(P,Q)≡
{
R∞(P,Q) P,Q ∈ F(B)

0 else
, (3.6.3)

and FB(P,Q)≡Fχ(P,Q, s)−FB(P,Q).

We have shown the following:

Lemma 3.6.7. ∫

F
|FB(P,Q)|2V dv(P ) dv(Q) <∞.

3.7 Analytic continuation of the Eisenstein Series

The meromorphic continuation of Eαl(P, s) is necessary for the proof of the spectral decomposi-
tion theorem, and is highly non-trivial. Fortunately, there are several well-known methods avail-
able, [Fad69], [Sel89], [Sel91], [CdV81], and [Lan76]. In [EGM98] an adaptation of the methods in
[CdV81] is used to prove the three-dimensional scalar case, and a similar adaptation works4 for
the vector case which we show now.

4Alternatively, Faddeev’s method can also be used to express the meromorphic continuation of Eαl(P, s) by adapting
[Ven82, Chapters 2 and 3].
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The idea of the proof

As in Faddeev’s proof the key idea is the resolvent kernel of ∆. We know from §3.6 that it is not a
Hilbert-Schmidt operator. However the key step in the proof is to construct a self adjoint operator
∆a defined on a closed subspace (the set of functions whose constant Fourier term vanishes for
r > a ) so that (∆a −λ)−1 is Hilbert-Schmidt and is closely related to ∆.

Statement of the theorem

Theorem 3.7.1. Let Γ be cofinite, (χ, V ) ∈ Rep(Γ, V ), and 1 ≤ l ≤ kα. Then
(1) Eαl(P, s) admits a meromorphic continuation in the following sense. For each fixed P ∈ H3,

Eαl(s, P ) is a meromorphic function in s ∈ C. The poles of Eαl(P, s) depend only on s and not on P .
(2) If U ⊂ C is open with Eαl(P, s) regular on U then Eαl is real analytic on U × H3.
(3) For each regular s ∈ C, ∆Eαl(P, s) = (1 − s2)Eαl(P, s).
(4) The scattering matrix S(s) and Eαl(P, s) are both finite ordered meromorphic functions with order

≤ 4.
(5) E(P,−s) = S(−s)E(P, s)
(6) S(s)S(−s) = 1.
(7) S(s) is a unitary matrix on the critical axis Re(s) = 0.

Proof of theorem (3.7.1) part I: Preliminaries

In order to avoid complicated notation (quadruple subscripts) we will assume the following:

Assumption 3.7.2. The Kleinian group Γ has only one class of cusps at ζ = ∞ ∈ P, and χ ∈ Rep(Γ, V ) .

Then we can choose fundamental domain of the form F = F0 ∪ F(Y ) (here F0 = FY , see §2.6
). We can write the orthogonal projection onto V∞ by

P∞ =

k∞∑

k=1

Pk,

where Pk is the orthogonal projection onto vk = v∞k (see §3.3).
Since we assume that ∞ is the only cusp we have (by definition) k∞ distinct Eisenstein series (

E∞l(P, s), l = 1 . . . k∞ ) which have an expansion of the form (see §3.3, §3.4).

PkE∞l(P, s) = δklr
1+svk + φkl(s)r

1−svk +O(e−|c|r). (3.7.1)

We will need various spaces of functions. Let πΓ : H3 → Γ \H3 be the standard (quotient map)
projection, and set

D∞ ≡{Φ ∈ A(Γ, χ) ∩ C∞(H3, V ) | πΓ(supp(Φ)) is compact in Γ \ H3}.

We will restrict functions in D∞ to F . The space of distributions D′ is the set of all continuous
(complex valued) linear functionals on D∞. A function f ∈ L1

loc(Γ, χ) can be identified with the
distribution U where

U(Φ)≡
∫

F
〈Φ(P ), f(P )〉V dv(P ). (3.7.2)
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Noting that H(Γ, χ) ⊂ L1
loc(Γ, χ), we say that a distribution U ∈ H(Γ, χ) if and only if there exists

f ∈ H(Γ, χ) so that equation (3.7.2) holds for all Φ ∈ D∞.
For Y chosen in the decomposition F = F0 ∪ F(Y ) define

D(Y,∞)≡C∞
c ((Y,∞),C),

and D′(Y,∞) the corresponding space of distributions (the space of continuous, complex valued,
linear functionals of D(Y,∞) ). For each h ∈ L1

loc(Y,∞) we associate the distribution

h(φ)≡
∫ ∞

Y

φ(r)h(r)
dr

r3
(φ ∈ D(Y,∞).

For U ∈ D′,Φ ∈ D∞, i ∈ N ∪ {0}, we define the following differential operators at each point
(x, y, r) ∈ H3 :

D[i]
x U(Φ)≡(−1)iU(ri ∂

i

∂xi
Φ), D[i]

y U(Φ)≡(−1)iU(ri ∂
i

∂yi
Φ),

D[i]
r U(Φ)≡(−1)iU(r3

∂i

∂xi
(ri−3Φ)),

∆U ≡
(
D[2]

x +D[2]
y +D[2]

r −D[1]
r

)
U.

An unraveling of the definitions shows that ∆U(Φ) = U(∆Φ). For f ∈ H(Γ, χ) we abuse notation
and define

grad(f) ∈ H(Γ, χ) iff D[1]
x f,D[1]

y f,D[1]
r f ∈ H(Γ, χ) .

Let f, g ∈ H(Γ, χ) with grad(f), grad(g) ∈ H(Γ, χ) . Then we define

Q(f, g)≡
∫

F

(〈
D[1]

x f,D[1]
x g
〉

V
+
〈
D[1]

y f,D[1]
y g
〉

V
+
〈
D[1]

r f,D[1]
r g
〉

V

)
dv.

An application of Greene’s theorem shows that for Φ ∈ D∞,

Q(f,Φ) =

∫

F
〈∆Φ, f〉V dv = (∆f)(Φ),

where ∆f is taken in the distributional sense.
We next define useful maps between the function spaces D∞,D(Y,∞) and the distribution

spaces D′,D′(Y,∞). In order for the notation to be simple, we will use uppercase Greek letters
for functions in D∞, uppercase Roman letters for distributions in D′, lower case Greek letters for
functions in D(Y,∞), and lower case Roman letters for distributions in D′(Y,∞). It is also useful
to think of D∞,D′ as BIG spaces and D(Y,∞),D′(Y,∞) as small spaces.

For F ∈ H(Γ, χ), 1 ≤ l ≤ k∞ set

Ll[F ](r)≡ 1

|Λ|

∫

Λ\C

〈PlF (x, y, r), vl〉V dxdy.

By Fubini’s theorem Ll[F ] ∈ L1
loc((Y,∞), r−3dr). For any function

φ : (Y,∞) → C,
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and 1 ≤ l ≤ k∞ set

Bl[φ](P )≡
{
φ(r)vl if P = z + rj ∈ F∞(Y )

0 if P ∈ F0
.

We will identify Ll[φ](P ) with its automorphic extension in A(Γ, χ).
For each l ∈ 1 . . . k∞ define Bl∗ : D′ → D′(Y,∞) by

Bl∗[U ](φ)≡U(Bl[φ]),

where U ∈ D′, φ ∈ D(Y,∞), and define L∗
l D′(Y,∞) → D′ by

L∗
l [u](Φ) = u(Ll[Φ]),

where u ∈ D′(Y,∞),Φ ∈ D∞.
Define ∆0 D′(Y,∞) → D′(Y,∞) by

(∆0 u)(φ) = u

((
−r2 d

2

dr2
+ r

d

dr

)
φ

)
(u ∈ D′(Y,∞)), φ ∈ D(Y,∞).

Then it follows that for u ∈ D′(Y,∞), U ∈ D′, l ∈ 1 . . . k∞,

L∗
l (∆0 u) = ∆L∗

l (u) and Bl∗(∆U) = ∆0Bl∗(U).

For a > Y, s ∈ C set

ηa,s ≡
{
r1+s − a2sr1−s r > a

0 r < a
,

and T a
l = L∗

l [δa], where δa ∈ D′(Y,∞) is the Dirac delta-distribution at the point a.
A simple calculation using Greene’s function techniques for second order differential equations

(see [Iwa02, Pages 194-195] for details on the technique) shows that

(∆0 −(1 − s2))ηa,s = −2sas−1δa,

and an application of L∗
l (l ∈ 1 . . . k∞) gives us

(∆−(1 − s2))Bl[ηa,s] = −2sas−1T a
l . (3.7.3)

Proof of theorem (3.7.1) part II: Lemmas

Lemma 3.7.3. Let
Ha ≡{F ∈ H(Γ, χ) | Ll[F ](r) = 0, r ≥ a, l ∈ 1 . . . k∞},

Da ≡{F ∈ Ha | grad(F ) ∈ H(Γ, χ)},
and for F,G ∈ Da

Qa(F,G)≡Q(F,G).

Then
(1) Ha is a closed subspace of H(Γ, χ) .
(2) There exists a self-adjoint operator ∆a with domain D∆a

⊂ Da ⊂ Ha with

∆a : D∆a
→ Ha
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that satisfies ∫

F
〈∆a F,G〉V dv = Qa(F,G)

for all F ∈ D∆a
, G ∈ Da,

(3) D∆a
consists of those F ∈ Da which satisfy

∆F = G+

k∞∑

l=1

clT
a
l , (3.7.4)

for some G ∈ Ha. If equation (3.7.4) is satisfied, then ∆a F = G.

The proof (of the above lemma) is similar to [EGM98, Pages 237-239].

Lemma 3.7.4. (1) For Re(s) > 1, (∆a −(1 − s2))−1 is a Hilbert-Schmidt operator.
(2) The self-adjoint operator ∆a has a purely discrete spectrum.
(3) The resolvent (∆a −(1 − s2))−1 can be continued to an operator valued meromorphic function on

all of C of order ≤ 4.

Proof. (1) and (2) follow from a straight forward adaptation [EGM98, Prop. 6.1.8, page 240-241].
(2) follows from standard functional analysis while (3) is proved in [EGM98, Lemma 6.1.9, page
240].

Let hs(r) = h(r)r1+s where for Y < Y ′ < Y ′′ h : (Y,∞) → R smooth and h(y) = 1 for y ≥ Y ′′

and h(y) = 0 for y < Y ′.
LetHl(P, s) = ((∆−(1− s2))Bl[hs](P ). Then it is in H(Γ, χ) and smooth. In fact it is also in Ha.
Let

Ω≡{s ∈ C | Re(s) > 0, 1 − s2 /∈ σ(∆)}.

Lemma 3.7.5. Let Y < Y ′ < Y ′′ and h : (Y,∞) → R be a smooth function satisfying h(r) = 1 for
r ≥ Y ′′ and h(r) = 0 for r < Y ′. For each l ∈ 1 . . . k∞ set

Hl(P, s)≡((∆−(1 − s2))Bl[hs](P ),

and for s ∈ Ω set

El(P, s)≡Bl[hs](P ) − ((∆−(1 − s2))−1Hl(P, s).

Then
(1) Bl[hs] ∈ A(Γ, χ) is a smooth.
(2) Hl(z + jr, s) = 0 for all r > Y ′′ and hence is in H(Γ, χ) . Moreover, if Y ′′ < a then Hl(·, s) ∈ Ha.
(3) The function Hl(P, s) is holomorphic for s ∈ C.
(4) The function El(P, s) is holomorphic for s ∈ Ω.
(5) The function El(P, s) is the unique function in A(Γ, χ) that satisfies

(∆−(1 − s2))El(P, s) = 0, El(P, s) −Bl[hs](P ) ∈ H(Γ, χ) .

(6) For all P ∈ H3, s ∈ Ω, El(P, s) = E∞l(P, s).

See [EGM98, Pages 234-235].
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Proof of theorem (3.7.1) part III: The meromorphic continuation

We exhibit the meromorphic continuation of the Eisenstein series to all of C.
For s ∈ C with 1 − s2 /∈ Ωa ≡σ(∆a) set

Al(P, s)≡(∆a −(1 − s2))−1Hl(P, s).

By Lemma 3.7.4 and Lemma 3.7.5,Al(P, s) varies meromorphically. Next for each s ∈ Ωa Al(P, s) ∈
D∆a

(since it is in the range of the resolvent of ∆a), and an appeal to Lemma 3.7.4 give us

(∆−(1 − s2))Al(P, s) = Hl(P, s) +

k∞∑

j=1

cl,j(s)T
a
j . (3.7.5)

Plugging in (to the distributional equation above) arbitrary test functions Φ ∈ D∞, which do
not vanish at the support of each T a

j , into equation (3.7.5) shows that the functions cl,j(s) are
meromorphic on all of C (the remaining terms in equation (3.7.5) are meromorphic).

Next define the following meromorphic functions,

el,j(s)≡
1

2
s−1a1−scl,j(s).

Finally, let

Nl(P, s)≡Al(P, s) +

k∞∑

j=1

el,j(s)Bl[ηa,s](P ) +Bl[hs](P ).

Then (in the distributional sense) (∆−(1−s2))Nl(P, s) = 0, and moreover, by the elliptic regularity
theorem Nl(P, s) is smooth as a function of P ∈ H3 .

Since el,j(s), Bl[hs](P ) are meromorphic, and of order ≤ 4, Nl(P, s) is meromorphic, and of
order ≤ 4.

To relate Nl(P, s) to E∞l(P, s), express E∞l(P, s) as a linear combination of the Nl(P, s) and
apply the uniqueness part of Lemma 3.7.5.

We have proved parts (1)-(4) of Theorem 3.7.1. Part (5) can be seen by plugging in −s into
E∞l(P, s) and applying the uniqueness part of Lemma 3.7.5. Part(6) follows immediately from
(5). Part (7): from the Dirichlet series representation of the components of S(s) we see that for
Re(s) > 1,

S(s) = S
∗(s).

Observing that for s = it, t ∈ R, it = −it and appealing to (6) proves (7).

3.8 Proof of the spectral decomposition theorem

There are several proofs of the spectral decomposition theorem. All of them use the analytic con-
tinuation of the Eisenstein series to the critical line Re(s) = 0 in a crucial manner.

One particularly nice approach is to use the general theory of eigenpackets. This approach
makes the deep connection between the Eisenstein series and the spectral decomposition theo-
rem quite clear. We shall see that integral of the Eisenstein series on segments of the critical line
(Re(s) = 0) is an eigenpacket.
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Statement of the theorem

Let Γ be a cofinite group with (χ, V ) ∈ Rep(Γ, V ) .
Let D denote a countable indexing set of all u ∈ D (the domain of ∆) such that ∆u = λu for

some λ ∈ C.
We remark that in general, we do not know if D is an infinite set.

Theorem 3.8.1. Let f ∈ D. Then f has an expansion of the form

f(P ) =

∑

m∈D

< f, em > em(P ) +
1

4π

h∑

α=1

kα∑

l=1

[Γα : Γ′
α]

|Λα|

∫

R

< f,Eαl( · , it) > Eαl(P, it) dt, (3.8.1)

The sum and integrals converge pointwise absolutely and uniformly on compact subsets of H3 .

Eigenpackets

Throughout this section, let A : DA → H be a self-adjoint operator with domain DA in the Hilbert
space H, with inner product < ·, · > .

We will outline the spectral decomposition theorem for eigenpackets. See [EGM98, Section 6.2]
for more details.

An eigenpacket of A is a map v : R → H, λ 7→ vλ having the following properties:
(1) v0 = 0 and vλ ∈ DA for all λ ∈ R.
(2) The map v : R → H is continuous (in the norm sense).

(3) Avλ =
∫ λ

0
µ dv(µ), where the integral is the limit in the norm sense of the corresponding

Stieltjes sums. By an integration by parts, we can rewrite (3) as Avλ = λvλ −
∫ λ

0 vµ dµ, where the
integral is the limit of Riemann sums in the norm sense.

Eigenpackets have many similarities to eigenfunctions. If f is an eigenvector of A then <
f, vλ >= 0 for all λ ∈ R. In addition, if w is also an eigenpacket of A and [α, β], [γ, δ] are two
intervals having at most one point in common, then

< vβ − vα, wδ − wγ >= 0. (3.8.2)

Fix an eigenpacket v of A. Then there exists a non-decreasing right continuous function F :
R → R which is unique up to an additive constant satisfying the equation

F (β) − F (α) = ‖vβ − vα‖2 (3.8.3)

for all α < β.
For x ∈ H define a function ϕ : R → C, by

ϕ(λ) =< x, vλ > . (3.8.4)

Next let T be a partion of [α, β], of the form

T : α = λ0 < λ1 < · · · < λn = β,
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and define

xT ≡
n∑

j=1

ϕ(λj) − ϕ(λj−1)

F (λj) − F (λj−1)
(vλj

− vλj−1
).

For a sequence of partitions (sub partitions) Tn with maximal width of its subdivsion converging
to zero set ∫ β

α

dϕ(λ) dv(λ)

dF (λ)
= lim

n→∞
xTn

.

Further define

Pvx≡
∫ ∞

−∞

dϕ(λ) dv(λ)

dF (λ)
≡ lim

α→−∞
lim

β→∞

∫ β

α

dϕ(λ) dv(λ)

dF (λ)
.

We can now write down the general spectral decomposition theorem. Let D be a countable
indexing set for a maximal set of orthonormal eigenvectors A, and N a countable indexing set for
a maximal set of orthogonal eigenpackets of A.

Lemma 3.8.2. Let {em}m∈D be a maximal set of orthonormal eigenvectors ofA, and {vn}n∈N be a maximal
set of orthogonal eigenpackets of A. Then every x ∈ H can be decomposed as

x =
∑

m∈D

< x, em > em +
∑

n∈N

∫ ∞

−∞

dϕn(λ) dvn(λ)

dFn(λ)
.

The sum and integrals converge in the norm sense in H.

Proof of the theorem

Lemma 3.8.3. Let Γ be cofinite with χ ∈ Rep(Γ, V ) . For P ∈ H3, α ∈ 1 . . . κ,
l ∈ 1 . . . kα, we define

V αl
λ (P )≡

{
0 for λ < 1∫√

λ−1

0
Eαl(P, it) dt for λ ≥ 1

with positive choice of square root. Then V
[αl]
λ (·) ∈ H(Γ, χ) and the family of V [αl] are a maximal system

of orthogonal eigenpackets for ∆. Further,

‖V [αl]
λ1

− V
[αl]
λ2

‖2 = 2π
|Λα|

[Γα : Γ′
α]

(T1 − T2) (3.8.5)

for λ1 ≥ λ2 ≥ 1 and T1 =
√
λ1 − 1, T2 =

√
λ2 − 1.

Proof. For notational simplicity we work under Assumption 3.7.2. From the Fourier expansion of
the Eisenstein series we see that E∞l(P, s) = Al(P, s) + O(e−|c|r) as r → ∞, where Al(P, s) =
r1+svl + φl(s)r

1−s, and φl(s) is defined by < φl(s), vk >V = S(s)l,k ≡S(s)∞l,∞k. Since S(t) is
unitary on the critical axis, |φl(it)|V = 1 for t ∈ R.

We next show that V
[l]
λ ≡V

[αl]
λ ∈ H(Γ, χ) for each λ ∈ R. Put T =

√
λ− 1, and set

βl(P, T )≡
∫ T

0

Al(P, it) dt.
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An integration by parts shows that5

βl(P, T ) = O(
r

log r
) as r → ∞.

Hence βl(P, T ) ∈ L2(F). The upper bound on β(P, T ) and the dominated convergence theorem

imply that V
[l]
λ is continuous in the norm sense.

Next, for λ ≥ 1,

∆V
[l]
λ (P ) =

∫ √
λ−1

0

(1 + t2)E∞l(P, it) dt =

∫ λ

0

µ dV [l]
µ .

The last equality was obtained by subsituting µ = 1 + t2. We have now shown that V
[l]
µ is an

eigenpacket.
We next prove the orthogonality relation

〈
V

[l]
λ , V

[k]
λ

〉
= 0 for l 6= k,

using the Maaß-Selberg relations (Theorem 3.5.2). We have

〈
V

[l]
λ , V

[k]
λ

〉
= lim

Y →∞

〈∫ T

0

EY
l (P, it) dt,

∫ T

0

EY
k (P, it′) dt′

〉

= lim
Y →∞

[Γ∞ : Γ′
∞]

|Λ∞|

∫ T

0

∫ T

0

〈
EY

l (P, it), EY
k (P, it′)

〉
dt dt′

=

∫ T

0

∫ T

0

lim
Y →∞

[
− Y it+it′ i

Sk,l(it′)

t+ t′
+ Y −it−it′ i

Sk,l(it)

t+ t′

−Y −it+it′ i

∑k∞

j=1 Sj,l(it)Sj,k(it′)

t′ − t

]
dt dt′ = 0,

since all three terms above are bounded for t, t′ ∈ [0, T ] (S(it) is a unitary matrix so its terms are
bounded and rows are orthonormal), and by the Riemann-Lebesgue lemma.

Equation (3.8.5) follows in a similar manner. Letting λ1 = 1 + T 2
1 , λ2 = 1 + T 2

2 , we have

‖V [l]
λ1

− V
[l]
λ2
‖2 = lim

Y →∞

∫ T1

T2

∫ T1

T2

〈
EY

l (P, it), EY
l (P, it′)

〉
dt dt′

=
|Λα|

[Γα : Γ′
α]

lim
Y →∞

∫ T1

T2

∫ T1

T2

[
−Y it+it′ i

Sl,l(it′)

t+ t′
+ Y −it−it′ i

Sl,l(it)

t+ t′

+Y it−it′ i
1

t′ − t
− Y −it+it′ i

∑k∞

j=1 Sj,l(it)Sj,l(it′)

t′ − t

]
dt dt′ = 2π

|Λα|
[Γα : Γ′

α]
(T1 − T2).

5The implicit constant depends on T.
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See [EGM98, Pages 272-275] and [Iwa02, Page 97] for the details. The trick is to add and subtract
the conjugate to the second to last term (on the left side of the equal sign) and combine one of the
extra terms with the last term.

Finally, it remains to prove completeness. Let A > Y, and extend the function

f
[l]
A (P )≡

{
vl for P ∈ F(A)
0 else

to H(Γ, χ) . Then one can verify that f
[l]
A is orthogonal to the set of cusp forms6, and to all eigen-

packets V [k] for k 6= l. The function f
[l]
A is not orthogonal to the exceptional eigenfunctions (the

residues of the Eisenstein series El(P, s) at the poles σj ∈ (0, 1] ) and the eigenpacket V [l]. Let Tl

denote the orthogonal projection onto the space spanned by the exceptional eigenfunctions and

the the span of {V [l]
α − V

[l]
β }α,β∈R. Then a computation shows that ‖f [l]

A ‖2 = ‖Tlf
[l]
A ‖2, that is our

system eigenfunctions-eigenpacket system is complete with respect to expanding f
[l]
A . Now sup-

pose that there exists an eigenpacketW orthogonal to all of the {V [l]}l=1...k∞ , and cusp forms, and

let U be the span of {Wα −Wβ}α,β∈R. Then for u ∈ U by the completeness with respect to f
[l]
A ,〈

f
[l]
A , u

〉
= 0 for l = 1 . . . k∞, that is u is a cusp form, a contradiction unless u = 0. See [EGM98,

Pages 274-276] for more details.

6The space of cusp forms is the space spanned by the eigenvalues of ∆ that are in H(Γ, χ), and whose constant term
in their Fourier expansion is identically zero. Only finitely many eigenvalues of ∆ are not cusp forms.





Chapter 4

The Selberg Trace Formula

In this chapter we derive the Selberg Trace Formula for cofinite Kleinian groups with finite dimen-
sional unitary representations.

4.1 The Selberg Trace Formula

Theorem 4.1.1. (Selberg Trace Formula) Let Γ be a cofinite Kleinian group, χ ∈ Rep(Γ, V ), h be a
holomorphic function on {s ∈ C | | Im(s)| < 2+δ} for some δ > 0, satisfying h(1+z2) = O(1+|z|2)3/2−ǫ)
as |z| → ∞, and let

g(x) =
1

2π

∫

R

h(1 + t2)e−itx dt.

Then

∑

m∈D
h(λm) =

vol
(
Γ \ H3

)

4π2
dimC V

∫

R

h(1 + t2)t2 dt

+
∑

{R}nce

trV χ(R)g(0) logN(T0)

4| E(R) | sin2( πk
m(R) )

+
∑

{T}lox

trV χ(T )g(logN(T ))

|E(T )| |a(T ) − a(T )−1|2 logN(T0)

− tr(S(0))h(1)

4
+

1

4π

∫

R

h(1 + t2)
φ′

φ
(it) dt

+

κ∑

α=1

eα∑

k=1

trV χ(gαk)

|C(gαk)|

(
g(0)cαk + dαk

∫ ∞

0

g(x)
sinhx

coshx− 1 + ααk
dx

)

+

κ∑

α=1

(
lα

|Γα : Γ′
α|

(
h(1)

4
+ g(0)(

1

2
ηΛα

− γ) − 1

2π

∫

R

h(1 + t2)
Γ′

Γ
(1 + it) dt

))

+

κ∑

α=1

g(0)

|Γα : Γ′
α|

dimC V∑

k=lα+1

L(Λα, ψkα). (4.1.1)

Here, {λm}m∈D are the eigenvalues of ∆ counted with multiplicity. Following [EGM98] sec-
tion 5.2, the summation with respect to {R}nce extends over the finitely many Γ−conjugacy classes
of the non cuspidal elliptic elements (elliptic elements that do not fix a cusp) R ∈ Γ, and for such

41
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a class N(T0) is the minimal norm of a hyperbolic or loxodromic element of the centralizer C(R).
The element R is understood to be a k−th power of a primitive non cuspidal elliptic element
R0 ∈ C(R) describing a hyperbolic rotation around the fixed axis of R with minimal rotation an-
gle 2π

m(R) . Further, E(R) is the maximal finite subgroup contained in C(R). The summation with

respect to {T }lox extends over the Γ−conjugacy classes of hyperbolic or loxodromic elements of Γ,
T0 denotes a primitive hyperbolic or loxodromic element associated with T. The element T is con-
jugate in PSL(2,C) to the transformation described by the diagonal matrix with diagonal entries
a(T ), a(T )−1 with |a(T )| > 1, and N(T ) = |a(T )|2. For s ∈ C, S(s) is a k(Γ, χ) × k(Γ, χ) matrix-
valued meromorphic function, called the scattering matrix of ∆, and φ(s) = detS(s). Furthermore
cαk, gαk, and dαk are constants depending on Γ which will be determined in the case of Γ having
only one cusp at ∞. The remaining notation will be defined in this chapter1.

For P = z + rj, P ′ = z′ + r′j ∈ H3 set

δ(P, P ′)≡ |z − z′|2 + r2 + r′2

2rr′
.

It follows that δ(P, P ′) = cosh(d(P, P ′)), where d denotes the hyperbolic distance in H3 . Next, for
k ∈ S([1,∞)) a Schwartz-class function, define

K(P,Q) = k(δ(P,Q)), and KΓ(P,Q)≡
∑

γ∈Γ

χ(γ)K(P, γQ).

The series above converges absolutely and uniformly on compact subsets of H3 ×H3, and is
the kernel of a bounded operator K : H(Γ, χ) 7→ H(Γ, χ) . The Selberg trace formula is essentially2

the trace of K evaluated in two different ways: the first using spectral theory, and the second as an
explicit integral.

The function h that appears in the Selberg trace formula is the Selberg–Harish-Chandra trans-
form3 of k, defined as follows:

h(λ) = h(1 − s2)≡ π

s

∫ ∞

1

k

(
1

2

(
t+

1

t

))
(ts − t−s)

(
t− 1

t

)
dt

t
, λ = 1 − s2. (4.1.2)

Expansion of KΓ

We now diagonalize K. For v, w ∈ V define a map v ⊗ w : V → V by

v ⊗ w(x) =< x,w > v. (4.1.3)

An immediate application of the spectral decomposition theorem and the Selberg transform give
us,

1Please note that there is a typographical error in the loxodromic and non cuspidal elliptic terms in [EGM98] Theorem
6.5.1; both terms are missing a factor of 1

4π
.

2We say “essentially” because K is not of trace class. Selberg’s procedure is used to define and compute the regularized
trace.

3If f : H3 7→ V is a smooth function satisfying ∆ f = λf , then Kf = h(λ)f. That is f is an eigenfunction of K with an
eigenvalue that depends only on λ.
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Lemma 4.1.2. Let k ∈ S and h : C → C be the Selberg Transform of k. Then

KΓ(P,Q) =
∑

m∈D
h(λm)em(P ) ⊗ em(Q)

+
1

4π

h∑

α=1

kα∑

l=1

[Γα : Γ′
α]

|Λα|

∫

R

h
(
1 + t2

)
Eαl(P, it) ⊗ Eαl(Q, it)dt. (4.1.4)

The sum and integrals converge absolutely and uniformly on compact subsets of H3 ×H3.

Set

HΓ(P,Q) =
1

4π

h∑

α=1

kα∑

l=1

[Γα : Γ′
α]

|Λα|

∫

R

h
(
1 + t2

)
Eαl(P, it) ⊗ Eαl(Q, it) dt,

LΓ(P,Q) =
∑

m∈D
h(λm)em(P ) ⊗ em(Q).

Then clearly KΓ = LΓ +HΓ. We have

Lemma 4.1.3. ∫

F
‖LΓ(P,Q)‖2

V dv(P ) dv(Q) <∞,

∫

F
trV (LΓ(P, P )) dv(P ) =

∑

m∈D
h(λm) and,

∑

m∈D
|h(λm)| <∞.

Proof. The first equation follows from the decay properties of h, the orthonormality of the em and
that fact that ∫

F
‖LΓ(P,Q)‖2

V dv(P ) dv(Q) ≤ C
∑

m∈D

|h(λm)|2 <∞.

For the second, note that

trV (em(P ) ⊗ em(P )) = 〈em(P ), em(P )〉V

thus by the orthonormality of the em,
∫

F
trV (LΓ(P, P )) dv(P ) =

∑

m∈D
h(λm)

∫

F
〈em(P ), em(P )〉V dv(P ) =

∑

m∈D
h(λm).

By the decay properties of h, ∑

m∈D
|h(λm)| <∞ (4.1.5)

If we naively try to take the trace of K by
∫
F trV (KΓ(P, P )) dv(P ) we would see that the

integral does not converge. However we can regularize the trace by subtracting off the term∫
F trV (HΓ(P, P )) dv(P ) in the following careful manner.
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Lemma 4.1.4. Let f(P ) = trV (KΓ(P, P )) − trV (HΓ(P, P )). Then f is in L1(F). Further,

lim
A→∞

∫

FA

trV (KΓ(P, P )) dv(P ) − lim
A→∞

∫

FA

trV (HΓ(P, P )) dv(P )

=

∫

F
f(P ) dv(P ). (4.1.6)

(The set FA is defined in Lemma 2.6.4.) In particular, the singularities arising from each integral must
cancel out.

The fact that the singularities arising from each integral must cancel out will be crucial in our
derivation of the Selberg trace formula, and imply some interesting group relations of Γ.

Proof of the Spectral Truncated Trace

For this section Assumption 3.7.2 is in effect. So far we know little about the t−dependence of the
Eisenstein series on the critical line. The following consequence of Lemma 4.1.2 will remedy the
situation.

Lemma 4.1.5. Let l ∈ 1 . . . k∞. Then
∫ T

−T

|El(z + jr, it)|2V dt = O(r2T + T 3).

Proof. For 0 < ǫ < 1/16 let kǫ : [1,∞) 7→ R be a smooth function satisfying

supp(kǫ) ⊂ [1, 1 + ǫ], max(|kǫ|) ≤ cǫ−
3
2 ,

∫

H3

kǫ(δ(P,Q)) dv(Q) = 1,

for some c > 0, and for all P ∈ H3 (See [EGM98, page 292] for the construction). Then it follows
([EGM98, page 292]) that

∫

F
‖KΓ(P,Q)‖2

V dv(Q) ≤ c1

(
r2P ǫ

− 1
2 + ǫ−

3
2

)

for all P = (zP , rP ) ∈ F . On the other hand we have (Lemma 4.1.2)

KΓ(P,Q) =

∑

m∈D
h(λm)em(P ) ⊗ em(Q) +

1

4π

k∞∑

l=1

C∞

∫

R

h
(
1 + t2

)
El(P, it) ⊗ El(Q, it) dt,

and by Parseval’s equality (for the Hilbert space H(Γ, χ)), setting ǫ = (16T 2)−1, we obtain

c1(r
2
PT + T 3) ≥ ‖KΓ(P, ·)‖2

H(Γ,χ) ≥
C∞
4π

∫ T

−T

|h(1 + t2)|2|El(P, it)|2 dt.

By [EGM98, page 122] we get

|h(1 + t2) − 1| < 7

2
(1 + |t|) 1

4T
, for |t| ≤ T,

which gives a positive lower bound on |h(1 + t2)|2 for t ∈ [−T, T ]. The lemma now follows.
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The following lemma will allow us to compute the spectral trace. More specifically the Maaß-
Selberg relations will give the leading terms of the truncated trace while the error term (below)
will vanish as A → ∞. We adapt a nice argument found in [Iwa02, Page 142] which shortens the
exposition found in [EGM98, Page 295].

Lemma 4.1.6. Let h(1 + z2) = O((1 + |z|2)−3/2−ǫ). Then

∫

R

∫

F(A)

h(1 + t2)|EA
l (P, it)|2V dv(P ) dt = O(A−1) as A→ ∞.

Proof. Let C∞ =
[Γ∞:Γ ′

∞]
|Λ∞| and let P be a fundamental domain for the lattice Λ∞. By Parseval’s

equality4 (for eigenfunctions of the euclidean Laplacian on C = R2),)

1

|Λ∞|

∫

P
|EA

l (z + rj, it)|2V dz =
∑

µ6=0

|φl,µ(it)|2V |rKit(2π|µ|r)|2. (4.1.7)

We have the well known formula

Kit(r) = π1/2Γ(it+
1

2
)−1

( r
2

)it
∫ ∞

1

(x2 − 1)it−1/2e−xr dx,

which implies (by an elementary argument) that for any 0 < n < m, constant A, sufficiently large,
and implied constant independent of t,

∫ ∞

A

|Kit(r)|2r−n dr <<

∫ ∞

A/2

|Kit(r)|2r−m dr. (4.1.8)

An application of Parseval’s equality, and (4.1.7) gives

4φl,µ(s) is the Fourier coefficient of El(P, s).
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∫

F(A)

|EA
l (P, it)|2V dv(P )

=
1

[Γ∞ : Γ ′
∞]

∫ ∞

A

∫

P
|EA

l (z + rj, it)|2V dz
dr

r3

=
1

C∞

∫ ∞

A

∑

µ6=0

|φl,µ(it)|2V |rKit(2π|µ|r)|2
dr

r3

= C∞

∫ ∞

A

∑

µ6=0

|φl,µ(it)|2V |Kit(2π|µ|r)|2
dr

r

<<

∫ ∞

A/2

∑

µ6=0

|φl,µ(it)|2V |Kit(2π|µ|r)|2
dr

r5

=

∫ ∞

A/2

∑

µ6=0

|φl,µ(it)|2V |rKit(2π|µ|r)|2
dr

r7

=

∫ ∞

A/2

1

|Λ∞|

∫

P
|EA/2

l (z + rj, it)|2V dz
dr

r7

≤
∫ ∞

A/2

1

|Λ∞|

∫

P
|El(z + rj, it)|2V dz

dr

r7
.

Hence, we infer from Lemma 4.1.5, and another application of Parsavel’s equality (for eigenfunc-
tions of the Euclidean Laplacian) that

∫ T

−T

∫

F(A)

|EA
l (P, it)|2V dv(P ) dt

<<

∫ T

−T

∫ ∞

A/2

∫

P
|EA/2

l (z + rj, it)|2V dz
dr

r7

≤ C

∫ ∞

A/2

∫ T

−T

|El(P, it)|2V dt
dr

r7

<<

∫ ∞

A/2

c1(r
2T + T 3)

dr

r7
<<

T 3

A4
.

The lemma follows from the bound on h(1 + z2) using an elementary integration by parts argu-
ment.

Define φ(s) = detS(s). By Theorem 3.7.1 φ(s) is a meromorphic, finite ordered function on C,

|φ(s)| = 1 on {Re(s) = 0}, and φ′

φ (s) is regular on {Re(s) = 0}. Let h(1 + z2) = O((1 + |z|2)−3/2−ǫ),

and

g(x) =
1

2π

∫

R

h(1 + t2)e−itx dt.

Then we have
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Lemma 4.1.7.

∫

FA

trV (HΓ(P, P )) dv(P ) =

g(0)k(Γ, χ) ln(A) − 1

4π

∫

R

φ′

φ
(it)h(1 + t2) dt+

h(1) trS(0)

4
+ o(1)

A→∞
. (4.1.9)

The integral converges absolutely.

Proof.

4π

∫

FA

trV (HΓ(P, P )) dv(P )

=

k∞∑

l=1

∫

FA

trC∞

∫

R

h
(
1 + t2

)
El(P, it) ⊗ El(P, it) dt dv(P )

=

∫

R

h
(
1 + t2

) k∞∑

l=1

∫

FA

trC∞|El(P, it)|2V dv(P ) dt

=

∫

R

h
(
1 + t2

) k∞∑

l=1

∫

FA

trC∞|EA
l (P, it)|2V dv(P ) dt

=

∫

R

h
(
1 + t2

) k∞∑

l=1

∫

F
trC∞|EA

l (P, it)|2V dv(P ) dt

−
∫

R

h
(
1 + t2

) k∞∑

l=1

∫

F(A)

trC∞|EA
l (P, it)|2V dv(P ) dt.

By Lemma 4.1.6 the term on the last line tends to zero as A→ ∞. We evaluate the first term above
with the Maaß-Selberg relations on the critical line Re(s) = 0. For t ∈ R, t′ = t + r, r > 0, C∞ =
[Γ∞:Γ′

∞]
|Λ∞| and EY (P, it) the column vector of Eisenstein series (l = 1 . . . k∞). Consider the k∞ × k∞

matrix5,
〈
C∞EY (P, it), EY (P, it′)t

〉
. Then

tr
〈
C∞EY (P, it), EY (P, it′)t

〉
=

k∞∑

l=1

∫

F
trC∞|EA

l (P, it)|2V dv(P ).

Applying the Maaß-Selberg relations k∞ × k∞ many times and placing the result in matrix form
gives us6

〈
C∞EY (P, it), EY (P, it′)t

〉
=

5Each entry is the inner product of two truncated Eisenstein series. The inner product takes place in the Hilbert space
H(Γ, χ) .

6We are only interested in the trace of the matrix
˙

C∞EY (P, it), EY (P, it′)t
¸

. However by working with the entire
matrix we can use the identity (4.1.10) and derive a nice expression for the trace.
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−Y it+it′ i
S(it′)

t+ t′
+ Y −it−it′ i

S(it)∗

t+ t′
+ Y it−it′ i

I

t′ − t
− Y −it+it′ i

S(it)S∗(it′)

t′ − t
.

Next applying the approximations,

Y ir = 1 + ir lnY + . . . ,

Y −ir = 1 − ir lnY + . . . ,

S(it+ ir) = S(it) + irS(it)′ + . . . ,

identities,
S(−it) = S∗(it) = S−1(it),

d

dt
S(it)S(−it) = −iS(it)S′(−it) + iS′(it)S(−it) =

d

dt
I = 0,

trS
′(it)S−1(it) =

d

dt
log det S(it) =

φ′

φ
(it), (4.1.10)

and letting r → 0 we obtain the lemma. See [EGM98, Page 305] and [Iwa02, Page 139-142] for
more details.

4.2 Lattice Characters and Sums

As mentioned earlier the parabolic elements of a cofinite Kleinian group have an associated lattice.

Z(x,Λ, ψ)

Let Λ = Z ⊕ Zτ ⊂ C be a lattice with Im(τ) > 0. A (lattice) character ψ of Λ is a one-dimensional
unitary representation of Λ.

Definition 4.2.1. For x > 0 set

Z(x,Λ, ψ)≡
∑

µ∈Λ
|µ|2≤x
µ6=0

ψ(µ)

|µ|2 ,

and when the limit exists
L(Λ, ψ)≡ lim

x→∞
Z(x,Λ, ψ).

Proposition 4.2.2. Let ψ be a character of Λ.
(1) If ψ = id, the trivial character, then

Z(x,Λ, ψ) =
π

|Λ| (lnx+ ηΛ) +O
(
x−

1
2

)
as x→ ∞. (4.2.1)

(2) If ψ 6= id then limx→∞ Z(x,Λ, ψ) exists and

Z(x,Λ, ψ) = L(Λ, ψ) +O
(
x−

1
2

)
as x→ ∞.

Here ηΛ can be thought of as an analogue of the Euler constant γ for the lattice Λ ⊂ R2.
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Proof. (1) This is proven in [EGM98, page 298].
(2) By Lemma 4.2.5

∑

µ∈Λ
x<|µ|2<p

ψ(µ)

|µ|2 = O(x−
1
2 ).

Here the implied constant does not depend on p. Hence, convergence follows from the Cauchy
criterion. Letting p→ ∞ shows that

Z(x,Λ, ψ) = L(Λ, ψ) +O
(
x−

1
2

)
.

Kronecker’s Second Limit Formula

Let u, v be real numbers which are both not integers and write τ = x + iy (y > 0). For Re(s) > 1
set

Eu,v(τ, s)≡ lim
x→∞

∑′

|mτ+n|2<x

e2πi(mu+nv) ys

|mτ + n|2s
.

Here the prime in the sum means to leave out zero. The series converges uniformly and absolutely
on compact subsets of Re(s) > 1. Thus we can also define

Eu,v(τ, s) =
∑

(n,m) 6=(0,0)

e2πi(mu+nv) ys

|mτ + n|2s

since the order of summation is not important when a sum converges absolutely. In the sums, n
and m are understood to vary over the integers.

We have ([Sie80] or [Lan87, page 276]7)

Lemma 4.2.3. The function Eu,v(τ, s) can be continued to an entire function of s ∈ C, and one has

Eu,v(τ, 1) = −2π log |g−v,u(τ)|, (4.2.2)

where ga1,a2
is the Siegel function,

ga1,a2
(τ) = −q(1/2)B2(a1)

τ e2πia2(a1−1)/2(1 − qz)

∞∏

n=1

(1 − qn
τ qz)(1 − qn

τ /qz), (4.2.3)

B2(X) = X2 −X + 1/6, qτ = e2πiτ , qz = e2πiz, and z = a1τ + a2.

We now explain the relationship between L(Λ, ψ) andEu,v(τ, 1). The characterψ is determined
by u and v. That is u and v can be chosen so that ψ(1) = e2πiu and ψ(τ) = e2πiv.We now can rewrite

Z(x,Λ, ψ) =
∑′

|mτ+n|2<x

e2πi(mu+nv)

|mτ + n|2 . (4.2.4)

7There appears to be a typographical error in the definition of the Siegel function on page 276 of the second edition of
[Lan87]. The correct definition appears on page 262.
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Here the prime means we leave off zero from the sum.
Formally, ignoring convergence and order of summation,

lim
x→∞

Z(x,Λ, ψ) =
∑

(m,n) 6=(0,0)

e2πi(mu+nv)

|mτ + n|2 =
1

y
Eu,v(τ, 1)

In the next section we will make the above argument rigorous.

Evaluation of L(Λ, ψ)

Proposition 4.2.4. Let Λ = Z ⊕ Zτ ⊂ C be a lattice with Im(τ) > 0, ψ a character of Λ, and u, v ∈ R

are both not integers satisfying ψ(1) = e2πiu and ψ(τ) = e2πiv. Then

L(Λ, ψ) =
−2π

y
log |g−v,u (τ)| . (4.2.5)

Proof. For Re(s) > 1 recall that

y−sEu,v(τ, s) = lim
x→∞

∑′

|mτ+n|2<x

e2πi(mu+nv)

|mτ + n|2s
.

For t ∈ [1, 2] set

f(t)≡ lim
x→∞

∑′

|mτ+n|2<x

e2πi(mu+nv)

|mτ + n|2t
.

By proposition (4.2.2) limx→∞ Z(x,Λ, ψ) = L(Λ, ψ) converges, and by equation (4.2.4) L(Λ, ψ) =
f(1). By Lemma 4.2.3 y−sEu,v(τ, s) can be continued to an entire function (also denoted by y−sEu,v(τ, s)).
In particular y−sEu,v(τ, s) is continuous and

lim
t→1+

y−tEu,v(τ, t) = y−1Eu,v(τ, 1) =
−2π

y
log |g−v,u (τ)| .

By definition, f(t) = y−tEu,v(τ, t) for t ∈ (1, 2]. If we can show that f is continuous on [1, 2] then

L(Λ, ψ) = f(1) = lim
t→1+

f(t) = lim
t→1+

y−tEu,v(τ, t) = y−1Eu,v(τ, 1)

=
−2π

y
log |g−v,u (τ)| .

The function f is a continuous function on [1, 2] by Lemma 4.2.5. To see this observe that by the
Cauchy criterion the sum f converges uniformly for t ∈ [1, 2]. Since a uniformly convergent sum
of continuous functions is continuous, the proposition is proved.

Proof of lemma (4.2.5)

Lemma 4.2.5. For s ∈ [1, 2], p > w > 0, and v, u both not integers, τ = x+ iy, Im(τ) > 0 let

h(w, s)≡
∑

w<|mτ+n|2<p

e2πi(mu+nv)

|mτ + n|2s
.
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Then
h(w, s) = O

(
w

1
2
−s
)

uniformly for s ∈ [1, 2].

The implied constant does not depend on w or s. Our proof will work for s ∈ (1
2 ,∞). However

the interval [1, 2] is sufficient for our application.

Proof. Without loss of generality we assume v /∈ Z and Re(τ) > 0. We estimate the sum

∑

w<|mτ+n|2<p

e2πi(mu+nv)

|mτ + n|2s
. (4.2.6)

Sum (4.2.6) is a sum over lattice points of Λ that are outside of the circle of radius
√
w but inside

the circle of radius
√
p. It suffices to restrict our sum to the first quadrant of the plane since the

sum over the other three quadrants can be estimated similarly. With this assumption n ≥ 0 and
m ≥ 0 and our sum can be written as an explicit double sum with n and m separated as,

[
√

w/|τ |]∑

m=0

e2πi(mu)

q(p)∑

n=q(w)

e2πinv

|mτ + n|2s
+

[
√

p/|τ |]∑

m=[
√

w/|τ |]+1

e2πi(mu)

q(p)∑

n=0

e2πinv

|mτ + n|2s
, (4.2.7)

where q(α) = [
√
α−m2y2−mx]. The brackets, [ ] represent the greatest integer function. The sum

above is split over m. For in the first case horizontal translations of lattice points will intersect the
inner circle |z| =

√
w and hence n must be restricted while the second sum n is free to start at zero.

See figure (4.2). We encourage the reader to write down the explicit double sum in the simple case
of Z ⊕ Zi.

We estimate the inner sum using a Stieltjes integral. For t ≥ 0 let π(t) = [t]. Then for 0 ≤ a < b

b∑

n=a

e2πinv

|mτ + n|2s
=

∫ b′

a′

e2πitv

|mτ + t|2s
dπ(t) =

∫ b′

a′

e2πitv

((t+mx)2 + (my)2)s
dπ(t),

where a′ = a − δ, b′ = b + δ for any δ > 0 sufficiently small (the Stieltjes integral must have a
slightly larger integration domain to include the endpoints of the sum). Next using integration by
parts with

U(t) =
1

((t+mx)2 + (my)2)s
,

dV (t) = e2πitv dπ(t),

V (t) =

∫ t

0

e2πixv dπ(x),

dU(t) =
d

dt
U(t) dt,

and noting that

V (t) =

∫ t′

0′

e2πixv dπ(x) =

[t]∑

k=0

e2πikv
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*     *     *     *     *     *     *
*     *     *     *     *     *     *

*    *     *      *     *     *     *     *
*     *      *     *     *     *     *

*       *     *      *     *     *      *     *

*    *     *     *       *     *      *     *     *      *

*     *    *      *       *     *     *     *      *

*     *     *     *     *      *       *

*     *     *      * 

p^(1/2)

w^(1/2)

n−horiziontal  m−vertical

Split off point for   m, 
n varies from 0 to edge of big 
circle

      n is restricted from
inner circle to outer circle

Figure 4.2.1: Lattice points for the sum.

satisfies −C ≤ V (t) ≤ C since v is not an integer, we can estimate the integral

∣∣∣∣∣

∫ b′

a′

e2πitv

((t+mx)2 + (my)2)s
dπ(t)

∣∣∣∣∣ ≤
∣∣∣U(t)V (t)]

b′

a′

∣∣∣+
∣∣∣∣∣

∫ b′

a′

|V (t)| |dU(t)|
∣∣∣∣∣

≤ C
∣∣∣U(t)]

b′

a′

∣∣∣+ C

∣∣∣∣∣

∫ b′

a′

|dU(t)|
∣∣∣∣∣ ≤ 2C

∣∣∣U(t)]
b′

a′

∣∣∣ ≤ 2C|U(a)| + 2C|U(b)|.

Note that |dU(t)| is easily estimated since U(t) is monotone decreasing and that the primes can be
dropped since δ can be made arbitrarily small.

What remains is to apply the above estimate to each of the inner sums and crudely put absolute
values around all the other terms.
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The first sum can be estimated as follows,

∣∣∣∣∣∣

[
√

w/|τ |]∑

m=0

e2πi(mu)

q(p)∑

n=q(w)

e2πinv

|mτ + n|2s

∣∣∣∣∣∣

≤
[
√

w/|τ |]∑

m=0

∣∣e2πimu
∣∣
∣∣∣∣∣∣

q(p)∑

n=q(w)

e2πinv

|mτ + n|2s

∣∣∣∣∣∣

=

[
√

w/|τ |]∑

m=0

∣∣∣∣∣∣

q(p)∑

n=q(w)

e2πinv

|mτ + n|2s

∣∣∣∣∣∣

=

[
√

w/|τ |]∑

m=0

∣∣∣∣∣

∫ q(p)′

q(w)′

e2πitv

|mτ + n|2s
dπ(t)

∣∣∣∣∣

≤ 2C

[
√

w/|τ |]∑

m=0

(|U(q(w)| + |U(q(p))|) .

Simplifying U(q(w)) and U(q(p)) using

U(t) =
1

((t+mx)2 + (my)2)s

and

q(α) = [
√
α−m2y2 −mx]

yields

2C

[
√

w/|τ |]∑

m=0

(|U(q(w))| + |U(q(p))|)

≤ 2C

[
√

w/|τ |]∑

m=0

(
1

[w]s
+

1

[p]s

)

≤ 2C[
√
w/|τ | + 1](

(
1

[w]s
+

1

[p]s

)

≤ 2C[
√
w/|τ | + 1](

(
1

[w]s
+

1

[w]s

)
= O

(
w

1
2
−s
)
.

The last inequality follows from w ≤ p.
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We apply the same method to the second sum and obtain,

∣∣∣∣∣∣

[
√

p/|τ |]∑

m=[
√

w/|τ |]+1

e2πi(mu)

q(p)∑

n=0

e2πinv

|mτ + n|2s

∣∣∣∣∣∣

≤ 2C

[
√

p/|τ |]∑

m=[
√

w/|τ |]+1

(|U(0)| + |U(q(p))|)

≤ 2C

[
√

p/|τ |]∑

m=[
√

w/|τ |]+1

(
1

((mx)2 + (my)2)s
+

1

[p]s

)

= 2C

[
√

p/|τ |]∑

m=[
√

w/|τ |]+1

1

((mx)2 + (my)2)s
+ 2C

[
√

p/|τ |]∑

m=[
√

w/|τ |]+1

1

[p]s
.

It remains to show that both sums above are bounded by a term of growth O
(
w

1
2
−s
)
.

For the right hand sum,

2C

[
√

p/|τ |]∑

m=[
√

w/|τ |]+1

1

[p]s
≤ 2C[

√
p/|τ |] 1

[p]s
= O

(
w

1
2
−s
)

since p > w.
For the left hand sum

2C

[
√

p/|τ |]∑

m=[
√

w/|τ |]+1

1

((mx)2 + (my)2)s
≤ C1

∞∑

m=[
√

w]

1

m2s
= O

(
w

1
2
−s
)
,

for some C1 > 0. The last equality holds uniformly for s ∈ [1, 2] by the integral test.

4.3 The Explicit Trace

In this section our main goal is to give an explicit formula for
∫

FA

trV (KΓ(P, P )) dv(P ).

Following Selberg’s original method we decompose

KΓ(P,Q) =
∑

γ∈Γ

χ(γ)K(P, γQ)

into various sub-sums. Depending on their type. The types are as follows, “id” is the identity, “par”
are the parabolic elements, “ce” are the cuspidal elliptic elements8, “nce” are the non-cuspidal

8These elliptical elements share a common fixed point in P with some parabolic element in Γ.
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elliptical elements, “lox” are the hyperbolic and loxodromic elements, and “cusp” = “par” ∪ “ce”.
For each S ∈ {id, par, ce, nce, lox, cusp} set

KS
Γ (P,Q) =

∑

γ∈ΓS

χ(γ)K(P, γQ).

Here ΓS denotes the subset of Γ consisting of elements of type S.

Following [EGM98, Section 5.2, Theorem 6.5.1] we have,

Lemma 4.3.1.

∫

FA

trV

(
K id

Γ +Knce
Γ +K lox

Γ

)
(P, P ) dv(P )

=
vol(Γ \ H3) dimC(V )

4π2

∫

R

h(1 + t2)t2 dt+
∑

{R}nce

tr(χ(R))g(0) logN(T0)

4|E(R)| sin2
(

πk
m(R)

)

+
∑

{T}lox

tr(χ(T ))g(logN(T )) logN(T0)

|E(T )||a(T ) − a(T )−1|2 + o(1) as A→ ∞. (4.3.1)

The notations above were defined in §4.1.

The Cuspidal Elliptic Elements

Our next immediate goal is to evaluate

∫

FA

trV K
ce
Γ (P, P ) dv(P ).

For notational simplicity, we will adopt Assumption 3.7.2 from this point on until the end of
this thesis.

Denote by CE set of elements of Γ which are Γ-conjugate to an element of Γ∞ \ Γ′
∞ = {γ ∈

Γ∞ | γ is not parabolic nor the identity element }. We fix representatives of conjugacy classes of
CE , g1, . . . , gd

9 that have the form

gi =

(
ǫi ǫiωi

0 (ǫi)
−1

)
. (4.3.2)

For g ∈ CE , let C(g) denote the centralizer in Γ of g. In addition, let {pi,∞} be the set of fixed points
in P of the element gi. Since gi is a cuspidal elliptic element it follows that pi is a cusp of Γ (see
[EGM98] page 52). Hence by Assumption 3.7.2 there is an element γi ∈ Γ with γi∞ = pi. Suppose
that ci is the lower left hand (matrix) entry of γi. Then we have (see [EGM98, Pages 302-304]),

9There are only finitely many distinct conjugacy classes of elliptic elements in a cofinite Kleinian group.
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Lemma 4.3.2.

∫

FA

trKce
Γ (P, P ) dv(P )

=

d∑

i=1

trχ(gi)

|C(gi)|

[
2g(0)(log |ci| + logA)

|1 − ǫ2i |2

+
1

|1 − ǫ2i |2
∫ ∞

0

g(x)
sinhx

coshx− 1 +
|1−ǫ2i |2

2

dx

]

+ o(1) as A→ ∞. (4.3.3)

4.4 The Parabolic Elements

This section contains the new features of the Selberg trace formula that are not present in the
two-dimensional vector and three-dimensional scalar cases. We remind the reader that Assump-
tion 3.7.2 is in effect.

Our main goal for this section is to evaluate
∫

FA

trV K
par
Γ (P, P ) dv(P ). (4.4.1)

Evaluation of Integral 4.4.1

Let P be a fundamental domain for the action10 of Γ∞ on C,

P̃ ≡{(z, r) ∈ H3 | z ∈ P },

and
PA ≡{(z, r) ∈ H3 | z ∈ P , r ≤ A }.

It follows that P̃ is a fundamental domain for the action of Γ∞ on H3.
Recall that Γ ′

∞ is canonically isomorphic to a lattice Λ∞. For µ ∈ Λ∞ let µ̂ denote the corre-
sponding parabolic element in Γ ′

∞ . We will need the following (see [EGM98, Pages 300-301])

Lemma 4.4.1.
∫

FA

trKpar
Γ (P, P ) dv(P ) =

∑′

µ∈Λ∞

tr(χ(µ̂))

∫

PA

K(P, µ̂P ) dv(P ) + o(1)
A→∞

. (4.4.2)

Since Γ ′
∞ is an abelian group, χ restricted to Γ ′

∞ can be diagonalized. In other words, there
exist lattice characters {ψl}l=1...n so that

trχ|Γ ′
∞

=

n∑

l=1

ψl. (4.4.3)

Thus it suffices to consider lattice characters instead of unitary representations.

10See §2.5 for more details on the action.
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Lemma 4.4.2. Let ψ be a lattice character of Λ∞. Then
(1) For ψ = id,

∑′

µ∈Λ∞

ψ(µ)

∫

PA

K(P, µ̂P ) =

1

[Γ∞ : Γ′
∞]

(
g(0) logA+

h(1)

4
+ g(0)

(η∞
2

− γ
)
− 1

2π

∫

R

h(1 + t2)
Γ′

Γ
(1 + it) dt

)

+ o(1) as A→ ∞.

(2) For ψ 6= id,

∑′

µ∈Λ∞

ψ(µ)

∫

PA

K(P, µ̂P ) =
g(0)

[Γ∞ : Γ′
∞]
L(Λ, ψ) + o(1) as A→ ∞.

Proof. (1) is proved in [EGM98, pages 300-302].

The proof of (2) is a modification of (1). Let C∞ = |Λ∞|
[Γ∞:Γ′

∞] , then by the definition of the action

of µ̂ on H3,

∑′

µ∈Λ∞

ψ(µ)

∫

PA

K(P, µ̂P ) = C∞
∑′

µ∈Λ∞

ψ(µ)

∫ A

0

k

( |µ|2
2r2

+ 1

)
dr

r3
.

= C∞
∑′

µ∈Λ∞

ψ(µ)

|µ|2
∫ ∞

|µ|2

2A2

k(u+ 1) du. (4.4.4)

Since

Z(x,Λ, ψ) =
∑

µ∈Λ∞

|µ|2≤x
µ6=0

ψ(µ)

|µ|2 ,

using summation by parts, we can rewrite (4.4.4) as

C∞

∫ ∞

0

k(u+ 1)Z(2A2u,Λ, ψ) du. (4.4.5)

Next we apply Proposition 4.2.2 to obtain

C∞

∫ ∞

0

k(u+ 1)Z(2A2u,Λ, ψ) du

= C∞

∫ ∞

0

k(u+ 1)
(
L(Λ, ψ) +O

(
(2A2u)−1/2

))
du. (4.4.6)

Now we show that the resulting error term is o(1). Since k(u + 1) = O
(
(1 + u)−4

)
(k is a rapid

decay function)
∣∣∣∣
∫ ∞

0

k(u + 1)O
(
(2A2u)−1/2

)
du

∣∣∣∣ ≤
D

A

∫ ∞

0

(1 + u)−4u−1/2 du = o(1) as A→ ∞

for some D > 0. To complete the proof note that
∫∞
0
k(u+ 1) du = g(0).



58 CHAPTER 4. THE SELBERG TRACE FORMULA

Finally we can evaluate (4.4.1):

Lemma 4.4.3.

∫

FA

trKpar
Γ (P, P ) dv(P ) =

l∞
|Γ∞ : Γ′

∞|

(
g(0) logA+

h(1)

4
+ g(0)

(η∞
2

− γ
)
− 1

2π

∫

R

h(1 + t2)
Γ′

Γ
(1 + it) dt

)

+
g(0)

|Γ∞ : Γ′
∞|

n∑

l=l∞+1

L(Λ∞, ψl). (4.4.7)

Here n = dimC V, ψl are the lattice characters associated to the lattice Λ∞, l∞ = dimC V
′
∞, and η∞ is the

analogue of the Euler constant for the lattice Λ∞.

Proof. The proof follows immediately from Lemma 4.4.1, Equation 4.4.3, and Lemma 4.4.2.

We have evaluated the truncated trace of K explicitly as an integral, and by using spectral
theory. Notice that as A → ∞ the integral over the parabolic sum (Lemma 4.4.3) has a divergent
term. So does the corresponding cuspidal elliptic integral (Lemma 4.3.2). By Lemma 4.1.4 the
divergent terms must equal the divergent term of the spectral (truncated) trace (Lemma 4.1.7). It
follows that

2g(0) logA

d∑

i=1

trχ(gi)

|C(gi)||1 − ǫ2i |2
+ g(0) logA

l∞
|Γ∞ : Γ′

∞| − g(0)k∞ logA = 0.

By choosing a suitable k so that g(0) 6= 0 we obtain

Lemma 4.4.4.

2

d∑

i=1

trχ(gi)

|C(gi)||1 − ǫ2i |2
+

l∞
|Γ∞ : Γ′

∞| = k∞.

The formula11 above is an application of spectral theory to the group relations of a cofinite
hyperbolic three-orbifold12. We will use the above lemma to give a meromorphic continuation of
the Selberg zeta-function.

Completion of the proof of the Selberg Trace Formula

The Selberg trace formula now follows: combine Lemma 4.4.3, Lemma 4.3.2, Lemma 4.4.4, Lemma 4.3.1,
Lemma 4.1.7, and Lemma 4.1.4. Note that the divergent terms all cancel by Lemma 4.1.4 (or we
can use Lemma 4.4.4). Finally take the limit as A → ∞. See [EGM98, Section 6.5] for more details
on combining the lemmas above.

11A similar formula is valid for the general case of κ-many cusps.

12Notice that all of the terms above are defined simply in terms of group relations.



Chapter 5

The Selberg Zeta Function

In this section we define the Selberg zeta-function Z(s,Γ, χ) for cofinite Kleinian groups with
finite-dimensional unitary representations, in the right half-plane Re(s) > 1. We then evaluate the
logarithmic derivative of Z(s,Γ, χ) and show that Z(s,Γ, χ) admits a meromorphic continuation,
subject to some technical assumptions concerning the stabilizer subgroup Γ∞ .

5.1 The Definition and Motivation

In the celebrated paper [Sel56] Selberg first defined what is now called “The Selberg zeta-function1”
as an infinite product over lengths of primitive closed geodesics2, bearing a strong resemblance to
the Riemann zeta-function. Surprisingly, the Selberg zeta-function satisfies a Riemann hypothosis,
and encodes both geometric and spectral data of the quotient orbifold3 Γ\H 2. The spectral and ge-
ometric connection is made clear when one understands the Selberg zeta-function as a by-product
of the Selberg trace formula applied to the resolvent kernel of ∆.

In Defintion 5.1.1 we will define the Selberg zeta-function for our case of interest. A natural
question arises: what does our zeta-function have in common with the original Selberg zeta-function? The
answer4: the logarithmic derivatives of both zeta-functions are directly related to the loxodromic
(or hyperbolic) contribution of the Selberg trace formula applied to the resolvent kernel of ∆. The
term (from the trace formula) in question for our case has the form

∑

{T} lox

tr(χ(T )) logN(T0)

m(T )|a(T )− a(T )−1|2N(T )−s.

We show in Lemma 5.1.2 that the term above is the logarithmic derivatives of a meromorphic
function Z(s,Γ, χ), and that it has a product expansion in the right half-plane R(s) > 1.

1More precisely, the Selberg zeta-function of a cocompact Fuchsian group.

2Geodesics that do not trace over themselves multiple times.

3A Riemann surface if Γ is torsion-free.

4An alternative answer is that in the cocompact case, both zeta functions are factors of the regularized (functional)
determenant det

`

∆−(1 − s2)
´

. See [Sar87] for more details.
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In order to define Z(s,Γ, χ) we will need some notions concerning centralizer subgroups of
loxodromic elements. For more details see [EGM98, Sections 5.2,5.4].

Let Γ be a cofinite Kleinian group and let χ ∈ Rep(Γ, V ) . Suppose T ∈ Γ is loxodromic (we
consider hyperbolic elements as loxodromic elements). Then T is conjugate in PSL(2,C) to a
unique element of the form

D(T ) =

(
a(T ) 0

0 a(T )−1

)

such that a(T ) ∈ C has |a(T )| > 1. Let N(T ) denote the norm of T, defined by

N(T )≡ |a(T )|2,

and let by C(T ) denote the centralizer of T in Γ. There exists a (primitive) loxodromic element T0,
and a finite cyclic elliptic subgroup E(T ) of order m(T ), generated by an element ET0

such that

C(T ) = 〈T0〉 × E(T ) .

Here 〈T0〉 = {T n
0 | n ∈ Z }.5 Next, Let t1, . . . , tn, and t

′
1, . . . , t

′
n denote the eigenvalues of χ(T0) and

χ(ET0
) respectively. The elliptic element ET0

is conjugate in PSL(2,C) to an element of the form

(
ζ(T0) 0

0 ζ(T0)
−1

)
,

where here ζ(T0) is a primitive 2m(T )-th root of unity.

Definition 5.1.1. For Re(s) > 1 the Selberg zeta-function Z(s,Γ, χ) is defined by

Z(s,Γ, χ)≡
∏

{T0}∈R

dim V∏

j=1

∏

l,k≥0
c(T,j,l,k)=1

(
1 − tja(T0)

−2ka(T0)−2lN(T0)
−s−1

)
.

Here the product with respect to T0 extends over a maximal reduced system R of Γ-conjugacy
classes of primitive loxodromic elements of Γ. The system R is called reduced if no two of its
elements have representatives with the same centralizer6. The function c(T, j, l, k) is defined by

c(T, j, l, k) = t
′
jζ(T0)

2lζ(T0)
−2k.

Lemma 5.1.2. For Re(s) > 1,

d

ds
logZ(s,Γ, χ) =

∑

{T} lox

tr(χ(T )) logN(T0)

m(T )|a(T ) − a(T )−1|2N(T )−s.

5Note that by definition E(T ) = E(T0), and that T0 is unique up to multiplication by an element of E(T ).

6See [EGM98] section 5.4 for more details
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Proof. It follows from the proof of [EGM98, Lemma 5.4.2] that

∑

{T} lox

tr(χ(T )) logN(T0)

m(T )|a(T ) − a(T )−1|2N(T )−s

=
∑

{T0}∈R
n≥0

1≤v≤m(T0)

trχ(T n+1
0 Ev

0 ) logN(T0)

m(T0) |ζ(T0)va(T0)n+1 − ζ(T0)−va(T0)−n−1|2
N(T0)

−s(n+1). (5.1.1)

Next since T0 commutes with ET0
we can diagonalize the restriction of χ to C(T ) and continue the

equality to

=
∑

{T0}∈R
n≥0

1≤v≤m(T0)
1≤j≤dim V

t
n+1
j t

′v
j logN(T0)

m(T0) |ζ(T0)va(T0)n+1 − ζ(T0)−va(T0)−n−1|2
N(T0)

−s(n+1)

=
∑

{T0}∈R
n≥0

1≤v≤m(T0)
1≤j≤dim V

t
n+1
j t

′v
j logN(T0)

m(T0) (1 − d(T0))
(
1 − d(T0)

)N(T0)
−s(n+1)

=
∑

{T0}∈R
n≥0

1≤v≤m(T0)
l,k≥0

1≤j≤dim V

t
n+1
j t

′v
jN(T0)

−s(n+1) logN(T0) (d(T0))
k
(
d(T0)

)l

m(T0)
.

where
d(T0) = ζ(T0)

−2va(T0)
−2(n+1)

Next we sum over the v−index (note that it is a geometric sum of an m(T0)−th root of unity)
observe that the sum is non-zero only when

t
′
jζ(T0)

2lζ(T0)
−2k = 1

or using our notation c(T, j, l, k) = 1. The equality continues as

=
∑

{T0}∈R
n≥0
l,k≥0

1≤j≤dim V
c(T,j,l,k)=1

t
n+1
j N(T0)

−s(n+1) logN(T0)
(
a(T0)

−2(n+1)
)k (

a(T0)−2(n+1)
)l

=
∑

{T0}∈R
l,k≥0

1≤j≤dim V
c(T,j,l,k)=1

tja(T0)
−2ka(T0)−2lN(T0)

−(s+1) logN(T0)

1 − tja(T0)−2ka(T0)−2lN(T0)−(s+1)
=
Z ′(s,Γ, χ)

Z(s,Γ, χ).
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5.2 The Logarithmic Derivative of the Selberg Zeta-Function

The first step in obtaining the meromorphic continuation of the zeta-function is to relate its loga-
rithmic derivative to the trace formula. From this point on Assumption 3.7.2 is in effect.

We apply the Selberg trace formula to the pair of functions,

h(w) =
1

s2 + w − 1
− 1

B2 + w − 1
and

g(x) =
1

2s
e−s|x| − 1

2B
e−B|x|,

where 1 < Re(s) < Re(B) and obtain

Lemma 5.2.1.

1

2s

Z ′

Z
(s) − 1

2B

Z ′

Z
(B) =

1

2s

∑

{T} lox

tr(χ(T )) logN(T0)

m(T )|a(T ) − a(T )−1|2N(T )−s

− 1

2B

∑

{T} lox

tr(χ(T )) logN(T0)

m(T )|a(T ) − a(T )−1|2N(T )−B

=
∑

n∈D

(
1

s2 − s2n
− 1

B2 − s2n

)
− 1

4π

∫

R

(
1

s2 + w2
− 1

B2 + w2

)
φ′

φ
(iw) dw

+
l∞

2π[Γ∞ : Γ ′
∞]

∫

R

(
1

s2 + w2
− 1

B2 + w2

)
Γ′

Γ
(1 + iw) dw +

trS(0)

4s2
− trS(0)

4B2

− l∞
4[Γ∞ : Γ ′

∞]s2
+

l∞
4[Γ∞ : Γ ′

∞]B2

−
l∑

i=1

trχ(gi)

|C(gi)||1 − ǫ2i |2
∫ ∞

0

(
e−sx

2s
− e−Bx

2B

)
sinhx

coshx− 1 +
|1−ǫ2i |2

2

dx

−
(

1

2s
− 1

2B

) ∑

{R}nce

trV χ(R) logN(T0)

4| E(R) | sin2( πk
m(R) )

+
vol
(
Γ \ H3

)
dimV

4π
(s−B)

−
(

1

2s
− 1

2B

) l∑

i=1

2 trχ(gi) log |ci|
|C(gi)||1 − ǫ2i |2

−
(

1

2s
− 1

2B

)
1

[Γ∞ : Γ ′
∞]

(
l∞
(η∞

2
− γ
)

+

n∑

l=l∞+1

L(Λ∞, ψl)

)
. (5.2.1)

Proof. The first equality follows from Lemma 5.1.2. The second equality follows directly from the
Selberg trace formula.

Equation (5.2.1) is used to exhibit the meromorphic continuation of Z(s,Γ, χ). If we fix B and
multiply through by 2s, it is not hard to see that each term on the right of (5.2.1) is meromorphic.
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In order to see that Z(s,Γ, χ) is meromorphic, we must compute the residues of each term on the

right of (5.2.1). We will show that the residues are fractional and that for some N ∈ N, Z(s,Γ, χ)
N

is a meromorphic function.

Theorem 5.2.2. Let Γ be cofinite with one class of cusps at ζ = ∞, and let χ ∈ Rep(Γ, V ) .

1. If [Γ∞ : Γ ′
∞] = 1 or [Γ∞ : Γ ′

∞] = 2, then Z(s,Γ, χ) is a meromorphic function.

2. If [Γ∞ : Γ ′
∞] = 3, then there exists a natural number N, 1 ≤ N ≤ 6, so that (Z(s,Γ, χ))

N
is a

meromorphic function.

Proof. The proof follows from a careful study of (5.2.1). We must show that after multiplying by 2s,
each term on the right (of the second equal sign) has at most simple poles with integral or rational
residues7. This is demonstrated in Lemma 5.2.4, Lemma 5.3.1, Lemma 5.3.2, and Lemma 5.3.4.

We remark that the divisor of the Selberg zeta-function is readily read off from Lemma 5.2.4,
Lemma 5.3.1, Lemma 5.3.2, and Lemma 5.3.4.

Our zeta function satisfies a functional equation. A standard argument ([Ven82, Theorem 5.1.5,
page 85]) using (5.2.1), Lemma 5.2.4, Lemma 5.3.1, Lemma 5.3.2, and Lemma 5.3.4 yields:

Theorem 5.2.3. Suppose that [Γ∞ : Γ ′
∞] = 1 or [Γ∞ : Γ ′

∞] = 2. Then Z(s,Γ, χ) satisfies:

Z(−s,Γ, χ) = Z(s,Γ, χ)φ(s)Ψ(s,Γ, χ).

For [Γ∞ : Γ ′
∞] = 1,

Ψ(s)≡
(

Γ(1 − s)

Γ(1 + s)

)k∞

exp

(
−vol

(
Γ \ H3

)
dimV

3π
s3 + Es+ C

)

and

E≡
∑

{R}nce

trV χ(R) logN(T0)

4| E(R) | sin2( πk
m(R) )

+

(
k∞
(η∞

2
− γ
)

+

n∑

l=k∞+1

L(Λ∞, ψl)

)
.

For [Γ∞ : Γ ′
∞] = 2,

Ψ(s)≡
(

Γ(1 − s)

Γ(1 + s)

)l∞
( ∞∏

k=1

exp(−k(−1)k (k − 1)2 − s2

(k + 1)2 − s2

)k∞/2−l∞/2

· exp

(
−vol

(
Γ \ H3

)
dimV

3π
s3 + Es+ C

)

7For case (1) the residues must be integer while for case (2) it suffices to show that the residues are rational with
bounded denominator.
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and

E≡
∑

{R}nce

trV χ(R) logN(T0)

4| E(R) | sin2( πk
m(R) )

+

l∑

i=1

2 trχ(gi) log |ci|
|C(gi)||1 − ǫ2i |2

+
1

[Γ∞ : Γ ′
∞]

(
l∞
(η∞

2
− γ
)

+
n∑

l=l∞+1

L(Λ∞, ψl)

)
.

The constant8 C satisfies the equation: exp(C) = ±1.

Lemma 5.2.4. The expression

∑

n∈D

2s

(
1

s2 − s2n
− 1

B2 − s2n

)
− 1

4π

∫

R

2s

(
1

s2 + w2
− 1

B2 + w2

)
φ′

φ
(iw) dw

has only simple poles and integral residues:
(a) at the points ±sj on the line Re(s) = 0 and on the interval [−1, 1]. Each point sj is related to an

eigenvalue λj of the discrete spectrum of∆ by 1−s2j = λj . The residue of each sj is equal to the multiplicity
of the corresponding eigenvalue. If λ = 1, is an eigenvalue of ∆, then the residue of the point sj = 0, is
twice the multiplicity of λ;

(b) at the points ρj that are poles of S(s), which lie in the half-plane Re(s) < 0. The residue of each ρj

is non-negative9 and equal to its multiplicity as a pole of S(s).

Proof. The computation involves elementary complex analysis. See [Ven82, Section 5.1].

The residues above come from terms that are related to the spectral and scattering theory of
∆. The remaining residues are computed using group theoretic data involving Γ and χ. The poles
and zeros of Z(s,Γ, χ) that correspond to these residues are commonly called topological or trivial10.

5.3 The Topological Zeros and Poles

The computation of the topological residues is considerably more complicated than the corre-
sponding spectral computation. Poles can only arise from the following terms (excluding the
spectral terms previously dealt with) of (5.2.1) (note that we multiplied all terms through by 2s):

l∞
2π[Γ∞ : Γ ′

∞]

∫

R

2s

s2 + w2

Γ′

Γ
(1 + iw) dw − l∞

2[Γ∞ : Γ ′
∞]s

+
tr S(0)

2s

−
l∑

i=1

trχ(gi)

|C(gi)||1 − ǫ2i |2
∫ ∞

0

e−sx sinhx

coshx− 1 +
|1−ǫ2i |2

2

dx. (5.3.1)

8The value of C can be read off by letting s → 0 in the functional equations. Its value depends on whether φ(0) is 1 or
−1 and the multiplicity of Z(s, Γ, χ) at s = 0.

9The point ρj is a zero of Z(s, Γ, χ) and a pole of S(s). We understand the multiplicity of a pole as non-negative
number (not as a negative number).

10We refer to them as topological.
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The first two terms come from the parabolic elements of Γ, the third from the spectral trace,
and the last from the cuspidal elliptic elements of Γ. It is remarkable that the last three terms need
to be taken together in order to compute the residue at s = 0, while the first and last are needed to
compute the residues on the negative real axis.

It is well known that

l∞
2π[Γ∞ : Γ ′

∞]

∫

R

2s

s2 + w2

Γ′

Γ
(1 + iw) dw

=
l∞

[Γ∞ : Γ′
∞]

(
Γ′

Γ
(1 − s) +

∞∑

k=1

(
1

s+ k
+

1

s− k

))
. (5.3.2)

In order to obtain a similarly explicit formula for

l∑

i=1

trχ(gi)

|C(gi)||1 − ǫ2i |2
∫ ∞

0

e−sx sinhx

coshx− 1 +
|1−ǫ2i |2

2

dx (5.3.3)

we must make some technical assumptions.

Case One: [Γ∞ : Γ ′
∞] = 1

In this case, (5.3.3) is not applicable and l∞ = k∞ = k(Γ, χ) (the last equality follows from our
assumption that ∞ is the only cusp). Since S(0) is a unitary self-adjoint matrix of dimension k×k,
its trace consists of a sum of k terms of the form ±1. It follows that 1

2 (tr S(0) − k) is an integer.
After applying equations (5.3.1) and (5.3.2) we have:

Lemma 5.3.1. Suppose [Γ∞ : Γ ′
∞] = 1. Then the poles of (5.3.1) are simple and are located at the points

s = −1,−2, . . . , with residue k∞ and at the point s = 0, with residue 1
2 (tr S(0) − k∞).

Case Two: [Γ∞ : Γ ′
∞] = 2

In this case for all i, ǫi = ǫ≡
√
−1 and (5.3.3) becomes

l∑

i=1

trχ(gi)

|C(gi)||1 − ǫ|2
∫ ∞

0

e−sx sinhx

coshx+ 1
dx. (5.3.4)

An application of Lemma 4.4.4 gives us the coefficient of the integral above

l∑

i=1

trχ(gi)

|C(gi)||1 − ǫ|2 =
1

2

(
k∞ − l∞

2

)
.

Next, to evaluate the integral in (5.3.4) we appeal to the following formula:

∫ ∞

0

e−µx(coshx− cos t)−1 dx =
2

sin t

∞∑

k=1

sin kt

µ+ k
, (5.3.5)
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valid for Re(µ) > −1 and t 6= 2nπ, (see [GR65] formula 3.543.2). Averaging for the two values
µ− 1, µ+ 1, we obtain

∫ ∞

0

e−sx sinhx

coshx− cos t
dx =

1

sin t

∞∑

k=1

sin kt

(
1

s− 1 + k
− 1

s+ 1 + k

)
. (5.3.6)

Finally, we can evaluate the integral in (5.3.4) by taking the limit as t → π

∫ ∞

0

e−sx sinhx

coshx+ 1
dx =

∞∑

k=1

k(−1)k+1

(
1

s− 1 + k
− 1

s+ 1 + k

)
. (5.3.7)

Combining the residues above with those from (5.3.2) give us:

Lemma 5.3.2. Suppose [Γ∞ : Γ ′
∞] = 2. Then the poles of (5.3.1) are simple and are located at the points

s = n, with n = −1,−2, . . . , and residue11:

mn =

{
k∞, if n is odd,

l∞ − k∞, else

and at the point s = 0 with residue 1
2 (tr S(0) − k∞).

Since the Picard group Γ = PSL(2,Z[
√
−1]) satisfies [Γ∞ : Γ ′

∞] = 2 we have:

Corollary 5.3.3. Let Γ = PSL(2,Z[
√
−1]), and let χ ∈ Rep(Γ, V ) . Then Z(s,Γ, χ) is a meromorphic

function.

Case Three: [Γ∞ : Γ ′
∞] = 3

In this case, the cuspidal elliptic elements gi that are in (5.3.3) must all be of order three. Hence
ǫi ∈ { 3

√
1, 3

√
−1 }, but when such ǫi is plugged into |1 − ǫ2i |2 one obtains 3. Thus we can rewrite

(5.3.3) as
l∑

i=1

trχ(gi)

|C(gi)||1 − ǫ2i |2
∫ ∞

0

e−sx sinhx

coshx+ 1
2

dx. (5.3.8)

Next, applying (5.3.6) with t = 2
3π, and Lemma 4.4.4, we can rewrite (5.3.8) as

1

2

(
k∞ − l∞

3

)((
1

s− 1 + 1
− 1

s+ 1 + 1

)
−
(

1

s− 1 + 2
− 1

s+ 1 + 2

)

+

(
1

s− 1 + 4
− 1

s+ 1 + 4

)
−
(

1

s− 1 + 5
− 1

s+ 1 + 5

)
+ . . .

)
. (5.3.9)

Finally combining the residues above with the residues from (5.3.2) we obtain:

11Note that by defintion l∞ ≥ k∞.
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Lemma 5.3.4. Suppose [Γ∞ : Γ ′
∞] = 3. Then the poles of (5.3.1) are simple and are located at the points

s = n, with n = −1,−2, . . . , and residue:

mn =

{
2
3 l∞ − k∞, if n is a multiple of 3,
1
6 l∞ + 1

2k∞, else

and at the point s = 0 with residue 1
2 (tr S(0) − k∞).

As an application of the lemma above, we have:

Corollary 5.3.5. Let Γ = PSL(2,Z[− 1
2 +

√
−3
2 ]), and χ ≡ 1 (the trivial representation). Then Z(s,Γ, χ)

is not a meromorphic function12 (it is the 6-th root of a meromorphic function).

Proof. Since Q(
√
−3) has class number one, PSL(2,Z[− 1

2 +
√
−3
2 ]) has one class of cusps ([EGM98,

Chapter 7]). In addition it has ∞ for a cusp. Elementary calculations show that [Γ∞ : Γ ′
∞] = 3. By

definition, χ ≡ 1 implies that k∞ = l∞ = 1. The result follows from Lemma 5.3.4.

The Remaining Cases

The cases that remain are: [Γ∞ : Γ ′
∞] = 4 and [Γ∞ : Γ ′

∞] = 6. Using the same ideas as in the other
three cases one can show the following:

Theorem 5.3.6. Suppose that [Γ∞ : Γ ′
∞] = 4. Then for some integer N, Z(s,Γ, χ)

N
is a meromorphic

function.

The author does not know a good bound for the integer N (N depends on Γ and χ). On the
other hand we conjecture the following:

Conjecture. Suppose that [Γ∞ : Γ ′
∞] = 6. Then for some integer N, Z(s,Γ, χ)

N
is a meromorphic

function.

5.4 The Entire Function Associated to the Selberg Zeta-Function

As Fischer [Fis87, Chapter 3] observed, it is useful to group the elliptic, parabolic, and identity
terms, together with the loxodromic terms to define an entire function associated to the Selberg
zeta-function called the Selberg xi-function Ξ(s,Γ, χ).

12This is the first example that the author is aware of where the Selberg zeta-function is not meromorphic.
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Definition 5.4.1. For Re(s) > 1 set13

Ξ′

Ξ
(s,Γ, χ) =

∑

{T} lox

tr(χ(T )) logN(T0)

m(T )|a(T )− a(T )−1|2N(T )−s

+
l∞

2π[Γ∞ : Γ ′
∞]

∫

R

(
2s

s2 + w2

)
Γ′

Γ
(1 + iw) dw

+
1

2s

(
tr S(0) − l∞

[Γ∞ : Γ ′
∞]

)

−
l∑

i=1

trχ(gi)

|C(gi)||1 − ǫ2i |2
∫ ∞

0

(
e−sx

2s

)
sinhx

coshx− 1 +
|1−ǫ2i |2

2

dx− E,

where E is defined in Theorem 5.2.3.

Theorem 5.4.2. The Selberg xi-function can be continued to an entire function Ξ(s,Γ, χ) with

1

2s

Ξ′

Ξ
(s,Γ, χ) − 1

2B

Ξ′

Ξ
(B,Γ, χ)

=
∑

n∈D

(
1

s2 − s2n
− 1

B2 − s2n

)
− 1

4π

∫

R

(
1

s2 + w2
− 1

B2 + w2

)
φ′

φ
(iw) dw.

Here B > 1, B > Re(s).

Proof. The second assertion follows from (5.2.1). For the first asserstion: by Lemma 5.2.4, after
multiplying through by 2s, the residues of the expression on the right side of the equal sign are all
integers and positive. Hence Ξ(s,Γ, χ) is entire.

An explicit product formula (for Re(s) > 1) can be obtained for Ξ(s,Γ, χ) in the case of [Γ∞ : Γ ′
∞] = 1, 2, 3

by integrating, and then exponentiating, the explicit formula for the contribution of the parabolic
and cuspidal elliptic elements to the Selberg zeta-function.

Remark 5.4.3. The Selberg zeta-function for symmetric spaces of rank-one was studied by Gangolli and
Warner ([Gan77], [GW80]). More specifically, they studied torsion-free cocompact quotients with finite-
dimensional unitary representations, and non-cocompact torsion-free quotients with trivial representations
(the scalar case).

13Theorem 5.4.2 shows that we are justified in defining Ξ(s, Γ, χ) by its logarithmic derivative.
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